WO2018221549A1 - 端末装置および基地局装置 - Google Patents

端末装置および基地局装置 Download PDF

Info

Publication number
WO2018221549A1
WO2018221549A1 PCT/JP2018/020646 JP2018020646W WO2018221549A1 WO 2018221549 A1 WO2018221549 A1 WO 2018221549A1 JP 2018020646 W JP2018020646 W JP 2018020646W WO 2018221549 A1 WO2018221549 A1 WO 2018221549A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio resource
ofdm symbol
resource region
sequence
sparse code
Prior art date
Application number
PCT/JP2018/020646
Other languages
English (en)
French (fr)
Inventor
中村 理
貴司 吉本
淳悟 後藤
泰弘 浜口
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US16/616,857 priority Critical patent/US11146436B2/en
Publication of WO2018221549A1 publication Critical patent/WO2018221549A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2615Reduction thereof using coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present invention relates to a transmission device and a reception device.
  • MTC massivemasmachine type communications
  • URLLC ultra-reliable and low latency communications
  • IoT Internet of Things
  • M2M Machine-to-Machine
  • MTC Machine Type Communication
  • NB-IoT Narrow Band-IoT
  • the terminal device transmits a scheduling request (SR; Scheduling Request) when transmission data traffic occurs, from the base station device After receiving the uplink transmission permission control information (UL Grant), data transmission is performed at a predetermined timing using the transmission parameter of the control information included in the UL Grant.
  • SR scheduling request
  • UL Grant uplink transmission permission control information
  • the base station apparatus realizes a radio communication technique for performing radio resource control of all uplink data transmission (data transmission from the terminal apparatus to the base station apparatus). Therefore, the base station apparatus can realize orthogonal multiple access (OMA) by radio resource control, and can receive uplink data by simple reception processing.
  • OMA orthogonal multiple access
  • MTC Machine-Type Communications
  • UEs User Equipments
  • One aspect of the present invention has been made in view of the above points, and provides a technique for avoiding PAPR degradation in an access method using a sparse code such as SCMA.
  • One aspect of the present invention has been made to solve the above problems, and one aspect of the present invention is a terminal device that transmits a data signal to a base station device, and includes zero.
  • a transmission parameter setting unit that generates a sequence; a spreading unit that multiplies the modulation symbol of the data signal by the sequence; and a first radio resource region that includes a signal that is multiplied by the sequence and a plurality of resource elements Or a mapping unit that maps to the second radio resource region,
  • the transmission parameter setting unit sets different sequences for a sequence for multiplying a modulation symbol mapped to the first radio resource region and a sequence for multiplying the modulation symbol mapped to the second radio resource region.
  • the first radio resource region is included in a first OFDM symbol
  • the second radio resource region is included in a second OFDM symbol
  • Resource elements in the resource region and resource elements in the second radio resource region overlap in subcarriers.
  • the transmission parameter setting unit may make the number of resource elements included in the first OFDM symbol equal to the number of resource elements included in the second OFDM symbol. Set the series.
  • the first radio resource region is included in a first subcarrier
  • the second radio resource region is included in a second subcarrier
  • the first radio resource region Resource elements in the resource region and resource elements in the second radio resource region overlap in the OFDM symbol.
  • the resource element in the first radio resource region and the resource element in the second radio resource region include a first OFDM symbol and a second OFDM symbol
  • the transmission The parameter setting unit sets the sequence so that the number of resource elements included in the first OFDM symbol is equal to the number of resource elements included in the second OFDM symbol.
  • the transmission parameter setting unit multiplies the modulation symbol mapped to the first radio resource region and the modulation symbol mapped to the second radio resource region. Different sequences are set depending on whether the sequence is an initial transmission or a retransmission.
  • PAPR can be reduced in an access method using a sparse code such as SCMA.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single carrier FDMA
  • a CDMA system may implement a radio technology (standard) such as Universal Terrestrial Radio Access (UTRA) or cdma2000®.
  • UTRA includes wideband CDMA (WCDMA®) and other improved versions of CDMA.
  • cdma2000 covers IS-2000, IS-95, and IS-856 standards.
  • a TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM).
  • GSM Global System for Mobile Communications
  • OFDMA systems include Evolved UTRA (E-UTRA), Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM (registered trademark), etc.
  • Wireless technology may be implemented.
  • 3GPP LTE Long Term Evolution
  • LTE-A is a system, radio technology, and standard improved from LTE.
  • UTRA, E-UTRA, LTE, LTE-A and GSM® are described in documents from an organization named Third Generation Partnership Project (3GPP).
  • cdma2000 and UMB are described in documents from an organization named Third Generation Partnership Project 2 (3GPP2).
  • 3GPP2 Third Generation Partnership Project 2
  • the terminal device is a user device (User Equipment: UE), a mobile station (Mobile Station: MS, Mobile Terminal: MT), a mobile station device, a mobile terminal, a subscriber unit, a subscriber station, A mobile terminal or a mobile terminal such as a wireless terminal, a mobile device, a node, a device, a remote station, a remote terminal, a wireless communication device, a wireless communication apparatus, a user agent, and an access terminal are collectively referred to.
  • UE User Equipment
  • MS Mobile Station
  • MT Mobile Terminal
  • a mobile terminal or a mobile terminal such as a wireless terminal, a mobile device, a node, a device, a remote station, a remote terminal, a wireless communication device, a wireless communication apparatus, a user agent, and an access terminal are collectively referred to.
  • Terminal equipment includes cellular phones, cordless phones, session initiation protocol (SIP) phones, smartphones, wireless local loop (WLL) stations, personal digital assistants (PDAs), tablets, laptops, handheld communication devices, handheld computing devices Satellite radio, wireless modem card, router, and / or another processing device for communicating through a wireless system.
  • the base station apparatus is a generic term for any node at the network end that communicates with a terminal such as a node B (NodeB), an enhanced node B (eNodeB), a base station, and an access point (Access AP: AP).
  • NodeB node B
  • eNodeB enhanced node B
  • AP access point
  • the base station apparatus includes RRH (Remote Radio Head, an apparatus having an outdoor-type radio unit smaller than the base station apparatus, Remote Radio Unit: also referred to as RRU) (also referred to as a remote antenna or a distributed antenna).
  • RRH Remote Radio Head, an apparatus having an outdoor-type radio unit smaller than the base station apparatus, Remote Radio Unit: also referred to as RRU) (also referred to as a remote antenna or a distributed antenna).
  • the RRH can be said to be a special form of the base station apparatus.
  • the RRH has only a signal processing unit, and can be said to be a base station apparatus in which parameters used in the RRH are set by another base station apparatus and scheduling is determined.
  • a terminal apparatus includes a memory that holds instructions related to various processes described below, and a processor that is coupled to the memory and configured to execute the instructions held in the memory. Other configurations may be used.
  • the base station apparatus of the present invention includes a memory that holds instructions related to various processes described below, and a processor that is coupled to the memory and configured to execute the instructions held in the memory. The structure provided may be sufficient. [First Embodiment]
  • FIG. 1 is an example of a configuration of a wireless communication system in the present embodiment.
  • the system includes a base station apparatus 101, a terminal apparatus 102, and a terminal apparatus 103.
  • the number of antenna ports configured in each device may be one or plural.
  • the antenna port indicates not a physical antenna but a logical antenna that can be recognized by a communication device.
  • FIG. 2 is an example of the configuration of the terminal device in the present embodiment.
  • information data data signal
  • control information is transmitted to the base station instead of information data is included in one aspect of the present invention.
  • one embodiment of the present invention may be applied to PUCCH (Physical Uplink Control CHannel) instead of PUSCH (Physical Uplink Shared CHannel).
  • control information transmitted from the base station apparatus 101 is received by the control information receiving unit 211 via the reception antenna 210 of the terminal apparatus 102.
  • the received control information (upper layer (RRC, Radio Resource Control) setting information or DCI (downlink control information) is input to the transmission parameter setting unit 212.
  • RRC Radio Resource Control
  • DCI downlink control information
  • a coding rate, a modulation scheme, a sparse code pattern for spreading, and radio resource allocation information are set, information on the coding rate is set in the encoding unit 201, information on the modulation scheme is set in the modulation unit 202, Information regarding the sparse code pattern is input to the spreading section 203, and information regarding the radio resource allocation information is input to the encoding section 201 and the mapping section 204.
  • the terminal device autonomously sets transmission parameters. You may decide. Also, for example, there are not only patterns with different sparse code zero arrangements, but also multiple sparse code candidates with different numbers of zero (non-zero), depending on the terminal status (for example, remaining battery level and QoS) Thus, the terminal device may autonomously determine the sparse code. As for radio resources, some candidates may have different bandwidths and different numbers of OFDM symbols (including the number of slots or subframes and frames).
  • the transmission data is input to the encoding unit 201, and an error correction code is applied.
  • an error correction code a turbo code, an LDPC code, a convolutional code, a polar code, or the like can be used.
  • the encoded bit sequence output from the encoding unit 201 is input to the modulation unit 202.
  • the modulation unit 202 performs modulation processing such as BPSK, QPSK, 16QAM, 64QAM, 256QAM, and 1024QAM. Note that, as described in Non-Patent Document 3, the processing in the spreading unit 203 and the processing in the modulation unit 202 may be performed together.
  • the modulation symbol sequence output from modulation section 202 is input to spreading section 203.
  • Spreading section 203 spreads each modulation symbol of the input modulation symbol sequence.
  • FIG. 3 shows an example of spreading the modulation symbols in this embodiment.
  • FIG. 3 shows an example of spreading in the frequency domain.
  • the modulation symbols are mapped using a resource element composed of one frequency domain (subcarrier) and one time domain (OFDM symbol) as a unit of radio resource domain.
  • the radio resource region to which the modulation symbols after spreading are mapped is composed of one or more frequency regions (subcarriers) and one or more time regions (OFDM symbols).
  • the LTE subframe configuration is used and reference signals are inserted in the fourth and eleventh OFDM symbols, but the position and number of reference signals are not limited to this, and subframes (slots, minislots)
  • the number of reference signals may be variable. For example, in FIG.
  • the first modulation symbol is mapped to a radio resource including the first subcarrier to the fourth subcarrier in the first OFDM symbol based on the sparse code.
  • the second modulation symbol is mapped to a radio resource including the fifth subcarrier to the eighth subcarrier in the first OFDM symbol based on the sparse code.
  • the third modulation symbol is mapped to a radio resource including the ninth subcarrier to the twelfth subcarrier in the first OFDM symbol based on the sparse code.
  • FIG. 3 is an example in which the same sparse code is used in a radio resource region composed of 12 subcarriers and 14 OFDM symbols. In FIG.
  • the first modulation symbol uses a sparse code of [1, 0, 0, 1] and is spread on the first and fourth subcarriers (resource elements) in the first OFDM symbol.
  • the 2 modulation symbols also use the sparse code [1, 0, 0, 1] and are spread to the 5th and 8th subcarriers in the first OFDM symbol
  • the third modulation symbol is also [1, 1
  • a sparse code of [0, 0, 1] is used and spread to the ninth and twelfth subcarriers in the first OFDM symbol.
  • the non-zero element is not limited to 1, and may be a complex number with an amplitude of 1, or a value that does not have an amplitude of 1 but has a constant power throughout the sparse code.
  • FIG. 4 shows another example of spreading modulation symbols in this embodiment.
  • the first modulation symbol is mapped to a radio resource including the first subcarrier to the fourth subcarrier in the first OFDM symbol based on the sparse code.
  • the second modulation symbol is mapped to a radio resource including the fifth subcarrier to the eighth subcarrier in the first OFDM symbol based on the sparse code.
  • the third modulation symbol is mapped to a radio resource including the ninth subcarrier to the twelfth subcarrier in the first OFDM symbol based on the sparse code.
  • the first modulation symbol uses a sparse code of [1, 0, 0, 1], spreads to the first and fourth subcarriers in the first OFDM symbol, and the second modulation symbol. Also uses a sparse code of [0, 0, 1, 1], spreads to the fifth and eighth subcarriers in the first OFDM symbol, and the third modulation symbol is also [1, 0, 1, [0], a sparse code of [0] is used to spread to the 9th and 12th subcarriers in the first OFDM symbol.
  • which sparse code is used is determined by information regarding a sparse code sequence index input from the transmission parameter setting unit 212, a time index such as a subframe number, and a frequency index such as a subcarrier number.
  • the transmission parameter setting unit 212 can hold only sequences whose PAPR is smaller than a predetermined value and select a code from a limited sequence, thereby preventing the PAPR from increasing.
  • the output of the modulation unit 202 is not input to the spreading unit 203 but is input to a DFT unit (not shown), and DFT is applied.
  • the signal after the DFT is input to the spreading unit 203.
  • the spectrum is discretely arranged at equal intervals to prevent an increase in peak power and sparse in the frequency domain or the time domain.
  • a simple signal can be formed.
  • the spectrum interval of each terminal device may not be constant, and the position of the top subcarrier and the spectrum interval are notified from the base station device by DCI or RRC.
  • a scrambling unit is inserted between the mapping unit 204 and the IFFT unit 205, and scrambling processing is applied to the output of the mapping unit 204.
  • the scramble process is performed by a code such as a PN code or an M series.
  • the sequence is not limited to this, and an arbitrary sequence such as a ZC sequence may be multiplied to the input sequence. Which sequence is used may be set by a cell-specific ID or a terminal-specific ID, a subframe number, and the like.
  • any reference signal may be used, but since it is necessary to separate the reference signals of a plurality of terminal apparatuses, it is necessary to use cyclic shift, OCC, or IFDMA (Interleaved Frequency Frequency Division Multiple Access). is there. Therefore, for example, by associating the amount of cyclic shift rotation and the sparse code sequence, the base station device notifies the terminal device of one value, thereby generating both the reference signal and sparse code sequences. It becomes possible.
  • the number of cyclic shift values is designed to be equal to or greater than the number of sparse code sequences. Accordingly, when a cyclic shift value is set, a sparse code sequence is uniquely determined.
  • a sparse code may be determined by receiving a control signal that designates one of a plurality of sparse codes associated with the same cyclic shift.
  • the reference signal is generated by a reference signal generation unit (not shown) and input to the mapping unit 204.
  • FIG. 5 shows another example of spreading modulation symbols in this embodiment.
  • FIG. 5 shows an example in which SCMA is diffused in the time domain.
  • FIG. 5 shows an example in which the same sparse code is used in a radio resource region composed of 12 subcarriers and 14 OFDM symbols.
  • the first modulation symbol is a radio resource (reference signal is a reference signal) in the first time domain (OFDM symbol) to the fifth time domain in the first frequency domain (subcarrier) based on the sparse code.
  • the second modulation symbol is mapped to a radio resource in the first time domain to the fifth time domain in the second frequency domain.
  • the third modulation symbol is mapped to a radio resource including the first subcarrier to the fifth subcarrier in the third frequency domain based on the sparse code.
  • other modulation symbols are also mapped in the time domain based on the sparse code.
  • the first modulation symbol uses the sparse code [1, 0, 0, 1], spreads to the first and fifth OFDM symbols (resource elements) in the first subcarrier
  • 2 modulation symbols also use the sparse code [1, 0, 0, 1] and are spread over the first and fifth OFDM symbols in the second subcarrier
  • the third modulation symbol is also [1,
  • a sparse code of [0, 0, 1] is used and spread to the first and fifth OFDM symbols in the third subcarrier.
  • the first, fifth, sixth, ninth, tenth, and fourteenth OFDM symbols contain data in all subcarriers, whereas the second, third, seventh, eighth, Since the th and thirteenth OFDM symbols contain no data, the OFDM symbols are not transmitted.
  • the average transmission power is reduced compared to the case where all the data is clogged, but the peak does not drop so much, so the PAPR is lower than the case where it is spread in the frequency domain. It will rise.
  • FIG. 6 shows another example of spreading modulation symbols in this embodiment.
  • FIG. 6 shows an example of spreading in the time domain using different sparse codes for each subcarrier.
  • the first modulation symbols mapped to the first to fifth OFDM symbols of the first subcarrier are spread by [1, 0, 0, 1]. Therefore, data is copied (arranged) in the first and fourth OFDM symbols (resource elements) in the first subcarrier.
  • the modulation symbols are spread by [1, 0, 1, 0].
  • the base station apparatus may notify the terminal apparatus which sparse code is used for each modulation symbol, but the base station apparatus only notifies the terminal apparatus of the index of the reference sparse code.
  • the sparse code applied to each modulation symbol may be determined by the sparse code index, the subcarrier index, and the OFDM symbol index.
  • DCI may be used for the sparse code index notified from the base station apparatus of a sparse code index to a terminal device, and it may be notified by RRC.
  • the first OFDM symbol includes seven subcarriers, while the second OFDM symbol includes five subcarriers. That is, when the spectral power spectral density of the subcarrier is constant, the power of the second OFDM symbol is relatively low, and the power of the first OFDM symbol is relatively high. Therefore, it means that the transmission power is different for each OFDM symbol. This also causes deterioration of PAPR.
  • a sparse code selection method for solving the above problem will be described.
  • FIG. 7 shows another example of spreading the modulation symbols in this embodiment.
  • FIG. 7 shows an application example of the sparse code when the transmission power for each OFDM symbol is constant.
  • FIG. 7 shows an example of spreading in the time domain using a different sparse code for each subcarrier.
  • the sparse code is applied so that the number of subcarriers is 6 in each OFDM symbol.
  • PAPR is less likely to deteriorate.
  • the sparse code used in each subcarrier is the same, and all sparse codes are allocated within the allocated frequency resource. Is used the same number of times. As a result, the number of null subcarriers in each OFDM symbol becomes constant, so that deterioration of PAPR can be suppressed.
  • FIG. 10 is another example of a method for fixing the number of subcarriers in each OFDM symbol. As shown in the figure, even when the same sparse code is applied in the time direction, the number of subcarriers in each OFDM symbol can be made constant by using the sparse code cyclically in time.
  • the output of the diffusion unit 203 is input to the mapping unit 204.
  • the mapping unit 204 generates a frame (subframe, slot, or minislot) using the input from the spreading unit 203 and the reference signal input from the reference signal generation unit.
  • the output of the mapping unit 204 is input to the IFFT unit 205, and IFFT processing is applied.
  • the signal after IFFT application is input to CP adding section 206.
  • the CP adding unit 206 adds CP (Cyclic Prefix).
  • the signal to which the CP is added is input to the wireless transmission unit 207.
  • the wireless transmission unit 207 applies filtering processing and upconversion.
  • the signal output from the wireless transmission unit 207 is transmitted to the base station apparatus via the transmission antenna 208.
  • a configuration example of the base station apparatus is shown in FIG.
  • a signal transmitted from the terminal device is received by the wireless reception unit 802 via the reception antenna 801.
  • the wireless reception unit 802 applies filtering processing and upconversion.
  • the output of the wireless reception unit 802 is input to the CP removal unit 803.
  • CP removing section 803 removes the CP added by the terminal device.
  • the output of the CP removal unit is input to the FFT unit 804.
  • the FFT unit 804 performs conversion from a time domain signal to a frequency domain signal.
  • the output of the FFT unit 804 is input to the demapping unit 805.
  • the demapping unit 805 separates reference signals multiplexed by the terminal device and extracts resources used for communication.
  • the output of the demapping unit 805 is input to the signal separation unit 806.
  • the signal separation unit 806 separates signals transmitted from the respective transmission devices by applying filtering processing, canceller processing, BP (Belief Propagation), MPA, maximum likelihood estimation, and the like.
  • the signal output from the signal separation unit 806 is input to the despreading unit 807.
  • the despreading unit 807 performs despreading processing using the spreading code sequence input from the transmission parameter storage unit 813.
  • the sparse code sequence is determined from information included in the control information input from the control information setting unit 812, a subcarrier index, a subframe index, an OFDM symbol index, or the like.
  • the signal separation unit 806 and the despreading unit 807 are configured as separate blocks. However, the signal separation and despreading may be performed in the same block.
  • the output of the despreading unit 807 is input to the demodulation unit 808.
  • Demodulation section 808 notifies modulation scheme applied by the transmission apparatus from transmission parameter storage section 813, applies demodulation processing based on the modulation scheme, and outputs a bit LLR (Log Likelihood Ratio) sequence.
  • the output of the demodulator 808 is input to the decoder 808.
  • Information relating to error correction coding such as coding rate input from the transmission parameter storage unit 813 is input to the decoding unit 810, and information bits after error correction are input from the information and the bit LLR sequence input from the demodulation unit 808. Get. Note that at least part of information input to the transmission parameter storage unit 813 by the control information setting unit 812 is input to the terminal device via the transmission antenna 811.
  • FIG. 9 shows an example in which a sparse code using subcarriers not used in the sparse code used in FIG. 3 is selected.
  • the control information receiving unit 211 of the terminal apparatus receives information on the sparse code for retransmission and sets transmission parameters. Input to the unit 212. Note that FIG.
  • the parameter setting unit 212 inputs a sparse code sequence different from the initial transmission to the spreading unit 203 based on information on the sparse code for retransmission.
  • information regarding the sparse code is not necessarily notified from the base station apparatus at the time of a retransmission request, and may be determined by information regarding a sparse code sequence notified at the time of initial transmission and the number of retransmissions (redundancy version). Further, the terminal device may autonomously select from a plurality of sparse codes.
  • transmission may be performed by changing the sparse code sequence length, that is, the spreading factor.
  • Information on the spreading factor may be included in DCI notified from the base station, or may be defined by RRC.
  • transmission is performed using at least a part of different subcarriers and / or OFDM symbols. Therefore, frequency and / or time diversity is used. Good transmission characteristics can be obtained.
  • a program that operates in a device is a program that controls a central processing unit (CPU) or the like to function a computer so as to realize the functions of the above-described embodiments according to one aspect of the present invention.
  • CPU central processing unit
  • the program or the information handled by the program is temporarily read into volatile memory such as Random Access Memory (RAM) during processing, or stored in nonvolatile memory such as flash memory or Hard Disk Drive (HDD).
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • the CPU reads and corrects / writes.
  • a program for realizing the functions of the embodiments may be recorded on a computer-readable recording medium.
  • the “computer system” here is a computer system built in the apparatus, and includes hardware such as an operating system and peripheral devices.
  • the “computer-readable recording medium” may be any of a semiconductor recording medium, an optical recording medium, a magnetic recording medium, and the like.
  • Computer-readable recording medium means a program that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • a volatile memory inside a computer system serving as a server or a client may be included, which holds a program for a certain period of time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • each functional block or various features of the apparatus used in the above-described embodiments can be implemented or executed by an electric circuit, that is, typically an integrated circuit or a plurality of integrated circuits.
  • Electrical circuits designed to perform the functions described herein can be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or others Programmable logic devices, discrete gate or transistor logic, discrete hardware components, or a combination thereof.
  • a general purpose processor may be a microprocessor or a conventional processor, controller, microcontroller, or state machine.
  • the electric circuit described above may be configured by a digital circuit or an analog circuit.
  • an integrated circuit based on the technology can be used.
  • the present invention is not limited to the above-described embodiment.
  • an example of the apparatus has been described.
  • the present invention is not limited to this, and a stationary or non-movable electronic device installed indoors or outdoors, such as an AV device, a kitchen device, It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other daily life equipment.
  • One embodiment of the present invention is used in, for example, a communication system, a communication device (for example, a mobile phone device, a base station device, a wireless LAN device, or a sensor device), an integrated circuit (for example, a communication chip), a program, or the like. be able to.
  • a communication device for example, a mobile phone device, a base station device, a wireless LAN device, or a sensor device
  • an integrated circuit for example, a communication chip
  • a program or the like.

Abstract

スパースコードを適切に用いることで不当にPAPR特性が劣化することを避ける。

Description

端末装置および基地局装置
 本発明は、送信装置および受信装置に関する。
 本願は、2017年5月31日に日本に出願された特願2017-107943号について優先権を主張し、その内容をここに援用する。
 近年、第五世代移動通信システムの標準化が行われており、多数の端末装置によるMTC(mMTC;massive machine type communications)、超高信頼・低遅延通信(URLLC;ultra-reliable and low latency communications)、大容量・高速通信(eMBB;enhanced mobile broadband)の実現を目標とされている。特に、今後はIoT(Internet of Things)が多様な機器で実現されることが予想されており、mMTCの実現が5Gの重要な要素の一つになっている。
 例えば、3GPP(3rd Generation Partnership Project)では、小さいサイズのデータ送受信を行う端末装置を収容するMTC(Machine Type Communication)として、M2M(Machine-to-Machine)通信技術の標準化がされている(非特許文献1)。さらに、低レートでのデータ送信を狭帯域でサポートするため、NB-IoT(Narrow Band-IoT)の仕様化も進められている(非特許文献2)。
 3GPPで仕様化されているLTE(Long Term Evolution)、LTE-Advanced、LTE-Advanced Proなどでは、端末装置が送信データのトラフィック発生時にスケジューリング要求(SR;Scheduling Request)を送信し、基地局装置より上りリンク送信許可の制御情報(UL Grant)を受信した後に、所定のタイミングでUL Grantに含まれる制御情報の送信パラメータでデータ送信を行う。このように基地局装置が全ての上りリンクのデータ送信(端末装置から基地局装置へのデータ送信)の無線リソース制御を行う無線通信技術を実現している。よって、基地局装置は、無線リソース制御により直交多元接続(OMA;Orthogonal Multiple Access)を実現でき、簡易な受信処理により上りリンクのデータ受信を可能としている。
 一方、このような従来の無線通信技術では、基地局装置が全ての無線リソース制御を行うために、端末装置が送信するデータ量に関わらず、データ送信前に制御情報の送受信が必要であり、特に送信するデータサイズが小さいと相対的に制御情報の占める割合が高くなる。そこで、端末が小さいサイズのデータ送信を行う場合、端末装置がSR送信や基地局装置が送信するUL Grantの受信なしにデータ送信を行うコンテンションベース(グラントフリー)の無線通信技術が制御情報によるオーバヘッドの観点で効果的である。さらに、コンテンションベースの無線通信技術では、データ発生からデータ送信までの時間も短くできる可能性もある。
 コンテンションベースの無線通信では、UL Grantが存在しないため、多数の端末装置が同一の無線リソースを使用する場合がある。つまり基地局装置の受信アンテナで、多数の信号が衝突して受信されることになる。基地局装置の受信装置は各端末装置の信号を検出する必要があるが、その方法の一つとしてSCMA(Sparse Code Multiple Access)が提案されている。SCMAでは、OFDM等の複数のサブキャリアを持つアクセス方式を前提に、ゼロを含むコードブック(スパースコード)を用いてデータを複数サブキャリアに拡散して送信する。受信機では、MPA(message passing algorithm)を用いることで、低演算量で信号を検出することができる(非特許文献3)。
 SCMAではスパースコードによる拡散を行うが、その際、どのスパースコードを用いるかによって、PAPR(ピーク対平均電力比;Peak-to-Average Power Ratio)が大きく異なる。また、スパースコードを周波数方向へスパースコードを用いることが提案されているが、フェージングの周波数変動を考慮して、時間方向へスパースコードを用いることも考えられる。この時、複数のOFDMシンボルで電力がゼロになる場合が存在する。あるOFDMシンボルの電力がゼロになると、フレーム(あるいはサブフレーム、スロット)全体の平均送信電力が下がることになるため、PAPRが上がってしまう。PAPRの劣化は電力増幅器への負担へとつながるため、端末装置、とりわけmMTCで想定されるようなセンサー等を考えると、好ましくない。
 本発明の一態様は上記の点に鑑みてなされたものであり、SCMA等のスパースコードを用いるアクセス方式において、PAPRの劣化を回避するための技術を提供することにある。
 (1)本発明の一態様は上記の課題を解決するためになされたものであり、本発明の一態様は、基地局装置に対してデータ信号を送信する端末装置であって、ゼロを含む系列を生成する送信パラメータ設定部と、前記データ信号の変調シンボルに対して、前記系列を乗算する拡散部と、前記系列を乗算した信号を複数のリソースエレメントから構成される第1の無線リソース領域又は第2の無線リソース領域にマッピングするマッピング部と、を備え、
 前記送信パラメータ設定部は、第1の無線リソース領域にマッピングされる変調シンボルに乗算する系列と第2の無線リソース領域にマッピングする変調シンボルに乗算する系列で異なる系列を設定する。
 (2)また、本発明の一態様は、前記第1の無線リソース領域は第1のOFDMシンボルに含まれ、前記第2の無線リソース領域は第2のOFDMシンボルに含まれ、第1の無線リソース領域におけるリソースエレメントと第2の無線リソース領域におけるリソースエレメントはサブキャリアにおいて重複する。
 (3)また、本発明の一態様は、前記送信パラメータ設定部は、前記第1のOFDMシンボルに含まれるリソースエレメント数と前記第2のOFDMシンボルに含まれるリソースエレメント数を同一とするように系列を設定する。
 (4)また、本発明の一態様は、前記第1の無線リソース領域は第1のサブキャリアに含まれ、前記第2の無線リソース領域は第2のサブキャリアに含まれ、第1の無線リソース領域におけるリソースエレメントと第2の無線リソース領域におけるリソースエレメントはOFDMシンボルにおいて重複する。
 (5)また、本発明の一態様は、前記第1の無線リソース領域におけるリソースエレメント及び第2の無線リソース領域におけるリソースエレメントは、第1のOFDMシンボル及び第2のOFDMシンボルを含み、前記送信パラメータ設定部は、前記第1のOFDMシンボルに含まれるリソースエレメント数と前記第2のOFDMシンボルに含まれるリソースエレメント数を同一とするように系列を設定する。
 (6)また、本発明の一態様は、前記送信パラメータ設定部は、第1の無線リソース領域にマッピングされる変調シンボルに乗算する系列及び第2の無線リソース領域にマッピングする変調シンボルに乗算する系列は、初送か、再送かによって、異なる系列を設定する。
 本発明の態様によれば、SCMA等のスパースコードを用いたアクセス方式において、PAPRの低減を実現できる。
本実施形態に係るシステムの構成の一例を示す図である。 本実施形態に係る端末装置の送信機構成例を示す図である。 本実施形態に係る周波数領域に固定のスパースコードを適用した場合のリソース配置を示す図である。 本実施形態に係る周波数領域に可変のスパースコードを適用した場合のリソース配置を示す図である。 本実施形態に係る時間領域に固定のスパースコードを適用した場合のリソース配置を示す図である。 本実施形態に係るサブキャリア毎に異なるスパースコードを時間領域に適用した場合のリソース配置を示す図である。 本実施形態に係るOFDMシンボル毎のサブキャリア数が一定となるようにスパースコードを適用した場合のリソース配置を示す図である。 本実施形態に係る基地局装置の受信機構成例を示す図である。 本実施形態に係る再送時のリソース配置を示す図である。 本実施形態に係るサブキャリア毎に異なるスパースコードを時間領域に適用した場合のリソース配置を示す図である。
 本明細書で述べられる技術は、符号分割多重アクセス(CDMA)システム、時分割多重アクセス(TDMA)システム、周波数分割多重アクセス(FDMA)システム、直交FDMA(OFDMA)システム、シングルキャリアFDMA(SC-FDMA)システム、及びその他のシステム等の、種々の無線通信システムにおいて使用され得る。用語「システム」及び「ネットワーク」は、しばしば同義的に使用され得る。CDMAシステムは、ユニバーサル地上波無線アクセス(UTRA)やcdma2000(登録商標)等のような無線技術(規格)を実装し得る。UTRAは、広帯域CDMA(WCDMA(登録商標))及びCDMAのその他の改良型を含む。cdma2000は、IS-2000、IS-95、及びIS-856規格をカバーする。TDMAシステムは、Global System for Mobile Communications(GSM(登録商標))のような無線技術を実装し得る。OFDMAシステムは、Evolved UTRA(E-UTRA)、Ultra Mobile Broadband(UMB)、IEEE802.11(Wi-Fi)、IEEE802.16(WiMAX)、IEEE802.20、Flash‐OFDM(登録商標)などのような無線技術を実装し得る。3GPP LTE(Long Term Evolution)は、ダウンリンク上でOFDMAを、アップリンク上でSC-FDMAを採用するE-UTRAである。LTE-Aは、LTEを改良したシステム、無線技術、規格である。UTRA、E-UTRA、LTE、LTE-A及びGSM(登録商標)は、第3世代パートナーシッププロジェクト(3GPP)と名付けられた機関からのドキュメントで説明されている。cdma2000及びUMBは、第3世代パートナーシッププロジェクト2(3GPP2)と名付けられた機関からのドキュメントで説明されている。明確さのために、本技術のある側面は、LTE、LTE-Aにおけるデータ通信について以下では述べられ、LTE用語、LTE-A用語は、以下の記述の多くで用いられる。
 以下、本発明の一態様に係る好適な実施形態を添付の図面を参照して詳細に説明する。添付の図面と共に以下で開示する詳細な説明は、本発明の例示的な実施形態を説明するためのものであって、本発明が実施され得る唯一の実施形態を示すためのものではない。以下の詳細な説明は、本発明の完全な理解を提供するために具体的な細部事項を含む。しかし、当業者であれば、本発明の一態様がこのような具体的な細部事項がなくても実施され得ることが分かる。例えば、以下の詳細な説明は、移動通信システムが3GPP LTE、LTE―Aシステムである場合を仮定して具体的に説明するが、3GPP LTE、LTE―Aの特有の事項を除いては、他の任意の移動通信システムにも適用可能である。また、後述される用語は、本発明の一態様における機能を考慮して定義された用語で、ユーザ、運用者の意図または慣例などによって変わり得る。したがって、その用語は、本明細書全般にわたった内容に基づいて定義されるべきである。
 実施形態を説明するにおいて本発明の一態様が属する技術分野に十分知られており、本発明の一態様と直接的に関係のない技術内容については説明を省略する。これは、不要な説明を省略することにより、本発明の要旨を不明瞭にせず、より明確に伝達するためである。よって、いくつかの場合、本発明の概念が曖昧になることを避けるために公知の構造及び装置は省略したり、各構造及び装置の核心機能を中心にしたブロック図の形式で図示したりすることができる。本発明の要旨を不明瞭にせず、より明確に伝達するため、図面において一部の構成要素は、誇張されたり省略されたり概略的に示される。また、各構成要素の大きさは、実際の大きさを反映するものではない。また、本明細書全体で同一の構成要素については同一の図面符号を使用して説明する。
 明細書全体において、一つの部分が一つの構成要素を「含む」とするとき、これは、特別に反対の記載がない限り、他の構成要素を除外するのではなく、他の構成要素を更に含むことができることを意味する。さらに、詳細な説明または特許請求の範囲のいずれかで使用される“または”という用語は、排他的な“または”というよりむしろ、包含的な“または”を意味することを意図している。すなわち、そうではないと指定されていない限り、または、文脈から明らかでない限り、“XがAまたはBを用いる”というフレーズは、自然な包含的順列のうちのいずれかを意味することを意図している。すなわち、“XがAまたはBを用いる”というフレーズは、以下の例のうちのいずれのものによっても満たされる:XがAを用いる;XがBを用いる;または、XがAおよびBの双方とも用いる。加えて、本出願および添付した特許請求の範囲で使用した冠詞“a”および“an”は、そうではないと指定されていない限り、または、単数形を意図する文脈から明らかでない限り、一般的に、“1つ以上”を意味すると解釈すべきである。また、明細書に記載された「…部」、「…器」、「モジュール」などの用語は、少なくとも一つの機能や動作を処理する単位を意味し、これは、ハードウェアやソフトウェア又はハードウェア及びソフトウェアの組合せで具現することができる。
 併せて、以下の説明において、端末装置は、ユーザ装置(User Equipment: UE)、移動局(Mobile Station: MS, Mobile Terminal: MT)、移動局装置、移動端末、加入者ユニット、加入者局、ワイヤレス端末、移動体デバイス、ノード、デバイス、遠隔局、遠隔端末、ワイヤレス通信デバイス、ワイヤレス通信装置、ユーザエージェント、アクセス端末などの移動型又は固定型のユーザ端機器を総称するものとする。また、端末装置は、セルラ電話機、コードレス電話機、セッション開始プロトコル(SIP)電話機、スマートフォン、ワイヤレスローカルループ(WLL)局、パーソナルデジタルアシスタント(PDA)、タブレット、ラップトップ、ハンドヘルド通信デバイス、ハンドヘルドコンピューティングデバイス、衛星ラジオ、ワイヤレスモデムカード、ルーター、および/または、ワイヤレスシステムを通して通信するための別の処理デバイスとすることができる。また、基地局装置は、ノードB(NodeB)、強化ノードB(eNodeB)、基地局、アクセスポイント(Access Point: AP)などの端末と通信するネットワーク端の任意のノードを総称するものとする。なお、基地局装置は、RRH(Remote Radio Head、基地局装置より小型の屋外型の無線部を有する装置、Remote Radio Unit: RRUとも称す)(リモートアンテナ、分散アンテナとも呼称する。)を含むものとする。RRHは、基地局装置の特殊な形態とも言える。例えば、RRHは信号処理部のみを有し、他の基地局装置によってRRHで用いられるパラメータの設定、スケジューリングの決定などが行われる基地局装置と言うことができる。
 本発明の端末装置は、下記で説明する各種処理に関連した命令を保持するメモリと、前記メモリに結合され、前記メモリ中に保持された前記命令を実行するように構成された、プロセッサを備えた構成でもよい。本発明の基地局装置は、下記で説明する各種処理に関連した命令を保持するメモリと、前記メモリに結合され、前記メモリ中に保持された前記命令を実行するように構成された、プロセッサを備えた構成でもよい。
[第1の実施形態]
 図1は、本実施形態における無線通信システムの構成の一例である。該システムは、基地局装置101、端末装置102および端末装置103から構成される。各装置に構成されるアンテナポート数は1であっても複数であってもよい。ここで、アンテナポートとは、物理的なアンテナではなく、通信を行う装置が認識できる論理的なアンテナを指す。
 図2は、本実施形態における端末装置の構成の一例である。以下では、情報データ(データ信号)を基地局に送信する場合を例に説明を行うが、情報データではなく、制御情報を基地局に送信する場合であっても本発明の一態様に含まれる。つまり、PUSCH(Physical Uplink Shared CHannel)ではなく、PUCCH(Physical Uplink Control CHannel)に本発明の一態様を適用してもよい。本実施形態において、基地局装置101から送信される制御情報は、端末装置102の受信アンテナ210を介して、制御情報受信部211で受信される。受信された制御情報(上位レイヤ(RRC、Radio Resource Control)の設定情報あるいはDCI(下りリンク制御情報))は送信パラメータ設定部212に入力される。パラメータ設定では、符号化率、変調方式、拡散のためのスパースコードパターン、および無線リソース割り当て情報を設定し、符号化率に関する情報を符号化部201に、変調方式に関する情報を変調部202に、スパースコードパターンに関する情報を拡散部203に、無線リソース割り当て情報に関する情報を符号化部201及びマッピング部204に入力する。なお、制御情報受信部211から入力される信号だけでは、上記の情報は一意に決まらず、制御情報受信部211からの入力によっていくつかの候補に絞られ、端末装置が自律的に送信パラメータを決定してもよい。また例えば、スパースコードのゼロの配置が異なるパターンだけではなく、ゼロ(非ゼロ)の数が異なる複数のスパースコードの候補が存在し、端末の状況(例えば、バッテリー残量やQoS)等に応じて、端末装置が自律的にスパースコードを決定してもよい。また無線リソースに関しても、候補の中には異なる帯域幅や異なるOFDMシンボル数(スロット数あるいはサブフレーム、フレームも含む)から構成されるものが存在してもよい。
 送信データは、符号化部201に入力され、誤り訂正符号が適用される。誤り訂正符号としては、ターボ符号、LDPC符号、畳み込み符号、ポーラ符号等を用いることができる。符号化部201から出力される符号化ビット系列は、変調部202に入力される。変調部202では、BPSK、QPSK、16QAM、64QAM、256QAM、1024QAM等の変調処理が施される。なお、非特許文献3に記載されているように、拡散部203での処理と変調部202での処理をまとめて行ってもよい。変調部202が出力する変調シンボル系列は、拡散部203に入力される。拡散部203では、入力される変調シンボル系列の各変調シンボルを拡散する。
 図3は、本実施形態における変調シンボルを拡散する一例である。図3では周波数領域に拡散している例を示している。前記変調シンボルは、1つの周波数領域(サブキャリア)と1つの時間領域(OFDMシンボル)から構成されるリソースエレメントを無線リソース領域の単位として、マッピングされる。本実施形態において、拡散後の変調シンボルをマッピングする無線リソース領域は、1つ以上の周波数領域(サブキャリア)と1つ以上の時間領域(OFDMシンボル)から構成される。なお、LTEのサブフレーム構成を流用し、4番目と11番目のOFDMシンボルに参照信号を挿入しているが、参照信号の位置および数はこれに限定されず、サブフレーム(スロット、ミニスロット)の先頭に配置されていてもよいし、参照信号の数が可変であってもよい。例えば、図3において、第1の変調シンボルは、スパースコードに基づいて、第1のOFDMシンボルにおける第1のサブキャリアから第4のサブキャリアでなる無線リソースにマッピングされる。第2の変調シンボルは、スパースコードに基づいて、第1のOFDMシンボルにおける第5のサブキャリアから第8のサブキャリアでなる無線リソースにマッピングされる。第3の変調シンボルは、スパースコードに基づいて、第1のOFDMシンボルにおける第9のサブキャリアから第12のサブキャリアでなる無線リソースにマッピングされる。図3では、12個のサブキャリアと14個のOFDMシンボルからなる無線リソース領域において、同一のスパースコードが用いられる例である。図3では、第1の変調シンボルは、[1,0,0,1]というスパースコードを使用し、第1のOFDMシンボルにおける1番目と4番目のサブキャリア(リソースエレメント)に拡散し、第2の変調シンボルも、[1,0,0,1]というスパースコードを使用し、第1のOFDMシンボルにおける5番目と8番目のサブキャリアに拡散し、第3の変調シンボルも、[1,0,0,1]というスパースコードを使用し、第1のOFDMシンボルにおける9番目と12番目のサブキャリアに拡散する例を示している。ただし、非ゼロの要素は1に限らず、振幅を1とする複素数であっても良いし、振幅が1でなくスパースコードの全体で一定の電力となる値でも良い。図3は、全OFDMシンボルで同一の拡散パターンが適用される場合である。図4は、本実施形態における変調シンボルを拡散する別例である。図4に示すように、OFDMシンボル毎に異なるスパースコードを用いることも可能である。例えば、図4において、第1の変調シンボルは、スパースコードに基づいて、第1のOFDMシンボルにおける第1のサブキャリアから第4のサブキャリアでなる無線リソースにマッピングされる。第2の変調シンボルは、スパースコードに基づいて、第1のOFDMシンボルにおける第5のサブキャリアから第8のサブキャリアでなる無線リソースにマッピングされる。第3の変調シンボルは、スパースコードに基づいて、第1のOFDMシンボルにおける第9のサブキャリアから第12のサブキャリアでなる無線リソースにマッピングされる。図4において、第1の変調シンボルは、[1,0,0,1]というスパースコードを使用し、第1のOFDMシンボルにおける1番目と4番目のサブキャリアに拡散し、第2の変調シンボルも、[0,0,1,1]というスパースコードを使用し、第1のOFDMシンボルにおける5番目と8番目のサブキャリアに拡散し、第3の変調シンボルも、[1,0,1,0]というスパースコードを使用し、第1のOFDMシンボルにおける9番目と12番目のサブキャリアに拡散する例を示している。このとき、どのスパースコードを用いるかは、送信パラメータ設定部212から入力されるスパースコードの系列インデックスに関する情報とサブフレーム番号等の時間インデックス、およびサブキャリア番号等の周波数インデックスによって決定される。
 上記のように、スパースコードの系列長が4で、その中のヌルキャリア数(スパースコード内のゼロの要素数)が2の場合、スパースコードの系列数としては、=6通りの系列が存在する。これは一例であり、系列長を長く設定すれば、系列数は増大する。ここで、OFDMシンボルのPAPRは、系列に依存する。そこで、送信パラメータ設定部212は、PAPRが所定の値より小さくなる系列のみを保有し、限られた系列の中からコードを選択することで、PAPRが増加することを防ぐことができる。
 PAPRの増加を防ぐ方法として、等間隔にサブキャリアを配置するようなスパースコードのみを用いる方法がある。変調部202の出力を拡散部203に入力せず、図示しないDFT部に入力し、DFTを適用する。DFT後の信号は拡散部203に入力されるが、拡散部203では、スペクトルを等間隔に離散的に配置することで、ピーク電力の増加を防ぎつつ、周波数領域あるいは時間領域においてスパース(疎)な信号を形成することができる。各端末装置のスペクトルの間隔は一定でなくてもよく、先頭のサブキャリアの位置およびスペクトルの間隔は、基地局装置からDCIもしくはRRCで通知される。
 周波数領域にスパースコードを適用した場合に、PAPRの増加を防ぐ他の方法として、スクランブル処理を行うことが考えられる。マッピング部204とIFFT部205の間にスクランブリング部を挿入し、マッピング部204の出力に対してスクランブル処理を適用する。スクランブル処理は、PN符号やM系列等の符号で行う。系列はこれに限らず、ZC系列等の任意の系列を入力される系列に対して乗算してもよい。なおどの系列を用いるかはセル固有のIDあるいは端末固有のID等と、サブフレーム番号等によって設定されてもよい。
 参照信号としてはどのようなものであってもよいが、複数の端末装置の参照信号を分離する必要があるため、サイクリックシフトやOCC,あるいはIFDMA(Interleaved Frequency Division Multiple Access)等を用いる必要がある。そこで、例えば、サイクリックシフトの回転量等とスパースコードの系列を関連付けることで、基地局装置が1つの値を端末装置に通知することで、参照信号とスパースコード両方の系列を生成することが可能となる。サイクリックシフトの値の数は、スパースコードの系列数と同じか多くなるように設計される。したがって、サイクリックシフトの値が設定されると、スパースコードの系列は一意に決定される。もしくは、同一のサイクリックシフトに関連付けられる複数のスパースコードの内、一つを指定するような制御信号を受信し、スパースコードを決定してもよい。参照信号は、図示しない参照信号生成部によって生成され、マッピング部204に入力される。
 図5は、本実施形態における変調シンボルを拡散する別例である。図5は、SCMAを時間領域に拡散した例を示す。図5では、12個のサブキャリアと14個のOFDMシンボルからなる無線リソース領域において、同一のスパースコードが用いられる例である。図5において、第1の変調シンボルは、スパースコードに基づいて、第1の周波数領域(サブキャリア)における第1の時間領域(OFDMシンボル)から第5の時間領域でなる無線リソース(参照信号がマッピングされる領域は除く)にマッピングされる。第2の変調シンボルは、スパースコードに基づいて、第2の周波数領域における第1の時間領域から第5の時間領域でなる無線リソースにマッピングされる。第3の変調シンボルは、スパースコードに基づいて、第3の周波数領域におけるにおける第1のサブキャリアから第5サブキャリアでなる無線リソースにマッピングされる。同様に、その他の変調シンボルも、スパースコードに基づいて、時間領域にマッピングされる。図5では、第1の変調シンボルは、[1,0,0,1]というスパースコードを使用し、第1のサブキャリアにおける1番目と5番目のOFDMシンボル(リソースエレメント)に拡散し、第2の変調シンボルも、[1,0,0,1]というスパースコードを使用し、第2のサブキャリアにおける1番目と5番目のOFDMシンボルに拡散し、第3の変調シンボルも、[1,0,0,1]というスパースコードを使用し、第3のサブキャリアにおける1番目と5番目のOFDMシンボルに拡散する例を示している。このため、1番目、5番目、6番目、9番目、10番目、14番目のOFDMシンボルはすべてのサブキャリアにデータ入っているのに対し、2番目、3番目、7番目、8番目、12番目、13番目のOFDMシンボルはデータが入っていないため、OFDMシンボルは送信されないことになる。この結果、サブフレーム全体を考えた場合にすべてデータが詰まっている場合と比較して、平均送信電力は下がるが、ピークはそれほど落ちないため、周波数領域に拡散した場合と比較して、PAPRが上昇してしまう。
 そこで、各サブキャリアで同一のスパースコードを用いて拡散を行うのではなく、サブキャリア毎に異なるスパースコードを用いることを考える。図6は、本実施形態における変調シンボルを拡散する別例である。図6にサブキャリア毎に異なるスパースコードを用いて、時間領域に拡散した例を示す。例えば、図6において、第1のサブキャリアの1番目から5番目のOFDMシンボルにマッピングする第1の変調シンボルは、[1,0,0,1]によって拡散される。したがって、第1のサブキャリアにおける1番目と4番目のOFDMシンボル(リソースエレメント)にデータをコピー(配置)される。同様に第2のサブキャリアにおける1番目と3番目のOFDMシンボルにマッピングする第2の変調シンボルは、[1,0,1,0]によって変調シンボルが拡散される。したがって第2のサブキャリアにおける1番目と3番目のOFDMシンボルにデータがコピーされる。他の変調シンボルにおいても、同様に、拡散される。この結果、全てのOFDMシンボルでデータ送信が行われるサブキャリアが存在することになるため、送信電力がゼロとなるOFDMシンボルが生成されにくくなる。したがって、PAPRの大幅な劣化を避けることができる。ここで、変調シンボル毎にいずれのスパースコードを用いて拡散を行うかを基地局装置が端末装置に通知してもよいが、基準となるスパースコードのインデックスのみを基地局装置が端末装置に通知し、スパースコードのインデックスとサブキャリアインデックスおよびOFDMシンボルインデックスによって各変調シンボルに適用されるスパースコードを決定してもよい。ここで、スパースコードインデックスの基地局装置から端末装置に通知されるスパースコードインデックスは、DCIが用いられてもよいし、RRCによって通知されてもよい。
 このように、各サブキャリアで異なるスパースコードによってデータを拡散することで、サブキャリア数がゼロ、つまり送信電力がゼロとなるOFDMシンボルが発生しにくくなるため、PAPRを改善することができる。
 なお、時間方向へスパースコードを適用する場合に、サブキャリア毎に異なるスパースコードを用いることで、PAPRを改善することができることを、図6を用いて説明した。しかしながら図6において、例えば、1番目のOFDMシンボルは7つサブキャリアを含んでいるが、2番目のOFDMシンボルは5つサブキャリアを含んでいる。つまり、サブキャリアのスペクトル電力スペクトル密度が一定の場合、2番目のOFDMシンボルの電力は比較的低く、1番目のOFDMシンボルの電力は比較的高くなる。したがって、OFDMシンボル毎に送信電力が異なることを意味している。これもPAPRの劣化の原因となる。次に、上記問題を解決するためのスパースコードの選択方法について説明する。
 図7は、本実施形態における変調シンボルを拡散する別例である。図7は、OFDMシンボル毎の送信電力を一定とした場合の、スパースコードの適用例を示す。図7は、サブキャリア毎に異なるスパースコードを用いて、時間領域に拡散した例を示す。図7において、各OFDMシンボル内でサブキャリア数は6となるようにスパースコードを適用している。この結果、OFDMシンボル毎に送信電力は変わらないため、PAPRの劣化は生じにくくなる。各OFDMシンボル内でのサブキャリア数を一定とするには、様々な方法が存在するが、一例としては各サブキャリアで用いるスパースコードを同一とし、割りあてられた周波数リソース内ですべてのスパースコードを同数回用いる。これにより各OFDMシンボルのヌルサブキャリア数が一定となるため、PAPRの劣化を抑えることができる。
図10は、各OFDMシンボル内でのサブキャリア数を一定する方法の別例である。図のように時間方向に同一のスパースコードを適用する場合においても時間で巡回的にスパースコードを用いることで各OFDMシンボルでのサブキャリア数を一定とすることができる。
 拡散部203の出力はマッピング部204に入力される。マッピング部204では、拡散部203からの入力および参照信号生成部から入力される参照信号を用いて、フレーム(サブフレーム、スロットあるいはミニスロット)を生成する。マッピング部204の出力はIFFT部205に入力され、IFFT処理が適用される。IFFT適用後の信号はCP付加部206に入力される。CP付加部206ではCP(Cyclic Prefix)の付加が行われる。CPが付加された信号は無線送信部207に入力される。無線送信部207ではフィルタリング処理やアップコンバージョンが適用される。無線送信部207が出力した信号は、送信アンテナ208を介して基地局装置に送信される。
 基地局装置の構成例を図8に示す。端末装置が送信した信号は、受信アンテナ801を介して無線受信部802で受信される。無線受信部802ではフィルタリング処理やアップコンバージョンが適用される。無線受信部802の出力はCP除去部803に入力される。CP除去部803では、端末装置で付加されたCPの除去を行う。CP除去部の出力はFFT部804に入力される。FFT部804では、時間領域信号から周波数領域信号への変換を行う。FFT部804の出力は、デマッピング部805に入力される。デマッピング部805では、端末装置で多重された参照信号の分離を行うとともに、通信に使用されたリソースを抽出する。デマッピング部805の出力は信号分離部806に入力される。信号分離部806では、フィルタリング処理やキャンセラ処理、BP(Belief Propagation)、MPA、最尤推定等を適用することで、各送信装置が送信した信号を分離する。信号分離部806が出力した信号は、逆拡散部807に入力される。逆拡散部807では、送信パラメータ格納部813から入力される拡散符号系列によって逆拡散処理を行う。スパースコード系列は、制御情報設定部812から入力される制御情報に含まれる情報とサブキャリアインデックス、サブフレームインデックスあるいはOFDMシンボルインデックス等から決定される。なお、本実施形態では信号分離部806と逆拡散部807を別のブロックとして構成したが、信号分離と逆拡散を同一ブロック内で行う構成としてもよい。逆拡散部807の出力は、復調部808に入力される。復調部808では、送信パラメータ格納部813から送信装置で適用された変調方式が通知され、該変調方式に基づいて復調処理が適用され、ビットLLR(Log Likelihood Ratio)列が出力される。復調部808の出力は復号部808に入力される。送信パラメータ格納部813から入力される符号化率等の誤り訂正符号化に関する情報が復号部810に入力され、該情報と復調部808から入力されるビットLLR列とから、誤り訂正後の情報ビットを得る。なお、制御情報設定部812が送信パラメータ格納部813に入力する情報の少なくとも一部は、送信アンテナ811を介して端末装置に入力される。
 このように、SCMAを適用する場合において、SCMAの拡散コードをOFDMシンボル毎、および/あるいは、サブキャリア毎に変更することで、伝搬路変動に対する耐性を向上させたり、PAPRを改善したりすることができる。
[第2の実施形態]
 第1実施形態では、1サブフレーム内の複数のOFDMシンボルに対してスパースコードを適用する例について説明したが、本実施形態では、異なるサブフレーム(スロット、ミニスロット)において、異なるスパースコードを用いる例について説明する。
 例えば図3において、周波数インデックスが8、9において周波数選択性フェージングによる落ち込みがあった場合、誤りを生じてしまう。そこで、基地局装置は再送時において、異なるスパースコードを用いるように、制御情報を端末装置に送信する。例えば図9では、図3で使用されたスパースコードで用いられなかったサブキャリアを用いるスパースコードを選択した場合の例を示している。例では周波数インデックス8および9は使用されないため、伝搬路(チャネル)の時変動が緩やかな場合、端末装置の制御情報受信部211は、再送のためのスパースコードに関する情報を受信し、送信パラメータ設定部212に入力する。なお図9は一例であり、初送あるいは前回の送信において用いたサブキャリアと同じサブキャリアを用いてもよい。パラメータ設定部212は、再送のためのスパースコードに関する情報に基づいて、拡散部203に対して初送とは異なるスパースコードの系列を入力する。なお、再送要求時に基地局装置からスパースコードに関する情報を必ずしも通知される必要はなく、初送時に通知されたスパースコードの系列に関する情報と、再送回数(リダンダンシーバージョン)によって決定されてもよい。さらに複数のスパースコードの中から、端末装置が自律的に選択してもよい。
 また、再送時にはスパースコードの系列長、つまり拡散率を変更して伝送を行ってもよい。拡散率に関する情報は基地局から通知されるDCIに含まれていてもよいし、RRCによって規定されてもよい。
 このように、再送時に初送とは異なるスパースコードを使用することで、少なくとも一部の、異なるサブキャリアおよび/あるいはOFDMシンボルを用いて伝送を行うことになるため、周波数および/あるいは時間ダイバーシチにより良好な伝送特性を得ることができる。
 本発明の一態様に関わる装置で動作するプログラムは、本発明の一態様に関わる上述した実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであっても良い。プログラムあるいはプログラムによって取り扱われる情報は、処理時に一時的にRandom Access Memory(RAM)などの揮発性メモリに読み込まれ、あるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。
 尚、上述した実施形態における装置の一部、をコンピュータで実現するようにしても良い。その場合、実施形態の機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録しても良い。この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体等のいずれであっても良い。
 さらに「コンピュータが読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、すなわち典型的には集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んでよい。汎用用途プロセッサは、マイクロプロセッサであってもよいし、従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。前述した電気回路は、デジタル回路で構成されていてもよいし、アナログ回路で構成されていてもよい。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用出来る。
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明の一態様は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明の一態様は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。
 本発明の一態様は、例えば、通信システム、通信機器(例えば、携帯電話装置、基地局装置、無線LAN装置、或いはセンサーデバイス)、集積回路(例えば、通信チップ)、又はプログラム等において、利用することができる。
 101…基地局装置
 102、103…端末装置
 201…符号化部
 202…変調部
 203…拡散部
 204…マッピング部
 205…IFFT部
 206…CP付加部
 207…無線送信部
 208…送信アンテナ
 210…受信アンテナ
 211…制御情報受信部
 212…送信パラメータ設定部
 801…受信アンテナ
 802…無線受信部
 803…CP除去部
 804…FFT部
 805…デマッピング部
 806…信号分離部
 807…逆拡散部
 808…復調部
 810…復号部
 811…送信アンテナ
 812…制御情報設定部
 813…送信パラメータ格納部

Claims (6)

  1.  基地局装置に対してデータ信号を送信する端末装置であって、
     ゼロを含む系列を生成する送信パラメータ設定部と、
     前記データ信号の変調シンボルに対して、前記系列を乗算する拡散部と、
     前記系列を乗算した信号を複数のリソースエレメントから構成される第1の無線リソース領域又は第2の無線リソース領域にマッピングするマッピング部と、を備え、
     前記送信パラメータ設定部は、第1の無線リソース領域にマッピングされる変調シンボルに乗算する系列と第2の無線リソース領域にマッピングする変調シンボルに乗算する系列で異なる系列を設定する、端末装置。
  2.  前記第1の無線リソース領域は第1のOFDMシンボルに含まれ、前記第2の無線リソース領域は第2のOFDMシンボルに含まれ、
     第1の無線リソース領域におけるリソースエレメントと第2の無線リソース領域におけるリソースエレメントはサブキャリアにおいて重複する請求項1記載の端末装置。
  3.  前記送信パラメータ設定部は、前記第1のOFDMシンボルに含まれるリソースエレメント数と前記第2のOFDMシンボルに含まれるリソースエレメント数を同一とするように系列を設定する請求項2記載の端末装置。
  4.  前記第1の無線リソース領域は第1のサブキャリアに含まれ、前記第2の無線リソース領域は第2のサブキャリアに含まれ、
     第1の無線リソース領域におけるリソースエレメントと第2の無線リソース領域におけるリソースエレメントはOFDMシンボルにおいて重複する請求項1記載の端末装置。
  5.  前記第1の無線リソース領域におけるリソースエレメント及び第2の無線リソース領域におけるリソースエレメントは、第1のOFDMシンボル及び第2のOFDMシンボルを含み、
     前記送信パラメータ設定部は、前記第1のOFDMシンボルに含まれるリソースエレメント数と前記第2のOFDMシンボルに含まれるリソースエレメント数を同一とするように系列を設定する請求項4記載の端末装置。
  6. 前記送信パラメータ設定部は、第1の無線リソース領域にマッピングされる変調シンボルに乗算する系列及び第2の無線リソース領域にマッピングする変調シンボルに乗算する系列は、初送か、再送かによって、異なる系列を設定する、請求項1記載の端末装置。
PCT/JP2018/020646 2017-05-31 2018-05-30 端末装置および基地局装置 WO2018221549A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/616,857 US11146436B2 (en) 2017-05-31 2018-05-30 Terminal apparatus and base station apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-107943 2017-05-31
JP2017107943A JP2020123757A (ja) 2017-05-31 2017-05-31 端末装置および基地局装置

Publications (1)

Publication Number Publication Date
WO2018221549A1 true WO2018221549A1 (ja) 2018-12-06

Family

ID=64454755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020646 WO2018221549A1 (ja) 2017-05-31 2018-05-30 端末装置および基地局装置

Country Status (3)

Country Link
US (1) US11146436B2 (ja)
JP (1) JP2020123757A (ja)
WO (1) WO2018221549A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111464207B (zh) * 2019-01-18 2021-04-02 电信科学技术研究院有限公司 一种noma多层传输方法及其装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007126013A1 (ja) * 2006-04-28 2007-11-08 Panasonic Corporation 無線通信システム、移動局装置、およびrach送信方法
WO2016023517A1 (en) * 2014-08-15 2016-02-18 Huawei Technologies Co., Ltd. System and method for generating codebooks with small projections per complex dimension and utilization thereof
WO2016070829A1 (en) * 2014-11-06 2016-05-12 Huawei Technologies Co., Ltd. System and method for transmission symbol arrangement for reducing mutual interference
WO2016119651A1 (en) * 2015-01-27 2016-08-04 Huawei Technologies Co., Ltd. System and method for transmission in grant-free uplink transmission scheme

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102397927B1 (ko) * 2015-03-31 2022-05-13 삼성전자주식회사 무선통신시스템에서 스펙트럼 마스크 필링을 이용한 피크 대 평균 전력 감소를 위한 방법 및 장치
US10218763B2 (en) * 2015-05-08 2019-02-26 Huawei Technologies Co., Ltd. Method and system for low data rate transmission
US9742608B2 (en) * 2015-05-29 2017-08-22 Huawei Technologies Co., Ltd. Low PAPR waveform for mmW
WO2017050587A1 (en) * 2015-09-25 2017-03-30 Sony Corporation Reduction of crc field in compact dci message on m-pdcch for low cost mtc devices
WO2018027589A1 (zh) * 2016-08-09 2018-02-15 华为技术有限公司 数据传输方法、数据传输装置和通信系统
US10736081B2 (en) * 2016-09-14 2020-08-04 Huawei Technologies Co., Ltd. Non-orthogonal multiple access transmission
US10693696B2 (en) * 2016-11-22 2020-06-23 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving signals in wireless communication system
US11115253B2 (en) * 2017-01-26 2021-09-07 Lg Electronics Inc. Method and device for performing communication by using orthogonal or non-orthogonal code multiple access scheme in wireless communication system
US10548096B2 (en) * 2017-04-21 2020-01-28 Samsung Electronics Co., Ltd. Information type multiplexing and power control
US10700912B2 (en) * 2017-05-19 2020-06-30 Huawei Technologies Co., Ltd. Method and system for non-orthogonal multiple access communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007126013A1 (ja) * 2006-04-28 2007-11-08 Panasonic Corporation 無線通信システム、移動局装置、およびrach送信方法
WO2016023517A1 (en) * 2014-08-15 2016-02-18 Huawei Technologies Co., Ltd. System and method for generating codebooks with small projections per complex dimension and utilization thereof
WO2016070829A1 (en) * 2014-11-06 2016-05-12 Huawei Technologies Co., Ltd. System and method for transmission symbol arrangement for reducing mutual interference
WO2016119651A1 (en) * 2015-01-27 2016-08-04 Huawei Technologies Co., Ltd. System and method for transmission in grant-free uplink transmission scheme

Also Published As

Publication number Publication date
JP2020123757A (ja) 2020-08-13
US11146436B2 (en) 2021-10-12
US20210135920A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
CN107690764B (zh) 上行链路spucch中的短pucch
US11115960B2 (en) Terminal apparatus and communication method
WO2019138912A1 (ja) 基地局装置および端末装置
US11265912B2 (en) Terminal apparatus
WO2020031983A1 (ja) 端末装置および基地局装置
US20210243784A1 (en) Terminal apparatus
AU2018239415A1 (en) Sub-block wise interleaving for polar coding systems, procedures, and signaling
WO2018008744A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2018144683A1 (en) Advanced polar codes for control channel
WO2018008739A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
US10819388B2 (en) Transmission device, reception device, and communication method
EP3852476A1 (en) Terminal device
US11019684B2 (en) Base station, terminal apparatus, and communication method with semi-static first control information and dynamic allocation second control information
KR20150121246A (ko) 전송 블록들에 걸쳐 디코딩 시간을 공유하기 위한 방법 및 장치
US20190200378A1 (en) Operation method of communication node for uplink transmission in communication network
WO2015141689A1 (ja) 端末装置、基地局装置、および集積回路
CN111316729A (zh) 终端装置以及基站装置
AU2017303719A1 (en) Terminal apparatus, base station apparatus, communication method, and integrated circuit
CA3022028A1 (en) Terminal device, base station device, and communication method
JP6461825B2 (ja) 端末装置
WO2015107771A1 (ja) 端末装置、基地局装置、および集積回路
WO2015137112A1 (ja) 端末装置、基地局装置、および集積回路
WO2018221549A1 (ja) 端末装置および基地局装置
JP2019125820A (ja) 送信装置および受信装置
JP6472031B2 (ja) 端末装置、基地局装置、および通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP