WO2018221084A1 - Circuit and method for ultraviolet led disconnection detection, water sampling dispenser, and pure water production device - Google Patents

Circuit and method for ultraviolet led disconnection detection, water sampling dispenser, and pure water production device Download PDF

Info

Publication number
WO2018221084A1
WO2018221084A1 PCT/JP2018/016627 JP2018016627W WO2018221084A1 WO 2018221084 A1 WO2018221084 A1 WO 2018221084A1 JP 2018016627 W JP2018016627 W JP 2018016627W WO 2018221084 A1 WO2018221084 A1 WO 2018221084A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet led
pure water
disconnection
relay
cathode
Prior art date
Application number
PCT/JP2018/016627
Other languages
French (fr)
Japanese (ja)
Inventor
隆文 星野
尾崎 大介
岡部 修一
杏助 松村
正崇 飛彈
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Publication of WO2018221084A1 publication Critical patent/WO2018221084A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light

Definitions

  • the present invention relates to a disconnection detection circuit and method for detecting disconnection of an ultraviolet light emitting diode (LED: Light Emitting Diode), a water sampling dispenser having such a disconnection detection circuit, and a pure water production apparatus.
  • LED Light Emitting Diode
  • Patent Document 1 incorporates an ultraviolet sterilizer that irradiates water to be treated with ultraviolet rays generated by ultraviolet LEDs in a pure water production apparatus that treats the treated water to produce pure water. It is disclosed.
  • Patent Document 2 discloses an apparatus in which an ultraviolet light source composed of an ultraviolet LED is provided at the end of a tube and water is sterilized by passing through the tube.
  • Patent Document 3 discloses a configuration in which an ultraviolet light source including an ultraviolet LED is provided on a lid portion of a container to sterilize water to be treated in the container.
  • Ultraviolet LEDs are smaller than mercury lamps and are less likely to deteriorate even when light emission and quenching are repeated. Therefore, application to fields where it is difficult to apply mercury lamps is also expected.
  • JP 2016-123930 A Special table 2016-523594 gazette Special table 2016-525906 gazette
  • UV LED is an electronic component that may break.
  • an ultraviolet LED when used as an ultraviolet light source for sterilizing pure water, if the ultraviolet LED is disconnected, pure water that has not been sterilized is supplied, which is serious in the results of experiments conducted using the pure water. May have a negative effect.
  • the ultraviolet LED when used for purposes other than sterilization, the disconnection of the ultraviolet LED may have a significant influence.
  • it when using an ultraviolet LED, it is considered to provide a circuit for detecting disconnection in the ultraviolet LED.
  • commercially available disconnection detectors are expensive, and there is a demand for cost reduction of the configuration for detecting disconnection.
  • An object of the present invention is to provide a disconnection detection circuit and method that can detect disconnection of an ultraviolet LED with a simple configuration and at low cost, and a water collection dispenser having such a disconnection detection circuit.
  • the disconnection detection circuit of the present invention is a disconnection detection circuit that detects disconnection of an ultraviolet LED, and is connected to an anode and a cathode of the ultraviolet LED and supplies a DC power to the ultraviolet LED, an anode and a cathode And a relay having an input unit connected in parallel between them, and the disconnection is detected by operating the relay by a rise in voltage between the anode and the cathode when the ultraviolet LED is disconnected.
  • the method of the present invention is a method for detecting disconnection of an ultraviolet LED, wherein a constant current power source is connected to the anode and cathode of the ultraviolet LED to drive the ultraviolet LED at a constant current, and the anode and cathode when the ultraviolet LED is disconnected. As the voltage rises, the relay having the input connected in parallel between the anode and the cathode is operated to detect disconnection.
  • the water sampling dispenser of the present invention is a water sampling dispenser used for pure water sampling, and connects an electromagnetic valve connected to a pure water source, a nozzle for discharging pure water, and an outlet and a nozzle of the electromagnetic valve.
  • a flow path an ultraviolet LED arranged to irradiate ultraviolet light to pure water flowing through the flow path, a constant current power source connected to the anode and cathode of the ultraviolet LED and supplying DC power to the ultraviolet LED, an anode A relay having an input connected in parallel between the cathode and the cathode, and controlling the opening and closing of the solenoid valve, operating a constant current power source when the solenoid valve is opened, detecting that the relay has been activated, and detecting the ultraviolet LED And a control unit that generates an alarm when the disconnection is detected.
  • the pure water production apparatus of the present invention is a pure water production apparatus having at least a storage tank for storing pure water, and is an ultraviolet LED that is attached to the storage tank and arranged to irradiate the pure water in the storage tank with ultraviolet light.
  • a constant current power source for supplying DC power to the ultraviolet LED by connecting to the anode and cathode of the ultraviolet LED, a relay having an input connected in parallel between the anode and the cathode, and controlling the opening and closing of the solenoid valve
  • a controller that operates a constant current power source when the solenoid valve is opened, detects that the relay is activated, detects disconnection of the ultraviolet LED, and generates an alarm when the disconnection is detected.
  • the disconnection of the ultraviolet LED can be detected with a simple configuration and at a low cost.
  • FIG. 1 shows a configuration of a disconnection detection circuit according to an embodiment of the present invention.
  • the disconnection detection circuit detects disconnection of the ultraviolet LED 11, and supplies a DC power while limiting the current to the ultraviolet LED 11 to drive the ultraviolet LED 11 at a constant current, and a relay 13. It is equipped with.
  • the positive output (+) of the constant current power supply 12 is connected to the anode A of the ultraviolet LED 11, and the negative output ( ⁇ ) is connected to the cathode K.
  • the input unit 14 of the relay 13 is connected in parallel between the anode A and the cathode K of the ultraviolet LED 11.
  • the relay 13 is a mechanical relay, and the input unit 14 is configured as an operating coil of the relay 13, that is, a solenoid.
  • the output unit 15 of the relay 13 has three contacts 16 to 18.
  • the contact 16 is a common contact COM, the contact 17 is a normally closed contact NC, and a contact that is electrically connected to the contact 16 only when there is no predetermined input in the input unit 14, that is, when the operating coil is not activated. It is.
  • the contact 18 is a normally-open contact NO, and is a contact that is electrically connected to the contact 16 only when there is a predetermined input in the input unit 14, that is, when the operating coil is activated.
  • the relay 13 is a mechanical relay, but the relay 13 may be, for example, a solid state relay or a semiconductor relay.
  • the voltage between the anode A and the cathode K is determined by the forward current voltage characteristics of the ultraviolet LED 11, but is approximately 2 to 4V.
  • the constant current power supply 12 is supplied with a certain high voltage so that a predetermined current can be stably output. Therefore, the open-circuit voltage of the constant current power supply 12, that is, the output voltage when there is no load is, for example, about 10 to 20V.
  • the operating voltage of the relay 13 is higher than the forward voltage of the ultraviolet LED 11 and lower than the open state voltage of the constant current power supply 12.
  • the voltage applied to the input part 14 of the relay 13 is the forward voltage of the ultraviolet LED 11, so the relay 13 does not operate, while if the ultraviolet LED 11 is disconnected, the input Since the voltage applied to the unit 14 becomes the open state voltage of the constant current power source 12, the relay 13 is activated.
  • the power supply voltage VDD is applied to the contact 18 which is the normally open contact NO of the relay 13
  • the ground potential GND is applied to the contact 17 which is the normally closed contact NC, and then the contact which is the common contact COM.
  • a water sampling dispenser that is connected to a pure water production apparatus or the like and discharges pure water according to demand will be described as an example of equipment provided with ultraviolet LEDs.
  • the device to which the disconnection detection circuit according to the present invention is applied is not limited to the water sampling dispenser.
  • a water collection dispenser connected to a pure water production apparatus is widely used.
  • the water sampling dispenser includes a nozzle that discharges pure water, and an open / close valve that is provided in a path of pure water to the nozzle and supplies pure water to the nozzle and shuts off the supply.
  • the water sampling dispenser is usually provided at a use point away from the main body of the pure water production apparatus, and is connected to a pure water outlet of the pure water production apparatus main body by piping.
  • the on-off valve When the user operates the on-off valve, pure water is discharged from the nozzle, and thus the user can collect pure water in an amount according to the necessity.
  • an electromagnetic valve can be used as the on-off valve.
  • the solenoid valve When using a solenoid valve, the solenoid valve is controlled by a push button switch that can be operated by a finger or a foot switch that can be operated by a foot, and pure water is discharged from the nozzle. Furthermore, by combining the flow sensor and the solenoid valve, the specified amount of pure water can be removed by opening the solenoid valve until the flow rate measured by the flow sensor reaches the specified value when there is a single switch operation. It is also possible to collect water.
  • FIG. 2 shows a pure water production apparatus and a water dispenser.
  • the pure water production apparatus can be broadly divided into a primary pure water production apparatus 30 that supplies tap water and generates primary pure water, and a primary pure water produced by the primary pure water production apparatus 30 via a pipe 45. It consists of a subsystem 50 that is supplied and produces pure water with higher purity, that is, a secondary pure water system.
  • the subsystem 50 includes a circulation purification system.
  • supply water such as tap water is introduced into an activated carbon cartridge (CC) 32 through a valve 31.
  • the outlet water of the activated carbon cartridge 32 is sent to a reverse osmosis device (RO) 35 having a reverse osmosis membrane via a pressure switch (PS) 33 and a pump 34.
  • RO reverse osmosis device
  • a pipe 43 having an orifice 36 is connected to the concentration side of the reverse osmosis device 35, and waste water from the concentration side is discharged through the pipe 43.
  • the orifice 36 is provided to keep the pressure on the concentration side of the reverse osmosis device 35 constant.
  • the water that has passed through the reverse osmosis membrane of the reverse osmosis device 35 is then sequentially passed to non-regenerative ion exchange devices (CP: also called cartridge polishers) 39 and 41 arranged in two stages in series.
  • the non-regenerative ion exchangers 39 and 41 are each filled with a strongly acidic cation exchange resin and a strongly basic anion exchange resin in a mixed bed.
  • a conductivity meter for measuring the conductivity and temperature of water sent to the non-regenerative ion exchange device 39, respectively. 37 and a thermometer (TI) 38 are connected.
  • a conductivity meter 40 is also provided in the piping between the first and second non-regenerative ion exchange devices 39 and 41.
  • a check valve 42 is provided at the outlet of the non-regenerative ion exchange device 41. The outlet of the check valve 42 is an outlet of the primary pure water production apparatus 30 and is connected with a pipe 45.
  • the subsystem 50 includes a storage tank 51 to which primary pure water is supplied from a pipe 45 through a valve 52.
  • the storage tank 51 includes an ultraviolet irradiation device 53 for sterilizing the pure water in the storage tank 51 by irradiating ultraviolet light, a level sensor (LS) 54 for detecting the level of pure water in the storage tank 51, and a vent filter 55. And are provided.
  • the storage tank 51 communicates with the atmosphere via the vent filter 55, and the pressure in the storage tank 51 is maintained at atmospheric pressure.
  • the ultraviolet irradiation device 53 for example, a device using an ultraviolet LED, a device using an ultraviolet lamp, or the like can be used.
  • a pump 56 for feeding pure water in the storage tank 51 is provided at the outlet of the storage tank 51, and an ultraviolet oxidation device (UV) 57, a non-regenerative type provided in two stages in series, is provided at the outlet of the pump 56.
  • Ion exchange devices 58 and 59 and an ultrafiltration device (UF) 60 are provided in this order.
  • a pipe 101 branched from the outlet pipe of the pump 56 is provided, and an outlet port 71 is provided at the tip of the pipe 101.
  • the ultrafiltration device 60 is provided with a pipe 106 for draining water on the primary side of the ultrafiltration membrane, and the pipe 106 is provided with a valve 107.
  • a pipe 102 connected to an outlet port 72 is connected to the outlet of the ultrafiltration device 60, and a resistance meter (RI) for measuring the electrical resistivity and temperature of pure water flowing therethrough is connected to the pipe 102, respectively. 63 and a thermometer 64 are connected.
  • a pipe 103 for returning pure water to the storage tank 51 side is also provided at the outlet of the ultrafiltration device 60, and a constant flow valve 61 is attached to the tip of the pipe 103.
  • a TOC meter (TOCI) 62 for measuring the total organic carbon (TOC) concentration of pure water flowing therethrough.
  • a pipe 104 returning to the storage tank 51 and a pipe 105 connected to the outlet port 73 are connected to the outlet of the constant flow valve 61.
  • a back pressure valve 65 is provided in the pipe 105.
  • a sampling valve 66 used for sampling pure water is attached to the pipe 104.
  • a circulation purification system is formed that returns from the storage tank 51 to the storage tank 51 through the pump 56, the ultraviolet oxidation device 57, the non-regenerative ion exchange devices 58 and 59, the ultrafiltration device 60, and the constant flow valve 61.
  • the primary pure water is further purified while circulating through this circulation purification system, thereby obtaining pure water to be supplied to the use point.
  • the ultraviolet oxidizer 57 is for decomposing all organic carbon in pure water and has a sterilizing action.
  • the operation of the circulation purification system may be stopped at night or on holidays, and during the stop period.
  • a low-pressure mercury lamp is generally used as the ultraviolet light source in the ultraviolet oxidation device 57.
  • a valve 68 is connected to the pipe 45 in order to discharge the primary pure water from the pipe 45 as waste water as it is.
  • a valve 69 for draining the inside of the storage tank 51 is also provided at the outlet of the storage tank 51.
  • a check valve 67 is provided between the drain side of the valve 69 and the inlet side of the storage tank 51.
  • a main controller 70 is provided to control the overall operation of the pure water production apparatus. The main controller 70 may be connected to a sensor that detects water leakage in the pure water production apparatus.
  • the outlet ports 71 to 73 provided in the subsystem 50 are ports that are connection positions of the water sampling dispenser 80.
  • the water sampling dispenser 80 is connected to any one of the outlet ports 71 to 73 by, for example, a flexible pipe 75.
  • three outlet ports 71 to 73 are provided, but the connection points of the outlet ports to the circulation purification system are not limited to those shown in FIG.
  • the number of outlet ports connected to the circulation purification system is not limited to 3, but can be increased or decreased.
  • a plurality of outlet ports connected to the outlet of the ultrafiltration device 60 may be provided, and one water sampling dispenser 80 may be connected to each of the outlet ports.
  • the circulation purification system of the subsystem 50 is provided with an ultraviolet irradiation device 53 and an ultraviolet oxidation device 57, and sterilization is performed on the pure water circulating in the circulation purification system, but a pipe branched from the circulation purification system
  • the water collection dispenser 80 described here is provided with an ultraviolet sterilization mechanism using an ultraviolet LED in itself, and can always supply pure water with a reduced number of viable bacteria contained therein.
  • the water dispensing dispenser 80 is roughly composed of a head portion 80a and a main body portion 80b, and the head portion 80a and the main body portion 80b are connected by a flexible pipe 84.
  • the water sampling dispenser 80 for example, it is used for pouring pure water one after another to a large number of test tubes arranged in line on a laboratory table. Therefore, a control mechanism and the like necessary for functioning as the water sampling dispenser 80 are provided in the main body 80b, and a portion that actually becomes a pure water spout can be gripped by the user and moved to a desired position. It is provided in the head portion 80a.
  • the head part 80a discharges pure water sent from the main body part 80b through the pipe 84, and is provided at the end of the flow path 85 connected to the pipe 84 and pure water. And an ultraviolet irradiation unit 87 that irradiates the pure water flowing through the flow path 85 with ultraviolet rays.
  • the ultraviolet irradiation unit 87 functions as an ultraviolet sterilization mechanism, and an ultraviolet LED is used as the ultraviolet source in the ultraviolet irradiation unit 87.
  • the head unit 80a includes a switch 88 that is operated by the user in order to discharge pure water according to the user's demand.
  • a pipe 81 having one end connected to the pipe 75 from the subunit 50, a flow sensor (FI) 82 provided in the pipe 81, an electromagnetic valve 83 attached to the other end of the pipe 81,
  • a control unit 90 for controlling the operation of the water dispensing dispenser 80 and an operation panel 89 connected to the control unit 90 are provided.
  • the electromagnetic valve 83 is opened by a drive signal from the control unit 90.
  • the operation panel 89 receives, for example, settings of the water sampling amount and water sampling mode from the user and performs necessary display for the user. Examples of the water sampling mode include a quantitative mode and an arbitrary amount mode.
  • the control unit 90 performs overall control of the water sampling dispenser 80.
  • the control unit 90 receives a water sampling request input from the user via the switch 88 of the head unit 80a, and the water sampling mode is the quantitative mode.
  • the solenoid valve 83 is opened until the accumulated value of the flow rate detected by the flow rate sensor 82 reaches the set value, so that the amount of pure water indicated by the set value is supplied to the head unit 80a.
  • Control When the water sampling mode is an arbitrary amount mode, the control unit 90 performs control to open the electromagnetic valve 83 only during a period in which the switch 88 is operated.
  • the control unit 90 performs control so that the ultraviolet LED in the ultraviolet irradiation unit 87 is driven only when the electromagnetic valve 83 is open regardless of the water sampling mode.
  • the control unit 90 may be connected to the control circuit 70 of the pure water production apparatus by a wiring (not shown) and display information such as water quality obtained from the control circuit 70 on the operation panel 89.
  • FIG. 3 shows the external appearance of the head portion 80a of the water sampling dispenser 80 and the internal structure.
  • the head portion 80a is provided with a handle 118 or a handle, and a button 119 is provided at a position where a user who holds the handle 118 can easily operate with the finger.
  • the button 119 is mechanically connected to a switch 88 (not shown in FIG. 3), and the switch 88 is operated when the button 119 is pressed.
  • the flow path 85 includes a joint 111 serving as a connection portion with the pipe 84, a housing 112 connected to the joint 111 and including a through flow path 114 therein, and a joint 115 having one end connected to an outlet of the through flow path 114 of the housing 112.
  • a backflow prevention mechanism 117 and the other end of the joint 115 is connected to the inlet of the backflow prevention mechanism 117 via the joint 116.
  • the outlet of the backflow prevention mechanism 117 opens to the outer surface of the head portion 80a, and the nozzle 86 is attached thereto by, for example, screwing.
  • the ultraviolet irradiation unit 87 includes an ultraviolet LED 11, a substrate 94 with the ultraviolet LED 11 attached to the first surface, and a radiator (heat sink) attached to the second surface opposite to the first surface of the substrate 94. ) 95.
  • the radiator 95 is for radiating heat generated when the ultraviolet LED 11 is driven.
  • the through-flow channel 114 of the housing 112 is provided with a bent portion, and a hollow portion 113 is formed from the bent portion toward one side surface of the housing 112, and the hollow portion 113 is viewed from the through-flow channel 114 side.
  • a quartz glass plate 96 serving as an ultraviolet light introducing window is provided in the inner part.
  • the quartz glass plate 96 is provided so as to face the first surface of the substrate 94, and the ultraviolet light emitted from the ultraviolet LED 11 enters the through flow path 114 through the quartz glass plate 96 and the hollow portion 113. Become. With this configuration, the head unit 80a irradiates the pure water flowing through the flow path 85 with ultraviolet rays, and performs ultraviolet sterilization treatment on the pure water.
  • a material that reflects ultraviolet light such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF) as a material constituting the housing 112
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • ultraviolet rays are incident on the position of the bent portion in the through flow path 114 as shown in the drawing, so that the material constituting the inner wall of the joint 111 or the pipe 84 is made of PTFE, PVDF, or the like.
  • ultraviolet rays can be made incident into the pipe 84, and ultraviolet rays can be irradiated onto pure water more efficiently.
  • Mercury lamps conventionally used as ultraviolet light sources are large in size and are not suitable for frequent on / off operation, so only when there is a demand for pure water to be incorporated in the water sampling dispenser, especially its head part It was difficult to light up.
  • the ultraviolet LED 11 it becomes possible to perform the ultraviolet sterilization treatment of pure water at a position immediately before the position at which the pure water is discharged in the water sampling dispenser 80. It becomes possible to perform the sterilization process with respect to the pure water to be surely performed.
  • FIG. 4 shows a circuit configuration of the water sampling dispenser 80.
  • a constant current power source 12 for driving the ultraviolet LED 11 provided in the head portion 80a and a relay 13 for detecting disconnection of the ultraviolet LED 11 are provided in the water dispensing dispenser 80 shown in FIG. 4.
  • a disconnection detection circuit similar to that shown in FIG. although not shown in FIG. 2, the constant current power source 12 and the relay 13 are provided in the main body 80b. The output of the constant current power supply 12 is turned on / off by a signal from the control unit 90.
  • the control unit 90 is connected to the operation panel 89 and the button 88 of the head unit 80 a, and the flow rate detection value is input from the flow rate sensor 82. In accordance with these inputs, the control unit 90 starts the operation of the constant current power supply 12 when the electromagnetic valve 83 is opened, and stops the constant current power supply 12 when the electromagnetic valve 83 is closed.
  • the current power source 12 is controlled.
  • the ultraviolet LED 11 and the button 88 provided in the head portion 80a and the main body portion 80b are electrically connected by, for example, wiring (not shown) provided along the pipe 84.
  • the contact 17 as the normally closed contact NC of the relay 13 is connected to the ground potential, and the power supply voltage is applied to the contact 18 as the normally open contact NO.
  • the contact 16 that is the common contact COM is connected to the control unit 90. Since the input of the relay 13 does not exist when the constant current power supply 12 is stopped, the potential of the contact 16 is the ground potential (that is, L level). Even when the constant current power supply 12 is operating and the ultraviolet LED 11 is operating normally, the relay 13 does not operate as described above, so the potential of the contact 16 is the ground potential.
  • the control unit 90 can detect the disconnection of the ultraviolet LED 11 by detecting that the voltage of the signal sent from the contact 16 of the relay 13 becomes H level as a failure detection.
  • the control unit 90 can display an alarm indicating the disconnection on the operation panel 89 when the disconnection of the ultraviolet LED 11 is detected, for example. Or after displaying an alarm, you may perform control which stops water supply, without sending a drive signal with respect to the solenoid valve 83 so that the water sampling by the water sampling dispenser 80 cannot be performed. When a plurality of water sampling dispensers 80 are connected to the subsystem 50, there is little influence even if the water sampling dispenser in which the ultraviolet LED 11 is disconnected is stopped.
  • the disconnection detection circuit according to the present invention performs sterilization by irradiating the pure water in the storage tank 51 with ultraviolet rays, for example. Therefore, it can also be used for detection of disconnection of the ultraviolet LED used in the ultraviolet irradiation device 53.
  • the output of the disconnection detection circuit is supplied to the main controller 70, for example.
  • the main controller 70 When the main controller 70 detects the disconnection of the ultraviolet LED in the ultraviolet irradiation device 53, the main controller 70 displays an alarm indicating the disconnection on a display device (not shown) or on the operation panel 89 of the water sampling dispenser 80. be able to.
  • the pure water production apparatus described above includes a subsystem 50 having a storage tank 51, a pump 56, an ultraviolet oxidation device 57, non-regenerative ion exchange devices 58 and 59, an ultrafiltration device 60 and a constant flow valve 61.
  • a subsystem 50 having a storage tank 51, a pump 56, an ultraviolet oxidation device 57, non-regenerative ion exchange devices 58 and 59, an ultrafiltration device 60 and a constant flow valve 61.
  • using ultraviolet LEDs to sterilize the pure water stored in the storage tank and detecting the disconnection of the ultraviolet LEDs by the disconnection detection circuit according to the present invention is applied only to a pure water production apparatus having a subsystem. It is not something.
  • An ultraviolet irradiation device having an ultraviolet LED is provided for a pure water production apparatus that does not have a subsystem but has a storage tank for storing pure water, and for sterilizing the pure water in the storage tank, and is disconnected based on the present invention.
  • a detection circuit can be provided.

Abstract

A disconnection detection circuit that detects disconnection of an ultraviolet LED and has: a constant current power source that connects to an anode and cathode in the ultraviolet LED and supplies DC power to the ultraviolet LED; and a relay having an input unit connected in parallel between the anode and the cathode. The relay is operated by increase in voltage between the anode and the cathode, caused by disconnection of the ultraviolet LED, and the disconnection is detected.

Description

紫外線LEDの断線検出回路及び方法、採水ディスペンサーならびに純水製造装置UV LED disconnection detection circuit and method, water sampling dispenser, and pure water manufacturing apparatus
 本発明は、紫外線発光ダイオード(LED:Light Emitting Diode)の断線を検出する断線検出回路及び方法と、このような断線検出回路を有する採水ディスペンサー及び純水製造装置とに関する。 The present invention relates to a disconnection detection circuit and method for detecting disconnection of an ultraviolet light emitting diode (LED: Light Emitting Diode), a water sampling dispenser having such a disconnection detection circuit, and a pure water production apparatus.
 バイオサイエンスなどの分野では、純水中の生菌数が多いと実験結果や分析結果が影響を受けるため、純水中の生菌数を低減させることが必要である。そこで従来から、紫外線を水に照射することによって水の殺菌を行っている。殺菌のための紫外光源としては、古くから水銀ランプが多用されているが、近年、短波長で高出力の紫外線LEDを入手できるようになったので、水銀ランプの代わりに紫外線LEDを用いるようになってきている。例えば特許文献1には、被処理水を処理して純水を製造する純水製造装置内に、紫外線LEDにより発生した紫外線を被処理水に照射して殺菌を行う紫外線殺菌装置を組み込むことが開示されている。また実験室などにおいて使用される水を殺菌するための装置として、特許文献2には、管の端部に紫外線LEDからなる紫外光源を設け、この管に通水して殺菌を行う装置が開示され、特許文献3には、容器の蓋部分に紫外線LEDからなる紫外光源を設け、容器内の被処理水を殺菌する構成が開示されている。紫外線LEDは、水銀ランプに比べて小型であり、かつ、発光及び消光の繰り返しを行っても劣化が少ないので、水銀ランプの適用が難しい分野への適用も期待されている。 In fields such as bioscience, it is necessary to reduce the number of viable bacteria in pure water because the results of experiments and analysis are affected when the number of viable bacteria in pure water is large. Therefore, conventionally, water is sterilized by irradiating water with ultraviolet rays. As an ultraviolet light source for sterilization, a mercury lamp has been widely used for a long time, but recently, an ultraviolet LED with a short wavelength and a high output has become available, so an ultraviolet LED should be used instead of a mercury lamp. It has become to. For example, Patent Document 1 incorporates an ultraviolet sterilizer that irradiates water to be treated with ultraviolet rays generated by ultraviolet LEDs in a pure water production apparatus that treats the treated water to produce pure water. It is disclosed. Further, as an apparatus for sterilizing water used in a laboratory or the like, Patent Document 2 discloses an apparatus in which an ultraviolet light source composed of an ultraviolet LED is provided at the end of a tube and water is sterilized by passing through the tube. Patent Document 3 discloses a configuration in which an ultraviolet light source including an ultraviolet LED is provided on a lid portion of a container to sterilize water to be treated in the container. Ultraviolet LEDs are smaller than mercury lamps and are less likely to deteriorate even when light emission and quenching are repeated. Therefore, application to fields where it is difficult to apply mercury lamps is also expected.
特開2016-123930号公報JP 2016-123930 A 特表2016-523594号公報Special table 2016-523594 gazette 特表2016-525906号公報Special table 2016-525906 gazette
 紫外線LEDは断線のおそれがある電子部品である。例えば純水を殺菌するための紫外光源として紫外線LEDを使用したとき、紫外線LEDが断線すると、殺菌されていない純水が供給されることとなり、その純水を使用して行う実験の結果に重大な影響を及ぼすことがある。殺菌以外の用途に紫外線LEDを使用する場合においても、同様に、紫外線LEDの断線が重大な影響を及ぼすことがある。そこで、紫外線LEDを使用する場合に、紫外線LEDでの断線を検知する回路を設けることが検討される。しかしながら現在市販されている断線検出器は高価であり、断線検出のための構成のコストダウンが求められている。 UV LED is an electronic component that may break. For example, when an ultraviolet LED is used as an ultraviolet light source for sterilizing pure water, if the ultraviolet LED is disconnected, pure water that has not been sterilized is supplied, which is serious in the results of experiments conducted using the pure water. May have a negative effect. Similarly, when the ultraviolet LED is used for purposes other than sterilization, the disconnection of the ultraviolet LED may have a significant influence. Thus, when using an ultraviolet LED, it is considered to provide a circuit for detecting disconnection in the ultraviolet LED. However, commercially available disconnection detectors are expensive, and there is a demand for cost reduction of the configuration for detecting disconnection.
 本発明の目的は、紫外線LEDの断線を簡単な構成かつ低コストで検出できる断線検出回路及び方法と、そのような断線検出回路を有する採水ディスペンサーとを提供することにある。 An object of the present invention is to provide a disconnection detection circuit and method that can detect disconnection of an ultraviolet LED with a simple configuration and at low cost, and a water collection dispenser having such a disconnection detection circuit.
 本発明の断線検出回路は、紫外線LEDの断線を検出する断線検出回路であって、紫外線LEDのアノード及びカソードに接続して紫外線LEDに直流電力を供給する定電流電源と、アノードとカソードとの間に並列に接続された入力部を有するリレーと、を有し、紫外線LEDが断線したときのアノードとカソードとの間の電圧の上昇によってリレーを作動させて断線を検出する。 The disconnection detection circuit of the present invention is a disconnection detection circuit that detects disconnection of an ultraviolet LED, and is connected to an anode and a cathode of the ultraviolet LED and supplies a DC power to the ultraviolet LED, an anode and a cathode And a relay having an input unit connected in parallel between them, and the disconnection is detected by operating the relay by a rise in voltage between the anode and the cathode when the ultraviolet LED is disconnected.
 本発明の方法は、紫外線LEDの断線を検出する方法であって、紫外線LEDのアノード及びカソードに定電流電源を接続して紫外線LEDを定電流駆動し、紫外線LEDが断線したときのアノードとカソードとの間の電圧の上昇によって、アノードとカソードとの間に並列に接続された入力部を有するリレーを作動させて断線を検出する。 The method of the present invention is a method for detecting disconnection of an ultraviolet LED, wherein a constant current power source is connected to the anode and cathode of the ultraviolet LED to drive the ultraviolet LED at a constant current, and the anode and cathode when the ultraviolet LED is disconnected. As the voltage rises, the relay having the input connected in parallel between the anode and the cathode is operated to detect disconnection.
 本発明の採水ディスペンサーは、純水の採水に用いられる採水ディスペンサーであって、純水源に接続する電磁弁と、純水を吐出するノズルと、電磁弁の出口とノズルとを接続する流路と、流路を流れる純水に対して紫外線を照射するように配置された紫外線LEDと、紫外線LEDのアノード及びカソードに接続して紫外線LEDに直流電力を供給する定電流電源と、アノードとカソードとの間に並列に接続された入力部を有するリレーと、電磁弁の開閉を制御するとともに電磁弁の開弁時に定電流電源を動作させ、リレーが作動したことを検出して紫外線LEDの断線を検出し、断線を検出したときに警報を発生する制御部と、を有する。 The water sampling dispenser of the present invention is a water sampling dispenser used for pure water sampling, and connects an electromagnetic valve connected to a pure water source, a nozzle for discharging pure water, and an outlet and a nozzle of the electromagnetic valve. A flow path, an ultraviolet LED arranged to irradiate ultraviolet light to pure water flowing through the flow path, a constant current power source connected to the anode and cathode of the ultraviolet LED and supplying DC power to the ultraviolet LED, an anode A relay having an input connected in parallel between the cathode and the cathode, and controlling the opening and closing of the solenoid valve, operating a constant current power source when the solenoid valve is opened, detecting that the relay has been activated, and detecting the ultraviolet LED And a control unit that generates an alarm when the disconnection is detected.
 本発明の純水製造装置は、純水を貯留する貯槽を少なくとも備える純水製造装置であって、貯槽に取り付けられ、貯槽内の純水に対して紫外線を照射するように配置された紫外線LEDと、紫外線LEDのアノード及びカソードに接続して紫外線LEDに直流電力を供給する定電流電源と、アノードとカソードとの間に並列に接続された入力部を有するリレーと、電磁弁の開閉を制御するとともに電磁弁の開弁時に定電流電源を動作させ、リレーが作動したことを検出して紫外線LEDの断線を検出し、断線を検出したときに警報を発生する制御部と、を有する。 The pure water production apparatus of the present invention is a pure water production apparatus having at least a storage tank for storing pure water, and is an ultraviolet LED that is attached to the storage tank and arranged to irradiate the pure water in the storage tank with ultraviolet light. And a constant current power source for supplying DC power to the ultraviolet LED by connecting to the anode and cathode of the ultraviolet LED, a relay having an input connected in parallel between the anode and the cathode, and controlling the opening and closing of the solenoid valve And a controller that operates a constant current power source when the solenoid valve is opened, detects that the relay is activated, detects disconnection of the ultraviolet LED, and generates an alarm when the disconnection is detected.
 本発明によれば、紫外線LEDの断線を簡単な構成かつ低コストで検出できるようになる。 According to the present invention, the disconnection of the ultraviolet LED can be detected with a simple configuration and at a low cost.
実施の一形態の断線検出回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the disconnection detection circuit of one Embodiment. 純水製造装置及び採水ディスペンサーの構成の一例を示すフローシートである。It is a flow sheet which shows an example of composition of a pure water manufacturing device and a water sampling dispenser. 採水ディスペンサーの内部構成を示す正面図である。It is a front view which shows the internal structure of a water sampling dispenser. 採水ディスペンサーに組み込まれた断線検出回路を示す回路図である。It is a circuit diagram which shows the disconnection detection circuit integrated in the water sampling dispenser.
 次に、本発明の実施の形態について、図面を参照して説明する。図1は、本発明の実施の一形態の断線検出回路の構成を示している。紫外線LEDを駆動するときは、一般に、定格値を超える順方向電流が流れないようにする必要があり、そのため、紫外線LEDに流れる電流を制限する機構が必要となる。本実施形態の断線検出回路は、紫外線LED11の断線を検出するものであって、紫外線LED11に電流を制限しつつ直流電力を供給し紫外線LED11を定電流駆動する定電流電源12と、リレー13と、を備えている。定電流電源12の正側出力(+)は紫外線LED11のアノードAに接続し、負側出力(-)はカソードKに接続している。リレー13の入力部14は、紫外線LED11のアノードAとカソードKとの間に並列に接続されている。図示したものでは、リレー13はメカニカルリレーであり、入力部14はリレー13の作動コイルすなわちソレノイドとして構成されている。リレー13の出力部15は、3つの接点16~18を有する。接点16は共通接点COMであり、接点17は、常時閉接点NCであり、入力部14に所定の入力がないときにのみ、すなわち作動コイルが作動しないときに接点16と電気的に導通する接点である。接点18は、常時開接点NOであり、入力部14に所定の入力があるときにのみ、すなわち作動コイルが作動するときに接点16と電気的に導通する接点である。ここではリレー13はメカニカルリレーであるとしたが、リレー13は、例えばソリッドステートリレーないし半導体リレーであってもよい。 Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration of a disconnection detection circuit according to an embodiment of the present invention. When driving an ultraviolet LED, it is generally necessary to prevent a forward current exceeding the rated value from flowing. Therefore, a mechanism for limiting the current flowing through the ultraviolet LED is required. The disconnection detection circuit according to the present embodiment detects disconnection of the ultraviolet LED 11, and supplies a DC power while limiting the current to the ultraviolet LED 11 to drive the ultraviolet LED 11 at a constant current, and a relay 13. It is equipped with. The positive output (+) of the constant current power supply 12 is connected to the anode A of the ultraviolet LED 11, and the negative output (−) is connected to the cathode K. The input unit 14 of the relay 13 is connected in parallel between the anode A and the cathode K of the ultraviolet LED 11. In the illustrated example, the relay 13 is a mechanical relay, and the input unit 14 is configured as an operating coil of the relay 13, that is, a solenoid. The output unit 15 of the relay 13 has three contacts 16 to 18. The contact 16 is a common contact COM, the contact 17 is a normally closed contact NC, and a contact that is electrically connected to the contact 16 only when there is no predetermined input in the input unit 14, that is, when the operating coil is not activated. It is. The contact 18 is a normally-open contact NO, and is a contact that is electrically connected to the contact 16 only when there is a predetermined input in the input unit 14, that is, when the operating coil is activated. Here, the relay 13 is a mechanical relay, but the relay 13 may be, for example, a solid state relay or a semiconductor relay.
 紫外線LED11を定電流で駆動しているとき、そのアノードAとカソードKとの間の電圧すなわち順方向電圧は、紫外線LED11の順方向電流電圧特性によって定まるが、概ね2~4V程度である。一方、定電流電源12には、所定の電流を安定して出力することができるように、ある程度高い電圧が供給される。したがって、定電流電源12の開放状態電圧、すなわち無負荷時の出力電圧は、例えば、10~20V程度である。ここで、リレー13の作動電圧が、紫外線LED11の順方向電圧よりも高くかつ定電流電源12の開放状態電圧より低いものとする。紫外線LED11が正常に動作していれば、リレー13の入力部14に加わる電圧は紫外線LED11の順方向電圧であるので、リレー13は作動せず、一方、紫外線LED11が断線していれば、入力部14に加わる電圧は定電流電源12の開放状態電圧となるので、リレー13が作動することになる。この断線検出回路では、例えば、リレー13の常時開接点NOである接点18に電源電圧VDDを加え、常時閉接点NCである接点17に接地電位GNDを加えた上で、共通接点COMである接点16の電位が電源電圧VDDであるのか接地電位GNDであるのかを判別することによって、紫外線LED11の断線を検出することができる。 When the ultraviolet LED 11 is driven at a constant current, the voltage between the anode A and the cathode K, that is, the forward voltage, is determined by the forward current voltage characteristics of the ultraviolet LED 11, but is approximately 2 to 4V. On the other hand, the constant current power supply 12 is supplied with a certain high voltage so that a predetermined current can be stably output. Therefore, the open-circuit voltage of the constant current power supply 12, that is, the output voltage when there is no load is, for example, about 10 to 20V. Here, it is assumed that the operating voltage of the relay 13 is higher than the forward voltage of the ultraviolet LED 11 and lower than the open state voltage of the constant current power supply 12. If the ultraviolet LED 11 is operating normally, the voltage applied to the input part 14 of the relay 13 is the forward voltage of the ultraviolet LED 11, so the relay 13 does not operate, while if the ultraviolet LED 11 is disconnected, the input Since the voltage applied to the unit 14 becomes the open state voltage of the constant current power source 12, the relay 13 is activated. In this disconnection detection circuit, for example, the power supply voltage VDD is applied to the contact 18 which is the normally open contact NO of the relay 13, the ground potential GND is applied to the contact 17 which is the normally closed contact NC, and then the contact which is the common contact COM. By determining whether the potential of 16 is the power supply voltage VDD or the ground potential GND, the disconnection of the ultraviolet LED 11 can be detected.
 紫外線LED11における断線が発生してリレー13の接点16の電位が例えば電源電圧VDDとなった場合には、接点16からの信号に基づいて警報(アラーム)信号を発出することができる。さらに、必要に応じて、断線が生じた紫外線LED11に関係する機器の動作を停止させることもできる。 When the disconnection in the ultraviolet LED 11 occurs and the potential of the contact 16 of the relay 13 becomes, for example, the power supply voltage VDD, an alarm signal can be issued based on the signal from the contact 16. Furthermore, the operation | movement of the apparatus related to ultraviolet-ray LED11 which a disconnection produced can also be stopped as needed.
 次に、紫外線LEDが設けられ本発明に基づく断線検出回路が適用される機器について説明する。ここでは、紫外線LEDが設けられる機器として、純水製造装置などに接続され、需要に応じて純水を吐出する採水ディスペンサーを例に挙げて説明する。もちろん、本発明に基づく断線検出回路が適用される機器は、採水ディスペンサーに限定されるものではない。 Next, an apparatus to which an ultraviolet LED is provided and to which a disconnection detection circuit based on the present invention is applied will be described. Here, a water sampling dispenser that is connected to a pure water production apparatus or the like and discharges pure water according to demand will be described as an example of equipment provided with ultraviolet LEDs. Of course, the device to which the disconnection detection circuit according to the present invention is applied is not limited to the water sampling dispenser.
 研究機関などにおいて純水を利用する場合、比較的小型の純水製造装置を用いて純水を製造することが多い。そしてユースポイントにおいて純水を例えばビーカー、フラスコ、試験管などに採水するために、純水製造装置に接続する採水ディスペンサーが広く用いられている。採水ディスペンサーは、純水を吐出するノズルと、ノズルへの純水の経路に設けられてノズルに対して純水を供給し、またこの供給を遮断する開閉弁とを備えている。採水ディスペンサーは、通常、純水製造装置の本体とは離れたユースポイントに設けられ、配管によって純水製造装置本体の純水出口に接続される。利用者が開閉弁を操作することによってノズルから純水が吐出し、これにより、利用者はその必要に応じた量で純水を採水することができる。開閉弁としては、例えば電磁弁を用いることができる。電磁弁を用いる場合には、指で操作できる押しボタンスイッチあるいは足によって操作できる足踏みスイッチ等により電磁弁を制御し、ノズルから純水を吐出させる。さらに、流量センサーと電磁弁とを組み合わせることにより、1回のスイッチ操作があったときに流量センサーによって計測される流量が規定値に達するまで電磁弁を開放することにより、規定量の純水を採水できるようにすることもできる。 When using pure water in research institutions, etc., pure water is often produced using a relatively small pure water production apparatus. In order to collect pure water at a use point, for example, in a beaker, a flask, a test tube or the like, a water collection dispenser connected to a pure water production apparatus is widely used. The water sampling dispenser includes a nozzle that discharges pure water, and an open / close valve that is provided in a path of pure water to the nozzle and supplies pure water to the nozzle and shuts off the supply. The water sampling dispenser is usually provided at a use point away from the main body of the pure water production apparatus, and is connected to a pure water outlet of the pure water production apparatus main body by piping. When the user operates the on-off valve, pure water is discharged from the nozzle, and thus the user can collect pure water in an amount according to the necessity. As the on-off valve, for example, an electromagnetic valve can be used. When using a solenoid valve, the solenoid valve is controlled by a push button switch that can be operated by a finger or a foot switch that can be operated by a foot, and pure water is discharged from the nozzle. Furthermore, by combining the flow sensor and the solenoid valve, the specified amount of pure water can be removed by opening the solenoid valve until the flow rate measured by the flow sensor reaches the specified value when there is a single switch operation. It is also possible to collect water.
 図2は、純水製造装置と採水ディスペンサーとを示している。純水製造装置は、大別すると、水道水などが供給されて一次純水を生成する一次純水製造装置30と、一次純水製造装置30で生成された一次純水が配管45を介して供給されてより純度の高い純水を生成するサブシステム50すなわち二次純水システムと、からなっている。サブシステム50は、循環精製系を備えている。一次純水製造装置30において、水道水などの供給水は、弁31を介して活性炭カートリッジ(CC)32に導入される。活性炭カートリッジ32の出口水は、圧力スイッチ(PS)33及びポンプ34を介して、逆浸透膜を備える逆浸透装置(RO)35に送られる。逆浸透装置35の濃縮側にはオリフィス36を備える配管43が接続し、濃縮側からの排水はこの配管43を介して排出される。オリフィス36は、逆浸透装置35の濃縮側の圧力を一定に保つために設けられている。逆浸透装置35の逆浸透膜を透過した水は、次に、2段直列に配置されたた非再生型イオン交換装置(CP:カートリッジポリッシャーともいう)39,41に順次通水される。非再生型イオン交換装置39,41は、いずれも、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とが混床で充填されたものである。逆浸透装置35と1段目の非再生型イオン交換装置39のと間の配管には、非再生型イオン交換装置39に送られる水の導電率及び温度をそれぞれ計測する導電率計(CI)37及び温度計(TI)38が接続している。1段目と2段目の非再生型イオン交換装置39,41の間の配管にも導電率計40が設けられている。非再生型イオン交換装置41の出口にはチェック弁42が設けられている。チェック弁42の出口は、一次純水製造装置30の出口となるものであり、配管45が接続している。 FIG. 2 shows a pure water production apparatus and a water dispenser. The pure water production apparatus can be broadly divided into a primary pure water production apparatus 30 that supplies tap water and generates primary pure water, and a primary pure water produced by the primary pure water production apparatus 30 via a pipe 45. It consists of a subsystem 50 that is supplied and produces pure water with higher purity, that is, a secondary pure water system. The subsystem 50 includes a circulation purification system. In the primary pure water production apparatus 30, supply water such as tap water is introduced into an activated carbon cartridge (CC) 32 through a valve 31. The outlet water of the activated carbon cartridge 32 is sent to a reverse osmosis device (RO) 35 having a reverse osmosis membrane via a pressure switch (PS) 33 and a pump 34. A pipe 43 having an orifice 36 is connected to the concentration side of the reverse osmosis device 35, and waste water from the concentration side is discharged through the pipe 43. The orifice 36 is provided to keep the pressure on the concentration side of the reverse osmosis device 35 constant. The water that has passed through the reverse osmosis membrane of the reverse osmosis device 35 is then sequentially passed to non-regenerative ion exchange devices (CP: also called cartridge polishers) 39 and 41 arranged in two stages in series. The non-regenerative ion exchangers 39 and 41 are each filled with a strongly acidic cation exchange resin and a strongly basic anion exchange resin in a mixed bed. In the pipe between the reverse osmosis device 35 and the first non-regenerative ion exchange device 39, a conductivity meter (CI) for measuring the conductivity and temperature of water sent to the non-regenerative ion exchange device 39, respectively. 37 and a thermometer (TI) 38 are connected. A conductivity meter 40 is also provided in the piping between the first and second non-regenerative ion exchange devices 39 and 41. A check valve 42 is provided at the outlet of the non-regenerative ion exchange device 41. The outlet of the check valve 42 is an outlet of the primary pure water production apparatus 30 and is connected with a pipe 45.
 サブシステム50は、配管45から弁52を介して一次純水が供給される貯槽51を備えている。貯槽51には、貯槽51内の純水に紫外線を照射して殺菌を行うための紫外線照射装置53と、貯槽51内の純水のレベルを検知するレベルセンサー(LS)54と、ベントフィルター55とが設けられている。ベントフィルター55を介して貯槽51は大気に連通しており、貯槽51内の圧力が大気圧に維持される。紫外線照射装置53としては、例えば、紫外線LEDを用いるもの、紫外線ランプを用いるものなどを使用することができる。 The subsystem 50 includes a storage tank 51 to which primary pure water is supplied from a pipe 45 through a valve 52. The storage tank 51 includes an ultraviolet irradiation device 53 for sterilizing the pure water in the storage tank 51 by irradiating ultraviolet light, a level sensor (LS) 54 for detecting the level of pure water in the storage tank 51, and a vent filter 55. And are provided. The storage tank 51 communicates with the atmosphere via the vent filter 55, and the pressure in the storage tank 51 is maintained at atmospheric pressure. As the ultraviolet irradiation device 53, for example, a device using an ultraviolet LED, a device using an ultraviolet lamp, or the like can be used.
 貯槽51の出口には、貯槽51内の純水を給送するポンプ56が設けられており、ポンプ56の出口には、紫外線酸化装置(UV)57、直列2段に設けられた非再生型イオン交換装置58,59、及び限外濾過装置(UF)60が、この順で設けられている。ポンプ56の出口配管から分岐する配管101が設けられており、配管101の先端には出口ポート71が設けられている。限外濾過装置60において限外濾過膜の一次側の水を排水するための配管106が設けられており、配管106には弁107が設けられている。限外濾過装置60の出口には、出口ポート72に接続する配管102が接続し、配管102には、そこを流れる純水の電気抵抗率及び温度をそれぞれ測定するための抵抗率計(RI)63及び温度計64が接続している。限外濾過装置60の出口には、純水を貯槽51側に戻すための配管103も設けられており、配管103の先端には、定流量弁61が取り付けられている。配管103には、そこを流れる純水の全有機炭素(TOC)濃度を計測するTOC計(TOCI)62が接続している。定流量弁61の出口には、貯槽51に戻る配管104と、出口ポート73に接続する配管105が接続している。配管105には背圧弁65が設けられている。純水のサンプリングに用いられるサンプリング弁66は、配管104に取り付けられている。 A pump 56 for feeding pure water in the storage tank 51 is provided at the outlet of the storage tank 51, and an ultraviolet oxidation device (UV) 57, a non-regenerative type provided in two stages in series, is provided at the outlet of the pump 56. Ion exchange devices 58 and 59 and an ultrafiltration device (UF) 60 are provided in this order. A pipe 101 branched from the outlet pipe of the pump 56 is provided, and an outlet port 71 is provided at the tip of the pipe 101. The ultrafiltration device 60 is provided with a pipe 106 for draining water on the primary side of the ultrafiltration membrane, and the pipe 106 is provided with a valve 107. A pipe 102 connected to an outlet port 72 is connected to the outlet of the ultrafiltration device 60, and a resistance meter (RI) for measuring the electrical resistivity and temperature of pure water flowing therethrough is connected to the pipe 102, respectively. 63 and a thermometer 64 are connected. A pipe 103 for returning pure water to the storage tank 51 side is also provided at the outlet of the ultrafiltration device 60, and a constant flow valve 61 is attached to the tip of the pipe 103. Connected to the pipe 103 is a TOC meter (TOCI) 62 for measuring the total organic carbon (TOC) concentration of pure water flowing therethrough. A pipe 104 returning to the storage tank 51 and a pipe 105 connected to the outlet port 73 are connected to the outlet of the constant flow valve 61. A back pressure valve 65 is provided in the pipe 105. A sampling valve 66 used for sampling pure water is attached to the pipe 104.
 サブシステム50では、貯槽51からポンプ56、紫外線酸化装置57、非再生型イオン交換装置58,59、限外濾過装置60、定流量弁61を経て貯槽51に戻る循環精製系が形成されており、一次純水がこの循環精製系を循環する間にさらに精製され、これにより、ユースポイントに供給されるべき純水が得られる。紫外線酸化装置57は、純水中の全有機炭素を分解するためのものであって殺菌作用も有するが、夜間や休日には循環精製系の運転を停止することがあり、その停止期間中において貯槽51における生菌の増殖を抑制するためにも、紫外線酸化装置57とは別に貯槽51に紫外線照射装置53を設けることが好ましい。水を解離できることが必要であるので、紫外線酸化装置57における紫外線源としては、一般に低圧水銀ランプが使用される。また、サブシステム50では、配管45からの一次純水をそのまま排水として排出するために、配管45に弁68が接続する。貯槽51の出口には、貯槽51内を排水するための弁69も設けられている。この弁69の排水側と貯槽51の入口側との間にはチェック弁67が設けられている。さらに、純水製造装置の全体の動作を制御するために、主制御装置70が設けられている。主制御装置70には、純水製造装置における水漏れを検出するセンサーが接続されていてもよい。 In the subsystem 50, a circulation purification system is formed that returns from the storage tank 51 to the storage tank 51 through the pump 56, the ultraviolet oxidation device 57, the non-regenerative ion exchange devices 58 and 59, the ultrafiltration device 60, and the constant flow valve 61. The primary pure water is further purified while circulating through this circulation purification system, thereby obtaining pure water to be supplied to the use point. The ultraviolet oxidizer 57 is for decomposing all organic carbon in pure water and has a sterilizing action. The operation of the circulation purification system may be stopped at night or on holidays, and during the stop period. In order to suppress the growth of viable bacteria in the storage tank 51, it is preferable to provide the ultraviolet irradiation apparatus 53 in the storage tank 51 separately from the ultraviolet oxidation apparatus 57. Since it is necessary to be able to dissociate water, a low-pressure mercury lamp is generally used as the ultraviolet light source in the ultraviolet oxidation device 57. Further, in the subsystem 50, a valve 68 is connected to the pipe 45 in order to discharge the primary pure water from the pipe 45 as waste water as it is. A valve 69 for draining the inside of the storage tank 51 is also provided at the outlet of the storage tank 51. A check valve 67 is provided between the drain side of the valve 69 and the inlet side of the storage tank 51. Further, a main controller 70 is provided to control the overall operation of the pure water production apparatus. The main controller 70 may be connected to a sensor that detects water leakage in the pure water production apparatus.
 サブシステム50に設けられる出口ポート71~73は、採水ディスペンサー80の接続位置となるポートである。採水ディスペンサー80は、例えば可撓性を有する配管75によって、いずれかの出口ポート71~73に接続される。ここでは3つの出口ポート71~73が設けられているが、循環精製系への出口ポートの接続箇所は、図2に示されるものに限定されるものではない。ただし、水質や圧力の観点からは、出口ポート72に対して採水ディスペンサー80を接続することが好ましい。循環精製系に接続する出口ポートの数は3に限定されるものではなく、増減することができる。例えば、限外濾過装置60の出口に接続する複数の出口ポートを設け、これらの出口ポートごとに1つずつ採水ディスペンサー80を接続するようにしてもよい。 The outlet ports 71 to 73 provided in the subsystem 50 are ports that are connection positions of the water sampling dispenser 80. The water sampling dispenser 80 is connected to any one of the outlet ports 71 to 73 by, for example, a flexible pipe 75. Here, three outlet ports 71 to 73 are provided, but the connection points of the outlet ports to the circulation purification system are not limited to those shown in FIG. However, it is preferable to connect the water sampling dispenser 80 to the outlet port 72 from the viewpoint of water quality and pressure. The number of outlet ports connected to the circulation purification system is not limited to 3, but can be increased or decreased. For example, a plurality of outlet ports connected to the outlet of the ultrafiltration device 60 may be provided, and one water sampling dispenser 80 may be connected to each of the outlet ports.
 次に、採水ディスペンサー80について説明する。サブシステム50の循環精製系には紫外線照射装置53や紫外線酸化装置57が設けられており、循環精製系を循環する純水に対しては殺菌処理が行われるが、循環精製系から分岐する配管、例えば、配管75,101,102,105や採水ディスペンサー80の内部の純水は循環しないので、これらの位置で生菌が繁殖するおそれが残る。そこでここで説明する採水ディスペンサー80は、それ自体に紫外線LEDを使用した紫外線殺菌機構を備えており、含まれる生菌の数を低減した純水を常に供給することが可能としている。 Next, the water sampling dispenser 80 will be described. The circulation purification system of the subsystem 50 is provided with an ultraviolet irradiation device 53 and an ultraviolet oxidation device 57, and sterilization is performed on the pure water circulating in the circulation purification system, but a pipe branched from the circulation purification system For example, since pure water in the pipes 75, 101, 102, 105 and the water collection dispenser 80 does not circulate, there is a possibility that viable bacteria will propagate at these positions. Therefore, the water collection dispenser 80 described here is provided with an ultraviolet sterilization mechanism using an ultraviolet LED in itself, and can always supply pure water with a reduced number of viable bacteria contained therein.
 採水ディスペンサー80は、大別すると、ヘッド部80aと本体部80bとから構成されており、ヘッド部80aと本体部80bとは可撓性を有する配管84によって接続されている。採水ディスペンサー80の使用形態として、例えば、実験台の上に整列して置かれた多数の試験管に対して次々と純水を注ぐために用いる、というものがある。そこで、採水ディスペンサー80として機能させるために必要な制御機構などは本体部80bに設けるとともに、実際に純水の注ぎ口となる部分は、利用者によって把持されて所望の位置に動かすことができるヘッド部80aに設けている。 The water dispensing dispenser 80 is roughly composed of a head portion 80a and a main body portion 80b, and the head portion 80a and the main body portion 80b are connected by a flexible pipe 84. As a usage form of the water sampling dispenser 80, for example, it is used for pouring pure water one after another to a large number of test tubes arranged in line on a laboratory table. Therefore, a control mechanism and the like necessary for functioning as the water sampling dispenser 80 are provided in the main body 80b, and a portion that actually becomes a pure water spout can be gripped by the user and moved to a desired position. It is provided in the head portion 80a.
 ヘッド部80aは、本体部80bから配管84を介して送られてきた純水を吐出するものであり、配管84に接続する流路85と、流路85の末端に設けられて純水を吐出するノズル86と、流路85を流れる純水に対して紫外線を照射する紫外線照射部87を備えている。紫外線照射部87は紫外線殺菌機構として機能するものであり、紫外線照射部87における紫外線源としては、紫外線LEDが用いられている。さらにヘッド部80aは、利用者の需要に応じて純水を吐出するために、利用者によって操作されるスイッチ88を備えている。 The head part 80a discharges pure water sent from the main body part 80b through the pipe 84, and is provided at the end of the flow path 85 connected to the pipe 84 and pure water. And an ultraviolet irradiation unit 87 that irradiates the pure water flowing through the flow path 85 with ultraviolet rays. The ultraviolet irradiation unit 87 functions as an ultraviolet sterilization mechanism, and an ultraviolet LED is used as the ultraviolet source in the ultraviolet irradiation unit 87. Furthermore, the head unit 80a includes a switch 88 that is operated by the user in order to discharge pure water according to the user's demand.
 本体部80bには、サブユニット50からの配管75に一端が接続する配管81と、配管81に設けられた流量センサー(FI)82と、配管81の他端に取り付けられた電磁弁83と、採水ディスペンサー80の動作を制御する制御部90と、制御部90に接続する操作パネル89とが設けられている。電磁弁83は、制御部90からの駆動信号によって開弁する。操作パネル89は、利用者からの例えば採水量や採水モードの設定を受け付けるとともに、利用者に対して必要な表示を行うものである。採水モードとしては、例えば、定量モードや任意量モードがある。制御部90は、採水ディスペンサー80の全体の制御を行うものであり、例えば、ヘッド部80aのスイッチ88を介して入力した利用者からの採水要求を受け付け、採水モードが定量モードである場合には、流量センサー82で検出される流量の累積値が設定値となるまで電磁弁83を開放することにより、その設定値で示される量の純水がヘッド部80aに送水されるようにする制御を行う。採水モードが任意量モードである場合には、制御部90は、スイッチ88が操作されている期間だけ電磁弁83を開放する制御を行う。また制御部90は、採水モードによらず、電磁弁83が開放しているときのみ、紫外線照射部87内の紫外線LEDが駆動されるように制御を行う。さらに制御部90は、不図示の配線によって純水製造装置の制御回路70と接続し、制御回路70から得られる例えば水質などの情報を操作パネル89に表示するようにしてもよい。 In the main body 80b, a pipe 81 having one end connected to the pipe 75 from the subunit 50, a flow sensor (FI) 82 provided in the pipe 81, an electromagnetic valve 83 attached to the other end of the pipe 81, A control unit 90 for controlling the operation of the water dispensing dispenser 80 and an operation panel 89 connected to the control unit 90 are provided. The electromagnetic valve 83 is opened by a drive signal from the control unit 90. The operation panel 89 receives, for example, settings of the water sampling amount and water sampling mode from the user and performs necessary display for the user. Examples of the water sampling mode include a quantitative mode and an arbitrary amount mode. The control unit 90 performs overall control of the water sampling dispenser 80. For example, the control unit 90 receives a water sampling request input from the user via the switch 88 of the head unit 80a, and the water sampling mode is the quantitative mode. In this case, the solenoid valve 83 is opened until the accumulated value of the flow rate detected by the flow rate sensor 82 reaches the set value, so that the amount of pure water indicated by the set value is supplied to the head unit 80a. Control. When the water sampling mode is an arbitrary amount mode, the control unit 90 performs control to open the electromagnetic valve 83 only during a period in which the switch 88 is operated. In addition, the control unit 90 performs control so that the ultraviolet LED in the ultraviolet irradiation unit 87 is driven only when the electromagnetic valve 83 is open regardless of the water sampling mode. Further, the control unit 90 may be connected to the control circuit 70 of the pure water production apparatus by a wiring (not shown) and display information such as water quality obtained from the control circuit 70 on the operation panel 89.
 図3は、採水ディスペンサー80のヘッド部80aの外観を示すとともに内部構成を示している。ヘッド部80aには、ハンドル118あるいは取っ手が設けられており、ハンドル118を握った利用者がその指で容易に操作できる位置にボタン119が設けられている。ボタン119はスイッチ88(図3には不図示)に機械的に接続しており、ボタン119を押下することでスイッチ88が操作されるようになっている。流路85は、配管84との接続部となるジョイント111と、ジョイント111に接続し内部に貫通流路114を備えるハウジング112と、ハウジング112の貫通流路114の出口に一端が接続する継手115と、逆流防止機構117とが設けられており、継手115の他端はジョイント116を介して逆流防止機構117の入口に接続している。逆流防止機構117の出口はヘッド部80aの外面に開口しており、そこに、ノズル86が例えばネジ込みによって取り付けられている。 FIG. 3 shows the external appearance of the head portion 80a of the water sampling dispenser 80 and the internal structure. The head portion 80a is provided with a handle 118 or a handle, and a button 119 is provided at a position where a user who holds the handle 118 can easily operate with the finger. The button 119 is mechanically connected to a switch 88 (not shown in FIG. 3), and the switch 88 is operated when the button 119 is pressed. The flow path 85 includes a joint 111 serving as a connection portion with the pipe 84, a housing 112 connected to the joint 111 and including a through flow path 114 therein, and a joint 115 having one end connected to an outlet of the through flow path 114 of the housing 112. And a backflow prevention mechanism 117, and the other end of the joint 115 is connected to the inlet of the backflow prevention mechanism 117 via the joint 116. The outlet of the backflow prevention mechanism 117 opens to the outer surface of the head portion 80a, and the nozzle 86 is attached thereto by, for example, screwing.
 紫外線照射部87は、紫外線LED11と、第1の面に紫外線LED11が取り付けられた基板94と、基板94の第1の面とは反対側となる第2の面に取り付けられた放熱器(ヒートシンク)95とからなっている。放熱器95は、紫外線LED11を駆動した際に発生する熱を放熱するためのものである。ハウジング112の貫通流路114には屈曲部が設けられており、この屈曲部からハウジング112の一側面に向かう中空部113が形成されており、貫通流路114側から見て中空部113の最奥部には、紫外線導入窓となる石英ガラス板96が設けられている。石英ガラス板96は、基板94の第1の面に対向して設けられており、紫外線LED11から出射した紫外線は、石英ガラス板96及び中空部113を介し、貫通流路114に入射することになる。ヘッド部80aでは、この構成によって、流路85を流れる純水に紫外線が照射され、純水に対する紫外線殺菌処理が行われることになる。ハウジング112を構成する材料として、ポリテトラフルオロエチレン(PTFE)やポリフッ化ビニリデン(PVDF)などの紫外線をよく反射する材料を使用することにより、純水に効率よく紫外線を照射することが可能になる。特に本実施形態では、図示するように貫通流路114における屈曲部の位置に対して紫外線を入射させているので、ジョイント111や配管84の内壁を構成する材料のPTFEやPVDFなどとすることにより、図においてUVと記した矢印に示すように配管84内へも紫外線を入射させることができ、さらに効率的に純水に紫外線を照射することができるようになる。 The ultraviolet irradiation unit 87 includes an ultraviolet LED 11, a substrate 94 with the ultraviolet LED 11 attached to the first surface, and a radiator (heat sink) attached to the second surface opposite to the first surface of the substrate 94. ) 95. The radiator 95 is for radiating heat generated when the ultraviolet LED 11 is driven. The through-flow channel 114 of the housing 112 is provided with a bent portion, and a hollow portion 113 is formed from the bent portion toward one side surface of the housing 112, and the hollow portion 113 is viewed from the through-flow channel 114 side. A quartz glass plate 96 serving as an ultraviolet light introducing window is provided in the inner part. The quartz glass plate 96 is provided so as to face the first surface of the substrate 94, and the ultraviolet light emitted from the ultraviolet LED 11 enters the through flow path 114 through the quartz glass plate 96 and the hollow portion 113. Become. With this configuration, the head unit 80a irradiates the pure water flowing through the flow path 85 with ultraviolet rays, and performs ultraviolet sterilization treatment on the pure water. By using a material that reflects ultraviolet light such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF) as a material constituting the housing 112, it becomes possible to efficiently irradiate the pure water with ultraviolet light. . In particular, in the present embodiment, ultraviolet rays are incident on the position of the bent portion in the through flow path 114 as shown in the drawing, so that the material constituting the inner wall of the joint 111 or the pipe 84 is made of PTFE, PVDF, or the like. In the figure, as indicated by an arrow labeled UV, ultraviolet rays can be made incident into the pipe 84, and ultraviolet rays can be irradiated onto pure water more efficiently.
 従来から紫外光源として使用されている水銀ランプは、寸法が大きく、また、頻繁なオン/オフ動作には適さないので、採水ディスペンサー、特にそのヘッド部に組み込んで純水の需要があるときだけ点灯させることが困難であった。ここで示す採水ディスペンサー80では、紫外線LED11を使用することにより、採水ディスペンサー80において純水を吐出する位置の直前の位置において、純水の紫外線殺菌処理を行うことが可能になり、採水されることとなる純水に対して確実に殺菌処理を行うことが可能となる。 Mercury lamps conventionally used as ultraviolet light sources are large in size and are not suitable for frequent on / off operation, so only when there is a demand for pure water to be incorporated in the water sampling dispenser, especially its head part It was difficult to light up. In the water sampling dispenser 80 shown here, by using the ultraviolet LED 11, it becomes possible to perform the ultraviolet sterilization treatment of pure water at a position immediately before the position at which the pure water is discharged in the water sampling dispenser 80. It becomes possible to perform the sterilization process with respect to the pure water to be surely performed.
 図4は、採水ディスペンサー80の回路構成を示している。紫外線LEDによって殺菌処理された純水を吐出する採水ディスペンサーでは、紫外線LEDが断線している場合に生菌を含む純水を吐出するおそれがある。そこで図4に示す採水ディスペンサー80では、ヘッド部80aに設けられた紫外線LED11を駆動するための定電流電源12と、紫外線LED11の断線を検出するためのリレー13とが設けられており、図1に示したものと同様の断線検出回路が構成されている。図2には示されていないが定電流電源12とリレー13とは本体部80b内に設けられている。また定電流電源12は、制御部90からの信号によってその出力がオン/オフされるようになっている。制御部90には、操作パネル89とヘッド部80aのボタン88とが接続し、流量センサー82から流量検出値が入力している。制御部90は、これらの入力に伴い、電磁弁83を開くタイミングで定電流電源12が動作を開始し、電磁弁83を閉じるタイミングで定電流電源12が停止するように、電磁弁83と定電流電源12とを制御する。ヘッド部80aに設けられる紫外線LED11及びボタン88と本体部80bとの間は、例えば配管84に併設された配線(不図示)によって電気的に接続されている。 FIG. 4 shows a circuit configuration of the water sampling dispenser 80. In the water collection dispenser which discharges the pure water sterilized by the ultraviolet LED, there is a risk of discharging pure water containing viable bacteria when the ultraviolet LED is disconnected. Therefore, in the water dispensing dispenser 80 shown in FIG. 4, a constant current power source 12 for driving the ultraviolet LED 11 provided in the head portion 80a and a relay 13 for detecting disconnection of the ultraviolet LED 11 are provided. A disconnection detection circuit similar to that shown in FIG. Although not shown in FIG. 2, the constant current power source 12 and the relay 13 are provided in the main body 80b. The output of the constant current power supply 12 is turned on / off by a signal from the control unit 90. The control unit 90 is connected to the operation panel 89 and the button 88 of the head unit 80 a, and the flow rate detection value is input from the flow rate sensor 82. In accordance with these inputs, the control unit 90 starts the operation of the constant current power supply 12 when the electromagnetic valve 83 is opened, and stops the constant current power supply 12 when the electromagnetic valve 83 is closed. The current power source 12 is controlled. The ultraviolet LED 11 and the button 88 provided in the head portion 80a and the main body portion 80b are electrically connected by, for example, wiring (not shown) provided along the pipe 84.
 断線検出回路においてリレー13の常時閉接点NCである接点17は接地電位に接続され、常時開接点NOである接点18には電源電圧が印加されている。そして共通接点COMである接点16は制御部90に接続されている。定電流電源12が停止しているときはリレー13の入力が存在しないので、接点16の電位は接地電位(すなわちLレベル)である。また定電流電源12が動作し、かつ紫外線LED11も正常に動作しているときも、上述したようにリレー13は作動しないので、接点16の電位は接地電位である。これに対し、定電流電源12が動作しているが紫外線LED11が断線となっている場合には、リレー13が作動して接点16の電位は電源電圧かそれに近い値、すなわちHレベルとなる。したがって、制御部90は、故障検知としてリレー13の接点16から送られてくる信号の電圧がHレベルとなることを検出することにより、紫外線LED11の断線を検出することができる。 In the disconnection detection circuit, the contact 17 as the normally closed contact NC of the relay 13 is connected to the ground potential, and the power supply voltage is applied to the contact 18 as the normally open contact NO. The contact 16 that is the common contact COM is connected to the control unit 90. Since the input of the relay 13 does not exist when the constant current power supply 12 is stopped, the potential of the contact 16 is the ground potential (that is, L level). Even when the constant current power supply 12 is operating and the ultraviolet LED 11 is operating normally, the relay 13 does not operate as described above, so the potential of the contact 16 is the ground potential. On the other hand, when the constant current power supply 12 is operating but the ultraviolet LED 11 is disconnected, the relay 13 is activated and the potential of the contact 16 becomes the power supply voltage or a value close thereto, that is, H level. Therefore, the control unit 90 can detect the disconnection of the ultraviolet LED 11 by detecting that the voltage of the signal sent from the contact 16 of the relay 13 becomes H level as a failure detection.
 制御部90は、紫外線LED11の断線を検出した場合、例えば、操作パネル89に断線の旨の警報を表示することができる。あるいは、警報を表示した上で、さらに、その採水ディスペンサー80による採水が行えなくなるように、電磁弁83に対して駆動信号を送出せずに送水停止とする制御を行ってもよい。サブシステム50に対して複数の採水ディスペンサー80が接続される場合には、紫外線LED11の断線があった採水ディスペンサーを送水停止としても影響は少ない。 The control unit 90 can display an alarm indicating the disconnection on the operation panel 89 when the disconnection of the ultraviolet LED 11 is detected, for example. Or after displaying an alarm, you may perform control which stops water supply, without sending a drive signal with respect to the solenoid valve 83 so that the water sampling by the water sampling dispenser 80 cannot be performed. When a plurality of water sampling dispensers 80 are connected to the subsystem 50, there is little influence even if the water sampling dispenser in which the ultraviolet LED 11 is disconnected is stopped.
 以上では、採水ディスペンサー80に設けられる紫外線LED11の断線の検出を行う場合を説明したが、本発明に基づく断線検出回路は、例えば、貯槽51内の純水に紫外線を照射して殺菌を行うための紫外線照射装置53に用いられる紫外線LEDの断線の検出にも使用することができる。紫外線照射装置53に用いられる紫外線LEDの断線を検出する場合には、断線検出回路の出力は、例えば主制御装置70に供給される。主制御装置70は、紫外線照射装置53内の紫外線LEDの断線を検知した場合には、不図示の表示装置に、あるいは、採水ディスペンサー80の操作パネル89に、断線の旨の警報を表示することができる。 Although the case where the disconnection detection of the ultraviolet LED 11 provided in the water sampling dispenser 80 is detected has been described above, the disconnection detection circuit according to the present invention performs sterilization by irradiating the pure water in the storage tank 51 with ultraviolet rays, for example. Therefore, it can also be used for detection of disconnection of the ultraviolet LED used in the ultraviolet irradiation device 53. When detecting the disconnection of the ultraviolet LED used in the ultraviolet irradiation device 53, the output of the disconnection detection circuit is supplied to the main controller 70, for example. When the main controller 70 detects the disconnection of the ultraviolet LED in the ultraviolet irradiation device 53, the main controller 70 displays an alarm indicating the disconnection on a display device (not shown) or on the operation panel 89 of the water sampling dispenser 80. be able to.
 上述した純水製造装置は、貯槽51、ポンプ56、紫外線酸化装置57、非再生型イオン交換装置58,59、限外濾過装置60及び定流量弁61を有するサブシステム50を備えている。しかしながら、貯槽に貯えられている純水を殺菌するために紫外線LEDを用いるとともに本発明に基づく断線検出回路によって紫外線LEDの断線を検出することは、サブシステムを備える純水製造装置のみに適用されるものではない。サブシステムは備えないが純水を貯留する貯槽を有する純水製造装置に対しても、貯槽内の純水の殺菌のために紫外線LEDを有する紫外線照射装置を設け、かつ、本発明に基づく断線検出回路を設けることができる。 The pure water production apparatus described above includes a subsystem 50 having a storage tank 51, a pump 56, an ultraviolet oxidation device 57, non-regenerative ion exchange devices 58 and 59, an ultrafiltration device 60 and a constant flow valve 61. However, using ultraviolet LEDs to sterilize the pure water stored in the storage tank and detecting the disconnection of the ultraviolet LEDs by the disconnection detection circuit according to the present invention is applied only to a pure water production apparatus having a subsystem. It is not something. An ultraviolet irradiation device having an ultraviolet LED is provided for a pure water production apparatus that does not have a subsystem but has a storage tank for storing pure water, and for sterilizing the pure water in the storage tank, and is disconnected based on the present invention. A detection circuit can be provided.
 11  紫外線LED
 12  定電流電源
 13  リレー
 14  入力部
 15  出力部
 50  サブシステム
 51  貯槽
 53  紫外線照射装置
 70  主制御装置
 90  制御部
11 UV LED
DESCRIPTION OF SYMBOLS 12 Constant current power supply 13 Relay 14 Input part 15 Output part 50 Subsystem 51 Storage tank 53 Ultraviolet irradiation device 70 Main controller 90 Control part

Claims (7)

  1.  紫外線LEDの断線を検出する断線検出回路であって、
     前記紫外線LEDのアノード及びカソードに接続して前記紫外線LEDに直流電力を供給する定電流電源と、
     前記アノードと前記カソードとの間に並列に接続された入力部を有するリレーと、
     を有し、
     前記紫外線LEDが断線したときの前記アノードと前記カソードとの間の電圧の上昇によって前記リレーを作動させて前記断線を検出する、断線検出回路。
    A disconnection detection circuit for detecting disconnection of an ultraviolet LED,
    A constant current power source connected to the anode and cathode of the ultraviolet LED to supply DC power to the ultraviolet LED;
    A relay having an input connected in parallel between the anode and the cathode;
    Have
    A disconnection detection circuit that detects the disconnection by operating the relay according to an increase in voltage between the anode and the cathode when the ultraviolet LED is disconnected.
  2.  前記リレーはメカニカルリレーであって、前記入力部は前記リレーの作動コイルである、請求項1に記載の断線検出回路。 The disconnection detection circuit according to claim 1, wherein the relay is a mechanical relay, and the input unit is an operating coil of the relay.
  3.  純水の供給を断続する電磁弁を制御し、前記断線を検出したときには警報を発生する制御を行う制御部をさらに有する、請求項1または2に記載の断線検出回路。 The disconnection detection circuit according to claim 1, further comprising a control unit that controls a solenoid valve that intermittently supplies pure water and that generates an alarm when the disconnection is detected.
  4.  紫外線LEDの断線を検出する方法であって、
     前記紫外線LEDのアノード及びカソードに定電流電源を接続して前記紫外線LEDを定電流駆動し、
     前記紫外線LEDが断線したときの前記アノードと前記カソードとの間の電圧の上昇によって、前記アノードと前記カソードとの間に並列に接続された入力部を有するリレーを作動させて前記断線を検出する方法。
    A method for detecting disconnection of an ultraviolet LED,
    A constant current power source is connected to the anode and cathode of the ultraviolet LED to drive the ultraviolet LED at a constant current,
    The disconnection is detected by operating a relay having an input unit connected in parallel between the anode and the cathode by a rise in voltage between the anode and the cathode when the ultraviolet LED is disconnected. Method.
  5.  純水の採水に用いられる採水ディスペンサーであって、
     純水源に接続する電磁弁と、
     純水を吐出するノズルと、
     前記電磁弁の出口と前記ノズルとを接続する流路と、
     前記流路を流れる純水に対して紫外線を照射するように配置された紫外線LEDと、
     前記紫外線LEDのアノード及びカソードに接続して前記紫外線LEDに直流電力を供給する定電流電源と、
     前記アノードと前記カソードとの間に並列に接続された入力部を有するリレーと、
     前記電磁弁の開閉を制御するとともに前記電磁弁の開弁時に前記定電流電源を動作させ、前記リレーが作動したことを検出して前記紫外線LEDの断線を検出し、前記断線を検出したときに警報を発生する制御部と、
     を有する採水ディスペンサー。
    A water sampling dispenser used for pure water sampling,
    A solenoid valve connected to a source of pure water;
    A nozzle for discharging pure water;
    A flow path connecting the outlet of the solenoid valve and the nozzle;
    An ultraviolet LED arranged to irradiate the pure water flowing through the flow path with ultraviolet rays;
    A constant current power source connected to the anode and cathode of the ultraviolet LED to supply DC power to the ultraviolet LED;
    A relay having an input connected in parallel between the anode and the cathode;
    When controlling the opening and closing of the solenoid valve and operating the constant current power source when the solenoid valve is opened, detecting that the relay is activated, detecting disconnection of the ultraviolet LED, and detecting the disconnection A control unit for generating an alarm;
    A water dispensing dispenser having.
  6.  前記制御部は、前記断線を検出したときに前記電磁弁を閉弁に維持する制御を行う、請求項5に記載の採水ディスペンサー。 The water dispensing dispenser according to claim 5, wherein the control unit performs control to maintain the solenoid valve closed when the disconnection is detected.
  7.  純水を貯留する貯槽を少なくとも備える純水製造装置であって、
     前記貯槽に取り付けられ、前記貯槽内の純水に対して紫外線を照射するように配置された紫外線LEDと、
     前記紫外線LEDのアノード及びカソードに接続して前記紫外線LEDに直流電力を供給する定電流電源と、
     前記アノードと前記カソードとの間に並列に接続された入力部を有するリレーと、
     前記電磁弁の開閉を制御するとともに前記電磁弁の開弁時に前記定電流電源を動作させ、前記リレーが作動したことを検出して前記紫外線LEDの断線を検出し、前記断線を検出したときに警報を発生する制御部と、
     を有する純水製造装置。
    A pure water production apparatus comprising at least a storage tank for storing pure water,
    An ultraviolet LED attached to the storage tank and arranged to irradiate ultraviolet light to the pure water in the storage tank;
    A constant current power source connected to the anode and cathode of the ultraviolet LED to supply DC power to the ultraviolet LED;
    A relay having an input connected in parallel between the anode and the cathode;
    When controlling the opening and closing of the solenoid valve and operating the constant current power source when the solenoid valve is opened, detecting that the relay is activated, detecting disconnection of the ultraviolet LED, and detecting the disconnection A control unit for generating an alarm;
    A pure water production apparatus having:
PCT/JP2018/016627 2017-05-31 2018-04-24 Circuit and method for ultraviolet led disconnection detection, water sampling dispenser, and pure water production device WO2018221084A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-108099 2017-05-31
JP2017108099A JP2018205026A (en) 2017-05-31 2017-05-31 Circuit and method for detecting disconnection of ultraviolet led, water collection dispenser, and pure water production device

Publications (1)

Publication Number Publication Date
WO2018221084A1 true WO2018221084A1 (en) 2018-12-06

Family

ID=64454537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016627 WO2018221084A1 (en) 2017-05-31 2018-04-24 Circuit and method for ultraviolet led disconnection detection, water sampling dispenser, and pure water production device

Country Status (3)

Country Link
JP (1) JP2018205026A (en)
TW (1) TW201908746A (en)
WO (1) WO2018221084A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11365134B2 (en) 2019-07-31 2022-06-21 Access Business Group International Llc Water treatment system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568338A (en) * 1991-09-06 1993-03-19 Toshiba Corp Electronic device
JP2004050019A (en) * 2002-07-18 2004-02-19 Kurita Water Ind Ltd Ultra-pure water supply equipment
JP2012020482A (en) * 2010-07-15 2012-02-02 Konica Minolta Holdings Inc Inkjet recording device
JP2013180285A (en) * 2012-03-05 2013-09-12 Japan Organo Co Ltd Nozzle for obtaining water and demineralizer having the same
JP2013252505A (en) * 2012-06-08 2013-12-19 Komatsu Denshi Kk Apparatus of manufacturing water for dialysis
JP2013257173A (en) * 2012-06-11 2013-12-26 Ishikawa Seisakusho:Kk Led failure detecting device
JP2015080732A (en) * 2013-10-21 2015-04-27 株式会社清水鐵工所 Water treatment system using ultraviolet light

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568338A (en) * 1991-09-06 1993-03-19 Toshiba Corp Electronic device
JP2004050019A (en) * 2002-07-18 2004-02-19 Kurita Water Ind Ltd Ultra-pure water supply equipment
JP2012020482A (en) * 2010-07-15 2012-02-02 Konica Minolta Holdings Inc Inkjet recording device
JP2013180285A (en) * 2012-03-05 2013-09-12 Japan Organo Co Ltd Nozzle for obtaining water and demineralizer having the same
JP2013252505A (en) * 2012-06-08 2013-12-19 Komatsu Denshi Kk Apparatus of manufacturing water for dialysis
JP2013257173A (en) * 2012-06-11 2013-12-26 Ishikawa Seisakusho:Kk Led failure detecting device
JP2015080732A (en) * 2013-10-21 2015-04-27 株式会社清水鐵工所 Water treatment system using ultraviolet light

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11365134B2 (en) 2019-07-31 2022-06-21 Access Business Group International Llc Water treatment system
US11834353B2 (en) 2019-07-31 2023-12-05 Access Business Group International Llc Water treatment system

Also Published As

Publication number Publication date
JP2018205026A (en) 2018-12-27
TW201908746A (en) 2019-03-01

Similar Documents

Publication Publication Date Title
US7029587B2 (en) Water purification
US9011682B2 (en) Reverse osmosis device
JP6825904B2 (en) Water sampling dispenser, adapter and pure water production equipment
CA2775542A1 (en) Reverse osmosis system with circulation and cleaning and/or disinfection device
KR101800379B1 (en) A water combined air plasma processing device
WO2018221084A1 (en) Circuit and method for ultraviolet led disconnection detection, water sampling dispenser, and pure water production device
KR20150128350A (en) Apparatus for producing ultra-pure water production
KR101433853B1 (en) Dental water supply apparatus
JP2017148793A (en) Hydrogen water supply apparatus, and hydrogen water production method
JP2018202292A (en) Method of preventing proliferation of viable bacteria in pure water tank, and apparatus of producing pure water
CN114615953A (en) Ultrasonic tooth cleaner with ozonization water system
JP2005021798A (en) Method and apparatus for manufacturing ozone water
JP7129757B2 (en) Blood purification device and sterilization method
JP6783676B2 (en) Drinking water generator
US20220194816A1 (en) Apparatus and method for providing purified water
US20220162108A1 (en) Apparatus and method for providing purified water
KR101603214B1 (en) Water purifier
JPH10211488A (en) Ultraviolet sterilization apparatus
KR20100076299A (en) Sterilized device for ionizer and thereof method
JP6626930B1 (en) Sampling dispenser and pure water production equipment
CN217659268U (en) Soda water machine with disinfection function
KR100807197B1 (en) Water purifier for supplying oxygen-enriched water
MX2013001366A (en) Method and system for power control of ionic cleaners for ice machines using pulse width modulation.
EP4276075A1 (en) Purification apparatus and control method thereof
KR20140022937A (en) Water treatment apparatus and water treatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18810181

Country of ref document: EP

Kind code of ref document: A1