WO2018220732A1 - 情報提供装置、情報提供方法、および記憶媒体 - Google Patents

情報提供装置、情報提供方法、および記憶媒体 Download PDF

Info

Publication number
WO2018220732A1
WO2018220732A1 PCT/JP2017/020172 JP2017020172W WO2018220732A1 WO 2018220732 A1 WO2018220732 A1 WO 2018220732A1 JP 2017020172 W JP2017020172 W JP 2017020172W WO 2018220732 A1 WO2018220732 A1 WO 2018220732A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaluation
measurement
point
layover
observation target
Prior art date
Application number
PCT/JP2017/020172
Other languages
English (en)
French (fr)
Inventor
剛毅 鳥屋
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2017/020172 priority Critical patent/WO2018220732A1/ja
Publication of WO2018220732A1 publication Critical patent/WO2018220732A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • G01S13/9027Pattern recognition for feature extraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques

Definitions

  • This disclosure relates to a technique for providing information related to data acquired by a radar.
  • Synthetic Aperture Radar irradiates electromagnetic waves from above and acquires the electromagnetic waves reflected by backscattering (hereinafter also referred to as “reflected waves”) as signals to observe the state of the surface of the earth.
  • SAR Synthetic Aperture Radar
  • Non-Patent Document 1 describes a technique called PS-InSAR (Permanent Scatterer Interferometric SAR), which is a technique for analyzing a permanent scattering point (Permanent Scatterer; PS) in data obtained by SAR.
  • PS-InSAR Permanent Scatterer Interferometric SAR
  • the permanent scattering point is a point at which the scattering characteristic with respect to the electromagnetic wave is permanent (also referred to as being stable), that is, hardly changes over time.
  • PS-InSAR it is possible to observe changes in topography by observing the displacement of permanent scattering points in SAR data acquired multiple times.
  • layover is a phenomenon in which signals from two or more different points overlap and are observed. Although this phenomenon is mentioned later, it originates in the signal from the point where the distance from a radar is equal cannot be distinguished.
  • Patent Document 1 discloses a distortion correction apparatus that corrects layover.
  • Patent Documents 2 and 3 which are documents related to the present disclosure disclose a technique for performing calculation related to occlusion in an optical image acquired by a camera.
  • the layover correction method disclosed in Patent Document 1 can be executed by using a plurality of SAR images. Without a plurality of SAR images, it is impossible to correct the layover, that is, to distinguish two or more signals observed in an overlapping manner.
  • the signal in the region where the layover has occurred is an overlap of signals from two or more points as described above, it is difficult to analyze the signal. Therefore, when performing measurement, observation, analysis, etc. (hereinafter collectively referred to as “observation”) on a specific target (a predetermined area of the ground, a building, etc.) by SAR, the signal from the target is Therefore, it is desirable that layover does not occur as much as possible. Since the place where the layover occurs changes according to the measurement conditions including the radar position and the measurement direction, it is important to set the measurement conditions appropriately at the time of measurement.
  • An object of the present invention is to provide an apparatus and a method for providing useful information for supporting measurement, observation, and analysis by a radar.
  • An information providing apparatus includes an observation target that is a feature included in a range to be measured and a positional relationship between the observation target and the radar in measurement of the shape of the ground surface using a radar.
  • a condition setting means for setting a measurement condition; an evaluation means for performing an evaluation based on a degree of layover to a signal from the observation target by a signal from a feature other than the observation target with respect to the measurement condition;
  • Output means for outputting information indicating the result of the evaluation.
  • An information providing method includes an observation target that is a feature included in a measured range and a positional relationship between the observation target and the radar in measurement of the shape of the ground surface using a radar.
  • Information indicating a result of the evaluation by setting a measurement condition, performing an evaluation based on a degree of layover to a signal from the observation target with a signal from a feature other than the observation target with respect to the measurement condition Is output.
  • a program includes a measurement condition including an observation target that is a feature included in a measured range and a positional relationship between the observation target and the radar in measurement of the shape of the ground surface using a radar.
  • the program is stored in, for example, a computer-readable non-transitory storage medium.
  • FIG. 1 It is a figure which shows another example of the data which is an example of evaluation information, and shows the relationship between measurement conditions and an evaluation value. It is a block diagram which shows the structure of the information provision apparatus which concerns on the 3rd Embodiment of this invention. It is a block diagram which shows the example of the hardware which comprises each part of each embodiment of this invention.
  • SAR is assumed as an example of radar, but the radar may be RAR, for example.
  • FIG. 1 is a diagram for explaining layover.
  • an observation device S 0 that performs observation by SAR and an object M that exists in the observed range are shown.
  • Observation device S for example, mounting the radar, a satellite or aircraft or the like.
  • Observation device S while moving the sky, transmits electromagnetic waves by the radar receives the reflected waves.
  • the arrows indicate the traveling direction of the observation device S 0 , that is, the radar traveling direction (also referred to as azimuth direction).
  • Observation equipment S waves emitted from 0 reflects the ground, and the back-scattered by some structure M on the ground, part of the reflected wave is received back to the radar. Thereby, the distance between the electromagnetic wave reflection point of the position and the structure M of the observation devices S 0 is specified.
  • a point Q a is a point on the ground
  • a point Q b is a point on the surface of the structure M away from the ground.
  • the distance between the observation equipment S 0 and the point Q a is equal to the distance between the observation equipment S 0 and the point Q b.
  • the straight line connecting the point Q b and the point Q a, and the traveling direction of the radar are in a vertical relationship.
  • the reflected wave at the point Q a, the reflected wave at the point Q b can not be distinguished by taking the observation equipment S 0. That is, the intensity of the reflected waves from the intensity of the reflected wave and the point Q b from the point Q a, is observed intermingled.
  • FIG. 2 An example of an image representing the intensity distribution of the reflected wave (hereinafter referred to as “SAR image”) generated in such a case is shown in FIG.
  • the arrow indicates the traveling direction of the radar.
  • the SAR image is generated based on the intensity of the reflected wave received by the radar and the distance between the point where the reflected wave is emitted and the radar. It is assumed that the resolution in the radar traveling direction is sufficient (that is, it is possible with sufficient accuracy that signals from two different points in the radar traveling direction can be distinguished as signals from two different points). . However, the reflected waves from two or more points that are on the plane perpendicular to the traveling direction of the radar including the position of the radar and are equal in distance from the radar are not distinguished.
  • Point P is a point which reflects the intensity of the reflected wave from a point Q a, the strength indicated in this respect P, is also reflected in the strength of the reflected wave from the point Q b. In this way, a phenomenon in which the intensity of reflected waves from two or more points overlaps at one point in the SAR image is layover.
  • a white area including the point P is an area where a layover has occurred.
  • an area painted black represents an area shaded by the structure M against the radar. This region is also called radar shadow.
  • a reference three-dimensional space is defined in the processing performed by the information providing apparatus 11.
  • a three-dimensional coordinate system is defined for the reference three-dimensional space.
  • this three-dimensional coordinate system is referred to as a reference coordinate system.
  • the reference coordinate system may be, for example, a geodetic system or a coordinate system of model data 1113 that is three-dimensional data described later.
  • the first coordinate system is related to the second coordinate system. Is written.
  • FIG. 3 is a block diagram illustrating a configuration of the information providing apparatus 11 according to the first embodiment.
  • the information providing apparatus 11 includes a condition setting unit 101, an evaluation unit 103, and an output unit 105.
  • the condition setting unit 101 sets measurement conditions for measuring the shape of the ground surface using a radar.
  • the measurement condition includes an observation target that is a feature included in the measured range, and a positional relationship between the observation target and the radar.
  • the evaluation unit 103 evaluates the measurement conditions set by the condition setting unit 101.
  • the evaluation performed by the evaluation unit 103 is an evaluation based on the degree of layover to the signal from the observation target by the signal from the feature other than the observation target.
  • the evaluation indicates appropriateness as a measurement condition suitable for observation with respect to the observation target, for example.
  • the output unit 105 outputs information indicating the result of the evaluation performed by the evaluation unit 103.
  • the condition setting unit 101 sets measurement conditions for measuring the shape of the ground surface using a radar (step S101).
  • the evaluation unit 103 evaluates the measurement condition set by the condition setting unit 101 based on the degree of layover of the signal from the observation target by the signal from the feature other than the observation target (Ste S102).
  • the output unit 105 outputs information indicating the result of the evaluation performed by the evaluation unit 103 (step S103).
  • the output unit 105 provides information indicating the result of evaluation by the evaluation unit 103 for the measurement condition set by the condition setting unit 101. Since the evaluation is based on the degree of layover from the observation target to the signal from the feature other than the observation target, the user of the information providing apparatus 11 can determine the layover that is a problem in the acquisition, observation, and analysis of the measurement data. Gain insight into the impact. And a user can perform acquisition, observation, and analysis of measurement data more meaningfully.
  • Second Embodiment As a more specific embodiment, a second embodiment of the present invention will be described.
  • FIG. 5 is a block diagram illustrating a configuration of the information providing apparatus 12 according to the second embodiment.
  • the information providing device 12 is an example of the information providing device 11.
  • the information providing apparatus 12 includes a storage unit 111, an input receiving unit 112, a condition setting unit 113, a layover calculation unit 114, an evaluation unit 115, an evaluation information generation unit 116, and a display control unit 117.
  • Each unit in the information providing apparatus 12 is connected so that data can be communicated with each other.
  • the data exchange of each unit of the information providing apparatus 12 may be performed directly via a signal line, or may be performed by reading and writing to a shared storage area (for example, the storage unit 111).
  • data movement is described by the words “send data” and “receive data”, but the method of transmitting data is not limited to the method of transmitting directly.
  • the information providing device 12 is connected to the display device 21 so as to be communicable.
  • SAR data 1111 is data obtained by measurement using SAR. By the measurement using the SAR, the intensity of the electromagnetic wave reflected on the surface of the feature (the ground, the building, etc.) is measured.
  • the SAR data 1111 is data that can generate at least a SAR image represented under a coordinate system related to a reference coordinate system.
  • the SAR data 1111 includes a measurement value and information associated with the measurement value.
  • the measured value is, for example, the intensity of the reflected wave that has been measured.
  • the information associated with the measured value includes, for example, the position and traveling direction of the radar that observed the reflected wave, and the position between the reflected point and the radar derived from the observation of the reflected wave. Information such as distance.
  • the SAR data 1111 may include information on a radar depression angle (a radar elevation angle viewed from each reflection point) with respect to the ground surface. The information regarding the position is described by, for example, a combination of longitude, latitude, and altitude in the geodetic system.
  • the SAR data 1111 may be a SAR image itself.
  • the electromagnetic wave used in the measurement by the radar is an electromagnetic wave having a longer wavelength than visible light (for example, a radio wave having a wavelength of 100 ⁇ m or more).
  • the SAR data parameter 1112 is a parameter indicating the relationship between the data included in the SAR data 1111 and the reference coordinate system.
  • the SAR data parameter 1112 is a parameter for assigning a position in the reference coordinate system to the measurement value included in the SAR data 1111.
  • the SAR data parameter Reference numeral 1112 denotes a parameter for converting the information into information described under a reference coordinate system.
  • the coordinate system of the SAR image is related to the reference coordinate system by the SAR data parameter 1112. That is, an arbitrary point in the SAR image is associated with one point in the reference coordinate system.
  • the model data 1113 is data representing the shape of an object in three dimensions, such as topography and building structure.
  • the model data 1113 is, for example, DEM (Digital Elevation Model; digital elevation model).
  • the model data 1113 may be DSM (Digital Surface Model; numerical surface model) that is data of the earth surface including the structure, or DTM (Digital Terrain Model) that is data of the shape of the ground, and three-dimensional data of the structure. A combination of these may be used.
  • the coordinate system used for the model data 1113 is related to the reference coordinate system. That is, an arbitrary point in the model data 1113 can be described by coordinates in the reference coordinate system.
  • the storage unit 111 does not always need to hold data in the information providing apparatus 12.
  • the storage unit 111 may record data on a device external to the information providing device 12, a recording medium, or the like, and acquire the data as necessary. That is, the storage unit 111 only needs to be configured to acquire data requested by each unit in processing of each unit of the information providing apparatus 12 described below.
  • the condition setting unit 113 is an example of the condition setting unit 101 according to the first embodiment.
  • Conditions used for the calculation include, for example, designation of an observation target and designation of a method of acquiring data by SAR (hereinafter referred to as “measurement condition”).
  • the observation target is a target for measurement by SAR, and a target for observation and analysis of the acquired signal.
  • the condition setting unit 113 receives an observation target designation from the user of the information providing apparatus 12. For example, the user selects an object or region included in the model data 1113 via the input device, and the input receiving unit 112 sends information on the selected object or region to the condition setting unit 113.
  • the condition setting unit 113 may determine the selected object or region as the designated observation target.
  • the measurement conditions are represented by various parameter values indicating, for example, the state of the radar and the positional relationship between the observation target and the radar when the observation target is measured by the SAR.
  • Measurement conditions are, for example, a measurement range by SAR and a radar position.
  • the measurement range and the radar position may be represented by coordinate values in a reference coordinate system or geodetic system.
  • the measurement range is a range in which there is a reflection point that emits a measured signal (reflected wave) in the measurement of the range including the observation target.
  • the measurement range is, for example, an irradiation range of electromagnetic waves irradiated for measuring an observation target.
  • the measurement range should just include the range in which the feature which can emit the signal which cannot be distinguished from the signal from an observation object exists.
  • the radar is mounted on, for example, an aircraft or an artificial satellite, and the position of the radar may be considered sufficiently far from the measurement range including the observation target.
  • the radar azimuth and elevation angle can be regarded as being the same regardless of the point in the measurement range. Therefore, the position of the radar may be represented by a set of the azimuth and elevation angle of the radar viewed from the measurement range including the observation target.
  • the azimuth may be represented by an azimuth angle with respect to the north, for example.
  • the layover calculation unit 114 calculates a region where layover occurs due to features other than the observation target on the surface of the observation target, that is, a region where signals from features other than the observation target are mixed (in other words, “overlap”). ,To detect.
  • the layover calculation unit 114 detects, for example, a region where a layover is caused by a feature other than the observation target on the surface of the observation target by calculating a distortion method of a signal from the feature other than the observation target.
  • a building B1 shown in FIG. 6 is an observation target. Assume that there is a building B2 in addition to the building B1 in the measurement range.
  • a region Reioba by building B2 occurs, i.e., a region where the signal from the building B2 is mixed is a region shown by hatching in FIG. 6. This area is derived based on the positional relationship between the building B1 and the building B2 and the measurement conditions.
  • the position S 1 of the radar is another position, an example of a region Reioba occurs, shown in Fig.
  • the region where layover occurs varies depending on the position of the radar.
  • the layover calculation unit 114 performs parallel projection onto the surface of the model data in a direction perpendicular to the radar traveling direction and the direction of the observation target viewed from the radar with respect to the features other than the observation target. A region where a layover occurs may be detected.
  • the calculation as described above is a calculation for detecting the influence of a signal from a point located behind the observation target for the radar.
  • the layover calculation unit 114 may further perform calculation for detecting the influence of a signal from a point located on the near side of the observation target for the radar.
  • the layover calculation unit 114 may detect a region on the surface of the building B1 where signals from the structure M1 are mixed. If the point S 1 is sufficiently far, parallel with respect to the structure M1, perpendicular to the traveling direction of the direction and the radar the radar seen from the structure M1, a direction toward the sky side, to the surface of the model data By performing projection, the region can be detected.
  • the layover calculation unit 114 determines whether a sample point on the surface to be observed is affected by the layover.
  • a point is affected by layover means that a signal from a point is mixed (overlapped) with a signal from another point.
  • signals from the ground are inevitably mixed, such as when the observation target is a building on a flat ground, the influence of the signals from the ground may be ignored.
  • the layover calculation unit 114 extracts a plurality of sample points from the surface to be observed.
  • the sampling point extraction method is not limited.
  • the layover calculation unit 114 may randomly select a predetermined number of sample points, or may extract sample points by a method of extracting characteristic points.
  • the layover calculation unit 114 may extract points corresponding to the permanent scattering points described in Non-Patent Document 1 described above as sample points.
  • the layover calculation unit 114 may extract sample points only from the area that can be measured under the set measurement conditions. As the number of sample points increases, the accuracy of evaluation described later increases.
  • the layover calculation unit 114 determines, for each of the extracted sample points, whether the sample points are affected by the layover.
  • the signal mixed with the signal from the sample point is a signal from a point where the radar cannot distinguish the direction and distance from the sample point.
  • the point whose direction cannot be distinguished from the sample point is a point on the plane that includes the sample point and is perpendicular to the radar traveling direction.
  • the point where the distance cannot be distinguished from the sample point is a signal from a point where the distance to the radar is equal to the distance between the radar and the sample point. Therefore, the layover calculation unit 114 is included on a plane that includes the sample point and is perpendicular to the radar traveling direction, and a point on the surface of the model data 1113 is a point where the distance to the radar is equal to the distance between the radar and the sample point. It may be determined whether or not it exists.
  • FIG. 9 An example of sample points affected by layover will be described with reference to the conceptual diagram of FIG.
  • buildings B1 and B2 are drawn.
  • Building B1 is the observation target
  • the point P 1 is a sample point.
  • Position of the radar is a point S 1 when the signal from the point P 1 is observed.
  • Point S 1 is sufficiently far.
  • the straight line L 1 is a straight line passing through the point P 1 that is included in a plane that includes the sample point and is perpendicular to the traveling direction of the radar, and that is perpendicular to the line segment that connects the point S 1 and the point P 1 .
  • the straight line L 1 is a straight line passing through the point P 1 that is perpendicular to the line segment connecting the point S 1 and the point P 1 and the radar traveling direction.
  • the distance from the point P 2 and the point P 3 to radar respectively, equal to the distance from the point P 1 to the radar.
  • the signal from the point P 1 is mixed with the signal from the point P 2 and the point P 3, i.e., the point P 1 is affected by Reioba.
  • the signal from the point P 1 is also mixed with the signal from the straight line L 1 and a point P 4 at the intersection with the ground.
  • FIG. 10 is a cross-sectional view of the model data 1113 cut along a plane that includes the sample point P 1 and the radar position S 1 and is perpendicular to the traveling direction of the radar.
  • a line GL is a cross-sectional line of the reference plane in the reference three-dimensional space
  • a line ML is a cross-sectional line of the three-dimensional structure represented by the model data 1113.
  • the elevation angle ⁇ is an angle formed by the line GL and a line segment (line segment S 1 P 1 ) connecting the point S 1 and the point P 1 .
  • a straight line passing through the point P 1 and perpendicular to the line segment S 1 P 1 is defined as a straight line L 1 .
  • the straight line L 1 is a line ML and the point P 2, it is understood that intersect at a point P 3, and the point P 4.
  • the point P 4 is present.
  • the signal from the point P 1 mixed with a signal from the point P 2, the point P 3 and the point P 4, i.e., the point P 1 is affected by Reioba, and can be determined.
  • the layover calculation unit 114 is a line segment passing through the sample points on a plane perpendicular to the radar traveling direction (that is, perpendicular to the radar traveling direction) and connecting the sample points and the radar position. What is necessary is just to determine whether there is a point where a virtual straight line perpendicular to the crossing with the ground surface (the surface of the model data) other than the sample point. Note that the inclination (angle formed with the reference plane) of the imaginary straight line (the straight line L 1 in the examples of FIGS. 9 and 10) can be expressed as (90 ° ⁇ ) using the elevation angle ⁇ .
  • the layover calculation unit 114 determines that the sample point is affected by the layover when there are two or more points where the straight line intersects the ground surface (the surface of the model data) other than the sample point. May be.
  • the layover calculation unit 114 may assume only the direction of the straight line having a higher altitude than the point P 1 (that is, the sky side).
  • the layover calculation unit 114 sets the distance between the point S 1 and the point P 1 to “R” and the radius around the point S 1 is “R”. And the line ML may be obtained.
  • the layover calculation unit 114 determines whether there is another point that emits a signal mixed with the signal from the sample point as in the above example.
  • the layover calculation unit 114 may calculate the number of other points that emit a signal mixed with the signal from the sample point. However, in the case of calculating the number, Reioba calculator 114, a point on the radar side (ground side) of the observation target may ignore (P 4, etc. points indicated in Figure 10).
  • the radar elevation angle is ⁇
  • the radar azimuth angle is ⁇ in the reference coordinate system
  • One of the vectors in one direction is (cos ⁇ , sin ⁇ , tan ⁇ ).
  • One of the vectors perpendicular to the vector vp and the radar traveling direction is ( ⁇ cos ⁇ , ⁇ sin ⁇ , 1 / tan ⁇ ), and therefore, the point P 1 in the same direction as the vector vr.
  • a straight line passing through can be expressed as (x ⁇ r ⁇ cos ⁇ , y ⁇ r ⁇ sin ⁇ , z + r / tan ⁇ ) with r as a variable.
  • Reioba calculator 114 it is checked whether the intersection between the straight line and the model data is present other than the point P 1.
  • Reioba calculator 114, except for the point P 1, the intersection between the straight line and the model data may be obtained number.
  • the evaluation unit 115 is an example of the evaluation unit 103 according to the first embodiment.
  • the evaluation for the measurement condition performed by the evaluation unit 115 is an evaluation of the magnitude of the influence of the layover that the observation target receives when the measurement based on the measurement condition is performed.
  • the magnitude of the influence of the layover received by the observation target is the degree of overlap between the signal from the observation target and the signal from a feature other than the observation target.
  • the evaluation is an index indicating the low noise level of the signal from the observation target. The evaluation indicates the appropriateness as a measurement condition suitable for observation of the observation target. This is because the signal from the observation target becomes easier to observe and analyze as the signals from other features are not mixed.
  • evaluation example 1 Evaluation based on the size of the area where layover occurs
  • the evaluation unit 115 may derive an evaluation value based on the size of the region where the layover occurs.
  • the evaluation unit 115 may calculate, as the evaluation value, a value obtained by subtracting from 1 the ratio of the area of the region where the signal is measurable to the area of the observation target surface where the signal can be measured.
  • the evaluation value may be the ratio of the area of a region where layover does not occur to the area of a region where signals can be measured on the surface to be observed.
  • the area where the signal can be measured on the surface to be observed is an area that is not a blind spot with respect to the radar.
  • the evaluation value is represented by a value having “%” as a unit, for example, “60%”. It is understood that the larger the evaluation value, the higher the evaluation.
  • the evaluation value may be the ratio of the area of a region where no layover occurs to the surface area of the entire observation target.
  • the evaluation unit 115 may calculate, as an evaluation value, the ratio of sample points that are determined not to be affected by the layover among the sample points that have been subjected to the layover determination.
  • the evaluation unit 115 may calculate the number of sample points determined not to be affected by the layover as an evaluation value.
  • the more sample points that are not affected by the layover the more meaningful the measurement data obtained under the measurement conditions in the analysis.
  • the evaluation unit 115 may perform evaluation in consideration of the “overlap degree” of each sample point.
  • the “overlap degree” in the present disclosure is the number of signals from other points mixed with the signals from the sample points. For example, the degree of overlap of the sample point P 1 illustrated in FIGS. 9 and 10 is 3.
  • the evaluation unit 115 weights the number of sample points having the same degree of overlap according to the degree of overlap, and calculates a value obtained by dividing the sum of the values obtained by weighting by the total number of sample points as an evaluation value. May be.
  • the evaluation is performed when the sample points are SP 1 , SP 2 ,..., SP n (n is the total number of sample points), and the degree of overlap of the sample points SP k (1 ⁇ k ⁇ n) is m k.
  • the measurement condition to which a larger evaluation value is assigned can be interpreted as a measurement condition that is more suitable for observation of the observation target. .
  • the evaluation unit 115 may derive a second evaluation value that is an evaluation value based on the first evaluation value after deriving the evaluation value derived by the above-described evaluation method as the first evaluation value.
  • the second evaluation value may be, for example, an evaluation value derived based on the relationship between the first evaluation value and a predetermined threshold value. Specifically, for example, the evaluation unit 115 derives “B” as the second evaluation value if the first evaluation value is lower than the value indicated by the predetermined threshold, and the value of the first evaluation value is If it is equal to or greater than a predetermined threshold value, “A” may be derived as the second evaluation value.
  • the evaluation value may be a character string such as “preferred” or “unsuitable”.
  • the second evaluation value may be an evaluation value derived based on the relationship between the respective evaluation values.
  • the second evaluation value may be a value representing an order of magnitude of the first evaluation value among a plurality of measurement conditions.
  • evaluation information information indicating the result of evaluation.
  • Evaluation information is information indicating the evaluation value itself, for example.
  • the evaluation information generation unit 116 may generate an image that displays the evaluation value.
  • the evaluation information generation unit 116 may generate information indicating a set of a plurality of measurement conditions and evaluation values.
  • the evaluation information is, for example, information indicating a measurement condition where the evaluation value satisfies a predetermined standard.
  • the predetermined standard is, for example, a condition that the evaluation value is 40% or more.
  • the evaluation information generation unit 116 indicates the measurement conditions for which the evaluation value satisfies a predetermined criterion (for example, the measurement conditions for which the evaluation value is 40% or more) and the evaluation value. Information may be generated.
  • the evaluation information is information indicating, for example, SAR data 1111 acquired under measurement conditions where the evaluation value satisfies a predetermined standard.
  • the evaluation information generation unit 116 extracts, as evaluation information, SAR data 1111 acquired under a measurement condition where the evaluation value satisfies a predetermined criterion from the storage unit 111, and generates information indicating the extracted SAR data 1111. May be.
  • the user of the information providing apparatus 12 can know that the evaluation value of the SAR data 1111 indicated by the output information satisfies a predetermined criterion.
  • the evaluation information is information indicating the SAR data 1111 having the highest evaluation value, for example.
  • the information indicating the SAR data 1111 is, for example, an identifier of the SAR data 1111, a file name in which the SAR data 1111 is recorded, or a SAR image based on the SAR data 1111.
  • the information indicating the SAR data 1111 may be an image in which the position of a point corresponding to the feature point extracted from the SAR data 1111 is shown in the optical image.
  • the feature point is, for example, a permanent scattering point described in Non-Patent Document 1.
  • the optical image is an image acquired by photographing with a camera such as an aerial photograph.
  • FIG. 11 is an example of an image in which the position of a point corresponding to a feature point is shown in an optical image.
  • the evaluation information generation unit 116 acquires an aerial photograph taken of the observation target, and displays a point corresponding to the feature point on the aerial photograph (in the example of FIG. 11, a small white circle or a black circle). ).
  • the aerial photograph is stored in the storage unit 111, for example, and the evaluation information generation unit 116 may read the aerial photograph from the storage unit 111. Alternatively, the evaluation information generation unit 116 may acquire an aerial photograph via the input reception unit 112.
  • the position (coordinates) at which the display corresponding to the feature point is displayed in the aerial photograph is determined by the SAR data parameter 1112, the model data 1113, the positional relationship between the camera that took the aerial photograph and the observation target, and the like. It can be specified.
  • the evaluation information generation unit 116 may indicate a region where a layover due to a feature other than the observation target occurs in the above image, as indicated by shading in FIG.
  • the display indicating the point corresponding to the feature point is displayed in a different display mode depending on whether or not the feature point is affected by the layover. It may be specified whether or not it is affected.
  • the display control unit 117 causes the display device 21 to display the evaluation information by outputting data for displaying the evaluation information to the display device 21.
  • the display control unit 117 is an example of the output unit 105 of the first embodiment.
  • the display device 21 is a display such as a liquid crystal monitor or a projector.
  • the display device 21 may have a function similar to that of the input receiving unit 112 like a touch panel.
  • the display device 21 is connected to the information providing device 12 as an external device to the information providing device 12, but the display device 21 may be included as a display unit inside the information providing device 12. Good.
  • the viewer who sees the display by the display device 21 knows the result of the processing by the information providing device 12. Specifically, the viewer can browse the evaluation information generated by the evaluation information generation unit 116.
  • the condition setting unit 113 sets an observation target and measurement conditions (step S111).
  • the layover calculation unit 114 performs a calculation for detecting a point or region where the layover occurs in the observation target (step S112).
  • the evaluation unit 115 evaluates the measurement condition based on the calculation (step S113).
  • the evaluation information generation unit 116 generates information indicating the evaluation result (step S114).
  • the display control unit 117 performs control to display the generated information (step S115). Thereby, the display device 21 displays information indicating the result of the evaluation.
  • FIG. 13 is a flowchart showing one specific example of the flow of processing by the information providing apparatus 12.
  • the condition setting unit 113 receives a selection of an observation target by the user via the input receiving unit 112 (step S111a1).
  • the information providing device 12 may display the model data 1113 on the display device 21 and prompt the user to select a feature included in the model data 1113 via the input device.
  • the condition setting unit 113 identifies SAR data that includes the observation target in the measurement range (step S111a2).
  • the condition setting unit 113 may receive information specifying SAR data including the observation target in the measurement range from the user. A plurality of SAR data may be specified.
  • the condition setting unit 113 reads the measurement conditions of the specified SAR data (step S111a3).
  • the condition setting unit 113 sets the read measurement condition as a measurement condition to be evaluated.
  • the condition setting unit 113 reads each measurement condition of the plurality of SAR data.
  • the layover calculation unit 114 performs calculation for detecting a point or region where the layover occurs in the observation target based on the measurement condition (step S112a1). For example, the layover calculation unit 114 extracts a plurality of (for example, 10) sample points included in the observation target, and determines whether each of the extracted sample points is affected by the layover. When a plurality of measurement conditions are set, the layover calculation unit 114 performs calculation for each measurement condition.
  • the evaluation unit 115 evaluates the read measurement conditions based on the calculation by the layover calculation unit 114 (step S113a1). For example, the evaluation unit 115 calculates the ratio of the number of points that are not affected by the layover among the plurality of sample points, and associates the calculated value with the measurement condition as an evaluation value.
  • the evaluation information generation unit 116 extracts SAR data obtained by measurement under measurement conditions in which the evaluation value satisfies a predetermined criterion from the SAR data specified in the process of step S111a2 (step S114a1).
  • the evaluation information generation part 116 produces
  • the evaluation information generation unit 116 may generate a list of extracted SAR data.
  • FIG. 14 is a diagram illustrating an example of a list of extracted SAR data. As illustrated in FIG. 14, the evaluation information generation unit 116 may generate, as evaluation information, data in a format in which an identifier of SAR data and an evaluation value are written side by side. Symbols “# 01” to “# 04” shown in FIG. 14 are identifiers of the extracted SAR data (that is, obtained by measurement under a measurement condition where the evaluation value satisfies a predetermined criterion). The evaluation information generation unit 116 may sort the SAR data identifiers in descending order of evaluation values.
  • the evaluation information generation unit 116 may generate information indicating only the SAR data having the highest evaluation.
  • the evaluation information generation unit 116 may generate information indicating only the evaluation value.
  • the evaluation information generation unit 116 may generate, as information indicating the SAR data, an image in which the position of the point corresponding to the feature point extracted from the SAR data 1111 is shown in the optical image as shown in FIG. .
  • the display control unit 117 performs control to display the generated information (step S115a1). Thereby, the evaluation information generated by the evaluation information generating unit 116 is provided to the user of the information providing apparatus 12.
  • FIG. 15 is a flowchart showing another specific example of the operation flow of the information providing apparatus 12.
  • condition setting unit 113 receives the selection of the observation target by the user via the input receiving unit 112 (step S111b1).
  • the condition setting unit 113 receives a part of the measurement conditions from the user (step S111b2).
  • the accepted measurement conditions include, for example, designation of an elevation angle or designation of an azimuth angle.
  • the condition setting unit 113 sets a plurality of measurement condition values that are not specified, and sets a plurality of measurement conditions (step S111b3). For example, when only the designation of the azimuth is accepted in the process of step S111b2, the elevation angle has not been set yet, so the evaluation information generation unit 116 sets the elevation angle value to 0 °, 5 °, 10 °,. , 85 °, etc., and a measurement condition determined by each set value is set as a measurement condition to be evaluated.
  • the layover calculation unit 114 performs a calculation for detecting a point or region where a layover occurs in the observation target for each of the plurality of measurement conditions (step S112b1).
  • evaluation part 115 evaluates each of several measurement conditions based on the calculation by the layover calculation part 114 (step S113b1).
  • the evaluation information generation unit 116 generates information indicating the results of evaluation for a plurality of measurement conditions (step S114b1).
  • the evaluation information generation unit 116 when an azimuth is specified and evaluation values are derived for a plurality of measurement conditions having different elevation angles, the evaluation information generation unit 116 generates data indicating the relationship between the elevation angle and the evaluation value according to each measurement condition. May be.
  • FIG. 16 is a diagram illustrating an example of data indicating a relationship between an elevation angle and an evaluation value according to each measurement condition when an azimuth angle is designated. In the example shown in FIG. 16, the association between the evaluation value range and the elevation angle range is shown.
  • the evaluation information generation unit 116 may generate data indicating the relationship between the azimuth angle and the evaluation value according to each measurement condition. Good. Note that the evaluation information generation unit 116 may interpolate an elevation evaluation value for which no evaluation value has been calculated.
  • FIG. 17 is a diagram illustrating an example of data indicating a relationship between an azimuth angle and an evaluation value according to each measurement condition when an elevation angle is designated.
  • the evaluation information generation unit 116 may generate an image showing a graph as shown in FIG.
  • the evaluation information generation unit 116 may generate such a continuous graph by interpolating azimuth evaluation values for which evaluation values are not calculated.
  • dots corresponding to measurement conditions of the SAR data 1111 including the observation target stored in the storage unit 111 may be indicated by dots. Thereby, the measurement conditions and evaluation values of the already acquired SAR data can be easily understood.
  • the condition setting unit 113 may accept designation of ranges of elevation angle and azimuth angle. Then, the condition setting unit 113 may create a combination of elevation angle and azimuth angle within the accepted range, and set the created combination as a measurement condition to be evaluated.
  • condition setting unit 113 may not accept the designation of the elevation angle and the azimuth angle.
  • the condition setting unit 113 may create combinations of elevation angles and azimuth angles in a range of all elevation angles and azimuth angles, and set the created combinations as measurement conditions to be evaluated.
  • FIG. 18 is another example of evaluation information.
  • the evaluation information generation unit 116 may generate a graph indicating the relationship between the azimuth angle and the evaluation value for each of a plurality of elevation angles.
  • dots corresponding to the measurement conditions of the SAR data 1111 including the observation target stored in the storage unit 111 may be indicated by dots.
  • FIG. 19 is another example of evaluation information.
  • the evaluation information generation unit 116 may generate an image that represents a hemisphere including the observation target B ⁇ b> 1, and an area in which the evaluation value is associated with the surface of the hemisphere.
  • a point on the surface of the hemisphere corresponds to one of a pair of elevation and azimuth.
  • An evaluation value associated with a point on the surface of the hemisphere is an evaluation value of a measurement condition for observing the observation target from the direction of the point.
  • Such a display allows the user of the information providing apparatus 12 to easily know measurement conditions with higher evaluation.
  • ⁇ Effect> useful information that supports the acquisition, observation, and analysis of measurement data by a radar is provided as in the information providing apparatus 11 according to the first embodiment. Specifically, information indicating the result of evaluation by the evaluation unit 115 for the measurement condition set by the condition setting unit 113 is provided by control by the display control unit 117. Since the evaluation is based on the degree of layover to the signal from the observation target due to the signal from the feature other than the observation target, the user of the information providing apparatus 12 can determine the layover which is a problem in acquisition, observation, and analysis of the measurement data. Gain insight into the impact.
  • the condition setting unit 113 sets a plurality of measurement conditions and the evaluation unit 115 evaluates each measurement condition
  • the user of the information providing device 12 obtains a signal from an observation target, for example.
  • the user of the information providing apparatus 12 can know more suitable SAR data by observing the observation target.
  • the user can acquire, observe and analyze the measurement data more meaningfully.
  • the evaluation unit 115 may perform evaluation in consideration of the degree of occlusion to be observed.
  • Opclusion of observation target means that a part or all of the observation target becomes a blind spot from the radar in measurement.
  • a region that is included in the measurement range but has a blind spot from the radar is referred to as an occlusion region.
  • the ratio of the surface included in the occlusion area among the surfaces to be observed is referred to as “occlusion rate”.
  • the evaluation unit 115 may calculate an occlusion rate in addition to the evaluation by the above-described evaluation method.
  • the occlusion rate is 60%.
  • the evaluation unit 115 may calculate the third evaluation value by combining the occlusion rate with the first evaluation value or the second evaluation value. For example, the evaluation unit 115 may calculate the value of the first evaluation value ⁇ (1 ⁇ occlusion rate) as the third evaluation value.
  • the evaluation unit 115 sets the evaluation value of the measurement condition in which the second evaluation value is “preferred” and the occlusion rate is less than the predetermined value to “preferable”, and the evaluation value of the other measurement condition is “unsuitable”
  • a third evaluation value may be assigned to each measurement condition.
  • FIG. 20 is a block diagram illustrating a configuration of the information providing apparatus 13.
  • the information providing device 13 is connected to the storage device 31 instead of the display device 21.
  • the storage device 31 is a device that stores information.
  • the storage device 31 is, for example, a hard disk or a portable memory.
  • the information providing apparatus 13 includes an output unit 118 instead of the display control unit 117 as compared with the information providing apparatus 12.
  • the components other than the output unit 118 included in the information providing device 13 are the same as the components other than the display control unit 117 included in the information providing device 12.
  • the operation of the information providing apparatus 13 other than the processing by the output unit 118 may be the same as the operation of the information providing apparatus 12 of the second embodiment. That is, the information providing apparatus 13 may perform the processing from step S111 to step S114 shown in FIG.
  • the output unit 118 outputs the information generated by the evaluation information generation unit 116 to the storage device 31.
  • the output unit 118 is an example of the output unit 105 of the first embodiment. Based on the output from the output unit 118, the storage device 31 stores the information generated by the information providing device 13.
  • the storage device 31 may output the stored information to another device.
  • This embodiment also provides useful information that supports acquisition, observation, and analysis of measurement data by a radar.
  • each component of each device represents a functional unit block.
  • Computer-readable storage media includes, for example, portable media such as optical disks, magnetic disks, magneto-optical disks, and non-volatile semiconductor memories, and ROMs (Read Only Memory) and hard disks built into computer systems. It is a storage device.
  • Computer-readable storage medium is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line,
  • a program or a program that temporarily holds a program such as a volatile memory in a computer system corresponding to a server or a client is also included.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already stored in a computer system.
  • the “computer system” is a system including a computer 900 as shown in FIG. 21 as an example.
  • the computer 900 includes the following configuration.
  • CPU Central Processing Unit
  • ROM902 -RAM Random Access Memory
  • a program 904A and storage information 904B loaded into the RAM 903
  • a storage device 905 that stores the program 904A and storage information 904B
  • a drive device 907 that reads / writes from / to the storage medium 906
  • a communication interface 908 connected to the communication network 909
  • each component of each device in each embodiment is realized when the CPU 901 loads the RAM 903 and executes a program 904A that realizes the function of the component.
  • a program 904A for realizing the function of each component of each device is stored in advance in the storage device 905 or the ROM 902, for example. Then, the CPU 901 reads the program 904A as necessary.
  • the storage device 905 is, for example, a hard disk.
  • the program 904A may be supplied to the CPU 901 via the communication network 909, or may be stored in advance in the storage medium 906, read out to the drive device 907, and supplied to the CPU 901.
  • the storage medium 906 is a portable medium such as an optical disk, a magnetic disk, a magneto-optical disk, and a nonvolatile semiconductor memory.
  • each device may be realized by a possible combination of a separate computer 900 and a program for each component.
  • a plurality of constituent elements included in each device may be realized by a possible combination of one computer 900 and a program.
  • each device may be realized by other general-purpose or dedicated circuits, computers, or combinations thereof. These may be configured by a single chip or may be configured by a plurality of chips connected via a bus.
  • each component of each device When a part or all of each component of each device is realized by a plurality of computers, circuits, etc., the plurality of computers, circuits, etc. may be centrally arranged or distributedly arranged.
  • the computer, the circuit, and the like may be realized as a form in which each is connected via a communication network, such as a client and server system and a cloud computing system.
  • Appendix 1 In measurement of the shape of the ground surface using a radar, a condition setting means for setting a measurement condition including an observation target that is a feature included in a measured range, and a positional relationship between the observation target and the radar; With respect to the measurement condition, an evaluation unit that performs an evaluation based on a degree of layover to a signal from the observation target by a signal from a feature other than the observation target; Output means for outputting information indicating the result of the evaluation; An information providing apparatus comprising: [Appendix 2] Computation means for performing a computation for detecting a point or region affected by layover on the surface to be observed, The evaluation means performs the evaluation based on the number of detected points or the size of the detected area.
  • the information providing apparatus according to appendix 1.
  • Appendix 3 The information providing apparatus according to appendix 2, wherein the output unit outputs an image that clearly indicates a point or a region detected by the calculation unit.
  • the calculation means extracts a point where the scattering characteristic for electromagnetic waves is permanent from the surface of the observation target, determines whether the extracted point is affected by layover, The evaluation means performs the evaluation based on the number of points determined to be affected by layover.
  • the information providing apparatus according to appendix 2 or 3.
  • Appendix 5 The information providing apparatus according to any one of appendices 1 to 4, wherein the evaluation unit performs the evaluation based on a degree of occlusion in the observation target when measurement is performed under the measurement condition.
  • Appendix 6 The information providing apparatus according to any one of appendices 1 to 5, wherein the condition setting unit sets the measurement condition in which a measurement result exists as the measurement condition for performing the evaluation.
  • Appendix 7 The information provision according to appendix 6, wherein the output unit outputs data indicating the measurement result based on the measurement condition having the highest evaluation value based on the evaluation among the plurality of measurement conditions set by the condition setting unit. apparatus.
  • the condition setting means sets a plurality of measurement conditions by setting a plurality of parameters that can be included in the measurement condition,
  • the evaluation means gives an evaluation value to the plurality of measurement conditions,
  • the output means outputs data indicating a relationship between the parameter and the evaluation value;
  • the information providing apparatus according to any one of appendices 1 to 5.
  • [Appendix 9] In the measurement of the shape of the ground surface using radar, set the measurement conditions, including the observation target that is the feature included in the measured range, and the positional relationship between the observation target and the radar, For the measurement condition, an evaluation based on the degree of layover to the signal from the observation target by the signal from the feature other than the observation target, Outputting information indicating the result of the evaluation;
  • An information providing method comprising: [Appendix 10] Performing a calculation to detect a point or region affected by layover on the surface to be observed; Performing the evaluation based on the number of detected points or the size of the detected area, The information providing method according to appendix 9.
  • [Appendix 11] The information providing method according to appendix 10, wherein an image that clearly indicates a point or a region detected by the calculation is output.
  • [Appendix 12] From the surface of the observation object, extract a point where the scattering characteristics for electromagnetic waves are permanent, determine whether the extracted point is affected by layover, Performing the evaluation based on the number of points determined to be affected by layover; The information providing method according to appendix 10 or 11.
  • [Appendix 13] The information providing method according to any one of appendices 9 to 12, wherein the evaluation is performed based on a degree of occlusion in the observation target when measurement is performed under the measurement condition.
  • a condition setting process for setting a measurement condition, including an observation target that is a feature included in a measured range, and a positional relationship between the observation target and the radar, An evaluation process for performing an evaluation based on the degree of layover to the signal from the observation target with the signal from the feature other than the observation target for the measurement condition; An output process for outputting information indicating the result of the evaluation;
  • a computer-readable non-transitory storage medium that stores a program for causing a computer to execute the program.
  • [Appendix 18] Causing the computer to execute a calculation process for calculating a point or region affected by a layover on the surface to be observed; The evaluation process performs the evaluation based on the number of detected points or the size of the detected area.
  • [Appendix 19] The storage medium according to appendix 18, wherein the output process outputs an image clearly indicating a point or a region detected by the calculation process.
  • the calculation process extracts a point where the scattering characteristic for electromagnetic waves is permanent from the surface of the observation target, determines whether the extracted point is affected by layover, The evaluation process performs the evaluation based on the number of points determined to be affected by layover.
  • Appendix 21 The storage medium according to any one of appendices 17 to 20, wherein the evaluation process performs the evaluation based on a degree of occlusion in the observation target when measurement is performed under the measurement condition.
  • Appendix 22 The storage medium according to any one of appendices 17 to 21, wherein the condition setting process sets the measurement condition in which a measurement result exists as the measurement condition for performing the evaluation.
  • Appendix 23 The storage medium according to appendix 22, wherein the output process outputs data indicating the measurement result based on the measurement condition having the highest evaluation value based on the evaluation among the plurality of measurement conditions set by the condition setting process. .
  • the condition setting process sets a plurality of measurement conditions by setting a plurality of parameters that can be included in the measurement condition,
  • the evaluation process gives an evaluation value to the plurality of measurement conditions,
  • the output process outputs data indicating a relationship between the parameter and the evaluation value.
  • the storage medium according to any one of appendices 17 to 21.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

レーダによる計測データの取得、観察、および分析を支援する有用な情報を提供する。情報提供装置は、レーダを用いた地表の形状の計測における、計測される範囲に含まれる地物である観測対象、および前記観測対象とレーダとの位置関係を含む、計測条件を設定する条件設定部と、前記計測条件に対して、前記観測対象以外の地物からの信号による、前記観測対象からの信号への、レイオーバの程度に基づく評価を行う評価部と、前記評価の結果を示す情報を出力する出力部と、を備える。

Description

情報提供装置、情報提供方法、および記憶媒体
 本開示は、レーダによって取得されるデータに関する情報を提供する技術に関する。
 合成開口レーダ(Synthetic Aperture Radar;SAR)は、上空から電磁波を照射し、後方散乱により反射された電磁波(以下、「反射波」とも表記)を信号として取得することで、地表の様子を観測する技術の1つである。
 非特許文献1は、SARによって得られたデータにおいて恒久散乱点(Permanent Scatterer;PS)に対する分析を行う技術である、PS-InSAR(Permanent Scatterer Interferometric SAR)と呼ばれる技術を記載している。恒久散乱点とは、電磁波に対する散乱特性が恒久的である(安定的であるとも言う)、すなわち、時間経過によって変化しにくい、点である。PS-InSARでは、複数回にわたって取得されたSARのデータにおける恒久散乱点の変位を観測することにより、地形の変動等を観測することが可能である。
 SARによる計測では、レイオーバと呼ばれる現象が発生するという問題がある。レイオーバは、2つ以上の異なる地点からの信号が重なって観測されてしまう現象である。この現象は、後述するが、レーダからの距離が等しい地点からの信号が区別できないことに起因する。
 特許文献1は、レイオーバについて補正を行う歪補正装置を開示している。
 また、本開示に関連する文献である特許文献2および3は、カメラにより取得される光学画像における、オクルージョンに関する計算を行う技術を開示している。
特開2008-185375号公報 特開2009-258386号公報 特開2005-244916号公報
Ferretti, Alessandro, Claudio Prati, and Fabio Rocca, "Permanent scatterers in SAR interferometry", IEEE transactions on geoscience and remote sensing, Vol. 39, No. 1, January 2001, p. 8-20.
 特許文献1に開示されるレイオーバの補正方法は、複数のSAR画像を用いることで実行可能である。SAR画像が複数無ければ、レイオーバを補正すること、すなわち、重なり合って観測された2つ以上の信号を区別することは、できない。
 レイオーバが生じた領域における信号は、上述した通り2つ以上の地点からの信号の重なりであるため、その信号に対する分析は困難である。したがって、SARにより特定の対象(地面の所定領域や建造物等)に対して、計測、観察および分析等(以下、「観測」と総称する)を行う場合には、その対象からの信号に対してレイオーバがなるべく生じないことが望ましい。レイオーバが生じる場所は、レーダの位置および計測の方向を含む計測条件に応じて変化するため、計測時において、上記計測条件を適切に設定することが重要となる。
 また、SARによりデータを取得した後、取得されたデータを分析する場合においても、分析の対象がレイオーバの影響をなるべく受けていないデータが用いられる方が良い。しかしながら、レイオーバの影響をどの程度受けているかを知ることは、データを一目見るだけでは難しい。
 なお、上述のような課題は、SARによるデータの他、RAR(Real Aperture Radar;実開口レーダ)によるデータでも同様に発生し得る。
 本発明は、レーダによる計測、観察、および分析を支援する有用な情報を提供する装置および方法等を提供することを目的の1つとする。
 本発明の一態様に係る情報提供装置は、レーダを用いた地表の形状の計測における、計測される範囲に含まれる地物である観測対象、および前記観測対象とレーダとの位置関係を含む、計測条件を設定する条件設定手段と、前記計測条件に対して、前記観測対象以外の地物からの信号による、前記観測対象からの信号への、レイオーバの程度に基づく評価を行う評価手段と、前記評価の結果を示す情報を出力する出力手段と、を備える。
 本発明の一態様に係る情報提供方法は、レーダを用いた地表の形状の計測における、計測される範囲に含まれる地物である観測対象、および前記観測対象とレーダとの位置関係を含む、計測条件を設定し、前記計測条件に対して、前記観測対象以外の地物からの信号による、前記観測対象からの信号への、レイオーバの程度に基づく評価を行い、前記評価の結果を示す情報を出力する。
 本発明の一態様に係るプログラムは、レーダを用いた地表の形状の計測における、計測される範囲に含まれる地物である観測対象、および前記観測対象とレーダとの位置関係を含む、計測条件を設定する条件設定処理と、前記計測条件に対して、前記観測対象以外の地物からの信号による、前記観測対象からの信号への、レイオーバの程度に基づく評価を行う評価処理と、前記評価の結果を示す情報を出力する出力処理と、をコンピュータに実行させる。上記プログラムは、例えば、コンピュータ読み取り可能な非一時的な記憶媒体に記憶される。
 本発明によれば、レーダによる計測データの取得、観察、および分析を支援する有用な情報が提供される。
SARにより観測を行う衛星と対象物との位置関係を表す図である。 SAR画像の例である。 本発明の第1の実施形態に係る情報提供装置の構成を示すブロック図である。 第1の実施形態に係る情報提供装置の処理の流れを示すフローチャートである。 本発明の第2の実施形態に係る情報提供装置の構成を示すブロック図である。 レイオーバが生じる領域について説明するための図である。 レイオーバが生じる領域についてさらに説明するための図である。 レイオーバが生じる領域に関する計算について説明するための図である。 レイオーバの影響を受ける例を説明するための図である。 サンプル点がレイオーバの影響を受けるかを判定する方法の例を説明するための図である。 評価情報の一例である、特徴点に相当する地点の位置が光学画像において示された画像の例である。 第2の実施形態の変形例に係る情報提供装置による処理の流れの概要を示すフローチャートである。 第2の実施形態の変形例に係る情報提供装置による処理の流れの詳細の例を示すフローチャートである。 評価情報の一例である、評価値とSARデータとの関係を示すデータの例を示す図である。 第2の実施形態の変形例に係る情報提供装置の処理の詳細の例を示すフローチャートである。 評価情報の一例である、仰角と評価値との関係を示すデータの例を示す図である。 評価情報の一例である、方位角と評価値との関係を示すデータの例を示す図である。 評価情報の一例である、計測条件と評価値との関係を示すデータの例を示す図である。 評価情報の一例である、計測条件と評価値との関係を示すデータの別の例を示す図である。 本発明の第3の実施形態に係る情報提供装置の構成を示すブロック図である。 本発明の各実施形態の各部を構成するハードウェアの例を示すブロック図である。
 以下の説明では、レーダの一例としてSARが想定されるが、レーダは、例えばRARでもよい。
 本発明の実施形態の説明に先んじて、SARによる観測においてレイオーバが生じる原理を説明する。
 図1は、レイオーバについて説明するための図である。図1では、SARによる観測を行う観測機器Sと、観測される範囲に存在する物体Mが示されている。観測機器Sは、例えば、レーダを搭載する、人工衛星または航空機等である。観測機器Sは、上空を移動しながら、レーダにより電磁波を発信し、反射された電磁波を受信する。図1において、矢印は、観測機器Sの進行方向、すなわちレーダの進行方向(アジマス方向とも言う)を示す。観測機器Sから発せられた電磁波は、地面、および地上にある構造物Mで後方散乱により反射し、その反射波の一部がレーダに戻って受信される。それにより、観測機器Sの位置と構造物Mにおける電磁波の反射点との間の距離が特定される。
 図1において、点Qは地面上の点、点Qは構造物Mの表面上の、地面から離れた点である。観測機器Sと点Qとの距離は、観測機器Sと点Qとの距離に等しいとする。また、点Qと点Qとを結ぶ直線と、レーダの進行方向とは、垂直な関係にある。このような場合、点Qにおける反射波と、点Qにおける反射波とは、観測機器Sにとって区別することができない。すなわち、点Qからの反射波の強度と点Qからの反射波の強度とは、混ざり合って観測される。
 このような場合に生成される、反射波の強度分布を表す画像(以下、「SAR画像」と称す)の例が、図2に示される。図2において、矢印は、レーダの進行方向を表す。SAR画像は、レーダにより受信された反射波の強度と、その反射波が発せられた地点とレーダとの間の距離と、に基づいて、生成される。レーダの進行方向の分解能は十分である(すなわち、レーダの進行方向に並ぶ異なる2地点からの信号が、異なる2地点からの信号として区別されることが、十分な精度で可能である)とする。しかし、レーダの位置を含みレーダの進行方向に対して垂直な平面上にある、レーダからの距離が等しい2以上の地点からの反射波は、区別されない。点Pは、点Qからの反射波の強度を反映している点であるが、この点Pにおいて示される強度には、点Qからの反射波の強度も反映されている。このように、2以上の地点からの反射波の強度がSAR画像において一点で重なり合う現象が、レイオーバである。図2において、点Pを含む白い領域が、レイオーバが生じている領域である。なお、図2において黒く塗られている領域は、構造物Mによってレーダに対して陰になった領域を表す。この領域はレーダシャドウとも呼ばれる。
 以下、図面を参照しながら、本発明の実施形態を詳細に説明する。
 <<第1の実施形態>>
 まず、本発明の第1の実施形態について説明する。
 以下の説明においては、情報提供装置11が行う処理において、基準となる三次元空間が定義されているとする。基準となる三次元空間に対しては、三次元座標系が定義されている。この三次元座標系を、以下、基準の座標系と表記する。基準の座標系は、例えば、測地系でもよいし、後述の、三次元データであるモデルデータ1113の座標系でもよい。
 また、以下、第1の座標系のもとで記述される点が第2の座標系のもとで記述可能であることを、第1の座標系が第2の座標系に関係づけられている、と表記する。
 <構成>
 図3は、第1の実施形態に係る情報提供装置11の構成を示すブロック図である。情報提供装置11は、条件設定部101と、評価部103と、出力部105とを備える。
 条件設定部101は、レーダを用いた地表の形状の計測における計測条件を設定する。計測条件は、計測される範囲に含まれる地物である観測対象、および観測対象とレーダとの位置関係を含む。
 評価部103は、条件設定部101により設定された計測条件に対して評価を行う。評価部103が行う評価は、観測対象以外の地物からの信号による、観測対象からの信号への、レイオーバの程度に基づく評価である。評価は、例えば、観測対象に対する観測に好適な計測条件としての適切性を示す。
 出力部105は、評価部103により行われた評価の結果を示す情報を出力する。
 <動作>
 情報提供装置11の動作の流れを、図4のフローチャートを参照しながら説明する。
 まず、条件設定部101が、レーダを用いた地表の形状の計測における計測条件を設定する(ステップS101)。
 次に、評価部103が、条件設定部101により設定された計測条件に対して、観測対象以外の地物からの信号による、観測対象からの信号への、レイオーバの程度に基づく評価を行う(ステップS102)。
 次に、出力部105が、評価部103により行われた評価の結果を示す情報を出力する(ステップS103)。
 <効果>
 第1の実施形態に係る情報提供装置11によれば、レーダによる計測データの取得、観察、および分析を支援する有用な情報が提供される。具体的には、条件設定部101により設定された計測条件に対する、評価部103による評価の結果を示す情報が、出力部105により提供される。評価は観測対象以外の地物からの信号による観測対象からの信号へのレイオーバの程度に基づくため、情報提供装置11の利用者は、計測データの取得、観察、および分析において問題となるレイオーバの影響についての知見を得ることができる。そして、利用者は、より有意義な、計測データの取得、観察、および分析を行うことができる。
 <<第2の実施形態>>
 より具体的な実施形態として、本発明の第2の実施形態について説明する。
 <構成>
 図5は、第2の実施形態に係る情報提供装置12の構成を示すブロック図である。情報提供装置12は、情報提供装置11の一例である。情報提供装置12は、記憶部111、入力受付部112、条件設定部113、レイオーバ計算部114、評価部115、評価情報生成部116、および表示制御部117を備える。情報提供装置12内の各部は、互いにデータの通信が可能であるように接続される。なお、情報提供装置12の各部のデータのやりとりは、直接、信号線を介して行われてもよいし、共有の記憶領域(例えば記憶部111)に対する読み書きによって行われてもよい。以下の説明では、「データを送出する」「データを受け取る」という語によってデータの移動を説明するが、データを伝達する方法は直接的に伝達する方法に限定されない。
 情報提供装置12は、表示装置21と通信可能に接続される。
 ===記憶部111===
 記憶部111は、情報提供装置12による処理に必要なデータを記憶する。例えば、記憶部111は、SARデータ1111、SARデータパラメータ1112、およびモデルデータ1113を記憶する。
 SARデータ1111は、SARを用いた計測によって得られたデータである。SARを用いた計測により、地物(地面および建造物等)の表面で反射される電磁波の強度が計測される。SARデータ1111は、少なくとも、基準の座標系に関係づけられた座標系のもとで表されたSAR画像を、生成可能なデータである。
 例えば、SARデータ1111は、計測値と、計測値に関連づけられた情報とを含む。計測値は、例えば、計測された、反射波の強度である。計測値に関連づけられた情報は、例えば、その反射波を観測したレーダの、その反射波を観測した時の位置および進行方向、ならびに、反射波の観測によって導出される反射点とレーダとの間の距離、等の情報を含む。SARデータ1111は、地表に対するレーダの俯角(各反射点から見たレーダの仰角)の情報を含んでもよい。位置に関する情報は、例えば、測地系における経度、緯度および高度の組で記述される。
 SARデータ1111は、SAR画像それ自体でもよい。
 なお、レーダによる計測において用いられる電磁波は、可視光よりも波長が長い電磁波(例えば、波長が100μm以上の電波)である。
 SARデータパラメータ1112は、SARデータ1111に含まれるデータと、基準の座標系との関係を示すパラメータである。言い換えれば、SARデータパラメータ1112は、SARデータ1111に含まれる計測値に、基準の座標系における位置を付与するためのパラメータである。
 例えば、SARデータ1111において、計測値に、測地系のもとで記述された、レーダの位置および方向、ならびにレーダと反射点との間の距離に関する情報が、関連づけられている場合、SARデータパラメータ1112は、その情報を、基準の座標系のもとで記述される情報に変換するパラメータである。
 SARデータ1111がSAR画像である場合、SAR画像の座標系は、SARデータパラメータ1112によって、基準の座標系に関連づけられる。すなわち、SAR画像における任意の点は、基準の座標系における一点に対応づけられる。
 モデルデータ1113は、地形や建物の構造等、物体の形状を三次元で表すデータである。モデルデータ1113は、例えば、DEM(Digital Elevation Model;数値標高モデル)である。モデルデータ1113は、構造物を含む地球表面のデータであるDSM(Digital Surface Model;数値表面モデル)でもよいし、地面の形状のデータであるDTM(Digital Terrain Model)と構造物の三次元データとの組み合わせでもよい。
 モデルデータ1113に用いられる座標系は、基準の座標系に関係づけられる。すなわち、モデルデータ1113内の任意の点は、基準の座標系における座標によって記述可能である。
 なお、記憶部111は、常に情報提供装置12の内部にデータを保持している必要はない。例えば、記憶部111は、情報提供装置12の外部の装置や記録媒体等にデータを記録し、必要に応じて、データを取得してもよい。すなわち、記憶部111は、以降で説明する情報提供装置12の各部の処理において、各部が要求するデータを取得できるよう構成されていればよい。
 ===条件設定部113===
 条件設定部113は、レイオーバ計算部114による計算に用いられる条件を設定する。条件設定部113は、第1の実施形態の条件設定部101の一例である。計算に用いられる条件は、例えば、観測対象の指定と、SARによるデータの取得の仕方(以下、「計測条件」と表記する)の指定とを含む。
 観測対象は、SARによる計測の対象であり、および取得された信号の観察および分析等が行われる対象である。条件設定部113は、例えば、情報提供装置12の利用者から、観測対象の指定を受け付ける。利用者は、例えば、モデルデータ1113に含まれる物体または領域を、入力装置を介して選択し、入力受付部112が、選択された物体または領域の情報を条件設定部113に送出する。条件設定部113は、選択された物体または領域を、指定された観測対象として決定すればよい。
 計測条件は、例えば、SARによる観測対象の計測を行う際の、レーダの状態および観測対象とレーダとの位置関係等を示す、種々のパラメータの値で表される。
 計測条件は、例えば、SARによる計測範囲、および、レーダの位置である。計測範囲およびレーダの位置は、基準の座標系または測地系における、座標の値によって表されてもよい。
 計測範囲は、観測対象を含む範囲の計測において、計測された信号(反射波)を発した反射点が存在する範囲である。計測範囲は、例えば、観測対象を計測するために照射される電磁波の照射範囲である。計測範囲は、観測対象からの信号と区別できない信号を発し得る地物が存在する範囲を含めばよい。
 なお、レーダは、例えば航空機または人工衛星に搭載されることが想定され、レーダの位置は観測対象を含む計測範囲から十分に遠いと見なされてよい。レーダの位置が計測範囲から十分に遠い場合、計測範囲に含まれるどの点からレーダを見ても、レーダの方位および仰角は等しいと見なせる。したがって、レーダの位置は、観測対象を含む計測範囲から見たレーダの方位および仰角の組で表されてもよい。なお、方位は、例えば、北を基準とする方位角で表されてもよい。
 ===レイオーバ計算部114===
 レイオーバ計算部114は、観測対象の表面上においてレイオーバが生じる地点または領域を検出する計算を行う。
 以下、レイオーバ計算部114による計算の具体例を説明する。
 [計算例1:レイオーバが生じる領域の検出]
 例えば、レイオーバ計算部114は、観測対象の表面において観測対象以外の地物によるレイオーバが生じる領域、すなわち、観測対象以外の地物からの信号が混ざる(別の言葉では、「重なる」)領域を、検出する。レイオーバ計算部114は、例えば、観測対象以外の地物からの信号の歪み方を計算することにより、観測対象の表面において観測対象以外の地物によるレイオーバが生じる領域を検出する。
 例として、図6に示される建物B1が観測対象であるとする。計測範囲には建物B1の他に建物B2があるとする。レーダの位置Sが図6において示される位置である場合、建物B2によるレイオーバが生じる領域、すなわち、建物B2からの信号が混ざる領域は、図6において網掛けで示された領域である。この領域は、建物B1および建物B2の位置関係と、計測条件とに基づいて導出される。
 レーダの位置Sが別の位置である場合の、レイオーバが生じる領域の例を、図7に示す。このように、レーダの位置によって、レイオーバが生じる領域は変化する。
 レーダが十分遠い場合、建物B2によるレイオーバが生じる領域は、レーダの進行方向とレーダから見た観測対象の方向とに垂直な方向で上空側から建物B2を見たときの、死角となる領域(オクルージョン領域)に等しい。したがって、レイオーバ計算部114は、観測対象以外の地物に対して、レーダの進行方向とレーダから見た観測対象の方向とに垂直な方向の、モデルデータの表面への平行射影を行うことによって、レイオーバが生じる領域を検出してもよい。
 ただし、上記のような計算は、レーダにとって観測対象よりも奥側に位置する地点からの信号の影響を検出する計算である。レイオーバ計算部114は、さらに、レーダにとって観測対象の手前側に位置する地点からの信号の影響を検出する計算を行ってもよい。
 例えば、図8に示されるように、計測範囲内において、建物B1よりもレーダ側に構造物M1があるとする。レイオーバ計算部114は、この構造物M1からの信号が混ざる、建物B1の表面上の領域を検出してもよい。点Sが十分に遠い場合は、構造物M1に対して、構造物M1から見たレーダの方向とレーダの進行方向とに垂直な、上空側に向かう方向の、モデルデータの表面への平行射影を行うことによって、上記領域は検出できる。
 [計算例2:サンプル点へのレイオーバの影響の判定]
 例えば、レイオーバ計算部114は、観測対象の表面におけるサンプル点について、その点がレイオーバの影響を受けるかを、判定する。
 点がレイオーバの影響を受けるとは、点からの信号が他の点からの信号と混ざる(重なる)ことである。ただし、観測対象が、平地に建つ建物である場合など、地面からの信号が必然的に混ざることが明らかな場合は、地面からの信号の影響は無視されてもよい。
 計算にあたり、レイオーバ計算部114は、観測対象の表面上から、複数のサンプル点を抽出する。サンプル点の抽出方法は問わない。レイオーバ計算部114は、所定数のサンプル点をランダムに選んでもよいし、特徴的な点を抽出する方法によってサンプル点を抽出してもよい。例えば、レイオーバ計算部114は、上述の非特許文献1に記載される恒久散乱点に相当する点を、サンプル点として抽出してもよい。レイオーバ計算部114は、設定された計測条件で計測可能な領域のみからサンプル点を抽出してもよい。なお、サンプル点が多いほど、後述の評価の精度は上がる。
 サンプル点を抽出したら、レイオーバ計算部114は、抽出されたサンプル点のそれぞれについて、そのサンプル点がレイオーバの影響を受けるかを、判定する。
 サンプル点からの信号に混ざる信号は、レーダにとって方向と距離とがサンプル点と区別できない点からの信号である。レーダの進行方向に対する分解能が十分であることを前提とすれば、方向がサンプル点と区別できない点は、サンプル点を含みレーダの進行方向に垂直な平面上の点である。また、距離がサンプル点と区別できない点は、レーダまでの距離がレーダとサンプル点との間の距離に等しい地点からの信号である。したがって、レイオーバ計算部114は、サンプル点を含みレーダの進行方向に垂直な平面上に含まれ、レーダまでの距離がレーダとサンプル点との間の距離に等しい地点が、モデルデータ1113の表面上に存在するか、を判定すればよい。
 レイオーバの影響を受けるサンプル点の例を、図9の概念図を参照しながら説明する。図9に示される例では、建物B1,B2が描かれている。建物B1が観測対象であり、点Pがサンプル点であるとする。点Pからの信号が観測されたときのレーダの位置が点Sである。点Sは十分に遠いとする。直線Lは、サンプル点を含みレーダの進行方向に垂直な平面上に含まれ、点Sと点Pをつなぐ線分に垂直な、点Pを通る直線である。直線Lは、言い換えれば、点Sと点Pとをつなぐ線分と、レーダの進行方向とに垂直な、点Pを通る直線である。
 上記の直線Lが、建物B2上の点Pおよび点Pに交わるとする。この場合、点Pおよび点Pからレーダまでの距離は、それぞれ、点Pからレーダまでの距離に等しい。したがって、点Pからの信号は点Pおよび点Pからの信号と混ざる、すなわち、点Pはレイオーバの影響を受ける。また、点Pからの信号は、直線Lと地面との交点である点Pからの信号とも混ざる。
 建物B1の表面上の点Pがレイオーバの影響を受けるかを判定する方法の例を、図10を参照しながら説明する。図10は、モデルデータ1113を、サンプル点Pとレーダの位置Sとを含みレーダの進行方向に垂直な平面で切り取った断面図である。線GLは基準となる三次元空間における基準面の断面線であり、線MLはモデルデータ1113が表す三次元構造の断面線である。仰角θは、線GLと、点Sと点Pとを結ぶ線分(線分S)とがなす角である。図10において、点Pを通り、線分Sに垂直な直線を直線Lとする。図10によれば、この直線Lは、線MLと点P、点P、および点Pで交わることがわかる。そのような場合、点Sが十分に遠いという前提に基づけば、点Sからの距離が点Sと点Pとの間の距離に等しい地点として、点P、点Pおよび点Pが存在するといえる。したがって、点Pからの信号は点P、点Pおよび点Pからの信号と混ざる、すなわち、点Pはレイオーバの影響を受ける、と判定できる。
 レイオーバ計算部114は、上述のように、サンプル点を通る、レーダの進行方向に垂直な平面上の(すなわち、レーダの進行方向に垂直な)、かつサンプル点とレーダの位置とを結ぶ線分とに垂直な、仮想的な直線が、サンプル点以外で地表(モデルデータの表面)と交わる点があるかを、判定すればよい。なお、上記仮想的な直線(図9および図10の例では、直線L)の傾き(基準面とのなす角)は、仰角θを用いて(90°-θ)と表せる。
 ただし、観測対象の構造が、建物B1のように平地から垂直にそびえる構造である場合、建物B1からの信号は、図10における点Pのように、サンプル点からの信号と混ざる信号を発する地点が必ず地面にも存在する。そのような事情に鑑み、レイオーバ計算部114は、上記直線が、サンプル点以外で地表(モデルデータの表面)と交わる点が2つ以上ある場合に、サンプル点はレイオーバの影響を受けると判定してもよい。あるいは、レイオーバ計算部114は、上記直線の、点Pよりも高度が高い方向(すなわち、上空側)だけを想定してもよい。
 なお、Sが十分に遠くない場合は、レイオーバ計算部114は、点Sと点Pとの間の距離を“R”として、点Sを中心とする半径が“R”の円弧と、線MLと、の交点を求めればよい。
 レイオーバ計算部114は、上記の例のようにして、サンプル点からの信号と混ざる信号を発する他の地点が存在するかを判定する。レイオーバ計算部114は、サンプル点からの信号と混ざる信号を発する他の地点の個数を算出してもよい。ただし、個数を算出する場合において、レイオーバ計算部114は、観測対象よりもレーダ側(地面側)にある点(図10に示される点P等)を無視してもよい。
 一例として、基準の座標系において、点Pの位置が(x,y,z)、レーダの仰角がθ、レーダの方位角がφ、と表されるとき、点Pから見た点Sの方向のベクトルの1つ(ベクトルvpとする)は、(cosφ,sinφ,tanθ)である。そのベクトルvpとレーダの進行方向とに垂直なベクトルの1つ(ベクトルvrとする)は、(-cosφ,-sinφ,1/tanθ)であるから、そのベクトルvrと同方向の、点Pを通る直線は、rを変数として、(x-r・cosφ,y-r・sinφ,z+r/tanθ)と表せる。レイオーバ計算部114は、上記の直線とモデルデータとの交点が点P以外に存在するかを調べればよい。レイオーバ計算部114は、点Pを除く、上記の直線とモデルデータとの交点の、個数を求めてもよい。
 ===評価部115===
 評価部115は、レイオーバ計算部114による計算の結果に基づいて、計算に使用された計測条件に対する評価を行う。具体的には、評価部115は、計測条件に対する評価値を導出する。そして、例えば、評価部115は、評価値を計測条件の情報に関連づける。評価部115は、第1の実施形態の評価部103の一例である。
 評価部115により行われる、計測条件に対する評価は、その計測条件に基づいた計測が行われた場合に観測対象が受けるレイオーバの影響の大きさの評価である。観測対象が受けるレイオーバの影響の大きさは、言い換えれば、観測対象からの信号と、観測対象以外の地物からの信号との、重なりの程度である。評価は、いわば、観測対象からの信号のノイズの少なさを示す指標となる。評価は、さらに言えば、観測対象の観測に好適な計測条件としての適切性を示す。なぜなら、他の地物からの信号が混ざっていないほど、観測対象からの信号に対する観察および分析等が行いやすくなるからである。
 以下、評価の具体例を説明する。
 [評価例1:レイオーバが生じる領域の大きさに基づく評価]
 レイオーバ計算部114が、観測対象の表面のうちレイオーバが生じる領域を検出する場合、評価部115は、レイオーバが生じる領域の大きさに基づいて評価値を導出してもよい。
 例えば、評価部115は、観測対象の表面のうち信号が計測可能な領域の面積に対する、レイオーバが生じる領域の面積の比を、1から引いた値を、評価値として算出してもよい。すなわち、評価値は、観測対象の表面のうち信号が計測可能な領域の面積に対する、レイオーバが生じない領域の面積の比でもよい。
 観測対象の表面のうち信号が計測可能な領域とは、レーダに対して死角となっていない領域である。
 評価値は、例えば「60%」のように、「%」を単位とする値で表される。評価値が大きいほど、評価は高いと解される。
 別の例として、評価値は、観測対象全体の表面積に対する、レイオーバが生じない領域の面積の比でもよい。
 [評価例2:レイオーバの影響を受けないサンプル点の個数に基づく評価]
 レイオーバ計算部114が、サンプル点がレイオーバの影響を受けるか否かを計算する場合、評価部115は、レイオーバの影響を受けないと判定されたサンプル点の個数に基づいて評価値を導出してもよい。
 例えば、評価部115は、レイオーバ判定が行われたサンプル点のうちレイオーバの影響を受けないと判定されたサンプル点の割合を、評価値として算出してもよい。
 あるいは、評価部115は、レイオーバの影響を受けないと判定されたサンプル点の個数を、評価値として算出してもよい。特に、恒久散乱点がサンプル点として抽出される場合は、レイオーバの影響を受けないサンプル点の個数が多いほど、その計測条件で得られる計測データは分析において特に有意義なデータとなる。
 評価部115は、各サンプル点の「重なり度」を考慮した評価を行ってもよい。本開示における「重なり度」とは、サンプル点からの信号に混ざる他の地点からの信号の個数である。例えば、図9および図10で例示されたサンプル点Pの重なり度は、3である。
 評価部115は、重なり度が同じサンプル点の個数に、重なり度に応じた重みづけを行い、重みづけにより得られた値の総和をサンプル点の総数で除した値を、評価値として算出してもよい。例えば、サンプル点をSP、SP、・・・、SP(nはサンプル点の総数)とし、サンプル点SP(1≦k≦n)の重なり度をmとした場合に、評価値は、Σk=1→n1/{(m+1)・n}で算出されてもよい。上記の式によれば、全てのサンプル点の重なり度が0であれば、評価値は1(=100%)となり、重なり度が高いサンプル点が多いほど評価値は低くなる。
 以上の計算例1または計算例2のようにして評価部115が評価を行った場合、より大きい評価値が付与された計測条件は、より観測対象の観測に好適な計測条件であると解釈できる。
 評価部115は、上述の評価方法で導出される評価値を第1の評価値として導出したあと、第1の評価値に基づいた評価値である第2の評価値を導出してもよい。第2の評価値は、例えば、第1の評価値と所定の閾値との関係に基づき導出される評価値でもよい。具体的には、例えば、評価部115は、第1の評価値が所定の閾値により示される値よりも低ければ第2の評価値として“B”を導出し、第1の評価値の値が所定の閾値以上であれば第2の評価値として“A”を導出してもよい。評価値は、「好適」または「不適」のように、文字列でもよい。
 あるいは、複数の計測条件に対して第1の評価値が算出された場合に、第2の評価値は、それぞれの評価値どうしの関係に基づき導出される評価値でもよい。具体的には、例えば、第2の評価値は、複数の計測条件の中での第1の評価値の大きさの序列を表す値でもよい。
 ===評価情報生成部116===
 評価情報生成部116は、評価部115が行った評価の結果を示す情報を、生成する。
 以下、評価の結果を示す情報を評価情報と表記する。
 評価情報は、例えば、評価値そのものを示す情報である。評価情報生成部116は、評価値を表示する画像を生成してもよい。複数の計測条件について評価が行われた場合、評価情報生成部116は、複数の計測条件と評価値との組を示す情報を生成してもよい。
 あるいは、評価情報は、例えば、評価値が所定の基準を満たす計測条件を示す情報である。所定の基準とは、例えば、評価値が40%以上である、という条件である。複数の計測条件について評価が行われた場合、評価情報生成部116は、評価値が所定の基準を満たす計測条件(例えば、評価値が40%以上である計測条件)とその評価値とを示す情報を生成してもよい。
 あるいは、評価情報は、例えば、評価値が所定の基準を満たす計測条件で取得されたSARデータ1111を示す情報である。評価情報生成部116は、評価情報として、評価値が所定の基準を満たす計測条件で取得されたSARデータ1111を、記憶部111から抽出し、その抽出されたSARデータ1111を示す情報を生成してもよい。この場合、情報提供装置12の利用者は、出力された情報が示すSARデータ1111の評価値が所定の基準を満たすことを知ることができる。
 あるいは、評価情報は、例えば、評価値が最も高いSARデータ1111を示す情報である。
 なお、SARデータ1111を示す情報は、例えば、SARデータ1111の識別子、SARデータ1111が記録されたファイル名、または、SARデータ1111に基づくSAR画像等である。あるいは、SARデータ1111を示す情報は、SARデータ1111から抽出される特徴点に相当する地点の位置が光学画像中に示された画像でもよい。特徴点とは、例えば、非特許文献1に記載される恒久散乱点である。光学画像は、例えば、航空写真等、カメラによる撮影により取得された画像である。
 図11は、特徴点に相当する地点の位置が光学画像中に示された画像の例である。評価情報生成部116は、例えば、観測対象が撮影された航空写真を取得し、その航空写真に、特徴点に相当する地点を示す表示(図11の例では、白塗りまたは黒塗りの小円)を重畳する。航空写真は、例えば記憶部111により記憶され、評価情報生成部116は航空写真を記憶部111から読み出されればよい。あるいは、評価情報生成部116は、入力受付部112を介して航空写真を取得してもよい。
 なお、特徴点に相当する地点を示す表示が航空写真において表示される位置(座標)は、SARデータパラメータ1112、モデルデータ1113、および航空写真を撮ったカメラと観測対象との位置関係等によって、特定可能である。
 評価情報生成部116は、上記の画像において、図11において網掛けで示されるように、観測対象以外の地物によるレイオーバが生じる領域を示してもよい。また、上記の画像において、特徴点に相当する地点を示す表示は、当該特徴点がレイオーバの影響を受けるか否かに応じて異なる表示態様で表示されることで、それぞれの特徴点がレイオーバの影響を受けるか否かが明示されてもよい。
 ===表示制御部117===
 表示制御部117は、評価情報生成部116により生成された評価情報を表示装置21に表示させる制御を行う。表示制御部117は、評価情報を表示するためのデータを表示装置21に出力することにより、表示装置21に評価情報を表示させる。
 表示制御部117は、第1の実施形態の出力部105の一例である。
 ===表示装置21===
 表示装置21は、表示制御部117から受け取った情報を表示する。
 表示装置21は、例えば、液晶モニタ、プロジェクタ等のディスプレイである。表示装置21は、タッチパネルのように、入力受付部112と同様の機能を有していてもよい。本実施形態の説明では、表示装置21は情報提供装置12の外部の装置として情報提供装置12に接続されているが、表示装置21が表示部として情報提供装置12の内部に含まれていてもよい。
 表示装置21による表示を見る閲覧者は、情報提供装置12による処理の結果を知る。具体的には、閲覧者は、評価情報生成部116により生成された評価情報を閲覧できる。
 <動作>
 情報提供装置12による処理の流れの概略を、図12のフローチャートに沿って説明する。
 まず、条件設定部113が、観測対象と計測条件とを設定する(ステップS111)。
 次に、レイオーバ計算部114が、観測対象におけるレイオーバが生じる地点または領域を検出する計算を行う(ステップS112)。
 次に、評価部115が、計算に基づき、計測条件に対する評価を行う(ステップS113)。
 次に、評価情報生成部116が、評価の結果を示す情報を生成する(ステップS114)。
 そして、表示制御部117が、生成された情報を表示させる制御を行う(ステップS115)。これにより、表示装置21が、評価の結果を示す情報を表示する。
 以下、情報提供装置12の動作の具体例を説明する。
 <動作の一例>
 図13は、情報提供装置12による処理の流れの具体例の一つを示すフローチャートである。
 まず、条件設定部113は、入力受付部112を介して、利用者による、観測対象の選択を受け付ける(ステップS111a1)。情報提供装置12は、例えば、モデルデータ1113を表示装置21に表示させ、モデルデータ1113に含まれる地物を入力装置を介して選択するよう、利用者に促してもよい。
 次に、条件設定部113は、観測対象を計測範囲に含むSARデータを特定する(ステップS111a2)。条件設定部113は、観測対象を計測範囲に含むSARデータを特定する情報を、利用者から受け付けてもよい。複数のSARデータが特定されてもよい。
 条件設定部113は、特定されたSARデータの計測条件を読み出す(ステップS111a3)。条件設定部113は、読み出した計測条件を、評価される計測条件として設定する。複数のSARデータが特定された場合は、条件設定部113は、その複数のSARデータのそれぞれの計測条件を読み出す。
 次に、レイオーバ計算部114が、計測条件に基づき、観測対象におけるレイオーバが生じる地点または領域を検出する計算を行う(ステップS112a1)。例えば、レイオーバ計算部114は、観測対象に含まれる複数個(例えば10個)のサンプル点を抽出し、抽出されたサンプル点のそれぞれについて、その点がレイオーバの影響を受けるかを、判定する。複数の計測条件が設定されている場合は、レイオーバ計算部114はそれぞれの計測条件に対して計算を行う。
 そして、評価部115が、レイオーバ計算部114による計算に基づき、読み出された計測条件に対する評価を行う(ステップS113a1)。例えば、評価部115は、複数個のサンプル点のうちレイオーバの影響を受けない点の数の割合を算出し、算出された値を評価値としてその計測条件に関連づける。
 次に、評価情報生成部116が、ステップS111a2の処理で特定されたSARデータのうち、評価値が所定の基準を満たす計測条件の計測により得られたSARデータを抽出する(ステップS114a1)。
 そして、評価情報生成部116は、評価情報として、抽出されたSARデータを示す情報を生成する(ステップS114a2)。例えば、評価情報生成部116は、抽出されたSARデータのリストを生成してもよい。図14は、抽出されたSARデータのリストの例を示す図である。評価情報生成部116は、図14に示すように、SARデータの識別子と評価値とが並んで記載された形式のデータを評価情報として生成してもよい。図14において示される「#01」~「#04」の記号が、抽出された(すなわち、評価値が所定の基準を満たす計測条件の計測により得られた、)SARデータの識別子である。評価情報生成部116は、SARデータの識別子を、評価値が高い順にソートしてもよい。
 あるいは、評価情報生成部116は、評価が最も高いSARデータのみを示す情報を生成してもよい。
 評価された計測条件が1つだけである場合は、評価情報生成部116は、評価値のみを示す情報を生成してもよい。
 評価情報生成部116は、SARデータを示す情報として、図11のような、SARデータ1111から抽出される特徴点に相当する地点の位置が光学画像中に示された画像を生成してもよい。
 そして、表示制御部117が、生成された情報を表示させる制御を行う(ステップS115a1)。これにより、評価情報生成部116により生成された評価情報が情報提供装置12の利用者に提供される。
 <動作の別の一例>
 図15は、情報提供装置12の動作の流れの別の具体例を示すフローチャートである。
 まず、条件設定部113は、入力受付部112を介して、利用者による、観測対象の選択を受け付ける(ステップS111b1)。
 次に、条件設定部113は、計測条件の一部をユーザから受け付ける(ステップS111b2)。受け付けられる計測条件の一部とは、例えば、仰角の指定、または方位角の指定である。
 次に、条件設定部113は、指定されなかった計測条件の値を複数通り設定し、複数の計測条件を設定する(ステップS111b3)。例えば、ステップS111b2の処理において方位角の指定のみが受け付けられた場合、仰角は未だ設定されていないので、評価情報生成部116は、仰角の値として0°、5°、10°、・・・、85°、など複数の値を設定し、それぞれの設定された値によって定まる計測条件を、評価される計測条件として設定する。
 次に、レイオーバ計算部114が、複数の計測条件のそれぞれについて、観測対象におけるレイオーバが生じる地点または領域を検出する計算を行う(ステップS112b1)。
 そして、評価部115が、レイオーバ計算部114による計算に基づき、複数の計測条件のそれぞれについて評価を行う(ステップS113b1)。
 次に、評価情報生成部116が、複数の計測条件に対する評価の結果を示す情報を生成する(ステップS114b1)。
 例えば、方位角が指定され、仰角が異なる複数の計測条件について評価値が導出された場合、評価情報生成部116は、それぞれの計測条件に係る仰角と評価値との関係を示すデータを生成してもよい。
 図16は、方位角が指定された場合の、各計測条件に係る仰角と評価値との関係を示すデータの一例を示す図である。図16に示される例では、評価値の範囲と、仰角の範囲との関連づけが表されている。
 仰角が指定され、方位角が異なる複数の計測条件について評価値が導出された場合、評価情報生成部116は、各計測条件に係る方位角と評価値との関係を示すデータを生成してもよい。なお、評価情報生成部116は、評価値が算出されていない仰角の評価値を補間してもよい。
 図17は、仰角が指定された場合の、各計測条件に係る方位角と評価値との関係を示すデータの一例を示す図である。図17に示される例では、方位角と評価値との関係がグラフで示されている。評価情報生成部116は、図17のようなグラフを示す画像を生成してもよい。評価情報生成部116は、評価値が算出されていない方位角の評価値を補間することで、このような連続的なグラフを生成してもよい。なお、このようなグラフにおいて、記憶部111に記憶されている、観測対象を含むSARデータ1111の、計測条件に相当する点がドットで示されてもよい。これにより、既に取得されているSARデータの計測条件と評価値とが容易にわかる。
 [計測条件の設定方法および評価情報の変形例]
 条件設定部113は、仰角および方位角の、範囲の指定を受け付けてもよい。そして、条件設定部113は、受け付けられた範囲内の仰角および方位角の組み合わせを作成し、その作成された組み合わせを、評価される計測条件として設定してもよい。
 あるいは、条件設定部113は、仰角および方位角の指定を受け付けなくてもよい。条件設定部113は、すべての仰角および方位角の範囲で、仰角および方位角の組み合わせを作成し、その作成された組み合わせを、評価される計測条件として設定してもよい。
 図18は、評価情報の別の一例である。評価情報生成部116は、図18に示されるように、複数の仰角のそれぞれについて方位角と評価値との関係が示されたグラフを生成してもよい。図17と同様、記憶部111に記憶されている、観測対象を含むSARデータ1111の、計測条件に相当する点がドットで示されてもよい。
 図19は、評価情報の別の一例である。評価情報生成部116は、図19に示されるように、観測対象B1を含む半球を表し、その半球の表面に評価値が関連づけられた領域が示された、画像を生成してもよい。半球の表面における一点は、仰角と方位角の組の一つに対応する。半球の表面における点に関連づけられた評価値は、その点の方向から観測対象を観測するような計測条件の評価値である。
 このような表示によって、情報提供装置12の利用者は、より評価が高い計測条件を容易に知ることができる。
 <効果>
 第2の実施形態に係る情報提供装置12によれば、第1の実施形態の情報提供装置11と同様、レーダによる計測データの取得、観察、および分析を支援する有用な情報が提供される。具体的には、条件設定部113により設定された計測条件に対する、評価部115による評価の結果を示す情報が、表示制御部117による制御によって提供される。評価は観測対象以外の地物からの信号による観測対象からの信号へのレイオーバの程度に基づくため、情報提供装置12の利用者は、計測データの取得、観察、および分析において問題となるレイオーバの影響についての知見を得ることができる。
 特に、条件設定部113が複数の計測条件を設定し、評価部115がそれぞれの計測条件に対して評価を行うことにより、情報提供装置12の利用者は、例えば、観測対象からの信号を得るのにより好適な計測条件を知ることができる。また、情報提供装置12の利用者は、観測対象を観察するのにより好適なSARデータを知ることができる。
 それにより、利用者は、より有意義な、計測データの取得、観察、および分析を行うことができる。
 [評価部115による評価の変形例]
 評価部115は、観測対象のオクルージョンの程度を考慮した評価を行ってもよい。
 観測対象のオクルージョンとは、計測において、観測対象の一部または全部がレーダから死角となることである。計測範囲に含まれているにも関わらずレーダからの死角になっている領域を、オクルージョン領域と称す。また、以下、観測対象の表面のうち、オクルージョン領域に含まれる表面の割合を、「オクルージョン率」と表記することとする。
 例えば、評価部115は、上述の評価方法による評価に加えて、オクルージョン率を算出してもよい。例として、観測対象の表面積が100m、オクルージョン領域に含まれる観測対象上の領域が60mである場合、オクルージョン率は60%である。
 オクルージョン率が低いほど、観測対象の観察および分析等は行いやすい。したがって、計測条件に対して算出されたオクルージョン率が低いほど、その計測条件は、計測対象の観察および分析等に好適であるといえる。
 評価部115は、第1の評価値または第2の評価値に、上記オクルージョン率を組み合わせることで、第3の評価値を算出してもよい。例えば、評価部115は、第1の評価値×(1-オクルージョン率)の値を、第3の評価値として算出してもよい。
 あるいは、評価部115は、第2の評価値が「好適」であり、かつオクルージョン率が所定値未満である計測条件の評価値を「好適」とし、それ以外の計測条件の評価値を「不適」とするように、各計測条件に第3の評価値を付与してもよい。
 本変形例によれば、観察および分析等をより行いやすい計測条件に高い評価値が与えられる。
 <<第3の実施形態>>
 本発明の第3の実施形態に係る情報提供装置13について説明する。図20は、情報提供装置13の構成を示すブロック図である。
 情報提供装置13は、表示装置21の代わりに記憶装置31に接続される。記憶装置31は、情報を記憶する装置である。記憶装置31は、例えば、ハードディスク、可搬メモリ等である。
 また、情報提供装置13は、情報提供装置12と比べると、表示制御部117の代わりに出力部118を備える。情報提供装置13が備える、出力部118以外の構成要素は、情報提供装置12が備える、表示制御部117以外の構成要素と同様である。
 出力部118による処理以外の、情報提供装置13の動作は、第2の実施形態の情報提供装置12の動作と同様でよい。すなわち、情報提供装置13は、情報提供装置12と同様、図12に示されるステップS111からステップS114の処理を行ってもよい。
 出力部118は、評価情報生成部116により生成された情報を、記憶装置31に出力する。出力部118は、第1の実施形態の出力部105の一例である。出力部118による出力により、記憶装置31が、情報提供装置13により生成された情報を記憶する。
 記憶装置31は、記憶された情報を、他の装置に出力してもよい。
 本実施形態によっても、レーダによる計測データの取得、観察、および分析を支援する有用な情報が提供される。
 <実施形態の各部を実現するハードウェアの構成>
 以上、説明した本発明の各実施形態において、各装置の各構成要素は、機能単位のブロックを示している。
 各構成要素の処理は、例えば、コンピュータシステムが、コンピュータ読み取り可能な記憶媒体により記憶された、その処理をコンピュータシステムに実行させるプログラムを、読み込み、実行することによって、実現されてもよい。「コンピュータ読み取り可能な記憶媒体」は、例えば、光ディスク、磁気ディスク、光磁気ディスク、および不揮発性半導体メモリ等の可搬媒体、ならびに、コンピュータシステムに内蔵されるROM(Read Only Memory)およびハードディスク等の記憶装置である。「コンピュータ読み取り可能な記憶媒体」は、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントにあたるコンピュータシステム内部の揮発性メモリのように、プログラムを一時的に保持しているものも含む。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、更に前述した機能をコンピュータシステムにすでに記憶されているプログラムとの組み合わせで実現できるものであってもよい。
 「コンピュータシステム」とは、一例として、図21に示されるようなコンピュータ900を含むシステムである。コンピュータ900は、以下のような構成を含む。
・CPU(Central Processing Unit)901
・ROM902
・RAM(Random Access Memory)903
・RAM903へロードされるプログラム904Aおよび記憶情報904B
・プログラム904Aおよび記憶情報904Bを格納する記憶装置905
・記憶媒体906の読み書きを行うドライブ装置907
・通信ネットワーク909と接続する通信インタフェース908
・データの入出力を行う入出力インタフェース910
・各構成要素を接続するバス911
 例えば、各実施形態における各装置の各構成要素は、その構成要素の機能を実現するプログラム904AをCPU901がRAM903にロードして実行することで実現される。各装置の各構成要素の機能を実現するプログラム904Aは、例えば、予め、記憶装置905やROM902に格納される。そして、必要に応じてCPU901がプログラム904Aを読み出す。記憶装置905は、例えば、ハードディスクである。プログラム904Aは、通信ネットワーク909を介してCPU901に供給されてもよいし、予め記憶媒体906に格納されており、ドライブ装置907に読み出され、CPU901に供給されてもよい。なお、記憶媒体906は、例えば、光ディスク、磁気ディスク、光磁気ディスク、および不揮発性半導体メモリ等の、可搬媒体である。
 各装置の実現方法には、様々な変形例がある。例えば、各装置は、構成要素毎にそれぞれ別個のコンピュータ900とプログラムとの可能な組み合わせにより実現されてもよい。また、各装置が備える複数の構成要素が、一つのコンピュータ900とプログラムとの可能な組み合わせにより実現されてもよい。
 また、各装置の各構成要素の一部または全部は、その他の汎用または専用の回路、コンピュータ等やこれらの組み合わせによって実現されてもよい。これらは、単一のチップによって構成されてもよいし、バスを介して接続される複数のチップによって構成されてもよい。
 各装置の各構成要素の一部または全部が複数のコンピュータや回路等により実現される場合には、複数のコンピュータや回路等は、集中配置されてもよいし、分散配置されてもよい。例えば、コンピュータや回路等は、クライアントアンドサーバシステム、クラウドコンピューティングシステム等、各々が通信ネットワークを介して接続される形態として実現されてもよい。
 上記実施形態の一部または全部は以下の付記のようにも記載され得るが、以下には限られない。
 <<付記>>
[付記1]
 レーダを用いた地表の形状の計測における、計測される範囲に含まれる地物である観測対象、および前記観測対象とレーダとの位置関係を含む、計測条件を設定する条件設定手段と、
 前記計測条件に対して、前記観測対象以外の地物からの信号による、前記観測対象からの信号への、レイオーバの程度に基づく評価を行う評価手段と、
 前記評価の結果を示す情報を出力する出力手段と、
 を備える、情報提供装置。
[付記2]
 前記観測対象の表面における、レイオーバの影響を受ける点または領域を検出する計算を行う計算手段を備え、
 前記評価手段は、検出された点の個数または検出された領域の大きさに基づき前記評価を行う、
 付記1に記載の情報提供装置。
[付記3]
 前記出力手段は、前記計算手段により検出された点または領域を明示する画像を出力する、付記2に記載の情報提供装置。
[付記4]
 前記計算手段は、前記観測対象の表面から、電磁波に対する散乱特性が恒久的である地点を抽出し、抽出された前記地点が、レイオーバの影響を受けるかを判定し、
 前記評価手段は、レイオーバの影響を受けると判定された前記地点の個数に基づき前記評価を行う、
 付記2または3に記載の情報提供装置。
[付記5]
 前記評価手段は、前記計測条件のもとで計測が行われた場合の前記観測対象におけるオクルージョンの程度にも基づく前記評価を行う、付記1から4のいずれか一つに記載の情報提供装置。
[付記6]
 前記条件設定手段は、前記評価が行われる前記計測条件として、計測結果が存在する前記計測条件を設定する、付記1から5のいずれか一つに記載の情報提供装置。
[付記7]
 前記出力手段は、前記条件設定手段により設定された複数の前記計測条件のうち、前記評価による評価値が最も高い前記計測条件による前記計測結果を示すデータを出力する、付記6に記載の情報提供装置。
[付記8]
 前記条件設定手段は、前記計測条件に含まれ得るパラメータを複数通り設定することで複数の計測条件を設定し、
 前記評価手段は、前記複数の計測条件に対して評価値を付与し、
 前記出力手段は、前記パラメータと前記評価値との関係を示すデータを出力する、
 付記1から5のいずれか一つに記載の情報提供装置。
[付記9]
 レーダを用いた地表の形状の計測における、計測される範囲に含まれる地物である観測対象、および前記観測対象とレーダとの位置関係を含む、計測条件を設定し、
 前記計測条件に対して、前記観測対象以外の地物からの信号による、前記観測対象からの信号への、レイオーバの程度に基づく評価を行い、
 前記評価の結果を示す情報を出力する、
 を備える、情報提供方法。
[付記10]
 前記観測対象の表面における、レイオーバの影響を受ける点または領域を検出する計算を行い、
 検出された点の個数または検出された領域の大きさに基づき前記評価を行う、
 付記9に記載の情報提供方法。
[付記11]
 前記計算により検出された点または領域を明示する画像を出力する、付記10に記載の情報提供方法。
[付記12]
 前記観測対象の表面から、電磁波に対する散乱特性が恒久的である地点を抽出し、抽出された前記地点が、レイオーバの影響を受けるかを判定し、
 レイオーバの影響を受けると判定された前記地点の個数に基づき前記評価を行う、
 付記10または11に記載の情報提供方法。
[付記13]
 前記計測条件のもとで計測が行われた場合の前記観測対象におけるオクルージョンの程度にも基づく前記評価を行う、付記9から12のいずれか一つに記載の情報提供方法。
[付記14]
 前記評価が行われる前記計測条件として、計測結果が存在する前記計測条件を設定する、付記9から13のいずれか一つに記載の情報提供方法。
[付記15]
 計測結果が存在する複数の前記計測条件のうち、前記評価による評価値が最も高い前記計測条件による前記計測結果を示すデータを出力する、付記14に記載の情報提供方法。
[付記16]
 前記計測条件に含まれ得るパラメータを複数通り設定することで複数の計測条件を設定し、
 前記複数の計測条件に対して評価値を付与し、
 前記パラメータと前記評価値との関係を示すデータを出力する、
 付記9から13のいずれか一つに記載の情報提供方法。
[付記17]
 レーダを用いた地表の形状の計測における、計測される範囲に含まれる地物である観測対象、および前記観測対象とレーダとの位置関係を含む、計測条件を設定する条件設定処理と、
 前記計測条件に対して、前記観測対象以外の地物からの信号による、前記観測対象からの信号への、レイオーバの程度に基づく評価を行う評価処理と、
 前記評価の結果を示す情報を出力する出力処理と、
 をコンピュータに実行させるプログラムを記憶する、コンピュータ読み取り可能な非一時的な記憶媒体。
[付記18]
 前記観測対象の表面における、レイオーバの影響を受ける点または領域を検出する計算を行う計算処理を前記コンピュータに実行させ、
 前記評価処理は、検出された点の個数または検出された領域の大きさに基づき前記評価を行う、
 付記17に記載の記憶媒体。
[付記19]
 前記出力処理は、前記計算処理により検出された点または領域を明示する画像を出力する、付記18に記載の記憶媒体。
[付記20]
 前記計算処理は、前記観測対象の表面から、電磁波に対する散乱特性が恒久的である地点を抽出し、抽出された前記地点が、レイオーバの影響を受けるかを判定し、
 前記評価処理は、レイオーバの影響を受けると判定された前記地点の個数に基づき前記評価を行う、
 付記18または19に記載の記憶媒体。
[付記21]
 前記評価処理は、前記計測条件のもとで計測が行われた場合の前記観測対象におけるオクルージョンの程度にも基づく前記評価を行う、付記17から20のいずれか一つに記載の記憶媒体。
[付記22]
 前記条件設定処理は、前記評価が行われる前記計測条件として、計測結果が存在する前記計測条件を設定する、付記17から21のいずれか一つに記載の記憶媒体。
[付記23]
 前記出力処理は、前記条件設定処理により設定された複数の前記計測条件のうち、前記評価による評価値が最も高い前記計測条件による前記計測結果を示すデータを出力する、付記22に記載の記憶媒体。
[付記24]
 前記条件設定処理は、前記計測条件に含まれ得るパラメータを複数通り設定することで複数の計測条件を設定し、
 前記評価処理は、前記複数の計測条件に対して評価値を付与し、
 前記出力処理は、前記パラメータと前記評価値との関係を示すデータを出力する、
 付記17から21のいずれか一つに記載の記憶媒体。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 11、12、13  情報提供装置
 101  条件設定部
 103  評価部
 105  出力部
 111  記憶部
 112  入力受付部
 113  条件設定部
 114  レイオーバ計算部
 115  評価部
 116  評価情報生成部
 117  表示制御部
 118  出力部
 1111  SARデータ
 1112  SARデータパラメータ
 1113  モデルデータ
 21  表示装置
 31  記憶装置
 900  コンピュータ
 901  CPU
 902  ROM
 903  RAM
 904A  プログラム
 904B  記憶情報
 905  記憶装置
 906  記憶媒体
 907  ドライブ装置
 908  通信インタフェース
 909  通信ネットワーク
 910  入出力インタフェース
 911  バス

Claims (24)

  1.  レーダを用いた地表の形状の計測における、計測される範囲に含まれる地物である観測対象、および前記観測対象とレーダとの位置関係を含む、計測条件を設定する条件設定手段と、
     前記計測条件に対して、前記観測対象以外の地物からの信号による、前記観測対象からの信号への、レイオーバの程度に基づく評価を行う評価手段と、
     前記評価の結果を示す情報を出力する出力手段と、
     を備える、情報提供装置。
  2.  前記観測対象の表面における、レイオーバの影響を受ける点または領域を検出する計算を行う計算手段を備え、
     前記評価手段は、検出された点の個数または検出された領域の大きさに基づき前記評価を行う、
     請求項1に記載の情報提供装置。
  3.  前記出力手段は、前記計算手段により検出された点または領域を明示する画像を出力する、請求項2に記載の情報提供装置。
  4.  前記計算手段は、前記観測対象の表面から、電磁波に対する散乱特性が恒久的である地点を抽出し、抽出された前記地点が、レイオーバの影響を受けるかを判定し、
     前記評価手段は、レイオーバの影響を受けると判定された前記地点の個数に基づき前記評価を行う、
     請求項2または3に記載の情報提供装置。
  5.  前記評価手段は、前記計測条件のもとで計測が行われた場合の前記観測対象におけるオクルージョンの程度にも基づく前記評価を行う、請求項1から4のいずれか一項に記載の情報提供装置。
  6.  前記条件設定手段は、前記評価が行われる前記計測条件として、計測結果が存在する前記計測条件を設定する、請求項1から5のいずれか一項に記載の情報提供装置。
  7.  前記出力手段は、前記条件設定手段により設定された複数の前記計測条件のうち、前記評価による評価値が最も高い前記計測条件による前記計測結果を示すデータを出力する、請求項6に記載の情報提供装置。
  8.  前記条件設定手段は、前記計測条件に含まれ得るパラメータを複数通り設定することで複数の計測条件を設定し、
     前記評価手段は、前記複数の計測条件に対して評価値を付与し、
     前記出力手段は、前記パラメータと前記評価値との関係を示すデータを出力する、
     請求項1から5のいずれか一項に記載の情報提供装置。
  9.  レーダを用いた地表の形状の計測における、計測される範囲に含まれる地物である観測対象、および前記観測対象とレーダとの位置関係を含む、計測条件を設定し、
     前記計測条件に対して、前記観測対象以外の地物からの信号による、前記観測対象からの信号への、レイオーバの程度に基づく評価を行い、
     前記評価の結果を示す情報を出力する、
     を備える、情報提供方法。
  10.  前記観測対象の表面における、レイオーバの影響を受ける点または領域を検出する計算を行い、
     検出された点の個数または検出された領域の大きさに基づき前記評価を行う、
     請求項9に記載の情報提供方法。
  11.  前記計算により検出された点または領域を明示する画像を出力する、請求項10に記載の情報提供方法。
  12.  前記観測対象の表面から、電磁波に対する散乱特性が恒久的である地点を抽出し、抽出された前記地点が、レイオーバの影響を受けるかを判定し、
     レイオーバの影響を受けると判定された前記地点の個数に基づき前記評価を行う、
     請求項10または11に記載の情報提供方法。
  13.  前記計測条件のもとで計測が行われた場合の前記観測対象におけるオクルージョンの程度にも基づく前記評価を行う、請求項9から12のいずれか一項に記載の情報提供方法。
  14.  前記評価が行われる前記計測条件として、計測結果が存在する前記計測条件を設定する、請求項9から13のいずれか一項に記載の情報提供方法。
  15.  計測結果が存在する複数の前記計測条件のうち、前記評価による評価値が最も高い前記計測条件による前記計測結果を示すデータを出力する、請求項14に記載の情報提供方法。
  16.  前記計測条件に含まれ得るパラメータを複数通り設定することで複数の計測条件を設定し、
     前記複数の計測条件に対して評価値を付与し、
     前記パラメータと前記評価値との関係を示すデータを出力する、
     請求項9から13のいずれか一項に記載の情報提供方法。
  17.  レーダを用いた地表の形状の計測における、計測される範囲に含まれる地物である観測対象、および前記観測対象とレーダとの位置関係を含む、計測条件を設定する条件設定処理と、
     前記計測条件に対して、前記観測対象以外の地物からの信号による、前記観測対象からの信号への、レイオーバの程度に基づく評価を行う評価処理と、
     前記評価の結果を示す情報を出力する出力処理と、
     をコンピュータに実行させるプログラムを記憶する、コンピュータ読み取り可能な非一時的な記憶媒体。
  18.  前記観測対象の表面における、レイオーバの影響を受ける点または領域を検出する計算を行う計算処理を前記コンピュータに実行させ、
     前記評価処理は、検出された点の個数または検出された領域の大きさに基づき前記評価を行う、
     請求項17に記載の記憶媒体。
  19.  前記出力処理は、前記計算処理により検出された点または領域を明示する画像を出力する、請求項18に記載の記憶媒体。
  20.  前記計算処理は、前記観測対象の表面から、電磁波に対する散乱特性が恒久的である地点を抽出し、抽出された前記地点が、レイオーバの影響を受けるかを判定し、
     前記評価処理は、レイオーバの影響を受けると判定された前記地点の個数に基づき前記評価を行う、
     請求項18または19に記載の記憶媒体。
  21.  前記評価処理は、前記計測条件のもとで計測が行われた場合の前記観測対象におけるオクルージョンの程度にも基づく前記評価を行う、請求項17から20のいずれか一項に記載の記憶媒体。
  22.  前記条件設定処理は、前記評価が行われる前記計測条件として、計測結果が存在する前記計測条件を設定する、請求項17から21のいずれか一項に記載の記憶媒体。
  23.  前記出力処理は、前記条件設定処理により設定された複数の前記計測条件のうち、前記評価による評価値が最も高い前記計測条件による前記計測結果を示すデータを出力する、請求項22に記載の記憶媒体。
  24.  前記条件設定処理は、前記計測条件に含まれ得るパラメータを複数通り設定することで複数の計測条件を設定し、
     前記評価処理は、前記複数の計測条件に対して評価値を付与し、
     前記出力処理は、前記パラメータと前記評価値との関係を示すデータを出力する、
     請求項17から21のいずれか一項に記載の記憶媒体。
PCT/JP2017/020172 2017-05-31 2017-05-31 情報提供装置、情報提供方法、および記憶媒体 WO2018220732A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/020172 WO2018220732A1 (ja) 2017-05-31 2017-05-31 情報提供装置、情報提供方法、および記憶媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/020172 WO2018220732A1 (ja) 2017-05-31 2017-05-31 情報提供装置、情報提供方法、および記憶媒体

Publications (1)

Publication Number Publication Date
WO2018220732A1 true WO2018220732A1 (ja) 2018-12-06

Family

ID=64454625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020172 WO2018220732A1 (ja) 2017-05-31 2017-05-31 情報提供装置、情報提供方法、および記憶媒体

Country Status (1)

Country Link
WO (1) WO2018220732A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185375A (ja) * 2007-01-29 2008-08-14 Mitsubishi Electric Corp Sar画像の3d形状算出装置及びsar画像の歪補正装置
JP2009258386A (ja) * 2008-04-16 2009-11-05 Asia Air Survey Co Ltd 最適斜め写真提供方法及び最適斜め写真提供システム並びに最適斜め写真提供装置
WO2015151134A1 (ja) * 2014-04-04 2015-10-08 三菱電機株式会社 レーダ信号処理装置
JP2016090361A (ja) * 2014-11-04 2016-05-23 国立研究開発法人情報通信研究機構 Sarインターフェログラムからの垂直構造の抽出方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185375A (ja) * 2007-01-29 2008-08-14 Mitsubishi Electric Corp Sar画像の3d形状算出装置及びsar画像の歪補正装置
JP2009258386A (ja) * 2008-04-16 2009-11-05 Asia Air Survey Co Ltd 最適斜め写真提供方法及び最適斜め写真提供システム並びに最適斜め写真提供装置
WO2015151134A1 (ja) * 2014-04-04 2015-10-08 三菱電機株式会社 レーダ信号処理装置
JP2016090361A (ja) * 2014-11-04 2016-05-23 国立研究開発法人情報通信研究機構 Sarインターフェログラムからの垂直構造の抽出方法

Similar Documents

Publication Publication Date Title
JP6349937B2 (ja) 変動検出装置、変動検出方法および変動検出用プログラム
JP6349938B2 (ja) 測定点情報提供装置、変動検出装置、方法およびプログラム
US11604274B2 (en) Apparatus and method for composition for dual-polarization weather radar observation data using earth spherical coordinate system
JP2011209780A (ja) 変化領域特定装置および変化領域特定プログラム。
Khalid et al. Open-source digital elevation model (DEMs) evaluation with GPS and LiDAR data
JP2021502557A (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
AU2016396487A1 (en) Map creation system and map creation method
CN102121996B (zh) 地震资料采集质量显示方法和装置
Ortiz Arteaga et al. Initial investigation of a low-cost automotive lidar system
CN103503033B (zh) 基于置信分值来合并三维模型
Dubois et al. SAR-SIFT for matching multiple SAR images and radargrammetry
KR20190124625A (ko) 인공위성 센서와 지상관측망을 이용한 입자상 물질의 연직 분포 분석시스템, 분석장치, 및 분석방법
Okojie et al. Relative canopy height modelling precision from UAV and ALS datasets for forest tree height estimation
JP7020418B2 (ja) 情報処理装置、情報処理方法、およびプログラム
WO2018220732A1 (ja) 情報提供装置、情報提供方法、および記憶媒体
WO2018211625A1 (ja) 情報処理装置、情報処理方法、プログラムを記憶した記憶媒体
US11995761B2 (en) Methods and system for generating virtual sensor data of a virtual single-photon avalanche diode (SPAD) lidar sensor of a virtual vehicle simulator
US11978158B2 (en) Determining minimum region for finding planar surfaces
Hagstrom et al. Line-of-sight analysis using voxelized discrete lidar
US20220179063A1 (en) Image processing device, image processing method, and image processing computer program
KR20150090731A (ko) 표적 식별 정보 데이터베이스 구축 장치 및 방법
JP2007114102A (ja) レーダ画像処理装置、レーダ画像識別方法およびレーダ画像識別プログラム
KR102481537B1 (ko) 영상 데이터와 지형 고도 데이터를 이용하여 이동체의 방위각 및 자세를 추정하는 장치 및 방법
Maleika et al. Visualisation of multibeam echosounder measurement data
KR101969863B1 (ko) Dsm 기반 항법위성의 관측환경 시뮬레이션 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP