WO2019077922A1 - Secondary battery module - Google Patents

Secondary battery module Download PDF

Info

Publication number
WO2019077922A1
WO2019077922A1 PCT/JP2018/034291 JP2018034291W WO2019077922A1 WO 2019077922 A1 WO2019077922 A1 WO 2019077922A1 JP 2018034291 W JP2018034291 W JP 2018034291W WO 2019077922 A1 WO2019077922 A1 WO 2019077922A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
module
battery module
bus bar
electrode
Prior art date
Application number
PCT/JP2018/034291
Other languages
French (fr)
Japanese (ja)
Inventor
藤本 貴行
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019077922A1 publication Critical patent/WO2019077922A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/284Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with incorporated circuit boards, e.g. printed circuit boards [PCB]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery module.
  • the battery cell comprises: a plurality of battery cells; a case frame open at one end to accommodate the battery cells; and a finishing plate assembled to the open one end of the case frame, the case frame having an arrangement direction of the battery cells And a pair of side plates extending to cover both sides of the battery cell, and an end plate forming the other end closed between the pair of side plates, and the pair of side plates and end plates Is an integrally formed battery pack.
  • a battery pack with an improved bonding structure is provided so as to achieve sufficient bonding strength while easily performing the assembly process.
  • Patent Document 1 a battery cell is sandwiched between plates.
  • the surface pressure from the plate may deform the battery cell.
  • the deformation of the battery cell reduces the contact area between the battery cell and the plate, making it difficult to secure a heat radiation path from the battery cell to the plate and the outside.
  • Patent Document 1 there is no mention of the contact area between the battery cell and the plate due to deformation of the battery cell due to the surface pressure from the plate, and in the configuration of Patent Document 1, it is difficult to improve the heat dissipation of the secondary battery module .
  • An object of the present invention is to improve the heat dissipation of a secondary battery module.
  • a secondary battery module comprising: a plate; and top plate ribs sandwiching a plurality of secondary battery cells in a direction in which end plates and side plates are not disposed.
  • the heat dissipation of the secondary battery module can be improved. Problems, configurations, and effects other than those described above will be apparent from the description of the embodiments below.
  • a lithium ion secondary battery is an electrochemical device capable of storing or utilizing electrical energy by insertion and extraction of lithium ions to an electrode in an electrolyte. This is called by another name of a lithium ion battery, a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery, and any battery is an object of the present invention.
  • the technical concept of the present invention is also applicable to sodium ion secondary batteries, magnesium ion secondary batteries, calcium ion secondary batteries, zinc secondary batteries, aluminum ion secondary batteries and the like.
  • FIG. 1 is an external view of a secondary battery module.
  • FIG. 2 is an exploded view of a secondary battery module.
  • the secondary battery module 2000 includes a plurality of secondary battery cells 1000, a plurality of cell bus bars 600, two end plates 2100, two side plates 2200, a circuit board 2300, a first module bus bar 2400, a second module bus bar 2450, and a top plate It has 2500.
  • the direction in which the end plate 2100 is disposed with respect to the plurality of secondary battery cells 1000 is the x-axis direction
  • the direction in which the side plate 2200 is disposed with respect to the plurality of secondary battery cells 1000 is the y-axis direction
  • the perpendicular direction of is the z-axis direction.
  • the end plate 2100 applies a surface pressure to the plurality of secondary battery cells 1000 in the x-axis direction (the stacking direction of the electrode assembly 400).
  • the end plate 2100 is disposed on the surface on which the cell bar 600 is not disposed.
  • the plurality of secondary battery cells 1000 are secured by the end plate 2100. It is desirable that the end plate 2100 be larger than the plurality of secondary battery cells 1000 in the yz plane and be formed over the entire surface of the secondary battery cell 1000 so that the plurality of secondary battery cells 1000 can be securely bound.
  • the end plate 2100 a space through which the first module bus bar 2400 can pass is formed.
  • an end plate opening 2110 is formed in the end plate 2100.
  • the end plate opening 2110 is larger than the first module bus bar 2400, and the end plate opening 2110 is sized to allow the first module bus bar 2400 to penetrate the end plate 2100.
  • the end plate 2100 is made of a material such as steel, such as stainless steel, iron, or aluminum.
  • Side plate 2200 applies surface pressure to the plurality of secondary battery cells 1000 in the y-axis direction (in-plane direction of electrode assembly 400).
  • Side plate 2200 is disposed on the surface on which cell bus bar 600 is disposed.
  • the plurality of secondary battery cells 1000 are fixed by side plates 2200.
  • the side plate 2200 By screwing the side plate 2200 onto the two end plates 2100, the two end plates 2100 are held by the side plate 2200. Since the direction of screwing between the side plate 2200 and the end plate 2100 is the same as the direction of fastening of the plurality of secondary battery cells 1000 by the end plate 2100, the rigidity of the secondary battery module 2000 can be enhanced.
  • the side plate 2200 is made of a steel material such as stainless steel, a material such as iron or aluminum.
  • the top plate 2500 applies a surface pressure to the plurality of secondary battery cells 1000 in the z-axis direction (the direction in which the end plate 2100 and the side plate 2200 are not disposed).
  • the top plate 2500 is disposed on the surface on which the cell bar 600 is not disposed.
  • the plurality of secondary battery cells 1000 are secured by the end plate 2100.
  • the plurality of secondary battery cells 1000 are secured by the top plate 2500.
  • the top plate 2500 is disposed on the top surface of the plurality of secondary battery cells 1000 in the z-axis direction.
  • the top plate 2500 has top plate ribs 2510.
  • the top plate rib 2510 can improve the bending rigidity of the top plate 2500.
  • Circuit board 2300 is formed between side plate 2200 and secondary battery cell 1000 in the y-axis direction.
  • a converter device, an inverter device, a resistor, and the like are arranged on the circuit board 2300.
  • circuit board 2300 By forming circuit board 2300 between side plate 2200 and secondary battery cell 1000 in the y-axis direction, secondary battery module 2000 can be made compact.
  • Circuit board recesses 2310 are formed at both ends of the circuit board 2300 in the x-axis direction.
  • the circuit board recess 2310 prevents interference between the first module bus bar 2400 and the circuit board 2300.
  • the circuit board recess 2310 is formed at both ends of the circuit board 2300 in FIG. 2, the circuit board recess 2310 may be formed only at one end of the circuit board 2300.
  • FIG. 3 is a partially enlarged view of the secondary battery module.
  • a cell bus bar 600 is formed on the y-axis direction side of the secondary battery cells 1000.
  • a first module bus bar 2400 and a second module bus bar 2450 are formed at both ends of the secondary battery module 2000 in the x-axis direction.
  • the first module bus bar 2400 protrudes from the end plate 2100 in the x-axis direction, and the second module bus bar 2450 is formed in the end plate 2100 in the x-axis direction.
  • the adjacent secondary battery modules 2000 by connecting one first module bus bar 2400 and the other second module bus bar 2450, the adjacent secondary battery modules 2000 are electrically connected in series.
  • the cell bus bar 600, the first module bus bar 2400, and the second module bus bar 2450 are formed in the same plane. Thereby, the useless space in the secondary battery module 2000 is reduced, and the energy density of the secondary battery module 2000 can be improved.
  • a material of the first module bus bar 2400 and the second module bus bar 2450 a material having a relatively high electric conductivity such as copper or aluminum can be applied.
  • the first module bus bar 2400 protrudes relative to the cell bus bar 600 in the y-axis direction.
  • the first module bus bar 2400 may be formed flush with the cell bus bar 600 in the y-axis direction.
  • the second module bus bar 2450 may be eliminated, and the first module bus bar 2400 may be connected to the cell bus bar 600 to electrically connect the adjacent secondary battery modules 2000 in series.
  • the cell bus bar 600 formed at the end in the x-axis direction becomes the second module bus bar 2450.
  • the secondary battery cell 1000 has an electrode terminal.
  • the electrode terminals in the secondary battery cell 1000 are formed on both ends of the secondary battery cell 1000 in the z-axis direction, and the cell bus bars 600 are also formed on both ends of the secondary battery cell 1000 in the z-axis direction. It is done.
  • the first module bus bar 2400 is formed between the cell bus bars 600 between screws for screwing the side plate 2200 and the end plate 2100 in the z-axis.
  • the second module bus bar 2450 is formed on the top of the cell bus bar 600 in the z-axis.
  • the cell bus bar 600 may be arranged to be biased in one direction in the z-axis direction.
  • the cell bus bar 600 is electrically connected to the electrode terminal.
  • the cell bus bar 600 electrically connects the plurality of secondary battery cells 1000.
  • As a material of the cell bus bar 600 aluminum, an aluminum alloy, copper, a copper alloy or the like can be applied.
  • FIG. 4 is a partial enlarged view of a secondary battery module.
  • FIG. 4 is a view of the secondary battery module 2000 as viewed from the x-axis direction.
  • Side plate 2200 and end plate 2100 are fastened by end plate screw 2120.
  • the top plate 2500, the end plate 2100, and the chassis 3000 of the vehicle body are fastened by the top plate screw 2520.
  • the secondary battery module 2000 can be fixed to the vehicle body.
  • a secondary battery pack case accommodating the secondary battery module 2000 may be used instead of the chassis 3000.
  • the secondary battery cell 1000 has an electrode assembly 400 and an outer package 500.
  • the material of the exterior body 500 of the secondary battery cell 1000 is a soft material such as polyolefin
  • the secondary battery cell 1000 As a result, the contact area between the secondary battery cell 1000 and the chassis 3000 is reduced, and it becomes difficult to secure a heat radiation path from the secondary battery cell 1000 to the chassis 3000 or the outside.
  • a buffer material 700 is formed in the secondary battery cell 1000 and between the electrode assembly 400 and the chassis 3000 (in-plane direction end of the electrode assembly 400).
  • the buffer material 700 is deformed to relieve an excessive load on the electrode assembly 400 and prevent damage to the electrode assembly 400. be able to. Further, the heat generated in the electrode body 400 is easily transferred to the chassis 3000 side through the buffer material 700, and the heat dissipation of the secondary battery cell 1000 is improved.
  • a material of the shock absorbing material 700 for example, silicon gel can be applied.
  • FIG. 5 is an external view of a secondary battery cell.
  • FIG. 6 is an exploded view of a secondary battery cell. 7 and 8 are external views of the secondary battery cell.
  • the secondary battery cell 1000 includes a positive electrode 100 (electrode), a negative electrode 200 (electrode), a positive electrode terminal 150 (electrode terminal), a negative electrode terminal 250 (electrode terminal), a separator 300, an exterior body 500, and a buffer 700.
  • the direction in which the positive electrode 100, the negative electrode 200, and the separator 300 are stacked is the x-axis direction
  • the direction in which the electrode terminals are formed is the y-axis direction
  • the perpendicular direction of the xy plane is the z-axis direction. .
  • the positive electrode 100 includes a positive electrode mixture layer 110 (electrode mixture layer), a positive electrode current collector 120, and a positive electrode tab 130 (electrode tab).
  • the positive electrode mixture layer 110 is formed on both sides of the positive electrode current collector 120 (electrode current collector).
  • a negative electrode 200, a negative electrode mixture layer 210 (electrode mixture layer), a negative electrode current collector 220 (electrode current collector), and a negative electrode tab 230 (electrode tab) are provided.
  • a negative electrode mixture layer 210 is formed on both sides of the negative electrode current collector 220.
  • the positive electrode 100, the separator 300, and the negative electrode 200 are stacked to form an electrode assembly 400.
  • the secondary battery cell 1000 is configured by laminating a plurality of electrode bodies 400. By connecting the positive electrode tabs 130 to each other and the negative electrode tab 230, an electrical parallel connection is configured in the secondary battery cell 1000.
  • the secondary battery cell 1000 of FIG. 5 is a stacked secondary battery, a wound cylindrical secondary battery or a wound square secondary battery may be applied.
  • the positive electrode mixture layer 110 has a positive electrode active material capable of absorbing and releasing Li.
  • the positive electrode active material include LiCo-based oxides, LiNi-based composite oxides, LiMn-based composite oxides, Li—Co—Ni—Mn composite oxides, LiFeP-based oxides, and the like.
  • the negative electrode mixture layer 210 includes a negative electrode active material capable of absorbing and releasing Li. Examples of the negative electrode active material include carbon materials such as natural graphite, soft carbon and amorphous carbon, Si metal, Si alloy, lithium titanate, lithium metal and the like.
  • a positive electrode conductive agent responsible for electron conductivity in the electrode mixture layer a binder for securing adhesion between materials in the electrode mixture layer, and ion conductivity in the electrode mixture layer
  • a solid electrolyte may be included to secure the
  • the method for producing the electrode mixture layer is, for example, as follows. First, the material contained in the electrode mixture layer is dissolved in a solvent to form a slurry, which is coated on the electrode current collector. As a coating method, a doctor blade method, a dipping method, a spray method etc. are mentioned, for example. Next, the electrode mixture layer coated on the electrode current collector is dried to remove the solvent. Next, the electrode mixture layer is pressed to secure electron conductivity and ion conductivity in the electrode mixture layer.
  • Electrode current collector is electrically connected to the electrode tab.
  • the electrode tab is led out to the side surface of the electrode current collector.
  • the electrode mixture layer is not formed on the electrode tab.
  • the electrode mixture layer may be formed on the electrode tab as long as the battery performance is not adversely affected.
  • an aluminum foil for the positive electrode current collector 120 and the positive electrode tab 130, an aluminum foil, a perforated aluminum foil having a hole diameter of 0.1 mm to 10 mm, an expanded metal, a foamed aluminum plate or the like can be used.
  • the material may be stainless steel, titanium or the like in addition to aluminum.
  • a copper foil, a perforated copper foil with a hole diameter of 0.1 mm to 10 mm, an expanded metal, a foamed copper plate, or the like is used.
  • the material may be stainless steel, titanium, nickel or the like in addition to copper.
  • the thickness of the electrode current collector and the electrode tab is preferably 10 nm to 1 mm. From the viewpoint of achieving both the energy density of the secondary battery cell 1000 and the mechanical strength of the electrode, about 1 ⁇ m to 100 ⁇ m is desirable.
  • the separator 300 is formed between the positive electrode 100 and the negative electrode 200, and when the secondary battery cell 1000 is a lithium ion secondary battery, transmits lithium ions to prevent a short circuit between the positive electrode 100 and the negative electrode 200.
  • a microporous film, a solid electrolyte, or the like can be used as a material of which the separator 300 is formed.
  • the microporous membrane polyolefin such as polyethylene and polypropylene and glass fiber can be used.
  • the secondary battery is injected by injecting an electrolyte into the secondary battery cell 1000 from one open side of the exterior body 500 that accommodates the plurality of electrode bodies 400 and the liquid injection hole. An electrolyte is filled in the cell 1000.
  • the electrolytic solution contains, for example, a solvent and a lithium salt, and serves as a medium for transmitting lithium ions between the positive electrode 100 and the negative electrode 200.
  • lithium salt LiPF 6, LiBF 4, LiClO 4, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, lithium bis oxalate borate (LiBOB), lithium imide salt (e.g., lithium bis (Fluorosulfonyl) imide, LiFSI) and the like can be preferably used. You may use these lithium salts individually or in combination of multiple.
  • solid electrolytes As solid electrolytes, sulfides such as Li 10 Ge 2 PS 12 , Li 2 S-P 2 S 5 , oxides such as Li-La-Zr-O, ionic liquids, molten salts at room temperature, etc.
  • a semisolid electrolyte supported on inorganic particles or the like, a gel electrolyte using a polymer gel as the electrolyte, or the like can be used.
  • the solid electrolyte serves as a medium for transmitting lithium ions between the positive electrode 100 and the negative electrode 200, and the above-described electrolyte solution is basically unnecessary.
  • Serial connection can be configured. However, even if a solid electrolyte is used as the separator 300, an electrolytic solution may be added to the secondary battery cell 1000 as long as an electrical short circuit in the secondary battery cell 1000 can be prevented.
  • the separator 300 may be formed as a sheet between the positive electrode 100 and the negative electrode 200, or may be formed on the electrode mixture layer by application.
  • the separator 300 may be formed on both sides of the electrode mixture layer, and if the separator 300 is formed between the positive electrode 100 and the negative electrode 200, the separator 300 may be formed on one side of the electrode mixture layer.
  • the thickness of the separator 300 is several nm to several mm in size from the viewpoint of securing the energy density of the secondary battery cell 1000, the electronic insulation, and the like.
  • the electrode terminal is electrically connected to the electrode tab.
  • materials of the positive electrode terminal 150 and the negative electrode terminal 250 metals such as aluminum, copper, nickel and stainless steel can be applied.
  • the exterior body 500 accommodates an electrode, a separator 300, and an electrode terminal.
  • an opening is formed in the package 500 so as to expose the electrode terminals on the surface on which the electrode terminals of the package 500 are formed.
  • PET polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PVDF polyvinylidene fluoride
  • Soft materials such as ethylene / perfluoroalkyl vinyl ether copolymer (PFA), silicone, ethylene propylene (EP) rubber, neoprene rubber and the like can be applied.

Abstract

Provided is a secondary battery module that has a plurality of secondary battery cells, wherein: the secondary battery cells are composed by stacking electrode bodies that each have a positive electrode, a separator, and a negative electrode; the secondary battery cells have buffer materials inside the secondary battery cells and at ends in the in-surface direction of the electrode bodies; and the secondary battery module has end plates that hold the plurality of secondary battery cells therebetween in the direction of stacking the electrode bodies, side plates that hold the plurality of secondary battery cells therebetween in the in-surface direction of the electrode bodies, and top plate ribs that hold the plurality of secondary battery cells therebetween in a direction in which the end plates and the side plates are not disposed.

Description

二次電池モジュールSecondary battery module
 本発明は、二次電池モジュールに関する。 The present invention relates to a secondary battery module.
 二次電池モジュールに関する技術として、特許文献1には以下の内容が開示されている。複数のバッテリーセルと、バッテリーセルを収容するように一端部が開放されたケースフレームと、ケースフレームの開放された一端部に組み立てられる仕上げプレートと、を備え、ケースフレームは、バッテリーセルの配列方向に沿ってバッテリーセルの両側面を覆うように延びる一対のサイドプレートと、一対のサイドプレートの間に閉鎖された他端部を形成するエンドプレートと、を備え、対をなすサイドプレート及びエンドプレートは一体に形成されるバッテリーパック。これにより、2つ以上複数のバッテリーセルを組み立ててモジュール化させる過程で、組み立て工程を容易に行わせながらも十分な結合強度を発揮するように結合構造の改善されたバッテリーパックが提供される。 The following content is disclosed by patent document 1 as a technique regarding a secondary battery module. The battery cell comprises: a plurality of battery cells; a case frame open at one end to accommodate the battery cells; and a finishing plate assembled to the open one end of the case frame, the case frame having an arrangement direction of the battery cells And a pair of side plates extending to cover both sides of the battery cell, and an end plate forming the other end closed between the pair of side plates, and the pair of side plates and end plates Is an integrally formed battery pack. As a result, in the process of assembling and modularizing two or more battery cells, a battery pack with an improved bonding structure is provided so as to achieve sufficient bonding strength while easily performing the assembly process.
特開2015-046379号公報JP, 2015-046379, A
 特許文献1ではバッテリーセルがプレートに挟まれている。プレートからの面圧によってバッテリーセルが変形する場合がある。バッテリーセルの変形により、バッテリーセルとプレートとの接触面積が減少し、バッテリーセルからプレートや外部への放熱路の確保が難しくなる。特許文献1では、プレートからの面圧によってバッテリーセルが変形することによるバッテリーセルとプレートとの接触面積に関する言及がなく、特許文献1の構成では二次電池モジュールの放熱性を向上させることは難しい。 In Patent Document 1, a battery cell is sandwiched between plates. The surface pressure from the plate may deform the battery cell. The deformation of the battery cell reduces the contact area between the battery cell and the plate, making it difficult to secure a heat radiation path from the battery cell to the plate and the outside. In Patent Document 1, there is no mention of the contact area between the battery cell and the plate due to deformation of the battery cell due to the surface pressure from the plate, and in the configuration of Patent Document 1, it is difficult to improve the heat dissipation of the secondary battery module .
 本発明は、二次電池モジュールの放熱性を向上させることを目的とする。 An object of the present invention is to improve the heat dissipation of a secondary battery module.
 上記課題を解決するための本発明の特徴は、例えば以下の通りである。 The features of the present invention for solving the above problems are, for example, as follows.
 複数の二次電池セルを有する二次電池モジュールであって、二次電池セルは、正極、セパレータ、負極を有する電極体が積層されて構成され、二次電池セルは、二次電池セル内および電極体の面内方向端部に緩衝材を有し、電極体の積層方向において、複数の二次電池セルを挟むエンドプレートと電極体の面内方向において、複数の二次電池セルを挟むサイドプレートと、エンドプレートおよびサイドプレートが配置されていない方向において、複数の二次電池セルを挟むトッププレートリブと、を有する二次電池モジュール。 It is a secondary battery module having a plurality of secondary battery cells, and the secondary battery cell is configured by laminating an electrode body having a positive electrode, a separator, and a negative electrode, and the secondary battery cell is formed in the secondary battery cell and A buffer material is provided at the end in the in-plane direction of the electrode body, and the end plate sandwiching the plurality of secondary battery cells in the stacking direction of the electrode body and the side sandwiching the plurality of secondary battery cells in the in-plane direction of the electrode body A secondary battery module comprising: a plate; and top plate ribs sandwiching a plurality of secondary battery cells in a direction in which end plates and side plates are not disposed.
 本発明により、二次電池モジュールの放熱性を向上できる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。 According to the present invention, the heat dissipation of the secondary battery module can be improved. Problems, configurations, and effects other than those described above will be apparent from the description of the embodiments below.
二次電池モジュールの外観図External view of secondary battery module 二次電池モジュールの分解図Exploded view of secondary battery module 二次電池モジュールの部分拡大図Partially enlarged view of the secondary battery module 二次電池モジュールの部分拡大図Partially enlarged view of the secondary battery module 二次電池セルの外観図External view of secondary battery cell 二次電池セルの分解図Exploded view of secondary battery cell 二次電池セルの外観図External view of secondary battery cell 二次電池セルの外観図External view of secondary battery cell
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described using the drawings and the like. The following description shows specific examples of the content of the present invention, and the present invention is not limited to these descriptions, and various modifications by those skilled in the art can be made within the scope of the technical idea disclosed herein. Changes and modifications are possible. Moreover, in all the drawings for explaining the present invention, what has the same function may attach the same numerals, and may omit explanation of the repetition.
 本明細書に記載される「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。本明細書に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的に記載されている上限値又は下限値に置き換えてもよい。本明細書に記載される数値範囲の上限値又は下限値は、実施例中に示されている値に置き換えてもよい。 As used herein, “to” is used in the sense of including the numerical values described before and after it as the lower limit value and the upper limit value. In the numerical range described step by step in the specification, the upper limit or the lower limit described in one numerical range may be replaced with the upper limit or the lower limit described in another step. The upper limit value or the lower limit value of the numerical range described in this specification may be replaced with the value shown in the examples.
 本明細書では、二次電池セルとしてリチウムイオン二次電池を例にして説明する。リチウムイオン二次電池とは、電解質中における電極へのリチウムイオンの吸蔵・放出により、電気エネルギーを貯蔵または利用可能とする電気化学デバイスである。これは、リチウムイオン電池、非水電解質二次電池、非水電解液二次電池の別の名称で呼ばれており、いずれの電池も本発明の対象である。本発明の技術的思想は、ナトリウムイオン二次電池、マグネシウムイオン二次電池、カルシウムイオン二次電池、亜鉛二次電池、アルミニウムイオン二次電池などに対しても適用できる。 In the present specification, a lithium ion secondary battery will be described as an example of a secondary battery cell. A lithium ion secondary battery is an electrochemical device capable of storing or utilizing electrical energy by insertion and extraction of lithium ions to an electrode in an electrolyte. This is called by another name of a lithium ion battery, a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery, and any battery is an object of the present invention. The technical concept of the present invention is also applicable to sodium ion secondary batteries, magnesium ion secondary batteries, calcium ion secondary batteries, zinc secondary batteries, aluminum ion secondary batteries and the like.
 図1は、二次電池モジュールの外観図である。図2は、二次電池モジュールの分解図である。二次電池モジュール2000は、複数の二次電池セル1000、複数のセルバスバ600、二つのエンドプレート2100、二つのサイドプレート2200、回路基板2300、第一モジュールバスバ2400、第二モジュールバスバ2450、トッププレート2500を有する。複数の二次電池セル1000に対してエンドプレート2100が配置されている方向をx軸方向、複数の二次電池セル1000に対してサイドプレート2200が配置されている方向をy軸方向、xy平面の垂線方向をz軸方向とする。 FIG. 1 is an external view of a secondary battery module. FIG. 2 is an exploded view of a secondary battery module. The secondary battery module 2000 includes a plurality of secondary battery cells 1000, a plurality of cell bus bars 600, two end plates 2100, two side plates 2200, a circuit board 2300, a first module bus bar 2400, a second module bus bar 2450, and a top plate It has 2500. The direction in which the end plate 2100 is disposed with respect to the plurality of secondary battery cells 1000 is the x-axis direction, the direction in which the side plate 2200 is disposed with respect to the plurality of secondary battery cells 1000 is the y-axis direction, xy plane The perpendicular direction of is the z-axis direction.
 エンドプレート2100は、x軸方向(電極体400の積層方向)において複数の二次電池セル1000に面圧を付加する。エンドプレート2100は、セルバスバ600が配置されていない面に配置されている。エンドプレート2100によって、複数の二次電池セル1000は固縛されている。複数の二次電池セル1000を確実に固縛できるように、yz平面においてエンドプレート2100は複数の二次電池セル1000よりも大きく、二次電池セル1000の全面にわたって形成することが望ましい。 The end plate 2100 applies a surface pressure to the plurality of secondary battery cells 1000 in the x-axis direction (the stacking direction of the electrode assembly 400). The end plate 2100 is disposed on the surface on which the cell bar 600 is not disposed. The plurality of secondary battery cells 1000 are secured by the end plate 2100. It is desirable that the end plate 2100 be larger than the plurality of secondary battery cells 1000 in the yz plane and be formed over the entire surface of the secondary battery cell 1000 so that the plurality of secondary battery cells 1000 can be securely bound.
 エンドプレート2100には、第一モジュールバスバ2400が貫通できる空間が形成されている。図2では、エンドプレート2100にエンドプレート開口部2110が形成されている。yz平面において、エンドプレート開口部2110は第一モジュールバスバ2400より大きくなっており、エンドプレート開口部2110は、第一モジュールバスバ2400がエンドプレート2100を貫通できる程度の大きさになっている。エンドプレート2100は、ステンレスなどの鋼材、鉄、アルミなどの材料で作製される。 In the end plate 2100, a space through which the first module bus bar 2400 can pass is formed. In FIG. 2, an end plate opening 2110 is formed in the end plate 2100. In the yz plane, the end plate opening 2110 is larger than the first module bus bar 2400, and the end plate opening 2110 is sized to allow the first module bus bar 2400 to penetrate the end plate 2100. The end plate 2100 is made of a material such as steel, such as stainless steel, iron, or aluminum.
 サイドプレート2200は、y軸方向(電極体400の面内方向)において複数の二次電池セル1000に面圧を付加する。サイドプレート2200は、セルバスバ600が配置されている面に配置されている。サイドプレート2200によって、複数の二次電池セル1000は固縛されている。サイドプレート2200が二つのエンドプレート2100にネジ止めされることで、二つのエンドプレート2100はサイドプレート2200に保持される。サイドプレート2200とエンドプレート2100とのネジ止めの方向がエンドプレート2100による複数の二次電池セル1000の固縛の方向と同じになっているため、二次電池モジュール2000の剛性を高められる。また、サイドプレート2200の厚さとエンドプレート2100の厚さをほぼ同じにできるので、二次電池モジュール2000の剛性を高められる。サイドプレート2200は、ステンレスなどの鋼材、鉄、アルミなどの材料で作製される。 Side plate 2200 applies surface pressure to the plurality of secondary battery cells 1000 in the y-axis direction (in-plane direction of electrode assembly 400). Side plate 2200 is disposed on the surface on which cell bus bar 600 is disposed. The plurality of secondary battery cells 1000 are fixed by side plates 2200. By screwing the side plate 2200 onto the two end plates 2100, the two end plates 2100 are held by the side plate 2200. Since the direction of screwing between the side plate 2200 and the end plate 2100 is the same as the direction of fastening of the plurality of secondary battery cells 1000 by the end plate 2100, the rigidity of the secondary battery module 2000 can be enhanced. In addition, since the thickness of the side plate 2200 and the thickness of the end plate 2100 can be made substantially the same, the rigidity of the secondary battery module 2000 can be enhanced. The side plate 2200 is made of a steel material such as stainless steel, a material such as iron or aluminum.
 トッププレート2500は、z軸方向(エンドプレート2100およびサイドプレート2200が配置されていない方向)において複数の二次電池セル1000に面圧を付加する。トッププレート2500は、セルバスバ600が配置されていない面に配置されている。エンドプレート2100によって、複数の二次電池セル1000は固縛されている。トッププレート2500よって、複数の二次電池セル1000は固縛されている。トッププレート2500は、複数の二次電池セル1000のz軸方向上面に配置されている。トッププレート2500は、トッププレートリブ2510を有する。トッププレートリブ2510によって、トッププレート2500の曲げ剛性を向上できる。 The top plate 2500 applies a surface pressure to the plurality of secondary battery cells 1000 in the z-axis direction (the direction in which the end plate 2100 and the side plate 2200 are not disposed). The top plate 2500 is disposed on the surface on which the cell bar 600 is not disposed. The plurality of secondary battery cells 1000 are secured by the end plate 2100. The plurality of secondary battery cells 1000 are secured by the top plate 2500. The top plate 2500 is disposed on the top surface of the plurality of secondary battery cells 1000 in the z-axis direction. The top plate 2500 has top plate ribs 2510. The top plate rib 2510 can improve the bending rigidity of the top plate 2500.
 回路基板2300は、y軸方向においてサイドプレート2200および二次電池セル1000の間に形成されている。回路基板2300には、コンバータ装置、インバータ装置、抵抗器などが配置される。y軸方向において、回路基板2300をサイドプレート2200および二次電池セル1000の間に形成することで、二次電池モジュール2000をコンパクトにできる。 Circuit board 2300 is formed between side plate 2200 and secondary battery cell 1000 in the y-axis direction. On the circuit board 2300, a converter device, an inverter device, a resistor, and the like are arranged. By forming circuit board 2300 between side plate 2200 and secondary battery cell 1000 in the y-axis direction, secondary battery module 2000 can be made compact.
 x軸方向における回路基板2300の両端部には、回路基板凹み2310が形成されている。回路基板凹み2310により、第一モジュールバスバ2400と回路基板2300との干渉を防止している。図2では、回路基板2300の両端部に回路基板凹み2310が形成されているが、回路基板2300の片端部のみに回路基板凹み2310が形成されていてもよい。 Circuit board recesses 2310 are formed at both ends of the circuit board 2300 in the x-axis direction. The circuit board recess 2310 prevents interference between the first module bus bar 2400 and the circuit board 2300. Although the circuit board recess 2310 is formed at both ends of the circuit board 2300 in FIG. 2, the circuit board recess 2310 may be formed only at one end of the circuit board 2300.
 図3は、二次電池モジュールの部分拡大図である。隣接する二次電池セル1000を電気的に直列に接続するために、二次電池セル1000のy軸方向側にはセルバスバ600が形成されている。二次電池モジュール2000のx軸方向両端には第一モジュールバスバ2400および第二モジュールバスバ2450が形成されている。 FIG. 3 is a partially enlarged view of the secondary battery module. In order to electrically connect the adjacent secondary battery cells 1000 in series, a cell bus bar 600 is formed on the y-axis direction side of the secondary battery cells 1000. A first module bus bar 2400 and a second module bus bar 2450 are formed at both ends of the secondary battery module 2000 in the x-axis direction.
 第一モジュールバスバ2400は、x軸方向においてエンドプレート2100より突出しており、第二モジュールバスバ2450はx軸方向においてエンドプレート2100内に形成されている。隣接する二次電池モジュール2000において、一方の第一モジュールバスバ2400と他方の第二モジュールバスバ2450が接続されることにより、隣接する二次電池モジュール2000は電気的に直列に接続される。セルバスバ600、第一モジュールバスバ2400、および第二モジュールバスバ2450が同一平面に形成されている。これにより、二次電池モジュール2000内の無駄なスペースが削減され、二次電池モジュール2000のエネルギー密度を向上できる。第一モジュールバスバ2400および第二モジュールバスバ2450の材質として、銅、アルミなどの電気伝導率が比較的よい材料を適用できる。 The first module bus bar 2400 protrudes from the end plate 2100 in the x-axis direction, and the second module bus bar 2450 is formed in the end plate 2100 in the x-axis direction. In the adjacent secondary battery modules 2000, by connecting one first module bus bar 2400 and the other second module bus bar 2450, the adjacent secondary battery modules 2000 are electrically connected in series. The cell bus bar 600, the first module bus bar 2400, and the second module bus bar 2450 are formed in the same plane. Thereby, the useless space in the secondary battery module 2000 is reduced, and the energy density of the secondary battery module 2000 can be improved. As a material of the first module bus bar 2400 and the second module bus bar 2450, a material having a relatively high electric conductivity such as copper or aluminum can be applied.
 y軸方向において、第一モジュールバスバ2400はセルバスバ600に比べて突出している。y軸方向において、第一モジュールバスバ2400はセルバスバ600と同一平面に形成されていてもよい。その場合、第二モジュールバスバ2450をなくして、第一モジュールバスバ2400をセルバスバ600と接続して、隣接する二次電池モジュール2000を電気的に直列に接続してもよい。この場合、x軸方向端部に形成されたセルバスバ600が第二モジュールバスバ2450となる。 The first module bus bar 2400 protrudes relative to the cell bus bar 600 in the y-axis direction. The first module bus bar 2400 may be formed flush with the cell bus bar 600 in the y-axis direction. In that case, the second module bus bar 2450 may be eliminated, and the first module bus bar 2400 may be connected to the cell bus bar 600 to electrically connect the adjacent secondary battery modules 2000 in series. In this case, the cell bus bar 600 formed at the end in the x-axis direction becomes the second module bus bar 2450.
 二次電池セル1000は、電極端子を有する。二次電池セル1000中の電極端子は二次電池セル1000のz軸方向両端に形成されており、電極端子の形成箇所に合わせて、セルバスバ600も二次電池セル1000のz軸方向両端に形成されている。第一モジュールバスバ2400は、z軸におけるサイドプレート2200およびエンドプレート2100をネジ止めするネジの間、セルバスバ600の間に形成されている。第二モジュールバスバ2450はz軸におけるセルバスバ600の上部に形成されている。セルバスバ600をz軸方向の一方方向に偏らせて配置させてもよい。z軸方向において、セルバスバ600の間に第一モジュールバスバ2400を形成することにより、二次電池モジュール2000の信頼性を向上できる。 The secondary battery cell 1000 has an electrode terminal. The electrode terminals in the secondary battery cell 1000 are formed on both ends of the secondary battery cell 1000 in the z-axis direction, and the cell bus bars 600 are also formed on both ends of the secondary battery cell 1000 in the z-axis direction. It is done. The first module bus bar 2400 is formed between the cell bus bars 600 between screws for screwing the side plate 2200 and the end plate 2100 in the z-axis. The second module bus bar 2450 is formed on the top of the cell bus bar 600 in the z-axis. The cell bus bar 600 may be arranged to be biased in one direction in the z-axis direction. By forming the first module bus bar 2400 between the cell bus bars 600 in the z-axis direction, the reliability of the secondary battery module 2000 can be improved.
 セルバスバ600は電極端子に電気的に接続されている。セルバスバ600は複数の二次電池セル1000を電気的に接続する。セルバスバ600の材質として、アルミニウム、アルミニウム合金、銅、銅合金等を適用できる。 The cell bus bar 600 is electrically connected to the electrode terminal. The cell bus bar 600 electrically connects the plurality of secondary battery cells 1000. As a material of the cell bus bar 600, aluminum, an aluminum alloy, copper, a copper alloy or the like can be applied.
 図4は、二次電池モジュールの部分拡大図である。図4は、二次電池モジュール2000をx軸方向から見た図である。エンドプレートネジ2120によって、サイドプレート2200とエンドプレート2100とが締結されている。トッププレートネジ2520によって、トッププレート2500、エンドプレート2100、および車体のシャシー3000が締結されている。よって、二次電池モジュール2000を車体に固定できる。シャシー3000の代わりに二次電池モジュール2000を収容する二次電池パックケースを用いてもよい。 FIG. 4 is a partial enlarged view of a secondary battery module. FIG. 4 is a view of the secondary battery module 2000 as viewed from the x-axis direction. Side plate 2200 and end plate 2100 are fastened by end plate screw 2120. The top plate 2500, the end plate 2100, and the chassis 3000 of the vehicle body are fastened by the top plate screw 2520. Thus, the secondary battery module 2000 can be fixed to the vehicle body. A secondary battery pack case accommodating the secondary battery module 2000 may be used instead of the chassis 3000.
 二次電池セル1000は、電極体400および外装体500を有する。二次電池セル1000の外装体500の材質がポリオレフィン等の柔らかい材料であった場合、エンドプレートネジ2120やサイドプレート2200等によって、二次電池セル1000に面圧を付加すると、二次電池セル1000が変形し、二次電池セル1000とシャシー3000との接触面積が減少し、二次電池セル1000からシャシー3000や外部への放熱路の確保が難しくなる。 The secondary battery cell 1000 has an electrode assembly 400 and an outer package 500. When the material of the exterior body 500 of the secondary battery cell 1000 is a soft material such as polyolefin, when the surface pressure is applied to the secondary battery cell 1000 by the end plate screw 2120 or the side plate 2200 etc, the secondary battery cell 1000 As a result, the contact area between the secondary battery cell 1000 and the chassis 3000 is reduced, and it becomes difficult to secure a heat radiation path from the secondary battery cell 1000 to the chassis 3000 or the outside.
 図4では、二次電池セル1000内および電極体400およびシャシー3000の間(電極体400の面内方向端部)に緩衝材700が形成されている。緩衝材700の形成により、二次電池セル1000をz軸方向に固縛する際、緩衝材700が変形することで、電極体400への過度な負荷を緩和し、電極体400の損傷を防ぐことができる。また、緩衝材700を介して、電極体400で発生した熱が、シャシー3000側へ伝わり易くなり、二次電池セル1000の放熱性が向上する。緩衝材700の材質として、例えば、シリコンゲル等を適用できる。 In FIG. 4, a buffer material 700 is formed in the secondary battery cell 1000 and between the electrode assembly 400 and the chassis 3000 (in-plane direction end of the electrode assembly 400). When securing the secondary battery cell 1000 in the z-axis direction by forming the buffer material 700, the buffer material 700 is deformed to relieve an excessive load on the electrode assembly 400 and prevent damage to the electrode assembly 400. be able to. Further, the heat generated in the electrode body 400 is easily transferred to the chassis 3000 side through the buffer material 700, and the heat dissipation of the secondary battery cell 1000 is improved. As a material of the shock absorbing material 700, for example, silicon gel can be applied.
 図5は、二次電池セルの外観図である。図6は、二次電池セルの分解図である。図7、図8は、二次電池セルの外観図である。二次電池セル1000は、正極100(電極)、負極200(電極)、正極端子150(電極端子)、負極端子250(電極端子)、セパレータ300、外装体500、緩衝材700を有する。図6のように、正極100、負極200、セパレータ300が積層されている方向がx軸方向、電極端子が形成されている方向がy軸方向、xy平面の垂線方向がz軸方向、となる。 FIG. 5 is an external view of a secondary battery cell. FIG. 6 is an exploded view of a secondary battery cell. 7 and 8 are external views of the secondary battery cell. The secondary battery cell 1000 includes a positive electrode 100 (electrode), a negative electrode 200 (electrode), a positive electrode terminal 150 (electrode terminal), a negative electrode terminal 250 (electrode terminal), a separator 300, an exterior body 500, and a buffer 700. As shown in FIG. 6, the direction in which the positive electrode 100, the negative electrode 200, and the separator 300 are stacked is the x-axis direction, the direction in which the electrode terminals are formed is the y-axis direction, and the perpendicular direction of the xy plane is the z-axis direction. .
 正極100は、正極合剤層110(電極合剤層)、正極集電体120、および正極タブ130(電極タブ)を有する。正極集電体120(電極集電体)の両面に正極合剤層110が形成されている。負極200、負極合剤層210(電極合剤層)、負極集電体220(電極集電体)、および負極タブ230(電極タブ)を有する。負極集電体220の両面に負極合剤層210が形成されている。 The positive electrode 100 includes a positive electrode mixture layer 110 (electrode mixture layer), a positive electrode current collector 120, and a positive electrode tab 130 (electrode tab). The positive electrode mixture layer 110 is formed on both sides of the positive electrode current collector 120 (electrode current collector). A negative electrode 200, a negative electrode mixture layer 210 (electrode mixture layer), a negative electrode current collector 220 (electrode current collector), and a negative electrode tab 230 (electrode tab) are provided. A negative electrode mixture layer 210 is formed on both sides of the negative electrode current collector 220.
 正極100、セパレータ300、負極200が積層されて電極体400が構成される。二次電池セル1000は、複数の電極体400が積層されて構成される。正極タブ130同士および負極タブ230が接続されることで、二次電池セル1000中で電気的な並列接続が構成される。図5の二次電池セル1000は積層型の二次電池であるが、捲回円筒型の二次電池、捲回角型の二次電池を適用してもよい。 The positive electrode 100, the separator 300, and the negative electrode 200 are stacked to form an electrode assembly 400. The secondary battery cell 1000 is configured by laminating a plurality of electrode bodies 400. By connecting the positive electrode tabs 130 to each other and the negative electrode tab 230, an electrical parallel connection is configured in the secondary battery cell 1000. Although the secondary battery cell 1000 of FIG. 5 is a stacked secondary battery, a wound cylindrical secondary battery or a wound square secondary battery may be applied.
 <電極合剤層>
 正極合剤層110は、Liの吸蔵・放出が可能な正極活物質を有する。正極活物質としては、LiCo系酸化物、LiNi系複合酸化物、LiMn系複合酸化物な、Li-Co-Ni-Mn複合酸化物、LiFeP系酸化物などが上げられる。負極合剤層210は、Liの吸蔵・放出が可能な負極活物質を有する。負極活物質としては、天然黒鉛、ソフトカーボン、非晶質炭素などの炭素系材料、Si金属やSi合金、チタン酸リチウム、リチウム金属などが上げられる。
<Electrode mixture layer>
The positive electrode mixture layer 110 has a positive electrode active material capable of absorbing and releasing Li. Examples of the positive electrode active material include LiCo-based oxides, LiNi-based composite oxides, LiMn-based composite oxides, Li—Co—Ni—Mn composite oxides, LiFeP-based oxides, and the like. The negative electrode mixture layer 210 includes a negative electrode active material capable of absorbing and releasing Li. Examples of the negative electrode active material include carbon materials such as natural graphite, soft carbon and amorphous carbon, Si metal, Si alloy, lithium titanate, lithium metal and the like.
 電極合剤層中に、電極合剤層内の電子伝導性を担う正極導電剤や、電極合剤層内の材料間の密着性を確保するバインダ、さらには電極合剤層内のイオン伝導性を確保するための固体電解質を含めてもよい。 In the electrode mixture layer, a positive electrode conductive agent responsible for electron conductivity in the electrode mixture layer, a binder for securing adhesion between materials in the electrode mixture layer, and ion conductivity in the electrode mixture layer A solid electrolyte may be included to secure the
 電極合剤層の作製方法は、例えば以下の通りである。まず、電極合剤層に含まれる材料を溶媒に溶かしてスラリー化し、それを電極集電体上に塗工する。塗工方法として、例えば、ドクターブレード法、ディッピング法、スプレー法などが挙げられる。次に、溶媒を除去するために電極集電体上に塗工された電極合剤層を乾燥させる。次に、電極合剤層内の電子伝導性、イオン伝導性を確保するために電極合剤層をプレスする。 The method for producing the electrode mixture layer is, for example, as follows. First, the material contained in the electrode mixture layer is dissolved in a solvent to form a slurry, which is coated on the electrode current collector. As a coating method, a doctor blade method, a dipping method, a spray method etc. are mentioned, for example. Next, the electrode mixture layer coated on the electrode current collector is dried to remove the solvent. Next, the electrode mixture layer is pressed to secure electron conductivity and ion conductivity in the electrode mixture layer.
 <電極集電体、電極タブ>
 電極集電体は電極タブと電気的に接続されている。電極タブは電極集電体の側面に導出されている。図6において、電極タブには電極合剤層が形成されていない。ただし、電池性能に悪影響を与えない範囲で電極タブに電極合剤層を形成してもよい。
<Electrode current collector, electrode tab>
The electrode current collector is electrically connected to the electrode tab. The electrode tab is led out to the side surface of the electrode current collector. In FIG. 6, the electrode mixture layer is not formed on the electrode tab. However, the electrode mixture layer may be formed on the electrode tab as long as the battery performance is not adversely affected.
 正極集電体120および正極タブ130には、アルミニウム箔、孔径0.1mm~10mmのアルミニウム製穿孔箔、エキスパンドメタル、発泡アルミニウム板などを適用できる。材質は、アルミニウムの他に、ステンレス、チタンなどを適用できる。 For the positive electrode current collector 120 and the positive electrode tab 130, an aluminum foil, a perforated aluminum foil having a hole diameter of 0.1 mm to 10 mm, an expanded metal, a foamed aluminum plate or the like can be used. The material may be stainless steel, titanium or the like in addition to aluminum.
 負極集電体220および負極タブ230には、銅箔、孔径0.1mm~10mmの銅製穿孔箔、エキスパンドメタル、発泡銅板などが用いられる。材質は、銅の他に、ステンレス、チタン、ニッケルなどを適用できる。 For the negative electrode current collector 220 and the negative electrode tab 230, a copper foil, a perforated copper foil with a hole diameter of 0.1 mm to 10 mm, an expanded metal, a foamed copper plate, or the like is used. The material may be stainless steel, titanium, nickel or the like in addition to copper.
 電極集電体および電極タブの厚さは、10nm~1mmであることが望ましい。二次電池セル1000のエネルギー密度と電極の機械強度両立の観点から1μm~100μm程度が望ましい。 The thickness of the electrode current collector and the electrode tab is preferably 10 nm to 1 mm. From the viewpoint of achieving both the energy density of the secondary battery cell 1000 and the mechanical strength of the electrode, about 1 μm to 100 μm is desirable.
 <セパレータ300>
 セパレータ300は、正極100と負極200との間に形成され、二次電池セル1000がリチウムイオン二次電池の場合リチウムイオンを透過させ、正極100と負極200の短絡を防止する。セパレータ300を構成する材料として、微多孔膜や固体電解質等を利用できる。
<Separator 300>
The separator 300 is formed between the positive electrode 100 and the negative electrode 200, and when the secondary battery cell 1000 is a lithium ion secondary battery, transmits lithium ions to prevent a short circuit between the positive electrode 100 and the negative electrode 200. A microporous film, a solid electrolyte, or the like can be used as a material of which the separator 300 is formed.
 微多孔膜として、ポリエチレンやポリプロピレンといったポリオレフィンやガラス繊維などを利用できる。セパレータ300に微多孔膜が用いられる場合、複数の電極体400を収納する外装体500の空いている1辺や注液孔から二次電池セル1000に電解液を注入することで、二次電池セル1000中に電解液が充填される。 As the microporous membrane, polyolefin such as polyethylene and polypropylene and glass fiber can be used. When a microporous film is used for the separator 300, the secondary battery is injected by injecting an electrolyte into the secondary battery cell 1000 from one open side of the exterior body 500 that accommodates the plurality of electrode bodies 400 and the liquid injection hole. An electrolyte is filled in the cell 1000.
 電解液は、例えば溶媒及びリチウム塩を有し、正極100と負極200の間でリチウムイオンの伝達させる媒体となる。溶媒として、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、プロピレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、リン酸トリエステル、トリメトキシメタン、ジオキソラン、ジエチルエーテル、スルホラン等を用いることができる。こられの材料を単独または複数組み合わせて使用してもよい。リチウム塩としては、例えば、LiPF、LiBF4、LiClO4、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF、リチウムビスオキサレートボラート(LiBOB)、リチウムイミド塩(例えば、リチウムビス(フルオロスルホニル)イミド、LiFSI)等を好ましく用いることができる。これらのリチウム塩を単独または複数組み合わせて使用してもよい。 The electrolytic solution contains, for example, a solvent and a lithium salt, and serves as a medium for transmitting lithium ions between the positive electrode 100 and the negative electrode 200. Use ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), propylene carbonate, butylene carbonate, γ-butyrolactone, phosphoric acid triester, trimethoxymethane, dioxolane, diethyl ether, sulfolane etc. as a solvent Can. These materials may be used alone or in combination. Examples of the lithium salt, LiPF 6, LiBF 4, LiClO 4, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, lithium bis oxalate borate (LiBOB), lithium imide salt (e.g., lithium bis (Fluorosulfonyl) imide, LiFSI) and the like can be preferably used. You may use these lithium salts individually or in combination of multiple.
 固体電解質として、Li10Ge2PS12、Li2S-P25などの硫化物系、Li-La-Zr-Oなどの酸化物系、イオン液体や常温溶融塩などを有機高分子や無機粒子などに担持させた半固体電解質、高分子ゲルを電解質としたゲル電解質等を利用できる。セパレータ300として固体電解質を用いた場合、固体電解質が正極100と負極200の間にリチウムイオンの伝達させる媒体となり、上記の電解液は基本不要となるため、二次電池セル1000中で電気的な直列接続を構成できる。ただし、二次電池セル1000中での電気的な短絡を防止できるのであれば、セパレータ300として固体電解質を用いた場合でも二次電池セル1000中に電解液を添加してもよい。 As solid electrolytes, sulfides such as Li 10 Ge 2 PS 12 , Li 2 S-P 2 S 5 , oxides such as Li-La-Zr-O, ionic liquids, molten salts at room temperature, etc. A semisolid electrolyte supported on inorganic particles or the like, a gel electrolyte using a polymer gel as the electrolyte, or the like can be used. When a solid electrolyte is used as the separator 300, the solid electrolyte serves as a medium for transmitting lithium ions between the positive electrode 100 and the negative electrode 200, and the above-described electrolyte solution is basically unnecessary. Serial connection can be configured. However, even if a solid electrolyte is used as the separator 300, an electrolytic solution may be added to the secondary battery cell 1000 as long as an electrical short circuit in the secondary battery cell 1000 can be prevented.
 セパレータ300は、シートとして正極100と負極200との間に形成してもよいし、電極合剤層の上に塗布により形成してもよい。電極合剤層の両面にセパレータ300を形成してもよく、正極100と負極200との間にセパレータ300が形成されれば、電極合剤層の片面にセパレータ300が形成されていてもよい。セパレータ300の厚さは二次電池セル1000のエネルギー密度、電子絶縁性の確保等の観点から数nm~数mmのサイズとなる。 The separator 300 may be formed as a sheet between the positive electrode 100 and the negative electrode 200, or may be formed on the electrode mixture layer by application. The separator 300 may be formed on both sides of the electrode mixture layer, and if the separator 300 is formed between the positive electrode 100 and the negative electrode 200, the separator 300 may be formed on one side of the electrode mixture layer. The thickness of the separator 300 is several nm to several mm in size from the viewpoint of securing the energy density of the secondary battery cell 1000, the electronic insulation, and the like.
 <電極端子>
 電極端子は電極タブと電気的に接続される。正極端子150および負極端子250の材質として、アルミニウム、銅、ニッケル、ステンレスなどの金属を適用できる。
<Electrode terminal>
The electrode terminal is electrically connected to the electrode tab. As materials of the positive electrode terminal 150 and the negative electrode terminal 250, metals such as aluminum, copper, nickel and stainless steel can be applied.
 <外装体500>
 外装体500は、電極、セパレータ300、電極端子を収納する。電極端子をセルバスバ600に電気的に接続させるために、外装体500の電極端子が形成されている面では、電極端子を露出させるように外装体500に開口部が形成されている。外装体500の材質として、ポリオレフィン、ポリ塩化ビニル、ポリエステ(PET)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、ポリビニリデンフルオライド(PVDF)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、シリコーン、エチレンプロピレン(EP)ゴム、ネオプレンゴム等の柔らかい材料を適用できる。
<Exterior body 500>
The exterior body 500 accommodates an electrode, a separator 300, and an electrode terminal. In order to electrically connect the electrode terminals to the cell bus bar 600, an opening is formed in the package 500 so as to expose the electrode terminals on the surface on which the electrode terminals of the package 500 are formed. As a material of the exterior body 500, polyolefin, polyvinyl chloride, polyester resin (PET), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyvinylidene fluoride (PVDF), tetrafluoro Soft materials such as ethylene / perfluoroalkyl vinyl ether copolymer (PFA), silicone, ethylene propylene (EP) rubber, neoprene rubber and the like can be applied.
100 正極、110 正極合剤層、120 正極集電体、130 正極タブ、150 正極端子
200 負極、210 負極合剤層、220 負極集電体、230 負極タブ、250 負極端子
300 セパレータ
400 電極体
500 外装体
600 セルバスバ
700 緩衝材
1000 二次電池セル
2000 二次電池モジュール
2100 エンドプレート、2110 エンドプレート開口部、2120 エンドプレートネジ
2200 サイドプレート
2300 回路基板、2310 回路基板凹み
2400 第一モジュールバスバ、2450 第二モジュールバスバ
2500 トッププレート、2510 トッププレートリブ、2520 トッププレートネジ
3000 シャシー
100 positive electrode, 110 positive electrode mixture layer, 120 positive electrode current collector, 130 positive electrode tab, 150 positive electrode terminal 200 negative electrode, 210 negative electrode mixture layer, 220 negative electrode current collector, 230 negative electrode tab, 250 negative electrode terminal 300 separator 400 electrode assembly 500 Exterior body 600 Cell bus bar 700 Buffer material 1000 Secondary battery cell 2000 Secondary battery module 2100 End plate, 2110 End plate opening, 2120 End plate screw 2200 Side plate 2300 Circuit board, 2310 Circuit board recess 2400 First module bus bar, 2450 first Two-module busbar 2500 top plate, 2510 top plate rib, 2520 top plate screw 3000 chassis

Claims (8)

  1.  複数の二次電池セルを有する二次電池モジュールであって、
     前記二次電池セルは、正極、セパレータ、負極を有する電極体が積層されて構成され、
     前記二次電池セルは、前記二次電池セル内および前記電極体の面内方向端部に緩衝材を有し、
     前記電極体の積層方向において、前記複数の二次電池セルを挟むエンドプレートと
     前記電極体の面内方向において、前記複数の二次電池セルを挟むサイドプレートと、
     前記エンドプレートおよび前記サイドプレートが配置されていない方向において、前記複数の二次電池セルを挟むトッププレートリブと、を有する二次電池モジュール。
    A secondary battery module having a plurality of secondary battery cells, comprising:
    The secondary battery cell is configured by laminating an electrode body having a positive electrode, a separator, and a negative electrode,
    The secondary battery cell has buffer materials in the in-plane direction end portion in the secondary battery cell and the electrode body,
    An end plate sandwiching the plurality of secondary battery cells in the stacking direction of the electrode body, and a side plate sandwiching the plurality of secondary battery cells in the in-plane direction of the electrode body;
    And a top plate rib sandwiching the plurality of secondary battery cells in a direction in which the end plate and the side plate are not disposed.
  2.  請求項1の二次電池モジュールにおいて、
     前記トッププレートは、トッププレートリブを有する二次電池モジュール。
    In the secondary battery module of claim 1,
    The top plate is a secondary battery module having a top plate rib.
  3.  請求項1の二次電池モジュールにおいて、
     前記二次電池モジュールは、隣接する二次電池モジュールに電気的に接続するための第一モジュールバスバおよび第二モジュールバスバを有し、
     前記複数の二次電池セルは、電極端子を有し、
     前記第一モジュールバスバおよび第二モジュールバスバは、前記電極端子が形成された面と同一平面に形成され、
     前記第一モジュールバスバは、前記二次電池モジュールから突出しており、
     前記第二モジュールバスバは、前記二次電池モジュール内に形成されている二次電池モジュール。
    In the secondary battery module of claim 1,
    The secondary battery module has a first module bus bar and a second module bus bar for electrically connecting to an adjacent secondary battery module,
    The plurality of secondary battery cells have electrode terminals,
    The first module bus bar and the second module bus bar are formed in the same plane as the surface on which the electrode terminal is formed.
    The first module bus bar protrudes from the secondary battery module,
    The second module bus bar is a secondary battery module formed in the secondary battery module.
  4.  請求項1の二次電池モジュールにおいて、
     前記エンドプレートにエンドプレート開口部が形成され、
     前記第一モジュールバスバは、前記エンドプレート開口部を貫通する二次電池モジュール。
    In the secondary battery module of claim 1,
    An end plate opening is formed in the end plate,
    The first module bus bar is a secondary battery module penetrating the end plate opening.
  5.  請求項1の二次電池モジュールにおいて、
     前記サイドプレートおよび前記複数の二次電池の間に形成された回路基板と、を有する二次電池モジュール。
    In the secondary battery module of claim 1,
    And a circuit board formed between the side plate and the plurality of secondary batteries.
  6.  請求項5の二次電池モジュールにおいて、
     前記回路基板に回路基板凹みが形成されている二次電池モジュール。
    In the secondary battery module of claim 5,
    The secondary battery module in which the circuit board dent is formed in the said circuit board.
  7.  請求項1の二次電池モジュールにおいて、
     前記サイドプレートにサイドプレート開口部が形成されている二次電池モジュール。
    In the secondary battery module of claim 1,
    The secondary battery module by which the side plate opening part is formed in the said side plate.
  8.  請求項1の二次電池モジュールにおいて、
     前記複数の二次電池を電気的に接続する複数のセルバスバを有し、
     前記第一モジュールバスバは、前記複数のセルバスバの間に形成されている二次電池モジュール。
    In the secondary battery module of claim 1,
    A plurality of cell bus bars electrically connecting the plurality of secondary batteries;
    The first module bus bar is a secondary battery module formed between the plurality of cell bus bars.
PCT/JP2018/034291 2017-10-16 2018-09-14 Secondary battery module WO2019077922A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017200020A JP2019075256A (en) 2017-10-16 2017-10-16 Secondary battery module
JP2017-200020 2017-10-16

Publications (1)

Publication Number Publication Date
WO2019077922A1 true WO2019077922A1 (en) 2019-04-25

Family

ID=66173611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034291 WO2019077922A1 (en) 2017-10-16 2018-09-14 Secondary battery module

Country Status (2)

Country Link
JP (1) JP2019075256A (en)
WO (1) WO2019077922A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021034108A1 (en) * 2019-08-19 2021-02-25 주식회사 아모그린텍 Cooling member for battery module and battery module including same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223099A (en) * 1999-01-29 2000-08-11 Sanyo Electric Co Ltd Power supply unit
JP2003092132A (en) * 2001-09-14 2003-03-28 Mitsubishi Electric Corp Battery
JP2012059663A (en) * 2010-09-13 2012-03-22 Auto Network Gijutsu Kenkyusho:Kk Battery pack wiring module
JP2013171794A (en) * 2012-02-22 2013-09-02 Denso Corp Battery module and case thereof
JP2014203745A (en) * 2013-04-08 2014-10-27 株式会社Gsユアサ Power storage device
JP2015056400A (en) * 2013-09-13 2015-03-23 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Battery pack
JP2015233004A (en) * 2014-05-16 2015-12-24 株式会社半導体エネルギー研究所 Electronic device equipped with secondary battery
JP2016225031A (en) * 2015-05-27 2016-12-28 日立オートモティブシステムズ株式会社 Secondary battery module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223099A (en) * 1999-01-29 2000-08-11 Sanyo Electric Co Ltd Power supply unit
JP2003092132A (en) * 2001-09-14 2003-03-28 Mitsubishi Electric Corp Battery
JP2012059663A (en) * 2010-09-13 2012-03-22 Auto Network Gijutsu Kenkyusho:Kk Battery pack wiring module
JP2013171794A (en) * 2012-02-22 2013-09-02 Denso Corp Battery module and case thereof
JP2014203745A (en) * 2013-04-08 2014-10-27 株式会社Gsユアサ Power storage device
JP2015056400A (en) * 2013-09-13 2015-03-23 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Battery pack
JP2015233004A (en) * 2014-05-16 2015-12-24 株式会社半導体エネルギー研究所 Electronic device equipped with secondary battery
JP2016225031A (en) * 2015-05-27 2016-12-28 日立オートモティブシステムズ株式会社 Secondary battery module

Also Published As

Publication number Publication date
JP2019075256A (en) 2019-05-16

Similar Documents

Publication Publication Date Title
US6767666B2 (en) Lithium secondary cell and lithium secondary cell connecting structure
JP5256589B2 (en) An assembled battery in which a plurality of film-clad batteries are arranged adjacent to each other
JP5505218B2 (en) Sealed storage battery
WO2013005650A1 (en) Nonaqueous electrolyte battery module
WO2018220924A1 (en) Secondary cell module
WO2011027631A1 (en) Battery
US7754379B2 (en) Secondary battery
JP5172496B2 (en) Power storage unit and manufacturing method thereof
WO2018190016A1 (en) Laminated secondary battery
US11715855B2 (en) Battery module
WO2014010395A1 (en) Cell structure
JP5466574B2 (en) Nonaqueous electrolyte battery and nonaqueous electrolyte battery module
US9017850B2 (en) Secondary battery
JP5472284B2 (en) Film outer battery and battery pack
WO2019077922A1 (en) Secondary battery module
KR101489037B1 (en) Secondary battery comprising the same lead member
WO2019150714A1 (en) Layered cell
JP6045835B2 (en) battery
JP6994974B2 (en) Battery module
JP2019083129A (en) Secondary battery module
WO2019111691A1 (en) Secondary battery
KR20170094666A (en) Pouch type secondary battery
JP2018185885A (en) Laminate type secondary battery
JP2000182588A (en) Lithium secondary battery
JP2020004515A (en) Battery cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869209

Country of ref document: EP

Kind code of ref document: A1