WO2012095043A2 - 时间路径补偿方法和装置 - Google Patents

时间路径补偿方法和装置 Download PDF

Info

Publication number
WO2012095043A2
WO2012095043A2 PCT/CN2012/071386 CN2012071386W WO2012095043A2 WO 2012095043 A2 WO2012095043 A2 WO 2012095043A2 CN 2012071386 W CN2012071386 W CN 2012071386W WO 2012095043 A2 WO2012095043 A2 WO 2012095043A2
Authority
WO
WIPO (PCT)
Prior art keywords
path
compensation
time
fiber
service board
Prior art date
Application number
PCT/CN2012/071386
Other languages
English (en)
French (fr)
Other versions
WO2012095043A3 (zh
Inventor
曹德众
王步云
潘国杰
苏超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12733906.7A priority Critical patent/EP2597791B1/en
Priority to ES12733906.7T priority patent/ES2690527T3/es
Priority to PCT/CN2012/071386 priority patent/WO2012095043A2/zh
Priority to BR112013009402-8A priority patent/BR112013009402B1/pt
Priority to CN201280000207.8A priority patent/CN103168440B/zh
Publication of WO2012095043A2 publication Critical patent/WO2012095043A2/zh
Publication of WO2012095043A3 publication Critical patent/WO2012095043A3/zh
Priority to US13/847,101 priority patent/US9172525B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0673Clock or time synchronisation among packet nodes using intermediate nodes, e.g. modification of a received timestamp before further transmission to the next packet node, e.g. including internal delay time or residence time into the packet

Definitions

  • the present invention relates to the field of communications, and in particular, to a time path compensation method and apparatus. Background technique
  • IEEE 1588 V2 protocol is a frequency and time synchronization protocol.
  • the full name of IEEE 1588 V2 protocol is the precision clock synchronization protocol standard of network measurement and control system, which is called PTP protocol. It is a general specification to improve the timing synchronization capability of network systems.
  • the communication network has strict timing synchronization and is applied to industrial automation systems. With the 1588 V2 protocol, the accuracy can reach sub-microseconds.
  • the main principle of the time synchronization of the protocol is shown in Figure 1. The basic idea is to synchronize the internal clock of the network device (client) with the master clock of the host computer through hardware and software, and provide the synchronization establishment time less than s. , the timing synchronization indicators of the entire network have been significantly improved.
  • a communication node in a mobile communication system each node to an adjacent node, generally has at least two fiber links, one for the receive link and the other for the transmit link.
  • the basis of accurate time synchronization between nodes through the 1588 protocol is that the fiber-optic transceiver link of the node must be of equal length. If the fiber-optic transceiver link is not equal in length, the fiber should be asymmetrically compensated. Otherwise, the fiber-optic transceiver link is inconsistent. Serious impact. At this time, it is necessary to measure the asymmetry of the link fiber and the link fiber.
  • the current solution is mainly to use GPS to perform point-by-point measurement and compensate for the fiber asymmetry value.
  • the fiber asymmetry between each station of NE1 ⁇ NE4 is measured point by point, and the asymmetry is compensated according to the measurement result. value.
  • the NE1 ⁇ NE4 sites must enter On-site operation measurement, heavy workload; GPS needs to ensure that the satellite is within the field of view of the receiver.
  • the base station is placed in a place that is not conducive to GPS antenna erection, such as in the basement, subway station, it is very difficult to carry out on-site measurement; the most important is After the site is broken, it may cause fiber changes and need to be re-inspected in the field.
  • optical fiber measures and compensates for the asymmetry of the optical fiber.
  • This method has the following problems: On-site measurement is required for each site, and the workload is heavy; after the site is broken, it needs to be measured again in the field. Therefore, the operability of this prior art is relatively poor. Summary of the invention
  • Embodiments of the present invention provide a time path compensation method and apparatus to implement efficient, accurate, and real-time compensation for time tracking deviation caused by asymmetry of a fiber transceiver link.
  • the embodiment of the present invention provides a time path compensation method, including: receiving a first timestamp sent by a service board unit through a first optical fiber; receiving a second timestamp sent by the compensation unit by using the second optical fiber; Calculating, by the first timestamp, the first fiber path delay, calculating the second fiber path delay according to the second timestamp, delaying the first fiber path delay and the second fiber path The half of the time difference is used as the path compensation time value, and the data message of the path compensation time value is transmitted according to the path compensation time value.
  • an embodiment of the present invention provides a time path compensation apparatus, including: a first receiving unit, configured to receive a first timestamp sent by a service board unit by using a first optical fiber; and a second receiving unit, configured to receive a second timestamp sent by the compensation unit by the second optical fiber; the processing unit calculates the first fiber path delay according to the first timestamp, and calculates the second fiber path extension according to the second timestamp And a half of a difference between the first fiber path delay and the second fiber path delay is used as a path compensation time value, and the data sending unit sends a data message of the path time value according to the path compensation time value.
  • an embodiment of the present invention provides a time path compensation apparatus, including: a service board unit, configured to receive a first timestamp sent by another service board unit through a first optical fiber, and send a compensation unit; and a compensation unit, configured to receive a second timestamp sent by the other compensation unit through the second optical fiber, and calculate the first fiber path delay according to the first timestamp, according to the second timestamp Calculating the second fiber path delay, and using the difference between the first fiber path delay and the second fiber path delay as the path compensation time value, and sending the value to the service board unit, the service board unit Sending the packet of the asymmetric compensation data to the peer service board unit according to the path compensation time value; the service board unit confirms whether to compensate according to the port status.
  • the time path compensation device can calculate the path compensation time value, and the service board unit can automatically compensate for the deviation of the optical fiber according to the calculated path compensation time value.
  • Figure 1 is a schematic diagram of the time synchronization of the IEEE 1588 V2 protocol
  • FIG. 2 is a schematic diagram of point-by-point measurement and compensation for using GPS in the prior art
  • FIG. 3 is a flowchart of a time path compensation method according to an embodiment of the present invention.
  • FIG. 5 is a block diagram of a time path compensation method according to an embodiment of the present invention
  • FIG. 6 is a format diagram of a message according to an embodiment of the present invention
  • FIG. 7 is a network diagram of a time path compensation method according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of application of a time path compensation apparatus according to an embodiment of the present invention.
  • FIG. 9 is an internal block diagram of a synchronization processing module according to an embodiment of the present invention.
  • FIG. 10 is an application diagram of another time path compensation apparatus according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an application of a time path compensation apparatus according to an embodiment of the present invention
  • FIG. 12 is a block diagram of a time path compensation virtual device according to an embodiment of the present invention. detailed description
  • FIG. 3 is a flowchart of a time path compensation method according to an embodiment of the present invention. As shown in FIG. 3, the following steps are required to implement the time path compensation method, including:
  • Step 310 The service board unit B passes the optical fiber 1 and sends a first timestamp to the service board unit A.
  • the service board unit A hereinafter referred to as the service board A
  • the service board unit B hereinafter referred to as the service board B
  • the 1588 V2 protocol the service board unit A
  • the two service board units pass the first optical fiber (hereinafter referred to as the optical fiber 1) and the second optical fiber.
  • fiber 2 (hereinafter referred to as fiber 2) for 1588 V2 time synchronization; since the fiber 1 and fiber 2 transceiver links are not equal in length, there is a fixed deviation off se t O; a compensation unit is added to each of the service board A and the service board B side, the service board The A and the compensation unit ⁇ 2' are connected by the optical fiber A, the service board B and the compensation unit ⁇ are connected through the optical fiber B, and the service board transmits the first timestamp to the service board through the optical fiber 1; the fixed deviation is se t The deviation between the link and the transmission link transmission data is not equal; the timestamp is when the data sender sends the data packet to the data receiver, and the specific time for transmitting the data is also encapsulated in the sent data packet. .
  • Step 320 The compensation unit ⁇ ' sends a second timestamp to the compensation unit ⁇ through the optical fiber 2.
  • Step 330 Calculate the first fiber path delay according to the first timestamp, calculate the second fiber path delay according to the second timestamp, delay the first fiber path, and Half of the difference between the two fiber path delays is used as the path compensation time value.
  • the compensation unit can calculate the delay of the two fibers according to the two time stamps; the compensation unit ⁇ 2 ' sends the calculated delay difference to the service board, and the compensation unit ⁇ calculates the delay difference.
  • Half is the asymmetric data: compensation time value.
  • Step 340 Send a data packet with a path compensation time value according to the path compensation time value.
  • the service board A transmits the compensation time value to the service board B in the form of a packet.
  • the optical fiber asymmetric compensation is performed according to the compensation time value. Correct the "compensation time value" data in local time to solve the problem of asymmetric transmission link between fiber 1 and fiber 2. If the port state of fiber 1 or fiber 2 is not S lave, no fiber asymmetry compensation is performed. The technical solution will be further described in detail below with reference to FIG. 5.
  • FIG. 4 is a block diagram of a time path compensation in the prior art; as shown in FIG. 4, the time tracking device in the prior art includes only the service board unit A and the service board unit B; A block diagram corresponding to the time path compensation method provided by the embodiment of the invention; as shown in FIG.
  • the service board unit A and the service board unit B start the 1588 V2 protocol, and the two service board units perform time synchronization of 1588 V2 through the optical fiber 1 and the optical fiber 2;
  • the optical fiber 1 and the optical fiber 2 transmit and receive links are not equal in length, and there is a fixed deviation of f se t O; a compensation unit is added to each of the service board A and the service board B side, and the service board A and the compensation unit ⁇ 2 ′ are connected through the optical fiber ,.
  • the service board B and the compensation unit ⁇ are connected through the optical fiber , and the optical signal and the service board of the compensation unit 7 sent to the compensation unit ⁇ 2' are transmitted through the optical fiber 1 through the optical fiber 1 through the optical fiber 1 through the optical fiber 1 through the optical fiber 1
  • the ray number of the service board is multiplexed; the service board ⁇ transmits the first time to the service board ⁇ and the compensation unit ⁇ 2 ′ through the optical fiber 2 through the optical fiber 1
  • the second timestamp the service board sends the received first timestamp to the compensation unit ⁇ 2' through the optical fiber A, and the compensation unit '2' calculates the delay of the two optical fibers according to the two time stamps;
  • the calculated delay difference is sent to the service board, and the service board A uses half of the calculated delay difference as the asymmetric data, that is, the compensation time value; the service board A transmits the compensation time value to the service through the message form.
  • FIG. 6 is a format diagram of a packet according to an embodiment of the present invention. As shown in FIG. 6, when the service board A receives the compensation time value calculated by the compensation unit, and the port of the service board A is the mas ter end, the resp ⁇ ⁇ The reserved byte of the text passes the compensation time value;
  • the PSE layRespFlag byte is reserved in the Res p message, and the resp message type carrying the compensation value is added, and the bi t6 of the PDe layRespF lag field is used; when the bi t6 is 0, the ordinary resp is the text, and the bi t 6 is 1.
  • the value indicates the resp message carrying the compensation time value.
  • the Resped byte is reserved in the Resp packet.
  • the highest bit of the byte with the byte offset value is 34.
  • the compensation direction is stored: 0 is the positive direction (service board A sends to service board B), and 1 is the negative direction (service board). B sends to service board A); the lower 7 bits of the byte with a byte offset value of 34, and the byte with a byte offset of 35: the second value portion of the offset value; the byte offset value is 36. 4 bytes of ⁇ 39: Stores the nanosecond value portion of the compensation value.
  • the multiplexing process is to combine a series of optical signals carrying information but different wavelengths into one bundle, and then transmitting along a single optical fiber; at the receiving end, using a certain method, each light of different wavelengths is used.
  • Signal separation communication technology This technology can simultaneously transmit multiple signals on a single fiber, each of which is transmitted by a specific wavelength of light.
  • the multiplexer processing generally uses a wavelength multiplexer and a demultiplexer (ie, a multiplexer/demultiplexer) to be respectively placed at both ends of the fiber to realize coupling and separation of different light waves.
  • FIG. 7 is a schematic diagram of a network application of the time path compensation solution according to an embodiment of the present invention.
  • the building integrated timing system (Bu i lding Integrated Timing System BITS) is used as the time source input, which is controlled by the synchronization reference (or GPS signal) from the upper network.
  • the building integrated timing supply system is controlled by The GPS signal of the upper network
  • the Building Integrated Timing Supply System (BITS) means that there is a main clock in each communication building, and all other clocks in the building are synchronized by the main clock.
  • the master clock level should be the same or higher than the clock level of the switching equipment in the building.
  • the network elements NE1, NE2, NE3, NE4, NE5, and NE6 are respectively network elements in the transmission path, and the network elements NE1 and NE2 are connected by the optical fiber pair 1; the network elements NE2 and NE3 are connected by the optical fiber pair 2; NEs NE3 and NE4 are connected by fiber pair 3; NEs NE4 and NE5 are connected by fiber pair 4; NEs NE5 and NE1 are connected by fiber pair 5; NE NE6 and NE4 are connected by fiber pair 6, NE6 3 ⁇ The clock and time information of the NE element NE4 is traced as shown by the dotted curve in FIG. 6; the station B is connected to the NE NE6.
  • the specific implementation process is as follows:
  • the BITS is used as the time source input. It is controlled by the GPS signal from above.
  • the NE1 NE6 starts the 1588 V2 protocol for time synchronization. Among them, the fiber pair 1, the fiber pair 2, the fiber pair 3, and the fiber pair 4 The fiber pair 5 and the fiber pair 6 are in a symmetric state of transmission and reception.
  • the NE NE5 is controlled by the BI TS master clock, that is, the BITS master clock first starts the 1588 V2 protocol with the NE NE 5, and performs time synchronization to make the NE NE5.
  • the clock is synchronized with the time of the BITS master clock; the network element NE5 and the network element NE1 are connected by the optical fiber pair 5, and the network element NE1 starts the 1588 V2 protocol, and synchronizes with the network element NE5, so that the network element NE1 tracks the clock and time of the network element NE5.
  • the network element NE1 and the network element NE2 are connected by the optical fiber pair 1 and the network element NE2 starts the 1588 V2 protocol, and performs time synchronization with the network element NE1, so that the network element NE2 tracks the clock and time information of the network element NE1; the network element NE4 and the network
  • the NE5 is connected to the optical fiber pair 4, and the NE5 has started the 1588 V2 protocol, and is controlled by the BI TS master clock.
  • the optical fiber pair 4 is symmetrically transmitted and received.
  • the network element NE4 and the network element NE4 are connected to each other through the optical fiber pair 3, and the network element NE2 is connected to the network element NE2 through the optical fiber pair 2, because the network element NE3 can communicate with the network element NE4 through the network element NE4.
  • the primary clock of the NE5 is synchronized. Therefore, the NE3 initiates the 1588 V2 protocol and synchronizes with the NE NE4, so that the NE3 tracks the clock and time information of the NE4, that is, the NEs NE1 to NE5 are both synchronized with the master clock. Synchronize.
  • the NE6 and the NE4 are connected by the optical fiber pair 6 and start the 1588 V2 protocol for time synchronization.
  • the tracking path of the NE6 is represented by a dashed curve in Figure 7.
  • the virtual curve shown in FIG. 7 is the tracking path of the network element NE6, and the clock of the BITS master clock is synchronized with the clock of the network element NE5.
  • the network element NE5 and the network element NE4 are started by the optical fiber pair 4
  • the time of the network element NE4 and the network element NE5 are synchronized, that is, the network element NE4 is also synchronized with the time of the BITS master clock.
  • the network element NE4 and the network element NE6 After the network element NE4 and the network element NE6 start the 1588 V2 protocol through the optical fiber pair 6, the network element NE4 and the network element NE4 are The time synchronization of the NE NE6, that is, the NE NE6 is also synchronized with the BITS master clock time.
  • the implementation process described above is to start the 1588 V2 protocol when the optical fiber pair 1, the optical fiber pair 2, the optical fiber pair 3, the optical fiber pair 4, the optical fiber pair 5, and the optical fiber pair 6 are in a symmetrical state.
  • the clock is synchronized with the BITS master clock time.
  • the optical fiber pair 4 is asymmetrically transmitted, that is, there is a fixed deviation in the fiber pair 4 off se t O
  • a compensation unit is respectively configured in the network element NE4 and the network element NE5, and the compensation unit of the network element NE4 and the network element NE5 can calculate the asymmetry of the optical fiber pair 4 transmission and reception, and obtain the asymmetric data, that is, the optical fiber pair 4 Fixed offset off se t O; in the SLAVE port of the NE NE4, the asymmetric compensation data is valid, so that the network element NE4 and NE5 complete the absolute time synchronization, which is synchronized with the BITS master clock time.
  • FIG. 8 is a schematic diagram of application of a time path compensation apparatus according to an embodiment of the present invention.
  • the time path compensation device provided by the embodiment of the present invention is described in detail with reference to FIG. 8 and FIG. 5, and the time path compensation device can automatically implement optical fiber compensation, and the asymmetry is not required to be tested station by station.
  • the time path compensation device shown in FIG. 8 is a solution proposed for solving 40-80 Km, and other solutions can be used to solve 0-40 Km, and a compensation is added to each of the service board A and the service board B side shown in FIG.
  • the unit and the compensation unit 7', the compensation unit includes a split-wave module and a synchronization processing module; wherein, the main function of the split-wave module is to divide the light wave on the service board A or the service board B and the light wave on the compensation unit
  • the multiplex processing; the synchronous processing module is mainly used to synchronize the system time, send and receive optical signals processed by the split multiplexer module, and calculate the optical fiber asymmetric compensation data.
  • the synchronization processing module includes a time synchronization sub-module, a time stamp processing sub-module, and an auxiliary optical path sub-module, wherein the time synchronization sub-module is mainly used.
  • the time stamp processing sub-module mainly generates the time stamp of the board according to the system time of the clock board, and receives the time stamp of the board, and finally calculates the path delay;
  • the auxiliary optical path sub-module mainly transmits and receives the optical signal. And carry time stamp information.
  • the optical module of the optical wavelength (hereinafter referred to as the 1550 optical module) is used as the transmission and reception time-bearing information of the optical path of the main optical path, and in the compensation unit ⁇ ' and the compensation unit ⁇ 2 '
  • An optical module of 1510 nm optical wavelength (hereinafter referred to as a 1510 nm optical module) is used as an optical signal for transmitting and receiving and carrying time-stamp information of the auxiliary optical path sub-module;
  • the left main optical path 1550 allows the optical module to be in the service board unit A; the right main optical path 1550 allows the optical module to be in the service board unit B; the service board A and the service board B are connected by the optical fiber 1; the compensation unit W passes the optical fiber A and the service board A.
  • the connection unit ⁇ is connected to the service board via the optical fiber ;; the compensation unit W and the compensation unit 7 are connected by the optical fiber 2.
  • the processing flow is as follows:
  • the compensation unit 71' and the compensation unit ⁇ 2' each include a split multiplexer module and an auxiliary optical path 1510 for the submodule, and the auxiliary optical path 1510 in the compensation unit ⁇ ⁇ transmits a light signal, and the optical signal passes through the splitting wave of the compensation unit ⁇
  • the module is transmitted through the optical fiber 2 to the split multiplexer module in the compensation unit ⁇ 2'. After the split multiplexer module in the compensation unit ⁇ 2' receives the optical signal transmitted by the optical fiber 2, the optical signal is sent to the compensation by the split multiplexer module.
  • the left main optical path 1550 in the figure allows the optical module to be located in the service board B
  • the right main optical path 1550 allows the optical module to be located in the service board A.
  • the main optical path 1550 in the service board A allows the optical module to transmit an optical signal through the optical fiber A to the split-wave module in the compensation unit ⁇ 2', and transmits it to the split-wave module in the compensation unit ⁇ through the optical fiber 2, and then through the optical fiber.
  • the main optical path 1550 in the service board allows the optical module to receive the transmission by the service board through the optical fiber ⁇ by the split-wave module in the compensation unit 71'. A signal light coming through.
  • the optical signal transmitted by the auxiliary 1510 nm optical path sub-module in the compensation unit ⁇ , and the optical signal sent by the optical module through the optical fiber A by the main optical path 1550 in the service board A, that is, single-fiber bidirectional on the optical fiber 2 Transmit optical signals.
  • the service board B sends a time stamp to the service board A through the optical fiber 1.
  • the compensation unit 7 sends a time stamp to the compensation unit ⁇ 2' through the optical fiber 1.
  • the service board sends the received first timestamp to the compensation unit ⁇ 2' through the optical fiber A.
  • the time stamp processing sub-module in the compensation unit ⁇ 2 ′ can calculate the delay of the optical fiber 1 and the optical fiber 2 according to the two time stamps, and the compensation unit W sends the calculated delay difference to the service board, the delay
  • the half of the difference is the asymmetric data: the compensation time value; the service board A transmits the compensation data to the service board B in the form of a message; for the service board A or the service board B, if the port status of the optical fiber 1 or the optical fiber 1 is S lave , the fiber is asymmetrically compensated, and the local time is corrected by a "compensation value" data to solve the problem of asymmetric transmission link between fiber 1 and fiber 2.
  • FIG. 10 is a schematic diagram of application of a time path compensation apparatus according to an embodiment of the present invention.
  • the receiving time path compensation device provided by the embodiment of the present invention is described in detail with reference to FIG. 10 and FIG. 5, and the receiving time path compensation device can automatically implement optical fiber compensation without further Station test asymmetry.
  • the receiving time path compensation device shown in FIG. 10 is a solution for solving 2-40Km, and a compensation unit W and a compensation unit ⁇ ' are added to each of the service board A and the service board B side shown in FIG. 5,
  • the compensation unit is the same as the aforementioned compensation unit, and will not be described herein.
  • the 1300 nm optical module is used as the transmission and reception time-stamp information of the main optical path optical signal.
  • the 155 Onm optical module is used as the auxiliary optical path sub-module light. Signal transceiving and carrying time stamp information;
  • the optical fiber module 1 is in the service board unit B; the optical module 1 is in the service board unit A; Connected to the service board A; the compensation unit ⁇ is connected to the service board through the optical fiber ;; the compensation unit ⁇ and the compensation unit ⁇ are connected through the optical fiber 2.
  • the processing flow is as follows:
  • the 1588 V2 protocol is started on the service board and the service board B, and the 1588 V2 time synchronization is performed through the optical fiber 1 and the optical fiber 1. Since the optical fiber 1 and the optical fiber 2 transceiver link are not equal in length, there is a fixed deviation of fset O; A compensation unit is added to each of the board A and the service board B side.
  • Each of the compensation unit 71' and the compensation unit ⁇ 2' includes a split multiplexer module and an auxiliary optical path 1550 for the submodule, and the auxiliary optical path 1550 in the compensation unit ⁇ ⁇ transmits a light signal, and the optical signal passes through the splitting wave of the compensation unit ⁇
  • the module is transmitted through the optical fiber 2 to the split multiplexer module in the compensation unit ⁇ 2'.
  • the optical signal is sent to the compensation by the split multiplexer module.
  • the auxiliary optical path in the unit ⁇ 2' is within the 1550 nm submodule.
  • the position of the left main optical path 1 31 Onm optical module is specifically in the service board B, and the right main optical path 1 31 0 is located in the service board A, and the main optical path 1 in the service board A 0, let the optical module send the optical signal to the split multiplexer module in the compensation unit ⁇ 2' through the optical fiber A, and transmit it to the split multiplexer module in the compensation unit ⁇ through the optical fiber 2, and then send it to the service board through the optical fiber ,
  • the main optical path 1 31 Onm optical module in the service board receives the optical signal transmitted by the service board A transmitted by the split multiplexer module in the compensation unit 71' through the optical fiber B.
  • the transmission is carried out by the auxiliary 1 550 in the compensation unit ⁇
  • the transmitted optical signal and the optical signal transmitted by the optical module through the optical fiber A by the main optical path 1 310 in the service board A, that is, the single-fiber bidirectional transmission optical signal is realized on the optical fiber 2.
  • the service board B sends a time stamp to the service board A through the optical fiber 1.
  • the compensation device 7 sends a time stamp to the compensation device '2' through the optical fiber 2.
  • the service board sends the received first timestamp to the compensation unit ⁇ 2' through the optical fiber A.
  • the time stamp processing sub-module in the compensation device ⁇ 2 ′ can calculate the delay of the optical fiber 1 and the optical fiber 2 according to the two time stamps, and the compensation device sends the calculated delay difference to the service board ,, the delay
  • the half of the difference is the asymmetric data: the compensation time value; the service board A transmits the compensation data to the service board B in the form of a message; for the service board A or the service board B, if the port status of the optical fiber 1 and the optical fiber 1 is S Lave, then do fiber asymmetric compensation, which will correct a "compensation value" data in local time to solve the problem of asymmetric transmission link between fiber 1 and fiber 2.
  • FIG. 1 is a schematic diagram of an application of a time path compensation apparatus according to an embodiment of the present invention
  • the time auxiliary board provided by the embodiment of the present invention will be described in detail with reference to FIG. 11 and FIG. 5, and the optical auxiliary compensation can be automatically realized by the time auxiliary board, and the asymmetry is not required to be tested station by station.
  • the compensation unit shown in FIG. 11 is a solution proposed to solve 2-80Km.
  • Each of the service board A and the service board B shown in FIG. 5 adds a compensation unit ⁇ 2 ' and a compensation unit 7 ', and a compensation unit.
  • the optical filter module and the synchronization processing module are included; wherein the main function of the optical filter module is to select an optical signal corresponding to the wavelength of the auxiliary optical path sub-module in the compensation unit, and then the optical wave and the compensation unit on the service board/service board ⁇ 2 ' / compensation unit ⁇ ' on the light wave is separated; the synchronization processing module is mainly used to synchronize the system time, send and receive optical signals processed by the optical filter module, calculate the fiber asymmetric compensation data, the internal structure and diagram of the synchronous processing module
  • the internal processing structure of the synchronous processing module shown in FIG. 9 is the same. The internal structure and various functions of the synchronous processing module have been described above, and therefore, details are not described herein again.
  • the optical module is used as the transmission and reception time stamp information of the main optical path optical signal by using 1 310/ 1550, and the 1490 nm optical module is used as the auxiliary optical path submodule light in the compensation device and the compensation device ⁇ 2 ' Signal transceiving and carrying time stamp information;
  • the left main light path 1 310/ 1550nm optical module is in the service board unit A; the right main light path
  • the optical module allows the optical module to be in the service board unit B; the service board A and the service board B are connected by the optical fiber 1;
  • the compensation unit is connected to the service board A through the optical fiber A;
  • the compensation unit ⁇ is connected to the service board through the optical fiber ;
  • the compensation unit ⁇ 2 ' and the compensation unit ⁇ ⁇ are connected through the optical fiber 2.
  • the processing flow is as follows:
  • the 1588 V2 protocol is started in the service board and the service board, and the 1588 V2 time synchronization is performed through the optical fiber 1 and the optical fiber 2; since the optical fiber 1 and the optical fiber 2 transceiver link are not equal in length, there is a fixed deviation of f set 0; A compensation unit is added to each of the board A and the service board B side.
  • An optical filter module and an auxiliary optical path 1490 are included on the compensation unit ⁇ and the compensation unit ⁇ 2 ′ to allow the sub-module, and the auxiliary optical path 1490 in the compensation unit 7 causes the sub-module to transmit an optical signal, which is optically filtered by the compensation unit 71 ′.
  • the module is transmitted through the optical fiber 2 to the optical filter module in the compensation unit ⁇ 2'. After the optical filter module in the compensation unit ⁇ 2' receives the optical signal transmitted by the optical fiber 2, the optical filter module sends the optical signal to the optical filter module.
  • the auxiliary optical path 1490 in the compensation unit ⁇ 2' allows the position of the optical module of the left main optical path 1310/1550 nm in the sub-module to be in the service board B, and the position of the right main optical path 1310/1550 nm optical module is specifically in the service.
  • the main optical path 1310/1550 in the service board A causes the optical module to transmit an optical signal through the optical fiber A to the optical filter module in the compensation unit ⁇ 2', and transmits the optical filter module through the optical fiber 2 to the optical filter module in the compensation unit ⁇ After that, it is sent to the service board through the fiber ⁇ , and the main optical path 1310/1550nm optical module in the service board is received by the compensation unit ⁇ An optical signal transmitted by the service filter module A transmits over the plate.
  • the optical signal transmitted by the optical path sub-module by the auxiliary 1490 in the compensation unit ⁇ is transmitted, and the optical signal transmitted by the main optical path 1310/1550 nm optical module in the service board through the optical fiber A, that is, the optical fiber 2 is realized.
  • the fiber transmits optical signals bidirectionally.
  • the service board B sends a time stamp to the service board A through the optical fiber 1.
  • the compensation device ⁇ ' transmits a time stamp to the compensation device ' 2 ′ through the optical fiber 2 , and the service board sends the received first time stamp to the compensation unit ⁇ 2 ′ through the optical fiber A.
  • the time stamp processing module in the compensation device ⁇ 2 ′ can calculate the delay of the optical fiber 1 and the optical fiber 2 according to the two time stamps, and the compensation device sends the calculated delay difference to the service board, the delay
  • the half of the difference is the asymmetric data: the compensation time value; the service board A transmits the compensation data to the service board B in the form of a message; for the service board A or the service board B, if the optical fiber 1 and the optical fiber 2 are connected to the port shape
  • the state is S lave, the fiber is asymmetrically compensated, and a "compensation value" data is corrected in the local time to solve the problem of the asymmetry of the optical fiber 1 and the optical fiber 2 transceiver link.
  • FIG. 12 is a block diagram of a time path compensation virtual device according to an embodiment of the present invention.
  • the time path compensation device includes a first receiving unit, configured to receive a first timestamp sent by the service board unit through the first optical fiber, and a compensation unit, a service board A and a compensation unit ⁇ 2' on each of the service board A and the service board B side.
  • the service board B and the compensation unit ⁇ are connected through the optical fiber ,, and the service board sends the first timestamp to the service board through the optical fiber 1.
  • the first receiving unit receives the service board B and sends the service board B to the service board A through the optical fiber 1. A timestamp.
  • the second receiving unit is configured to receive a second timestamp sent by the compensation unit by using the second optical fiber, and the second receiving unit receives the compensation unit to send the second timestamp to the compensation unit ⁇ through the optical fiber 2.
  • a processing unit configured to calculate the first fiber path delay according to the first timestamp, calculate the second fiber path delay according to the second timestamp, and delay the first fiber path Half of the difference from the second fiber path delay is used as the path compensation time value.
  • a data sending unit configured to send a path compensation time value to the service board unit, and the compensation unit ⁇ 2 'send the calculated delay difference to the service board, and send a data packet according to the path compensation time value
  • the service board A transmits the compensation data to the service board B in the form of a message, and half of the delay difference is the asymmetric data: the compensation time value.
  • the processing unit is configured to perform automatic synchronization enable processing according to the path compensation time value.
  • the port state of the optical fiber 1 and the optical fiber 2 is S lave, and the optical fiber asymmetric compensation is performed, that is, local Time to correct a "compensation time value" data to solve the problem of asymmetric transmission link between fiber 1 and fiber 2.
  • RAM random access memory
  • ROM read only memory
  • electrically programmable ROM electrically erasable programmable ROM
  • registers hard disk, removable disk, CD-ROM, or any other form of storage known in the art. In the medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Optical Communication System (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Electric Clocks (AREA)
  • Power-Operated Mechanisms For Wings (AREA)

Description

时间路径补偿方法和装置 技术领域
本发明涉及通信领域, 尤其涉及一种时间路径补偿方法和装置。 背景技术
在移动通信系统中, 为了保证无线通信的业务质量, 通信网络和通信设 备对时钟同步有严格的要求, 尤其是伴随着移动通信网络的第三代移动通信 技术的发展, 移动通信系统对时钟同步精度的要求也更加严格。
IEEE 1588 V2协议就是一种频率、 时间同步协议, IEEE 1588 V2协议的全称 是网络测量和控制系统的精密时钟同步协议标准, 简称 PTP协议, 是通用的 提升网络系统定时同步能力的规范, 使分布式通信网络具有严格的定时同步, 并且应用于工业自动化系统。 釆用 1588 V2 协议, 精度可以达到亚微秒级。 该协议时间同步的主要原理如图 1 所示, 它的基本构思是通过硬件和软件将 网络设备(客户机) 的内时钟与主控机的主时钟实现同步, 提供同步建立时 间小于 s的运用, 使整个网络的定时同步指标有显著的改善。
移动通信系统中的通信节点, 每个节点到一个相邻节点, 一般至少具有 两条光纤链路, 一条为收链路, 另一条为发链路。 通过 1588协议实现节点间 精确时间同步的基础为节点的光纤收发链路须等长, 若光纤收发链路不等长 就要对光纤进行不对称补偿, 否则光纤收发链路不一致对时间同步精度存在 着严重的影响。 这时就需要测量收链路光纤与发链路光纤的不对称性。
目前的解决方法主要是使用 GPS进行逐点测量和补偿光纤不对称值, 如 图 2所示, 对 NE1 ~ NE4每个站点之间的光纤不对称性进行逐点测量, 根据测 量结果补偿不对称值。 现有技术一中存在三点不足, 对 NE1 ~ NE4站点都要进 行现场操作测量, 工作量繁重; GPS需要保证卫星处于接收机的视野范围内, 当基站放置不利于 GPS 天线架设的地方, 如在地下室、 地铁站, 实施现场测 量时非常困难; 最重要的是站点断纤后可能导致光纤变化, 需要重新到现场 测量。
上述光纤的测量和补偿光纤不对称值, 发明人发现这种方法存在如下问 题: 对每个站点都要进行现场测量, 工作量繁重; 站点断纤后需要重新到现 场测量。 因此, 这种现有技术的可操作性比较差。 发明内容
本发明实施例提供了一种时间路径补偿方法和装置, 以实现高效、 准确 和实时的对光纤收发链路不对称导致的时间跟踪偏差实行补偿。
在第一方面, 本发明实施例提供了一种时间路径补偿方法, 包括: 接收 业务板单元通过第一光纤发送的第一时间戳; 接收补偿单元通过第二光纤发 送的第二时间戳; 根据所述第一时间戳计算出所述第一光纤路径延时, 根据 所述第二时间戳计算出所述第二光纤路径延时, 将所述第一光纤路径延时与 第二光纤路径延时之差的一半作为路径补偿时间值, 根据所述路径补偿时间 值发送路径 卜偿时间值的数据报文。
在第二方面, 本发明实施例提供了一种时间路径补偿装置, 包括: 第一 接收单元, 用于接收业务板单元通过第一光纤发送的第一时间戳; 第二接收 单元, 用于接收补偿单元通过第二光纤发送的第二时间戳; 处理单元, 根据 所述第一时间戳计算出所述第一光纤路径延时, 根据所述第二时间戳计算出 所述第二光纤路径延时, 将所述第一光纤路径延时与第二光纤路径延时之差 的一半作为路径补偿时间值, 数据发送单元, 根据所述路径补偿时间值发送 路径 ^卜偿时间值的数据报文。
在第三方面, 本发明实施例提供了一种时间路径补偿装置, 包括: 业务 板单元, 用于接收其他业务板单元通过第一光纤发送的第一时间戳, 并发送 给补偿单元; 和补偿单元, 用于接收其他补偿单元通过第二光纤发送的第二 时间戳, 根据所述第一时间戳计算出所述第一光纤路径延时, 根据所述第二 时间戳计算出所述第二光纤路径延时, 将所述第一光纤路径延时与第二光纤 路径延时之差的一半作为路径补偿时间值, 发送给所述业务板单元, 所述业 务板单元根据路径补偿时间值发送不对称补偿数据的报文至对端业务板单 元; 所述业务板单元根据端口状态确认是否补偿。
通过应用本发明实施例公开的方法和装置,时间路径补偿装置可计算出 路径补偿时间值, 业务板单元可以根据计算出的路径补偿时间值对光纤存在 的偏差进行自动补偿。 附图说明
图 1为 IEEE 1588 V2协议时间同步原理图;
图 2为现有技术中的釆用 GPS进行逐点测量和补偿原理图;
图 3为本发明实施例提供的时间路径补偿方法流程图;
图 4为现有技术中的时间路径补偿框图;
图 5为本发明实施例提供的时间路径补偿方法对应的框图; 图 6为本发明实施例提供的报文格式图;
图 7为本发明实施例提供的时间路径补偿方法组网图;
图 8为本发明实施例提供的一时间路径补偿装置应用图;
图 9为本发明实施例提供的同步处理模块内部框图;
图 1 0为本发明实施例提供的另一时间路径补偿装置应用图;
图 1 1为本发明实施例提供的再一时间路径补偿装置应用图;
图 12为本发明实施例提供的时间路径补偿虚拟装置框图。 具体实施方式
为使本发明实施例的技术方案以及优点表达的更清楚, 下面通过附图和 实施例, 对本发明的技术方案做进一步的详细描述。 图 3 为本发明实施例提 供的时间路径补偿方法流程图; 如图 3所示, 实现时间路径补偿方法需要以 下步骤, 具体包括:
步骤 310、 业务板单元 B过光纤 1向业务板单元 A发送第一时间戳。 具体地, 业务板单元 A (以下简称业务板 A )和业务板单元 B (以下简称 业务板 B )启动 1588 V2协议, 两个业务板单元通过第一光纤(以下简称光纤 1 )和第二光纤 (以下简称光纤 2 )作 1588 V2 时间同步; 由于光纤 1和光纤 2收发链路不等长, 存在固定偏差 off se t O; 在业务板 A和业务板 B侧各增加 一个补偿单元, 业务板 A和补偿单元 Γ2'通过光纤 A连接, 业务板 B和补偿单 元 Γί通过光纤 B连接, 业务板 Β通过光纤 1向业务板 Α发送第一时间戳; 所述固定偏差 off se t O为光纤收链路与发链路传输数据时间不等长而形 成的偏差; 所述时间戳为数据发送方在向数据接收方发送数据包时, 将发送 数据的具体时间也同时封装在发送的数据包内。
步骤 320、 补偿单元 Π'通过光纤 2向补偿单元 ^发送第二时间戳。
步骤 330、根据所述第一时间戳计算出所述第一光纤路径延时,根据所述 第二时间戳计算出所述第二光纤路径延时, 将所述第一光纤路径延时与第二 光纤路径延时之差的一半作为路径补偿时间值。
具体地, 补偿单元 根据两路时戳, 可计算出两根光纤的延时; 补偿单 元 Γ2'将计算出的延时差发送至业务板 Α中,补偿单元 ^将计算出延时差的一 半即为不对称数据: 补偿时间值。
步骤 340、 根据路径补偿时间值发送路径补偿时间值的数据报文。
业务板 A通过报文形式将补偿时间值传递给业务板 B;对于业务板 A或业 务板 B, 如果光纤 1或光纤 2连接的端口状态为 S lave , 则根据补偿时间值做 光纤不对称补偿, 即将本地时间修正一个 "补偿时间值" 数据, 解决光纤 1 和光纤 2收发链路不对称的问题; 如果光纤 1或光纤 2连接的端口状态不为 S lave , 则不做光纤不对称补偿。 下面结合图 5对技术方案做进一步的详细描述。
在本发明实施例中, 图 4为现有技术中的时间路径补偿框图; 如图 4所 示现有技术中的时间跟踪装置中只包括业务板单元 A和业务板单元 B;图 5为 本发明实施例提供的时间路径补偿方法对应的框图; 如图 5所示, 业务板 单元 A和业务板单元 B启动 1588 V2协议, 两个业务板单元通过光纤 1和光 纤 2作 1588 V2 时间同步; 由于光纤 1和光纤 2收发链路不等长, 存在固定 偏差 of f se t O; 在业务板 A和业务板 B侧各增加一个补偿单元, 业务板 A和补 偿单元 Γ2'通过光纤 Α连接, 业务板 B和补偿单元 Γί通过光纤 Β连接, 在光纤 2上 (补偿单元 7 发往补偿单元 Γ2'的光信号和业务板 Α通过光纤 A经补偿单 元 Γ2'通过光纤 1再经光纤 Β发往业务板 Β的光线号)作合波处理; 业务板 Β 通过光纤 1 , 补偿单元 Γί通过光纤 2 , 分别向业务板 Α和补偿单元 Γ2'发送第 一时间戳和第二时间戳, 业务板 Α将接收到的第一时间戳通过光纤 A发送至 补偿单元 Γ2'内, 补偿单元 Γ2'根据两路时戳, 可计算出两根光纤的延时; 补偿 单元 将计算出的延时差发送至业务板 Α中, 业务板 A将计算出的延时差的 一半作为不对称数据也就是补偿时间值; 业务板 A通过报文形式将补偿时间 值传递给业务板 B, 如图 6所示的报文格式图; 对于业务板 A或业务板 B, 光 纤 1和光纤 2连接的端口状态为 S lave , 则做光纤不对称补偿, 即将本地时间 修正一个 "补偿时间值" 数据, 解决光纤 1和光纤 2收发链路不对称的问题。
图 6为本发明实施例提供的报文格式图; 如图 6所示, 业务板 A收到补 偿单元 计算出来的补偿时间值,并且业务板 A的端口为 mas ter端时候,通 过 Resp ^艮文的保留 (Reserved )字节传递补偿时间值;
Res p报文中保留 PDe layRespFlag字节, 加入携带补偿值的 resp报文类 型, 使用 PDe layRespF lag字段的 bi t6; bi t6为 0值时,表示普通的 resp才艮 文, bi t 6为 1值时, 表示携带补偿时间值的 resp报文
Resp报文中保留 reserved字节, 字节偏移值为 34的字节的最高位: 存 放补偿方向: 0为正方向 (业务板 A向业务板 B发送) , 1为负方向 (业务板 B向业务板 A发送) ; 字节偏移值为 34的字节的低 7位, 和字节偏移值为 35 的字节: 存放补偿值的秒值部分; 字节偏移值为 36 ~ 39的 4个字节: 存放补 偿值的纳秒值部分。
本发明实施例中, 合波处理为将一系列载有信息、 但波长不同的光信号 合成一束, 再沿着单根光纤传输; 在接收端再用某种方法, 将各个不同波长 的光信号分开的通信技术。 这种技术可以同时在一根光纤上传输多路信号, 每一路信号都由某种特定波长的光来传送。 合波处理一般釆用波长复用器和 解复用器(即合波 /分波器)分别置于光纤两端,实现不同光波的耦合与分离。
本发明实施例在运用上述时间路径补偿方法后, 相应的在实际应用中的 方案组网如图 7所示, 图 7为本发明实施例提供的时间路径补偿方案组网 应用图。
大楼综合定时供给系统(Bu i lding Integra ted Timing Sys tem BITS)作 为时间源输入, 它受控于来自上层网络的同步基准(或 GPS信号) , 在图 7 中大楼综合定时供给系统受控于来自上层网络的 GPS信号, 大楼综合定时供 给系统(BITS)是指在每个通信大楼内设有一个主钟, 楼内所有其他时钟受该 主钟的同步。 主钟等级应该与楼内交换设备的时钟等级相同或更高。
在图 7中网元 NE1、 NE2、 NE3、 NE4、 NE5和 NE6 , 分别为传送路径中的网 元, 网元 NE1和 NE2由光纤对 1连接; 网元 NE2和 NE3由光纤对 2连接; 网 元 NE3和 NE4由光纤对 3连接; 网元 NE4和 NE5由光纤对 4连接; 网元 NE5 和 NE1由光纤对 5连接; 网元 NE6与网元 NE4由光纤对 6连接, 网元 NE6 3艮 踪网元 NE4的时钟和时间信息, 其跟踪路径在图 6 中如虚曲线表示; 站点 B 与网元 NE6连接。 具体实施过程如下:
BITS作为时间源输入, 它受控于来自上面的 GPS信号, 网元 NE1 NE6 启动 1588 V2协议, 作时间同步; 其中, 均 ^叚设光纤对 1、 光纤对 2、 光纤对 3、 光纤对 4、 光纤对 5和光纤对 6为收发对称状态, 网元 NE5受 BI TS主钟控 制, 即 BITS主钟首先与网元 NE5启动 1588 V2协议,作时间同步,使网元 NE5 的时钟与 BITS主钟时间同步; 网元 NE5与网元 NE1通过光纤对 5连接, 网元 NE1启动 1588 V2协议, 与网元 NE5作时间同步, 使网元 NE1跟踪网元 NE5的 时钟和时间信息;网元 NE1与网元 NE2通过光纤对 1连接,网元 NE2启动 1588 V2协议, 与网元 NE1作时间同步, 使网元 NE2跟踪网元 NE1的时钟和时间信 息; 网元 NE4与网元 NE5通过光纤对 4连接, 网元 NE5已经启动 1588 V2协 议, 并受 BI TS主钟控制, 光纤对 4的收发对称, 则网元 NE4与网元 NE5通过 光纤对 4启动 1588 V2协议后, 使网元 NE4跟踪网元 NE5的时钟和时间信息; 网元 NE3与网元 NE4通过光纤对 3连接, 与网元 NE2通过光纤对 2连接, 由 于网元 NE3通过与网元 NE4就可与网元 NE5的主钟同步, 因此, 网元 NE3启 动 1588 V2协议, 与网元 NE4作时间同步, 使网元 NE3跟踪网元 NE4的时钟 和时间信息, 即网元 NE1 ~ NE5均与主钟时间同步。
网元 NE6与网元 NE4通过光纤对 6连接, 并启动 1588 V2协议, 作时间 同步, 且网元 NE6的跟踪路径在图 7中由虚曲线表示。 其中, 图 7所示的虚 曲线为网元 NE6的跟踪路径, BITS主钟控制与网元 NE5的时钟同步, 在光纤 对 4收发对称状态, 网元 NE5与网元 NE4通过光纤对 4启动 1588 V2协议后, 使网元 NE4和网元 NE5的时间同步, 即网元 NE4也与 BITS主钟时间同步, 网 元 NE4与网元 NE6通过光纤对 6启动 1588 V2协议后, 使网元 NE4和网元 NE6 的时间同步, 即网元 NE6也与 BITS主钟时间同步。
上述所描述的实施过程是在^ _设光纤对 1、 光纤对 2、 光纤对 3、 光纤对 4、 光纤对 5和光纤对 6为收发对称状态时, 进行的启动 1588 V2协议, 使各 个分时钟与 BITS主钟时间同步。
若在光纤对 1、 光纤对 2、 光纤对 3、 光纤对 4、 光纤对 5和光纤对 6中, 4叚设光纤对 4收发不对称, 即在光纤对 4中存在固定偏差 off se t O; 则在网元 NE4和网元 NE5中分别各自配置有补偿单元,则网元 NE4和网元 NE5的补偿单 元可计算出光纤对 4收发不对称性, 获得不对称数据, 即光纤对 4的固定偏 差 off se t O; 在网元 NE4的 SLAVE端口中, 该不对称补偿数据生效, 使得网元 NE4和网元 NE5完成绝对时间同步, 均与 BITS主钟时间同步。
图 8为本发明实施例提供的时间路径补偿装置应用图;
下面以图 8为例并结合图 5详细说明本发明实施例提供的时间路径补偿 装置, 通过该时间路径补偿装置可以自动实现光纤补偿, 无需再逐站测试不 对称性。
如图 8所示的时间路径补偿装置是为解决 40-80Km所提出的解决方案, 解决 0-40Km可以使用其他解决方案, 在图 5所示的业务板 A和业务板 B侧各 增加一块补偿单元 ^和补偿单元 7 ' , 补偿单元包括分合波模块和同步处理模 块; 其中, 分合波模块的主要功能是将业务板 A上或业务板 B上的光波和补 偿单元上的光波作分合波处理; 同步处理模块主要用于同步系统时间, 收发 经过分合波模块处理的光信号, 计算光纤不对称补偿数据。 图 9 为本发明实 施例提供的同步处理模块内部框图; 如图 9 所示, 同步处理模块包括时间同 步子模块、 时戳处理子模块和辅助光路子模块, 其中, 时间同步子模块主要 是用于同步系统时间; 时戳处理子模块主要是根据时钟板卡的系统时间生成 本板时戳, 并接收对板时戳, 最后计算出路径延时; 辅助光路子模块主要对 光信号的收发, 并承载时戳信息。
在图 8中, 均釆用 1550讓光波长的光模块(以下简称 1550謹光模块) 作为主光路光信号的收发和承载时戳信息, 在补偿单元 Π'和补偿单元 Γ2'中, 釆用 1510nm光波长的光模块(以下简称 1510nm光模块)作为辅助光路子模 块光信号的收发和承载时戳信息;
左面主光路 1550讓光模块在业务板单元 A内; 右面主光路 1550讓光模 块在业务板单元 B内; 业务板 A和业务板 B由光纤 1连接; 补偿单元 W通过 光纤 A与业务板 A连接;补偿单元 Γί通过光纤 Β与业务板 Β连接;补偿单元 W 和补偿单元 7 通过光纤 2连接。
处理流程如下描述:
在业务板 Α和业务板 B上启动 1588 V2协议, 并通过光纤 1和光纤 2作 1588 V2 时间同步; 由于光纤 1和光纤 2收发链路不等长, 因此存在固定偏 差 of f set O; 在业务板 A和业务板 B侧各均增加一块补偿单元。
在补偿单元 71'和补偿单元 Γ2'上均包括分合波模块和辅助光路 1510讓 子 模块, 补偿单元 Γί内的辅助光路 1510謹子模块发送光信号, 该光信号通过补 偿单元 Γί的分合波模块, 通过光纤 2传输至补偿单元 Γ2'中的分合波模块内, 补偿单元 Γ2'中的分合波模块接收到光纤 2传输的光信号后, 由分合波模块将 光信号发送至补偿单元 Γ2'中的辅助光路 1510nm 子模块内, 图中左面主光路 1550讓光模块所处的位置具体在业务板 B内,右面主光路 1550讓光模块所处 的位置具体在业务板 A内, 业务板 A中的主光路 1550讓 光模块通过光纤 A发 送光信号至补偿单元 Γ2'中的分合波模块, 并通过光纤 2传输至补偿单元 Γί中 的分合波模块后,再通过光纤 Β发送至业务板 Β内,业务板 Β中的主光路 1550讓 光模块通过光纤 Β接收由补偿单元 71'中分合波模块传输的由业务板 Α发送过 来的光信号。 在光纤 2上, 传输由补偿单元 Γί内的辅助 1510nm光路子模块发 送的光信号和由业务板 A中主光路 1550讓光模块通过光纤 A发送的光信号, 即在光纤 2上实现单纤双向传送光信号。
业务板 B通过光纤 1向业务板 A发送时戳, 补偿单元 7 通过光纤 1向补 偿单元 Γ2'发送时戳, 业务板 Α将接收到的第一时间戳通过光纤 A发送至补偿 单元 Γ2'内, 补偿单元 Γ2'中的时戳处理子模块根据两路时戳, 可计算出光纤 1 和光纤 2的延时, 补偿单元 W将计算出的延时差发送至业务板 Α中, 该延时 差的一半即为不对称数据: 补偿时间值; 业务板 A通过报文形式将补偿数据 传递给业务板 B; 对于业务板 A或业务板 B, 如果光纤 1和或光纤 1连接的端 口状态为 S lave , 则做光纤不对称补偿, 即将本地时间修正一个 "补偿值"数 据, 解决光纤 1和光纤 2收发链路不对称的问题。
图 10为本发明实施例提供的时间路径补偿装置应用图;
下面以图 10为例并结合图 5详细说明本发明实施例提供的接收时间路径 补偿装置, 通过该接收时间路径补偿装置可以自动实现光纤补偿, 无需再逐 站测试不对称性。
如图 1 0所示的接收时间路径补偿装置是为解决 2-40Km所提出的解决方 案, 在图 5所示的业务板 A和业务板 B侧各增加一块补偿单元 W和补偿单元 η' , 所述补偿单元与前述补偿单元相同, 在此就不在赘述。
在图 1 0中, 均釆用 1 31 0nm光模块作为主光路光信号的收发和承载时戳 信息, 在补偿单元 和补偿单元 Γ2'中, 釆用 155 Onm光模块作为辅助光路子 模块光信号的收发和承载时戳信息;
左面主光路 1 31 0讓光模块在业务板单元 B内; 右面主光路 1 31 0讓光模 块在业务板单元 A内; 业务板 A和业务板 B由光纤 1连接; 补偿单元 W通过 光纤 A与业务板 A连接;补偿单元 Γί通过光纤 Β与业务板 Β连接;补偿单元 ^ 和补偿单元 Γί通过光纤 2连接。
处理流程如下描述:
在业务板 Α和业务板 B上启动 1588 V2协议, 并通过光纤 1和光纤 1作 1588 V2 时间同步; 由于光纤 1和光纤 2收发链路不等长, 因此存在固定偏 差 of f s e t O; 在业务板 A和业务板 B侧各增加一块补偿单元。
在补偿单元 71'和补偿单元 Γ2'上均包括分合波模块和辅助光路 1550讓 子 模块, 补偿单元 Γί内的辅助光路 1550謹子模块发送光信号, 该光信号通过补 偿单元 Γί的分合波模块, 通过光纤 2传输至补偿单元 Γ2'中的分合波模块内, 补偿单元 Γ2'中的分合波模块接收到光纤 2传输的光信号后, 由分合波模块将 光信号发送至补偿单元 Γ2'中的辅助光路 1550nm 子模块内。 图中左面主光路 1 31 Onm光模块所处的位置具体在业务板 B内,右面主光路 1 31 0讓光模块所处 的位置具体在业务板 A内, 业务板 A中的主光路 1 31 0讓 光模块通过光纤 A发 送光信号至补偿单元 Γ2'中的分合波模块, 并通过光纤 2传输至补偿单元 Γί中 的分合波模块后,再通过光纤 Β发送至业务板 Β内,业务板 Β中的主光路 1 31 Onm 光模块通过光纤 B接收由补偿单元 71'中分合波模块传输的由业务板 A发送过 来的光信号。 在光纤 2上, 传输由补偿单元 Γί内的辅助 1 550讓光路子模块发 送的光信号和由业务板 A中主光路 1 310讓光模块通过光纤 A发送的光信号, 即在光纤 2上实现单纤双向传送光信号。
业务板 B通过光纤 1向业务板 A发送时戳, 补偿装置 7 通过光纤 2向补 偿装置 Γ2'发送时戳, 业务板 Α将接收到的第一时间戳通过光纤 A发送至补偿 单元 Γ2'内, 补偿装置 Γ2'中的时戳处理子模块根据两路时戳, 可计算出光纤 1 和光纤 2的延时, 补偿装置 ^将计算出的延时差发送至业务板 Α中, 该延时 差的一半即为不对称数据: 补偿时间值; 业务板 A通过报文形式将补偿数据 传递给业务板 B; 对于业务板 A或业务板 B, 如果光纤 1和光纤 1连接的端口 状态为 S lave , 则做光纤不对称补偿, 即将本地时间修正一个 "补偿值"数据, 解决光纤 1和光纤 2收发链路不对称的问题。
图 1 1为本发明实施例提供的时间路径补偿装置应用图;
下面以图 11为例并结合图 5详细说明本发明实施例提供的时间辅助板, 通过该时间辅助板可以自动实现光纤补偿, 无需再逐站测试不对称性。
如图 11所示的补偿单元是为解决 2-80Km所提出的解决方案, 在图 5所 示的业务板 A和业务板 B中各增加一块补偿单元 Γ2'和补偿单元 7 ' , 补偿单元 包括光滤波器模块和同步处理模块; 其中, 光滤波器模块的主要功能是选择 补偿单元中辅助光路子模块对应波长的光信号, 则可将业务板 Α/业务板 Β上 的光波和补偿单元 ^2' /补偿单元 η'上的光波区分开来; 同步处理模块主要用 于同步系统时间, 收发经过光滤波器模块处理的光信号, 计算光纤不对称补 偿数据, 同步处理模块内部结构与图 9 所示的同步处理模块内部结构相同, 前述已说明同步处理模块内部结构和各部分功能, 因此, 这里不再赘述。
在图 11中, 均釆用 1 310/ 1550讓光模块作为主光路光信号的收发和承载 时戳信息, 在补偿装置 和补偿装置 Γ2'中, 釆用 1490nm光模块作为辅助光 路子模块光信号的收发和承载时戳信息;
左面主光路 1 310/ 1550nm 光模块在业务板单元 A 内; 右面主光路
1 310/ 1550讓光模块在业务板单元 B内; 业务板 A和业务板 B由光纤 1连接; 补偿单元 通过光纤 A与业务板 A连接; 补偿单元 Γί通过光纤 Β与业务板 Β 连接; 补偿单元 ^2'和补偿单元 Γί通过光纤 2连接。
处理流程如下描述:
在业务板 Α和业务板 Β启动 1588 V2协议,并通过光纤 1和光纤 2作 1588 V2 时间同步; 由于光纤 1 和光纤 2 收发链路不等长, 因此存在固定偏差 of f set 0; 在业务板 A和业务板 B侧各增加一块补偿单元。
在补偿单元 Γί和补偿单元 Γ2'上均包括光滤波器模块和辅助光路 1490讓 子模块, 补偿单元 7 内的辅助光路 1490讓子模块发送光信号, 该光信号通过 补偿单元 71'的光滤波器模块, 通过光纤 2传输至补偿单元 Γ2'中的光滤波器模 块内, 补偿单元 Γ2'中的光滤波器模块接收到光纤 2传输的光信号后, 由光滤 波器模块将光信号发送至补偿单元 Γ2'中的辅助光路 1490讓子模块内,图中左 面主光路 1310/1550nm 光模块所处的位置具体在业务板 B 内, 右面主光路 1310/1550nm 光模块所处的位置具体在业务板 A 内, 业务板 A 中的主光路 1310/1550讓光模块通过光纤 A发送光信号至补偿单元 Γ2'中的光滤波器模块, 并通过光纤 2传输至补偿单元 Γί中的光滤波器模块后, 再通过光纤 Β发送至 业务板 Β内, 业务板 Β中的主光路 1310/1550nm光模块通过光纤 B接收由补 偿单元 Γί中光滤波器模块传输的由业务板 A发送过来的光信号。在光纤 2上, 传输由补偿单元 Γί内的辅助 1490讓光路子模块发送的光信号和由业务板 Α中 主光路 1310/1550nm光模块通过光纤 A发送的光信号, 即在光纤 2上实现单 纤双向传送光信号。
业务板 B通过光纤 1向业务板 A发送时戳, 补偿装置 Π'通过光纤 2向补 偿装置 Γ2'发送时戳, 业务板 Α将接收到的第一时间戳通过光纤 A发送至补偿 单元 Γ2'内, 补偿装置 Γ2'中的时戳处理模块根据两路时戳, 可计算出光纤 1和 光纤 2的延时, 补偿装置 ^将计算出的延时差发送至业务板 Α中, 该延时差 的一半即为不对称数据: 补偿时间值; 业务板 A通过报文形式将补偿数据传 递给业务板 B; 对于业务板 A或业务板 B, 如果光纤 1和光纤 2连接的端口状 态为 S lave , 则做光纤不对称补偿, 即将本地时间修正一个 "补偿值" 数据, 解决光纤 1和光纤 2收发链路不对称的问题。
下面结合图 12对本发明实施例提供的时间路径补偿方法所对应的虚拟装 置进行描述, 图 12为本发明实施例提供的时间路径补偿虚拟装置框图;
时间路径补偿装置包括第一接收单元, 用于接收业务板单元通过第一光 纤发送的第一时间戳; 在业务板 A和业务板 B侧各增加一个补偿单元, 业务 板 A和补偿单元 Γ2'通过光纤 Α连接,业务板 B和补偿单元 Γί通过光纤 Β连接, 业务板 Β通过光纤 1向业务板 Α发送第一时间戳,第一接收单元接收业务板 B 通过光纤 1向业务板 A发送第一时间戳。
第二接收单元, 用于接收补偿单元通过第二光纤发送的第二时间戳, 第 二接收单元接收补偿单元 '通过光纤 2向补偿单元 ^发送第二时间戳。
处理单元, 用于根据所述第一时间戳计算出所述第一光纤路径延时, 根 据所述第二时间戳计算出所述第二光纤路径延时, 将所述第一光纤路径延时 与第二光纤路径延时之差的一半作为路径补偿时间值。
数据发送单元, 用于将路径补偿时间值发送给所述业务板单元, 补偿单 元 Γ2'将计算出的延时差发送至业务板 Α中, 根据路径补偿时间值发送数据报 文, 业务板 A通过报文形式将补偿数据传递给业务板 B, 该延时差的一半即为 不对称数据: 补偿时间值。
使能处理单元, 用于根据路径补偿时间值做自动同步使能处理, 对于业 务板 A或业务板 B, 光纤 1和光纤 2连接的端口状态为 S lave , 则做光纤不对 称补偿, 即将本地时间修正一个 "补偿时间值" 数据, 解决光纤 1 和光纤 2 收发链路不对称的问题。
专业人员应该还可以进一步意识到, 结合本文中所公开的实施例描述的 各示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来 实现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能 一般性地描述了各示例的组成及步骤。 这些功能究竟以硬件还是软件方式来 执行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每 个特定的应用来使用不同方法来实现所描述的功能, 但是这种实现不应认为 超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、 处理 器执行的软件模块, 或者二者的结合来实施。 软件模块可以置于随机存储器
( RAM ) 、 内存、 只读存储器(ROM ) 、 电可编程 R0M、 电可擦除可编程 R0M、 寄存器、 硬盘、 可移动磁盘、 CD-R0M、 或技术领域内所公知的任意其它形式 的存储介质中。
以上所述的具体实施方式, 对本发明的目的、 技术方案和有益效果进行 了进一步详细说明, 所应理解的是, 以上所述仅为本发明的具体实施方式而 已, 并不用于限定本发明的保护范围, 凡在本发明的精神和原则之内, 所做 的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种时间路径补偿方法, 其特征在于, 所述时间路径补偿方法包括: 接收业务板单元通过第一光纤发送的第一时间戳;
接收补偿单元通过第二光纤发送的第二时间戳;
根据所述第一时间戳计算出所述第一光纤路径的延时, 根据所述第二 时间戳计算出所述第二光纤路径的延时, 将所述第一光纤路径延时与第二光 纤路径延时之差的一半作为路径补偿时间值;
根据所述路径补偿时间值发送包含路径补偿时间值的数据报文。
2、 根据权利要求 1 所述的时间路径补偿方法, 其特征在于, 所述根据所 述路径补偿时间值发送包含路径补偿时间值的数据报文具体为: 将所述路径 补偿时间值发送给所述业务板单元, 所述业务板单元根据所述路径补偿时间 值发送数据报文。
3、 根据权利要求 1 所述的时间路径补偿方法, 其特征在于, 所述方法还 包括: 根据所述路径补偿时间值完成所述第一光纤和所述第二光纤收发链路 不对称的补偿处理。
4、 一种时间路径补偿装置, 其特征在于, 所述时间路径补偿装置包括: 第一接收单元, 用于接收业务板单元通过第一光纤发送的第一时间戳; 第二接收单元, 用于接收补偿单元通过第二光纤发送的第二时间戳; 处理单元, 用于根据所述第一时间戳计算出所述第一光纤路径延时, 根 据所述第二时间戳计算出所述第二光纤路径延时, 将所述第一光纤路径延时 与第二光纤路径延时之差的一半作为路径补偿时间值;
数据发送单元, 根据所述路径补偿时间值发送路径补偿时间值的数据报 文。
5、 根据权利要求 4 所述的时间路径补偿装置, 其特征在于, 所述数据发 送单元具体用于: 将所述路径补偿时间值发送给所述业务板单元, 所述业务 板单元根据所述路径补偿时间值发送数据报文。
6、 根据权利要求 4 所述的时间路径补偿装置, 其特征在于, 所述装置还 包括: 使能处理单元, 用于根据所述路径补偿时间值完成所述第一光纤和所 述第二光纤收发链路不对称的补偿处理。
7、 一种时间路径补偿装置, 其特征在于, 所述时间路径补偿装置包括: 业务板单元, 用于接收其他业务板单元通过第一光纤发送的第一时间戳, 并发送给补偿单元;
补偿单元, 用于接收所述业务板单元发送的第一时间戳, 接收其他补偿 单元通过第二光纤发送的第二时间戳, 根据所述第一时间戳计算出所述第一 光纤路径延时, 根据所述第二时间戳计算出所述第二光纤路径延时, 将所述 第一光纤路径延时与第二光纤路径延时之差的一半作为路径补偿时间值, 发 送给所述业务板单元, 所述业务板单元根据所述路径补偿时间值发送路径补 偿时间值的数据报文。
8、 如权利要求 7 所述的时间路径补偿装置, 其特征在于, 所述业务板单 元包括:
主光路模块, 用于对光信号的收发, 并承载时戳信息。
9、 如权利要求 7 所述的时间路径补偿装置, 其特征在于, 所述补偿单元 包括:
分合波模块, 用于将所述主光路模块和所述补偿单元上的光波作分合波 处理;
或光滤波器模块, 用于选择所述主光路模块和所述补偿单元上对应的波 长。
同步处理模块, 用于同步系统时间, 并收发所述经过分合波处理的光信 号, 计算不对称补偿数据;
1 0、 如权利要求 9所述的时间路径补偿装置, 其特征在于, 所述同步处理 模块包括:
时间同步子模块, 用于同步系统时间; 时戳处理子模块, 用于根据系统时间生成本板时戳, 并接收对板时戳, 计算出时间延时;
辅助光路子模块, 用于对光信号的收发, 并承载时戳信息。
PCT/CN2012/071386 2012-02-21 2012-02-21 时间路径补偿方法和装置 WO2012095043A2 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12733906.7A EP2597791B1 (en) 2012-02-21 2012-02-21 Method and device for compensating for time path
ES12733906.7T ES2690527T3 (es) 2012-02-21 2012-02-21 Procedimiento y dispositivo para compensar una trayectoria temporal
PCT/CN2012/071386 WO2012095043A2 (zh) 2012-02-21 2012-02-21 时间路径补偿方法和装置
BR112013009402-8A BR112013009402B1 (pt) 2012-02-21 2012-02-21 Método e dispositivo para compensação para um percurso de tempo
CN201280000207.8A CN103168440B (zh) 2012-02-21 2012-02-21 时间路径补偿方法和装置
US13/847,101 US9172525B2 (en) 2012-02-21 2013-03-19 Method and device for compensating for time path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/071386 WO2012095043A2 (zh) 2012-02-21 2012-02-21 时间路径补偿方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/847,101 Continuation US9172525B2 (en) 2012-02-21 2013-03-19 Method and device for compensating for time path

Publications (2)

Publication Number Publication Date
WO2012095043A2 true WO2012095043A2 (zh) 2012-07-19
WO2012095043A3 WO2012095043A3 (zh) 2013-01-24

Family

ID=46507490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071386 WO2012095043A2 (zh) 2012-02-21 2012-02-21 时间路径补偿方法和装置

Country Status (6)

Country Link
US (1) US9172525B2 (zh)
EP (1) EP2597791B1 (zh)
CN (1) CN103168440B (zh)
BR (1) BR112013009402B1 (zh)
ES (1) ES2690527T3 (zh)
WO (1) WO2012095043A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107786276A (zh) * 2016-08-29 2018-03-09 海思光电子有限公司 一种可插拔aco模块的损伤补偿方法和装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8718482B1 (en) * 2009-11-10 2014-05-06 Calix, Inc. Transparent clock for precision timing distribution
US9806835B2 (en) 2012-02-09 2017-10-31 Marvell International Ltd. Clock synchronization using multiple network paths
BR112013009402B1 (pt) * 2012-02-21 2022-04-26 Huawei Technologies Co., Ltd Método e dispositivo para compensação para um percurso de tempo
CN105792236B (zh) * 2014-12-26 2021-01-26 中兴通讯股份有限公司 时延获取方法、装置、基带单元及通信系统
CN106211306B (zh) * 2015-04-30 2020-04-03 华为技术有限公司 一种通信网络延时抖动平滑方法、装置及系统
EP3352423B1 (en) * 2015-09-17 2020-08-19 Kabushiki Kaisha Yaskawa Denki Industrial device and communication method
CN105376043B (zh) * 2015-11-04 2018-05-25 国网电力科学研究院武汉南瑞有限责任公司 一种双板卡系统的时间同步方法
CN114978402A (zh) 2017-10-13 2022-08-30 华为技术有限公司 发送和接收时钟同步报文的方法和装置
CN112104413B (zh) * 2019-06-17 2021-07-16 上海华为技术有限公司 一种测量时延的无线中心设备、无线设备及无线通信系统

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10249296A1 (de) * 2002-10-22 2004-05-06 Jetter Ag Verfahren zur Synchronisation von Teilnehmern eines Netzwerkes
US7126800B2 (en) * 2003-07-11 2006-10-24 General Electric Company Method and system for communications channel delay asymmetry compensation using global positioning systems
EP1700407B1 (en) * 2003-12-29 2016-04-06 Optis Wireless Technology, LLC Temperature compensation for transmission between nodes coupled by a unidirectional fiber ring
US7602873B2 (en) * 2005-12-23 2009-10-13 Agilent Technologies, Inc. Correcting time synchronization inaccuracy caused by asymmetric delay on a communication link
US8660152B2 (en) * 2006-09-25 2014-02-25 Futurewei Technologies, Inc. Multi-frame network clock synchronization
EP1936867B1 (en) * 2006-12-22 2013-02-20 Corvil Limited Delay measurements in network traffic
US7990909B2 (en) * 2007-11-02 2011-08-02 Ciena Corporation Synchronization of network nodes
US8274998B2 (en) * 2008-10-02 2012-09-25 Cortina Systems, Inc. Systems and methods for packet based timing offset determination using timing adjustment information
KR101524285B1 (ko) * 2009-02-02 2015-06-01 삼성전자주식회사 통신시스템에서 시간 동기화 장치 및 방법
US8018972B2 (en) * 2009-06-30 2011-09-13 Alcatel Lucent Timing over packet performance
CN101989906B (zh) * 2009-07-30 2013-12-18 华为技术有限公司 报文同步方法、装置及系统
US8718482B1 (en) * 2009-11-10 2014-05-06 Calix, Inc. Transparent clock for precision timing distribution
WO2011079460A1 (en) * 2009-12-31 2011-07-07 Abb Research Ltd. Method and apparatus for detecting communication channel delay asymmetry
US8594134B2 (en) * 2010-06-02 2013-11-26 Symmetricom, Inc. Precision time transfer over optical fiber
FR2965686A1 (fr) * 2010-10-05 2012-04-06 France Telecom Technique de determination d'un temps de propagation d'un signal optique entre deux equipements optiques au moyen d'une liaison optique
RU2550149C2 (ru) * 2010-10-13 2015-05-10 Телефонактиеболагет Л М Эрикссон (Пабл) Определение асимметрий в сети связи
CN102201983A (zh) * 2011-05-03 2011-09-28 中兴通讯股份有限公司 测量传输链路不对称延时的方法、终端及系统
EP2732569A1 (en) * 2011-07-11 2014-05-21 Telefonaktiebolaget LM Ericsson (PUBL) Apparatus and method for a passive optical network
CN102291178B (zh) * 2011-09-08 2014-11-19 烽火通信科技股份有限公司 测量光纤不对称性时延的方法及装置
BR112013009402B1 (pt) * 2012-02-21 2022-04-26 Huawei Technologies Co., Ltd Método e dispositivo para compensação para um percurso de tempo
US8842994B2 (en) * 2012-05-24 2014-09-23 Telefonaktiebolaget L M Ericsson (Publ) Distributing clock synchronization information within an optical communications network
US9160473B2 (en) * 2013-03-13 2015-10-13 Microsemi Frequency And Time Corporation Asymmetry correction for precise clock synchronization over optical fiber

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2597791A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107786276A (zh) * 2016-08-29 2018-03-09 海思光电子有限公司 一种可插拔aco模块的损伤补偿方法和装置
CN107786276B (zh) * 2016-08-29 2019-10-22 海思光电子有限公司 一种可插拔aco模块的损伤补偿方法和装置

Also Published As

Publication number Publication date
BR112013009402B1 (pt) 2022-04-26
EP2597791A4 (en) 2014-01-29
US20130216218A1 (en) 2013-08-22
US9172525B2 (en) 2015-10-27
EP2597791B1 (en) 2018-08-15
CN103168440A (zh) 2013-06-19
CN103168440B (zh) 2016-08-10
EP2597791A2 (en) 2013-05-29
ES2690527T3 (es) 2018-11-21
WO2012095043A3 (zh) 2013-01-24
BR112013009402A2 (pt) 2016-07-26

Similar Documents

Publication Publication Date Title
WO2012095043A2 (zh) 时间路径补偿方法和装置
EP3491753B1 (en) System and methods for network synchronization
EP2528254B1 (en) Method and device for time synchronization
US8750356B2 (en) Method, apparatus, and system for measuring asymmetric delay of communication path
CN103155450B (zh) 用于确定通信网络中的不对称性的方法和设备
EP2676389B1 (en) Method of providing a path delay asymmetry for time synchronization between a master and a slave clock across a communciation network
EP2675102B1 (en) Communication system time synchronization method, slave station apparatus, master station apparatus, control apparatus, and program
CN104836630B (zh) Ieee1588时钟同步系统及其实现方法
RU2638645C2 (ru) Способ для определения опорных синхросигналов, подвергнутых воздействию изменения в асимметрии задержки трассы распространения между узлами в сети связи
JP5518191B2 (ja) 光伝送網が時刻同期プロトコルをキャリングする方法及びシステム
WO2013167026A2 (zh) 自动检测光纤非对称性的时间同步装置及方法
CN110784783B (zh) 基于光纤网络的时钟同步方法及装置
CN103873179A (zh) 使无源光网络具备支持时间同步能力的装置与方法
JP2013074628A (ja) 光ファイバを通じた精密なクロック同期
WO2013078926A1 (zh) 光纤不对称时主从设备间的时间偏差获取方法和通信系统
WO2012065334A1 (zh) 在时分复用网络中实现时间同步的方法、设备和系统
JP6227888B2 (ja) 通信システム、同期システム、通信方法
JP2013098788A (ja) 時刻同期システムおよび時刻同期方法
WO2020166485A1 (ja) 伝送装置、時刻伝送システム、および、遅延補正方法
CN102394741A (zh) 基于ieee1588实现精确时间同步的方法和装置
CN102647782A (zh) 一种物理线路时延确定方法、时钟同步方法及其设备
JP2001036538A (ja) 時刻同期方法及びその装置
JP2017022646A (ja) 時刻同期装置および時刻同期方法
CN111262641A (zh) Ptn网络架构及时钟同步方法
KR20110014909A (ko) 네트워크 장치간 시각 보정 방법 및 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12733906

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012733906

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013009402

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112013009402

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130417