WO2018221795A1 - 주밍기구가 포함된 빔 균질기 - Google Patents

주밍기구가 포함된 빔 균질기 Download PDF

Info

Publication number
WO2018221795A1
WO2018221795A1 PCT/KR2017/012114 KR2017012114W WO2018221795A1 WO 2018221795 A1 WO2018221795 A1 WO 2018221795A1 KR 2017012114 W KR2017012114 W KR 2017012114W WO 2018221795 A1 WO2018221795 A1 WO 2018221795A1
Authority
WO
WIPO (PCT)
Prior art keywords
array lens
lens group
array
optical axis
focal length
Prior art date
Application number
PCT/KR2017/012114
Other languages
English (en)
French (fr)
Inventor
황승진
김태신
홍경희
유태준
Original Assignee
학교법인 한동대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 한동대학교 filed Critical 학교법인 한동대학교
Publication of WO2018221795A1 publication Critical patent/WO2018221795A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range

Definitions

  • the present invention relates to a beam homogenizer including a zooming mechanism, and more particularly, to a beam homogenizer including a zooming mechanism capable of maintaining the inclination and homogeneity of the beam while adjusting the image size of the laser beam.
  • an optical unit 10 may be provided to focus the laser amplified by the amplification medium 5 on the processing surface.
  • the optical unit 10 is provided on the rear side of the amplification medium and is composed of a plurality of lenses, so that the laser is focused on the processing surface.
  • FIG. 2 is a view showing an optical unit 10 of a general form.
  • first and second of the lenses are array lenses 22 and 24 in which a plurality of rectangular microlenses 28 are arranged, and the lens provided at the rear end is the condenser lens 26.
  • the second array lens 24 provided on the front side of the condenser lens is moved along the optical axis of the laser beam, and the size of the laser image 30 on the processing surface 40 is focused. Can be adjusted.
  • the laser beam 52 amplified in the amplification medium 5 has a Gaussian shape, the distribution is not uniform, the sharpness of the vicinity of the surface of the laser beam is lowered immediately processing surface Not suitable for use as a laser to process Therefore, a beam homogenizing process in which the laser beam is homogenized in a flat-top form, and a beam shaping process are required to improve the sharpness (beam inclination) of the laser surface.
  • the laser 52 amplified in the amplification medium has a circular cross section
  • the laser of this circular cross section may have a portion that is not processed due to its shape
  • the beam is homogenized into a top-flat shape, and the shape of the laser cross-sectional image near the focal plane can be changed while the cross-sectional shape becomes square.
  • the length (D) of one side of this image Can be defined as
  • f1 is the focal length of the first array lens 22
  • f2 is the focal length of the second array lens 24
  • fc is the focusing point.
  • the focal length of the lens 26, d1 is the distance between the first array lens 22 and the second array lens 24, d2 is the distance between the second array lens 24 and the condenser lens 26, d3 is the condenser lens This is the distance from 26 to the focal plane 40.
  • the shape of the microlens 28 and the image is assumed to be square, and D may refer to the length of one side of the square-shaped image.
  • the beam tilt and homogeneity of the laser beam image 54 at the focal plane may be satisfied.
  • the density of the focal plane may be increased to reduce the density, or the size of the image 30 at the focal plane may be largely adjusted to shorten the processing time.
  • the imaging condition is satisfied only under certain conditions, and when the position of the second array lens 24 is moved to change the size or irradiation intensity of the image, the imaging condition is not satisfied. As shown, there is a problem in that beam inclination and homogeneity are not satisfied, so that beam usability is inferior.
  • the present invention is to solve the above problems, it is an object to provide a beam homogenizer including a zooming mechanism that can satisfy the imaging conditions while changing the image size of the focal plane of the laser beam.
  • the first array lens is fixedly arranged on the optical axis to which the laser is output, the microlens of a certain shape is arranged at regular intervals on the base of the plate shape, A second array lens spaced apart from the first array lens, the second array lens disposed on the same optical axis and movably disposed along the optical axis, and having a predetermined form of micro lenses arranged on a plate-shaped base at regular intervals; A third array lens spaced apart from the two array lenses, the third array lens disposed on the same optical axis and movable along the optical axis, and having a predetermined form of micro lenses arranged at regular intervals on a plate-shaped base; A condenser lens spaced apart from the lens, fixedly disposed on the same optical axis, and condensing a laser beam received; D laser temperature may cause problems of excessive size image Of the second and third array lenses so as to satisfy (d 1 (d 2 -f 2
  • a beam homogenizer including a zooming mechanism whose position is adjusted is disclosed.
  • p is the pitch between the microlenses
  • f c is the focal length of the condenser lens
  • f 1 is the focal length of the first array lens.
  • F 2 Is the focal length of the second array lens
  • f 3 is the focal length of the third array lens
  • d 1 is the distance between the first array lens and the second array lens
  • d 2 is the distance between the second array lens and the third array lens
  • d 3 is the distance between the third array lens and the condenser lens
  • d 4 is the distance to the point where the condenser lens and the image are formed
  • the microlens may have a rectangular shape.
  • the microlens may have a square shape.
  • the first array lens to the third array lens may be the same lens.
  • the first array lens group the first array lens group disposed on the optical axis of the laser output of the present invention and including at least one array lens in which a certain type of microlenses are arranged at regular intervals on the base of the plate shape
  • a condensing lens group spaced apart from the second array lens group, formed on the same optical axis as the optical axis of the second array lens group, and condensing a received laser beam, wherein the laser beam passing through the condensing lens group is formed.
  • a beam homogenizer may be provided that includes a zooming mechanism that implements a zooming function by changing. Where p is the pitch between the microlenses, Is the equivalent focal length of the first array lens group, Is the equivalent focal length of the second array lens group, Is the equivalent focal length of the condenser lens group)
  • Equivalent focal length of the first array lens group, the second array lens group and the condensing lens group , May each be a positive number.
  • At least one of the first array lens group and the second array lens group may be configured in plural.
  • the beam homogenizer including the zooming mechanism of the present invention, even if the image size at the focal plane of the laser beam is changed, the imaging conditions can be satisfied, so that the homogeneity and the beam tilt can be satisfied. It is possible to adjust the irradiation intensity freely, so that wider beam usability can be exhibited.
  • FIG. 1 is a perspective view showing an optical unit
  • FIG. 2 is a side view of FIG. 1;
  • Fig. 5 shows an image in the processing plane of the laser beam in a state where the imaging condition is satisfied
  • FIG. 7 shows an embodiment of a beam homogenizer incorporating a zooming mechanism of the present invention
  • FIG. 8 is a table showing changes in the length of one side of an image formed on a focal plane when the beam homogenizer including the zooming mechanism of FIG. 7 satisfies imaging conditions and changes the distance between array lenses;
  • FIG. 9 is a view showing a state in which the distance between the array lenses of FIG. 8 is changed.
  • FIG. 10 is a graph showing an energy density form of an image formed on a focal plane when the distance between the array lenses of FIG. 9 is changed;
  • FIG. 11 is a graph showing the energy density form of an image formed on a focal plane when changing the distance between lenses in a conventional structure
  • FIG. 13 illustrates a beam homogenizer including a zooming mechanism according to another embodiment of the present invention
  • FIG. 15 is a diagram illustrating a refractive form of a laser beam passing through a plurality of lenses.
  • first array lens 112 microlens
  • base 120 second array lens
  • first array lens group 212 array lens
  • the beam homogenizer 100 (hereinafter, referred to as a “beam homogenizer” for convenience of description) including the zooming mechanism according to the present exemplary embodiment may include the first array lens 110. , A second array lens 120, a third array lens 130, and a condensing lens 140.
  • the beam homogenizer according to the present embodiment may be installed at the rear side of the amplification medium through which the laser is output and may have the same central axis as the optical axis of the laser output.
  • the first array lens 110 to the third array lens 130 may be formed by arranging micro lenses 112 of a predetermined shape on a base 114 of a plate shape at regular intervals.
  • first array lens 110 to the third array lens 130 may be spaced apart from each other on the same optical axis of the laser.
  • the second array lens 120 and the third array lens 130 may be installed to be movable along the optical axis.
  • a separate driver (not shown) for moving the second array lens 120 and the third array lens 130 may be installed.
  • the condenser lens 140 is spaced apart from the third array lens 130, is fixedly disposed on the same optical axis, and is provided to condense the received laser light.
  • first array lens 110 and the condenser lens 140 may be installed to be fixed so as not to move.
  • the micro lenses 112 of the first array lens 110 to the third array lens 130 may have a rectangular shape or a square shape.
  • the cross-sectional shape of the laser beam passing through the first array lens 110 to the third array lens 130 may vary according to the shape of the micro lens 112.
  • the shape of the cross-sectional image 150 of the laser beam may also be changed to a square.
  • the first array lens 110 to the third array lens 130 may be a lens of the same shape and the same size.
  • the length D of one side of the image formed by the laser passing through the first array lens 110 to the third array lens 130 and the condenser lens 140 at the focal plane (processing surface) is It can be calculated by the formula.
  • f c is the focal length of the condensing lens
  • f 1 is the focal length of the first array lens (110).
  • f 2 is the focal length of the second array lens 120
  • f 3 is the focal length of the third array lens 130
  • d 1 is the distance between the first array lens 110 and the second array lens 120
  • d 2 is the distance between the second array lens 120 and the third array lens 130
  • d is the distance between the third array lens 130 and the condenser lens 140
  • d 4 is the condenser lens 140 and the image ( It may be the distance to the focal plane formed by 150).
  • p is a pitch between the microlenses 112, and may be a distance between the highest point between any one of the microlenses 112 and the adjacent microlenses 112, and the microlenses 112 are arranged to be connected to each other. In this case, the length of one side of the micro lens 112 may be.
  • equations of D and imaging conditions when the first array lens 110 to the third array lens 130 are the same lens are as follows.
  • the length D of one side of the image formed by the laser at the focal plane (processing plane) is
  • the length D of one side of the image 150 is Can be cleaned up as
  • d 1 and d 2 satisfying the imaging condition can be summarized as follows.
  • d satisfies the imaging condition by the movement of the second array lens 120 and the third array lens 130.
  • the change in 1 , d 2 , d 3 and thus the change in the length D of one side of the image in the focal plane of the laser beam is as shown in FIGS. 8 and 9.
  • p is 4.0 mm
  • d 1 is 1.20 mm
  • d 2 is 37.0 mm
  • d 3 is 11.8.
  • f c 75.0 mm
  • D satisfying the imaging condition is 8.10 mm.
  • p is 4.0 mm
  • d 1 18.9 mm
  • d 2 is 1.0 mm
  • d3 30.1.
  • D satisfying the imaging condition may be 15.5 mm.
  • the image size of the laser beam at the focal plane can be adjusted while satisfying the imaging conditions.
  • the total length can be constant.
  • FIG. 10 and 11 illustrate the inclination and homogeneity of the laser beam homogenized by the beam homogenizer 100 and the conventional optical unit 10 equipped with the zooming mechanism according to the present embodiment. It is a graph showing the intensity by location.
  • FIG. 10 (a) is a graph showing when the image 150 at the focal plane of the laser beam adjusted by the beam homogenizer according to the present embodiment has a minimum area
  • FIG. 10 (b) shows the present embodiment
  • Fig. 10 (c) is a graph showing the focal plane of the laser beam controlled by the beam homogenizer according to the present embodiment. This is a graph showing when the image 150 at E is the maximum area.
  • FIG. 11 (a) is a graph showing when the image at the focal plane of the laser beam adjusted by the conventional optical unit 10 is the minimum area
  • FIG. 11 (b) is the laser controlled by the conventional optical unit
  • Fig. 11 (c) is a graph showing when the image on the focal plane of the laser beam adjusted by the conventional optical part is the maximum area, when the image on the focal plane of the beam is the middle area.
  • the laser beam adjusted by the beam homogenizer according to the present embodiment maintains uniformity and beam inclination at edges even when the image area is minimum or maximum.
  • the image area which is a laser beam controlled by the conventional optical part 10
  • the image area is an intermediate area, that is, when the imaging condition is satisfied, the beam inclination is kept good, and the image area is At the minimum or maximum, the imaging conditions are not satisfied, so it can be seen that the homogeneity and the beam tilt fall.
  • the laser beam edge portion in FIG. 10 (c) and the laser beam edge portion in FIG. 11 (c) are compared.
  • the laser beam adjusted by 10) is greatly changed in intensity of the laser beam by the diffraction effect
  • the laser beam controlled by the beam homogenizer 100 of the present embodiment is the intensity of the laser beam according to the diffraction effect. It can be seen that there is little change and the beam is homogeneous.
  • the laser beam adjusted by the conventional optical portion at the edge of the laser beam can be seen that the intensity decreases while showing the inclination of the predetermined angle
  • the laser beam controlled by the beam homogenizer of the present embodiment the intensity close to the vertical It can be seen that the fall of the beam slope is excellent.
  • FIG. 13 illustrates a beam homogenizer 200 having a zooming mechanism according to another exemplary embodiment of the present invention.
  • the beam homogenizer 200 equipped with the zooming mechanism according to the present exemplary embodiment may include a first array lens group 210, a second array lens group 220, and a condenser lens group 230.
  • the first array lens group 210, the second array lens group 220, and the condenser lens group 230 are installed on the rear side of an amplification medium for outputting a laser, and the like. It may be installed to have the same central axis as the optical axis.
  • each of the first array lens group 210 and the second array lens group 220 may be a lens group in which one or more array lenses 212 are combined.
  • the array lens 212 may have the same shape as the first array lens 110 to the third array lens 130 of the above-described embodiment.
  • the first array lens group 210 may be installed on the rear side of the amplification medium through which the laser is output, and one or more array lenses 212 may be combined.
  • the second array lens group 220 is spaced apart from the first array lens group 210 and is formed on the same optical axis as the optical axis of the first array lens group 210. May be combined.
  • the condenser lens group 230 may be spaced apart from the second array lens group 220 and disposed on the same optical axis as the optical axis of the second array lens group 220, and one or more lenses 232 may be provided. It may be to focus the laser to be received in combination.
  • At least one of the first array lens group 210 and the second array lens group 220 may be a combination of a plurality of array lenses 212.
  • the array lens provided at the front end of the array lens of the first array lens group 210 is installed in a fixed position, the array forming the array lens and the second array lens group 220 is installed on the rear side At least some of the lenses may be installed to be movable along the optical axis.
  • the lens provided at the rear end of the condenser lens group 230 may be installed to have a fixed position, and at least some of the remaining lenses may be installed to be movable along the optical axis.
  • all of the lenses constituting the condenser lens group 230 may be provided to fix their positions.
  • the length D of one side of the image 240 formed by the laser passing through the condenser lens group 230 at the focal plane is It can be calculated as Where p is the pitch between microlenses of the array lens, Is the equivalent focal length of the first array lens group, Is the equivalent focal length of the second array lens group, Is the equivalent focal length of the condenser lens group.
  • the distance from the main plane of the first array lens group 210 to the main plane of the second array lens group 220 is the equivalent focal length of the second array lens group. It may be the same as, the equivalent focal length of the first array lens group 210 and the second array lens group 220 , You can change the zoom function.
  • the main plane extends an incident laser in each of the first array lens group 210, the second array lens group 220, and the condensing lens group 230.
  • a plurality of lenses are provided as a virtual plane perpendicular to the optical axis at the point where an imaginary straight line and an imaginary straight line extending the emitted laser meet, it may be assumed that one lens is the main plane.
  • the equivalent focal length represents a focal length of a lens group composed of several lenses as a focal length of one virtual lens.
  • the i-th lens has a refractive index of K i
  • the i-th lens has a refractive index n i
  • the distance between the i-th lens and the next lens is d i , the i-th lens
  • the equivalent focal length may be expressed as the inverse of the flexural power.
  • the equivalent focal length when the lens is N pieces can be expressed by the following equation.
  • the equivalent focal lengths of the first array lens group 210, the second array lens group 220, and the condensing lens group 230, respectively. , Can be calculated and thus the length of one side of the image of the laser beam at the focal plane can be calculated.
  • the distance from the main plane of the first array lens group 210 to the main plane of the second array lens group 220 is the equivalent focus of the second array lens group 220. Street May be positioned equal to
  • an equivalent focal length of each of the first array lens group 210, the second array lens group 220, and the condensing lens group 230 may be positive.
  • the beam homogenizer 200 provided with any of a plurality of lenses may exhibit satisfactory beam tilt and beam homogeneity while adjusting the laser image size at the focal plane.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)
  • Lenses (AREA)

Abstract

본 발명은 주밍기구가 포함된 빔 균질기에 관한 것으로, 레이저가 출력되는 광축상에 고정 배치되며, 판재 형태의 베이스 상에 일정한 형태의 마이크로렌즈가 일정한 간격으로 배열된 제1어레이렌즈; 상기 제1어레이렌즈와 이격되며, 동일한 광축상에 배치되고, 상기 광축을 따라 이동가능하게 배치되며, 판재 형태의 베이스 상에 일정한 형태의 마이크로 렌즈가 일정한 간격으로 배열된 제2어레이렌즈; 상기 제2어레이렌즈와 이격되며, 동일한 광축상에 배치되고, 상기 광축을 따라 이동가능하게 배치되며, 판재 형태의 베이스 상에 일정한 형태의 마이크로 렌즈가 일정한 간격으로 배열된 제3어레이렌즈; 상기 제3어레이렌즈와 이격되며, 동일한 광축상에 고정 배치되고, 수광되는 레이저를 집광하는 집광렌즈;를 포함하여 구성된다.

Description

주밍기구가 포함된 빔 균질기
본 발명은 주밍기구가 포함된 빔 균질기에 관한 것으로서, 보다 상세하게는 레이저 빔의 이미지 크기를 조절하면서도 빔의 경사도와 균질도를 유지할 수 있는 주밍기구가 포함된 빔 균질기에 관한 것이다.
일반적으로, 도 1에 도시된 바와 같이, 발생된 레이저를 증폭시키기 위해서 레이저를 증폭매질(5)에 통과시켜 증폭한다.
또한, 상기 증폭매질(5)을 통해 증폭된 레이저를 가공면에 초점 맺히도록 하는 광학부(10)가 구비될 수 있다.
이러한 광학부(10)는 도 1에 도시된 바와 같이, 증폭매질의 후측에 구비되고, 복수매의 렌즈로 이루어져, 상기 레이저가 가공면에 초점이 맺히도록 이루어진다.
도 2는 일반적인 형태의 광학부(10)를 도시한 도면이다.
일반적으로 렌즈는 3매가 배치되며, 그 중 첫번째와 두번째에는 복수개의 사각형의 마이크로렌즈(28)가 배열된 어레이렌즈(22, 24)가 구비되며, 제일 후단에 구비된 렌즈는 집광렌즈(26)로서 초점을 맺히게 하는 역할을 하고, 상기 집광렌즈의 전측에 구비된 두번째 어레이렌즈(24)가 레이저 빔의 광축을 따라 이동되면서 초점이 맺히는 가공면(40)에서의 레이저 이미지(30)의 크기등을 조절할 수 있다.
한편, 도 3에 도시된 바와 같이, 상기 증폭매질(5)에서 증폭된 레이저 빔(52)은 가우시안 형태를 나타내게 되어 분포가 균일하지 아니하여, 레이저 빔의 표면부근의 선명도가 떨어지게 되어 바로 가공면을 가공하는 레이저로 사용하기에는 부적합하다. 따라서, 레이저 빔이 flat-top 형태로 균질화되는 빔 균질화 과정(Beam homogenizing)을 거쳐야 하며 레이저 표면의 선명도(빔 경사도)를 향상시키기 위하여 샤프닝과정(Beam shaping)과정을 거쳐야 한다.
또한, 도 4(a)에 도시된 바와 같이, 상기 증폭매질에서 증폭된 레이저(52)는 그 단면이 원형인데, 이러한 원형 단면의 레이저는 그 형상 때문에 가공이 이루어지지 않는 부분이 생길 수 있어, 레이저 빔의 단면 형태를 도 3 및 도 4(b)에 도시된 바와 같이 사각형태(54)로 변형시켜야 할 필요성이 있다.
이 때문에, 상기 광학부(10)의 제일 전측 및 그 후측에 구비되는 렌즈로서 작은크기의 마이크로렌즈(28)가 복수개 배열된 어레이렌즈(22, 24)를 적용하는 연구가 진행중에 있다.
상기 어레이렌즈(22, 24)를 2매 배열함으로써, 빔이 top-flat 형태로 균질화되며, 단면 형태가 사각화 되면서 초점면 부근의 레이저 단면 이미지 형태가 변화될 수 있다.
이러한 이미지의 한 변의 길이(D)는
Figure PCTKR2017012114-appb-I000001
로 정의할 수 있다.
이때, p는 상기 어레이렌즈(22, 24)에서 상기 마이크로렌즈(28) 간의 피치이고, f1은 첫번째 어레이렌즈(22)의 초점거리, f2는 두번째 어레이렌즈(24)의 초점거리, fc는 집광렌즈(26)의 초점거리이며, d1은 첫번째 어레이렌즈(22)와 두번째 어레이렌즈(24)간의 거리이고, d2는 두번째 어레이렌즈(24)와 집광렌즈(26)간의 거리이며, d3는 집광렌즈(26)와 초점면(40)까지의 거리이다. 또한, 상기 마이크로렌즈(28) 및 이미지의 형태는 정사각형으로 가정하며, 상기 D는 상기 정사각 형태의 이미지의 한 변의 길이를 뜻할 수 있다.
이 때, 초점면(40)에서의 레이저 이미지의 빔 경사도와 균질도가 최적의 상태를 이루기 위해서는 이미징 조건을 만족해야 하는데, 상기 이미징 조건은 d1=f2이며, 따라서 최적 이미지의 한 변의 길이는
Figure PCTKR2017012114-appb-I000002
로 정의될 수 있다.
이와 같이, 이미징 조건이 만족되는 상태에서는 도 5에 도시된 바와 같이, 초점면에서의 레이저 빔 이미지(54)의 빔 경사도와 균질도가 만족스러운 상태를 나타낼 수 있다.
한편, 가공되는 대상물의 종류나 가공방법에 따라 초점면의 이미지 크기나 조사되는 에너지의 조사강도의 조절이 필요할 수 있다.
즉, 초점면의 에너지의 조사강도를 낮추기 위해서는 초점면의 이미지 크기를 확대시켜 밀도를 낮추어야 하거나, 또는 가공시간 단축을 위해서 초점면에서의 이미지(30)의 크기를 크게 조정할 필요가 발생할 수 있다.
그러나, 종래의 광학부의 구조로는 특정 조건에서만 이미징 조건이 만족되며, 이미지의 크기나 조사강도를 변경시키고자 두번째 어레이렌즈(24)의 위치가 이동하게되면 이미징조건이 만족되지 못하여, 도 6에 도시된 바와 같이, 빔 경사도와 균질도가 만족되지 않게 되어 빔용성이 떨어지는 문제점이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 레이저 빔의 초점면의 이미지 크기를 변경시키면서도 이미징 조건을 만족시킬 수 있는 주밍 기구가 포함된 빔 균질기를 제공하는 것이 과제이다.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않는 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 과제를 해결하기 위하여, 본 발명의 일 형태에 따르면, 레이저가 출력되는 광축상에 고정 배치되며, 판재 형태의 베이스 상에 일정한 형태의 마이크로렌즈가 일정한 간격으로 배열된 제1어레이렌즈, 상기 제1어레이렌즈와 이격되며, 동일한 광축상에 배치되고, 상기 광축을 따라 이동가능하게 배치되며, 판재 형태의 베이스 상에 일정한 형태의 마이크로 렌즈가 일정한 간격으로 배열된 제2어레이렌즈, 상기 제2어레이렌즈와 이격되며, 동일한 광축상에 배치되고, 상기 광축을 따라 이동가능하게 배치되며, 판재 형태의 베이스 상에 일정한 형태의 마이크로 렌즈가 일정한 간격으로 배열된 제3어레이렌즈, 상기 제3어레이렌즈와 이격되며, 동일한 광축상에 고정 배치되고, 수광되는 레이저를 집광하는 집광렌즈를 포함하며, 상기 집광렌즈를 통과한 레이저가 맺히는 이미지의 크기 D는
Figure PCTKR2017012114-appb-I000003
의 수식에 의해 결정되고, 동시에 (d1(d2-f2-f3)+(f2(-d2+f3)=0을 만족하도록 상기 제2어레인 렌즈 및 제3어레이렌즈의 위치가 조절되는 주밍 기구가 포함된 빔 균질기가 개시된다.(이 때, p는 상기 마이크로렌즈 간의 피치이고, fc는 집광렌즈의 초점거리, f1은 제1어레이렌즈의 초점거리. f2는 제2어레이렌즈의 초점거리, f3는 제3어레이렌즈의 초점거리이고, d1은 제1어레이렌즈와 제2어레이렌즈 간의 거리, d2는 제2어레이렌즈와 제3어레이렌즈 간의 거리, d3는 제3어레이렌즈와 집광렌즈 간의 거리, d4는 집광렌즈와 이미지가 맺히는 지점까지의 거리이다)
상기 마이크로렌즈는 사각 형태일 수 있다.
상기 마이크로렌즈는 정사각 형태일 수 있다.
상기 제1어레이렌즈 내지 제3어레이렌즈는 동일한 렌즈일 수 있다.
한편, 본 발명 레이저가 출력되는 광축상에 배치되며 판재 형태의 베이스 상에 일정한 형태의 마이크로렌즈가 일정한 간격으로 배열된 배열랜즈를 적어도 하나 이상 포함하는 제1어레이렌즈군, 상기 제1어레이렌즈군과 이격되고, 상기 제1어레이렌즈군의 광축과 같은 광축상에 형성되며, 판재형태의 베이스 상에 일정한 형태의 마이크로렌즈가 일정한 간격으로 배열된 어레이렌즈를 적어도 하나 이상 포함하는 제2어레이렌즈군, 상기 제2어레이렌즈군과 이격되고, 상기 제2어레이렌즈군의 광축과 같은 광축상에 형성되며, 수광되는 레이저를 집광하는 집광렌즈군를 포함하며, 상기 집광렌즈군을 통과한 레이저가 맺히는 이미지의 크기 D는
Figure PCTKR2017012114-appb-I000004
이며, 상기 제1어레이렌즈군의 주평면에서 상기 제2어레이렌즈군의 주평면까지의 거리는 상기 제2어레이렌즈군의 등가초점거리
Figure PCTKR2017012114-appb-I000005
와 동일하며, 제1어레이렌즈군 및 제2어레이렌즈군의 등가 초점거리
Figure PCTKR2017012114-appb-I000006
,
Figure PCTKR2017012114-appb-I000007
를 변화시켜 줌 기능을 구현하는 하는 주밍 기구가 포함된 빔 균질기가 제공될 수 있다. (이 때, p는 상기 마이크로렌즈 간의 피치이고,
Figure PCTKR2017012114-appb-I000008
는 제1어레이렌즈군의 등가초점거리이고,
Figure PCTKR2017012114-appb-I000009
는 제2어레이렌즈군의 등가초점거리이고,
Figure PCTKR2017012114-appb-I000010
는 집광렌즈군의 등가초점거리이다)
상기 제1어레이렌즈군과 제2어레이렌즈군 및 집광렌즈군의 등가 초점거리
Figure PCTKR2017012114-appb-I000011
,
Figure PCTKR2017012114-appb-I000012
,
Figure PCTKR2017012114-appb-I000013
는 각각 양(+)의 수일 수 있다.
상기 제1어레이렌즈군 및 제2어레이렌즈군 중 적어도 어느 하나는 복수매로 구성될 수 있다.
본 발명의 주밍 기구가 포함된 빔 균질기에 따르면, 레이저 빔의 초점면에서의 이미지 크기를 변경시켜도 이미징 조건을 만족시킬 수 있어, 균질도 및 빔 경사도를 만족시킬 수 있으므로, 레이저 빔의 이미지 크기 및 조사강도의 조절이 자유로워 보다 폭넓은 빔용성을 발휘할 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
아래에서 설명하는 본 출원의 바람직한 실시예의 상세한 설명뿐만 아니라 위에서 설명한 요약은 첨부된 도면과 관련해서 읽을 때에 더 잘 이해될 수 있을 것이다. 본 발명을 예시하기 위한 목적으로 도면에는 바람직한 실시예들이 도시되어 있다. 그러나, 본 출원은 도시된 정확한 배치와 수단에 한정되는 것이 아님을 이해해야 한다.
도 1은 광학부를 도시한 사시도;
도 2는 도 1의 측면도;
도 3은 균질화 되기 전 레이저 빔과 균질화된 레이저 빔을 도시한 도면;
도 4는 균질화 되기 전 레이저 빔과 균질화 된 레이저 빔의 가공면에서의 이미지를 도시한 도면;
도 5는 이미징 조건이 만족된 상태의 레이저 빔의 가공면 에서의 이미지를 도시한 도면;
도 6은 이미징 조건이 만족되지 않은 상태의 레이저 빔의 가공면 에서의 이미지를 도시한 도면;
도 7은 본 발명의 주밍기구가 포함된 빔 균질기의 일 실시예를 도시한 도면;
도 8은 도 7의 주밍기구가 포함된 빔 균질기가 이미징 조건을 만족하면서 어레이렌즈 간의 거리를 변화시킬 때의 초점면에 맺히는 이미지의 한 변의 길이의 변화를 도시한 표;
도 9는 도 8의 어레이렌즈 간의 거리를 변화시키는 모습을 도시한 도면;
도 10은 도 9의 어레이렌즈 간의 거리를 변화시킬 때, 초점면에 맺히는 이미지의 에너지 밀도 형태를 도시한 그래프;
도 11은 종래의 구조에서 렌즈 간의 거리를 변화시킬 때, 초점면에 맺히는 이미지의 에너지 밀도 형태를 도시한 그래프;
도 12는 본 실시예와 종래의 에너지 밀도 형태를 도시한 그래프;
도 13은 본 발명의 다른 실시예에 따른 주밍기구가 포함된 빔 균질기를 도시한 도면;
도 14는 주평면을 도시한 도면;
도 15는 복수매의 렌즈를 투과하는 레이저의 굴절형태를 도시한 도면이다.
<부호의 설명>
100: 주밍 기구가 구비된 빔 균질기
110: 제1어레이렌즈 112: 마이크로렌즈
114: 베이스 120: 제2어레이렌즈
130: 제3어레이렌즈 140: 집광렌즈
150: 이미지 200: 주밍 기구가 구비된 빔 균질기
210: 제1어레이렌즈군 212: 어레이렌즈
220: 제2어레이렌즈군 230: 집광렌즈군
240: 이미지
이하 본 발명의 목적이 구체적으로 실현될 수 있는 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명한다. 본 실시예를 설명함에 있어서, 동일 구성에 대해서는 동일 명칭 및 동일 부호가 사용되며 이에 따른 부가적인 설명은 생략하기로 한다.
본 실시예에 따른 주밍기구가 포함된 빔 균질기(100)(이하, 설명의 편의를 위하여 '빔 균질기'라 칭하기로 함)는 도 7에 도시된 바와 같이, 제1어레이렌즈(110), 제2어레이렌즈(120), 제3어레이렌즈(130) 및 집광렌즈(140)를 포함할 수 있다.
본 실시예에 따른 빔 균질기는 레이저가 출력되는 증폭매질 등의 후측에 설치되며, 상기 출력되는 레이저의 광축과 동일한 중심축을 가지도록 설치될 수 있다.
상기 제1어레이렌즈(110) 내지 제3어레이렌즈(130)는 판재형태의 베이스(114) 상에 일정한 형태의 마이크로 렌즈(112)가 일정한 간격으로 배열되어 형성될 수 있다.
또한, 상기 제1어레이렌즈(110) 내지 제3어레이렌즈(130)는 상기 레이저의 광축과 동일한 광축상에 상호 이격되어 배치될 수 있다.
이 때, 상기 제2어레이렌즈(120)와 제3어레이렌즈(130)는 상기 광축을 따라 이동 가능하게 설치될 수 있다. 상기 제2어레이렌즈(120)와 제3어레이렌즈(130)를 이동시키는 별도의 구동부(미도시)가 설치될 수도 있다.
또한, 상기 집광렌즈(140)는 상기 제3어레이렌즈(130)와 이격되며, 동일한 광축상에 고정 배치되고, 수광되는 레이저를 집광하도록 구비된다.
그리고, 상기 제1어레이렌즈(110) 및 집광렌즈(140)는 움직이지 않도록 고정되게 설치될 수 있다.
이때, 상기 제1어레이렌즈(110) 내지 제3어레이렌즈(130)의 마이크로 렌즈(112)는 직사각 이거나 또는 정사각 형태일 수 있다. 상기 제1어레이렌즈(110) 내지 제3어레이렌즈(130)를 통과하는 레이저빔은 상기 마이크로 렌즈(112)의 형태를 따라 단면모양이 변할 수 있다.
즉, 상기 마이크로 렌즈(112)의 형태가 정사각형인 경우, 상기 레이저빔의 단면 이미지(150) 형태 또한 정사각형으로 변할 수 있다.
이 때, 상기 제1어레이렌즈(110) 내지 제3어레이렌즈(130)는 동일한 형태 동일한 크기의 렌즈일 수 있다.
이 때, 상기 제1어레이렌즈(110) 내지 제3어레이렌즈(130) 및 집광렌즈(140)를 통과한 레이저가 초점면(가공면)에서 맺히는 이미지의 한 변의 길이 D는
Figure PCTKR2017012114-appb-I000014
식에 의해 계산될 수 있다.
이 때, fc는 집광렌즈의 초점거리, f1은 제1어레이렌즈(110)의 초점거리. f2는 제2어레이렌즈(120)의 초점거리, f3는 제3어레이렌즈(130)의 초점거리이고, d1은 제1어레이렌즈(110)와 제2어레이렌즈(120)간의 거리, d2는 제2어레이렌즈(120)와 제3어레이렌즈(130)간의 거리, d는 제3어레이렌즈(130)와 집광렌즈(140)간의 거리, d4는 집광렌즈(140)와 이미지(150)가 맺히는 초점면까지의 거리일 수 있다.
또한, p는 상기 마이크로 렌즈(112)간의 피치로서, 어느 한 마이크로 렌즈(112)와 인접한 마이크로 렌즈(112)의 간의 최고점 사이의 거리일 수 있으며, 상기 마이크로 렌즈(112)가 서로 연접되게 배열된 경우 상기 마이크로 렌즈(112)의 한 변의 길이 일 수 있다.
여기서, 상기 d1 및 d2는 상기 초점면에서 맺히는 이미지의 이미징 조건(빔 경사도 및 균질도)를 만족하기 위해서 (d1(d2-f2-f3)+(f2(-d2+f3)=0의 식을 만족하도록 계산될 수 있다.
한편, 상기 제1어레이렌즈(110) 내지 제3어레이렌즈(130)가 모두 같은 렌즈일 때의 D 및 이미징 조건의 식은 아래와 같다.
전술한 바와 같이, 레이저가 초점면(가공면)에서 맺히는 이미지의 한 변의 길이 D는
Figure PCTKR2017012114-appb-I000015
식에 의해 계산될 수 있는데, 상기 제1어레이렌즈(110) 내지 제3어레이렌즈(130)가 모두 같은 렌즈이므로, 상기 f1=f2=f3는 모두 같은 f로 계산될 수 있다.
따라서, 이미지(150)의 한 변의 길이 D는
Figure PCTKR2017012114-appb-I000016
로 정리될 수 있다.
또한, 이 때 상기 이미징 조건을 만족하는 d1 및 d2는 다음식으로 정리될 수 있다.
Figure PCTKR2017012114-appb-I000017
또는
Figure PCTKR2017012114-appb-I000018
예를 들어, f1=f2=f3이며, 초점거리(f)가 38.24mm일 때, 제2어레이렌즈(120)와 제3어레이렌즈(130)의 이동에 의해 이미징 조건을 만족하는 d1, d2, d3의 변화 및 그에 따른 레이저 빔의 초점면에서의 이미지의 한변의 길이 D의 의 변화는 도 8 및 도 9에 도시된 바와 같다.
즉, 도 8 및 도 9(a)에 도시된 바와같이, f1=f2=f3=38.24mm이고, p가 4.0mm, d1이 1.20mm, d2가 37.0mm d3가 11.8이며, fc가 75.0mm 일때 이미징 조건을 만족하는 D는 8.10mm이다.
도 8 및 도 9(b)에 도시된 바와같이, f1=f2=f3=38.24mm이고, p가 4.0mm, d1이 12.8mm, d2가 19.0mm d3가 18.2이며, fc가 75.0mm 일때 이미징 조건을 만족하는 D는 11.8mm이다,
또한, 도 8 및 도 9(c)에 도시된 바와같이, f1=f2=f3=38.24mm이고, p가 4.0mm, d1이 18.9mm, d2가 1.0mm, d3가 30.1이며, fc가 75.0mm 일때 이미징 조건을 만족하는 D는 15.5mm가 될 수 있다.
따라서, 이미징 조건을 만족하면서도 초점면에서의 레이저 빔의 이미지 크기를 조절할 수 있음을 알 수 있다.
또한, 제1어레이렌즈(110)와 집광렌즈(140)의 위치가 변하므로, 상기 제2어레이렌즈(120) 및 제3어레이렌즈(130)의 위치가 변한다고 하더라도 빔균질기(100)의 총 길이는 일정할 수 있다.
한편, 도 10과 도 11은 본 실시예에 따른 주밍 기구가 구비된 빔균질기(100) 및 종래의 광학부(10)에 의해 균질화된 레이저 빔의 경사도 및 균질도를 나타내기 위해 레이저 빔의 위치별 강도를 나타낸 그래프이다.
즉, 도 10(a)는 본 실시예에 따른 빔균질기에 의해 조절된 레이저 빔의 초점면에서의 이미지(150)가 최소면적일 때를 나타낸 그래프이고, 도 10(b)는 본 실시예에 따른 빔 균질기에 의해 조절된 레이저 빔의 초점면에서의 이미지(150)가 중간면적일 때를 나타낸 그래프이고, 도 10(c)는 본 실시예에 따른 빔 균질기에 의해 조절된 레이저 빔의 초점면에서의 이미지(150)가 최대면적일 때를 나타낸 그래프이다.
도 11(a)는 종래의 광학부(10)에 의해 조절된 레이저 빔의 초점면에서의 이미지가 최소면적일 때를 나타낸 그래프이고, 도 11(b)는 종래의 광학부에 의해 조절된 레이저 빔의 초점면에서의 이미지가 중간면적일 때를 나타낸 그래프이고, 도 11(c)는 종래의 광학부에 의해 조절된 레이저 빔의 초점면에서의 이미지가 최대면적일 때를 나타낸 그래프이다.
도 10에 도시된 바와 같이, 본 실시예에 따른 빔 균질기에 의해 조절된 레이저 빔은 이미지 면적이 최소이거나 최대일 때에도 테두리 부분에서의 균질도와 빔 경사도가 양호하게 유지되는 것을 볼 수 있다.
그러나, 도 11에 도시된 바와같이, 종래의 광학부(10)에 의해 조절된 레이저 빔인 이미지 면적이 중간면적일 때, 즉 이미징조건이 만족될 때에만 빔 경사도가 양호하게 유지되며, 이미지 면적이 최소거나 최대일 때에는 이미징 조건이 만족되지 아니하여, 균질도와 빔 경사도가 떨어지는 것을 볼 수 있다.
보다 확실한 비교를 위하여, 도 10(c)에서의 레이저 빔 테두리 부분과 도 11(c)에서의 레이저 빔 테두리 부분을 비교하자면, 도 12에 도시된 바와 같이, 빔 테두리 인근에서 종래의 광학부(10)에 의해 조절된 레이저 빔은 회절효과에 의해 레이저 빔의 강도가 크게 변하는 것을 볼 수 있으며, 본 실시예의 빔 균질기(100)에 의해 조절된 레이저 빔은 회절효과에 따른 레이저 빔의 강도의 변화가 적어 빔이 균질도가 높은 것을 볼 수 있다.
또한, 레이저 빔의 테두리 부분에서 종래의 광학부에 의해 조절된 레이저 빔은 소정각도의 경사를 나타내면서 강도가 하락하는 것을 볼 수 있는데, 본 실시예의 빔 균질기에 의해 조절된 레이저 빔은 수직에 가깝게 강도가 하락하는 것을 볼 수 있어 빔 경사도가 우수한 것을 알 수 있다.
한편, 전술한 실시예에 따르면, 어레이렌즈가 3매일 때를 설명하였지만, 이하의 본 발명의 다른 실시예에서는, 어레이렌즈(212)가 임의의 복수매일 때를 설명하도록 한다.
도 13은 본 발명의 다른 실시에에 따른 주밍 기구가 구비된 빔 균질기(200)를 도시한 도면이다.
본 실시예에 따른 주밍 기구가 구비된 빔 균질기(200)는 제1어레이렌즈군(210), 제2어레이렌즈군(220) 및 집광렌즈군(230)을 포함할 수 있다.
상기 제1어레이렌즈군(210), 제2어레이렌즈군(220) 및 집광렌즈군(230)은 전술한 실시예와 유사하게 레이저가 출력되는 증폭매질 등의 후측에 설치되며, 출력되는 레이저의 광축과 동일한 중심축을 가지도록 설치될 수 있다.
이 때, 상기 제1어레이렌즈군(210) 및 제2어레이렌즈군(220)은 각각 1매 이상의 어레이렌즈(212)가 조합된 렌즈군일 수 있다.
이 때, 상기 어레이렌즈(212)는 전술한 실시예의 제1어레이렌즈(110) 내지 제3어레이렌즈(130)와 동일한 형태일 수 있다.
상기 제1어레이렌즈군(210)은 레이저가 출력되는 증폭매질의 후측에 설치되며, 1매 이상의 어레이렌즈(212)가 조합된 것일 수 있다.
그리고, 제2어레이렌즈군(220)은 상기 제1어레이렌즈군(210)과 이격되며, 상기 제1어레이렌즈군(210)의 광축과 같은 광축에 형성되며, 1매 이상의 어레이렌즈(232)가 조합된 것일 수 있다.
또한, 상기 집광렌즈군(230)은 상기 제2어레이렌즈군(220)과 이격되고, 상기 제2어레이렌즈군(220)의 광축과 같은 광축상에 배치되며, 1매 이상의 렌즈(232)가 조합되어 수광되는 레이저를 집광하는 것일 수 있다.
이 대, 상기 제1어레이렌즈군(210) 및 제2어레이렌즈군(220) 중 적어도 어느 하나는 복수매의 어레이렌즈(212)가 조합된 것일 수 있다.
또한, 상기 제1어레이렌즈군(210)의 어레이렌즈 중 제일 전단에 구비되는 어레이렌즈는 그 위치가 고정되게 설치되며, 그 후측에 설치되는 어레이렌즈 및 제2어레이렌즈군(220)을 이루는 어레이렌즈 중 적어도 일부는 상기 광축을 따라 이동가능하게 설치될 수 있다.
또한, 상기 집광렌즈군(230)은 제일 후단에 구비되는 렌즈만 그 위치가 고정되게 설치되며, 나머지 렌즈 중 적어도 일부는 상기 광축을 따라 이동가능하게 설치될 수 있다. 물론, 상기 집광렌즈군(230)을 구성하는 렌즈 모두가 그 위치가 고정되게 구비될 수도 있다.
이 때, 상기 집광렌즈군(230)을 통과한 레이저가 초점면에서 맺히는 이미지(240)의 한 변의 길이 D는
Figure PCTKR2017012114-appb-I000019
로 계산될 수 있다. 여기서, 상기 p는 어레이렌즈의 마이크로렌즈 간의 피치이고,
Figure PCTKR2017012114-appb-I000020
는 제1어레이렌즈군의 등가초점거리이고,
Figure PCTKR2017012114-appb-I000021
는 제2어레이렌즈군의 등가초점거리이고,
Figure PCTKR2017012114-appb-I000022
는 집광렌즈군의 등가초점거리이다.
이 때 상기 제1어레이렌즈군(210)의 주평면에서 상기 제2어레이렌즈군(220)의 주평면까지의 거리는 상기 제2어레이렌즈군의 등가초점거리
Figure PCTKR2017012114-appb-I000023
와 동일할 수 있으며, 제1어레이렌즈군(210) 및 제2어레이렌즈군(220)의 등가 초점거리
Figure PCTKR2017012114-appb-I000024
,
Figure PCTKR2017012114-appb-I000025
를 변화시켜 줌 기능을 구현할 수 있다.
이 때, 상기 주평면이란, 도 14에 도시된 바와 같이, 상기 각 제1어레이렌즈군(210), 제2어레이렌즈군(220) 및 집광렌즈군(230) 각각에서, 입사되는 레이저를 연장한 가상의 직선과, 출사되는 레이저를 연장한 가상의 직선이 만나는 지점에서 광축에 수직한 가상의 평면으로서, 복수매의 렌즈가 구비된 경우, 상기 주평면으로서 렌즈 1매로 가정할 수 있다.
또한, 상기 등가초점거리란 여러 매의 렌즈로 구성된 렌즈군의 초점거리를 가상의 렌즈 1매의 초점거리로 나타낸 것이다.
상기 도 15에 도시된 바와 같이, i번째 렌즈의 굴절능이 Ki이고, i번째 렌즈의 굴절율이 ni, i번째 렌즈와 그 다음 렌즈 간의 거리를 di, i번째 렌즈에 입사하는 레이저빔과 출사하는 레이저 빔의 각도를 ui, i번째 렌즈의 중심점으로부터 입사되는 레이저 빔의 높이(폭)을 hi라고 표현할 때, 다음과 같은 관계가 성립할 수 있다.
Figure PCTKR2017012114-appb-I000026
Figure PCTKR2017012114-appb-I000027
한편, 상기 등가초점거리(equivalent focal length)는 굴정능의 역수로 표현될 수 있다.
Figure PCTKR2017012114-appb-I000028
따라서, 렌즈가 1매일 때의 등가초점거리는 아래 식으로 표현될 수 있다.
Figure PCTKR2017012114-appb-I000029
또한, 렌즈가 2매일 때의 등가초점거리는 아래 식으로 표현될 수 있다.
Figure PCTKR2017012114-appb-I000030
렌즈가 N매일 때의 등가초점거리는 다음 식으로 표현될 수 있다.
Figure PCTKR2017012114-appb-I000031
따라서, 상기 식을 이용하여, 제1어레이렌즈군(210), 제2어레이렌즈군(220) 및 집광렌즈군(230)의 각각의 등가초점거리
Figure PCTKR2017012114-appb-I000032
,
Figure PCTKR2017012114-appb-I000033
,
Figure PCTKR2017012114-appb-I000034
를 계산할 수 있으며, 그에 따라 초점면 에서의 레이저 빔의 이미지의 한 변의 길이를 계산할 수 있다.
이 때, 이미징 조건을 만족시키기 위하여, 상기 제1어레이렌즈군(210)의 주평면에서 상기 제2어레이렌즈군(220)의 주평면까지의 거리는 상기 제2어레이렌즈군(220)의 등가초점거리
Figure PCTKR2017012114-appb-I000035
와 동일하도록 위치시킬 수 있다.
또한, 상기 각 제1어레이렌즈군(210), 제2어레이렌즈군(220) 및 집광렌즈군(230)의 등가초점거리는 양수(positive)일 수 있다.
따라서, 상기와 같은 식과 조건을 만족한다면 임의의 복수매의 렌즈가 구비된 빔 균질기(200)에서도 초점면에서의 레이저 이미지 크기를 조절하면서도 만족스러운 빔 경사도 및 빔 균질도를 나타낼 수 있다.
이상과 같이 본 발명에 따른 바람직한 실시예를 살펴보았으며, 앞서 설명된 실시예 이외에도 본 발명이 그 취지나 빔주에서 벗어남이 없이 다른 특정 형태로 구체화 될 수 있다는 사실은 해당 기술에 통상의 지식을 가진 이들에게는 자명한 것이다. 그러므로, 상술된 실시예는 제한적인 것이 아니라 예시적인 것으로 여겨져야 하고, 이에 따라 본 발명은 상술한 설명에 한정되지 않고 첨부된 청구항의 빔주 및 그 동등 범위 내에서 변경될 수도 있다.

Claims (7)

  1. 레이저가 출력되는 광축상에 고정 배치되며, 판재 형태의 베이스 상에 일정한 형태의 마이크로렌즈가 일정한 간격으로 배열된 제1어레이렌즈;
    상기 제1어레이렌즈와 이격되며, 동일한 광축상에 배치되고, 상기 광축을 따라 이동가능하게 배치되며, 판재 형태의 베이스 상에 일정한 형태의 마이크로 렌즈가 일정한 간격으로 배열된 제2어레이렌즈;
    상기 제2어레이렌즈와 이격되며, 동일한 광축상에 배치되고, 상기 광축을 따라 이동가능하게 배치되며, 판재 형태의 베이스 상에 일정한 형태의 마이크로 렌즈가 일정한 간격으로 배열된 제3어레이렌즈;
    상기 제3어레이렌즈와 이격되며, 동일한 광축상에 고정 배치되고, 수광되는 레이저를 집광하는 집광렌즈를 포함하며,
    상기 집광렌즈를 통과한 레이저가 맺히는 이미지의 한변의 길이 D는
    Figure PCTKR2017012114-appb-I000036
    의 수식에 의해 결정되고,
    동시에 (d1(d2-f2-f3)+(f2(-d2+f3)=0을 만족하도록 상기 제2어레인 렌즈 및 제3어레이렌즈의 위치가 조절되는 주밍 기구가 포함된 빔 균질기.
    (이 때, p는 상기 마이크로렌즈 간의 피치이고, fc는 집광렌즈의 초점거리, f1은 제1어레이렌즈의 초점거리. f2는 제2어레이렌즈의 초점거리, f3는 제3어레이렌즈의 초점거리이고, d1은 제1어레이렌즈와 제2어레이렌즈 간의 거리, d2는 제2어레이렌즈와 제3어레이렌즈 간의 거리, d3는 제3어레이렌즈와 집광렌즈 간의 거리, d4는 집광렌즈와 이미지가 맺히는 지점까지의 거리이다)
  2. 제1항에 있어서,
    상기 마이크로렌즈는 사각 형태인 주밍 기구가 포함된 빔 균질기.
  3. 제2항에 있어서,
    상기 마이크로렌즈는 정사각 형태인 주밍 기구가 포함된 빔 균질기.
  4. 제1항에 있어서,
    상기 제1어레이렌즈 내지 제3어레이렌즈는 동일한 렌즈인 주밍 기구가 포함된 빔 균질기.
  5. 레이저가 출력되는 광축상에 배치되며 판재 형태의 베이스 상에 일정한 형태의 마이크로렌즈가 일정한 간격으로 배열된 어레이렌즈를 적어도 하나 이상 포함하는 제1어레이렌즈군;
    상기 제1어레이렌즈군과 이격되고, 상기 제1어레이렌즈군의 광축과 같은 광축상에 형성되며, 판재형태의 베이스 상에 일정한 형태의 마이크로렌즈가 일정한 간격으로 배열된 어레이렌즈를 적어도 하나 이상 포함하는 제2어레이렌즈군;
    상기 제2어레이렌즈군과 이격되고, 상기 제2어레이렌즈군의 광축과 같은 광축상에 형성되며, 수광되는 레이저를 집광하는 집광렌즈군를 포함하며,
    상기 집광렌즈군을 통과한 레이저가 맺히는 이미지 의 한변의 길이 D는
    Figure PCTKR2017012114-appb-I000037
    이며, 상기 제1어레이렌즈군의 주평면에서 상기 제2어레이렌즈군의 주평면까지의 거리는 상기 제2어레이렌즈군의 등가초점거리
    Figure PCTKR2017012114-appb-I000038
    와 동일하며, 제1어레이렌즈군 및 제2어레이렌즈군의 등가 초점거리
    Figure PCTKR2017012114-appb-I000039
    ,
    Figure PCTKR2017012114-appb-I000040
    를 변화시켜 줌 기능을 구현하는 주밍 기구가 포함된 빔 균질기.
    (이 때, p는 상기 마이크로렌즈 간의 피치이고,
    Figure PCTKR2017012114-appb-I000041
    는 제1어레이렌즈군의 등가초점거리이고,
    Figure PCTKR2017012114-appb-I000042
    는 제2어레이렌즈군의 등가초점거리이고,
    Figure PCTKR2017012114-appb-I000043
    는 집광렌즈군의 등가초점거리이다)
  6. 제5항에 있어서,
    상기 제1어레이렌즈군과 제2어레이렌즈군 및 집광렌즈군의 등가 초점거리
    Figure PCTKR2017012114-appb-I000044
    ,
    Figure PCTKR2017012114-appb-I000045
    ,
    Figure PCTKR2017012114-appb-I000046
    는 각각 양(+)의 수인 주밍 기구가 포함된 빔 균질기.
  7. 제5항에 있어서,
    상기 제1어레이렌즈군 및 제2어레이렌즈군 중 적어도 어느 하나는 복수매로 구성되는 주밍 기구가 포함된 빔 균질기.
PCT/KR2017/012114 2017-05-30 2017-10-31 주밍기구가 포함된 빔 균질기 WO2018221795A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170066608A KR101913654B1 (ko) 2017-05-30 2017-05-30 주밍기구가 포함된 빔 균질기
KR10-2017-0066608 2017-05-30

Publications (1)

Publication Number Publication Date
WO2018221795A1 true WO2018221795A1 (ko) 2018-12-06

Family

ID=64455844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012114 WO2018221795A1 (ko) 2017-05-30 2017-10-31 주밍기구가 포함된 빔 균질기

Country Status (2)

Country Link
KR (1) KR101913654B1 (ko)
WO (1) WO2018221795A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110596885A (zh) * 2019-09-17 2019-12-20 北京寸界智能科技中心(有限合伙) 扫描光场成像系统
CN113253468A (zh) * 2021-04-13 2021-08-13 中国人民解放军战略支援部队航天工程大学 一种基于微透镜阵列的激光匀化整形系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4107826A4 (en) * 2020-02-19 2024-03-20 Elemental Scient Lasers Llc VARIABLE BEAM SIZE VIA A HOMQGENIZER MOVEMENT

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990066062A (ko) * 1998-01-21 1999-08-16 유무성 소형 줌렌즈
KR20040044540A (ko) * 2001-09-05 2004-05-28 칼 짜이스 에스엠티 아게 줌 시스템, 특히, 마이크로 리소그래피 투영 시스템의조명 장치를 위한 줌 시스템
KR20060031523A (ko) * 2004-10-08 2006-04-12 주식회사 포스코 고출력 레이저 펄스 빔의 광섬유 전송장치 및 방법
KR20090028625A (ko) * 2006-06-09 2009-03-18 칼 짜이스 레이저 옵틱스 게엠베하 감소된 간섭을 갖는 균질화기
JP2009533885A (ja) * 2006-04-17 2009-09-17 オムニビジョン シーディーエム オプティクス, インコーポレイテッド アレイ化撮像システムおよび関連方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4865382B2 (ja) * 2005-04-01 2012-02-01 株式会社半導体エネルギー研究所 ビームホモジナイザ及びレーザ照射装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990066062A (ko) * 1998-01-21 1999-08-16 유무성 소형 줌렌즈
KR20040044540A (ko) * 2001-09-05 2004-05-28 칼 짜이스 에스엠티 아게 줌 시스템, 특히, 마이크로 리소그래피 투영 시스템의조명 장치를 위한 줌 시스템
KR20060031523A (ko) * 2004-10-08 2006-04-12 주식회사 포스코 고출력 레이저 펄스 빔의 광섬유 전송장치 및 방법
JP2009533885A (ja) * 2006-04-17 2009-09-17 オムニビジョン シーディーエム オプティクス, インコーポレイテッド アレイ化撮像システムおよび関連方法
KR20090028625A (ko) * 2006-06-09 2009-03-18 칼 짜이스 레이저 옵틱스 게엠베하 감소된 간섭을 갖는 균질화기

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110596885A (zh) * 2019-09-17 2019-12-20 北京寸界智能科技中心(有限合伙) 扫描光场成像系统
CN113253468A (zh) * 2021-04-13 2021-08-13 中国人民解放军战略支援部队航天工程大学 一种基于微透镜阵列的激光匀化整形系统

Also Published As

Publication number Publication date
KR101913654B1 (ko) 2018-12-28

Similar Documents

Publication Publication Date Title
WO2018221795A1 (ko) 주밍기구가 포함된 빔 균질기
US4497013A (en) Illuminating apparatus
US7009779B2 (en) Macro lens
WO2013089384A1 (en) Telephoto lens system
WO2013133660A1 (en) Zoom lens and photographing apparatus including the same
WO2017082480A1 (en) Tele-lens and imaging device
WO2011102663A2 (ko) 사각 광경로를 형성하는 광학 시스템 및 그 방법
WO2016199971A1 (ko) 라인 빔 형성 장치
WO2017160093A1 (ko) 촬영 렌즈 광학계
WO2017122865A1 (ko) 레이저 광학 장치 및 헤드
WO2013089385A1 (en) Imaging lens
US7728313B2 (en) Maskless lithography system and method using optical signals
WO2016171301A1 (ko) 레이저 증폭장치
JP2003161877A5 (ko)
WO2010064816A2 (ko) 3차원 데이터 생성을 위한 프로젝터용 렌즈 장치, 이미지 캡쳐용 렌즈 장치 및 이들을 구비한 3차원 스캐닝 시스템
JP4901355B2 (ja) レーザ加工装置
KR20220020015A (ko) 광학계
US7446944B2 (en) Objective lens
WO2022050723A1 (ko) 광학계 및 이를 포함하는 카메라 모듈
TW201719229A (zh) 組織玻片影像掃描系統
WO2014019159A1 (zh) 一种红外激光加工光学镜头及激光加工设备
WO2009145542A2 (ko) 빔단면 변형과 폴리곤미러를 이용한 레이저 표면처리장치 및 그 표면처리방법
WO2016029414A1 (zh) 光学镜头
WO2021040476A1 (ko) Tof 카메라
WO2022124836A1 (ko) 광학계

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911893

Country of ref document: EP

Kind code of ref document: A1