WO2018220924A1 - Secondary cell module - Google Patents

Secondary cell module Download PDF

Info

Publication number
WO2018220924A1
WO2018220924A1 PCT/JP2018/007455 JP2018007455W WO2018220924A1 WO 2018220924 A1 WO2018220924 A1 WO 2018220924A1 JP 2018007455 W JP2018007455 W JP 2018007455W WO 2018220924 A1 WO2018220924 A1 WO 2018220924A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
bus bar
module
battery module
positive electrode
Prior art date
Application number
PCT/JP2018/007455
Other languages
French (fr)
Japanese (ja)
Inventor
藤本 貴行
啓 坂部
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to KR1020197030541A priority Critical patent/KR20190122866A/en
Publication of WO2018220924A1 publication Critical patent/WO2018220924A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/284Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with incorporated circuit boards, e.g. printed circuit boards [PCB]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery module.
  • Patent Document 1 discloses a battery module in which a plurality of assembled batteries 3000 are stacked, and the assembled battery 3000 adjacent in the stacking direction is connected to the first connection terminal 21a of one assembled battery.
  • the second connection terminal 22a of the other assembled battery is fitted and connected in series, and the first connection terminal 21a of one assembled battery is embedded in the case 30 of the other assembled battery.
  • adjacent unit cells 3 are connected to each other at both ends of an assembled battery, which are connected using a convex terminal 4 of one unit cell 3 and a concave terminal 5 of the other unit cell 3. It is disclosed that the battery 3 has only one of the convex terminal 4 and the concave terminal 5 as a positive terminal or a negative terminal, and the other terminal is an external terminal.
  • Patent Document 1 the first connection terminal 21a of one assembled battery and the second connection terminal 22a of the other assembled battery are fitted to each other and connected in series, and the first connection terminal of one assembled battery Since 21a is embedded in the case 30 of the other assembled battery, the portion where the first connection terminal 21a and the second connection terminal 22a are formed does not contribute to the energy density of the secondary battery module, There is a possibility that the energy density of the secondary battery module is lowered.
  • patent document 2 since the convex terminal 4 and the concave terminal 5 are formed in the center part of the cell 3 side surface, the concave terminal 5 for connecting the convex terminal 4 is the energy density of a secondary battery module. There is a possibility that the energy density of the secondary battery module will be reduced.
  • the present invention aims to improve the energy density of the secondary battery module.
  • a secondary battery module having a plurality of secondary batteries having electrode terminals, the secondary battery module having a first module bus bar and a second module bus bar for electrically connecting to an adjacent secondary battery module
  • the first module bus bar and the second module bus bar are formed in the same plane as the surface on which the electrode terminals are formed, the first module bus bar protrudes from the secondary battery module, and the second module bus bar is the secondary battery module.
  • Secondary battery module formed inside.
  • the energy density of the secondary battery module can be improved. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
  • 1 is a secondary battery module according to an embodiment of the present invention.
  • 1 is a secondary battery module according to an embodiment of the present invention.
  • 1 is a secondary battery module according to an embodiment of the present invention.
  • 1 is a secondary battery according to an embodiment of the present invention. It is an assembled battery which concerns on one Embodiment of this invention.
  • 1 is a secondary battery module according to an embodiment of the present invention.
  • 1 is a secondary battery module according to an embodiment of the present invention.
  • It is an assembled battery which concerns on one Embodiment of this invention.
  • the secondary battery module 2000 includes a plurality of secondary batteries 1000, a plurality of cell bus bars 500, two end plates 2100, two side plates 2200, a circuit board 2300, a first module bus bar 2400, and a second module bus bar 2450.
  • the direction in which the end plate 2100 is disposed with respect to the plurality of secondary batteries 1000 is the x-axis direction
  • the direction in which the side plate 2200 is disposed with respect to the plurality of secondary batteries 1000 is the y-axis direction
  • the perpendicular to the xy plane The direction is the z-axis direction.
  • the plurality of secondary batteries 1000 are secured by end plates 2100 arranged on both sides in the x-axis direction of the plurality of secondary batteries 1000.
  • the end plate 2100 is preferably larger than the secondary battery 1000 in the yz plane and formed over the entire surface of the secondary battery 1000 so that the plurality of secondary batteries 1000 can be securely secured.
  • the end plate 2100 has a space through which the first module bus bar 2400 can pass.
  • an end plate opening 2110 is formed in the end plate 2100.
  • the end plate opening 2110 is larger than the first module bus bar 2400, and the end plate opening 2110 is large enough to allow the first module bus bar 2400 to penetrate the end plate 2100.
  • End plate 2100 is made of a steel material such as stainless steel, a material such as iron or aluminum.
  • the two end plates 2100 are held by the side plates 2200 disposed on both sides in the y-axis direction of the plurality of secondary batteries 1000.
  • the side plates 2200 are screwed to the two end plates 2100, so that the two end plates 2100 are held by the side plates 2200. Since the direction of screwing the side plate 2200 and the end plate 2100 is the same as the direction of securing the plurality of secondary batteries 1000 by the end plate 2100, the rigidity of the secondary battery module 2000 can be increased. In addition, since the thickness of the side plate 2200 and the thickness of the end plate 2100 can be made substantially the same, the rigidity of the secondary battery module 2000 can be increased.
  • Side plate 2200 is made of a steel material such as stainless steel, or a material such as iron or aluminum.
  • Side plate fixing portion 2210 is provided on side plate 2200.
  • the secondary battery module 2000 is fixed to the vehicle body by screwing the side plate fixing portion 2210 to the vehicle body.
  • Side plate openings 2220 are provided in the y-axis direction of the side plate 2200.
  • the side plate opening 2220 can prevent interference between the chip and the side plate 2200 when a chip protruding from the circuit board 2300 is arranged.
  • the circuit board 2300 is formed between the side plate 2200 and the secondary battery 1000 in the y-axis direction.
  • a circuit board 2300 is provided with a converter device, an inverter device, a resistor, and the like. By forming the circuit board 2300 between the side plate 2200 and the secondary battery 1000 in the y-axis direction, the secondary battery module 2000 can be made compact.
  • Circuit board recesses 2310 are formed at both ends of the circuit board 2300 in the x-axis direction.
  • the circuit board recess 2310 prevents interference between the first module bus bar 2400 and the circuit board 2300.
  • the circuit board recess 2310 is formed at both ends of the circuit board 2300, but the circuit board recess 2310 may be formed only at one end of the circuit board 2300.
  • FIG. 3 shows a secondary battery module according to an embodiment of the present invention.
  • a cell bus bar 500 is formed on the y-axis direction side of the secondary battery 1000.
  • a first module bus bar 2400 and a second module bus bar 2450 are formed at both ends of the secondary battery module 2000 in the x-axis direction.
  • the first module bus bar 2400 protrudes from the end plate 2100 in the x-axis direction, and the second module bus bar 2450 is formed in the end plate 2100 in the x-axis direction.
  • the adjacent secondary battery modules 2000 are electrically connected in series.
  • the cell bus bar 500, the first module bus bar 2400, and the second module bus bar 2450 are formed on the same plane. Thereby, the useless space in the secondary battery module 2000 is reduced, and the energy density of the secondary battery module 2000 can be improved.
  • the first module bus bar 2400 and the second module bus bar 2450 are made of a material having a relatively good electrical conductivity such as copper or aluminum.
  • the first module bus bar 2400 protrudes compared to the cell bus bar 500.
  • the first module bus bar 2400 may be formed on the same plane as the cell bus bar 500.
  • the second module bus bar 2450 may be eliminated, the first module bus bar 2400 may be connected to the cell bus bar 500, and the adjacent secondary battery modules 2000 may be electrically connected in series.
  • the cell bus bar 500 formed at the end in the x-axis direction becomes the second module bus bar 2450.
  • the electrode terminals in the secondary battery 1000 are formed at both ends of the secondary battery 1000 in the z-axis direction, and the cell bus bar 500 is also formed at both ends of the secondary battery 1000 in the z-axis direction in accordance with the positions where the electrode terminals are formed. .
  • the first module bus bar 2400 is formed between the cell bus bars 500 between the screws for screwing the side plate 2200 and the end plate 2100 in the z-axis.
  • the second module bus bar 2450 is formed on the cell bus bar 500 in the z-axis.
  • the cell bus bar 500 may be arranged so as to be biased in one direction in the z-axis direction.
  • the cell bus bar 500 is electrically connected to the electrode terminals.
  • the cell bus bar 500 electrically connects a plurality of secondary batteries 1000.
  • the material of the cell bus bar 500 is selected from aluminum, aluminum alloy, copper, copper alloy and the like.
  • the secondary battery 1000 includes a positive electrode 100, a negative electrode 200, a positive electrode terminal 150, a negative electrode terminal 250, a separator 300, and an outer package.
  • the direction in which the positive electrode 100, the negative electrode 200, and the separator 300 are stacked is the x-axis direction, and the vertical direction in the stacking direction is the yz plane direction.
  • the positive electrode 100 or the negative electrode 200 is an electrode
  • the positive electrode mixture layer 110 or the negative electrode mixture layer 210 is an electrode mixture layer
  • the positive electrode current collector 120 or the negative electrode current collector 220 is an electrode current collector
  • the tab 230 may be referred to as an electrode tab
  • the positive electrode terminal 150 or the negative electrode terminal 250 may be referred to as an electrode terminal.
  • the positive electrode 100, the separator 300, and the negative electrode 200 are laminated
  • the secondary battery 1000 is configured by laminating a plurality of electrode bodies 400. By connecting the positive electrode tabs 130 to each other and the negative electrode tab 230, an electrical parallel connection is configured in the secondary battery 1000.
  • the secondary battery 1000 in FIG. 4 is a stacked secondary battery, but a wound cylindrical secondary battery or a wound square secondary battery may be applied.
  • the positive electrode 100 includes a positive electrode mixture layer 110, a positive electrode current collector 120, and a positive electrode tab 130.
  • a positive electrode mixture layer 110 is formed on both surfaces of the positive electrode current collector 120.
  • the positive electrode mixture layer 110 contains at least a positive electrode active material capable of inserting and extracting Li.
  • the positive electrode active material include LiCo-based oxides, LiNi-based composite oxides, LiMn-based composite oxides, Li-Co-Ni-Mn composite oxides, LiFeP-based oxides, and the like.
  • a conductive material responsible for electronic conductivity in the positive electrode mixture layer 110, a binder that ensures adhesion between the materials in the positive electrode mixture layer 110, and further in the positive electrode mixture layer 110 A solid electrolyte for ensuring ionic conductivity may be included.
  • a material contained in the positive electrode mixture layer 110 is dissolved in a solvent to form a slurry, which is applied onto the positive electrode current collector 120.
  • the coating method is not particularly limited, and for example, a conventional method such as a doctor blade method, a dipping method, or a spray method can be used. Thereafter, the positive electrode mixture layer 110 is formed through a drying process for removing the solvent and a pressing process for ensuring the electron conductivity and ion conductivity in the positive electrode mixture layer 110.
  • ⁇ Positive electrode current collector 120, positive electrode tab 130> The positive electrode current collector 120 is electrically connected to the positive electrode tab 130.
  • the positive electrode tab 130 is led out of the electrode body 400.
  • the positive electrode mixture layer 110 is not formed on the positive electrode tab 130.
  • the positive electrode mixture layer 110 may be formed on the positive electrode tab 130 as long as the battery performance is not adversely affected.
  • an aluminum foil, an aluminum perforated foil having a hole diameter of 0.1 to 10 mm, an expanded metal, an aluminum foam plate, or the like is used for the positive electrode current collector 120 and the positive electrode tab 130.
  • an aluminum foil, an aluminum perforated foil having a hole diameter of 0.1 to 10 mm, an expanded metal, an aluminum foam plate, or the like is used for the positive electrode current collector 120 and the positive electrode tab 130 .
  • the thicknesses of the positive electrode current collector 120 and the positive electrode tab 130 are preferably 10 nm to 1 mm. From the viewpoint of achieving both the energy density of the secondary battery 1000 and the mechanical strength of the electrode, about 1 to 100 ⁇ m is desirable.
  • Negative electrode 200 It has a negative electrode 200, a negative electrode mixture layer 210, a negative electrode current collector 220, and a negative electrode tab 230. Negative electrode mixture layers 210 are formed on both surfaces of the negative electrode current collector 220.
  • the negative electrode mixture layer 210 contains at least a positive electrode active material capable of inserting and extracting Li.
  • the negative electrode active material include carbon-based materials such as natural graphite, soft carbon, and amorphous carbon, Si metal, Si alloy, lithium titanate, and lithium metal.
  • a conductive material responsible for electronic conductivity in the negative electrode mixture layer 210, a binder that ensures adhesion between the materials in the negative electrode mixture layer 210, and further in the negative electrode mixture layer 210 A solid electrolyte for ensuring ionic conductivity may be included.
  • the material contained in the negative electrode mixture layer 210 is dissolved in a solvent to form a slurry, which is applied onto the negative electrode current collector 220.
  • the coating method is not particularly limited, and for example, a conventional method such as a doctor blade method, a dipping method, or a spray method can be used.
  • the negative mix layer 210 is formed through the drying process for removing a solvent, and the press process for ensuring the electron conductivity in the negative mix layer 210, and ion conductivity.
  • Negative electrode current collector 220, negative electrode tab 230 The configurations of the negative electrode current collector 220 and the negative electrode tab 230 are substantially the same as the configurations of the positive electrode current collector 120 and the positive electrode tab 130.
  • the negative electrode current collector 220 and the negative electrode tab 230 copper foil, copper perforated foil having a hole diameter of 0.1 to 10 mm, expanded metal, foamed copper plate, etc. are used. Is also applicable.
  • the thickness of the negative electrode current collector 220 and the negative electrode tab 230 is preferably 10 nm to 1 mm. From the viewpoint of achieving both the energy density of the secondary battery 1000 and the mechanical strength of the electrode, about 1 to 100 ⁇ m is desirable.
  • Separator 300 is formed between positive electrode 100 and negative electrode 200, and when secondary battery 1000 is a lithium ion secondary battery, it allows lithium ions to pass therethrough and prevents short circuit between positive electrode 100 and negative electrode 200.
  • a material constituting the separator 300 a microporous film, a solid electrolyte, or the like can be used.
  • microporous film polyolefin such as polyethylene or polypropylene, glass fiber, or the like can be used.
  • electrolyte solution is injected into the secondary battery 1000 from the vacant side or the injection hole of the exterior body that houses the plurality of electrode bodies 400. Is filled with an electrolyte solution.
  • the electrolytic solution includes, for example, a solvent and a lithium salt, and serves as a medium for transmitting lithium ions between the positive electrode 100 and the negative electrode 200.
  • ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), propylene carbonate, butylene carbonate, ⁇ -butyrolactone, phosphate triester, trimethoxymethane, dioxolane, diethyl ether, sulfolane, etc. as the solvent. Can do. These materials may be used alone or in combination.
  • lithium salt LiPF 6, LiBF 4, LiClO 4, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, lithium bis oxalate borate (LiBOB), lithium imide salt (e.g., lithium bis (Fluorosulfonyl) imide, LiFSI) and the like can be preferably used. These lithium salts may be used alone or in combination.
  • the solid electrolyte Li 10 Ge 2 PS 12, Li 2 S-P 2 S 5 sulfide such as oxide-based, such as Li-La-Zr-O, the organic polymer Ya an ion liquid or ambient temperature molten salt
  • a semi-solid electrolyte supported on inorganic particles or the like, a gel electrolyte using a polymer gel as an electrolyte, or the like can be used.
  • the solid electrolyte serves as a medium for transmitting lithium ions between the positive electrode 100 and the negative electrode 200, and the above-described electrolytic solution is basically unnecessary. You can configure the connection.
  • an electrolytic solution may be added to the secondary battery 1000 even when a solid electrolyte is used as the separator 300 as long as an electrical short circuit in the secondary battery 1000 can be prevented.
  • the separator 300 may be formed between the positive electrode 100 and the negative electrode 200 as a sheet, or may be formed by coating on the electrode mixture layer.
  • the separator 300 may be formed on both surfaces of the electrode mixture layer, and if the separator 300 is formed between the positive electrode 100 and the negative electrode 200, the separator 300 may be formed on one surface of the electrode mixture layer.
  • the thickness of the separator 300 is several nanometers to several millimeters from the viewpoint of ensuring the energy density of the secondary battery 1000 and ensuring electronic insulation.
  • the positive terminal 150 and the negative terminal 250 are electrically connected to the electrode tab.
  • metals such as aluminum, copper, nickel, and stainless steel can be used.
  • the exterior body 700 houses the electrodes, the separator 300, and the electrode terminals. In order to electrically connect the electrode terminal to the cell bus bar 500, an opening is formed in the exterior body 700 so as to expose the electrode terminal on the surface of the exterior body where the electrode terminal is formed.
  • the material of the exterior body 700 is selected from materials that are corrosion resistant to the electrolyte, such as aluminum, stainless steel, and nickel-plated steel.
  • FIG. 6 shows an assembled battery according to an embodiment of the present invention.
  • the assembled battery 3000 includes a plurality of secondary battery modules 2000, and the adjacent secondary battery modules 2000 are the first module bus bar 2400 in one secondary battery module 2000 and the second in the other secondary battery module 2000.
  • the module bus bar 2450 is electrically connected in series.
  • FIG. 7 shows a secondary battery module according to an embodiment of the present invention.
  • the secondary battery 1000 is a bipolar secondary battery.
  • the bipolar secondary battery refers to a secondary battery in which an electrical series connection is configured in the secondary battery 1000.
  • the first module bus bar 2400 and the second module bus bar 2450 are connected to a plurality of secondary batteries 1000 in the secondary battery module 2000.
  • one electrode terminal of the plurality of secondary batteries 1000 is connected to the first module bus bar 2400, and the other electrode terminal is connected to the second module bus bar 2450.
  • the some secondary battery 1000 is electrically connected in parallel.
  • the secondary battery module 2000 can be made compact, and the energy density of the secondary battery module 2000 can be improved.
  • FIGS. 8 and 9 are schematic views of a secondary battery module according to an embodiment of the present invention.
  • a recess provided in the y-axis direction is used as an end plate opening 2110, and a space that allows the first module bus bar 2400 to penetrate in the y-axis direction of the end plate 2100 is formed.
  • a step is formed at the y-axis direction end of the side plate 2200, and a step is also formed at the x-axis direction end of the side plate 2200 in accordance with the step of the side plate 2200. Screwed in the y-axis direction at the stepped portion of the side plate 2200 and the stepped portion of the side plate 2200.
  • Cell bus bar 500 is arranged in a space formed between side plate 2200 and secondary battery 1000 in the y-axis direction.
  • the end plate 2100 can be made thinner.
  • the energy density of the secondary battery module 2000 can be improved.
  • two upper and lower side plates 2200 are formed, and circuit boards can be arranged on the two side plates 2200.
  • FIG. 10 shows an assembled battery according to an embodiment of the present invention.
  • the assembled battery 3000 has a pair of side plates 2200.
  • the end plate 2100 is not formed, and the end plate 2100 is formed only at both ends of the assembled battery 3000. Thereby, the assembled battery 3000 can be made compact and lightweight.
  • the side plate 2200 is not formed, and the two side plates 2200 are vertically arranged in the z-axis direction. Thereby, the assembled battery 3000 can be made lightweight.
  • the side plate 2200 may be formed in units of the secondary battery module 2000.

Abstract

The present invention provides a secondary cell module (2000) that has a plurality of secondary cells (1000) having an electrode terminal, wherein the secondary cell module (2000) has a first module bus bar (2400) and a second module bus bar (2450) for electrically connecting to adjacent secondary cell modules. The first module bus bar (2400) and the second module bus bar (2450) are formed in the same plane as the surface on which the electrode terminals are formed. The first module bus bar (2400) projects from the secondary cell module (2000), and the second module bus bar (2450) is formed inside the secondary cell module (2000).

Description

二次電池モジュールSecondary battery module
本発明は、二次電池モジュールに関する。 The present invention relates to a secondary battery module.
 二次電池モジュールに関する技術として、特許文献1には複数の組電池3000が積層された電池モジュールであって、積層方向に隣接する組電池3000は、一方の組電池の第1の接続端子21aと、他方の組電池の第2の接続端子22aが、互いに嵌合して直列接続し、一方の組電池の第1の接続端子21aは、他方の組電池のケース30内に埋設している、旨が開示されている。また、特許文献2には、隣接する単電池3同士は、一方の単電池3の凸状端子4と他方の単電池3の凹状端子5とを用いて接続される、組電池の両端の単電池3は、凸状端子4及び凹状端子5の一方のみを正極端子又は負極端子として有しており、他方の端子は外部端子となっている、旨が開示されている。 As a technique related to the secondary battery module, Patent Document 1 discloses a battery module in which a plurality of assembled batteries 3000 are stacked, and the assembled battery 3000 adjacent in the stacking direction is connected to the first connection terminal 21a of one assembled battery. The second connection terminal 22a of the other assembled battery is fitted and connected in series, and the first connection terminal 21a of one assembled battery is embedded in the case 30 of the other assembled battery. The effect is disclosed. Further, in Patent Document 2, adjacent unit cells 3 are connected to each other at both ends of an assembled battery, which are connected using a convex terminal 4 of one unit cell 3 and a concave terminal 5 of the other unit cell 3. It is disclosed that the battery 3 has only one of the convex terminal 4 and the concave terminal 5 as a positive terminal or a negative terminal, and the other terminal is an external terminal.
WO12/101728号公報WO12 / 101728 publication 特開2012-252924号公報JP 2012-252924 A
 特許文献1では、一方の組電池の第1の接続端子21aと、他方の組電池の第2の接続端子22aが、互いに嵌合して直列接続し、一方の組電池の第1の接続端子21aは、他方の組電池のケース30内に埋設しているため、第1の接続端子21aおよび第2の接続端子22aが形成されている部分は二次電池モジュールのエネルギー密度に寄与せず、二次電池モジュールのエネルギー密度の低下を招く可能性がある。また、特許文献2では、凸状端子4および凹状端子5が単電池3側面の中央部に形成されているため、凸状端子4を接続するための凹状端子5が二次電池モジュールのエネルギー密度に寄与せず、二次電池モジュールのエネルギー密度の低下を招く可能性がある。 In Patent Document 1, the first connection terminal 21a of one assembled battery and the second connection terminal 22a of the other assembled battery are fitted to each other and connected in series, and the first connection terminal of one assembled battery Since 21a is embedded in the case 30 of the other assembled battery, the portion where the first connection terminal 21a and the second connection terminal 22a are formed does not contribute to the energy density of the secondary battery module, There is a possibility that the energy density of the secondary battery module is lowered. Moreover, in patent document 2, since the convex terminal 4 and the concave terminal 5 are formed in the center part of the cell 3 side surface, the concave terminal 5 for connecting the convex terminal 4 is the energy density of a secondary battery module. There is a possibility that the energy density of the secondary battery module will be reduced.
 本発明は、二次電池モジュールのエネルギー密度を向上させることを目的とする。 The present invention aims to improve the energy density of the secondary battery module.
 上記課題を解決するための本発明の特徴は、例えば以下の通りである。 The features of the present invention for solving the above problems are as follows, for example.
 電極端子を有する二次電池を複数有する二次電池モジュールであって、二次電池モジュールは、隣接する二次電池モジュールに電気的に接続するための第一モジュールバスバおよび第二モジュールバスバを有し第一モジュールバスバおよび第二モジュールバスバは、電極端子が形成された面と同一平面に形成され、第一モジュールバスバは、二次電池モジュールから突出しており、第二モジュールバスバは、二次電池モジュール内に形成されている二次電池モジュール。 A secondary battery module having a plurality of secondary batteries having electrode terminals, the secondary battery module having a first module bus bar and a second module bus bar for electrically connecting to an adjacent secondary battery module The first module bus bar and the second module bus bar are formed in the same plane as the surface on which the electrode terminals are formed, the first module bus bar protrudes from the secondary battery module, and the second module bus bar is the secondary battery module. Secondary battery module formed inside.
 本発明により、二次電池モジュールのエネルギー密度を向上できる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。 According to the present invention, the energy density of the secondary battery module can be improved. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明の一実施形態に係る二次電池モジュールである。1 is a secondary battery module according to an embodiment of the present invention. 本発明の一実施形態に係る二次電池モジュールである。1 is a secondary battery module according to an embodiment of the present invention. 本発明の一実施形態に係る二次電池モジュールである。1 is a secondary battery module according to an embodiment of the present invention. 本発明の一実施形態に係る二次電池である。1 is a secondary battery according to an embodiment of the present invention. 本発明の一実施形態に係る二次電池である。1 is a secondary battery according to an embodiment of the present invention. 本発明の一実施形態に係る組電池である。It is an assembled battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る二次電池モジュールである。1 is a secondary battery module according to an embodiment of the present invention. 本発明の一実施形態に係る二次電池モジュールである。1 is a secondary battery module according to an embodiment of the present invention. 本発明の一実施形態に係る二次電池モジュールである。1 is a secondary battery module according to an embodiment of the present invention. 本発明の一実施形態に係る組電池である。It is an assembled battery which concerns on one Embodiment of this invention.
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
 図1、図2は、本発明の一実施形態に係る二次電池モジュールの模式図である。二次電池モジュール2000は、複数の二次電池1000、複数のセルバスバ500、二つのエンドプレート2100、二つのサイドプレート2200、回路基板2300、第一モジュールバスバ2400、第二モジュールバスバ2450を有する。複数の二次電池1000に対してエンドプレート2100が配置されている方向をx軸方向、複数の二次電池1000に対してサイドプレート2200が配置されている方向をy軸方向、xy平面の垂線方向をz軸方向とする。 1 and 2 are schematic views of a secondary battery module according to an embodiment of the present invention. The secondary battery module 2000 includes a plurality of secondary batteries 1000, a plurality of cell bus bars 500, two end plates 2100, two side plates 2200, a circuit board 2300, a first module bus bar 2400, and a second module bus bar 2450. The direction in which the end plate 2100 is disposed with respect to the plurality of secondary batteries 1000 is the x-axis direction, the direction in which the side plate 2200 is disposed with respect to the plurality of secondary batteries 1000 is the y-axis direction, and the perpendicular to the xy plane The direction is the z-axis direction.
 複数の二次電池1000のx軸方向両側に配置されたエンドプレート2100によって
、複数の二次電池1000は固縛されている。複数の二次電池1000を確実に固縛できるように、yz平面においてエンドプレート2100は二次電池1000よりも大きく、二次電池1000の全面にわたって形成することが望ましい。
The plurality of secondary batteries 1000 are secured by end plates 2100 arranged on both sides in the x-axis direction of the plurality of secondary batteries 1000. The end plate 2100 is preferably larger than the secondary battery 1000 in the yz plane and formed over the entire surface of the secondary battery 1000 so that the plurality of secondary batteries 1000 can be securely secured.
 エンドプレート2100には、第一モジュールバスバ2400が貫通できる空間が形成されている。本実施例では、エンドプレート2100にエンドプレート開口部2110が形成されている。yz平面において、エンドプレート開口部2110は第一モジュールバスバ2400より大きくなっており、エンドプレート開口部2110は、第一モジュールバスバ2400がエンドプレート2100を貫通できる程度の大きさになっている。エンドプレート2100は、ステンレスなどの鋼材、鉄、アルミなどの材料で作製される。 The end plate 2100 has a space through which the first module bus bar 2400 can pass. In this embodiment, an end plate opening 2110 is formed in the end plate 2100. In the yz plane, the end plate opening 2110 is larger than the first module bus bar 2400, and the end plate opening 2110 is large enough to allow the first module bus bar 2400 to penetrate the end plate 2100. End plate 2100 is made of a steel material such as stainless steel, a material such as iron or aluminum.
 複数の二次電池1000のy軸方向両側に配置されたサイドプレート2200によって
、二つのエンドプレート2100は保持される。例えば、サイドプレート2200が二つのエンドプレート2100にネジ止めされることで、二つのエンドプレート2100はサイドプレート2200に保持される。サイドプレート2200とエンドプレート2100とのネジ止めの方向がエンドプレート2100による複数の二次電池1000の固縛の方向と同じになっているため、二次電池モジュール2000の剛性を高められる。また、サイドプレート2200の厚さとエンドプレート2100の厚さをほぼ同じにできるので、二次電池モジュール2000の剛性を高められる。サイドプレート2200は、ステンレスなどの鋼材、鉄、アルミなどの材料で作製される。
The two end plates 2100 are held by the side plates 2200 disposed on both sides in the y-axis direction of the plurality of secondary batteries 1000. For example, the side plates 2200 are screwed to the two end plates 2100, so that the two end plates 2100 are held by the side plates 2200. Since the direction of screwing the side plate 2200 and the end plate 2100 is the same as the direction of securing the plurality of secondary batteries 1000 by the end plate 2100, the rigidity of the secondary battery module 2000 can be increased. In addition, since the thickness of the side plate 2200 and the thickness of the end plate 2100 can be made substantially the same, the rigidity of the secondary battery module 2000 can be increased. Side plate 2200 is made of a steel material such as stainless steel, or a material such as iron or aluminum.
 サイドプレート2200には、サイドプレート固定部2210が設けられている。二次電池モジュール2000を車体に用いる場合、サイドプレート固定部2210が車体にネジ止めされることで、二次電池モジュール2000が車体に固定される。サイドプレート2200のy軸方向には、サイドプレート開口部2220が設けられている。サイドプレート開口部2220により、回路基板2300で飛び出ているチップが配置されている場合に、チップとサイドプレート2200との干渉を防止できる。 
 回路基板2300は、y軸方向においてサイドプレート2200および二次電池1000の間に形成されている。回路基板2300には、コンバータ装置、インバータ装置、抵抗器などが配置される。y軸方向において、回路基板2300をサイドプレート2200および二次電池1000の間に形成することで、二次電池モジュール2000をコンパクトにできる。
Side plate fixing portion 2210 is provided on side plate 2200. When the secondary battery module 2000 is used for a vehicle body, the secondary battery module 2000 is fixed to the vehicle body by screwing the side plate fixing portion 2210 to the vehicle body. Side plate openings 2220 are provided in the y-axis direction of the side plate 2200. The side plate opening 2220 can prevent interference between the chip and the side plate 2200 when a chip protruding from the circuit board 2300 is arranged.
The circuit board 2300 is formed between the side plate 2200 and the secondary battery 1000 in the y-axis direction. A circuit board 2300 is provided with a converter device, an inverter device, a resistor, and the like. By forming the circuit board 2300 between the side plate 2200 and the secondary battery 1000 in the y-axis direction, the secondary battery module 2000 can be made compact.
 x軸方向における回路基板2300の両端部には、回路基板凹み2310が形成されている。回路基板凹み2310により、第一モジュールバスバ2400と回路基板2300との干渉を防止している。図2では、回路基板2300の両端部に回路基板凹み2310が形成されているが、回路基板2300の片端部のみに回路基板凹み2310が形成されていてもよい。 Circuit board recesses 2310 are formed at both ends of the circuit board 2300 in the x-axis direction. The circuit board recess 2310 prevents interference between the first module bus bar 2400 and the circuit board 2300. In FIG. 2, the circuit board recess 2310 is formed at both ends of the circuit board 2300, but the circuit board recess 2310 may be formed only at one end of the circuit board 2300.
 図3は、本発明の一実施形態に係る二次電池モジュールである。隣接する二次電池1000を電気的に直列に接続するために、二次電池1000のy軸方向側にはセルバスバ500が形成されている。二次電池モジュール2000のx軸方向両端には第一モジュールバスバ2400および第二モジュールバスバ2450が形成されている。 FIG. 3 shows a secondary battery module according to an embodiment of the present invention. In order to electrically connect adjacent secondary batteries 1000 in series, a cell bus bar 500 is formed on the y-axis direction side of the secondary battery 1000. A first module bus bar 2400 and a second module bus bar 2450 are formed at both ends of the secondary battery module 2000 in the x-axis direction.
 第一モジュールバスバ2400はx軸方向においてエンドプレート2100より突出しており、第二モジュールバスバ2450はx軸方向においてエンドプレート2100内に形成されている。隣接する二次電池モジュール2000において、一方の第一モジュールバスバ2400と他方の第二モジュールバスバ2450が接続されることにより、隣接する二次電池モジュール2000は電気的に直列に接続される。セルバスバ500、第一モジュールバスバ2400、および第二モジュールバスバ2450が同一平面に形成されている。これにより、二次電池モジュール2000内の無駄なスペースが削減され、二次電池モジュール2000のエネルギー密度を向上できる。第一モジュールバスバ2400および第二モジュールバスバ2450は銅、アルミなど、電気伝導率が比較的よい材料で作製される。 The first module bus bar 2400 protrudes from the end plate 2100 in the x-axis direction, and the second module bus bar 2450 is formed in the end plate 2100 in the x-axis direction. In the adjacent secondary battery module 2000, when one first module bus bar 2400 and the other second module bus bar 2450 are connected, the adjacent secondary battery modules 2000 are electrically connected in series. The cell bus bar 500, the first module bus bar 2400, and the second module bus bar 2450 are formed on the same plane. Thereby, the useless space in the secondary battery module 2000 is reduced, and the energy density of the secondary battery module 2000 can be improved. The first module bus bar 2400 and the second module bus bar 2450 are made of a material having a relatively good electrical conductivity such as copper or aluminum.
 y軸方向において、第一モジュールバスバ2400はセルバスバ500に比べて突出している。y軸方向において、第一モジュールバスバ2400はセルバスバ500と同一平面に形成されていてもよい。その場合、第二モジュールバスバ2450をなくして、第一モジュールバスバ2400をセルバスバ500と接続して、隣接する二次電池モジュール2000を電気的に直列に接続してもよい。この場合、x軸方向端部に形成されたセルバスバ500が第二モジュールバスバ2450となる。 In the y-axis direction, the first module bus bar 2400 protrudes compared to the cell bus bar 500. In the y-axis direction, the first module bus bar 2400 may be formed on the same plane as the cell bus bar 500. In that case, the second module bus bar 2450 may be eliminated, the first module bus bar 2400 may be connected to the cell bus bar 500, and the adjacent secondary battery modules 2000 may be electrically connected in series. In this case, the cell bus bar 500 formed at the end in the x-axis direction becomes the second module bus bar 2450.
 二次電池1000中の電極端子は二次電池1000のz軸方向両端に形成されており、電極端子の形成箇所に合わせて、セルバスバ500も二次電池1000のz軸方向両端に形成されている。第一モジュールバスバ2400は、z軸におけるサイドプレート2200およびエンドプレート2100をネジ止めするネジの間、セルバスバ500の間に形成されている。第二モジュールバスバ2450はz軸におけるセルバスバ500の上部に形成されている。セルバスバ500をz軸方向の一方方向に偏らせて配置させてもよい。z軸方向において、セルバスバ500の間に第一モジュールバスバ2400を形成することにより、二次電池モジュール2000の信頼性を向上できる。 The electrode terminals in the secondary battery 1000 are formed at both ends of the secondary battery 1000 in the z-axis direction, and the cell bus bar 500 is also formed at both ends of the secondary battery 1000 in the z-axis direction in accordance with the positions where the electrode terminals are formed. . The first module bus bar 2400 is formed between the cell bus bars 500 between the screws for screwing the side plate 2200 and the end plate 2100 in the z-axis. The second module bus bar 2450 is formed on the cell bus bar 500 in the z-axis. The cell bus bar 500 may be arranged so as to be biased in one direction in the z-axis direction. By forming the first module bus bar 2400 between the cell bus bars 500 in the z-axis direction, the reliability of the secondary battery module 2000 can be improved.
 セルバスバ500は電極端子に電気的に接続されている。セルバスバ500は複数の二次電池1000を電気的に接続する。セルバスバ500の材質は、アルミニウム、アルミニウム合金、銅、銅合金等から選択される。 The cell bus bar 500 is electrically connected to the electrode terminals. The cell bus bar 500 electrically connects a plurality of secondary batteries 1000. The material of the cell bus bar 500 is selected from aluminum, aluminum alloy, copper, copper alloy and the like.
 図4、図5は、本発明の一実施形態に係る二次電池の模式図である。二次電池1000は、正極100、負極200、正極端子150、負極端子250、セパレータ300、外装体を有する。図4のように、正極100、負極200、セパレータ300が積層されている方向がx軸方向、積層方向の垂面方向がyz平面方向、となる。以下では、正極100または負極200を電極、正極合剤層110または負極合剤層210を電極合剤層、正極集電体120または負極集電体220を電極集電体、正極タブ130または負極タブ230を電極タブ、正極端子150または負極端子250を電極端子、と称する場合がある
4 and 5 are schematic views of a secondary battery according to an embodiment of the present invention. The secondary battery 1000 includes a positive electrode 100, a negative electrode 200, a positive electrode terminal 150, a negative electrode terminal 250, a separator 300, and an outer package. As shown in FIG. 4, the direction in which the positive electrode 100, the negative electrode 200, and the separator 300 are stacked is the x-axis direction, and the vertical direction in the stacking direction is the yz plane direction. Hereinafter, the positive electrode 100 or the negative electrode 200 is an electrode, the positive electrode mixture layer 110 or the negative electrode mixture layer 210 is an electrode mixture layer, the positive electrode current collector 120 or the negative electrode current collector 220 is an electrode current collector, the positive electrode tab 130 or the negative electrode The tab 230 may be referred to as an electrode tab, and the positive electrode terminal 150 or the negative electrode terminal 250 may be referred to as an electrode terminal.
 正極100、セパレータ300、負極200が積層されて電極体400が構成される。二次電池1000は、複数の電極体400が積層されて構成される。正極タブ130同士および負極タブ230が接続されることで、二次電池1000中で電気的な並列接続が構成される。図4の二次電池1000は積層型の二次電池であるが、捲回円筒型の二次電池
、捲回角型の二次電池を適用してもよい。
The positive electrode 100, the separator 300, and the negative electrode 200 are laminated | stacked and the electrode body 400 is comprised. The secondary battery 1000 is configured by laminating a plurality of electrode bodies 400. By connecting the positive electrode tabs 130 to each other and the negative electrode tab 230, an electrical parallel connection is configured in the secondary battery 1000. The secondary battery 1000 in FIG. 4 is a stacked secondary battery, but a wound cylindrical secondary battery or a wound square secondary battery may be applied.
 <正極100>
 正極100は、正極合剤層110、正極集電体120、および正極タブ130を有する
。正極集電体120の両面に正極合剤層110が形成されている。
<Positive electrode 100>
The positive electrode 100 includes a positive electrode mixture layer 110, a positive electrode current collector 120, and a positive electrode tab 130. A positive electrode mixture layer 110 is formed on both surfaces of the positive electrode current collector 120.
 <正極合剤層110>
 正極合剤層110には、少なくともLiの吸蔵・放出が可能な正極活物質が含まれている。正極活物質としては、LiCo系酸化物、LiNi系複合酸化物、LiMn系複合酸化物な、Li-Co-Ni-Mn複合酸化物、LiFeP系酸化物などが上げられる。正極合剤層110中に、正極合剤層110内の電子伝導性を担う導電材や、正極合剤層110内の材料間の密着性を確保するバインダ、さらには正極合剤層110内のイオン伝導性を確保するための固体電解質を含めてもよい。
<Positive electrode mixture layer 110>
The positive electrode mixture layer 110 contains at least a positive electrode active material capable of inserting and extracting Li. Examples of the positive electrode active material include LiCo-based oxides, LiNi-based composite oxides, LiMn-based composite oxides, Li-Co-Ni-Mn composite oxides, LiFeP-based oxides, and the like. In the positive electrode mixture layer 110, a conductive material responsible for electronic conductivity in the positive electrode mixture layer 110, a binder that ensures adhesion between the materials in the positive electrode mixture layer 110, and further in the positive electrode mixture layer 110 A solid electrolyte for ensuring ionic conductivity may be included.
 正極合剤層110を作製する方法として、正極合剤層110に含まれる材料を溶媒に溶かしてスラリー化し、それを正極集電体120上に塗工する。塗工方法に特段の限定はなく、例えば、ドクターブレード法、ディッピング法、スプレー法などの従前の方法を利用できる。その後、溶媒を除去するための乾燥、正極合剤層110内の電子伝導性、イオン伝導性を確保するためのプレス工程を経て、正極合剤層110が形成される。 As a method for producing the positive electrode mixture layer 110, a material contained in the positive electrode mixture layer 110 is dissolved in a solvent to form a slurry, which is applied onto the positive electrode current collector 120. The coating method is not particularly limited, and for example, a conventional method such as a doctor blade method, a dipping method, or a spray method can be used. Thereafter, the positive electrode mixture layer 110 is formed through a drying process for removing the solvent and a pressing process for ensuring the electron conductivity and ion conductivity in the positive electrode mixture layer 110.
 <正極集電体120、正極タブ130>
 正極集電体120は正極タブ130と電気的に接続されている。正極タブ130は電極体400の外部に導出されている。図4において、正極タブ130には正極合剤層110が形成されていない。ただし、電池性能に悪影響を与えない範囲で正極タブ130に正極合剤層110を形成してもよい。
<Positive electrode current collector 120, positive electrode tab 130>
The positive electrode current collector 120 is electrically connected to the positive electrode tab 130. The positive electrode tab 130 is led out of the electrode body 400. In FIG. 4, the positive electrode mixture layer 110 is not formed on the positive electrode tab 130. However, the positive electrode mixture layer 110 may be formed on the positive electrode tab 130 as long as the battery performance is not adversely affected.
 正極集電体120および正極タブ130には、アルミニウム箔や孔径0.1~10mmのアルミニウム製穿孔箔、エキスパンドメタル、発泡アルミニウム板などが用いられる。材質は、アルミニウムの他に、ステンレス、チタンなども適用できる。正極集電体120および正極タブ130の厚さは、好ましくは10nm~1mmである。二次電池1000のエネルギー密度と電極の機械強度両立の観点から1~100μm程度が望ましい。 For the positive electrode current collector 120 and the positive electrode tab 130, an aluminum foil, an aluminum perforated foil having a hole diameter of 0.1 to 10 mm, an expanded metal, an aluminum foam plate, or the like is used. As the material, stainless steel, titanium, or the like can be applied in addition to aluminum. The thicknesses of the positive electrode current collector 120 and the positive electrode tab 130 are preferably 10 nm to 1 mm. From the viewpoint of achieving both the energy density of the secondary battery 1000 and the mechanical strength of the electrode, about 1 to 100 μm is desirable.
 <負極200>
 負極200、負極合剤層210、負極集電体220、および負極タブ230を有する。負極集電体220の両面に負極合剤層210が形成されている。
<Negative electrode 200>
It has a negative electrode 200, a negative electrode mixture layer 210, a negative electrode current collector 220, and a negative electrode tab 230. Negative electrode mixture layers 210 are formed on both surfaces of the negative electrode current collector 220.
 <負極合剤層210>
 負極合剤層210には、少なくともLiの吸蔵・放出が可能な正極活物質が含まれている。負極活物質としては、天然黒鉛、ソフトカーボン、非晶質炭素などの炭素系材料、Si金属やSi合金、チタン酸リチウム、リチウム金属などが上げられる。負極合剤層210中に、負極合剤層210内の電子伝導性を担う導電材や、負極合剤層210内の材料間の密着性を確保するバインダ、さらには負極合剤層210内のイオン伝導性を確保するための固体電解質を含めてもよい。
<Negative electrode mixture layer 210>
The negative electrode mixture layer 210 contains at least a positive electrode active material capable of inserting and extracting Li. Examples of the negative electrode active material include carbon-based materials such as natural graphite, soft carbon, and amorphous carbon, Si metal, Si alloy, lithium titanate, and lithium metal. In the negative electrode mixture layer 210, a conductive material responsible for electronic conductivity in the negative electrode mixture layer 210, a binder that ensures adhesion between the materials in the negative electrode mixture layer 210, and further in the negative electrode mixture layer 210 A solid electrolyte for ensuring ionic conductivity may be included.
 負極合剤層210を作製する方法として、負極合剤層210に含まれる材料を溶媒に溶かしてスラリー化し、それを負極集電体220上に塗工する。塗工方法に特段の限定はなく、例えば、ドクターブレード法、ディッピング法、スプレー法などの従前の方法を利用できる。その後、溶媒を除去するための乾燥、負極合剤層210内の電子伝導性、イオン伝導性を確保するためのプレス工程を経て、負極合剤層210が形成される。 As a method for producing the negative electrode mixture layer 210, the material contained in the negative electrode mixture layer 210 is dissolved in a solvent to form a slurry, which is applied onto the negative electrode current collector 220. The coating method is not particularly limited, and for example, a conventional method such as a doctor blade method, a dipping method, or a spray method can be used. Then, the negative mix layer 210 is formed through the drying process for removing a solvent, and the press process for ensuring the electron conductivity in the negative mix layer 210, and ion conductivity.
 <負極集電体220、負極タブ230>
 負極集電体220および負極タブ230の構成は、概ね正極集電体120および正極タブ130の構成と同様である。
<Negative electrode current collector 220, negative electrode tab 230>
The configurations of the negative electrode current collector 220 and the negative electrode tab 230 are substantially the same as the configurations of the positive electrode current collector 120 and the positive electrode tab 130.
 負極集電体220および負極タブ230には、銅箔や孔径0.1~10mmの銅製穿孔箔、エキスパンドメタル、発泡銅板などが用いられ、材質は、銅の他に、ステンレス、チタン、ニッケルなども適用できる。負極集電体220および負極タブ230の厚さは、好ましくは10nm~1mmである。二次電池1000のエネルギー密度と電極の機械強度両立の観点から1~100μm程度が望ましい。 For the negative electrode current collector 220 and the negative electrode tab 230, copper foil, copper perforated foil having a hole diameter of 0.1 to 10 mm, expanded metal, foamed copper plate, etc. are used. Is also applicable. The thickness of the negative electrode current collector 220 and the negative electrode tab 230 is preferably 10 nm to 1 mm. From the viewpoint of achieving both the energy density of the secondary battery 1000 and the mechanical strength of the electrode, about 1 to 100 μm is desirable.
 <セパレータ300>
 セパレータ300は、正極100と負極200との間に形成され、二次電池1000がリチウムイオン二次電池の場合リチウムイオンを透過させ、正極100と負極200の短絡を防止する。セパレータ300を構成する材料として、微多孔膜や固体電解質等を利用できる。
<Separator 300>
Separator 300 is formed between positive electrode 100 and negative electrode 200, and when secondary battery 1000 is a lithium ion secondary battery, it allows lithium ions to pass therethrough and prevents short circuit between positive electrode 100 and negative electrode 200. As a material constituting the separator 300, a microporous film, a solid electrolyte, or the like can be used.
 微多孔膜として、ポリエチレンやポリプロピレンといったポリオレフィンやガラス繊維などを利用できる。セパレータ300に微多孔膜が用いられる場合、複数の電極体400を収納する外装体の空いている1辺や注液孔から二次電池1000に電解液を注入することで、二次電池1000中に電解液が充填される。 As the microporous film, polyolefin such as polyethylene or polypropylene, glass fiber, or the like can be used. When a microporous membrane is used for the separator 300, the electrolyte solution is injected into the secondary battery 1000 from the vacant side or the injection hole of the exterior body that houses the plurality of electrode bodies 400. Is filled with an electrolyte solution.
 電解液は、例えば溶媒及びリチウム塩を有し、正極100と負極200の間でリチウムイオンの伝達させる媒体となる。溶媒として、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、プロピレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、リン酸トリエステル、トリメトキシメタン、ジオキソラン、ジエチルエーテル、スルホラン等を用いることができる。こられの材料を単独または複数組み合わせて使用してもよい。リチウム塩としては、例えば、LiPF、LiBF、LiClO、LiCFSO、LiCFCO、LiAsF、LiSbF、リチウムビスオキサレートボラート(LiBOB)、リチウムイミド塩(例えば、リチウムビス(フルオロスルホニル)イミド、LiFSI)等を好ましく用いることができる。これらのリチウム塩を単独または複数組み合わせて使用してもよい。 The electrolytic solution includes, for example, a solvent and a lithium salt, and serves as a medium for transmitting lithium ions between the positive electrode 100 and the negative electrode 200. Use ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), propylene carbonate, butylene carbonate, γ-butyrolactone, phosphate triester, trimethoxymethane, dioxolane, diethyl ether, sulfolane, etc. as the solvent. Can do. These materials may be used alone or in combination. Examples of the lithium salt, LiPF 6, LiBF 4, LiClO 4, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, lithium bis oxalate borate (LiBOB), lithium imide salt (e.g., lithium bis (Fluorosulfonyl) imide, LiFSI) and the like can be preferably used. These lithium salts may be used alone or in combination.
 固体電解質として、Li10GePS12、LiS-Pなどの硫化物系、Li-La-Zr-Oなどの酸化物系、イオン液体や常温溶融塩などを有機高分子や無機粒子などに担持させた半固体電解質、高分子ゲルを電解質としたゲル電解質等を利用できる。セパレータ300として固体電解質を用いた場合、固体電解質が正極100と負極200の間にリチウムイオンの伝達させる媒体となり、上記の電解液は基本不要となるため、二次電池1000中で電気的な直列接続を構成できる。ただし、二次電池1000中での電気的な短絡を防止できるのであれば、セパレータ300として固体電解質を用いた場合でも二次電池1000中に電解液を添加してもよい。 As the solid electrolyte, Li 10 Ge 2 PS 12, Li 2 S-P 2 S 5 sulfide such as oxide-based, such as Li-La-Zr-O, the organic polymer Ya an ion liquid or ambient temperature molten salt A semi-solid electrolyte supported on inorganic particles or the like, a gel electrolyte using a polymer gel as an electrolyte, or the like can be used. When a solid electrolyte is used as the separator 300, the solid electrolyte serves as a medium for transmitting lithium ions between the positive electrode 100 and the negative electrode 200, and the above-described electrolytic solution is basically unnecessary. You can configure the connection. However, an electrolytic solution may be added to the secondary battery 1000 even when a solid electrolyte is used as the separator 300 as long as an electrical short circuit in the secondary battery 1000 can be prevented.
 セパレータ300は、シートとして正極100と負極200との間に形成してもよいし
、電極合剤層の上に塗布により形成してもよい。電極合剤層の両面にセパレータ300を形成してもよく、正極100と負極200との間にセパレータ300が形成されれば、電極合剤層の片面にセパレータ300が形成されていてもよい。セパレータ300の厚さは二次電池1000のエネルギー密度、電子絶縁性の確保等の観点から数nm~数mmのサイズとなる。
The separator 300 may be formed between the positive electrode 100 and the negative electrode 200 as a sheet, or may be formed by coating on the electrode mixture layer. The separator 300 may be formed on both surfaces of the electrode mixture layer, and if the separator 300 is formed between the positive electrode 100 and the negative electrode 200, the separator 300 may be formed on one surface of the electrode mixture layer. The thickness of the separator 300 is several nanometers to several millimeters from the viewpoint of ensuring the energy density of the secondary battery 1000 and ensuring electronic insulation.
 <電極端子>
 正極端子150および負極端子250は電極タブと電気的に接続される。正極端子150および負極端子250の材質として、アルミニウム、銅、ニッケル、ステンレスなどの金属を用いることができる。
<Electrode terminal>
The positive terminal 150 and the negative terminal 250 are electrically connected to the electrode tab. As a material of the positive electrode terminal 150 and the negative electrode terminal 250, metals such as aluminum, copper, nickel, and stainless steel can be used.
 <外装体700>
 外装体700は、電極、セパレータ300、電極端子を収納する。電極端子をセルバスバ500に電気的に接続させるために、外装体の電極端子が形成されている面では、電極端子を露出させるように外装体700に開口部が形成されている。外装体700の材質はアルミニウム、ステンレス鋼、ニッケルメッキ鋼製など、電解質に対し耐食性のある材料から選択される。
<Exterior body 700>
The exterior body 700 houses the electrodes, the separator 300, and the electrode terminals. In order to electrically connect the electrode terminal to the cell bus bar 500, an opening is formed in the exterior body 700 so as to expose the electrode terminal on the surface of the exterior body where the electrode terminal is formed. The material of the exterior body 700 is selected from materials that are corrosion resistant to the electrolyte, such as aluminum, stainless steel, and nickel-plated steel.
 図6は、本発明の一実施形態に係る組電池である。組電池3000は、複数の二次電池モジュール2000を有し、隣接する二次電池モジュール2000は一方の二次電池モジュール2000中の第一モジュールバスバ2400および他方の二次電池モジュール2000中の第二モジュールバスバ2450によって、電気的に直列に接続されている。 FIG. 6 shows an assembled battery according to an embodiment of the present invention. The assembled battery 3000 includes a plurality of secondary battery modules 2000, and the adjacent secondary battery modules 2000 are the first module bus bar 2400 in one secondary battery module 2000 and the second in the other secondary battery module 2000. The module bus bar 2450 is electrically connected in series.
 図7は、本発明の一実施形態に係る二次電池モジュールである。本実施例では、二次電池1000がバイポーラ型の二次電池となっている。バイポーラ型の二次電池とは、二次電池1000内で電気的な直列接続が構成されている二次電池をいう。 FIG. 7 shows a secondary battery module according to an embodiment of the present invention. In this embodiment, the secondary battery 1000 is a bipolar secondary battery. The bipolar secondary battery refers to a secondary battery in which an electrical series connection is configured in the secondary battery 1000.
 第一モジュールバスバ2400および第二モジュールバスバ2450は、二次電池モジュール2000内の複数の二次電池1000と接続されている。換言すれば、複数の二次電池1000の一方の電極端子が第一モジュールバスバ2400に接続されており、他方の電極端子が第二モジュールバスバ2450に接続されている。これにより、複数の二次電池1000は電気的に並列に接続される。本実施例では、セルバスバ500を不要にできるので、二次電池モジュール2000をコンパクトにでき、二次電池モジュール2000のエネルギー密度を向上できる。 The first module bus bar 2400 and the second module bus bar 2450 are connected to a plurality of secondary batteries 1000 in the secondary battery module 2000. In other words, one electrode terminal of the plurality of secondary batteries 1000 is connected to the first module bus bar 2400, and the other electrode terminal is connected to the second module bus bar 2450. Thereby, the some secondary battery 1000 is electrically connected in parallel. In the present embodiment, since the cell bus bar 500 can be eliminated, the secondary battery module 2000 can be made compact, and the energy density of the secondary battery module 2000 can be improved.
 図8、図9は、本発明の一実施形態に係る二次電池モジュールの模式図である。本実施例では、y軸方向に設けた凹みをエンドプレート開口部2110とし、エンドプレート2100のy軸方向に第一モジュールバスバ2400が貫通できる程度の空間を形成している。サイドプレート2200のy軸方向端部では段差が形成されており、サイドプレート2200の段差に合わせてサイドプレート2200のx軸方向端部にも段差が形成されている。サイドプレート2200の段差部およびサイドプレート2200の段差部でy軸方向にネジ止めされている。y軸方向において、サイドプレート2200と二次電池1000との間に形成されている空間にセルバスバ500が配置される。 8 and 9 are schematic views of a secondary battery module according to an embodiment of the present invention. In the present embodiment, a recess provided in the y-axis direction is used as an end plate opening 2110, and a space that allows the first module bus bar 2400 to penetrate in the y-axis direction of the end plate 2100 is formed. A step is formed at the y-axis direction end of the side plate 2200, and a step is also formed at the x-axis direction end of the side plate 2200 in accordance with the step of the side plate 2200. Screwed in the y-axis direction at the stepped portion of the side plate 2200 and the stepped portion of the side plate 2200. Cell bus bar 500 is arranged in a space formed between side plate 2200 and secondary battery 1000 in the y-axis direction.
 本実施例では、サイドプレート2200とエンドプレート2100とのネジ止めの方向がエンドプレート2100による複数の二次電池1000の固縛の方向と垂直になっているため、エンドプレート2100を細くすることができ、二次電池モジュール2000のエネルギー密度を向上できる。z軸方向において、サイドプレート2200が上下二つ形成されており、二つのサイドプレート2200に回路基板を配置できる。 In this embodiment, since the direction of screwing the side plate 2200 and the end plate 2100 is perpendicular to the direction of securing the plurality of secondary batteries 1000 by the end plate 2100, the end plate 2100 can be made thinner. The energy density of the secondary battery module 2000 can be improved. In the z-axis direction, two upper and lower side plates 2200 are formed, and circuit boards can be arranged on the two side plates 2200.
 図10は、本発明の一実施形態に係る組電池である。組電池3000は、一対のサイドプレート2200を有している。二次電池モジュール2000単位ではエンドプレート2100が形成されておらず、エンドプレート2100は組電池3000の両端にだけ形成されている。これにより、組電池3000をコンパクトかつ軽量にできる。 FIG. 10 shows an assembled battery according to an embodiment of the present invention. The assembled battery 3000 has a pair of side plates 2200. In the secondary battery module 2000 unit, the end plate 2100 is not formed, and the end plate 2100 is formed only at both ends of the assembled battery 3000. Thereby, the assembled battery 3000 can be made compact and lightweight.
 二次電池モジュール2000単位ではサイドプレート2200が形成されておらず、z軸方向において、二枚のサイドプレート2200が上下に配置されている。これにより、組電池3000を軽量にできる。サイドプレート2200を二次電池モジュール2000単位で形成してもよい。 In the secondary battery module 2000 unit, the side plate 2200 is not formed, and the two side plates 2200 are vertically arranged in the z-axis direction. Thereby, the assembled battery 3000 can be made lightweight. The side plate 2200 may be formed in units of the secondary battery module 2000.
100 正極
110 正極合剤層
120 正極集電体
130 正極タブ
150 正極端子
200 負極
210 負極合剤層
220 負極集電体
230 負極タブ
250 負極端子
300 セパレータ
400 電極体
500 セルバスバ
700 外装体
1000 二次電池
2000 二次電池モジュール
2100 エンドプレート
2110 エンドプレート開口部
2200 サイドプレート
2210 サイドプレート固定部
2220 サイドプレート開口部
2300 回路基板
2310 回路基板凹み
2400 第一モジュールバスバ
2450 第二モジュールバスバ
3000 組電池
DESCRIPTION OF SYMBOLS 100 Positive electrode 110 Positive electrode mixture layer 120 Positive electrode collector 130 Positive electrode tab 150 Positive electrode terminal 200 Negative electrode 210 Negative electrode mixture layer 220 Negative electrode collector 230 Negative electrode tab 250 Negative electrode terminal 300 Separator 400 Electrode body 500 Cell bus bar 700 Outer body 1000 Secondary battery 2000 Secondary battery module 2100 End plate 2110 End plate opening 2200 Side plate 2210 Side plate fixing part 2220 Side plate opening 2300 Circuit board 2310 Circuit board recess 2400 First module bus bar 2450 Second module bus bar 3000 Assembly battery

Claims (6)

  1.  電極端子を有する二次電池を複数有する二次電池モジュールであって、
     前記二次電池モジュールは、隣接する二次電池モジュールに電気的に接続するための第一モジュールバスバおよび第二モジュールバスバを有し
     前記第一モジュールバスバおよび第二モジュールバスバは、前記電極端子が形成された面と同一平面に形成され、
     前記第一モジュールバスバは、前記二次電池モジュールから突出しており、
     前記第二モジュールバスバは、前記二次電池モジュール内に形成されている二次電池モジュール。
    A secondary battery module having a plurality of secondary batteries having electrode terminals,
    The secondary battery module has a first module bus bar and a second module bus bar for electrically connecting to an adjacent secondary battery module. The first module bus bar and the second module bus bar are formed by the electrode terminals. Formed in the same plane as the
    The first module bus bar protrudes from the secondary battery module,
    The second module bus bar is a secondary battery module formed in the secondary battery module.
  2.  請求項1の二次電池モジュールにおいて、
     複数の前記二次電池を固縛するエンドプレートを有し、
     前記エンドプレートにエンドプレート開口部が形成され、
     前記第一モジュールバスバは、前記エンドプレート開口部を貫通する二次電池モジュール。
    The secondary battery module according to claim 1,
    An end plate for securing the plurality of secondary batteries;
    An end plate opening is formed in the end plate,
    The first module bus bar is a secondary battery module that passes through the end plate opening.
  3.  請求項2の二次電池モジュールにおいて、
     複数の前記二次電池を固縛するエンドプレートを保持するサイドプレートと、
     前記サイドプレートおよび複数の前記二次電池の間に形成された回路基板と、を有する二次電池モジュール。
    The secondary battery module according to claim 2,
    A side plate holding an end plate for securing the plurality of secondary batteries;
    And a circuit board formed between the side plate and the plurality of secondary batteries.
  4.  請求項3の二次電池モジュールにおいて、
     前記回路基板に回路基板凹みが形成されている二次電池モジュール。
    The secondary battery module according to claim 3,
    A secondary battery module in which a circuit board recess is formed in the circuit board.
  5.  請求項3の二次電池モジュールにおいて、
     前記サイドプレートにサイドプレート開口部が形成されている二次電池モジュール。
    The secondary battery module according to claim 3,
    A secondary battery module in which a side plate opening is formed in the side plate.
  6.  請求項1の二次電池モジュールにおいて、
     複数の前記二次電池を電気的に接続する複数のセルバスバを有し、
     前記第一モジュールバスバは、前記複数のセルバスバの間に形成されている二次電池モジュール。
    The secondary battery module according to claim 1,
    A plurality of cell bus bars for electrically connecting the plurality of secondary batteries;
    The first module bus bar is a secondary battery module formed between the plurality of cell bus bars.
PCT/JP2018/007455 2017-05-31 2018-02-28 Secondary cell module WO2018220924A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020197030541A KR20190122866A (en) 2017-05-31 2018-02-28 Secondary battery module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-107328 2017-05-31
JP2017107328A JP2018206495A (en) 2017-05-31 2017-05-31 Secondary battery module

Publications (1)

Publication Number Publication Date
WO2018220924A1 true WO2018220924A1 (en) 2018-12-06

Family

ID=64456173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007455 WO2018220924A1 (en) 2017-05-31 2018-02-28 Secondary cell module

Country Status (3)

Country Link
JP (1) JP2018206495A (en)
KR (1) KR20190122866A (en)
WO (1) WO2018220924A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210403796U (en) * 2019-01-09 2020-04-24 比亚迪股份有限公司 Monomer battery, power battery package and electric motor car
KR20210042657A (en) * 2019-10-10 2021-04-20 주식회사 엘지화학 Battery pack with enhanced structure for preventing short circuit and shock
KR20230035759A (en) 2021-09-06 2023-03-14 윤한덕 Construction worker job matched methods systems
KR20230039054A (en) 2021-09-13 2023-03-21 김태인 Construction worker job matched methods systems
KR20230068529A (en) 2021-11-11 2023-05-18 신우석 Non-face-to-face construction worker job brokerage matching platform

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001216950A (en) * 2000-02-02 2001-08-10 Sony Corp Chip type battery and battery pack device
JP2012234684A (en) * 2011-04-28 2012-11-29 Kawasaki Heavy Ind Ltd Battery system enabling easy maintenance
JP2016152133A (en) * 2015-02-17 2016-08-22 藤倉ゴム工業株式会社 Metal air battery unit and metal air battery
JP2017054866A (en) * 2015-09-07 2017-03-16 株式会社豊田自動織機 Power storage module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012101728A1 (en) 2011-01-25 2014-06-30 パナソニック株式会社 Battery module and assembled battery used therefor
JP2012252924A (en) 2011-06-03 2012-12-20 Primearth Ev Energy Co Ltd Manufacturing method of battery pack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001216950A (en) * 2000-02-02 2001-08-10 Sony Corp Chip type battery and battery pack device
JP2012234684A (en) * 2011-04-28 2012-11-29 Kawasaki Heavy Ind Ltd Battery system enabling easy maintenance
JP2016152133A (en) * 2015-02-17 2016-08-22 藤倉ゴム工業株式会社 Metal air battery unit and metal air battery
JP2017054866A (en) * 2015-09-07 2017-03-16 株式会社豊田自動織機 Power storage module

Also Published As

Publication number Publication date
JP2018206495A (en) 2018-12-27
KR20190122866A (en) 2019-10-30

Similar Documents

Publication Publication Date Title
WO2018220924A1 (en) Secondary cell module
WO2018190016A1 (en) Laminated secondary battery
WO2018180828A1 (en) Cylindrical battery
WO2017057762A1 (en) Electrode portion of lithium ion secondary battery, lithium ion secondary battery, and manufacturing method of lithium ion secondary battery
KR20140048153A (en) Lithium/sulphur accumulator
JP2012114066A (en) Secondary battery
US20090214945A1 (en) Electrochemical device and method of manufacturing electrochemical device
KR20190002611A (en) All solid-state cells
CN111864211B (en) Electrode for secondary battery, method for manufacturing same, and secondary battery
WO2019077922A1 (en) Secondary battery module
KR101489037B1 (en) Secondary battery comprising the same lead member
WO2019004296A1 (en) Battery module and method for producing battery module
WO2019150714A1 (en) Layered cell
JP5509592B2 (en) Bipolar secondary battery
JP2013200962A (en) Lithium ion secondary battery and manufacturing method thereof and equipment using lithium ion secondary battery
JP2018073518A (en) Secondary battery module
JP5181426B2 (en) Electrochemical device and manufacturing method thereof
JP5442978B2 (en) Heat dissipation component
WO2019111691A1 (en) Secondary battery
WO2019159451A1 (en) Battery module
JP2019083129A (en) Secondary battery module
CN111755663A (en) Pole piece and battery cell applying same
KR20160039834A (en) Preparation method of cathode electrode and cathode electrode produced by the same
US20240136595A1 (en) Lithium secondary battery and manufacturing method for lithium secondary battery
CN109390546A (en) Lead member and electrical storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810245

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197030541

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18810245

Country of ref document: EP

Kind code of ref document: A1