WO2018221266A1 - エポキシ樹脂系防食塗料組成物、防食塗膜、積層防汚塗膜、および防汚基材、ならびにこれらの製造方法 - Google Patents

エポキシ樹脂系防食塗料組成物、防食塗膜、積層防汚塗膜、および防汚基材、ならびにこれらの製造方法 Download PDF

Info

Publication number
WO2018221266A1
WO2018221266A1 PCT/JP2018/019256 JP2018019256W WO2018221266A1 WO 2018221266 A1 WO2018221266 A1 WO 2018221266A1 JP 2018019256 W JP2018019256 W JP 2018019256W WO 2018221266 A1 WO2018221266 A1 WO 2018221266A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
antifouling
epoxy resin
anticorrosion
coating composition
Prior art date
Application number
PCT/JP2018/019256
Other languages
English (en)
French (fr)
Inventor
順治 仁井本
祥太郎 原田
Original Assignee
中国塗料株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国塗料株式会社 filed Critical 中国塗料株式会社
Priority to JP2019522114A priority Critical patent/JP6990241B2/ja
Publication of WO2018221266A1 publication Critical patent/WO2018221266A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • B05D1/38Successively applying liquids or other fluent materials, e.g. without intermediate treatment with intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/04Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C09D127/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints

Definitions

  • the present invention relates to an epoxy resin-based anticorrosion coating composition, and more particularly, an epoxy resin-based anticorrosion coating composition useful for forming an anticorrosion coating in a laminated antifouling coating comprising an anticorrosion coating and an antifouling coating, and anticorrosion
  • the present invention relates to a coated antifouling coating and an antifouling coating comprising the antifouling coating laminated thereon, an antifouling substrate having the laminated antifouling coating, and methods for producing these.
  • Patent Document 1 discloses an anticorrosion paint composition containing an epoxy resin, an alicyclic amine, and an acrylate monomer
  • Patent Document 2 discloses an epoxy resin heavy anticorrosion paint containing a vinyl chloride resin and the like. ing. These documents describe that after the anticorrosion paint was applied, a top coat (antifouling paint) was applied to evaluate the adhesion between the anticorrosion paint and the top coat. As the antifouling paint, it is currently mainstream to use a hydrolyzable antifouling paint having good long-term antifouling performance.
  • Patent Document 3 is suitable for rust prevention of metals having an organosilicon compound having an aminoalkyl group and an alkoxy group and a compound having an oxirane ring, and having a copper, copper alloy, and chromate plating film applied thereto. It is described that the antirust property is more effectively improved by adding one or more selected from rosins or derivatives thereof, terpene resins and petroleum resins to the metal antirust composition.
  • Hydrolytic antifouling paints have many paints containing rosin in order to promote the dissolution of the antifouling agent and to improve the durability of the paint film.
  • hydrolytic antifouling paints with a relatively high rosin content are used to improve antifouling performance on ships with slow ship speeds and ships with irregular sailing conditions and long-term berths. Yes.
  • the interval until the antifouling paint is applied after applying the anticorrosive paint (hereinafter also referred to as “painting interval”). May become longer.
  • the coating film formed from the hydrolyzable antifouling paint having a high rosin content has a problem that the coating film hardness is high and it is difficult to adhere to the anticorrosion coating film of the undercoat. For this reason, in order to ensure sufficient adhesion, it is necessary to apply the antifouling paint before the coating film hardness becomes high, that is, it is necessary to set the coating interval short, and the coating process management at the coating site becomes tight.
  • the allowable coating interval may be one day.
  • the anticorrosion paint is applied again, and the antifouling paint is applied later, resulting in a negative situation in terms of economy and time. .
  • Development of an anticorrosion paint capable of forming an anticorrosion coating film having sufficient adhesion even when the coating interval is long is strongly desired as the above countermeasure.
  • the present inventors have intensively studied, and by using a thermoplastic resin and rosins together in an epoxy resin anticorrosive paint, the antifouling paint has a high rosin content. It was found that the adhesion of the anticorrosion coating film to the antifouling coating film (hereinafter, also simply referred to as “adhesion of the anticorrosion coating film” or “adhesion”) was improved.
  • Epoxy resin-based anticorrosion paints form an anticorrosion coating film by a mechanism in which an epoxy resin reacts with a curing agent such as amine to cure and dry. Thereafter, the surface of the anticorrosion coating film is softened by the solvent contained in the antifouling paint to be applied, and adhesion between the anticorrosion coating film and the antifouling coating film is developed. As described in Patent Document 2 ([0045]), the thermoplastic resin (B) is dissolved by the solvent in the antifouling paint, and improves the adhesion of the anticorrosive paint film to the antifouling paint film.
  • the curing reaction of the anticorrosion paint proceeds with time.
  • the coating film hardness increases and the solvent resistance of the coating film also improves. Therefore, if a long period of time elapses between the formation of the anti-corrosion coating and the application of the anti-fouling coating, the softening of the anti-corrosion coating by the solvent in the anti-fouling coating is impeded, and This causes a phenomenon in which the adhesiveness is insufficient and the adhesiveness cannot be expressed.
  • the antifouling coating is formed from an antifouling coating with a high rosin content, the hardness and brittleness of the rosin increases the coating hardness, and the rosin component migrates to the interface with the anticorrosion coating. However, since the tendency to reduce the adhesion becomes strong, it is difficult to ensure the adhesion.
  • the solvent resistance after drying and hardening of the anticorrosion coating film does not contain the rosins (C). Since it is lower than that of the anticorrosive coating film, the anticorrosion coating film is easily dissolved by the solvent of the top antifouling paint even when the coating interval is long, and adhesion is easily exhibited. Furthermore, when the antifouling paint contains rosins, the rosins in the antifouling paint move to the interface with the anticorrosion coating, and the affinity between the anticorrosion coating containing rosin and the antifouling coating is improved. Therefore, it is considered that the adhesion is greatly improved synergistically.
  • an anticorrosion paint containing an epoxy resin and a curing agent conventionally, in order to improve adhesion, it has been common to apply a prescription such as a reduction in the reaction ratio. There arises a problem that the low temperature drying property and the anticorrosion property are lowered.
  • the present invention eliminates such a trade-off relationship and ensures adhesion to a coating film formed from a hydrolyzable antifouling paint having a high rosin content without impairing low-temperature drying properties and anticorrosion properties.
  • a prescription can be established.
  • the present inventors have found that the anticorrosion properties of the anticorrosion coating film are deteriorated when rosins are excessively added to the anticorrosion coating material.
  • the present inventors have completed the present invention based on these findings.
  • the present invention is as follows.
  • thermoplastic resin (B) (excluding rosins (C)), rosins (C), and curing agent (D);
  • the content of the thermoplastic resin (B) is 35 parts by mass or more with respect to 100 parts by mass of the epoxy resin (A),
  • the epoxy resin (A) is one or more selected from the group consisting of bisphenol A type epoxy resins, bisphenol AD type epoxy resins, bisphenol F type epoxy resins, and modified epoxy resins obtained by modifying these epoxy resins.
  • thermoplastic resin (B) contains at least one selected from the group consisting of petroleum resins, ketone resins, chlorinated polyolefins, acrylic resins, butyl acetate resins, styrene resins, and vinyl chloride resins.
  • the epoxy resin anticorrosive coating composition according to any one of the above [1] to [4].
  • thermoplastic resin (B) contains a vinyl chloride resin
  • vinyl chloride resin is a vinyl chloride / vinyl isobutyl ether copolymer
  • An anticorrosion coating film comprising a cured product of the epoxy resin anticorrosion coating composition according to any one of [1] to [6].
  • the base material with an anticorrosion coating film which has a base material and the anticorrosion coating film of said [7] provided in the base-material surface.
  • a laminated antifouling coating film provided on the surface of the base material in the order of the anticorrosion coating film and the antifouling coating film of [7] from the base material side.
  • a method for producing a laminated antifouling coating film provided on the surface of a base material in the order of the anticorrosion coating film and the antifouling coating film from the substrate side wherein any one of the above [1] to [6]
  • a method for producing a laminated antifouling coating film comprising the steps of curing a film comprising an epoxy resin anticorrosive coating composition to form the anticorrosion coating film, and forming the antifouling coating film on the surface of the anticorrosion coating film .
  • the antifouling coating film according to any one of [10] to [12] is laminated on the surface of the base material so that the anticorrosion coating film and the antifouling coating film are arranged in this order from the base material side. Dirty substrate.
  • a method for producing an antifouling substrate comprising a step of forming the laminated antifouling coating film of any one of [10] to [12] on the surface of the substrate.
  • an anticorrosion coating having excellent anticorrosion properties can be formed.
  • This anti-corrosion coating is a laminated anti-fouling coating provided on the substrate surface in the order of the anti-corrosion coating and the anti-fouling coating from the substrate side, and has excellent adhesion even when the coating interval is long.
  • the antifouling coating film is formed from a hydrolyzable antifouling paint having a high rosin content and has excellent adhesion even when the coating interval is long.
  • the epoxy resin anticorrosion coating composition according to the present invention is further excellent in low temperature drying property and painting workability.
  • FIG. 1 is a diagram for explaining a drying property evaluation method in Examples.
  • the epoxy resin-based anticorrosive coating composition according to the present invention includes an epoxy resin (A), a thermoplastic resin (B), a rosin (C), and a curing agent (D ).
  • the epoxy resin-based anticorrosion coating composition is usually a main component containing the epoxy resin (A), the thermoplastic resin (B) and the rosin (C), and a curing containing the curing agent (D).
  • An anticorrosion paint comprising an agent component is prepared, and the main component and the curing agent component are mixed immediately before coating.
  • the main component includes, as necessary, a pigment (E), a curing accelerator (F), an adhesion enhancer (G), a plasticizer (H), a solvent (I), an anti-sagging agent or an anti-settling agent (J). , Dehydrating agent (stabilizer) (K), or other coating film forming components (dispersant, antifoaming agent, leveling agent, etc.) may be blended within a range not impairing the object of the present invention, You may mix
  • a hardening accelerator (F) or solvent (I) with the said hardening
  • (Meth) acryl is a general term for acryl and methacryl.
  • the “nonvolatile content of the anticorrosion paint composition (or antifouling paint composition)” means JIS K5601-1-2 of the anticorrosion paint composition (or antifouling paint composition described later) of the present invention.
  • the heating residue is measured according to the standard (heating temperature: 125 ° C., heating time: 60 minutes).
  • Epoxy resin (A) As said epoxy resin (A), the polymer or oligomer which contains two or more epoxy groups in 1 molecule, and the polymer or oligomer produced
  • Examples of the epoxy resin (A) include bisphenol type epoxy resins, glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, phenol novolac type epoxy resins, cresol type epoxy resins, dimer acid-modified epoxy resins, aliphatic epoxy resins, and alicyclic rings. Group epoxy resins, epoxidized oil-based epoxy resins, and the like.
  • an epoxy resin (A) include, for example, bisphenol A type epoxy resins such as epichlorohydrin-bisphenol A resin; bisphenol AD type epoxy resins such as epichlorohydrin-bisphenol AD resin; Bisphenol F type epoxy resin such as hydrin-bisphenol F resin; Phenol novolac epoxy resin such as epichlorohydrin-phenol novolak resin; Aromatic such as 3,4-epoxyphenoxy-3 ′, 4′-epoxyphenylcarboxymethane Epoxy resin; brominated epoxy resin having a structure in which at least a part of hydrogen atoms bonded to the benzene ring in epichlorohydrin-bisphenol A epoxy resin is substituted with bromine; epichlorohydrin and aliphatic dihydric alcohol The structure of the fat reacted with A polyfunctional epoxy resin with a structure in which epichlorohydrin reacts with tri (hydroxyphenyl) methane; a dimer acid-modified epoxy obtained by modifying a bisphenol A
  • preferable epoxy resins (A) are at least one selected from the group consisting of bisphenol A type epoxy resins, bisphenol AD type epoxy resins and bisphenol F type epoxy resins, and modified epoxy resins obtained by modifying these bisphenol type epoxy resins. It is a kind of epoxy resin, and a particularly preferred epoxy resin (A) is a bisphenol A type epoxy resin.
  • the epoxy resin (A) can be used alone or in combination of two or more.
  • the weight average molecular weight of the epoxy resin (A) measured by GPC (gel permeation chromatography) (measurement conditions are the conditions described in the column of “(2) average molecular weight of copolymer” in Examples described later or this) Is not generally determined depending on the coating curing conditions of the epoxy resin-based anticorrosive coating composition (eg, normally dry coating or baking coating), but preferably 350 to 20, 000.
  • the viscosity (25 ° C.) of the epoxy resin (A) is preferably 12,000 mPa ⁇ s or less, and more preferably 10,000 mPa ⁇ s or less.
  • the epoxy equivalent (based on JIS K7236) of the epoxy resin (A) is preferably 150 to 1,000 g / eq.
  • the epoxy resin (A) is preferably a bisphenol A type epoxy resin having an epoxy equivalent of 150 to 700 g / eq.
  • the weight average molecular weight and epoxy equivalent of the said epoxy resin (A) in the case of using 2 or more types of epoxy resins in combination are the weight average molecular weight and epoxy equivalent as a whole of 2 or more types of epoxy resins.
  • epoxy resins and modified epoxy resins include “jER807” (Mitsubishi Chemical Co., Ltd., bisphenol F-type diglycidyl ether resin, epoxy equivalent 160 to 175 g / eq, NV 100%), “Flep 60” (polysulfide modified) Epoxy resin, manufactured by Toray Fine Chemical Co., Ltd., epoxy equivalent of about 280 g / eq, NV 100%), “YD-172-X75” (dimer acid-modified epoxy resin, manufactured by Kokuto Chemical Co., Ltd., non-volatile epoxy equivalent of 600 to 700 g / Eq, xylene cut product NV75%), “Epiclon 5300-70” (Novolac type epoxy resin, manufactured by DIC Corporation, nonvolatile epoxy equivalent 300-340 g / eq, xylene / isobutyl alcohol cut product NV70%), etc. .
  • the epoxy resin (A) is preferably contained in the anticorrosion coating composition in an amount
  • thermoplastic resin (B) (excluding rosins (C))
  • thermoplastic resin (B) examples include petroleum resins, ketone resins, chlorinated polyolefins, acrylic resins, butyl acetate resins, styrene resins, and vinyl chloride resins.
  • the thermoplastic resin (B) is It is dissolved by the organic solvent in the antifouling paint and improves the adhesion of the anticorrosive paint film to the antifouling paint film.
  • the thermoplastic resin (B) is preferably a solid resin at normal temperature (23 ° C.). Solid at room temperature means that the shape is maintained even after standing for 1 day at room temperature and normal pressure (23 ° C., 1 atm).
  • the thermoplastic resin (B) is a solid resin at normal temperature (23 ° C.)
  • the anti-stain coating film in which the unreacted epoxy resin (A) in the anticorrosion coating film is laminated on the anticorrosion coating film It is possible to suppress or prevent the migration and lowering the antifouling performance (particularly stationary antifouling property).
  • the weight average molecular weight of the thermoplastic resin (B) measured by GPC (measurement conditions are the same as or equivalent to those described in the column of “(2) Average molecular weight of copolymer” in Examples described later). Is preferably 5,000 to 100,000, more preferably 20,000 to 80,000.
  • thermoplastic resin (B) those having a glass transition temperature of 30 ° C. or higher are more preferable.
  • thermoplastic resin (B) among the above resins, a vinyl chloride resin is particularly preferable in that it has little influence on the adhesion to an antifouling paint and the antifouling property of the coating film.
  • the vinyl chloride resin is more preferably a vinyl chloride / vinyl isobutyl ether copolymer, more preferably a glass transition temperature of 30 ° C. or higher.
  • “Laroflex MP-25” is particularly preferable because an increase in the viscosity of the paint is small when the epoxy resin anticorrosive paint composition is prepared and the paint workability is excellent. .
  • thermoplastic resins can be used singly or in combination of two or more.
  • the amount of the thermoplastic resin (B) in the anticorrosion coating composition is such that the adhesion of the anticorrosion coating and the unreacted epoxy resin (A) in the anticorrosion coating are laminated on the anticorrosion coating.
  • the epoxy resin (A) 100 35 parts by mass or more with respect to parts by mass, preferably 50 parts by mass or more, more preferably 60 parts by mass or more.
  • the upper limit thereof Is preferably 100 parts by mass, more preferably 90 parts by mass.
  • Rosin (C) By adding a predetermined amount of rosin (C) to the epoxy resin anticorrosive coating composition, the drying property of the anticorrosion coating is improved, and the antifouling coating of the anticorrosion coating (in particular, an organic solvent containing a large amount of rosins). It is possible to greatly improve the adhesion to the antifouling paint film formed from the mold antifouling paint.
  • rosins (C) examples include rosins such as gum rosin, wood rosin and tall oil rosin, rosin derivatives such as hydrogenated rosin and disproportionated rosin, and esters and metal salts thereof.
  • rosins such as gum rosin, wood rosin, tall oil rosin and the like from the viewpoint of high adhesion improving effect.
  • the content of the rosin (C) is 5 to 30 parts by mass, preferably 10 to 25 parts by mass with respect to 100 parts by mass in total of the epoxy resin (A) and the thermoplastic resin (B). is there. If the amount is less than 5 parts by mass, the adhesion and drying properties of the anticorrosive coating film tend to be inferior. When it exceeds 30 parts by mass, the viscosity of the mixture obtained by mixing the curing agent component with the main ingredient component (that is, the anticorrosive coating composition) is large, the coating workability is lowered, the drying property and the anticorrosion property are also lowered. There's a problem.
  • the curing agent (D) is not particularly limited as long as it contains active hydrogen and reacts with the epoxy resin (A).
  • the epoxy resin (A) for example, polyamines, polyamide resins, imines, phenol novolac resins, Cresol novolac resins, phenol novolac resins having an aliphatic hydrocarbon group having 4 to 18 carbon atoms as a substituent on the aromatic nucleus, polycarboxylic acids, polycarboxylic anhydrides, imidazoles, dicyandiamides, and the like.
  • an amine curing agent that is a compound having two or more amino groups in one molecule is preferable.
  • Examples of the compound constituting the amine curing agent include aliphatic amines, alicyclic amines, aromatic amines, and heterocyclic amines, and polyamides of these amines, modified products thereof, modified epoxy resin adducts, and Mannich modified products. Thing etc. are mentioned.
  • the aliphatic amine includes ethylenediamine, diethylenetriamine, triethylenetetramine, tetrakis (2-aminoethylaminomethyl) methane, 1,3-bis (2′-aminoethylamino) propane, triethylene-bis.
  • examples include (trimethylene) hexamine, bis (3-aminoethyl) amine, bishexamethylenetriamine [H 2 N (CH 2 ) 6 NH (CH 2 ) 6 NH 2 ], and bis (cyanoethyl) diethylenetriamine.
  • Examples of the alicyclic amine include 4-cyclohexanediamine, 4,4′-methylenebiscyclohexylamine, 4,4′-isopropylidenebiscyclohexylamine, norbornanediamine (NBDA / 2,5- and 2,6-bis ( Aminomethyl) -bicyclo [2,2,1] heptane), bis (aminomethyl) cyclohexane, diaminodicyclohexylmethane, isophoronediamine (IPDA / 3-aminomethyl-3,5,5-trimethylcyclohexylamine), and mensen Examples include diamines.
  • aromatic amine examples include o-xylylenediamine, m-xylylenediamine (MXDA), p-xylylenediamine, phenylenediamine, naphthylenediamine, diaminodiphenylmethane, diaminodiethylphenylmethane, 2,2-bis (4 -Aminophenyl) propane, 4,4'-diaminodiphenyl ether, 4,4'-diaminobenzophenone, 4,4'-diaminodiphenylsulfone, 2,2'-dimethyl-4,4'-diaminodiphenylmethane, 2,4- Diaminobiphenyl, 2,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethoxy-4,4′-diaminobiphenyl, bis (aminomethyl) naphthalene, bis (aminoethyl) n
  • heterocyclic amine examples include N-methylpiperazine, morpholine, 1,4-bis- (3-aminopropyl) -piperazine, piperazine-1,4-diazacycloheptane, 1- (2′-aminoethylpiperazine) 1- [2 ′-(2 ′′ -aminoethylamino) ethyl] piperazine, 1,11-diazacycloeicosane, 1,15-diazacyclooctacosane, and the like.
  • the active hydrogen equivalent (amine equivalent) of the curing agent (D) is preferably 50 to 1000 g / eq, more preferably 70 to 500 g / eq.
  • the curing agent (D) if it is a commercially available product, “Racamide TD-966” (manufactured by DIC Corporation, polyamide, non-volatile active hydrogen equivalent 226 g / eq NV 60%), “PA-66” (Akira Otake) Shin Chemical Co., Ltd., polyamide, non-volatile active hydrogen equivalent 226 g / eq NV 60%), “PA-290 (A)” (Otake Akira Shin Chemical Co., non-volatile active hydrogen equivalent 166 g / eq NV 60%) , “Ancamide 2050” (air products, polyamide adduct, active hydrogen equivalent 150 g / eq NV 100%), “NX-4918” (cardlite, phenalkamine (cardnicol-amine Mannich
  • the amount of the curing agent (D) in the anticorrosion coating composition is preferably 10 to 100 parts by mass, more preferably 20 to 100 parts by mass with respect to 100 parts by mass of the epoxy resin (A). It is preferable that the amount of the curing agent (D) is in the above range from the viewpoints of curability of the anticorrosive coating film and drying properties when a solvent is included.
  • Pigment (E ) examples include extender pigments, colored pigments, and rust preventive pigments.
  • extender pigments include barium sulfate, potassium feldspar, barite powder, silica, calcium carbonate, talc, mica, glass flakes, and aluminum stearate.
  • coloring pigment include titanium white (titanium oxide), a petite, a yellow petite, and carbon black.
  • rust preventive pigment include aluminum paste, zinc chromate, and zinc phosphate. Among these pigments, it is preferable to add scaly mica and aluminum paste in terms of coating film properties and corrosion resistance.
  • the amount of the extender pigment in the anticorrosion coating composition is preferably 0.1 to 80% by mass, where the nonvolatile content of the anticorrosion coating composition is 100% by mass.
  • the amount of the coloring pigment is preferably 0.1 to 50% by mass, where the nonvolatile content of the anticorrosive coating composition is 100% by mass.
  • the amount of the anticorrosive pigment is preferably 0.1 to 50% by mass, where the amount of nonvolatile components of the anticorrosive coating composition is 100% by mass.
  • Curing accelerator (F) examples include tertiary amines.
  • Specific examples of the tertiary amine include triethanolamine (N (C 2 H 5 OH) 3 ), dialkylaminoethanol ([CH 3 (CH 2 ) n ] 2 NCH 2 OH, n: number of repetitions), triethylenediamine (1,4-diazabicyclo (2,2,2) octane), 2,4,6-tris (dimethylaminomethyl) phenol ( C 6 H 5 —CH 2 N (CH 3 ) 2 ), “Versamine EH30” (manufactured by BASF Japan Ltd.), “Ancamine K-54” (manufactured by Air Products) and the like.
  • an acrylate-type hardening accelerator is also mentioned.
  • the amount of the curing accelerator (F) in the anticorrosion coating composition increases the curing rate of the epoxy resin (A) by the curing agent (D), and the anticorrosion coating film and the top coating film, that is, the antifouling coating. Since an anticorrosion coating having excellent adhesion to the film and excellent anticorrosion coating flexibility can be obtained, the amount of non-volatile content of the anticorrosion coating composition is preferably 0.1 to 5% by mass. It is.
  • Adhesion enhancer (G) examples include organic acids, chelating agents, silane coupling agents, and the like, and among them, silane coupling agents are preferable from the viewpoint of storage stability of the anticorrosion coating composition.
  • the silane coupling agent usually has two types of functional groups in one molecule, and can contribute to an improvement in the adhesion of the anticorrosion coating film to the inorganic substrate, a decrease in the viscosity of the anticorrosion coating composition, and the like.
  • the silane coupling agent can be represented by, for example, the formula: X—Si (OR) 3 [X is a functional group capable of reacting with an organic material (eg, amino group, vinyl group, epoxy group, mercapto group, halogeno group, and these Represents a hydrocarbon group having a group (this hydrocarbon group may have an ether bond or the like), and OR represents a hydrolyzable group (eg, methoxy group, ethoxy group). It is preferably represented by the epoxy resin (A) or the curing agent (D).
  • silane coupling agent examples include “KBM-403” ( ⁇ -glycidoxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) and “Silane S-510” as commercial products. (Manufactured by Chisso Corporation).
  • the amount of the silane coupling agent in the anticorrosion coating composition is preferably 0.1 to 10 when the nonvolatile content of the anticorrosion coating composition is 100% by mass. % By mass, more preferably 0.5 to 5% by mass.
  • the silane coupling agent is used in the anticorrosion coating composition in such an amount, performance such as adhesion of the resulting anticorrosion coating film is improved, and the viscosity of the anticorrosion coating composition is lowered, and the coating workability is improved. .
  • Plasticizer (H) examples include chlorinated paraffin (chlorinated paraffin), TCP (tricresyl phosphate), polyvinyl ethyl ether, dialkyl phthalate and the like. From the viewpoint of coating film water resistance (mechanical properties), these Among these, chlorinated paraffin (chlorinated paraffin) and polyvinyl ethyl ether are preferable.
  • the amount of non-volatile content of the plasticizer (H) in the anti-corrosion coating composition is preferably 0.1 to 20% by mass when the non-volatile content of the anti-corrosion coating composition is 100% by mass.
  • solvent (I) examples include xylene, toluene, methyl isobutyl ketone (MIBK), methoxypropanol, methyl ethyl ketone (MEK), butyl acetate, n-butanol, isobutanol, isopropyl alcohol (IPA), and the like. These solvents are used alone or in combination of two or more.
  • the content of the solvent (I) in the main ingredient component is, for example, 0.1 to 80% by mass, and the content of the solvent (I) in the curing agent component is, for example, 0.1 to 80% by mass. .
  • Anti-sagging or anti-settling agent J
  • Specific examples of the anti-sagging or anti-settling agent (thixotropic agent) (J) include polyamide wax, polyethylene wax, bentonite-based ones, OH-containing nanoparticles (erogen, resin beads), and the like.
  • Examples of the anti-sagging or anti-settling agent (J) include “Disparon 4200-20” and “Dispalon 6650” manufactured by Enomoto Kasei Co., Ltd., and “ASA T-250F” manufactured by Ito Oil Co., Ltd. , “ASA T-55-20BX” and the like.
  • the amount of non-volatile content of the anti-sag or anti-settling agent (J) in the anti-corrosion coating composition is preferably 0.1 to 30% by mass when the non-volatile content of the anti-corrosion coating composition is 100% by mass. .
  • Dehydrating agent (stabilizer) (K) The anticorrosive coating composition of the present invention can obtain further excellent long-term storage stability by adding a dehydrating agent (stabilizer) (K) as necessary.
  • the dehydrating agent (K) include inorganic dehydrating agents and organic dehydrating agents.
  • the inorganic dehydrating agent is preferably synthetic zeolite, anhydrous gypsum or hemihydrate gypsum, and the organic dehydrating agent is preferably tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, tetraphenoxysilane, methyltride.
  • Examples include alkoxysilanes such as ethoxysilane, dimethyldiethoxysilane, and trimethylethoxysilane or polyalkoxysilanes that are condensates thereof, and orthoformate alkyl esters such as methyl orthoformate and ethyl orthoformate.
  • the amount of the dehydrating agent (K) in the anticorrosive coating composition is preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the epoxy resin (A).
  • the anticorrosion coating composition according to the present invention contains the above-described epoxy resin (A), thermoplastic resin (B), rosins (C), curing agent (D), and optionally other components. These can be prepared by mixing and stirring according to ordinary methods.
  • reaction ratio between epoxy resin (A) and curing agent (D) The epoxy resin (A) reacts with the curing agent (D) to form a coating film.
  • the reaction ratio represented by the following formula (1) is preferably in the range of 0.3 to 1.0, more preferably 0.4 to 0.9.
  • the “other component having reactivity with the epoxy resin (A)” and the “other component having reactivity with the curing agent (D)” in the above formula (1) are respectively the epoxy resin (A).
  • curing agent (D), specifically, the said silane coupling agent, the acrylic ester which is a hardening accelerator (F), etc. refers to the ingredients.
  • “functional group equivalent of other components” means mass (g) per functional group in 1 mol of these components (that is, molecular weight of other components / number of functional groups in one molecule).
  • a silane coupling agent having an amino group or an epoxy group as a reactive group can be used as the silane coupling agent. It is determined whether or not a silane coupling agent is used, and when it is used, whether the silane coupling agent is reactive with the epoxy resin (A) or the curing agent (D) depending on the type of reactive group. The reaction ratio is calculated from the above formula (1).
  • the epoxy resin (A) When the reaction ratio is equal to or higher than the lower limit, the epoxy resin (A) is cross-linked at a number of locations, so that an unreacted epoxy resin component hardly remains, and the resulting anticorrosive coating film has a curability and a solvent. When it contains, the laminated antifouling coating film has little decrease in antifouling property (particularly static antifouling property).
  • the reaction ratio is less than or equal to the upper limit, the unreacted curing agent (D) hardly remains in the obtained coating film, and the unreacted curing agent (D) draws moisture. Problems such as a decrease in water resistance of the film and discoloration can be prevented.
  • the pigment volume concentration (hereinafter also referred to as “PVC”) defined by the following formula (2) of the nonvolatile content of the anticorrosive coating composition of the present invention is preferably 25 to 50%, more preferably 30 to 45%. is there.
  • Pigment volume concentration (%) Volume of pigment in anticorrosion coating composition / (volume of resins in anticorrosion coating composition + volume of pigment in anticorrosion coating composition) ⁇ 100 Formula (2)
  • the “volume of resins” described in the denominator of the formula (2) means an epoxy resin (A), a thermoplastic resin (B), a rosin (C), a curing agent (D), and a curing accelerator ( F) is the total volume of the plasticizer (H).
  • the PVC is equal to or higher than the lower limit, the resulting coating film is excellent in drying properties. If the PVC is less than or equal to the above upper limit value, the viscosity of the anticorrosive coating composition is remarkably high, and the coating workability decreases, or the corrosion resistance decreases due to a decrease in coating leveling or pinholes. A malfunction can be prevented.
  • the anticorrosion coating film according to the present invention comprises a cured product of the above-described epoxy resin anticorrosion coating composition according to the present invention.
  • the anticorrosion coating film according to the present invention includes a cured epoxy resin, the thermoplastic resin (B) (except for the cured product of the epoxy resin (A) and the rosins (C)), and the rosins. It is also a thing containing the matrix formed by containing (C).
  • the anticorrosive coating film contains the thermoplastic resin (B) in a proportion of usually 7 to 80% by mass, preferably 7 to 30% by mass, and the rosin (C) is usually 1.0 to 7.0%. The content is 1% by mass, preferably 1.5 to 6.0% by mass. Since the anticorrosion coating film according to the present invention contains the thermoplastic resin (B) and the rosins (C) at such a ratio, it has excellent adhesion to various top coating materials. In the case of, it is preferably used. When the anticorrosion coating film according to the present invention is used, as described above, a laminated antifouling coating film having good adhesion between the anticorrosion coating film and the antifouling coating film is formed even when the coating interval is long. It becomes possible to do.
  • the anticorrosion coating composition of the present invention contains the thermoplastic resin (B) and rosins (C) in predetermined amounts, it has excellent film-forming properties at a low temperature (for example, 5 ° C.) and excellent low-temperature drying properties.
  • the anticorrosion coating film according to the present invention is preferably used as the anticorrosion coating film of a laminated antifouling coating film provided on the surface of the base material in the order of the anticorrosion coating film and the antifouling coating film from the base material side. .
  • the anticorrosion coating film according to the present invention is excellent in adhesion to the antifouling coating film in the laminated antifouling coating film, and the antifouling coating film is formed from an organic solvent type antifouling paint containing a lot of rosin. But it has excellent adhesion.
  • the base material with an anticorrosion coating film which concerns on this invention consists of a base material and the anticorrosion coating film of this invention formed in the surface of this base material.
  • the manufacturing method of the said anticorrosion coating film which concerns on this invention includes the process of hardening the film
  • the said anticorrosion coating film which concerns on this invention can be manufactured by the method similar to the manufacturing method of the conventional anticorrosion coating film except the point which uses the anticorrosion coating composition which concerns on this invention as an anticorrosion coating material.
  • the anticorrosion coating composition of the present invention has a low coating viscosity, the amount of the diluted solvent can be reduced, and good coating workability can be ensured.
  • the thickness (dry film thickness) of the anticorrosion coating film is usually about 50 to 800 ⁇ m.
  • the laminated antifouling coating film according to the present invention is a laminated antifouling coating film provided on the substrate surface in the order of the anticorrosive coating film and the antifouling coating film from the substrate side, It is a laminated antifouling coating film which is the anticorrosion coating film according to the present invention described above. Further, the antifouling substrate according to the present invention is laminated on the surface of the substrate so that the laminated antifouling coating film according to the present invention is in the order of the anticorrosive coating film and the antifouling coating film from the substrate side. Being done.
  • Anti-fouling paint composition examples of the antifouling paint composition for overcoating the anticorrosion paint film to form an antifouling paint film include conventionally known antifouling paint compositions.
  • Examples of the antifouling paint composition include a hydrolyzable antifouling paint composition
  • examples of the resin for forming a coating film of the hydrolyzable antifouling paint composition include a hydrolyzable resin, for example, Acrylic resin or polyester resin having the general formula (I): COO-MO-COR 1 (I) [M in Formula (I) represents zinc or copper, and R 1 represents an organic group.
  • a metal salt-containing copolymer having a side chain terminal group represented by: General formula (II): CH 2 ⁇ C (R 2 ) —COO—MO—CO—C (R 2 ) CH 2 (II) [M in Formula (II) represents zinc or copper, and R 2 represents a hydrogen atom or a methyl group.
  • a metal salt-containing copolymer comprising a structural unit derived from a monomer represented by the formula: and a structural unit derived from another unsaturated monomer capable of copolymerizing with the monomer, and a general formula (III): R 3 —CH ⁇ C (R 4 ) —COO—SiR 5 R 6 R 7 (III) [R 4 in the formula (III) represents a hydrogen atom or a methyl group, and R 5 , R 6 and R 7 each independently represents a monovalent organic group having 1 to 20 carbon atoms which may have a hetero atom.
  • R 3 is a hydrogen atom or R 8 —O—CO (where R 8 is independently a monovalent organic group having 1 to 20 carbon atoms which may have a hetero atom or SiR 9 R 10 R 11 . And R 9 , R 10 and R 11 each independently represents a monovalent organic group having 1 to 20 carbon atoms which may have a hetero atom. ] And a silyl ester-containing copolymer containing a structural unit derived from a monomer represented by the formula (1) and a structural unit derived from another unsaturated monomer that can be copolymerized with the monomer.
  • Antifouling paint compositions using these hydrolyzable resins are preferred because they are stable with long-term antifouling properties and long-term coating film properties.
  • Other unsaturated monomers that can be copolymerized with the monomer represented by the general formula (II) or the general formula (III) include (meth) acrylic acid esters, monocarboxylic acids, dicarboxylic acids, or these And half esters (monoesters), diesters, vinyl esters, and styrenes.
  • Examples of the unsaturated monomer include (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid butyl ester, (meth) acrylic acid 2-ethylhexyl ester, and (meth) acrylic acid.
  • Lauryl ester (meth) acrylic acid tridecyl ester, (meth) acrylic acid stearyl ester, (meth) acrylic acid allyl ester, (meth) acrylic acid cyclohexyl ester, (meth) acrylic acid benzyl ester, (meth) acrylic acid iso Bornyl ester, (meth) acrylic acid methoxyalkyl ester, (meth) acrylic acid ethoxyalkyl ester, (meth) acrylic acid glycidyl ester, (meth) acrylic acid tetrahydrofurfuryl ester, (meth) acrylic acid hydroxyethyl ester , (Meth) acrylic acid esters such as (meth) acrylic acid hydroxypropyl ester and (meth) acrylic acid hydroxybutyl ester; monocarboxylic acids such as (meth) acrylic acid; dicarboxylic acids such as itaconic acid, maleic acid and succinic acid Acids or half esters (monoesters)
  • the amount of the resin for forming a coating film in the antifouling coating composition is preferably 5 to 50% by mass when the nonvolatile content of the antifouling coating composition is 100% by mass from the viewpoint of physical properties of the coating film. More preferably, it is 5 to 30% by mass.
  • the antifouling coating composition may contain rosins and / or monocarboxylic acid compounds, copper or copper compounds, organic antifouling agents, pigments, dehydrating agents, plasticizers, pigment dispersants, anti-sagging agents or anti-settling agents as required. And a component selected from solvents and the like.
  • rosins and / or monocarboxylic acid compound rosins include rosins such as gum rosin, wood rosin and tall oil rosin, and rosin derivatives such as hydrogenated rosin and disproportionated rosin, and esters and metal salts thereof. It is done. Rosin is a residue that remains after distillation of the pine sap, which is the sap of a pine plant, and is a natural resin mainly composed of rosin acid (eg, abietic acid, parastolic acid, isopimaric acid).
  • rosin acid eg, abietic acid, parastolic acid, isopimaric acid
  • Examples of the monocarboxylic acid compound include aliphatic or alicyclic monocarboxylic acids, these monocarboxylic acid derivatives, or metal salts thereof.
  • Specific examples of monocarboxylic acid compounds include naphthenic acid, cycloalkenylcarboxylic acid, bicycloalkenylcarboxylic acid, versatic acid, trimethylisobutenylcyclohexenecarboxylic acid, stearic acid, hydroxystearic acid, salicylic acid, and metal salts thereof. Can be mentioned.
  • the content ratio (W A / W B ) between the content (W A ) of the resin for forming a coating film and the total content (W B ) of the rosins and monocarboxylic acid compound is preferably 99.9 / 0. 1 to 30/70, more preferably 95/5 to 35/65, and still more preferably 90/10 to 40/60.
  • the content mass ratio is in such a range, there is an effect of improving the scouring property (coating wearability) in the antifouling coating film, and the antifouling property (particularly, stationary antifouling property) can be improved.
  • compositions with a high content of rosins and / or monocarboxylic acid compounds are preferably used.
  • W A / W B is more than 70/30
  • the adhesion of the conventional anticorrosive paint is significantly reduced. There is a tendency.
  • the anticorrosion coating composition of the present invention can form an anticorrosion coating film having good adhesion to the antifouling coating, it exhibits high adhesion even when using an antifouling coating having a high rosin content as described above. It can be demonstrated.
  • Copper or copper compound may be any organic or inorganic copper compound, such as powdered copper (copper powder), cuprous oxide, copper thiocyanate, cupronickel, copper pyrithione, etc. Is mentioned.
  • the amount of copper or copper compound in the antifouling coating composition is 100% by mass from the viewpoint of long-term antifouling properties.
  • the content is preferably 0.1 to 90% by mass, more preferably 0.5 to 80% by mass.
  • Organic antifouling agents include, for example, metal pyrithiones such as zinc pyrithione (excluding copper pyrithione), 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one, 4-bromo- 2- (4-Chlorophenyl) -5- (trifluoromethyl) -1H-pyrrole-3-carbonitrile, pyridinetriphenylborane, 4-isopropylpyridinediphenylmethylborane, N, N-dimethyl-N ′-(3 4-dichlorophenyl) urea, N- (2,4,6-trichlorophenyl) maleimide, 2,4,5,6-tetrachloroisophthalonitrile, 2-methylthio-4-tert-butylamino-6-cyclopropylamino -1,3,5-triazine, (+/-)-4- [1- (2,3-dimethylphenyl) ethyl]
  • the amount of the organic antifouling agent in the antifouling coating composition is 100 masses of the nonvolatile content of the antifouling coating composition from the viewpoint of long-term antifouling properties and maintaining water resistance of the coating film (maintaining mechanical properties). %, Preferably 0.1 to 90% by mass, more preferably 0.5 to 80% by mass.
  • the antifouling coating composition may contain a pigment for the purpose of coloring the coating film or concealing the base, and for adjusting the coating film to an appropriate strength.
  • pigments include talc, mica, clay, potassium feldspar, zinc oxide, calcium carbonate, kaolin, alumina white, white carbon, aluminum hydroxide, magnesium carbonate, barium carbonate, barium sulfate, calcium sulfate, and zinc sulfide.
  • examples include pigments, petals, titanium white (titanium oxide), yellow petals, carbon black, naphthol red, and phthalocyanine blue. Of these, talc and zinc oxide are preferable. These pigments can be used alone or in combination of two or more. Calcium carbonate and white carbon are also used as anti-settling agents described later.
  • the antifouling coating composition of the present invention contains a pigment
  • its content is determined by a desired viscosity according to the coating form of the coating composition, etc., but in the nonvolatile content of the coating composition,
  • the content is preferably 0.01 to 80% by mass, more preferably 0.1 to 70% by mass.
  • the dehydrating agent dehydrating agent conventionally known gypsum, tetraethoxysilane and the like can be used.
  • the amount of the dehydrating agent in the antifouling coating composition is preferably 0.01 to 30 from the viewpoint of the effect of preventing the increase in viscosity during storage when the nonvolatile content of the antifouling coating composition is 100% by mass. % By mass, more preferably 0.1 to 20% by mass.
  • Plasticizers include chlorinated paraffin (chlorinated paraffin), TCP (tricresyl phosphate), polyvinyl ethyl ether, dialkyl phthalate, etc., coating film water resistance (mechanical properties), coating film hydrolyzability ( Among these, chlorinated paraffin (chlorinated paraffin) and polyvinyl ethyl ether are preferable from the viewpoint of (consumability).
  • chlorinated paraffin examples include “Toyoparax 150” and “Toyoparax A-70” (both manufactured by Tosoh Corporation).
  • polyvinyl ethyl ether examples include “Lutneral M-40” (BASF Japan Ltd., polyvinyl methyl ether), “Lutnar A-25” (BASF Japan Ltd., polyvinyl ethyl ether), “Lutneral I”. -60 "(manufactured by BASF Japan Ltd., polyvinyl isobutyl ether).
  • the amount of the plasticizer in the antifouling coating composition is antifouling property, water resistance (mechanical properties) of the coating film, and coating film hydrolyzability (consumable) if the coating film forming resin is a hydrolyzable resin. From this point of view, when the amount of non-volatile content of the antifouling coating composition is 100% by mass, it is preferably 0.1 to 80% by mass, more preferably 0.5 to 70% by mass.
  • the pigment dispersant pigment dispersant known organic or inorganic various pigments dispersants include, for example, aliphatic amines or organic acids (e.g., "Leo Mix TDO” (Lion Specialty Chemicals Inc. And “Disperbyk-101” (manufactured by Big Chemie Japan Co., Ltd.)).
  • the amount of the pigment dispersant in the antifouling paint composition is preferably from the viewpoint of the effect of reducing the viscosity of the paint and the effect of preventing color separation when the nonvolatile content of the antifouling paint composition is 100% by mass.
  • the content is 01 to 20% by mass, more preferably 0.1 to 10% by mass.
  • the antifouling coating composition of the present invention may contain an anti-sagging or anti-settling agent (thixotropic agent) for the purpose of adjusting the viscosity of the coating composition.
  • thixotropic agent an anti-sagging or anti-settling agent for the purpose of adjusting the viscosity of the coating composition.
  • Anti-sagging or anti-settling agents include organic clay waxes (such as Al, Ca or Zn stearate salts, lecithin salts, alkyl sulfonates), organic waxes (polyethylene wax, oxidized polyethylene wax, amide wax, polyamide). Wax, hydrogenated castor oil wax, etc.), a mixture of organic clay wax and organic wax, synthetic fine powder silica, and the like.
  • organic clay waxes such as Al, Ca or Zn stearate salts, lecithin salts, alkyl sulfonates
  • organic waxes polyethylene wax, oxidized polyethylene wax, amide wax, polyamide. Wax, hydrogenated castor oil wax, etc.
  • Wax hydrogenated castor oil wax, etc.
  • a mixture of organic clay wax and organic wax synthetic fine powder silica, and the like.
  • anti-sagging or anti-settling agent Commercially available products may be used as the anti-sagging or anti-settling agent.
  • DISPARON 305 Commercially available products
  • DISPARON 4200-20 Commercially available products
  • DISPARON A630-20X Commercially available products
  • DISPARON 6900-20X manufactured by Enomoto Kasei Co., Ltd.
  • ASA D-120 manufactured by Ito Oil Co., Ltd.
  • ASA T-250F and the like.
  • the anti-sagging or anti-settling agent may be used alone or in combination of two or more.
  • the antifouling paint composition of the present invention contains an anti-sagging or anti-settling agent, its content is determined from the viewpoint of storage stability and the coating properties of the same / different kinds of paints.
  • the amount is preferably 0.1 to 50% by mass, more preferably 0.3 to 30% by mass.
  • the solvent antifouling paint composition may contain a solvent such as water or an organic solvent, if necessary, in order to improve dispersibility or adjust the viscosity of the composition.
  • a solvent such as water or an organic solvent
  • the solvent is an organic solvent, specifically, the organic film that can soften the anticorrosive coating film according to the present invention near its surface. Solvents are preferred.
  • organic solvents examples include aromatic organic solvents such as xylene, toluene, and ethylbenzene; ketones such as methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; aliphatics such as ethanol, isopropyl alcohol, n-butanol, and isobutanol (1 to 10 and preferably about 2 to 5) monohydric alcohols; ester solvents such as ethyl acetate and butyl acetate; and the like.
  • the amount of the solvent in the antifouling coating composition is usually 5 to 80% by mass, preferably 10 to 70% by mass, when the amount of the antifouling coating composition is 100% by mass.
  • the method for producing a laminated antifouling coating film according to the present invention comprises a step of curing the film comprising the epoxy resin anticorrosive coating composition according to the present invention to form the anticorrosion coating film, and the surface of the anticorrosion coating film.
  • the process of forming an antifouling coating film is included.
  • the manufacturing method of the antifouling substrate according to the present invention includes a step of forming the laminated antifouling coating film according to the present invention on the surface of the substrate.
  • the laminated antifouling coating film and antifouling substrate according to the present invention are produced by the same method as in the prior art except that the epoxy resin anticorrosive coating composition according to the present invention is used as the epoxy resin anticorrosive coating.
  • the epoxy resin anticorrosive coating composition according to the present invention is applied to the surface of the substrate by a conventionally known method and cured to form an anticorrosive coating, and the antifouling coating composition is formed on the surface of the anticorrosive coating.
  • the antifouling coating composition containing the above-mentioned organic solvent is preferably applied by a conventionally known method and cured to produce the laminated antifouling coating film or antifouling substrate according to the present invention.
  • the base material is preferably a base material that is required to have anticorrosion and antifouling properties in water, for example, thermal power, underwater structures such as water supply / drainage ports of nuclear power plants, coastal roads, submarine tunnels, harbor facilities, canals, waterways
  • various base materials that come into contact with seawater or fresh water such as sludge diffusion prevention membranes, ships (eg, ship bottom), fishing gear (eg, floats, buoys), etc.
  • the material include steel, aluminum, and FRP.
  • the laminated antifouling coating film of the present invention formed on the surface of these base materials has a characteristic (antifouling property, anti-fouling property, anti-fouling property, anti-fouling property, Especially excellent in antifouling property).
  • the substrate in order to remove rust, fats and oils, moisture, dust, slime, salt, etc., and to improve the adhesion of the resulting anticorrosive coating film, the substrate surface is treated as necessary (for example, Blasting treatment (ISO8501-1 Sa2 1/2), power tool treatment, friction method, treatment to remove oil and dust by degreasing), from the viewpoint of corrosion resistance, weldability, or shearing property of the substrate, If necessary, a coating material for forming a thin film such as a conventionally known primary rust preventive paint (shop primer) or other primer may be applied to the surface of the base material and dried.
  • a coating material for forming a thin film such as a conventionally known primary rust preventive paint (shop primer) or other primer may be applied to the surface of the base material and dried.
  • the film thickness (dry film thickness) of the antifouling coating film is not particularly limited, but is about 50 to 2000 ⁇ m, for example, when the substrate is a ship or an underwater structure.
  • (Curing agent component) In a plastic container, 2.5 parts by mass of xylene, 1.4 parts by mass of n-butanol, 6 parts by mass of raccanide TD-966, and 0.1 parts by mass of ancamine K-54 are blended and dispersed for 10 minutes by a conventional method. The operation was performed. Table 1 shows a list of raw materials. The obtained dispersion was filtered through a 60-mesh filter screen to prepare a hardener component for the anticorrosion paint.
  • Anti-corrosion paint composition The obtained main agent component and curing agent component were mixed by a conventional method immediately before coating to prepare an anticorrosive coating composition.
  • Example 2 Comparative Examples 1 to 6
  • An anticorrosive coating composition was prepared in the same manner as in Example 1 except that the composition of the main component and the curing agent component was changed as shown in Table 2.
  • a metal salt-containing monomer (a1) was prepared as follows.
  • ⁇ Preparation Example 1 Preparation of metal salt-containing monomer (a1)> A reaction vessel equipped with a stirrer, condenser, thermometer, dripping device, nitrogen inlet tube, and heating / cooling jacket was charged with 85.4 parts by mass of propylene glycol monomethyl ether and 40.7 parts by mass of zinc oxide while stirring. The temperature was raised to ° C. Then, the mixture which consists of 43.1 mass parts of methacrylic acid, 36.1 mass parts of acrylic acid, and 5.0 mass parts of water was dripped at constant velocity over 3 hours from the dripping apparatus. After completion of the dropwise addition, the mixture was further stirred for 2 hours, and then 36.0 parts by mass of propylene glycol monomethyl ether was added to obtain a reaction solution containing the metal salt-containing monomer (a1).
  • Viscosity of copolymer solution The viscosity (unit: mPa ⁇ s) of the copolymer solution at a liquid temperature of 25 ° C. was measured using a B-type viscometer [manufactured by Tokyo Keiki Co., Ltd.].
  • Silyl ester-containing hydrolyzable antifouling paints S2 and S3 were prepared in the same manner as in Production Example 3, except that the composition of each component was changed as shown in Table 5.
  • Viscosity of main agent component and mixture (coating composition) Each main agent component and curing agent component are kept at 23 ° C., and the viscosity of the main agent component and the mixture obtained by mixing the main agent component and the curing agent component The viscosity was measured using a No. 1 rotor of Viscometer VT-04F (manufactured by Rion Co., Ltd.), which is a viscometer (unit: dPa ⁇ s).
  • B When the base material is coated with the mixed paint using air spray, the mixed paint is not sprayed as fine particles (in the form of a mist), and the spray pattern spreads, but it is a pattern in which streaks are drawn ( Poor atomization).
  • C When the base material is coated with the mixed paint using air spray, the mixed paint is not sprayed as fine particles (in the form of mist), and the spray pattern does not spread at all and cannot be applied (no atomization) ).
  • the test needle passed by slowly moving the test needle of the RC type drying time recorder at a constant speed on the coating film.
  • the state of the coating film was judged from the trace, and the time from immediately after formation of the coating film to semi-curing or complete curing was judged.
  • the test needle moves from the movement start position a to the position b where the glass plate 2 is no longer visible at the trace of the test needle in the schematic diagram 1 overlooking the glass plate 2 on which the coating film 1 is formed.
  • the time required to do this is set as a semi-curing time, and the test needle moves from the movement start position a to a position c where the test needle slides on the surface of the coating film and the trace of the test needle is completely removed from the coating film surface.
  • the time required for complete curing was defined as the complete curing time.
  • Test plate a blasted steel plate having dimensions of 150 mm ⁇ 70 mm ⁇ 1.6 mm (thickness).
  • a test plate with an anticorrosion coating was prepared by spray coating so that the thickness was about 250 ⁇ m, and drying the spray-coated test plate in an atmosphere of 23 ° C. and 50% RH for 7 days.
  • test plate with anticorrosion coating, it was immersed in 3% salt water at 40 ° C., and the appearance of the anticorrosion coating after 30 days and 60 days after the start of immersion was visually evaluated according to the following criteria.
  • evaluation criteria A: No change in swelling, cracking, rust, peeling, or hue.
  • C Any of swelling, cracking, rust, peeling, and hue change is clearly recognized.
  • ⁇ Electrical corrosion protection test> The zinc anode was connected to a test plate with an anticorrosion coating prepared in the same manner as in the salt water resistance test so that the electric current density was 5 mA / m 2 or less, and after 30 days after immersion in 3% salt water at 40 ° C. and 60 The appearance of the anticorrosion coating film after the day was visually evaluated according to the same criteria as the salt water resistance test.
  • the anticorrosion coating compositions of the examples and comparative examples are 150 ⁇ m in dry film thickness. It was applied to form a cured coating, and immediately thereafter, a sandblast plate with a cured coating was exposed outdoors at an angle of 45 ° to the ground with the cured coating side facing up and facing south.
  • each antifouling paint composition of Production Examples 3 to 5 above was applied on the test plate exposed outdoors for 1 day, 4 days, or 7 days (on the surface of the cured coating film formed from the anticorrosive paint), respectively.
  • the obtained test plate with laminated antifouling coating film is immersed in artificial seawater at 40 ° C., and the adhesion between the anticorrosion coating film and the antifouling coating film 30 days and 60 days after the start of immersion is based on the following evaluation criteria. And evaluated.
  • the delamination area of the coating film is less than 5%.
  • the delamination area of the coating film is 5% or more and less than 25%.
  • the delamination area of the coating film is 25% or more and less than 50%.
  • the delamination area of the coating film is 50% or more.
  • the test plate is immersed in Nagasaki Bay, Nagasaki Prefecture, and the adhesion area of aquatic organisms every month from the immersion (of the part where aquatic organisms adhere to the total area of the antifouling coating film 100% of the test plate)
  • the area ratio (%) was measured visually and evaluated based on the following evaluation criteria.
  • the results are shown in Table 8. (Evaluation criteria) 0: No attachment of aquatic organisms.
  • 1 The adhesion area of aquatic organisms exceeds 10% and is 20% or less.
  • 2 The adhesion area of aquatic organisms exceeds 20% and is 30% or less.
  • 3 The adhesion area of aquatic organisms is more than 30% and 40% or less. 4: The adhesion area of aquatic organisms exceeds 40% and is 50% or less.
  • the adhesion area of aquatic organisms exceeds 50%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)

Abstract

[課題]防食塗料と防汚塗料との塗装間隔があいてもロジン含有量の多い加水分解型防汚塗料との付着性が良好であり、かつ低温乾燥性、防食性に優れたエポキシ樹脂系防食塗料ならびに、積層防汚塗膜およびその製造方法等を提供すること。 [解決手段]エポキシ樹脂(A)と、熱可塑性樹脂(B)、ロジン類(C)と、硬化剤(D)とを含有し、前記熱可塑性樹脂(B)の含有量が前記エポキシ樹脂(A)の100質量部に対して35質量部以上であり、前記ロジン類(C)の含有量が前記エポキシ樹脂(A)と前記熱可塑性樹脂(B)との合計100質量部に対して5~30質量部であるエポキシ樹脂系防食塗料組成物。

Description

エポキシ樹脂系防食塗料組成物、防食塗膜、積層防汚塗膜、および防汚基材、ならびにこれらの製造方法
 本発明は、エポキシ樹脂系防食塗料組成物に関し、より詳細には防食塗膜および防汚塗膜からなる積層防汚塗膜における防食塗膜の形成に有用なエポキシ樹脂系防食塗料組成物、防食塗膜、該防食塗膜およびその上に積層された防汚塗膜からなる積層防汚塗膜、該積層防汚塗膜を有する防汚基材、ならびにこれらの製造方法に関する。
 従来、船舶、水中構造物等の(大型)鉄鋼構造物の多くは、鋼材などの金属基材が使用されている。これらの構造物は海水による腐食防止のために、防食塗料によって塗装されている。さらに、フジツボなどの水棲生物や海藻類が付着することを防止する防汚塗料が、上塗り塗料として塗装されている。
 前記防食塗料としては、エポキシ樹脂系防食塗料が一般的に使用されている。
 エポキシ樹脂系防食塗料に関する文献は多数存在している。例えば特許文献1には、エポキシ樹脂、脂環式アミン、及びアクリレートモノマーを含有する防食塗料組成物が開示され、特許文献2には、塩化ビニル系樹脂などを含むエポキシ樹脂重防食塗料が開示されている。これらの文献には、防食塗料の塗装後、上塗り塗料(防汚塗料)の塗装を行い、防食塗膜と上塗り塗膜との間の付着性を評価したことが記載されている。防汚塗料としては、長期防汚性能が良好である加水分解型防汚塗料を使用することが現在主流である。
 また特許文献3には、アミノアルキル基とアルコキシ基とを有する有機ケイ素化合物と、オキシラン環を有する化合物とからなり、銅、銅合金、およびクロメートメッキ被膜が施された金属の防錆に適した金属防錆用組成物に、ロジン類もしくはその誘導体、テルペン樹脂及び石油樹脂から選ばれる一種以上を配合することにより、一層効果的に防錆性が向上することが記載されている。
国際公開第2006/016625号 特開平11-333374号公報 特開昭60-221472号公報
 加水分解型防汚塗料には防汚剤の溶出を促進させるため、また塗膜の消耗持続性を向上させるためにロジンを含有している塗料が多く存在する。特に、船速の遅い船舶や、運航条件が不定期で長期の停泊がある船舶では、防汚性能を向上させることを目的としてロジン含有量が比較的多い加水分解型防汚塗料が採用されている。
 ここで船舶の塗装について説明すると、船舶建造工程では気象条件、塗装工程などの都合により、防食塗料を塗付した後に防汚塗料を塗付するまでの間隔(以下「塗装間隔」ともいう。)が長くなる場合がある。ロジン含有量が多い加水分解型防汚塗料から形成される塗膜は、塗膜硬度が高くなり、下塗りの防食塗膜に付着しにくいという問題があった。このため十分な付着性を確保するため、塗膜硬度が高くならないうちに防汚塗料を塗布する必要、すなわち塗装間隔を短く設定する必要があり、塗装現場での塗装工程管理がタイトになる。特に気温の高い夏季では許容塗装間隔が1日というケースもある。また降雨などで塗装作業がストップしてしまい許容塗装間隔を超過すると、再度防食塗料を塗装し直し、追って防汚塗料を塗装するという後戻り工事となり経済的、時間的にもマイナスとなる実情がある。
 上記の対策として塗装間隔が長くなっても十分な付着性を有する防食塗膜を形成可能な防食塗料の開発が強く望まれる。
 上記問題を解決するために、本発明者らが鋭意研究したところ、エポキシ樹脂系防食塗料において熱可塑性樹脂とロジン類とを併用することで、防汚塗膜がロジン含有量の多い防汚塗料から形成されたものであっても防食塗膜の防汚塗膜への付着性(以下、単に「防食塗膜の付着性」または「付着性」ともいう。)が向上することを見い出した。
 本発明の効果発現のメカニズムは、以下のように考えられる。
 エポキシ樹脂系防食塗料は、エポキシ樹脂とアミンなどの硬化剤とが反応し、硬化、乾燥するというメカニズムによって防食塗膜を形成する。その後塗装される防汚塗料に含まれる溶剤によって防食塗膜表面が軟化され、防食塗膜と防汚塗膜との間の付着性が発現する。特許文献2([0045])にも記載されているように、熱可塑性樹脂(B)は防汚塗料中の溶剤により溶解され、防食塗膜の防汚塗膜への付着性を向上させる。
 防食塗料の硬化反応は、時間が経過するとともに進行する。時間が経過するにつれ塗膜硬度が上昇し、塗膜の耐溶剤性も向上する。よって、防食塗膜形成後、防汚塗料の塗装までに長期間が経過した場合は、防汚塗料中の溶剤による防食塗膜の軟化が妨げられ、防食塗膜と防汚塗膜との相互の密着性が不足し、付着性が発現できないという現象が発生する。特に防汚塗膜がロジン含有量の多い防汚塗料から形成される場合は、ロジンの硬さおよび脆さのため、塗膜硬度が高くなること、また防食塗料との界面にロジン成分が移行し付着性を低下させる傾向が強くなることから、付着性の確保が困難であった。
 本発明においては、熱可塑性樹脂(B)を含む防食塗料にロジン類(C)を併用することで、防食塗膜の乾燥硬化後での耐溶剤性がロジン類(C)を含まない通常の防食塗膜よりも低下するため、塗装間隔が長期間となっても上塗りの防汚塗料の溶剤により防食塗膜が溶解し易く、付着性を発現し易くなる。さらに、防汚塗料がロジン類を含有する場合、防汚塗料中のロジン類が防食塗膜との界面に移行し、ロジンを含む防食塗膜と防汚塗膜との親和性が向上することにより、相乗効果的に付着性を大幅に向上させると考えられる。
 さらに、エポキシ樹脂および硬化剤を含む防食塗料においては、従来、付着性を向上させるためには、反応比を低減させるなどの処方を適応することが一般的であったが、このような処方では低温乾燥性、防食性が低下してしまうという問題が発生する。本発明はそのようなトレードオフの関係を解消し、低温乾燥性や防食性を損なうことなく、かつ、ロジン含有量の多い加水分解型防汚塗料から形成された塗膜への付着性を確保する処方を確立することができる。
 さらに本発明者らは、防食塗料にロジン類を過度に配合すると防食塗膜の防食性がかえって低下してしまうことを見い出した。
 本発明者らは、これらの知見に基づいて本発明を完成させた。本発明は以下のとおりである。
 [1]
 エポキシ樹脂(A)、熱可塑性樹脂(B)(ただし、ロジン類(C)を除く。)、ロジン類(C)、および硬化剤(D)を含有し、
 前記熱可塑性樹脂(B)の含有量が前記エポキシ樹脂(A)の100質量部に対して35質量部以上であり、
 前記ロジン類(C)の含有量が前記エポキシ樹脂(A)と前記熱可塑性樹脂(B)との合計100質量部に対して5~30質量部である
エポキシ樹脂系防食塗料組成物。
 [2]
 前記エポキシ樹脂(A)が、ビスフェノールA型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、およびビスフェノールF型エポキシ樹脂、ならびにこれらのエポキシ樹脂を変性した変性エポキシ樹脂からなる群から選ばれる1種または2種以上である前記[1]のエポキシ樹脂系防食塗料組成物。
 [3]
 さらに顔料(E)を含有する前記[1]または[2]のエポキシ樹脂系防食塗料組成物。
 [4]
 下記式(2)で表される顔料体積濃度(PVC)が25~50%である前記[3]のエポキシ樹脂系防食塗料組成物。
   顔料体積濃度(%)
  =防食塗料組成物中の顔料の体積/(防食塗料組成物中の樹脂類の体積+防食塗料組成物中の顔料の体積)×100・・・式(2)
 [5]
 前記熱可塑性樹脂(B)が石油樹脂、ケトン系樹脂、塩素化ポリオレフィン、アクリル系樹脂、酢酸ブチル系樹脂、スチレン系樹脂、および塩化ビニル系樹脂からなる群から選択される少なくとも1種を含むことを特徴とする前記[1]~[4]のいずれかのエポキシ樹脂系防食塗料組成物。
 [6]
 前記熱可塑性樹脂(B)が塩化ビニル系樹脂を含み、前記塩化ビニル系樹脂が塩化ビニル/ビニルイソブチルエーテル共重合体であることを特徴とする前記[5]のエポキシ樹脂系防食塗料組成物。
 [7]
 前記[1]~[6]のいずれかのエポキシ樹脂系防食塗料組成物の硬化物からなる防食塗膜。
 [8]
 基材と基材表面に設けられた前記[7]の防食塗膜とを有する防食塗膜付き基材。
 [9]
 基材に、前記[1]~[6]のいずれかのエポキシ樹脂系防食塗料組成物を塗装する工程、および塗装された前記防食塗料組成物を硬化させて防食塗膜を形成する工程を有する防食塗膜付き基材の製造方法。
 [10]
 基材表面に前記基材側から前記[7]の防食塗膜、防汚塗膜の順序で積層して設けられる積層防汚塗膜。
 [11]
 前記防汚塗膜が加水分解型防汚塗膜である前記[10]の積層防汚塗膜。
 [12]
 前記加水分解型防汚塗膜がロジン類を含有する前記[11]の積層防汚塗膜。
 [13]
 基材表面に前記基材側から防食塗膜、防汚塗膜の順序で積層して設けられる積層防汚塗膜を製造する方法であって、前記[1]~[6]のいずれかのエポキシ樹脂系防食塗料組成物からなる膜を硬化させて前記防食塗膜を形成する工程、および前記防食塗膜の表面に前記防汚塗膜を形成する工程を含む積層防汚塗膜の製造方法。
 [14]
 基材表面に、前記[10]~[12]のいずれかの積層防汚塗膜が、前記基材側から前記防食塗膜、前記防汚塗膜の順序となるように積層されてなる防汚基材。
 [15]
 海水または真水と接触する前記[14]の防汚基材。
 [16]
 前記基材が、船舶、水中構造物、および漁具からなる群から選択される少なくとも一つである前記[14]または[15]の防汚基材。
 [17]
 基材表面に前記[10]~[12]のいずれかの積層防汚塗膜を形成する工程を含む防汚基材の製造方法。
 本発明に係るエポキシ樹脂系防食塗料組成物によれば、防食性に優れた防食塗膜を形成することができる。この防食塗膜は、基材表面に前記基材側から防食塗膜、防汚塗膜の順序で積層して設けられる積層防汚塗膜において、塗装間隔が長期であっても付着性に優れ、特に、防汚塗膜がロジン含有量の多い加水分解型防汚塗料から形成されたものであってかつ塗装間隔が長期であっても付着性に優れている。
 本発明に係るエポキシ樹脂系防食塗料組成物は、さらに低温乾燥性および塗装作業性にも優れている。
図1は、実施例での乾燥性の評価方法を説明するための図である。
 以下、本発明についてさらに詳細に説明する。
         [エポキシ樹脂系防食塗料組成物]
 本発明に係るエポキシ樹脂系防食塗料組成物(以下、単に「防食塗料組成物」ともいう。)は、エポキシ樹脂(A)、熱可塑性樹脂(B)、ロジン類(C)および硬化剤(D)を含有している。
 前記エポキシ樹脂系防食塗料組成物は、通常、前記エポキシ樹脂(A)、前記熱可塑性樹脂(B)および前記ロジン類(C)を含有する主剤成分と、前記硬化剤(D)を含有する硬化剤成分とからなる防食塗料を準備し、塗装の直前に前記主剤成分と前記硬化剤成分を混合して調製される。
 前記主剤成分には、必要に応じて、顔料(E)、硬化促進剤(F)、付着強化剤(G)、可塑剤(H)、溶剤(I)、タレ止めまたは沈降防止剤(J)、脱水剤(安定剤)(K)、またはその他の塗膜形成成分(分散剤、消泡剤、レべリング剤等)などを、本発明の目的を損なわない範囲で配合してもよく、前記硬化剤成分には、必要に応じて、硬化促進剤(F)、または溶剤(I)などを、本発明の目的を損なわない範囲で配合してもよい。
 以下、組成物に含まれる各成分について説明する。
 なお、「(メタ)アクリル((meth)acryl)」は、アクリル(acryl)およびメタクリル(methacryl)を総称する語句である。
 また、本発明において「防食塗料組成物(または防汚塗料組成物)の不揮発分」とは、本発明の防食塗料組成物(または後述する防汚塗料組成物)の、JIS K5601-1-2の規格(加熱温度:125℃、加熱時間:60分)に従い測定される加熱残分である。
 エポキシ樹脂(A)
 前記エポキシ樹脂(A)としては、1分子内に2個以上のエポキシ基を含むポリマーまたはオリゴマー、およびそのエポキシ基の一部の開環反応によって生成するポリマーまたはオリゴマーが挙げられる。
 前記エポキシ樹脂(A)としては、ビスフェノール型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾール型エポキシ樹脂、ダイマー酸変性エポキシ樹脂、脂肪族エポキシ樹脂、脂環族エポキシ樹脂、エポキシ化油系エポキシ樹脂等が挙げられる。このようなエポキシ樹脂(A)の具体例としては、たとえば、エピクロロヒドリン-ビスフェノールA樹脂等のビスフェノールA型エポキシ樹脂;エピクロロヒドリン-ビスフェノールAD樹脂等のビスフェノールAD型エポキシ樹脂;エピクロロヒドリン-ビスフェノールF樹脂等のビスフェノールF型エポキシ樹脂;エピクロロヒドリン-フェノールノボラック樹脂等のフェノールノボラックエポキシ樹脂;3,4-エポキシフェノキシ-3',4'-エポキシフェニルカルボキシメタン等の芳香族エポキシ樹脂;エピクロロヒドリン-ビスフェノールAエポキシ樹脂中のベンゼン環に結合している水素原子の少なくとも一部が臭素置換された構造の臭素化エポキシ樹脂;エピクロロヒドリンと脂肪族2価アルコールとが反応した構造の脂肪族エポキシ樹脂;エピクロロヒドリンとトリ(ヒドロキシフェニル)メタンとが反応した構造の多官能性エポキシ樹脂;ビスフェノール型エポキシ樹脂をダイマー酸(不飽和脂肪酸の二量体)で変性したダイマー酸変性エポキシ樹脂;ビスフェノール型エポキシ樹脂中の芳香環が水素化された構造の水添エポキシ樹脂などが挙げられる。
 これらの中でも好ましいエポキシ樹脂(A)は、ビスフェノールA型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂およびビスフェノールF型エポキシ樹脂、ならびにこれらのビスフェノール型エポキシ樹脂を変性した変性エポキシ樹脂からなる群から選ばれる少なくとも1種のエポキシ樹脂であり、特に好ましいエポキシ樹脂(A)はビスフェノールA型エポキシ樹脂である。
 前記エポキシ樹脂(A)は、1種単独でまたは2種以上を組み合わせて用いることができる。前記エポキシ樹脂(A)のGPC(ゲルパーミエーションクロマトグラフィー)で測定した重量平均分子量(測定条件は、後述する実施例の"(2)共重合体の平均分子量"の欄に記載の条件またはこれと同等の条件である。)は、前記エポキシ樹脂系防食塗料組成物の塗装硬化条件(例:常乾塗装あるいは焼付け塗装等)などにも依り、一概に決定されないが、好ましくは350~20,000である。また、前記エポキシ樹脂(A)の粘度(25℃)は、好ましくは12,000mPa・s以下であり、より好ましくは10,000mPa・s以下である。
 前記エポキシ樹脂(A)のエポキシ当量(JIS K7236に準拠)は、好ましく150~1,000g/eqである。
 前記エポキシ樹脂(A)としては、エポキシ当量が150~700g/eqであるビスフェノールA型エポキシ樹脂が好ましい。
 なお、エポキシ樹脂を2種以上組み合わせて用いる場合の前記エポキシ樹脂(A)の重量平均分子量およびエポキシ当量は、2種以上のエポキシ樹脂全体としての重量平均分子量およびエポキシ当量である。
 代表的なビスフェノールA型エポキシ樹脂としては、常温で液状のものでは、「jER(登録商標)828」(三菱ケミカル(株)製、エポキシ当量180~200g/eq、NV100%)、「E-028-90X」(大竹明新化学(株)製、828タイプエポキシ樹脂、不揮発分エポキシ当量180~200g/eq、キシレンカット品 NV90%)、「AER260」(ビスフェノールA型エポキシ樹脂、旭化成エポキシ(株)、エポキシ当量190g/eq、NV100%)などが挙げられ、
 常温で半固形状のものでは、「jER834-X90」(三菱ケミカル(株)、不揮発分エポキシ当量230~270g/eq、キシレンカット品 NV90%)、「E-834-85X」(大竹明新化学(株)、不揮発分エポキシ当量約230~270g/eq、キシレンカット品 NV85%)などが挙げられ、
 常温で固形状のものでは、「jER1001-X75」(三菱ケミカル(株)、不揮発分エポキシ当量450~500g/eq、キシレンカット品 NV75%)、「E-001-75X」(大竹明新化学(株)、不揮発分エポキシ当量約450~500g/eq、キシレンカット品 NV75%)などが挙げられる。
 またその他のエポキシ樹脂、変性エポキシ樹脂類としては「jER807」(三菱ケミカル(株)製、ビスフェノールF型ジグリシジルエーテル樹脂、エポキシ当量160~175g/eq、NV100%)、「フレップ60」(ポリサルファイド変性エポキシ樹脂、東レ・ファインケミカル(株)製、エポキシ当量約280g/eq、NV100%)、「YD-172-X75」(ダイマー酸変性エポキシ樹脂、国都化学(株)製、不揮発分エポキシ当量600~700g/eq、キシレンカット品 NV75%)、「Epiclon 5300-70」(ノボラック型エポキシ樹脂、DIC(株)製、不揮発エポキシ当量300~340g/eq、キシレン/イソブチルアルコールカット品 NV70%)等が挙げられる。
 前記エポキシ樹脂(A)は、前記防食塗料組成物中に好ましくは5~80質量%、より好ましくは7~50質量%含まれる。
 熱可塑性樹脂(B)(ロジン類(C)を除く)
 前記熱可塑性樹脂(B)としては、石油樹脂、ケトン系樹脂、塩素化ポリオレフィン、アクリル系樹脂、酢酸ブチル系樹脂、スチレン系樹脂、塩化ビニル系樹脂などが挙げられる。前記防食塗料組成物から形成された防食塗膜を、有機溶剤を含む防汚塗料で塗装する場合、特許文献2([0045])にも記載されているように、熱可塑性樹脂(B)は防汚塗料中の有機溶剤により溶解され、防食塗膜の防汚塗膜への付着性を向上させる。
 前記熱可塑性樹脂(B)は、常温(23℃)で固形の樹脂であることが好ましい。常温で固形とは、常温常圧(23℃、1atm)下において1日放置しても形状が保持されることをいう。前記熱可塑性樹脂(B)は、常温(23℃)で固形の樹脂であると、防食塗膜中の未反応の前記エポキシ樹脂(A)が防食塗膜上に積層された防汚塗膜に移行してその防汚性能(特に静置防汚性)を低下させることを抑制ないし防止することができる。
 前記熱可塑性樹脂(B)の、GPCで測定した重量平均分子量(測定条件は、後述する実施例の"(2)共重合体の平均分子量"の欄に記載の条件またはこれと同等の条件である。)は、好ましくは5,000~100,000、より好ましくは20,000~80,000である。
 前記熱可塑性樹脂(B)としては、ガラス転移温度が30℃以上であるものがより好ましい。
 前記熱可塑性樹脂(B)としては、前記の樹脂の中でも、特に防汚塗料との付着性、塗膜の防汚性への影響が少ない点で塩化ビニル系樹脂が好ましい。
 前記塩化ビニル系樹脂としては、塩化ビニル/ビニルイソブチルエーテル共重合体がさらに好ましく、ガラス転移温度が30℃以上であるものがより好ましい。このような塩化ビニル/ビニルイソブチルエーテル共重合体の市販品としては、BASFジャパン(株)社製の、「ラロフレックスLR8829」、「ラロフレックスMP-25」(Mw=28,000~30,000)、「ラロフレックスMP-35」、「ラロフレックスMP-45」等を挙げることができる。また前記ビニル/ビニルイソブチルエーテル共重合体のうち「ラロフレックスMP-25」が、エポキシ樹脂系防食塗料組成物を調製した際にその塗料粘度の上昇が少なく、塗装作業性に優れるため、特に好ましい。
 その他の前記熱可塑性樹脂(B)としては、アクリル系樹脂の市販品としては「ダイアナールBR106」(三菱ケミカル(株)製、Mw=60,000)、「パラロイドB66」(ダウケミカル社製、Mw=70,000)などの、アクリル酸とそのエステルまたはその誘導体とを共重合させたアクリル樹脂、メタクリル酸とそのエステルまたはその誘導体とを共重合させたメタクリル樹脂等を挙げることができる。
 これらの熱可塑性樹脂は、1種単独でまたは2種以上を組み合わせて用いることができる。前記防食塗料組成物中の前記熱可塑性樹脂(B)の量は、防食塗膜の付着性の観点、および防食塗膜中の未反応の前記エポキシ樹脂(A)が防食塗膜上に積層された防汚塗膜に移行して、その防汚性能(特に静置防汚性)を低下させることを抑制ないし防止する観点、ならびに任意にさらに乾燥性の観点から、前記エポキシ樹脂(A)100質量部に対して35質量部以上、好ましくは50質量部以上、さらに好ましくは60質量部以上であり、防食塗膜に優れた防食性、上塗り性、乾燥性を発揮させる観点からは、その上限は好ましくは100質量部、さらに好ましくは90質量部である。
 ロジン類(C)
 エポキシ樹脂系防食塗料組成物に所定量のロジン類(C)を配合することにより、防食塗膜の乾燥性を向上させ、防食塗膜の防汚塗膜(特に、ロジン類を多く含む有機溶剤型防汚塗料から形成される防汚塗膜)への付着性を大幅に向上させることが可能となる。
 前記ロジン類(C)としては、ガムロジン、ウッドロジン、トール油ロジン等のロジン、および水添ロジン、不均化ロジン等のロジン誘導体、ならびにそれらのエステル類および金属塩などが挙げられる。特に、付着性向上効果が高い点からガムロジン、ウッドロジン、トール油ロジン等のロジンを使用することが好ましい。
 前記ロジン類(C)の含有量は、前記エポキシ樹脂(A)と前記熱可塑性樹脂(B)との合計100質量部に対して5~30質量部であり、好ましくは10~25質量部である。5質量部未満であると防食塗膜の付着性および乾燥性が劣る傾向にある。30質量部を超えると、主剤成分に硬化剤成分を混合して得られた混合物(すなわち、防食塗料組成物)の粘度が大きく、塗装作業性が低下する、乾燥性および防食性も低下するという問題がある。
 硬化剤(D)
 前記硬化剤(D)は、活性水素を含有し前記エポキシ樹脂(A)と反応するものであれば特に限定されることはなく、例えば、ポリアミン類、ポリアミド樹脂類、イミン類、フェノールノボラック樹脂、クレゾールノボラック樹脂、炭素原子数4~18の脂肪族炭化水素基を芳香核上の置換基として有するフェノールノボラック樹脂、ポリカルボン酸類、ポリカルボン酸無水物類、イミダゾール類、ジシアンジアミド類等が挙げられ、特に、防食塗膜の付着性および防食塗料組成物の乾燥性の観点から、一分子中に2つ以上のアミノ基を有する化合物であるアミン系硬化剤が好ましい。アミン系硬化剤を構成する前記化合物としては、脂肪族アミン、脂環式アミン、芳香族アミン、および複素環アミン、ならびにこれらのアミンのポリアミド、その変性物、エポキシ樹脂アダクト変性物、およびマンニッヒ変性物等が挙げられる。
 具体的には、前記脂肪族アミンとしては、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラキス(2-アミノエチルアミノメチル)メタン、1,3-ビス(2'-アミノエチルアミノ)プロパン、トリエチレン-ビス(トリメチレン)ヘキサミン、ビス(3-アミノエチル)アミン、ビスヘキサメチレントリアミン[H2N(CH26NH(CH26NH2]、およびビス(シアノエチル)ジエチレントリアミン等
が挙げられる。
 前記脂環式アミンとしては、4-シクロヘキサンジアミン、4,4'-メチレンビスシクロヘキシルアミン、4,4'-イソプロピリデンビスシクロヘキシルアミン、ノルボルナンジアミン(NBDA/2,5-および2,6-ビス(アミノメチル)-ビシクロ[2,2,1]ヘプタン)、ビス(アミノメチル)シクロヘキサン、ジアミノジシクロヘキシルメタン、イソホロンジアミン(IPDA/3-アミノメチル-3,5,5-トリメチルシクロヘキシルアミン)、およびメンセンジアミン等が挙げられる。
 前記芳香族アミンとしては、o-キシリレンジアミン、m-キシリレンジアミン(MXDA)、p-キシリレンジアミン、フェニレンジアミン、ナフチレンジアミン、ジアミノジフェニルメタン、ジアミノジエチルフェニルメタン、2,2-ビス(4-アミノフェニル)プロパン、4,4'-ジアミノジフェニルエーテル、4,4'-ジアミノベンゾフェノン、4,4'-ジアミノジフェニルスルホン、2,2'-ジメチル-4,4'-ジアミノジフェニルメタン、2,4-ジアミノビフェニル、2,3'-ジメチル-4,4'-ジアミノビフェニル、3,3'-ジメトキシ-4,4'-ジアミノビフェニル、ビス(アミノメチル)ナフタレン、およびビス(アミノエチル)ナフタレン等が挙げられる。
 前記複素環アミンとしては、N-メチルピペラジン、モルホリン、1,4-ビス-(3-アミノプロピル)-ピペラジン、ピペラジン-1,4-ジアザシクロヘプタン、1-(2'-アミノエチルピペラジン)、1-[2'-(2"-アミノエチルアミノ)エチル]ピペラジン、1,11-ジアザシクロエイコサン、および1,15-ジアザシクロオクタコサン等が挙げられる。
 前記硬化剤(D)の活性水素当量(アミン当量)は、好ましくは50~1000g/eq、より好ましくは70~500g/eqである。
 前記硬化剤(D)としては、市販品であれば、「ラッカマイドTD-966」(DIC(株)製、ポリアミド、不揮発分活性水素当量226g/eq NV60%)、「PA-66」(大竹明新化学(株)製、ポリアミド、不揮発分活性水素当量226g/eq NV60%)、「PA-290(A)」(大竹明新化学(株)製、不揮発分活性水素当量166g/eq NV60%)、「アンカマイド2050」(エアープロダクツ社製、ポリアミドアダクト、活性水素当量150g/eq NV100%)、「NX-4918」(カードライト製、フェナルカミン(カルダノールとアミンとのマンニッヒ変性物)アダクト、不揮発分活性水素当量204g/eq NV80%)などが挙げられる。
 前記防食塗料組成物中の前記硬化剤(D)の量は、前記エポキシ樹脂(A)100質量部に対して好ましくは10~100質量部、より好ましくは20~100質量部である。前記硬化剤(D)の量が上記範囲にあることは、防食塗膜の硬化性および溶剤を含む場合の乾燥性の観点から好ましい。
 顔料(E
 前記顔料(E)としては、体質顔料、着色顔料、および防錆顔料などが挙げられる。
 体質顔料としては、具体的には、硫酸バリウム、カリ長石、バライト粉、シリカ、炭酸カルシウム、タルク、マイカ、ガラスフレーク、ステアリン酸アルミなどが挙げられる。着色顔料としては、具体的には、チタン白(酸化チタン)、弁柄、黄色弁柄、カーボンブラックなどが挙げられる。防錆顔料としては、アルミペースト、ジンククロメート、リン酸亜鉛などが挙げられる。これらの顔料の中で、塗膜物性、防食性の面で鱗片状であるマイカ、アルミペーストを添加することが好ましい。
 前記防食塗料組成物中の前記体質顔料の量は、防食塗料組成物の不揮発分の量を100質量%とすると、好ましくは0.1~80質量%である。前記着色顔料の量は、防食塗料組成物の不揮発分の量を100質量%とすると、好ましくは0.1~50質量%である。前記防錆顔料の量は、防食塗料組成物の不揮発分の量を100質量%とすると、好ましくは0.1~50質量%である。
 硬化促進剤(F)
 前記硬化促進剤(F)としては、たとえば3級アミン類が挙げられ、3級アミンとしては具体的には、トリエタノールアミン(N(C25OH)3)、ジアルキルアミノエタノール([CH3(CH2n]2NCH2OH、n:繰返し数)、トリエチレンジアミン(1,4-ジアザビシクロ(2,2,2)オクタン)、2,4,6-トリス(ジメチルアミノメチル)フェノール(C65-CH2N(CH32)、「バーサミンEH30」(BASFジャパン(株)製)、「アンカミンK-54」(エアープロダクツ社製)などが挙げられる。
 また前記硬化促進剤(F)としては、アクリル酸エステル系硬化促進剤も挙げられる。
 前記防食塗料組成物中の前記硬化促進剤(F)の量は、前記硬化剤(D)による前記エポキシ樹脂(A)の硬化の速度を高め、防食塗膜と上塗り塗膜、すなわち防汚塗膜との付着性に優れ、防食塗膜の柔軟性に優れた防食塗膜が得られることから、防食塗料組成物の不揮発分の量を100質量%とすると好ましくは0.1~5質量%である。
 付着強化剤(G)
 前記付着強化剤(G)としては、有機酸類、キレート化剤、シランカップリング剤などが挙げられ、中でも防食塗料組成物の貯蔵安定性の点で、シランカップリング剤が好ましい。
 シランカップリング剤は、通常、一分子内に2種の官能基を有し、無機質基材に対する防食塗膜の接着力向上、防食塗料組成物の粘度の低下等に寄与できる。シランカップリング剤は、たとえば、式:X-Si(OR)3[Xは、有機質材料と反応し得る官能基(例:アミノ基、ビニル基、エポキシ基、メルカプト基、ハロゲノ基、およびこれらの基を有する炭化水素基(この炭化水素基にはエーテル結合等が存在していてもよい。))を表わし、ORは、加水分解性基(例:メトキシ基、エトキシ基)を表わす。]で表わされ、好ましくは前記エポキシ樹脂(A)または前記硬化剤(D)に対して反応性を有する。
 このようなシランカップリング剤の具体例としては、市販品であれば、「KBM-403」(γ-グリシドキシプロピルトリメトキシシラン、信越化学工業(株)製)、「シランS-510」(チッソ(株)製)等が挙げられる。
 前記シランカップリング剤を配合する場合には、前記防食塗料組成物中のシランカップリング剤の量は、防食塗料組成物の不揮発分の量を100質量%とすると、好ましくは0.1~10質量%、より好ましくは0.5~5質量%である。このような量でシランカップリング剤を防食塗料組成物に用いると、得られる防食塗膜の付着性などの性能が向上し、また、防食塗料組成物の粘度が下がり、塗装作業性が向上する。
 可塑剤(H)
 可塑剤(H)としては、塩化パラフィン(塩素化パラフィン)、TCP(トリクレジルホスフェート)、ポリビニルエチルエーテル、ジアルキルフタレート等が挙げられ、塗膜耐水性(機械的特性)という観点からは、これらの中でも、塩化パラフィン(塩素化パラフィン)、ポリビニルエチルエーテルが好ましい。
 前記防食塗料組成物中の前記可塑剤(H)の不揮発分の量は、防食塗料組成物の不揮発分の量を100質量%とすると好ましくは0.1~20質量%である。
 溶剤(I)
 前記溶剤(I)としては、たとえば、キシレン、トルエン、メチルイソブチルケトン(MIBK)、メトキシプロパノール、メチルエチルケトン(MEK)、酢酸ブチル、n-ブタノール、イソブタノール、イソプロピルアルコール(IPA)などが挙げられる。
 これら溶剤は、1種単独でまたは2種以上を組み合わせて用いられる。
 主剤成分中の前記溶剤(I)の含有量は、たとえば0.1~80質量%であり、硬化剤成分中の前記溶剤(I)の含有量は、たとえば0.1~80質量%である。
 タレ止めまたは沈降防止剤(J)
 前記タレ止めまたは沈降防止剤(揺変剤)(J)としては、具体的には、ポリアマイドワックス、ポリエチレンワックス、ベントナイト系のもの、OH含有ナノ粒子(エロジール、樹脂ビーズ)などが挙げられる。
 このようなタレ止めまたは沈降防止剤(J)としては、楠本化成(株)製の「ディスパロン4200-20」、「ディスパロン6650」、伊藤製油(株)製の「A-S-A T-250F」、「A-S-A T-55-20BX」等が挙げられる。
 前記防食塗料組成物中の前記タレ止めまたは沈降防止剤(J)の不揮発分の量は、防食塗料組成物の不揮発分の量を100質量%とすると好ましくは0.1~30質量%である。
 脱水剤(安定剤)(K)
 本発明の防食塗料組成物は、必要に応じて脱水剤(安定剤)(K)を添加することにより、更に優れた長期貯蔵安定性を得ることが可能となる。
 脱水剤(K)としては、無機系脱水剤および有機系脱水剤が挙げられる。前記無機系脱水剤としては、好ましくは合成ゼオライト、無水石膏または半水石膏が挙げられ、有機系脱水剤としては、好ましくはテトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、テトラフェノキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、およびトリメチルエトキシシラン等のアルコキシシラン類またはその縮合物であるポリアルコキシシラン類、ならびにオルト蟻酸メチル、およびオルト蟻酸エチル等のオルト蟻酸アルキルエステル類が挙げられる。
 前記防食塗料組成物中の前記脱水剤(K)の量は、エポキシ樹脂(A)100質量部に対して好ましくは0.1~50質量部である。
 (防食塗料組成物)
 本発明に係る防食塗料組成物は、上述のエポキシ樹脂(A)と、熱可塑性樹脂(B)と、ロジン類(C)と、硬化剤(D)と、任意に他の成分とを含有し、これらを通常の方法に従い混合・攪拌して調製することができる。
 (エポキシ樹脂(A)と硬化剤(D)との反応比)
 前記エポキシ樹脂(A)は前記硬化剤(D)と反応し、塗膜を形成する。
 本発明に係る防食塗料組成物においては、下記式(1)で表される反応比が、好ましくは0.3~1.0、より好ましくは0.4~0.9の範囲にある。
Figure JPOXMLDOC01-appb-M000001
(上記式(1)において、配合量および当量の単位は、それぞれgおよびg/eqである。)
 ここで、上記式(1)における「エポキシ樹脂(A)に対して反応性を有するその他成分」および「硬化剤(D)に対して反応性を有するその他成分」は、それぞれエポキシ樹脂(A)または硬化剤(D)と反応する官能基(以下「反応性基」ともいう。)を有する成分、具体的には、前記シランカップリング剤、および硬化促進剤(F)であるアクリル酸エステル等の成分のことをいう。また、「その他成分の官能基当量」とは、これらの成分1molにおける1官能基あたりの質量(g)(すなわち、その他成分の分子量/1分子中の前記官能基の個数)を意味する。シランカップリング剤としては、前述のように、反応性基としてアミノ基またはエポキシ基を有するシランカップリング剤を使用することができる。シランカップリング剤を使用するか否かを判断し、使用する場合には反応性基の種類によって、シランカップリング剤がエポキシ樹脂(A)に対して反応性を有するのか、硬化剤(D)に対して反応性を有するのかを判断し、上記式(1)より反応比を算出する。
 前記反応比が前記下限値以上であると、前記エポキシ樹脂(A)は多くの箇所で架橋されるため、未反応のエポキシ樹脂成分が残存しにくくなり、得られる防食塗膜は硬化性および溶剤を含む場合の乾燥性に優れ、積層防汚塗膜は防汚性(特に静置防汚性)の低下が少ない。
 前記反応比が前記上限値以下であると、得られる塗膜中に、未反応の前記硬化剤(D)が残存し難く、未反応の前記硬化剤(D)が水分を呼び込むことによる、塗膜の耐水性の低下、および変色などの問題を防ぐことができる。
 (PVC)
 本発明の防食塗料組成物の不揮発分の、下記式(2)で定義される顔料体積濃度(以下「PVC」ともいう。)は、好ましくは25~50%、より好ましくは30~45%である。
   顔料体積濃度(%)
  =防食塗料組成物中の顔料の体積/(防食塗料組成物中の樹脂類の体積+防食塗料組成物中の顔料の体積)×100・・・式(2)
 また、式(2)の分母に記載された「樹脂類の体積」とは、エポキシ樹脂(A)、熱可塑性樹脂(B)、ロジン類(C)、硬化剤(D)および硬化促進剤(F)、可塑剤(H)の合計の体積である。
 PVCが前記下限値以上であると、得られる塗膜は乾燥性に優れる。
 PVCが前記上限値以下であると、防食塗料組成物の粘度が著しく高くその塗装作業性が低下するという不具合、あるいは塗膜のレベリング性の低下またはピンホールなどの発生により防食性が低下するという不具合を防ぐことができる。
          [防食塗膜、防食塗膜付き基材]
 本発明に係る防食塗膜は、上述した本発明に係るエポキシ樹脂系防食塗料組成物の硬化物からなる。
 本発明に係る防食塗膜は、エポキシ樹脂硬化物と、前記熱可塑性樹脂(B)(ただし、前記エポキシ樹脂(A)の硬化物および前記ロジン類(C)を除く。)と、前記ロジン類(C)とを含有してなるマトリックスを含有してなるものでもある。
 前記防食塗膜は、前記熱可塑性樹脂(B)を、通常7~80質量%、好ましくは7~30質量%の割合で含有し、前記ロジン類(C)を通常1.0~7.0質量%、好ましくは1.5~6.0質量%含有する。本発明に係る防食塗膜は、このような割合で前記熱可塑性樹脂(B)およびロジン類(C)を含むため、各種上塗り塗料との密着性に優れており、特に上塗り塗料が防汚塗料の場合に好ましく用いられる。本発明に係る防食塗膜を用いると、上述したように、塗装間隔が長期になっても防食塗膜と防汚塗膜との間での良好な付着性を有する積層防汚塗膜を形成することが可能となる。
 本発明の防食塗料組成物は、熱可塑性樹脂(B)およびロジン類(C)を所定量で含有するため、低温(例えば5℃)での造膜性に優れ、低温乾燥性に優れている。
 本発明に係る防食塗膜は、好ましくは、基材表面に前記基材側から防食塗膜、防汚塗膜の順序で積層して設けられる積層防汚塗膜の前記防食塗膜として用いられる。本発明に係る防食塗膜は、積層防汚塗膜において防汚塗膜との付着性に優れており、防汚塗膜がロジンを多く含む有機溶剤型防汚塗料から形成される場合であっても、付着性に優れている。
 また、本発明に係る防食塗膜付き基材は、基材と、該基材の表面に形成された本発明の防食塗膜とからなる。
 また、本発明に係る前記防食塗膜の製造方法は、本発明に係る防食塗料組成物からなる膜を硬化させる工程を含んでいる。本発明に係る前記防食塗膜は、防食塗料として本発明に係る防食塗料組成物を用いる点を除いて、従来の防食塗膜の製造方法と同様の方法で製造することができる。
 本発明の防食塗料組成物は、塗料粘度が低いため、希釈溶剤量を低減することができ、良好な塗装作業性を確保できる。
 前記防食塗膜の厚さ(乾燥膜厚)は、通常50~800μm程度である。
          [積層防汚塗膜、防汚基材等]
 本発明に係る積層防汚塗膜は、基材表面に前記基材側から防食塗膜、防汚塗膜の順序で積層して設けられる積層防汚塗膜であって、前記防食塗膜が上述した本発明に係る防食塗膜である積層防汚塗膜である。
 また、本発明に係る防汚基材は、基材表面に、本発明に係る積層防汚塗膜が、前記基材側から前記防食塗膜、前記防汚塗膜の順序となるように積層されてなる。
 (防汚塗料組成物)
 前記防食塗膜に上塗りして防汚塗膜を形成するための防汚塗料組成物としては、従来公知の防汚塗料組成物が挙げられる。
 防汚塗料組成物としては加水分解型防汚塗料組成物が挙げられ、加水分解型防汚塗料組成物の塗膜形成用樹脂としては、加水分解型樹脂、たとえば、
 アクリル樹脂またはポリエステル樹脂であって、一般式(I):
  COO-M-O-COR1・・・(I)
[式(I)中のMは亜鉛または銅を示し、R1は有機基を示す。]
で表される側鎖末端基を有する金属塩含有共重合体、
 一般式(II):
  CH2=C(R2)-COO-M-O-CO-C(R2)=CH2・・・(II)
[式(II)中のMは亜鉛または銅を示し、R2は水素原子またはメチル基を示す。]
で表される単量体から誘導される構成単位と、前記単量体と共重合し得る他の不飽和単量体から誘導される構成単位とを含む金属塩含有共重合体、および
 一般式(III):
  R3-CH=C(R4)-COO-SiR567・・・(III)
[式(III)中のR4は水素原子またはメチル基を示し、R5、R6およびR7はそれぞれ独立にヘテロ原子を有してもよい炭素数1~20の1価の有機基を示し、R3は水素原子またはR8-O-CO(但し、R8は独立にヘテロ原子を有してもよい炭素数1~20の1価の有機基またはSiR91011で示されるシリル基を示し、R9、R10およびR11はそれぞれ独立にヘテロ原子を有してもよい炭素数1~20の1価の有機基を示す。)を示す。]
で表される単量体から誘導される構成単位と、前記単量体と共重合し得る他の不飽和単量体から誘導される構成単位とを含むシリルエステル含有共重合体が挙げられる。
 これらの加水分解型樹脂を使用した防汚塗料組成物は、長期防汚性、長期塗膜物性で安定しているため好ましい。
 前記一般式(II)または一般式(III)で表される単量体と共重合し得る他の不飽和単量体としては、(メタ)アクリル酸エステル類、モノカルボン酸類、ジカルボン酸類またはこれらのハーフエステル(モノエステル)やジエステル、ビニルエステル類、スチレン類が挙げられる。
 上記不飽和単量体としては、たとえば、(メタ)アクリル酸メチルエステル、(メタ)アクリル酸エチルエステル、(メタ)アクリル酸ブチルエステル、(メタ)アクリル酸2-エチルヘキシルエステル、(メタ)アクリル酸ラウリルエステル、(メタ)アクリル酸トリデシルエステル、(メタ)アクリル酸ステアリルエステル、(メタ)アクリル酸アリルエステル、(メタ)アクリル酸シクロヘキシルエステル、(メタ)アクリル酸ベンジルエステル、(メタ)アクリル酸イソボルニルエステル、(メタ)アクリル酸メトキシアルキルエステル、(メタ)アクリル酸エトキシアルキルエステル、(メタ)アクリル酸グリシジルエステル、(メタ)アクリル酸テトラヒドロフルフリルエステル、(メタ)アクリル酸ヒドロキシエチルエステル、(メタ)アクリル酸ヒドロキシプロピルエステル、(メタ)アクリル酸ヒドロキシブチルエステルなどの(メタ)アクリル酸エステル類;(メタ)アクリル酸などのモノカルボン酸類;イタコン酸、マレイン酸、コハク酸等のジカルボン酸類またはこれらのハーフエステル(モノエステル)やジエステル;スチレン、α-メチルスチレンなどのスチレン類;酢酸ビニル、プロピオン酸ビニルなどのビニルエステル類;などが挙げられ、これらは1種をまたは2種類以上を用いてもよい。
 前記防汚塗料組成物中の塗膜形成用樹脂の量は、塗膜物性という観点からは、防汚塗料組成物の不揮発分の量を100質量%とすると、好ましくは5~50質量%、さらに好ましくは5~30質量%である。
 前記防汚塗料組成物は、必要に応じてロジン類および/またはモノカルボン酸化合物、銅または銅化合物、有機防汚剤、顔料、脱水剤、可塑剤、顔料分散剤、タレ止めまたは沈降防止剤、および溶剤等から選ばれる成分をさらに含有する。
 ロジン類および/またはモノカルボン酸化合物
 ロジン類としては、ガムロジン、ウッドロジン、トール油ロジン等のロジン、および水添ロジン、不均化ロジン等のロジン誘導体、ならびにそれらのエステル類および金属塩などが挙げられる。ロジンは松化の植物の樹液である松脂を蒸留した後に残る残留物で、ロジン酸(アビエチン酸、パラストリン酸、イソピマール酸等)を主成分とする天然樹脂である。
 モノカルボン酸化合物としては、脂肪族または脂環式のモノカルボン酸、これらのモノカルボン酸誘導体またはこれらの金属塩などが挙げられる。モノカルボン酸化合物の具体例としては、ナフテン酸、シクロアルケニルカルボン酸、ビシクロアルケニルカルボン酸、バーサチック酸、トリメチルイソブテニルシクロヘキセンカルボン酸、ステアリン酸、ヒドロキシステアリン酸、サリチル酸、およびこれらの金属塩などが挙げられる。
 塗膜形成用樹脂の含有質量(WA)とロジン類およびモノカルボン酸化合物の合計の含有質量(WB)との含有質量比(WA/WB)は、好ましくは99.9/0.1~30/70、より好ましくは、95/5~35/65、さらに好ましくは90/10~40/60である。上記含有質量比がこのような範囲にあると、防汚塗膜における研掃性(塗膜消耗性)を高める効果があり、防汚性(特に、静置防汚性)を向上できる。
 長期停泊の多い船舶、汚損条件の厳しい航路を運航する船舶においては、静置防汚性、長期防汚性を向上させるため、特にロジン類および/またはモノカルボン酸化合物の含有量の多い組成(たとえば、(WA/WB)が70/30より多い)を好ましく使用するが、このような組成の防汚塗料を防食塗膜に塗装した場合、従来の防食塗料では付着性の低下が著しい傾向にある。しかしながら、本発明の防食塗料組成物は、防汚塗料との付着性が良好な防食塗膜を形成できるため、上記範囲のようにロジン含有量が多い防汚塗料を用いても高い付着性を発揮させることができる。
 銅または銅化合物
 銅化合物としては、有機系または無機系の何れの銅化合物であってもよく、たとえば、粉末状の銅(銅粉)、亜酸化銅、チオシアン酸銅、キュプロニッケル、銅ピリチオン等が挙げられる。
 前記防汚塗料組成物中の銅または銅化合物の量(銅および銅化合物の合計量)は、長期防汚性という観点からは、防汚塗料組成物の不揮発分の量を100質量%とすると、好ましくは0.1~90質量%、さらに好ましくは0.5~80質量%である。
 有機防汚剤
 有機防汚剤としては、たとえば、ジンクピリチオン等の金属ピリチオン類(銅ピリチオンを除く)、4,5-ジクロロ-2-n-オクチル-4-イソチアゾリン-3-オン、4-ブロモ-2-(4-クロロフェニル)-5-(トリフルオロメチル)-1H-ピロール-3-カルボニトリル、ピリジントリフェニルボラン、4-イソプロピルピリジンジフェニルメチルボラン、N,N-ジメチル-N'-(3,4-ジクロロフェニル)尿素、N-(2,4,6-トリクロロフェニル)マレイミド、2,4,5,6-テトラクロロイソフタロニトリル、2-メチルチオ-4-tert-ブチルアミノ-6-シクロプロピルアミノ-1,3,5-トリアジン、(+/-)-4-[1-(2,3-ジメチルフェニル)エチル]-1H-イミダゾール(別名:メデトミジン)、ビスジメチルジチオカルバモイルジンクエチレンビスジチオカーバメート、クロロメチル-n-オクチルジスルフィド、N',N'-ジメチル-N-フェニル-(N-フルオロジクロロメチルチオ)スルファミド、テトラアルキルチウラムジスルフィド、ジンクジメチルジチオカーバメート、ジンクエチレンビスジチオカーバメート、2,3-ジクロロ-N-(2',6'-ジエチルフェニル)マレイミド、2,3-ジクロロ-N-(2'-エチル-6'-メチルフェニル)マレイミドなどが挙げられる。
 前記防汚塗料組成物中の有機防汚剤の量は、長期防汚性、塗膜耐水性維持(機械的特性維持)という観点からは、防汚塗料組成物の不揮発分の量を100質量%とすると、好ましくは0.1~90質量%、さらに好ましくは0.5~80質量%である。
 顔料
 前記防汚塗料組成物は、塗膜への着色や下地の隠ぺいを目的として、また塗膜を適度な強度に調整することを目的として、顔料を含有してもよい。
 顔料としては、例えば、タルク、マイカ、クレー、カリ長石、酸化亜鉛、炭酸カルシウム、カオリン、アルミナホワイト、ホワイトカーボン、水酸化アルミニウム、炭酸マグネシウム、炭酸バリウム、硫酸バリウム、硫酸カルシウム、硫化亜鉛等の体質顔料や、弁柄、チタン白(酸化チタン)、黄色弁柄、カーボンブラック、ナフトールレッド、フタロシアニンブルー等が挙げられ、中でもタルクおよび酸化亜鉛が好ましい。これらの顔料は、1種単独で、又は2種以上組み合わせて用いることができる。なお、炭酸カルシウムおよびホワイトカーボンは、それぞれ後述する沈降防止剤としても使用される。
 本発明の防汚塗料組成物が顔料を含有する場合、その含有量は、塗料組成物の塗布形態等に応じた所望の粘度によって好ましい量が決定されるが、塗料組成物の不揮発分中、好ましくは0.01~80質量%、より好ましくは0.1~70質量%である。
 脱水剤
 脱水剤としては、従来公知の石膏、テトラエトキシシランなどを用いることができる。
 前記防汚塗料組成物中の脱水剤の量は、貯蔵中の粘度上昇防止効果という観点からは、防汚塗料組成物の不揮発分の量を100質量%とすると、好ましくは0.01~30質量%、より好ましくは0.1~20質量%である。
 可塑剤
 可塑剤としては、塩化パラフィン(塩素化パラフィン)、TCP(トリクレジルホスフェート)、ポリビニルエチルエーテル、ジアルキルフタレート等が挙げられ、塗膜耐水性(機械的特性)、塗膜加水分解性(消耗性)という観点からは、これらの中でも、塩化パラフィン(塩素化パラフィン)、ポリビニルエチルエーテルが好ましい。
 塩化パラフィンの具体例としては、「トヨパラックス150」や「トヨパラックスA-70」(何れも東ソー(株)製)等が挙げられる。ポリビニルエチルエーテルの具体例としては、「ルトナールM-40」(BASFジャパン(株)製、ポリビニルメチルエーテル)、「ルトナールA-25」(BASFジャパン(株)製、ポリビニルエチルエーテル)、「ルトナールI-60」(BASFジャパン(株)製、ポリビニルイソブチルエーテル)などが挙げられる。
 前記防汚塗料組成物中の可塑剤の量は、防汚性、塗膜耐水性(機械的特性)、塗膜形成用樹脂が加水分解型樹脂であれば塗膜加水分解性(消耗性)という観点からは、防汚塗料組成物の不揮発分の量を100質量%とすると、好ましくは0.1~80質量%、より好ましくは0.5~70質量%である。
 顔料分散剤
 顔料分散剤としては、公知の有機系または無機系の各種顔料分散剤が挙げられ、たとえば、脂肪族アミンまたは有機酸類(たとえば、「レオミックスTDO」(ライオン・スペシャリティ・ケミカル(株)製)、「Disperbyk-101」(ビックケミー・ジャパン(株)製))が挙げられる。
 前記防汚塗料組成物中の顔料分散剤の量は、塗料粘度低減効果、色分かれ防止効果という観点からは、防汚塗料組成物の不揮発分の量を100質量%とすると、好ましくは0.01~20質量%、より好ましくは0.1~10質量%である。
 タレ止めまたは沈降防止剤
 本発明の防汚塗料組成物は、塗料組成物の粘度を調整することを目的として、タレ止めまたは沈降防止剤(揺変剤)を含有してもよい。
 タレ止めまたは沈降防止剤としては、有機粘土系ワックス(Al、CaまたはZnのステアレート塩、レシチン塩、アルキルスルホン酸塩等)、有機系ワックス(ポリエチレンワックス、酸化ポリエチレンワックス、アマイドワックス、ポリアマイドワックス、水添ヒマシ油ワックス等)、有機粘土系ワックスと有機系ワックスの混合物、合成微粉シリカ等が挙げられる。
 タレ止めまたは沈降防止剤としては市販品を用いてもよく、例えば、楠本化成(株)製の「ディスパロン305」、「ディスパロン4200-20」、「ディスパロンA630-20X」、「ディスパロン6900-20X」、伊藤製油(株)製の「A-S-A D-120」、「A-S-A T-250F」等が挙げられる。
 タレ止めまたは沈降防止剤は、1種単独で使用してもよく、2種以上を併用してもよい。
 本発明の防汚塗料組成物がタレ止めまたは沈降防止剤を含有する場合、その含有量は、貯蔵安定性、同種/異種塗料の塗り重ね性という観点からは、防汚塗料組成物の不揮発分の量を100質量%とすると、好ましくは0.1~50質量%、より好ましくは0.3~30質量%である。
 溶剤
 防汚塗料組成物は、分散性を向上させたり、該組成物の粘度を調整したりするために、必要に応じて、水または有機溶剤等の溶剤を含んでいてもよい。本発明に係る防食塗膜の防汚塗膜への付着性を高める観点からは、溶剤としては有機溶剤、具体的には本発明に係る防食塗膜をその表面付近において軟化させることのできる有機溶剤が好ましい。
 有機溶剤としては、キシレン、トルエン、エチルベンゼン等の芳香族系有機溶剤;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;エタノール、イソプロピルアルコール,n-ブタノール、イソブタノール等の脂肪族(炭素数1~10、好ましくは2~5程度)の1価アルコール類;酢酸エチル、酢酸ブチル等のエステル系溶剤;等が挙げられる。前記防汚塗料組成物中の溶剤の量は、防汚塗料組成物の量を100質量%とした場合、通常5~80質量%、好ましくは10~70質量%である。
 (積層防汚塗膜の製造方法等)
 本発明に係る積層防汚塗膜の製造方法は、本発明に係るエポキシ樹脂系防食塗料組成物からなる膜を硬化させて前記防食塗膜を形成する工程、および前記防食塗膜の表面に前記防汚塗膜を形成する工程を含んでいる。また、本発明に係る防汚基材の製造方法は、基材表面に本発明に係る積層防汚塗膜を形成する工程を含んでいる。
 したがって、本発明に係る積層防汚塗膜および防汚基材は、エポキシ樹脂系防食塗料として本発明に係るエポキシ樹脂系防食塗料組成物を用いる点を除いて、従来と同様の方法で製造することができる。すなわち、基材の表面に本発明に係るエポキシ樹脂系防食塗料組成物を従来公知の方法で塗布し、硬化させて防食塗膜を形成し、この防食塗膜の表面に前記防汚塗料組成物、好ましくは上述の有機溶剤を含む防汚塗料組成物を従来公知の方法で塗布し、硬化させることにより、本発明に係る積層防汚塗膜ないし防汚基材を製造することができる。
 前記基材としては、水中で防食性および防汚性が求められる基材が好ましく、たとえば、火力、原子力発電所の給排水口等の水中構造物、湾岸道路、海底トンネル、港湾設備、運河、水路等のような各種海洋土木工事の汚泥拡散防止膜、船舶(例:船底部)、漁具(例:浮き子、ブイ)などの海水または真水と接触する各種基材などが挙げられ、基材の材質としては、鋼、アルミニウム、FRPなどが挙げられる。これら基材の表面に形成された本発明の積層防汚塗膜は、アオサ、フジツボ、アオノリ、セルプラ、カキ、フサコケムシ等の水棲生物の付着を長期間に亘って防止する特性(防汚性、特に静置防汚性)に優れる。
 前記基材としては、錆、油脂、水分、塵埃、スライム、塩分などを除去するため、また、得られる防食塗膜の密着性を向上させるために、必要により前記基材表面を処理(例えば、ブラスト処理(ISO8501-1  Sa2 1/2)、パワーツール処理、摩擦法、脱脂による油分・粉塵を除去する処理)したものでもよく、基材の防食性、溶接性、またはせん断性の点から、必要により、前記基材表面に、従来公知の一次防錆塗料(ショッププライマー)等の薄膜形成用塗料、またはその他プライマー等を塗布し乾燥させたものでもよい。また、補修塗装を目的として、基材として、劣化防汚塗膜付き基材を用いてもよい。
 前記防汚塗膜の膜厚(乾燥膜厚)は特に限定されないが、基材が船舶や水中構造物である場合、たとえば、50~2000μm程度である。
 以下、実施例および比較例に基づき本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
 <防食塗料組成物の調製>
 [実施例1]
 防食塗料組成物を以下のようにして調製した。
 (主剤成分)
 ポリ容器にMIBK(メチルイソブチルケトン)を5質量部、n-ブタノールを4質量部、キシレンを14質量部、jER1001-X75を12質量部、ラロフレックスMP-25を6質量部、ガムロジンを1質量部、TTKタルクを15質量部、バリコ#300Wを15質量部、Unisper PG-K10を10質量部、チタン白R-930を0.5質量部、弁柄404を1質量部、A-S-A T-55-20BXを4質量部、およびKBM-403を0.5質量部配合し、ガラスビーズを添加し、常法により1時間分散操作を行った。原材料の一覧を表1示す。得られた分散液を60メッシュの濾過網で濾過し、防食塗料の主剤成分を調製した。
 (硬化剤成分)
 ポリ容器にキシレンを2.5質量部、n-ブタノールを1.4質量部、ラッカマイドTD-966を6質量部、およびアンカミンK-54を0.1質量部配合し、常法により10分間分散操作を行った。原材料の一覧を表1に示す。得られた分散液を60メッシュの濾過網で濾過し、防食塗料の硬化剤成分を調製した。
 (防食塗料組成物)
 得られた主剤成分と硬化剤成分とを塗装の直前に常法により混合して、防食塗料組成物を調製した。
 [実施例2~12、比較例1~6]
 主剤成分と硬化剤成分の配合を表2に示したように変更した以外は、実施例1と同様にして防食塗料組成物を調製した。
 <防汚塗料組成物の調製>
 [金属塩含有共重合体溶液(A1)の製造]
 金属塩含有共重合体の製造にあたり、まず、金属塩含有単量体(a1)を以下のとおり調製した。
 <調製例1:金属塩含有単量体(a1)の調製>
 撹拌機、コンデンサー、温度計、滴下装置、窒素導入管、及び加熱冷却ジャケットを備えた反応容器に、プロピレングリコールモノメチルエーテル85.4質量部及び酸化亜鉛40.7質量部を仕込み、撹拌しながら75℃に昇温した。続いて、メタクリル酸43.1質量部、アクリル酸36.1質量部、及び水5.0質量部からなる混合物を滴下装置から3時間かけて等速滴下した。滴下終了後、更に2時間撹拌した後、プロピレングリコールモノメチルエーテルを36.0質量部添加して、金属塩含有単量体(a1)を含む反応液を得た。
 <製造例1:金属塩含有共重合体溶液(A1)の製造>
 撹拌機、コンデンサー、温度計、滴下装置、窒素導入管、及び加熱冷却ジャケットを備えた反応容器に、プロピレングリコールモノメチルエーテル15.0質量部、キシレン57.0質量部及びエチルアクリレート4.0質量部を仕込み、撹拌しながら100±5℃に昇温した。同温度を保持しつつ、滴下装置より、前記反応容器内に前記調製例1で得た金属塩含有単量体(a1)を含む反応液52.0質量部、メチルメタクリレート1.0質量部、エチルアクリレート66.2質量部、2-メトキシエチルアクリレート5.4質量部、並びに重合開始剤(2,2'-アゾビスイソブチロニトリル)2.5質量部、重合開始剤(2,2'-アゾビス(2-メチルブチロニトリル))7.0質量部、連鎖移動剤(「ノフマーMSD」(日油(株)製))1.0質量部、及びキシレン10.0質量部を6時間かけて滴下した。滴下終了後に重合開始剤(t-ブチルパーオキシオクトエート(TBPO))0.5質量部とキシレン7.0質量部とを30分かけて滴下し、更に1時間30分撹拌した後、キシレンを4.4質量部添加して、金属塩含有共重合体を含む淡黄色透明の金属塩含有共重合体溶液(A1)を調製した。
 使用した単量体の構成、及び金属塩含有共重合体溶液(A1)の特性値を表3に示す。なお、表中、各単量体の理論配合量(質量部)が記載されている。
 (シリルエステル含有共重合体溶液(A2)の製造)
 [製造例2]
 攪拌機、還流冷却器、温度計、窒素導入管および滴下ロートを備えた反応容器に、キシレン67質量部を仕込み、窒素雰囲気下で、キシレンを攪拌機で攪拌しながら、常圧下に、反応容器内のキシレンの温度が85℃になるまで加熱した。反応容器内のキシレンの温度を85℃に維持しながら、TIPSMA(トリイソプロピルシリルメタクリレート)50質量部、MEMA(2-メトキシエチルメタクリレート)30質量部、およびMMA(メチルメタクリレート)10質量部および、BA(ブチルアクリレート)10質量部、およびAMBN(2,2'-アゾビス-(2-メチルブチロニトリル))1質量部からなるモノマー混合物を、滴下ロートを用いて2時間かけて反応容器内に添加した。
 次いで、さらに反応容器内にt-ブチルパーオキシオクトエート0.5質量部を加え、常圧下にて、反応容器内の液温を85℃に保持しながら、2時間攪拌機で攪拌を続けた。そして、反応容器内の液温を85℃から110℃に上げて1時間加熱した後、反応容器内にキシレン14質量部を加えて、反応容器内の液温を低下させ、液温が40℃になった時点で攪拌を止めた。こうして、シリルエステル含有共重合体溶液(A2)を調製した。シリルエステル含有共重合体溶液(A2)の原材料、特性等を表4に示す。
 <金属塩含有共重合体溶液(A1)、およびシリルエステル含有共重合体溶液(A2)の特性評価>
 金属塩含有共重合体溶液(A1)およびシリルエステル含有共重合体溶液(A2)の上述の各特性は以下の方法で測定した。
 (1)共重合体溶液中の加熱残分の含有率
 共重合体溶液1.5g(X1(g))を、恒温槽内で、1気圧、108℃の条件下で3時間保持して揮発分を除去して加熱残分(不揮発分)を得た。次いで、残った加熱残分(不揮発分)の量(X2(g))を測定し、下記式に基づいて、共重合体溶液に含まれる加熱残分の含有率(%)を算出した。
  加熱残分の含有率(%)=X2/X1×100
 (2)共重合体の平均分子量
 共重合体の平均分子量(数平均分子量(Mn)または重量平均分子量(Mw))を下記条件におけるGPC(ゲルパーミエーションクロマトグラフィー)を用いて測定した。測定条件は以下の通りである。
GPC条件
装置       :「HLC-8120GPC」(東ソー(株)製)
カラム      :「TSKgel SuperH2000」及び「TSKgel SuperH4000」を連結(いずれも、東ソー(株)製、6mm(内径)×15cm(長さ))
溶離液      :テトラヒドロフラン(THF)
流速       :0.500ml/min
検出器      :RI
カラム恒温槽温度 :40℃
標準物質     :ポリスチレン
サンプル調製法  :共重合体溶液に少量の塩化カルシウムを加えて脱水した後、メンブレムフィルターで濾過して得られた濾物をGPC測定サンプルとした。
 (3)共重合体溶液の粘度
 B型粘度計〔東京計器(株)製〕を用いて液温25℃の共重合体溶液の粘度(単位:mPa・s)を測定した。
 (金属塩含有加水分解型防汚塗料S1、およびシリルエステル含有加水分解型防汚塗料S2、S3の製造)
 [製造例3]
 ポリ容器にキシレン9.5を質量部、金属塩含有共重合体溶液(A1)溶液を20質量部、ガムロジンを6.5質量部、エチルシリケート28を0.5質量部、酸化亜鉛を4.0質量部、TTKタルクを4.0質量部、チタン白R-930を2.0質量部、弁柄404を2.0質量部、カッパーオマジンを2.0質量部、亜酸化銅NC-301を48質量部、およびA-S-A D-120を0.5質量部配合し、ガラスビーズを添加し、常法により1時間分散操作を行った。その後、ディスパロンA630-20Xを1.0質量部添加し、さらに15分間分散操作を行った。得られた分散液を60メッシュの濾過網で濾過し、金属塩含有加水分解型防汚塗料S1を調製した。原材料の一覧を表1に示す。
 [製造例4、5]
 各成分配合を表5に示したように変更した以外は製造例3と同様にしてシリルエステル含有加水分解型防汚塗料S2、S3を調製した。
 <防食塗料の評価>
 (1)主剤成分および混合物(塗料組成物)の粘度
 前記各主剤成分および硬化剤成分を23℃に保ち、主剤成分の粘度、および主剤成分と硬化剤成分とを混合して得られた混合物の粘度を、粘度計であるビスコメーターVT-04F(リオン(株)製)の1号ローターを用いて測定した(単位:dPa・s)。
 (2)スプレー霧化性
 前記各主剤成分および硬化剤成分を23℃に保ち、主剤成分と硬化剤成分とを混合し、得られた混合物をエアースプレーで噴霧し、スプレーパターンの広がりを確認し、以下の基準に従ってスプレー霧化性を評価した。
(評価基準)
  A:混合塗料をエアースプレーを用いて基材を塗装した際に、混合塗料が微細な粒子として(霧状で)噴霧され、かつスプレーパターンがスジ等を生じることなく、均一なパターンであった(霧化性が良好である)。
  B:混合塗料をエアースプレーを用いて基材を塗装した際に、混合塗料が微細な粒子として(霧状で)噴霧されず、スプレーパターンは広がるが、スジを引いたようなパターンである(霧化性が不良である)。
  C:混合塗料をエアースプレーを用いて基材を塗装した際に、混合塗料が微細な粒子として(霧状で)噴霧されず、スプレーパターンが全く広がらず塗装が不可能である(霧化しない)。
 (3)乾燥性
 前記各防食塗料組成物を、348mm×25mm×2mm(厚)のガラス板に、乾燥塗膜厚が150μmになるようにフィルムアプリケータで塗布し、5℃の温度下でRC型ドライングタイムレコーダー(コーティングテスター(株)製)を用いて、塗膜が半硬化または完全硬化するまでの時間を測定した。
 この乾燥性試験では、ガラス板上に防食塗料組成物を塗布した直後から、塗膜上で、RC型ドライングタイムレコーダーの試験針を一定の速度でゆっくりと移動させることにより、試験針の通った跡から塗膜の状態を判断し、塗膜が形成直後から半硬化または完全硬化するまでの時間を判断した。
 具体的には、塗膜1が形成されたガラス板2を見下ろした模式図1中の試験針が通った跡において、試験針が移動開始位置aからガラス板2が見えなくなった位置bまで移動するのに要した時間を半硬化時間とし、試験針が、移動開始位置aから、試験針が塗膜表面を滑り、塗膜表面に試験針の跡が完全につかなくなった位置cまで移動するのに要した時間を完全硬化時間とした。
 なお、乾燥性は、5℃下での完全硬化時間が24時間未満であれば、実用上問題ないと判断した。
 (4)防食塗料の防食性
 <耐塩水性試験>
 防食塗膜の耐塩水性を、JIS K5600-6-1に準拠して測定した。具体的には以下のようにして行った。寸法が150mm×70mm×1.6mm(厚)のブラスト処理された鋼板(以下「試験板」ともいう。)上に、実施例および比較例で得られた各防食塗料組成物を、それぞれ乾燥膜厚が約250μmとなるようにスプレー塗装し、スプレー塗装された試験板を、23℃、50%RHの雰囲気で7日間乾燥することで防食塗膜付試験板を作製した。この防食塗膜付試験板を用い、40℃の3%塩水中に浸漬し、浸漬開始から30日後、および60日後の防食塗膜の外観を以下の基準に従って目視評価した。
(評価基準)
  A:フクレ、割れ、サビ、はがれ、色相のいずれも変化なし。
  B:フクレ、割れ、サビ、はがれ、色相のいずれかに若干の欠陥(変化)が認められる。
  C:フクレ、割れ、サビ、はがれ、色相の変化のいずれかが明らかに認められる。
 <電気防食性試験>
 電気電流密度が5mA/m2以下になるよう亜鉛陽極を、耐塩水性試験と同様にして作製した防食塗膜付試験板に接続し、40℃の3%塩水中に浸漬した後に30日後および60日後の防食塗膜の外観を耐塩水性試験と同じ上記の基準に従って目視評価した。
 <塩水噴霧試験>
 JIS K5600-7-1に準拠して、耐塩水性試験と同様にして作成した防食塗膜付試験板に、35℃の条件下で、塩水濃度5%の溶液を連続的に噴霧し、その30日後および60日後の防食塗膜の外観を耐塩水性試験と同じ上記の基準に従って目視評価した。
 上記試験の結果を表6に記載する。
 (5)防食塗膜と防汚塗膜との付着性
 サンドブラスト板(150mm×70mm×1.6mm)上に、実施例および比較例の各防食塗料組成物を乾燥膜厚で150μmになるように塗布し硬化塗膜を形成させ、その後、直ちに屋外にて、硬化塗膜付きサンドブラスト板を、硬化塗膜側を上として南向きに地面に対して45°の角度で傾けて暴露した。
 次いで、前述の条件でそれぞれ1日、4日または7日間屋外暴露された試験板上に(防食塗料から形成された硬化塗膜表面に)、上記製造例3~5の各防汚塗料組成物を、アプリケーターを用いて乾燥膜厚で100μmとなるように塗布して、23℃、7日間乾燥させて防汚塗膜を形成して、積層防汚塗膜付試験板を作製した。
 得られた積層防汚塗膜付試験板を、40℃人工海水に浸漬し、浸漬開始から30日後および60日後の防食塗膜と防汚塗膜との間の付着性を下記評価基準に基づいて評価した。
(付着性評価方法)
 NTカッターを使用し、積層防汚塗膜付試験板の防汚塗膜面に、4mm間隔で縦横に各4本の切れ目を入れ9個の升目を作成し、その升目が作成された塗膜表面にセロテープ(登録商標)を圧着させた後、すばやく剥離し、升目を観察した。次いで、9個の升目の面積を100%とした場合における、剥離操作後の升目において防食塗膜と防汚塗膜との層間で剥離している塗膜の面積(剥離面積)の比率(%)を算出し、下記評価基準に基づいて付着性を評価した。その結果を表7に示す。
(評価基準)
  0:塗膜の層間剥離面積が5%未満である。
  1:塗膜の層間剥離面積が5%以上25%未満である。
  2:塗膜の層間剥離面積が25%以上50%未満である。
  3:塗膜の層間剥離面積が50%以上である。
 (6)積層防汚塗膜の防汚性
 100mm×300mm×3.2mmのサンドブラスト処理鋼板に、実施例および比較例のした各防食塗料組成物をそれぞれ乾燥膜厚150μmになるようにエアースプレーを用いて塗布し、塗装間隔1日で防汚塗料S1を、エアースプレーで防汚塗膜の乾燥膜厚が100μmになるように塗布し、これを23℃で7日間乾燥させ、積層防汚塗膜を有する試験板を作製した。
 上記試験板を、長崎県長崎湾に静置浸漬し、浸漬から1ヶ月毎の水棲生物の付着面積(試験板の防汚塗膜の全面積100%に対する、水棲生物が付着している部分の面積の割合(%))を目視により計測し、下記評価基準に基づき評価を行った。その結果を表8に示す。
(評価基準)
  0:水棲生物の付着無し。
  0.5:水棲生物の付着面積が0%を超え10%以下。
  1:水棲生物の付着面積が10%を超え20%以下。
  2:水棲生物の付着面積が20%を超え30%以下。
  3:水棲生物の付着面積が30%を超え40%以下。
  4:水棲生物の付着面積が40%を超え50%以下。
  5:水棲生物の付着面積が50%を超える。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 1 … 塗膜
 2 … ガラス板
 3 … 試験針が通った痕
 a … 試験針の移動開始位置
 b … ガラス板が見えなくなった位置
 c … 試験針が塗膜表面を滑り、塗膜表面に試験針の跡が完全につかなくなった位置

Claims (17)

  1.  エポキシ樹脂(A)、熱可塑性樹脂(B)(ただし、ロジン類(C)を除く。)、ロジン類(C)、および硬化剤(D)を含有し、
     前記熱可塑性樹脂(B)の含有量が前記エポキシ樹脂(A)の100質量部に対して35質量部以上であり、
     前記ロジン類(C)の含有量が前記エポキシ樹脂(A)と前記熱可塑性樹脂(B)との合計100質量部に対して5~30質量部である
    エポキシ樹脂系防食塗料組成物。
  2.  前記エポキシ樹脂(A)が、ビスフェノールA型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、およびビスフェノールF型エポキシ樹脂、ならびにこれらのエポキシ樹脂を変性した変性エポキシ樹脂からなる群から選ばれる1種または2種以上である請求項1に記載のエポキシ樹脂系防食塗料組成物。
  3.  さらに顔料(E)を含有する請求項1または2に記載のエポキシ樹脂系防食塗料組成物。
  4.  下記式(2)で表される顔料体積濃度(PVC)が25~50%である請求項3に記載のエポキシ樹脂系防食塗料組成物。
       顔料体積濃度(%)
      =防食塗料組成物中の顔料の体積/(防食塗料組成物中の樹脂類の体積+防食塗料組成物中の顔料の体積)×100・・・式(2)
  5.  前記熱可塑性樹脂(B)が石油樹脂、ケトン系樹脂、塩素化ポリオレフィン、アクリル系樹脂、酢酸ブチル系樹脂、スチレン系樹脂、および塩化ビニル系樹脂からなる群から選択される少なくとも1種を含むことを特徴とする請求項1~4のいずれか一項に記載のエポキシ樹脂系防食塗料組成物。
  6.  前記熱可塑性樹脂(B)が塩化ビニル系樹脂を含み、前記塩化ビニル系樹脂が塩化ビニル/ビニルイソブチルエーテル共重合体であることを特徴とする請求項5に記載のエポキシ樹脂系防食塗料組成物。
  7.  請求項1~6のいずれか一項に記載のエポキシ樹脂系防食塗料組成物の硬化物からなる防食塗膜。
  8.  基材と基材表面に設けられた請求項7に記載の防食塗膜とを有する防食塗膜付き基材。
  9.  基材に、請求項1~6のいずれか一項に記載のエポキシ樹脂系防食塗料組成物を塗装する工程、および塗装された前記防食塗料組成物を硬化させて防食塗膜を形成する工程を有する防食塗膜付き基材の製造方法。
  10.  基材表面に前記基材側から請求項7に記載の防食塗膜、防汚塗膜の順序で積層して設けられる積層防汚塗膜。
  11.  前記防汚塗膜が加水分解型防汚塗膜である請求項10に記載の積層防汚塗膜。
  12.  前記加水分解型防汚塗膜がロジン類を含有する請求項11に記載の積層防汚塗膜。
  13.  基材表面に前記基材側から防食塗膜、防汚塗膜の順序で積層して設けられる積層防汚塗膜を製造する方法であって、請求項1~6のいずれか一項に記載のエポキシ樹脂系防食塗料組成物からなる膜を硬化させて前記防食塗膜を形成する工程、および前記防食塗膜の表面に前記防汚塗膜を形成する工程を含む積層防汚塗膜の製造方法。
  14.  基材表面に、請求項10~12のいずれか一項に記載の積層防汚塗膜が、前記基材側から前記防食塗膜、前記防汚塗膜の順序となるように積層されてなる防汚基材。
  15.  海水または真水と接触する請求項14に記載の防汚基材。
  16.  前記基材が、船舶、水中構造物、および漁具からなる群から選択される少なくとも一つである請求項14または15に記載の防汚基材。
  17.  基材表面に請求項10~12のいずれか一項に記載の積層防汚塗膜を形成する工程を含む防汚基材の製造方法。
PCT/JP2018/019256 2017-05-30 2018-05-18 エポキシ樹脂系防食塗料組成物、防食塗膜、積層防汚塗膜、および防汚基材、ならびにこれらの製造方法 WO2018221266A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019522114A JP6990241B2 (ja) 2017-05-30 2018-05-18 エポキシ樹脂系防食塗料組成物、防食塗膜、積層防汚塗膜、および防汚基材、ならびにこれらの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017106688 2017-05-30
JP2017-106688 2017-05-30

Publications (1)

Publication Number Publication Date
WO2018221266A1 true WO2018221266A1 (ja) 2018-12-06

Family

ID=64455469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019256 WO2018221266A1 (ja) 2017-05-30 2018-05-18 エポキシ樹脂系防食塗料組成物、防食塗膜、積層防汚塗膜、および防汚基材、ならびにこれらの製造方法

Country Status (2)

Country Link
JP (1) JP6990241B2 (ja)
WO (1) WO2018221266A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210112952A (ko) * 2020-03-06 2021-09-15 한국조선해양 주식회사 에폭시 도료 조성물 및 이의 도막을 갖는 해양 구조물
WO2022025096A1 (ja) * 2020-07-30 2022-02-03 中国塗料株式会社 エポキシ樹脂系防食塗料組成物、防食塗膜、積層防汚塗膜、防汚基材および防汚基材の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114936A (ja) * 1974-07-26 1976-02-05 Shinto Paint Co Ltd Senteibootoryo
JPS60221472A (ja) * 1984-04-18 1985-11-06 Toagosei Chem Ind Co Ltd 金属防錆用組成物
JP2011116973A (ja) * 2009-11-06 2011-06-16 Kansai Paint Co Ltd エポキシ樹脂塗料組成物
CN104356862A (zh) * 2014-11-10 2015-02-18 合肥宏图彩印有限公司 一种耐紫外老化的防锈环氧面漆及其制备方法
CN104693970A (zh) * 2013-12-10 2015-06-10 上海开林造漆厂 接触型近海渔船防污漆及制备方法
CN105238224A (zh) * 2015-11-20 2016-01-13 天津美士邦涂料化工有限公司 一种防锈蚀涂料
CN105368275A (zh) * 2015-12-11 2016-03-02 天津璞誉环保科技开发有限公司 一种新型油漆

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3656771B2 (ja) * 1995-11-29 2005-06-08 日立化成工業株式会社 変性ポリアミド樹脂の製造法、その製造法により得られる変性ポリアミド樹脂、これを用いた接着剤及びフィルム
JP3917279B2 (ja) * 1997-01-17 2007-05-23 中国塗料株式会社 非タール系エポキシ樹脂塗料組成物およびそれから形成された重防食塗膜
JP4350182B2 (ja) * 1998-10-26 2009-10-21 中国塗料株式会社 防食塗料組成物、防食塗膜および金属基材表面の防食方法
JP2002121351A (ja) * 2000-10-06 2002-04-23 Three M Innovative Properties Co 熱硬化性組成物、それを用いたシーリング物品及びシーリング構造体
JP4550259B2 (ja) * 2000-12-01 2010-09-22 日本ペイントマリン株式会社 エポキシ塗料組成物並びに防食塗装方法及び被塗物
JP5716522B2 (ja) * 2011-05-02 2015-05-13 日立化成株式会社 接着補助層用樹脂組成物
EP2966135B1 (en) * 2013-03-08 2024-02-21 Chugoku Marine Paints, Ltd. Anticorrosive coating composition, anticorrosive coating film, and method for preventing corrosion of base material
JP5933095B1 (ja) * 2015-11-17 2016-06-08 日本ペイントマリン株式会社 防食塗料組成物、塗膜、船舶及び海洋構造物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114936A (ja) * 1974-07-26 1976-02-05 Shinto Paint Co Ltd Senteibootoryo
JPS60221472A (ja) * 1984-04-18 1985-11-06 Toagosei Chem Ind Co Ltd 金属防錆用組成物
JP2011116973A (ja) * 2009-11-06 2011-06-16 Kansai Paint Co Ltd エポキシ樹脂塗料組成物
CN104693970A (zh) * 2013-12-10 2015-06-10 上海开林造漆厂 接触型近海渔船防污漆及制备方法
CN104356862A (zh) * 2014-11-10 2015-02-18 合肥宏图彩印有限公司 一种耐紫外老化的防锈环氧面漆及其制备方法
CN105238224A (zh) * 2015-11-20 2016-01-13 天津美士邦涂料化工有限公司 一种防锈蚀涂料
CN105368275A (zh) * 2015-12-11 2016-03-02 天津璞誉环保科技开发有限公司 一种新型油漆

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210112952A (ko) * 2020-03-06 2021-09-15 한국조선해양 주식회사 에폭시 도료 조성물 및 이의 도막을 갖는 해양 구조물
KR102391000B1 (ko) 2020-03-06 2022-04-27 한국조선해양 주식회사 에폭시 도료 조성물 및 이의 도막을 갖는 해양 구조물
WO2022025096A1 (ja) * 2020-07-30 2022-02-03 中国塗料株式会社 エポキシ樹脂系防食塗料組成物、防食塗膜、積層防汚塗膜、防汚基材および防汚基材の製造方法
CN116134100A (zh) * 2020-07-30 2023-05-16 中国涂料株式会社 环氧树脂系防腐蚀涂料组合物、防腐蚀涂膜、叠层防污涂膜、防污基材和防污基材的制造方法
JP7440642B2 (ja) 2020-07-30 2024-02-28 中国塗料株式会社 エポキシ樹脂系防食塗料組成物、防食塗膜、積層防汚塗膜、防汚基材および防汚基材の製造方法

Also Published As

Publication number Publication date
JPWO2018221266A1 (ja) 2020-05-21
JP6990241B2 (ja) 2022-01-12

Similar Documents

Publication Publication Date Title
CN107022273B (zh) 环氧树脂类防腐蚀涂料组合物及防腐蚀涂膜、层叠防污涂膜、防污基材及其制造方法
US9845395B2 (en) Antifouling coating composition, antifouling film, composite film, and in-water structure
JP6707123B2 (ja) 防食塗料組成物、防食塗膜、防食塗膜付き基材およびその製造方法
JP6663928B2 (ja) 防汚性複合塗膜、防汚基材、および該防汚基材の製造方法
JP6676654B2 (ja) 防汚塗料組成物、防汚塗膜、防汚基材、および該防汚基材の製造方法
EP3222682B1 (en) Two-part anti-fouling paint composition, anti-fouling paint film, anti-fouling base member, and method for manufacturing anti-fouling base member
JP4350182B2 (ja) 防食塗料組成物、防食塗膜および金属基材表面の防食方法
JP2014148639A (ja) 2成分型プライマー、プライマー塗膜、積層防汚塗膜および基材の防汚方法
JP5041353B2 (ja) 防食塗料組成物、およびそれを用いて形成された防食塗膜を含む複層塗膜形成方法
US20210301153A1 (en) Waterborne antifouling coating material composition
WO2018221266A1 (ja) エポキシ樹脂系防食塗料組成物、防食塗膜、積層防汚塗膜、および防汚基材、ならびにこれらの製造方法
US10364370B1 (en) Coating composition and coating film formed from the same
JP7440642B2 (ja) エポキシ樹脂系防食塗料組成物、防食塗膜、積層防汚塗膜、防汚基材および防汚基材の製造方法
EP3567084B1 (en) Coating composition and coating film formed therefrom
KR102680739B1 (ko) 방오성 복합 도막, 방오기재 및 그 방오기재의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809085

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019522114

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809085

Country of ref document: EP

Kind code of ref document: A1