WO2018221238A1 - 無線機器および無線機器の処理方法 - Google Patents

無線機器および無線機器の処理方法 Download PDF

Info

Publication number
WO2018221238A1
WO2018221238A1 PCT/JP2018/019081 JP2018019081W WO2018221238A1 WO 2018221238 A1 WO2018221238 A1 WO 2018221238A1 JP 2018019081 W JP2018019081 W JP 2018019081W WO 2018221238 A1 WO2018221238 A1 WO 2018221238A1
Authority
WO
WIPO (PCT)
Prior art keywords
clock
synchronization
wireless device
wireless
control unit
Prior art date
Application number
PCT/JP2018/019081
Other languages
English (en)
French (fr)
Inventor
竹識 板垣
鈴木 英之
淳二 加藤
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2019522107A priority Critical patent/JP7173001B2/ja
Priority to AU2018276459A priority patent/AU2018276459B2/en
Priority to BR112019024754A priority patent/BR112019024754A2/pt
Priority to CN201880033852.7A priority patent/CN110651446B/zh
Priority to EP18809371.0A priority patent/EP3624389B1/en
Priority to US16/605,503 priority patent/US11082141B2/en
Publication of WO2018221238A1 publication Critical patent/WO2018221238A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0685Clock or time synchronisation in a node; Intranode synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others

Definitions

  • This technology relates to a wireless device and a processing method of the wireless device.
  • the condition that the system clocks are synchronized with the other device connected wirelessly is that the device clocks of the two devices can be synchronized, or the deviation of the clocks of each other can be grasped with high accuracy and synchronization can be achieved by conversion And that the reflection processing of the device clock and the system clock has been completed in each device.
  • the purpose of this technology is to efficiently convey to the counterpart device whether the synchronization target clock has been correctly synchronized with the counterpart device.
  • a main control unit whose time is managed by a first clock;
  • a wireless control unit whose time is managed by a second clock;
  • a clock synchronization management unit that manages the status of clock synchronization is provided in the wireless device that notifies other wirelessly connected wireless devices of information regarding the status of clock synchronization by transmitting a frame.
  • the wireless device includes a main control unit, a wireless control unit, and a clock synchronization management unit.
  • the main control unit manages the time with the first clock.
  • the radio control unit manages the time with the second clock.
  • the synchronization management unit manages the status of clock synchronization. Information on the status of clock synchronization is notified to other wireless devices connected wirelessly by transmission of frames.
  • the information regarding the status of the clock synchronization may include information indicating the synchronization status.
  • the synchronization status may have two statuses: synchronized and not synchronized, or three statuses synchronized, unsynchronized and the synchronization criteria are severely out of sync. May be.
  • the clock synchronization management unit determines that the clock is synchronized when the absolute value of the clock difference between the first clock and the second clock within a predetermined time is equal to or smaller than the second threshold. , May be.
  • the clock synchronization management unit has the absolute value of the clock difference between the first clock and the second clock within the predetermined time being equal to or smaller than the second threshold and the second clock within the predetermined time.
  • the absolute value of the offset with another wireless device is equal to or less than the first threshold value, it may be determined that synchronization is established.
  • the clock synchronization management unit may determine that the synchronization reference is severe and synchronization is impossible when the state of non-synchronization continues for a predetermined time.
  • the information regarding the status of the clock synchronization may further include a reference for determining the synchronization status.
  • the information related to the clock synchronization status may further include information on the frame transmission failure rate.
  • the information related to the clock synchronization status may further include information on the amount of wireless traffic.
  • the information on the status of clock synchronization may further include information on clock drift between the second clock and another wireless device.
  • the wireless control unit transmits association information of the first clock and the second clock to another wireless device by transmitting a frame, and the association information includes difference information of the two clocks. It may be included.
  • the association information may further include granularity ratio information of two clocks.
  • the wireless control unit may transmit information regarding the status of clock synchronization as part of a frame for measuring the time of the wireless control unit with another wireless device.
  • a display unit that displays a user interface based on information related to the status of clock synchronization may be further provided.
  • the clock synchronization management unit requests the user to determine on the display unit whether or not the synchronization completion criterion used in the own station may be relaxed when the state of non-synchronization continues for a predetermined time. When the user interface is displayed and the user permits relaxation, the synchronization reference may be changed.
  • the wireless control unit notifies other wireless devices that are wirelessly connected to information on the state of clock synchronization by transmitting a frame. For this reason, it is possible to efficiently notify the counterpart device whether the synchronization target clock has been correctly synchronized.
  • a main control unit whose time is managed by a first clock;
  • a wireless control unit for managing time by a second clock;
  • the wireless control unit detects information about the clock synchronization status from other wirelessly connected wireless devices by receiving a frame,
  • the wireless device further includes a display unit that displays a user interface based on information on the clock synchronization status.
  • the wireless device includes a main control unit and a wireless control unit.
  • the main control unit manages the time with the first clock.
  • the radio control unit manages the time with the second clock.
  • Information regarding the clock synchronization status is detected by receiving a frame from another wirelessly connected wireless device.
  • the display unit displays a user interface based on information on the status of clock synchronization. For example, an application unit that performs processing based on the first clock may be further included.
  • the information regarding the status of clock synchronization may include synchronization status information.
  • the synchronization status may have two statuses: synchronized and not synchronized, or three statuses synchronized, unsynchronized and the synchronization criteria are severely out of sync. May be.
  • the display unit determines whether the synchronization reference with other wireless devices may be relaxed.
  • the wireless control unit transmits the relaxation of the synchronization reference to the other wireless device by transmitting a frame. It may be made like.
  • the wireless control unit detects information on the clock synchronization status from other wirelessly connected wireless devices by receiving a frame, and displays a user interface based on the information. Therefore, it is possible to appropriately notify the user of the status of clock synchronization.
  • FIG. 1 It is a figure which shows the operation
  • FIG. 2 is a block diagram illustrating a configuration example of a wireless system when audio synchronized playback is performed by a plurality of audio devices. It is a block diagram which shows the structural example of the radio
  • Embodiment> “Description of Reference Standards” The standard to be referred will be described.
  • the IEEE 1588 standard “1588-2008-IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems” is defined as a correction method for performing high-accuracy time synchronization between devices.
  • the protocol of this standard is also called PTP (Precision Time Protocol).
  • FIG. 1 shows an outline of PTP operation. Although detailed explanation is omitted, using the time in FIG. 1, the time lag between the master and the slave is expressed by the following formula (1).
  • the PTP method is the 802.1AS standard "802.1AS-2011--IEEE-Standard-for-Local-and-Metropolitan-Area-Networks--Timing-and-Synchronization-for-Time-Sensitive" Applications in Bridged Local Area Networks ”is defined.
  • the master clock selection algorithm and the clock relay method that do not depend on the lower-layer communication method, and some lower-layer communication methods, the time lag can be further improved.
  • Each interface is defined to provide a dedicated measurement mechanism for calculation.
  • An FTM based on the concept of PTP as a protocol for performing high-precision synchronization (time shift detection) between wireless devices when an IEEE 802.11 wireless LAN is used as a lower-layer communication method combined with the 802.1AS standard.
  • (Fine Timing Measurement) protocol is defined in the 802.11-2016 standard.
  • FIG. 2 shows an outline of the operation of the FTM protocol.
  • the time lag between the master (Responder in FIG. 2) and the slave (Slave, Initiator in FIG. 2) can be similarly obtained by replacing t1 to t4 with t1_1 to t1_4 in the above equation (1). .
  • FIG. 3 shows a format of an FTM action frame which is a measurement frame for measuring the time of the wireless control unit in FIG. 2 with other wireless devices.
  • the portion corresponding to the payload of the FTM action frame is after the “Dialog Token” field.
  • the “Dialog Token” field and the “Follow Up Dialog Token” field are indexes for associating FTM action frames transmitted a plurality of times.
  • the “Follow Up Dialog Token” field indicates to which FTM action frame the previously transmitted “ToD” field and “ToA” field correspond to.
  • time information (time stamp) corresponding to t1_1 and t4_1 in FIG. 2 is described as a value of 48 bits in units of picoseconds.
  • time stamp time stamp
  • ToD Error information indicating the maximum error between the time stamp of “ToD” and the time stamp of “ToA” is entered.
  • FIG. 3 shows a format when the FTM protocol is used alone, but an extended FTM action frame is used when the 802.1AS standard and the 802.11 FTM protocol are used in combination.
  • FIG. 4 shows the format. There is a newly added vendor specific element (Vendor Specific Element). The purpose of this element is to carry information necessary for relay transmission of the time of another Grand Master clock.
  • Vendor Specific Element The purpose of this element is to carry information necessary for relay transmission of the time of another Grand Master clock.
  • FIG. 5 shows a configuration example of the wireless system 10 as an embodiment.
  • the wireless system 10 includes a wireless device 100A and a wireless device 100B.
  • the wireless device 100A is a clock master (Clock Master) wireless device A
  • the wireless device 100B is a clock slave (Clock Slave) wireless device B.
  • the wireless devices 100A and 100B each include a main control unit 101, a wireless control unit 102, and a display unit 103.
  • the main control unit 101 is a part corresponding to the host processor of the device, and mainly performs communication protocol processing above the network layer, such as execution of application programs, control of input / output signals of the media interface, and clock synchronization management. Examples of media interface input / output include control of audio and video output timing as well as input of operation signals.
  • the radio control unit 102 mainly adds and analyzes data link layer headers for higher layer packets generated by the main control unit 101, modulation / demodulation, error correction coding and decoding, amplification, and the like in communication layers below the data link layer. It is a functional block responsible for all functions of the wireless protocol. In general, the wireless control unit 102 is a device independent of the main control unit 101, and is connected to the main control unit 101 via some I / O port.
  • the display unit 103 is used to perform display when prompting the user for input, display for prompting the user's judgment (user interface display), or the like. Note that the display unit 103 does not necessarily have to be included in the wireless devices 100A and 100B, and may be realized by a separate display device connected to the wireless devices 100A and 100B by wire or wirelessly.
  • the wireless devices 100A and 100B have a system clock (synchronization target clock).
  • the system clock is a clock for managing the time of the main control unit 101, and is managed and referred to by the main control unit 101.
  • the wireless control unit 102 has a device clock (reference clock).
  • the device clock is a clock for managing the time of the wireless control unit 102, and is managed and referenced by the wireless control unit 102.
  • the device clock Is used. In the configuration example of FIG. 5, an example in which there is one clock slave radio device is shown, but an example in which there are two or more clock slave radio devices is also conceivable.
  • FIG. 6 to 8 show configuration examples of the wireless system 10 that embodies an application using clock synchronization.
  • FIG. 6 shows a configuration example in the case where the shutter timings of a plurality of imaging devices are synchronized.
  • FIG. 7 shows a configuration example in the case of performing audio synchronized playback with a plurality of audio devices.
  • FIG. 8 shows a configuration example in the case of performing distance measurement using sound waves using a speaker and a microphone.
  • the system clock synchronization target clock
  • (A) System clock ⁇ device clock synchronization process (in wireless device A) This process is a process of reflecting the time of the system clock in the device clock on the side of the wireless device A (wireless device 100A) that is the master device.
  • FIG. 10 shows a processing flow.
  • the main control unit 101 reads a device clock count on the wireless control unit 102 side. (2) Next, the main control unit 101 reads the count of the system clock. (3) Next, the main control unit 101 calculates the clock difference after aligning the granularity of the device clock and the system clock, that is, the unit.
  • the main control unit 101 performs correction processing for improving accuracy with respect to the clock difference. For example, the delay of the interface between the main control unit 101 and the wireless control unit 102 and the processing delay are estimated by prior measurement, and processing for eliminating this influence in advance is performed. This correction process is performed as necessary, and may not be performed.
  • the main control unit 101 reflects the clock difference as a correction value in the device clock of the wireless control unit 102 and corrects the count of the device clock.
  • the way to reflect is overwriting the clock count value directly, dividing it several times while applying some kind of filter, or gradually adjusting it by adjusting how the clock count advances, Etc.
  • the main control unit 101 uses the clock difference calculated in (3) as input information for knowing the state of synchronization between the device clock (reference clock) in the device and the system clock (synchronization target clock). A series of past fixed periods is monitored and held. This information is used in (d) synchronization status management processing described later.
  • (B) Synchronization between device clocks (between wireless device A and wireless device B)” This process is a process of synchronizing the device clocks of the wireless device A (wireless device 100A) as the master device and the wireless device B (wireless device 100B) as the slave device.
  • FIG. 11 shows a processing flow.
  • This processing basically conforms to the FTM protocol of FIG. 2, but adopts formats with extension fields shown in FIGS. 12 and 13 for the formats of the FTM request frame and the FTM action frame, respectively.
  • the wireless control units 102 of the wireless device A and the wireless device B respectively generate system clocks in their own devices when generating FTM request frames and FTM action frames (hereinafter referred to as “notification frames”).
  • Notification frames Information on the synchronization status between the device clock and the device clock is stored in the notification frame.
  • information indicating the status of “synchronized” or “not synchronized” is stored in the “Target Clock Sync Status” field as information indicating the synchronization status. Also, information on the condition determined as “synchronized” or “not synchronized” is stored in the “Used Sync Criteria” field. Also, information that explicitly indicates what the synchronization target clock is is stored in the field “Target Clock Identifier”. In this embodiment, it is indicated that the synchronization target clock is a system clock. It should be noted that a value other than “0” is entered in the “Type” field to ensure compatibility with the format shown in FIG.
  • the wireless control unit 102 of the wireless device A and the wireless device B executes the processing (FTM protocol) shown in FIG. 11.
  • FTM protocol processing
  • the extension fields (“Vender Specific Field of FIGS. 12 and 13) are received.
  • the information on the synchronization status in the counterpart wireless device described in the field “)” is saved and updated each time it is received.
  • the wireless control unit 102 of the wireless device B receives the FTM action frame “FTM_2 (t1_1, t4_1) from the wireless control unit 102 of the wireless device A, and transmits an ACK frame corresponding to the FTM action frame to the wireless control unit 102 of the wireless device A. After that, the offset between the master and slave device clocks is calculated, although the detailed description is omitted, the offset calculation method is the same as that of the FTM protocol. The wireless control unit 102 corrects the device clock count.
  • the first is a method of directly updating the counter value and speed (frequency) of the device clock counter. This requires that the hardware and firmware allow this.
  • the counter is not operated directly, and a correction value for conversion that compensates for the offset is held separately, and when the device clock is read out, the converted value is returned and corrected apparently. It is a method to form. This method can be applied even when the counter cannot be rewritten directly and the counter is free-running.
  • the information on the calculated offset is monitored and held as a series of information for knowing the status of device clock synchronization between devices. This information is used in (d) synchronization status management processing described later.
  • the calculated offset itself is increasing in absolute value. Therefore, the calculated converted value is not the calculated offset itself.
  • the offset amount with respect to the clock value converted according to is monitored and held.
  • FIG. 14 shows a processing flow. Basically, an equivalent operation in the opposite direction to the above-described “(a) system clock ⁇ device clock synchronization processing” is performed.
  • the main control unit 101 reads the count of the system clock. (2) Next, the main control unit 101 reads the device clock count on the wireless control unit 102 side. (3) Next, the main control unit 101 calculates a clock difference between the device clock and the system clock.
  • the main control unit 101 performs correction processing for improving accuracy with respect to the clock difference. For example, the delay of the interface between the main control unit 101 and the wireless control unit 102 and the processing delay are estimated by prior measurement, and processing for eliminating this influence in advance is performed. This correction process is performed as necessary, and may not be performed.
  • the main control unit 101 reflects the clock difference as a correction value in the system clock and corrects the count of the system clock.
  • the way to reflect is overwriting the clock count value directly, dividing it several times while applying some kind of filter, or gradually adjusting it by adjusting how the clock count advances, Etc.
  • the main control unit 101 uses the clock difference calculated in (3) as input information for knowing the state of synchronization between the device clock (reference clock) in the device and the system clock (synchronization target clock). A series of past fixed periods is monitored and held. This information is used in (d) synchronization status management processing described later.
  • (D) Synchronization status management process (in wireless device A, wireless device B)” This process is performed in parallel with the processes (a) to (c) described above on both the wireless device A (wireless device 100A) side which is the master device and the wireless device B (wireless device 100B) side which is the slave device. This process is performed. In this embodiment, it is assumed that the synchronization status management process is performed by the main control unit 101.
  • FIG. 15 shows a processing flow of the synchronization status management process.
  • the processing cycle according to this processing flow is set according to how often the synchronization status is to be confirmed, and varies depending on the request of the application using the synchronization confirmation result. It is set to 5 s.
  • the main control unit 101 starts processing in step ST1. Thereafter, in step ST2, the main control unit 101 performs an intra-station synchronization completion determination process.
  • This intra-station synchronization completion processing is processing for determining whether or not the system clock (synchronization target clock) within the own station is sufficiently synchronized with the device clock (reference clock).
  • wireless device 100B wireless device B
  • a process for determining whether or not the device clock (reference clock) is sufficiently synchronized with the master side is also added to this intra-station synchronization completion process.
  • FIG. 16 shows a process flow of the intra-station synchronization completion determination process.
  • the main control unit 101 starts processing. Thereafter, in step ST12, the main control unit 101 determines whether or not the own station is a slave device. When it is a slave device, the main control unit 101 moves to the process of step ST13.
  • step ST13 the main control unit 101 determines whether the device clock is sufficiently synchronized with the master side.
  • the criterion for this determination is that the absolute value of the offset of the device clock with respect to the master is within a first threshold (corresponding to the required synchronization accuracy between device clocks) for a fixed time. This fixed time is automatically set according to the application using the synchronization confirmation result or arbitrarily set by the user, for example.
  • step ST14 When determining that the device clock is sufficiently synchronized with the master side, the main control unit 101 proceeds to the process of step ST14.
  • the slave device is not a slave device in step ST12
  • the main control unit 101 immediately moves to the process of step ST14. Since the master device treats the device clock error between devices as always zero, the process of step ST13 is skipped.
  • step ST14 the main control unit 101 determines whether the system clock in the own station is sufficiently synchronized with the device clock.
  • the criterion for this determination is that the absolute value of the clock difference between the system clock and the device clock falls within the second threshold (corresponding to the required synchronization accuracy between the system clock and device clock in the device) for a certain period of time.
  • This fixed time is automatically set according to the application using the synchronization confirmation result or arbitrarily set by the user, for example.
  • the main control unit 101 When determining that the system clock in the own station is sufficiently synchronized with the device clock, the main control unit 101 updates the synchronization status in the own station to “synchronized” in step ST5. After the process of step ST15, the main control unit 101 ends the process in step ST16.
  • step ST13 when it is not determined in step ST13 that the device clock is sufficiently synchronized with the master side, or when it is not determined in step ST14 that the system clock in the own station is sufficiently synchronized with the device clock, the main control unit 101 performs step ST17. , The own station synchronization status is updated to “not synchronized”. After the process in step ST17, the main control unit 101 ends the process in step ST16.
  • step ST ⁇ b> 3 the main control unit 101 determines that the in-station synchronization status, that is, the status of “synchronized” or “not synchronized” indicates the notification frame (see FIGS. 12 and 13). Written in the "Target Clock Sync Status" field. Also.
  • the first threshold which is a condition for determining the accuracy of synchronization between device clocks, is stored in the “Inter-device sync accuracy” field of the notification frame, and the device clock and system are entered in the “Intra-device Sync accuracy” field.
  • a second threshold value that is a determination condition for synchronization accuracy between clocks is stored.
  • step ST4 the main control unit 101 performs an intra-station synchronization completion determination process.
  • the status of “synchronized” is set as the synchronization status written in the “Target Clock Sync Status” field of the notification frame received from the partner station (see FIGS. 12 and 13). It is determined whether or not is written.
  • FIG. 17 shows the processing flow of the intra-station synchronization completion determination process.
  • the main control unit 101 starts processing. Thereafter, in step ST22, the main control unit 101 determines whether or not the information in the “Target Clock Sync Status” field received from the connection partner station is “synchronized” status.
  • the main control unit 101 When determining that the status is “synchronized”, the main control unit 101 updates the synchronization status in the partner station to a status “synchronized” in step ST23. After the process of step ST23, the main control unit 101 ends the process in step ST24. Further, when determining that it is “not synchronized” in step ST22, the main control unit 101 updates the synchronization status in the partner station to a status “not synchronized” in step ST25. After the process of step ST25, the main control unit 101 ends the process in step ST24.
  • step ST ⁇ b> 5 the main control unit 101 determines whether both the own station synchronization status and the other station synchronization status are “synchronized” statuses. When determining that the statuses are not “synchronized”, the main control unit 101 determines that the partner station and the system clock (synchronization target clock) are not synchronized with each other, and returns to the process of step ST2.
  • the main control unit 101 determines that the partner station and the system clock (synchronization target clock) can be synchronized with each other, and if necessary, in step ST6 To notify the application and use it for synchronization. For example, in the above-described example of shutter timing synchronization, notification that the shutter is ready is notified, in the above-described example of audio playback synchronization, notification of completion of playback preparation is provided, and in the above-described example of sound wave distance measurement, distance measurement is performed. This means notification of completion of preparation for sound wave reproduction. After the process in step ST6, the main control unit 101 returns to the process in step ST2.
  • FIG. 18 shows a processing flow in that case.
  • the synchronization status management process shown in FIG. 15 is performed in each of the wireless device 100A (wireless device A) and the wireless device 100B (wireless device B). Therefore, each of the wireless device 100A (wireless device A) and the wireless device 100B (wireless device B) can efficiently know whether or not the system clock (synchronization target clock) has been correctly synchronized with the counterpart station. Information can be used effectively.
  • a second embodiment will be described.
  • the second embodiment is an example in which more information is supplied than in the first embodiment and finer control is possible.
  • the correspondence between the system configuration and the synchronization procedure is the same as that in the first embodiment (see FIGS. 5 and 9).
  • the synchronization procedure in the second embodiment will be described by dividing it into four processes (a) to (d), as in the first embodiment.
  • (A) System clock ⁇ device clock synchronization process (in wireless device A) This process is a process of reflecting the time of the system clock in the device clock on the side of the wireless device A (wireless device 100A) that is the master device. Since this process is the same as the process (see FIG. 10) in the first embodiment described above, a description thereof will be omitted.
  • (B) Synchronization between device clocks (between wireless device A and wireless device B)” This process is a process of synchronizing the device clocks of the wireless device A (wireless device 100A) as the master device and the wireless device B (wireless device 100B) as the slave device.
  • FIG. 19 shows a processing flow.
  • This processing basically conforms to the FTM protocol in FIG. 2 as in the processing flow shown in FIG. 11 in the first embodiment.
  • the formats with the extension fields shown in FIGS. 20 and 21 are adopted as the formats of the FTM request frame and the FTM action frame, which are notification frames.
  • the first threshold value (synchronization between device clocks with the counterpart device) used in the synchronization completion determination processing in the synchronization status management processing (in the wireless device A and in the wireless device B)
  • the master device determines the accuracy determination condition) and the second threshold value (the determination accuracy condition for synchronization between the device clock in the device and the system clock) and follows the slave device.
  • a first threshold value that is a condition for determining the accuracy of synchronization between device clocks is stored in the “Inter-device Syncurity” field, and “Intra-device Sync” In the field of “accuracy”, a second threshold value that is a condition for determining the synchronization accuracy between the device clock and the system clock is stored.
  • the master device determines the first threshold value and the second threshold value, and makes them follow the slave device.
  • the “RequiredRequireSync Criteria” information of the FTM request frame may be different from the “Required Sync Criteria” information of the FTM action frame.
  • the first threshold value and the second threshold value that the slave device requests from the master device may be inserted.
  • information for enabling the FTM sequence execution frequency to be optimally adjusted is also notified for the purpose of improving the accuracy of device clock synchronization by FTM.
  • This information is stored in the fields of “Traffic Load Information”, “FTM Failure Failure Probability”, and “Ref Clock Drift Rate” in FIGS.
  • the “Traffic Load Information” field information on the amount of traffic (reception and transmission) that the local station is exchanging using the wireless interface is placed. Specifically, the amount of transmitted / received information within a certain fixed time is reported. This information is an indicator of wireless load.
  • this field is used because the base station cannot grasp the wireless load exchanged with a partner other than the own station.
  • FTM Failure Probability information on the probability of FTM frame transmission failure is recorded. If the FTM frame exchange fails, the offset value is not updated. In some cases, drift between reference clocks can accumulate until successful.
  • the clock drift between device clocks that is, the amount of frequency deviation, is transmitted. It is possible to grasp how fast the clock shifts from the transition of the past offset calculation results. This information may be used for adjusting the first threshold value.
  • the radio control unit 102 of the radio device A and the radio device B performs adjustment using information in each field of “Traffic Load Information”, “FTM Failure Probability”, and “Ref Clock Drift Rate”. For example, as shown in FIG. 19, the slave device increases the FTM request frame transmission interval, the master device increases the number of FTM action frames transmitted per FTM request frame and the transmission interval of FTM action frames, and increases the success rate of the FTM sequence. So that the clock offset can be further reduced.
  • (C) Device clock ⁇ System clock synchronization process (in wireless device B) This process is a process of reflecting the time of the device clock in the system clock on the side of the wireless device B (wireless device 100B) that is the slave device. Since this process is the same as the process (see FIG. 14) in the first embodiment described above, a description thereof will be omitted.
  • (D) Synchronization status management process (in wireless device A, wireless device B)” This process is performed in parallel with the processes (a) to (c) described above on both the wireless device A (wireless device 100A) side which is the master device and the wireless device B (wireless device 100B) side which is the slave device. This process is performed.
  • the parent flow of the synchronization status management process is the same as that in the first embodiment (see FIG. 15). However, the contents of the intra-station synchronization completion determination process and the counterpart station synchronization completion determination process are different from those of the first embodiment.
  • FIG. 22 shows a process flow of the intra-station synchronization completion determination process.
  • steps corresponding to those in FIG. 16 are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate.
  • the slave device transmits the synchronization determination condition (first threshold value, second threshold value) in step ST13 and step ST14 from the master device in the “Required Sync Criteria” field of the notification frame.
  • the determined synchronization determination condition is used. That is, the slave device performs synchronization determination according to the synchronization determination condition determined by the master device.
  • step ST13 When it is not determined in step ST13 that the device clock is sufficiently synchronized with the master side, or when it is not determined in step ST14 that the system clock in the local station is sufficiently synchronized with the device clock, the main control unit 101 determines in step ST18. It is determined whether or not the slave device is in a state where the synchronization completion determination condition is not satisfied for a long time.
  • step ST19 the synchronization status within the own station is set to “synchronization”. It is updated to “Not done”, and then the process ends in step ST16.
  • step ST19 the main control unit 101 updates its own synchronization status to “synchronization reference is strict and synchronization is impossible”. After the process in step ST19, the main control unit 101 ends the process in step ST16.
  • the main control unit 101 enters the “Target Clock Sync Status” field of the notification frame in step ST3 of the processing flow of FIG. Write and tell the master device. In this case, it is also possible to write the required value of the synchronization criterion in the “Required Sync Criteria” field of the notification frame and transmit it to the master side.
  • FIG. 23 shows the processing flow of the intra-station synchronization completion determination processing.
  • steps corresponding to those in FIG. 17 are denoted by the same reference numerals, and detailed description thereof will be omitted as appropriate.
  • step ST26 it is determined whether or not the information in the “Target Clock Sync Status” field received most recently from the connection partner station is “synchronization reference is strict and synchronization is impossible”.
  • the main control unit 101 displays a user interface (UI) display for determining whether or not the synchronization reference relaxation with the partner station is possible in step ST27. And prompts the user for input.
  • UI user interface
  • the user is currently in the “high quality mode” and requests the user to input whether or not to switch to the “standard mode”.
  • the “high quality mode” means a mode for synchronization with the original required synchronization accuracy
  • the “normal mode” means a mode for synchronization with a more relaxed required synchronization accuracy.
  • the main control unit 101 determines in step ST28 whether or not there is an input of “synchronization criteria relaxation acceptance with the counterpart station” from the user, that is, the UI of FIG. It is determined whether or not “YES” is selected in the display example.
  • the main control unit 101 changes the requested synchronization accuracy addressed to the connection partner station, that is, the synchronization completion determination criterion desired to be used in step ST29, and Update the contents stored in the “Required Sync Criteria” field.
  • the main control unit 101 ends the process in step ST24 after the process of step ST29. Further, when it is determined in step ST26 that the synchronization reference is not strict and synchronization is impossible, or when it is determined in step ST28 that there is no input of synchronization reference relaxation acceptance, the main control unit 101 immediately moves to step ST24 and performs processing. finish.
  • a third embodiment will be described.
  • the dynamic change of the synchronization determination criterion in the user determination by the user interface described in the second embodiment is used even when the master device does not manage the determination criterion as in the second embodiment. Can do.
  • the third embodiment is an example of incorporating a dynamic change of the synchronization determination criterion in the user judgment by the user interface based on the above-described first embodiment.
  • the correspondence between the system configuration and the synchronization procedure is the same as that in the first embodiment (see FIGS. 5 and 9).
  • the synchronization procedure in the third embodiment will be described by dividing it into four processes (a) to (d) as in the first embodiment.
  • (A) System clock ⁇ device clock synchronization process (in wireless device A) This process is a process of reflecting the time of the system clock in the device clock on the side of the wireless device A (wireless device 100A) that is the master device. Since this process is the same as the process (see FIG. 10) in the first embodiment described above, a description thereof will be omitted.
  • (B) Synchronization between device clocks (between wireless device A and wireless device B)” This process is a process of synchronizing the device clocks of the wireless device A (wireless device 100A) as the master device and the wireless device B (wireless device 100B) as the slave device. Since this process is also the same as the process (see FIG. 10) in the first embodiment described above, the description thereof is omitted.
  • the format of a frame to be transmitted / received also conforms to the first embodiment.
  • (C) Device clock ⁇ System clock synchronization process (in wireless device B) This process is a process of reflecting the time of the device clock in the system clock on the side of the wireless device B (wireless device 100B) that is the slave device. Since this process is the same as the process (see FIG. 14) in the first embodiment described above, a description thereof will be omitted.
  • the first threshold (judgment condition for the synchronization accuracy between device clocks with the counterpart device) and the second threshold (between the device clock and the system clock in the device) used in the synchronization completion determination process This is a precondition for setting and managing the synchronization accuracy determination conditions) at the responsibility of each device.
  • the parent flow of the synchronization status management process is the same as that in the first embodiment (see FIG. 15). However, the content of the intra-station synchronization completion determination process, which is the internal process, is different from that of the first embodiment.
  • FIG. 26 shows a processing flow of the intra-station synchronization completion determination processing in the third embodiment.
  • steps corresponding to those in FIG. 16 are denoted by the same reference numerals, and detailed description thereof will be omitted as appropriate.
  • step ST30 the main control unit 101 determines whether or not a situation that cannot be regarded as synchronized in the determination of the first threshold value or the determination of the second threshold value continues for a long time.
  • step ST31 the main control unit 101 displays a user interface (UI) on the display unit 103 for determining whether the synchronization completion determination criteria used by the own station can be relaxed, Require user input.
  • UI user interface
  • An example of UI display is the same as in the second embodiment (see FIG. 24).
  • step ST32 the main control unit 101 determines whether or not there is an input of “synchronization reference relaxation acceptance” from the user, that is, whether or not “YES” is selected in the UI display example of FIG. .
  • the main control unit 101 changes the synchronization completion determination reference used by the own station in step ST33, and uses “Used ⁇ Sync” of the notification frame used for transmission after the next time. Update the content stored in the Criteria field.
  • the main control unit 101 ends the process in step ST16 after the process of step ST33. Further, when it is determined in step ST30 that it has not continued for a long time, or when it is determined in step ST32 that there is no input of acceptance of synchronization reference relaxation, the main control unit 101 immediately moves to step ST16 and ends the process.
  • the reference can be adjusted after obtaining the user's permission.
  • Table 1 below schematically shows the outline and differences of the first embodiment, the second embodiment, and the third embodiment.
  • FIG. 25 shows an example in which information of “clockrangranularityatioratio” and “clock difference” is placed on the vendor-specific element of the FTM action frame in the second embodiment.
  • the information “clock granularity ratio” indicates the ratio of the granularity between the system clock and the device clock.
  • the information of “clock ⁇ difference” indicates a difference value to be added after the ratio of the granularity of the system clock and the device clock is aligned with the system clock. Note that the added two pieces of information may be included as another second vendor-specific element.
  • the synchronization protocol in the wireless layer is the FTM (Fine Timing Measurement) protocol.
  • the synchronization protocol in the wireless layer is not limited to the FTM protocol, and may be a TM (Timing Measurement) protocol.
  • the same processing can be performed by simply replacing the FTM action frame with the TM action frame in the device clock synchronization process of FIG. 11 described above.
  • the present technology can be similarly applied only by changing a notification frame in which information in the vendor-specific element in the present technology is placed.
  • the notification frame is an FTM request frame or an FTM action frame.
  • the notification frame is not limited to these, and may be another management frame or a public action frame.
  • the present technology can be applied regardless of the type of frame as long as equivalent information can be transmitted.
  • the synchronization target clock to be synchronized between the two wireless devices via the device clock is the system clock, but the time of the media processing unit such as audio and video is managed. Another clock such as a clock to be used may be used.
  • the synchronization procedure is the same as that in the above-described embodiment only by replacing the system clock of the main control unit 101 with the clock of the media processing unit.
  • the system clock of the wireless device 100A which is the master device, is used as the master clock for all the systems.
  • the device clock of the wireless device 100A is used as the master clock.
  • the wireless device 100A may perform the process (c) instead of the process (a) of the synchronization procedure described above.
  • the format of the 802.1AS-compliant extended FTM action frame and the extended field of the present technology may be used together. In that case, each vendor-specific element is arranged in order.
  • this technique can also take the following structures.
  • a main control unit whose time is managed by a first clock;
  • a wireless control unit whose time is managed by a second clock;
  • a wireless device that includes a clock synchronization management unit that manages a state of clock synchronization, and that the wireless control unit notifies other wirelessly connected wireless devices of information regarding the state of clock synchronization by transmitting a frame.
  • the wireless device according to (1) wherein the information regarding the status of the clock synchronization includes information indicating a synchronization status.
  • the synchronization status has three statuses: synchronized and not synchronized, or synchronized, unsynchronized, and synchronization criteria are severely unsynchronized. ) Wireless device.
  • the clock synchronization management unit determines that the clock is synchronized when the absolute value of the clock difference between the first clock and the second clock within a predetermined time is equal to or smaller than a second threshold.
  • the wireless device according to (3) The clock synchronization management unit is configured such that an absolute value of a clock difference between the first clock and the second clock within a predetermined time is equal to or less than a second threshold value and the second clock within the predetermined time.
  • the wireless device according to (3) wherein when the absolute value of the offset with the other wireless device is equal to or less than a first threshold value, the synchronization is determined.
  • the information regarding the status of the clock synchronization further includes information on clock drift between the second clock and the other wireless device.
  • the wireless control unit transmits the association information of the first clock and the second clock to the other wireless device by transmitting the frame,
  • the wireless device according to (11), wherein the association information further includes granularity ratio information of the two clocks.
  • the wireless control unit The information on the status of the clock synchronization is transmitted as a part of a frame for measuring the time of the wireless control unit with the other wireless device.
  • the wireless device according to any one of (1) to (13), further including a display unit configured to display a user interface based on information regarding the clock synchronization status.
  • the clock synchronization management unit requests the user to determine whether or not the synchronization completion criterion used in the own station may be relaxed when the state of non-synchronization continues for a predetermined time.
  • the wireless device according to (14), wherein a user interface is displayed and the synchronization reference is changed when the user permits relaxation.
  • a main control unit whose time is managed by the first clock;
  • a wireless control unit whose time is managed by a second clock;
  • a processing method of a wireless device including a clock synchronization management unit that manages the status of clock synchronization,
  • a method of processing a wireless device comprising: a step in which the wireless control unit notifies other wireless devices wirelessly connected of information related to the state of clock synchronization by transmitting a frame.
  • a main control unit whose time is managed by the first clock; A wireless control unit for managing time by a second clock; The wireless control unit detects information about the clock synchronization status from other wirelessly connected wireless devices by receiving a frame, A wireless device further comprising: a display unit configured to display a user interface based on information regarding the clock synchronization status.
  • the information related to the clock synchronization status includes information indicating a synchronization status.
  • the wireless control unit frames the relaxation of the synchronization reference on the other wireless device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

相手機器との間で同期対象クロックが正しく同期できたかを当該相手機器に効率よく伝える。 無線機器は、メイン制御部と、無線制御部と、クロック同期管理部を備える。メイン制御部は、第1のクロック(同期対象クロック)で時刻が管理される。無線制御部は、第2のクロック(参照クロック)で時刻が管理される。同期管理部により、クロック同期の状況が管理される。無線接続された他の無線機器に、クロック同期の状況に関する情報をフレームの送信により通知する。

Description

無線機器および無線機器の処理方法
 本技術は、無線機器および無線機器の処理方法に関する。
 無線LANによって接続された2つの無線機器間において時刻の同期を行う際に、それぞれの機器が、メイン制御部の時刻を管理するクロック(システムクロック)と、無線制御部の時刻を管理するクロック(デバイスクロック=NICクロック)を持っている場合に、無線制御部を介してシステムクロックを機器間で同期させる方法として、例えば、以下の(A)、(B)が考えられる。
 (A)IP層レベルのPTPを使用する方法
 IEEE1588 PTP(Precision Time Protocol)に準拠したフォーマットのフレーム、即ちSYNCフレームやFOLLOW_UPフレーム、PDELAY_Reqフレーム、PDELAY_Respフレームを使用して、無線メディアを通してそのフレーム交換を行い、システムクロックを同期する(非特許文献1参照)。上位層でタイムスタンプを付与することを想定したフォーマットになるため、同期精度が悪くなる欠点がある。
 (B)無線層レベルのクロック同期を利用する方法
 802.11-2016規格にて規定されているFTM(Fine Timing Measurement)プロトコルを使用し、まず機器間のデバイスクロックのずれを求めて同期させる(非特許文献2参照)。その後、デバイスクロックの時刻値をシステムクロックに反映させる。
1588-2008 - IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems IEEE 802.11-2016, IEEE Standard for Information technology?Telecommunications and information exchange between systems Local and metropolitan area networks?Specific requirements Part 11: Wireless LAN Medium Access Control(MAC) and Physical Layer (PHY) Specifications
 システムクロック同士が無線接続した相手機器と同期している条件としては、2機器のデバイスクロック同士が同期できている、あるいは互いのクロックのずれを高精度に把握して換算により同期が可能な状態であることと、それぞれの機器内においてデバイスクロックとシステムクロックの反映処理が済んだこと、が条件である。
 しかし、相手機器内でのデバイスクロックとシステムクロックの反映処理が済んだかどうかは、一般的には知ることができない。そのため、別途上位層でのメッセージを無線送信して伝える必要があるが、専用のメッセージを生成して送信することは、無線メディアの利用の面でも、プロセッサの処理の面でも、効率が悪いという問題がある。
 本技術の目的は、相手機器との間で同期対象クロックが正しく同期できたかを当該相手機器に効率よく伝えることにある。
 本技術の概念は、
 第1のクロックで時刻が管理されるメイン制御部と、
 第2のクロックで時刻が管理される無線制御部と、
 クロック同期の状況を管理するクロック同期管理部を備え
 上記無線制御部は、無線接続された他の無線機器に、クロック同期の状況に関する情報をフレームの送信により通知する
 無線機器にある。
 本技術において、無線機器は、メイン制御部と、無線制御部と、クロック同期管理部を備えるものである。メイン制御部は、第1のクロックで時刻が管理される。無線制御部は、第2のクロックで時刻が管理される。同期管理部により、クロック同期の状況が管理される。無線接続された他の無線機器に、クロック同期の状況に関する情報がフレームの送信により通知される。
 例えば、クロック同期の状況に関する情報は、同期ステータスを示す情報を含む、ようにされてもよい。この場合、例えば、同期ステータスは、同期しているおよび同期していない、という2つのステータス、あるいは同期している、同期していないおよび同期基準が厳しく同期不能、という3つのステータスを持つ、ようにされてもよい。
 そして、この場合、例えば、クロック同期管理部は、所定時間内の第1のクロックと第2のクロックのクロック差分の絶対値が第2の閾値以下であるとき、同期している、と判定する、ようにされてもよい。また、この場合、例えば、クロック同期管理部は、所定時間内の第1のクロックと第2のクロックのクロック差分の絶対値が第2の閾値以下であり、かつ所定時間内の第2のクロックの他の無線機器との間のオフセットの絶対値が第1の閾値以下であるとき、同期している、と判定する、ようにされてもよい。また、この場合、例えば、クロック同期管理部は、同期していない状態が所定時間続いているとき、同期基準が厳しく同期不能、と判定する、ようにされてもよい。
 また、例えば、クロック同期の状況に関する情報は、同期ステータスの判定のための基準をさらに含む、ようにされてもよい。また、例えば、クロック同期の状況に関する情報は、フレームの送信失敗率の情報をさらに含む、ようにされてもよい。また、例えば、クロック同期の状況に関する情報は、無線のトラフィック量の情報をさらに含む、ようにされてもよい。また、例えば、クロック同期の状況に関する情報は、第2のクロックの他の無線機器との間のクロックドリフトの情報をさらに含む、ようにされてもよい。
 また、例えば、無線制御部は、他の無線機器に、フレームの送信により、第1のクロックと第2のクロックの対応付け情報を送信し、対応付け情報には、2つのクロックの差分情報が含まれる、ようにされてもよい。この場合、例えば、対応付け情報には、2つのクロックの粒度比情報がさらに含まれる、ようにされてもよい。
 また、例えば、無線制御部は、クロック同期の状況に関する情報を、無線制御部の時刻を他の無線機器との間で計測するためのフレームの一部として送信する、ようにされてもよい。また、例えば、クロック同期の状況に関する情報に基づいたユーザインタフェース表示をする表示部をさらに備える、ようにされてもよい。そして、この場合、クロック同期管理部は、同期していない状態が所定時間続いているとき、表示部に、自局内が使用する同期完了判定基準を緩和してよいかの判断をユーザに要求するユーザインタフェース表示をし、ユーザが緩和することを許諾したとき、同期基準を変更する、ようにされてもよい。
 このように本技術においては、無線制御部は無線接続された他の無線機器にクロック同期の状況に関する情報をフレームの送信により通知するものでる。そのため、同期対象クロックが正しく同期できたかを相手機器に効率よく伝えることが可能となる。
 また、本技術の他の概念は、
 第1のクロックで時刻が管理されるメイン制御部と、
 第2のクロックで時刻が管理される無線制御部を備え、
 上記無線制御部は、無線接続された他の無線機器から、クロック同期の状況に関する情報をフレームの受信により検知し、
 上記クロック同期の状況に関する情報に基づいたユーザインタフェース表示をする表示部をさらに備える
 無線機器にある。
 本技術において、無線機器は、メイン制御部と、無線制御部を備えるものである。メイン制御部は、第1のクロックで時刻が管理される。無線制御部は、第2のクロックで時刻が管理される。無線接続された他の無線機器から、クロック同期の状況に関する情報がフレームの受信により検知される。表示部により、クロック同期の状況に関する情報に基づいたユーザインタフェース表示がされる。例えば、第1のクロックに基づいた処理を行うアプリケーション部をさらに備える、ようにされてもよい。
 例えば、クロック同期の状況に関する情報は、同期ステータス情報を含む、ようにされてもよい。この場合、例えば、同期ステータスは、同期しているおよび同期していない、という2つのステータス、あるいは同期している、同期していないおよび同期基準が厳しく同期不能、という3つのステータスを持つ、ようにされてもよい。
 また、この場合、例えば、同期ステータスが、同期基準が厳しく同期不能、を意味するステータスを示しているとき、表示部は、他の無線機器との同期基準を緩和してよいかの判断をユーザに要求するユーザインタフェース表示をし、ユーザが他の無線機器との同期基準を緩和することを許諾したとき、無線制御部は、他の無線機器に、同期基準の緩和をフレームの送信により伝える、ようにされてもよい。
 このように本技術においては、無線制御部は無線接続された他の無線機器からクロック同期の状況に関する情報をフレームの受信により検知し、その情報に基づいたユーザインタフェース表示をするものである。そのため、クロック同期の状況などをユーザに適切に伝えることが可能となる。
 本技術によれば、同期対象クロックが正しく同期できたかを相手機器に効率よく伝えることが可能となる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
PTP(Precision Time Protocol)の動作概要を示す図である。 FTM(Fine Timing Measurement)プロトコルの動作概要を示す図である。 FTMアクションフレームのフォーマットを示す図である。 802.1AS規格と802.11 FTMプロトコルを組み合わせて使用する場合の拡張されたFTMアクションフレームのフォーマットを示す図である。 実施の形態としての無線システムの構成例を示すブロック図である。 複数台の撮像機器のシャッターのタイミングを同期させる場合の無線システムの構成例を示すブロック図である。 複数台のオーディオ機器でオーディオ同期再生を行う場合の無線システムの構成例を示すブロック図である。 スピーカとマイクを用いて音波による測距を行う場合の無線システムの構成例を示すブロック図である。 通信システムを構成する2つの無線機器のシステムクロックの同期手順を示す図である。 マスター機器である無線機器A側においてシステムクロックの時刻をデバイスクロックに反映させる処理の処理フローの一例を示す図である。 マスター機器である無線機器Aとスレーブ機器である無線機器Bのデバイスクロックを同期させる処理の処理フローの一例を示す図である。 拡張FTMリクエストフレームのフォーマットの一例を示す図である。 拡張FTMアクションフレームのフォーマットの一例を示す図である。 スレーブ機器である無線機器B側においてデバイスクロックの時刻をシステムクロックに反映させる処理の処理フローの一例を示す図である。 マスター機器、スレーブ機器の同期状況管理処理の処理フローの一例を示す図である。 自局内同期完了判定処理の処理フローの一例を示す図である。 相手局内同期完了判定処理の処理フローの一例を示す図である。 自局内同期完了判定処理と相手局内同期完了判定処理が並列に行われる場合における同期状況管理処理の処理フローの一例を示す図である。 マスター機器である無線機器Aとスレーブ機器である無線機器Bのデバイスクロックを同期させる処理の処理フローの一例を示す図である。 第2の実施の形態で採用する拡張されたFTMリクエストフレームのフォーマットの一例を示す図である。 第2の実施の形態で採用する拡張されたFTMアクションフレームのフォーマットの一例を示す図である。 自局内同期完了判定処理の処理フローの一例を示す図である。 相手局内同期完了判定処理の処理フローの一例を示す図である。 同期基準緩和の可否判断のためのユーザインタフェース(UI)表示の一例を示す図である。 FTMアクションフレームのベンダー・スペシフィック・エレメントに対して、「clock granularity ratio」、「clock difference」の情報を載せた例を示す図である。 自局内同期完了判定処理の処理フローの一例を示す図である。
 以下、発明を実施するための形態(以下、「実施の形態」とする)について説明する。なお、説明は以下の順序で行う。
 1.実施の形態
  第1の実施の形態
  第2の実施の形態
 2.変形例
 <1.実施の形態>
 「参照規格の説明」
 参照する規格を説明する。機器間で高精度な時刻同期を行う補正手法として、IEEE1588規格「1588-2008 - IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems」が規定されている。この規格のプロトコルはPTP(Precision Time Protocol)とも呼ばれる。
 図1は、PTPの動作概要を示している。詳細説明は省略するが、図1中の時刻を用いると、マスター(Master)-スレーブ(Slave)間の時刻のずれは、以下の数式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 また、PTPの手法を、LAN(Local Area Network)用途に機能を規定した上位層規格として、802.1AS規格「802.1AS-2011 - IEEE Standard for Local and Metropolitan Area Networks - Timing and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks」が定められている。この規格では、IEEE1588規格を参照しつつ、下位層の通信方式に依存しないマスタークロック選択のアルゴリズムならびにクロック中継の方法と、いくつかの下位層通信方式に対しては、さらに高精度に時刻ずれを算出するための専用の計測機構を提供するためのインターフェースをそれぞれ規定している。
 そして、802.1AS規格と組み合わせる下位層の通信方式としてIEEE802.11無線LANを使用する場合の、無線機器間の高精度同期(時刻ずれ検出)を行うプロトコルとして、PTPの考え方をベースにしたFTM(Fine Timing Measurement)プロトコルが、802.11-2016規格にて規定されている。
 図2は、FTMプロトコルの動作概要を示している。マスター(Master、図2中ではResponder)-スレーブ(Slave、図2中ではInitiator)間の時刻ずれは、上述の数式(1)において、t1~t4をt1_1~t1_4に読み替えることで同様に得られる。
 図3は、図2中における、無線制御部の時刻を他の無線機器との間で計測する計測用フレームであるFTMアクション(action)フレームのフォーマットを示している。このフォーマットにおいて、FTMアクションフレームのペイロード(Payload)に当たる部分は、「Dialog Token」フィールド以降である。「Dialog Token」フィールドならびに「Follow Up Dialog Token」フィールドは、複数回送信されるFTMアクションフレームを対応付けるためのインデックスである。
 「Follow Up Dialog Token」フィールドは、この後ろに記載される「ToD」フィールドならびに「ToA」フィールドが、以前に送信されたどのFTMアクションフレームのものに対応するかを示すものである。
 「ToD」フィールドと「ToA」フィールドは、それぞれ、図2のt1_1とt4_1に相当する時刻情報(タイムスタンプ)が48ビットでピコsec単位の値として記載される。「ToD Error」フィールドならびに「ToA Error」フィールドには、それぞれ、「ToD」のタイムスタンプと「ToA」のタイムスタンプの最大誤差を示す情報が入る。
 図3は、FTMプロトコルを単体で使用する場合のフォーマットであるが、802.1AS規格と802.11 FTMプロトコルを組み合わせて使用する場合には、拡張されたFTMアクションフレームが使用される。図4は、そのフォーマットを示している。新たに付加されたベンダー・スペシフィック・エレメント(Vendor Specific Element)が存在する。このエレメントの用途は、別のグランド・マスター(Grand Master)クロックの時刻を中継送信する際に必要な情報を載せることにある。
 [第1の実施の形態]
 第1の実施の形態について説明する。図5は、実施の形態としての無線システム10の構成例を示している。この無線システム10は、無線機器100Aと無線機器100Bを有する構成となっている。この実施の形態では、無線機器100Aがクロックマスター(Clock Master)の無線機器Aであり、無線機器100Bがクロックスレーブ(Clock Slave)の無線機器Bであるとする。
 無線機器100A,100Bは、それぞれ、メイン制御部101と、無線制御部102と、表示部103を有している。メイン制御部101は、機器のホストプロセッサに相当する部分であり、アプリケーションプログラムの実行、メディアインタフェースの入出力信号の制御、クロック同期管理など、主にネットワーク層以上の通信プロトコル処理を行う。メディアインタフェースの入出力の例としては、操作信号の入力の他、オーディオや映像の出力のタイミング制御も含まれる。
 無線制御部102は、メイン制御部101にて生成された上位層パケットに対するデータリンク層ヘッダの付加と解析、変復調、誤り訂正符号化と復号、増幅など、主にデータリンク層以下の通信レイヤの無線プロトコルの全ての機能を担う機能ブロックである。一般的に、無線制御部102は、メイン制御部101とは独立したデバイスであり、何らかのI/Oポートを介してメイン制御部101と接続される。
 表示部103は、ユーザに入力を促す際の表示、あるいはユーザの判断を仰ぐ際の表示(ユーザインタフェース表示)などを行うために利用される。なお、表示部103は、無線機器100A,100Bが必ずしも有していなくてもよく、無線機器100A,100Bに有線または無線を介して接続された別体の表示機器で実現されてもよい。
 無線機器100A,100Bは、システムクロック(同期対象クロック)を持っている。このシステムクロックは、メイン制御部101の時刻を管理するクロックであり、メイン制御部101で管理、参照される。無線制御部102は、デバイスクロック(参照クロック)を持っている。デバイスクロックは、無線制御部102の時刻を管理するクロックであり、無線制御部102で管理・参照される。
 上述のt1_1(ToD)とt4_1(ToA)の時刻としてはフレームの無線送出時刻、受信開始時刻をできる限り正確に載せる必要があり、送出タイミング、受信タイミングをずれなく検出するためには、デバイスクロックを使用する。なお、図5の構成例では、クロックスレーブの無線機器が1台の例を示したが、クロックスレーブの無線機器が2台以上の例も考えらえる。
 図6~図8は、クロック同期を利用するアプリケーションを具体化した無線システム10の構成例を示している。これらの図において、図5と対応する部分には、同一符号を付して示している。図6は、複数台の撮像機器のシャッターのタイミングを同期させる場合の構成例を示している。図7は、複数台のオーディオ機器でオーディオ同期再生を行う場合の構成例を示している。図8は、スピーカとマイクを用いて音波による測距を行う場合の構成例を示している。いずれの構成例においても、システムクロック(同期対象クロック)がタイミング取得に利用される。
 図9を参照して、通信システム10を構成する2つの無線機器100A,100Bにおけるシステムクロック(同期対象クロック)の同期手順を説明する。なお、無線機器100Aと無線機器100Bの接続動作と、クロックマスターかクロックスレーブかを示すクロックロール(Clock Role)の決定は済んでいるものとする。以降では、(a)~(d)の4つの処理に分けて説明する。なお、(a)~(c)の処理は順に行われても、並列に行われてもよい。また、(d)の処理は、(a)~(c)の処理とは並列に行われる。
 「(a)システムクロック→デバイスクロックの同期処理(無線機器A内)」
 この処理は、マスター機器である無線機器A(無線機器100A)側において、システムクロックの時刻をデバイスクロックに反映させる処理である。図10は、処理フローを示している。
 (1)まず、メイン制御部101は、無線制御部102側のデバイスクロックのカウントを読み出す。
 (2)次に、メイン制御部101は、システムクロックのカウントを読み出す。
 (3)次に、メイン制御部101は、デバイスクロックとシステムクロックの粒度、すなわち単位を揃えた上で、クロック差分を算出する。
 (4)次に、メイン制御部101は、クロック差分に対して精度向上のための補正処理を行う。例えば、メイン制御部101と無線制御部102の間のインターフェースの遅延や、処理遅延を事前の測定により見積もっておき、この影響を予め排除する処理をする。なお、この補正処理は、必要に応じて行うものであり、行わなくてもよい。
 (5)次に、メイン制御部101は、クロック差分を補正値として無線制御部102のデバイスクロックに反映させ、デバイスクロックのカウント補正をする。反映のさせ方は、クロックカウント値を直接上書きするか、何らかのフィルタをかけながら何度かに分けて近づけていくか、あるいは、クロックカウントの進み方を調整することで徐々に合わせていくか、などである。
 なお、メイン制御部101は、(3)で算出したクロック差分を、機器内のデバイスクロック(参照クロック)とシステムクロック(同期対象クロック)との間の同期の状況を知るための入力情報として、過去一定期間の系列をモニタして保持しておく。この情報は後述する(d)同期状況管理処理で使用される。
 「(b)デバイスクロック間同期処理(無線機器A-無線機器B間)」
 この処理は、マスター機器である無線機器A(無線機器100A)とスレーブ機器である無線機器B(無線機器100B)のデバイスクロックを同期させる処理である。図11は、処理フローを示している。
 この処理は、基本的に、図2のFTMプロトコルに準拠するが、FTMリクエストフレームとFTMアクションフレームのフォーマットに、それぞれ、図12、図13に示される拡張フィールドのついたフォーマットを採用する点が異なる。無線機器A、無線機器Bの無線制御部102は、それぞれ、FTMリクエストフレーム、FTMアクションフレーム(以下、これらのフレームを「通知用フレーム」という)の生成時に、現在の自身の機器内のシステムクロックとデバイスクロックの間の同期状況の情報を通知用フレームに格納する。
 図12、図13における「Target Clock Sync Status」のフィールドに、同期ステータスを示す情報として、「同期している」もしくは「同期していない」のステータスを示す情報が格納される。また、「Used Sync Criteria」のフィールドに、「同期している」もしくは「同期していない」と判定した条件の情報が格納される。また、「Target Clock Identifier」のフィールドに、同期対象クロックが何であるかを明示的に示す情報も格納される。この実施の形態では、同期対象クロックはシステムクロックであることが示される。なお、図4に示すフォーマットと区別して互換性を確保するため、「Type」フィールドには、“0”以外の値を入れることとする。
 無線機器A、無線機器Bの無線制御部102は、図11に示す処理(FTMプロトコル)を実行するが、通知用フレームを受信したら、それらの拡張フィールド(図12、図13の「Vender Specific Field」のフィールド参照)に記載されている相手側の無線機器内の同期状況の情報を保存し、受信する毎に更新する。
 無線機器Bの無線制御部102は、無線機器Aの無線制御部102から“FTM_2(t1_1、t4_1)のFTMアクションフレームを受信し、それに対するACKフレームを無線機器Aの無線制御部102に送信した後、マスター、スレーブのデバイスクロック間のオフセットを算出する。詳細説明は省略するが、オフセットの算出方法は、FTMプロトコルと同じである。オフセット算出後、算出されたオフセットに応じて、無線機器Bの無線制御部102は、デバイスクロックのカウントを補正する。
 補正の方法は実装に依存するが2通り考えられる。一つ目は、デバイスクロックカウンタのカウンタ値やスピード(周波数)を直接更新する方法である。これはハードウェアやファームウェアがこれを許すという条件が必要である。二つ目は、カウンタは直接操作せず、オフセットを補償する換算用補正値を別途保持しておき、デバイスクロックを読み出す際にそれを使って換算した値を返すことで、見かけ上補正される形にする方法である。直接カウンタを書き換えることができずカウンタがフリーランしている場合でも適用できる方法である。
 オフセット算出時に、算出されたオフセットの情報を、機器間のデバイスクロックの同期の状況を知るための情報として、過去一定期間の系列をモニタして保持しておく。この情報は後述する(d)同期状況管理処理で使用される。なお、上記の補正方法において、カウンタを直接操作しない方法を適用した場合は、算出されたオフセット自体は絶対値がどんどん大きくなっていってしまうため、算出されたオフセットそのものではなく、補正用換算値により換算されたクロック値とのオフセット量をモニタして保持する対象とする。
 「(c)デバイスクロック→システムクロックの同期処理(無線機器B内)」
 この処理は、スレーブ機器である無線機器B(無線機器100B)側において、デバイスクロックの時刻をシステムクロックに反映させる処理である。図14は、処理フローを示している。基本的に、上述の「(a)システムクロック→デバイスクロックの同期処理」とは逆方向の同等の操作を行うことになる。
 (1)まず、メイン制御部101は、システムクロックのカウントを読み出す。
 (2)次に、メイン制御部101は、無線制御部102側のデバイスクロックのカウントを読み出す。
 (3)次に、メイン制御部101は、デバイスクロックとシステムクロックのクロック差分を算出する。
 (4)次に、メイン制御部101は、クロック差分に対して精度向上のための補正処理を行う。例えば、メイン制御部101と無線制御部102の間のインターフェースの遅延や、処理遅延を事前の測定により見積もっておき、この影響を予め排除する処理をする。なお、この補正処理は、必要に応じて行うものであり、行わなくてもよい。
 (5)次に、メイン制御部101は、クロック差分を補正値としてシステムクロックに反映させ、システムクロックのカウント補正をする。反映のさせ方は、クロックカウント値を直接上書きするか、何らかのフィルタをかけながら何度かに分けて近づけていくか、あるいは、クロックカウントの進み方を調整することで徐々に合わせていくか、などである。
 なお、メイン制御部101は、(3)で算出したクロック差分を、機器内のデバイスクロック(参照クロック)とシステムクロック(同期対象クロック)との間の同期の状況を知るための入力情報として、過去一定期間の系列をモニタして保持しておく。この情報は後述する(d)同期状況管理処理で使用される。
 「(d)同期状況管理処理(無線機器A内、無線機器B内)」
 この処理は、マスター機器である無線機器A(無線機器100A)側と、スレーブ機器である無線機器B(無線機器100B)側の双方で、上述した(a)~(c)の処理と並行して行われる処理である。この実施の形態において、同期状況管理処理は、メイン制御部101で行われるものとする。
 図15は、同期状況管理処理の処理フローを示している。この処理フローによる処理周期は、同期状況の確認をどの程度の周期で行いたいかに応じて設定されるものであり、同期確認結果を使用するアプリケーションの要求によっても異なるが、例えば100ms、あるいは0.5sなどに設定される。
 メイン制御部101は、ステップST1において、処理を開始する。その後、メイン制御部101は、ステップST2において、自局内同期完了判定処理をする。この自局内同期完了処理は、自局内のシステムクロック(同期対象クロック)がデバイスクロック(参照クロック)と十分に同期したか否かを判定する処理である。スレーブ機器である無線機器100B(無線機器B)においては、この自局内同期完了処理に、デバイスクロック(参照クロック)がマスター側に十分に同期したか否かを判定する処理も追加される。
 図16は、自局内同期完了判定処理の処理フローを示している。メイン制御部101は、ステップST11において、処理を開始する。その後、メイン制御部101は、ステップST12において、自局がスレーブ機器であるか否かを判定する。スレーブ機器であるとき、メイン制御部101は、ステップST13の処理に移る。
 このステップST13において、メイン制御部101は、デバイスクロックがマスター側に十分に同期したか否かを判定する。この判定の基準は、マスターに対するデバイスクロックのオフセットの絶対値が、一定時間の間、第1の閾値(デバイスクロック間の要求同期精度に相当する)以内に収まっていることとする。この一定時間は、例えば、同期確認結果を使用するアプリケーションに応じて自動的に、あるいはユーザによって任意に設定される。
 デバイスクロックがマスター側に十分に同期したと判定するとき、メイン制御部101は、ステップST14の処理に移る。なお、ステップST12でスレーブ機器でないとき、メイン制御部101は、直ちに、ステップST14の処理に移る。マスター機器は、機器間デバイスクロック誤差が常時0の扱いなので、ステップST13の処理はスキップされる。
 このステップST14において、メイン制御部101は、自局内のシステムクロックがデバイスクロックと十分に同期したか否かを判定する。この判定の基準は、システムクロックとデバイスクロックのクロック差分の絶対値が、一定時間の間、第2の閾値(機器内のシステムクロック、デバイスクロック間の要求同期精度に相当する)以内に収まっていることとする。この一定時間は、例えば、同期確認結果を使用するアプリケーションに応じて自動的に、あるいはユーザによって任意に設定される。
 自局内のシステムクロックがデバイスクロックと十分に同期したと判定するとき、メイン制御部101は、ステップST5において、自局内同期ステータスを「同期している」に更新する。メイン制御部101は、このステップST15の処理の後、ステップST16において、処理を終了する。
 また、ステップST13でデバイスクロックがマスター側に十分に同期したと判定しないとき、あるいはステップST14で自局内のシステムクロックがデバイスクロックと十分に同期したと判定しないとき、メイン制御部101は、ステップST17において、自局内同期ステータスを「同期していない」に更新する。メイン制御部101は、このステップST17の処理の後、ステップST16において、処理を終了する。
 図15に戻って、メイン制御部101は、ステップST3において、自局内同期ステータス、つまり「同期している」あるいは「同期していない」のステータスが、通知用フレーム(図12、図13参照)の「Target Clock Sync Status」のフィールドに書かれる。また。この通知用フレームの「Inter-device Sync accuracy」のフィールドに、デバイスクロック間の同期精度の判定条件である第1の閾値が格納され、「Intra-device Sync accuracy」のフィールドに、デバイスクロック、システムクロック間の同期精度の判定条件である第2の閾値が格納される。
 次に、メイン制御部101は、ステップST4において、相手局内同期完了判定処理をする。この相手局内同期完了判定処理は、相手局から受信した通知用フレーム(図12、図13参照)の「Target Clock Sync Status」のフィールドに書かれている同期ステータスとして「同期している」のステータスが書かれているか否かを判定する。
 図17は、相手局内同期完了判定処理の処理フローを示している。メイン制御部101は、ステップ21において、処理を開始する。その後、メイン制御部101は、ステップST22において、接続相手局から直近に受信した「Target Clock Sync Status」のフィールドの情報が「同期している」のステータスであるか否かを判定する。
 「同期している」のステータスであると判定するとき、メイン制御部101は、ステップST23において、相手局内同期ステータスを「同期している」のステータスに更新する。メイン制御部101は、このステップST23の処理の後、ステップST24において、処理を終了する。また、ステップST22で「同期していない」であると判定するとき、メイン制御部101は、ステップST25において、相手局内同期ステータスを「同期していない」のステータスに更新する。メイン制御部101は、このステップST25の処理の後、ステップST24において、処理を終了する。
 図15に戻って、メイン制御部101は、ステップST5において、自局内同期ステータスと相手局内同期ステータスの双方が「同期している」のステータスであるか否かを判定する。双方が「同期している」のステータスでないと判定するとき、メイン制御部101は、相手局とシステムクロック(同期対象クロック)同士が同期できていいないと判断し、ステップST2の処理に戻る。
 一方、双方が「同期している」のステータスであると判定するとき、メイン制御部101は、相手局とシステムクロック(同期対象クロック)同士が同期できた判断し、ステップST6において、必要に応じて、アプリケーションに通知し、同期に利用する。例えば、上述のシャッタータイミングの同期の例では、シャッターを切る準備ができたことを通知し、上述のオーディオ再生同期の例では再生準備完了の通知、さらに上述の音波測距の例では、測距用音波の再生準備の完了の通知、を意味する。メイン制御部101は、このステップST6の処理の後、ステップST2の処理に戻る。
 なお、図15の処理フローにおける自局内同期完了判定処理と相手局内同期完了判定処理は並列に行われてもよい。詳細説明は省略するが、図18は、その場合の処理フローを示している。
 以上説明したように、第1の実施の形態においては、無線機器100A(無線機器A)と無線機器100B(無線機器B)のそれぞれで図15に示す同期状況管理処理が行われる。そのため、無線機器100A(無線機器A)と無線機器100B(無線機器B)のそれぞれは、相手局との間でシステムクロック(同期対象クロック)が正しく同期できたかを効率よく知ることができ、その情報を効果的に活用できる。
 [第2の実施の形態]
 第2の実施の形態について説明する。第2の実施の形態は、上述の第1の実施の形態よりも供給する情報を増やして、より細かい制御を可能にする例である。システム構成、同期手順との対応関係は、第1の実施の形態と同様である(図5、図9参照)。第2の実施の形態における同期手順を、上述の第1の実施の形態と同様に、(a)~(d)の4つの処理に分けて説明する。
 「(a)システムクロック→デバイスクロックの同期処理(無線機器A内)」
 この処理は、マスター機器である無線機器A(無線機器100A)側において、システムクロックの時刻をデバイスクロックに反映させる処理である。この処理は、上述の第1の実施の形態における処理(図10参照)と同様であるので、説明は省略する。
 「(b)デバイスクロック間同期処理(無線機器A-無線機器B間)」
 この処理は、マスター機器である無線機器A(無線機器100A)とスレーブ機器である無線機器B(無線機器100B)のデバイスクロックを同期させる処理である。図19は、処理フローを示す。
 この処理は、基本的に、第1の実施の形態における図11に示す処理フローと同様に、図2のFTMプロトコルに準拠する。この第2の実施の形態では、通知用フレームであるFTMリクエストフレーム、FTMアクションフレームのフォーマットに、それぞれ、図20、図21に示される拡張フィールドのついたフォーマットを採用する。
 第2の実施の形態では、(d)同期状況管理処理(無線機器A内、無線機器B内)内の同期完了判定処理で使用される第1の閾値(相手機器とのデバイスクロック間の同期精度の判定条件)と第2の閾値(機器内のデバイスクロックとシステムクロック間の同期精度の判定条件)を、マスター機器が決めて、スレーブ機器に従わせる。
 図20、図21における「Required Sync Criteria」のフィールドにおいて、「Inter-device Sync accuracy」のフィールドに、デバイスクロック間の同期精度の判定条件である第1の閾値が格納され、「Intra-device Sync accuracy」のフィールドに、デバイスクロック、システムクロック間の同期精度の判定条件である第2の閾値が格納される。
 上述したように、この第2の実施の形態においては、第1の閾値、第2の閾値をマスター機器が決めて、それをスレーブ機器に従わせるものである。ここで、FTMリクエストフレームの「Required Sync Criteria」の情報は、FTMアクションフレームの「Required Sync Criteria」の情報と異なることも考えられる。例えば、FTMリクエストフレームの「Required Sync Criteria」の情報として、スレーブ機器がマスター機器に要望する第1の閾値、第2の閾値が挿入されることもある。
 図20、図21における「Target Clock Sync Status」のフィールドに、同期ステータスの情報として、「同期している」もしくは「同期していない」、あるいは「同期基準が厳しく同期不能」のステータスを示す情報が格納される。この「同期基準が厳しく同期不能」は、長時間の同期試行を行っても同期の判定条件を満たせないときに、判定条件の緩和を要請する意味合いを持つ。また、「Target Clock Identifier」のフィールドに、同期対象クロックが何であるかを明示的に示す情報も格納される。この実施の形態では、同期対象クロックはシステムクロックであることが示される。なお、図4に示すフォーマットと区別して互換性を確保するため、「Type」フィールドには、“0”以外の値を入れることとする。
 また、この第2の実施の形態においては、FTMによるデバイスクロックの同期の精度を向上させる目的で、FTMのシーケンスの実行頻度も最適に調整できるようにするための情報も通知し合う。図20、図21における「Traffic Load Information」、「FTM Failure Probability」、「Ref clock Drift Rate」の各フィールドに格納される情報である。
 「Traffic Load Information」のフィールドには、自局がその無線インタフェースを用いてやり取りしているトラフィック量(受信、送信)の情報を載せる。具体的には直近のある一定時間内の送受信情報量を伝える。この情報は無線負荷の指標となる。自局が無線子機である場合、親機が自局以外の相手とやり取りしている無線負荷は把握できないので、このフィールドを利用する。
 「FTM Failure Probability」のフィールドには、FTMフレームの送信失敗の確率の情報を載せる。FTMのフレーム交換が失敗すると、オフセットの値は更新されない。場合によっては成功するまで参照クロック間のドリフトが蓄積することにもなる。
 「Ref Clock Drift Rate」のフィールドには、デバイスクロック間のクロックドリフト、すなわち周波数ずれの量を伝える。過去のオフセットの算出結果の推移から、どれくらいの速さでクロックがずれていくのかが把握できる。この情報は、第1の閾値の調整に利用されてもよい。
 無線機器A、無線機器Bの無線制御部102は、「Traffic Load Information」、「FTM Failure Probability」、「Ref clock Drift Rate」の各フィールドの情報を用いた調整をする。例えば、図19に示すように、スレーブ機器はFTMリクエストフレームの送信間隔を、マスター機器はFTMリクエストフレーム当たりのFTMアクションフレームの送信個数やFTMアクションフレームの送信間隔を、FTMシーケンスの成功率を上げられるように、またクロックオフセットをより小さく抑えることができるように調整する。
 「(c)デバイスクロック→システムクロックの同期処理(無線機器B内)」
 この処理は、スレーブ機器である無線機器B(無線機器100B)側において、デバイスクロックの時刻をシステムクロックに反映させる処理である。この処理は、上述の第1の実施の形態における処理(図14参照)と同様であるので、説明は省略する。
 「(d)同期状況管理処理(無線機器A内、無線機器B内)」
 この処理は、マスター機器である無線機器A(無線機器100A)側と、スレーブ機器である無線機器B(無線機器100B)側の双方で、上述した(a)~(c)の処理と並行して行われる処理である。この同期状況管理処理の親フローは、第1の実施の形態と共通である(図15参照)。しかし、自局内同期完了判定処理と、相手局内同期完了判定処理の内容は、第1の実施の形態とは異なる。
 図22は、自局内同期完了判定処理の処理フローを示している。この図22において、図16(第1の実施の形態における自局内同期完了判定処理の処理フロー)と対応するステップには同一符号を付し、適宜、その詳細説明は省略する。
 第2の実施の形態では、スレーブ機器は、ステップST13とステップST14における同期判定条件(第1の閾値、第2の閾値)として、マスター機器から通知用フレームの「Required Sync Criteria」のフィールドで伝えられた同期判定条件を用いる。すなわち、スレーブ機器は、マスター機器で決定される同期判定条件に従った同期判定をする。
 ステップST13でデバイスクロックがマスター側に十分に同期したと判定しないとき、あるいはステップST14で自局内のシステムクロックがデバイスクロックと十分に同期したと判定しないとき、メイン制御部101は、ステップST18において、スレーブ機器であり、同期完了判定条件を満たせていない状況が長時間続いているか否かを判定する。
 スレーブ機器であり、同期完了判定条件を満たせていない状況が長時間続いていると判定するときは、ステップST19の処理に移るが、そうでないときは、ステップST17において、自局内同期ステータスを「同期していない」に更新し、その後に、ステップST16において、処理を終了する。
 ステップST19において、メイン制御部101は、自局内同期ステータスを「同期基準が厳しく同期不能」に更新する。メイン制御部101は、このステップST19の処理の後、ステップST16において、処理を終了する。
 自局内同期ステータスを「同期基準が厳しく同期不能」に更新するスレーブ機器においては、メイン制御部101は、図15の処理フローのステップST3において、通知用フレームの「Target Clock Sync Status」のフィールドに書きこみ、マスター機器側に伝える。なお、この場合、通知用フレームの「Required Sync Criteria」のフィールドに同期判定基準の要求値を書き込んでマスター側に伝えることも可能である。
 図23は、相手局内同期完了判定処理の処理フローを示している。この図23において、図17(第1の実施の形態における相手局内同期完了判定処理の処理フロー)と対応するステップには同一符号を付し、適宜、その詳細説明は省略する。
 ステップST25の処理の後、メイン制御部101は、ステップST26の処理に移る。このステップST26において、接続相手局から直近に受信した「Target Clock Sync Status」のフィールドの情報が「同期基準が厳しく同期不能」であるか否かを判定する。
 「同期基準が厳しく同期不能」であると判定するとき、メイン制御部101は、ステップST27において、表示部103に当該相手局との同期基準緩和の可否判断のためのユーザインタフェース(UI)表示をし、ユーザに入力を要求する。図24は、UI表示の一例を示している。
 この例では、現在「高品質モード」にあって、ユーザに、「標準モード」への切り替えの可否についての入力を要求する例である。ここで、「高品質モード」とは、元々の要求同期精度で同期させるモードを意味することとし、「通常モード」とはより緩和された要求同期精度で同期させるモードを意味することとする。
 なお、図24の例においては、要求同期精度として、「高品質モード」と「標準モード」の2モードを想定しているが、3段階以上の要求同期精度と対応したモードを用意してUI表示をして選択させてもよい。また、図24の例において、現在の要求精度の値自体を表示させてもよい。
 図23に戻って、ステップST27の処理の後、メイン制御部101は、ステップST28において、ユーザからの「当該相手局との同期基準緩和受諾」の入力があるか否か、つまり図24のUI表示例において「YES」が選択されたか否かを判定する。同期基準緩和受諾の入力があると判定するとき、メイン制御部101は、ステップST29において、その接続相手局宛ての要求同期精度、すなわち利用して欲しい同期完了判定基準を変更し、通知用フレームの「Required Sync Criteria」のフィールドへの格納内容を更新する。
 メイン制御部101は、ステップST29の処理の後、ステップST24において、処理を終了する。また、ステップST26で「同期基準が厳しく同期不能」でないと判定するとき、あるいはステップST28で同期基準緩和受諾の入力がないと判定するとき、メイン制御部101は、直ちにステップST24に移って処理を終了する。
 以上説明したように、第2の実施の形態においては、上述した第1の実施の形態と同様の効果を得ることができることに加えて、FTMシーケンスの調整に必要な情報を交換でき、必要に応じて設定の調整を行うことができる。また、同期精度の判定条件を相手に通知して従わせつつ、基準が厳しいことにより同期を完了できない場合にはその旨を通知して条件の調整を促すことができる。
 [第3の実施の形態]
 第3の実施の形態について説明する。上述の第2の実施の形態で説明したユーザインタフェースによるユーザ判断での同期判定基準の動的変更は、第2の実施形態のようにマスター機器が判定基準を管理する場合でなくとも利用することができる。
 第3の実施の形態は、上述の第1の実施の形態をベースとして、ユーザインタフェースによるユーザ判断での同期判定基準の動的変更を取り入れる例である。システム構成、同期手順との対応関係は、第1の実施の形態と同様である(図5、図9参照)。第3の実施の形態における同期手順を、上述の第1の実施の形態と同様に、(a)~(d)の4つの処理に分けて説明する。
 「(a)システムクロック→デバイスクロックの同期処理(無線機器A内)」
 この処理は、マスター機器である無線機器A(無線機器100A)側において、システムクロックの時刻をデバイスクロックに反映させる処理である。この処理は、上述の第1の実施の形態における処理(図10参照)と同様であるので、説明は省略する。
 「(b)デバイスクロック間同期処理(無線機器A-無線機器B間)」
 この処理は、マスター機器である無線機器A(無線機器100A)とスレーブ機器である無線機器B(無線機器100B)のデバイスクロックを同期させる処理である。この処理も、上述の第1の実施の形態における処理(図10参照)と同様であるので、説明は省略する。送受信するフレームのフォーマットに関しても第1の実施の形態に準拠する。
 「(c)デバイスクロック→システムクロックの同期処理(無線機器B内)」
 この処理は、スレーブ機器である無線機器B(無線機器100B)側において、デバイスクロックの時刻をシステムクロックに反映させる処理である。この処理は、上述の第1の実施の形態における処理(図14参照)と同様であるので、説明は省略する。
 「(d)同期状況管理処理(無線機器A内、無線機器B内)」
 この処理は、マスター機器である無線機器A(無線機器100A)側と、スレーブ機器である無線機器B(無線機器100B)側の双方で、上述した(a)~(c)の処理と並行して行われる処理である。
 第3の実施の形態では、同期完了判定処理で使用される第1の閾値(相手機器とのデバイスクロック間の同期精度の判定条件)と第2の閾値(機器内のデバイスクロックとシステムクロック間の同期精度の判定条件)を、各機器の責任において設定、管理する前提である。また、第3の実施の形態では、同期状況管理処理の親フローは、第1の実施の形態と共通である(図15参照)。しかし、その内部処理である自局内同期完了判定処理の内容は、第1の実施の形態とは異なる。
 図26は、第3の実施の形態における自局内同期完了判定処理の処理フローを示している。この図26において、図16(第1の実施の形態における自局内同期完了判定処理の処理フロー)と対応するステップには同一符号を付し、適宜、その詳細説明は省略する。
 ステップST17の処理の後、メイン制御部101は、ステップST30の処理に移る。このステップST30において、メイン制御部101は、上述の第1の閾値の判定、もしくは第2の閾値の判定において同期しているとみなせない状況が長時間続いている否かを判定する。
 長時間続いていると判定するとき、メイン制御部101は、ステップST31において、表示部103に自局が使用する同期完了判断基準の緩和の可否判断のためのユーザインタフェース(UI)表示をし、ユーザに入力を要求する。UI表示の例としては、第2の実施の形態と同様(図24参照)である。
 次に、メイン制御部101は、ステップST32において、ユーザからの「同期基準緩和受諾」の入力があるか否か、つまり図24のUI表示例において「YES」が選択されたか否かを判定する。同期基準緩和受諾の入力があると判定するとき、メイン制御部101は、ステップST33において、自局が使用する同期完了判定基準を変更し、次回以降に送信に使用する通知用フレームの「Used Sync Criteria」のフィールドへの格納内容を更新する。
 メイン制御部101は、ステップST33の処理の後、ステップST16において、処理を終了する。また、ステップST30で長時間続いていないと判定するとき、あるいはステップST32で同期基準緩和受諾の入力がないと判定するとき、メイン制御部101は、直ちにステップST16に移って処理を終了する。
 以上説明したように、第3の実施の形態においては、上述した第1の実施の形態と同様の効果を得ることができることに加えて、同期完了判定の基準を各機器が管理しつつ、必要に応じてユーザの許可を得た上で基準の調整を行うことができる。
 以下の表-1は、第1の実施の形態、第2の実施の形態および第3の実施の形態の概要、差異を概略的に示している。
Figure JPOXMLDOC01-appb-T000002
 <2.変形例>
 なお、上述実施の形態においては、通知用フレームに対して判定閾値やFTMシーケンスの調整に必要な情報を載せる例を示した。デバイスクロック(参照クロック)とシステムクロック(同期対象クロック)の間で、表現できる桁の幅やカウントの粒度、すなわち単位の違いがある場合、その差分を埋めるための情報を、通知用フレームに対してさらに追加してもよい。
 図25は、第2の実施の形態におけるFTMアクションフレームのベンダー・スペシフィック・エレメントに対して、「clock granularity ratio」、「clock difference」の情報を載せた例を示している。「clock granularity ratio」の情報は、システムクロックとデバイスクロックの粒度の比を示す。「clock difference」の情報は、システムクロックとデバイスクロックの粒度の比をシステムクロックに揃えた後に足しこむべき差分値を示す。なお、この追加した2つの情報は、別の2つ目のベンダー・スペシフィック・エレメントとして載せられてもよい。
 また、上述実施の形態においては、無線層における同期プロトコルがFTM(Fine Timing Measurement)プロトコルである例を示した。しかし、本技術は、無線層における同期プロトコルは、FTMプロトコルに限定されるものではなく、TM(Timing Measurement)プロトコルであってもよい。その場合も、上述の図11のデバイスクロック間同期処理において、FTMアクションフレームをTMアクションフレームに読み替えるだけで同等である。その場合は、本技術におけるベンダー・スペシフィック・エレメント内の情報が載る通知用フレームが変わるのみで、本技術を同様に適用できる。
 また、上述実施の形態においては、通知用フレームがFTMリクエストフレームやFTMアクションフレームである例を示した。しかし、通知用フレームは、これらに限定されるものではなく、別のマネジメントフレームやパブリックアクション(Public Action)フレームであってもよい。本技術は、同等の情報が伝達できれば、フレームの種類は問わず適用が可能である。
 また、上述実施の形態においては、デバイスクロック(参照クロック)を経由して2つの無線機器間で同期させるべき同期対象クロックをシステムクロックとしたが、オーディオやビデオなどのメディア処理部の時刻を管理するクロックなど、別のクロックであってもよい。なお、詳細説明は省略するが、同期手順は、メイン制御部101のシステムクロックをメディア処理部のクロックに読み替えるだけで、上述実施の形態の場合と同等である。
 また、上述していないが、通知用フレームのベンダー・スペシフィック・エレメントの内容に関しては、上述第1、第2の実施の形態で説明した全てのフィールドを載せる場合だけでなく、その一部だけを載せて伝えることとしてもよい。
 また、上述実施の形態においては、マスター機器である無線機器100Aのシステムクロックを全てのシステム全体のマスタークロックとしている。しかし、マスター機器である無線機器100Aのデバイスクロックをマスタークロックとすることも考えられる。その場合は、無線機器100Aにおいても、上述の同期手順の(a)の処理の代わりに(c)の処理を行うこととしてもよい。
 また、上述していないが、802.1AS準拠の拡張FTMアクションフレームのフォーマットと本技術の拡張フィールドが併用されてもよい。その場合は、それぞれのベンダー・スペシフィック・エレメントが順に並ぶ形になる。
 また、本技術は、以下のような構成を取ることもできる。
 (1)第1のクロックで時刻が管理されるメイン制御部と、
 第2のクロックで時刻が管理される無線制御部と、
 クロック同期の状況を管理するクロック同期管理部を備え
 上記無線制御部は、無線接続された他の無線機器に、クロック同期の状況に関する情報をフレームの送信により通知する
 無線機器。
 (2)上記クロック同期の状況に関する情報は、同期ステータスを示す情報を含む
 前記(1)に記載の無線機器。
 (3)上記同期ステータスは、同期しているおよび同期していない、という2つのステータス、あるいは同期している、同期していないおよび同期基準が厳しく同期不能、という3つのステータスを持つ
 前記(2)に記載の無線機器。
 (4)上記クロック同期管理部は、所定時間内の上記第1のクロックと上記第2のクロックのクロック差分の絶対値が第2の閾値以下であるとき、上記同期している、と判定する
 前記(3)に記載の無線機器。
 (5)上記クロック同期管理部は、所定時間内の上記第1のクロックと上記第2のクロックのクロック差分の絶対値が第2の閾値以下であり、かつ所定時間内の上記第2のクロックの上記他の無線機器との間のオフセットの絶対値が第1の閾値以下であるとき、上記同期している、と判定する
 前記(3)に記載の無線機器。
 (6)上記クロック同期管理部は、同期していない状態が所定時間続いているとき、上記同期基準が厳しく同期不能、と判定する
 前記(3)に記載の無線機器。
 (7)上記クロック同期の状況に関する情報は、上記同期ステータスの判定のための基準をさらに含む
 前記(2)から(6)のいずれかに記載の無線機器。
 (8)上記クロック同期の状況に関する情報は、上記フレームの送信失敗率の情報をさらに含む
 前記(2)から(7)のいずれかに記載の無線機器。
 (9)上記クロック同期の状況に関する情報は、無線のトラフィック量の情報をさらに含む
 前記(2)から(8)のいずれかに記載の無線機器。
 (10)上記クロック同期の状況に関する情報は、上記第2のクロックの上記他の無線機器との間のクロックドリフトの情報をさらに含む
 前記(2)から(9)のいずれかに記載の無線機器。
 (11)上記無線制御部は、上記他の無線機器に、上記フレームの送信により、上記第1のクロックと上記第2のクロックの対応付け情報を送信し、
 上記対応付け情報には、上記2つのクロックの差分情報が含まれる
 前記(1)から(10)のいずれかに記載の無線機器。
 (12)上記対応付け情報には、上記2つのクロックの粒度比情報がさらに含まれる
 前記(11)に記載の無線機器。
 (13)上記無線制御部は、
 上記クロック同期の状況に関する情報を、上記無線制御部の時刻を上記他の無線機器との間で計測するためのフレームの一部として送信する
 前記(1)から(12)のいずれかに記載の無線機器。
 (14)上記クロック同期の状況に関する情報に基づいたユーザインタフェース表示をする表示部をさらに備える
 前記(1)から(13)のいずれかに記載の無線機器。
 (15)上記クロック同期管理部は、同期していない状態が所定時間続いているとき、上記表示部に、自局内が使用する同期完了判定基準を緩和してよいかの判断をユーザに要求するユーザインタフェース表示をし、上記ユーザが緩和することを許諾したとき、上記同期基準を変更する
 前記(14)に記載の無線機器。
 (16)第1のクロックで時刻が管理されるメイン制御部と、
 第2のクロックで時刻が管理される無線制御部と、
 クロック同期の状況を管理するクロック同期管理部を備える無線機器の処理方法であって、
 上記無線制御部が、無線接続された他の無線機器に、クロック同期の状況に関する情報をフレームの送信により通知するステップを有する
 無線機器の処理方法。
 (17)第1のクロックで時刻が管理されるメイン制御部と、
 第2のクロックで時刻が管理される無線制御部を備え、
 上記無線制御部は、無線接続された他の無線機器から、クロック同期の状況に関する情報をフレームの受信により検知し、
 上記クロック同期の状況に関する情報に基づいたユーザインタフェース表示をする表示部をさらに備える
 無線機器。
 (18)上記クロック同期の状況に関する情報は、同期ステータスを示す情報を含む
 前記(17)に記載の無線機器。
 (19)上記同期ステータスが、上記同期基準が厳しく同期不能、を意味するステータスを示しているとき、上記表示部は、上記他の無線機器との同期基準を緩和してよいかの判断をユーザに要求するユーザインタフェース表示をし、上記ユーザが上記他の無線機器との同期基準を緩和することを許諾したとき、上記無線制御部は、上記他の無線機器に、上記同期基準の緩和をフレームの送信により伝える
 請求項18に記載の無線機器。
 (20)上記第1のクロックに基づいた処理を行うアプリケーション部をさらに備える
 前記(17)から(19)のいずれかに記載の無線機器。
 10・・・無線システム
 100A,100B・・・無線機器
 101・・・メイン制御部
 102・・・無線制御部
 103・・・表示部

Claims (20)

  1.  第1のクロックで時刻が管理されるメイン制御部と、
     第2のクロックで時刻が管理される無線制御部と、
     クロック同期の状況を管理するクロック同期管理部を備え
     上記無線制御部は、無線接続された他の無線機器に、クロック同期の状況に関する情報をフレームの送信により通知する
     無線機器。
  2.  上記クロック同期の状況に関する情報は、同期ステータスを示す情報を含む
     請求項1に記載の無線機器。
  3.  上記同期ステータスは、同期しているおよび同期していない、という2つのステータス、あるいは同期している、同期していないおよび同期基準が厳しく同期不能、という3つのステータスを持つ
     請求項2に記載の無線機器。
  4.  上記クロック同期管理部は、所定時間内の上記第1のクロックと上記第2のクロックのクロック差分の絶対値が第2の閾値以下であるとき、上記同期している、と判定する
     請求項3に記載の無線機器。
  5.  上記クロック同期管理部は、所定時間内の上記第1のクロックと上記第2のクロックのクロック差分の絶対値が第2の閾値以下であり、かつ所定時間内の上記第2のクロックの上記他の無線機器との間のオフセットの絶対値が第1の閾値以下であるとき、上記同期している、と判定する
     請求項3に記載の無線機器。
  6.  上記クロック同期管理部は、同期していない状態が所定時間続いているとき、上記同期基準が厳しく同期不能、と判定する
     請求項3に記載の無線機器。
  7.  上記クロック同期の状況に関する情報は、上記同期ステータスの判定のための基準をさらに含む
     請求項2に記載の無線機器。
  8.  上記クロック同期の状況に関する情報は、上記フレームの送信失敗率の情報をさらに含む
     請求項2に記載の無線機器。
  9.  上記クロック同期の状況に関する情報は、無線のトラフィック量の情報をさらに含む
     請求項2に記載の無線機器。
  10.  上記クロック同期の状況に関する情報は、上記第2のクロックの上記他の無線機器との間のクロックドリフトの情報をさらに含む
     請求項2に記載の無線機器。
  11.  上記無線制御部は、上記他の無線機器に、上記フレームの送信により、上記第1のクロックと上記第2のクロックの対応付け情報を送信し、
     上記対応付け情報には、上記2つのクロックの差分情報が含まれる
     請求項1に記載の無線機器。
  12.  上記対応付け情報には、上記2つのクロックの粒度比情報がさらに含まれる
     請求項11に記載の無線機器。
  13.  上記無線制御部は、
     上記クロック同期の状況に関する情報を、上記無線制御部の時刻を上記他の無線機器との間で計測するためのフレームの一部として送信する
     請求項1に記載の無線機器。
  14.  上記クロック同期の状況に関する情報に基づいたユーザインタフェース表示をする表示部をさらに備える
     請求項1に記載の無線機器。
  15.  上記クロック同期管理部は、同期していない状態が所定時間続いているとき、上記表示部に、自局内が使用する同期完了判定基準を緩和してよいかの判断をユーザに要求するユーザインタフェース表示をし、上記ユーザが緩和することを許諾したとき、上記同期基準を変更する
     請求項14に記載の無線機器。
  16.  第1のクロックで時刻が管理されるメイン制御部と、
     第2のクロックで時刻が管理される無線制御部と、
     クロック同期の状況を管理するクロック同期管理部を備える無線機器の処理方法であって、
     上記無線制御部が、無線接続された他の無線機器に、クロック同期の状況に関する情報をフレームの送信により通知するステップを有する
     無線機器の処理方法。
  17.  第1のクロックで時刻が管理されるメイン制御部と、
     第2のクロックで時刻が管理される無線制御部を備え、
     上記無線制御部は、無線接続された他の無線機器から、クロック同期の状況に関する情報をフレームの受信により検知し、
     上記クロック同期の状況に関する情報に基づいたユーザインタフェース表示をする表示部をさらに備える
     無線機器。
  18.  上記クロック同期の状況に関する情報は、同期ステータスを示す情報を含む
     請求項17に記載の無線機器。
  19.  上記同期ステータスが、上記同期基準が厳しく同期不能、を意味するステータスを示しているとき、上記表示部は、上記他の無線機器との同期基準を緩和してよいかの判断をユーザに要求するユーザインタフェース表示をし、上記ユーザが上記他の無線機器との同期基準を緩和することを許諾したとき、上記無線制御部は、上記他の無線機器に、上記同期基準の緩和をフレームの送信により伝える
     請求項18に記載の無線機器。
  20.  上記第1のクロックに基づいた処理を行うアプリケーション部をさらに備える
     請求項17に記載の無線機器。
PCT/JP2018/019081 2017-06-02 2018-05-17 無線機器および無線機器の処理方法 WO2018221238A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019522107A JP7173001B2 (ja) 2017-06-02 2018-05-17 無線機器および無線機器の処理方法
AU2018276459A AU2018276459B2 (en) 2017-06-02 2018-05-17 Wireless device and processing method for wireless device
BR112019024754A BR112019024754A2 (pt) 2017-06-02 2018-05-17 aparelho sem fio, e, método de processamento do aparelho sem fio.
CN201880033852.7A CN110651446B (zh) 2017-06-02 2018-05-17 无线装置和无线装置处理方法
EP18809371.0A EP3624389B1 (en) 2017-06-02 2018-05-17 Wireless device and processing method for wireless device
US16/605,503 US11082141B2 (en) 2017-06-02 2018-05-17 Wireless apparatus and wireless apparatus processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-110224 2017-06-02
JP2017110224 2017-06-02

Publications (1)

Publication Number Publication Date
WO2018221238A1 true WO2018221238A1 (ja) 2018-12-06

Family

ID=64455431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019081 WO2018221238A1 (ja) 2017-06-02 2018-05-17 無線機器および無線機器の処理方法

Country Status (7)

Country Link
US (1) US11082141B2 (ja)
EP (1) EP3624389B1 (ja)
JP (1) JP7173001B2 (ja)
CN (1) CN110651446B (ja)
AU (1) AU2018276459B2 (ja)
BR (1) BR112019024754A2 (ja)
WO (1) WO2018221238A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110113124A (zh) * 2019-04-16 2019-08-09 河南顺博建筑智能化工程有限公司 用于光纤振动传感系统的时钟同步方法以及装置
WO2020259134A1 (zh) * 2019-06-24 2020-12-30 腾讯科技(深圳)有限公司 一种时钟漂移处理的方法、网络功能网元及存储介质
WO2021066730A1 (en) * 2019-10-04 2021-04-08 Telefonaktiebolaget Lm Ericsson (Publ) Propagation delay compensation toolbox
JP2022049203A (ja) * 2020-09-16 2022-03-29 株式会社東芝 無線通信装置、無線通信システム、および無線通信装置の処理方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019100336A1 (zh) * 2017-11-24 2019-05-31 华为技术有限公司 对网络设备进行同步的方法以及网络设备
JP6523589B1 (ja) * 2018-09-21 2019-06-05 三菱電機株式会社 通信装置、通信システム、通信方法および通信プログラム
US11432132B2 (en) 2019-02-14 2022-08-30 Motorola Mobility Llc Dropping extraneous discovery messages
US11115894B2 (en) 2019-08-14 2021-09-07 Motorola Mobility Llc Managing FTM frames of WLAN RTT bursts
RU2738446C1 (ru) 2020-05-18 2020-12-14 федеральное государственное бюджетное образовательное учреждение высшего образования "МИРЭА-Российский технологический университет" Синхронизация сетевого устройства для беспроводной связи, в частности сетевого терминала, в беспроводной сети
CN112261164B (zh) * 2020-12-22 2021-03-19 北京金山云网络技术有限公司 一种逻辑时钟同步方法、装置及一种中心授时集群
US11968638B2 (en) 2021-05-07 2024-04-23 Cisco Technology, Inc. Providing a clock value to a client device
US20230087308A1 (en) * 2021-09-22 2023-03-23 Cisco Technology, Inc. Timing measurement (tm)/fine timing measurement (ftm) for ranging and timing
US11700590B1 (en) * 2021-12-20 2023-07-11 Cisco Technology, Inc. Mobile time-sync distribution

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064474A (ja) * 2006-09-04 2008-03-21 Sharp Corp 時計装置、時計システム、同期方法、時計装置制御プログラム、および通信装置
JP2010177778A (ja) * 2009-01-27 2010-08-12 Fujitsu Ltd クロック供給装置及びそれを用いた伝送装置
JP2011234007A (ja) * 2010-04-26 2011-11-17 Yokogawa Electric Corp 時刻管理システムおよび時刻管理方法
JP2013074527A (ja) * 2011-09-28 2013-04-22 Fujitsu Ltd 伝送装置、伝送システム及び通信制御方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7072432B2 (en) * 2002-07-05 2006-07-04 Meshnetworks, Inc. System and method for correcting the clock drift and maintaining the synchronization of low quality clocks in wireless networks
JP5569299B2 (ja) * 2010-09-28 2014-08-13 富士通株式会社 通信システム及び通信インタフェース装置、並びに同期方法
CN102104475B (zh) * 2011-01-31 2013-07-03 上海交通大学 基于ieee1588的同步系统及其同步方法
EP2541815B1 (en) * 2011-06-28 2013-12-18 Alcatel Lucent Clock synchronization network
EP2568631B1 (de) * 2011-09-09 2018-04-25 Siemens Aktiengesellschaft Verfahren zur Übertragung von Synchronisationsnachrichten in einem Kommunikationsnetz
US9651672B2 (en) * 2012-09-25 2017-05-16 Intel Corporation Systems and methods for time synchronization
JP5911601B2 (ja) * 2012-11-28 2016-04-27 三菱電機株式会社 通信装置、通信システムおよび時刻同期方法
US9191908B2 (en) * 2013-03-05 2015-11-17 Qualcomm Incorporated Reducing impact of clock drift in wireless devices
US9237546B1 (en) * 2013-10-30 2016-01-12 Marvell International Ltd. Method and apparatus for determining a location of a network device in a wireless network
US9692563B2 (en) * 2014-04-14 2017-06-27 Cisco Technology, Inc. Upstream contention measurement reporting and mitigation in DOCSIS remote PHY network environments
US10349367B2 (en) * 2015-03-03 2019-07-09 Qualcomm Incorporated Methods and systems for synchronizing devices
US20170055235A1 (en) 2015-08-21 2017-02-23 Qualcomm Incorporated Providing precision timing protocol (ptp) timing and clock synchronization for wireless multimedia devices
US11197252B2 (en) * 2015-09-28 2021-12-07 Qualcomm Incorporated Methods and systems for representing errors
US9867004B2 (en) * 2015-12-23 2018-01-09 Qualcomm Incorporated Broadcast time-of-departure (TOD) frame format
US9961497B2 (en) * 2016-02-17 2018-05-01 Qualcomm Incorporated Techniques for infinite ranging session
CN106131947B (zh) * 2016-09-14 2019-11-05 潘进 一种无线网络设备间时钟同步的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064474A (ja) * 2006-09-04 2008-03-21 Sharp Corp 時計装置、時計システム、同期方法、時計装置制御プログラム、および通信装置
JP2010177778A (ja) * 2009-01-27 2010-08-12 Fujitsu Ltd クロック供給装置及びそれを用いた伝送装置
JP2011234007A (ja) * 2010-04-26 2011-11-17 Yokogawa Electric Corp 時刻管理システムおよび時刻管理方法
JP2013074527A (ja) * 2011-09-28 2013-04-22 Fujitsu Ltd 伝送装置、伝送システム及び通信制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3624389A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110113124A (zh) * 2019-04-16 2019-08-09 河南顺博建筑智能化工程有限公司 用于光纤振动传感系统的时钟同步方法以及装置
WO2020259134A1 (zh) * 2019-06-24 2020-12-30 腾讯科技(深圳)有限公司 一种时钟漂移处理的方法、网络功能网元及存储介质
JP2022524134A (ja) * 2019-06-24 2022-04-27 ▲騰▼▲訊▼科技(深▲セン▼)有限公司 クロックドリフト処理の方法、ネットワーク機能ネットワークエレメント、ネットワークデバイス及びコンピュータプログラム
JP7171940B2 (ja) 2019-06-24 2022-11-15 ▲騰▼▲訊▼科技(深▲セン▼)有限公司 クロックドリフト処理の方法、ネットワーク機能ネットワークエレメント、ネットワークデバイス及びコンピュータプログラム
KR20230119248A (ko) * 2019-06-24 2023-08-16 텐센트 테크놀로지(센젠) 컴퍼니 리미티드 클록 드리프트 프로세싱 방법, 네트워크 기능 네트워크엘리먼트들, 및 저장 매체
JP7362186B2 (ja) 2019-06-24 2023-10-17 ▲騰▼▲訊▼科技(深▲セン▼)有限公司 クロックドリフト処理の方法、ネットワーク機能ネットワークエレメント、及び記憶媒体
US11888588B2 (en) 2019-06-24 2024-01-30 Tencent Technology (Shenzhen) Company Limited Clock drift processing method, network element, and storage medium
KR102648251B1 (ko) 2019-06-24 2024-03-14 텐센트 테크놀로지(센젠) 컴퍼니 리미티드 클록 드리프트 프로세싱 방법, 네트워크 기능 네트워크 엘리먼트들, 및 저장 매체
WO2021066730A1 (en) * 2019-10-04 2021-04-08 Telefonaktiebolaget Lm Ericsson (Publ) Propagation delay compensation toolbox
JP2022049203A (ja) * 2020-09-16 2022-03-29 株式会社東芝 無線通信装置、無線通信システム、および無線通信装置の処理方法
JP7358315B2 (ja) 2020-09-16 2023-10-10 株式会社東芝 無線通信装置、無線通信システム、無線通信装置の処理方法及びプログラム

Also Published As

Publication number Publication date
EP3624389A4 (en) 2020-05-27
EP3624389B1 (en) 2021-07-21
JP7173001B2 (ja) 2022-11-16
AU2018276459A1 (en) 2019-09-26
US20200127751A1 (en) 2020-04-23
JPWO2018221238A1 (ja) 2020-05-07
CN110651446B (zh) 2022-09-20
AU2018276459B2 (en) 2021-03-11
US11082141B2 (en) 2021-08-03
BR112019024754A2 (pt) 2020-06-09
CN110651446A (zh) 2020-01-03
EP3624389A1 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
WO2018221238A1 (ja) 無線機器および無線機器の処理方法
US8355476B2 (en) Timestamping method and apparatus for precise network synchronization
US8817823B2 (en) Method and device for time synchronization
US20120155497A1 (en) Apparatus and method for estimating time stamp
WO2018006686A1 (zh) 一种通信网络设备间时间同步的优化方法、装置及设备
CN103929293A (zh) 非对称延迟的时间同步方法及系统
KR20090032306A (ko) 네트워크상의 타임 동기화 시스템 및 방법
WO2013056575A1 (zh) 一种1588-2008协议中时钟同步的方法及系统
WO2014083725A1 (ja) 同期装置、同期システム、無線通信装置及び同期方法
JP2018505576A (ja) 複数のシンクデバイスへのワイヤレスストリーミング伝送のタイミングを同期する技法
WO2012065334A1 (zh) 在时分复用网络中实现时间同步的方法、设备和系统
CN108650050A (zh) 一种分布式网络时钟同步方法
WO2013082901A1 (zh) 一种1588事件报文的处理方法及系统
US20130308712A1 (en) Clock synchronization method, apparatus, and system
US20220007321A1 (en) Network Entities and Methods for a Wireless Network System for Determining Time Information
WO2012095043A2 (zh) 时间路径补偿方法和装置
JP2007529163A (ja) ネットワーク・ノード
CN103259640A (zh) 一种同步时间的方法和设备
WO2012149751A1 (zh) 一种时钟等级分级方法及相关设备
CN101686093A (zh) 传输网时钟同步的方法、设备及系统
WO2018099375A1 (zh) 同步方法、同步装置、同步设备及通信系统
CN207884639U (zh) 一种网络节点、时间噪声传递特性测量装置和同步通信网络
CN115865246A (zh) 时间同步装置、系统及方法
KR100952281B1 (ko) 네트워크 시스템에서 네트워크 동기를 위한 지연값 설정방법
JP7056570B2 (ja) 無線機器、無線機器の処理方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809371

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019522107

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018276459

Country of ref document: AU

Date of ref document: 20180517

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019024754

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2018809371

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112019024754

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191125