WO2018211625A1 - 情報処理装置、情報処理方法、プログラムを記憶した記憶媒体 - Google Patents
情報処理装置、情報処理方法、プログラムを記憶した記憶媒体 Download PDFInfo
- Publication number
- WO2018211625A1 WO2018211625A1 PCT/JP2017/018524 JP2017018524W WO2018211625A1 WO 2018211625 A1 WO2018211625 A1 WO 2018211625A1 JP 2017018524 W JP2017018524 W JP 2017018524W WO 2018211625 A1 WO2018211625 A1 WO 2018211625A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- point
- candidate
- information
- information processing
- image
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/04—Systems determining presence of a target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/42—Simultaneous measurement of distance and other co-ordinates
- G01S13/426—Scanning radar, e.g. 3D radar
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
- G01S13/58—Velocity or trajectory determination systems; Sense-of-movement determination systems
- G01S13/60—Velocity or trajectory determination systems; Sense-of-movement determination systems wherein the transmitter and receiver are mounted on the moving object, e.g. for determining ground speed, drift angle, ground track
- G01S13/605—Velocity or trajectory determination systems; Sense-of-movement determination systems wherein the transmitter and receiver are mounted on the moving object, e.g. for determining ground speed, drift angle, ground track using a pattern, backscattered from the ground, to determine speed or drift by measuring the time required to cover a fixed distance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/9004—SAR image acquisition techniques
Definitions
- This disclosure relates to processing of data acquired by a radar.
- Synthetic Aperture Radar observes the state of the surface of the earth by irradiating electromagnetic waves from above and acquiring the intensity of electromagnetic waves reflected by backscattering (hereinafter also referred to as “reflected waves”).
- SAR Synthetic Aperture Radar
- Non-Patent Document 1 describes a technique called PS-InSAR (Permanent Scatterer Interferometric SAR), which is a technique for analyzing a permanent scattering point (Permanent Scatterer; PS) in data obtained by SAR.
- PS-InSAR Permanent Scatterer Interferometric SAR
- the permanent scattering point is a point at which the scattering characteristic with respect to the electromagnetic wave is constant (also referred to as being stable), that is, hardly changes over time.
- PS-InSAR it is possible to observe changes in topography by observing the displacement of permanent scattering points in SAR data acquired multiple times.
- the reflected wave data obtained by SAR is represented by, for example, a two-dimensional map of reflected wave intensity (hereinafter, “SAR image”).
- SAR image is a map in which the reflected wave is regarded as a reflected wave from a defined reference plane (for example, the ground) and the intensity of the reflected wave is represented on a plane representing the reference plane.
- the position where the intensity of the reflected wave is represented in the SAR image is based on the distance between the position where the reflected wave is generated and the position of the antenna that receives the reflected wave. Therefore, the intensity of the reflected wave from a position away from the reference plane (that is, the altitude is not 0) is shifted to the radar side according to the height from the reference plane in the SAR image according to the height from the reference plane. It is expressed as As a result, the image formed in the SAR image by the reflected wave from the object whose shape is not flat is an image in which the shape of the actual object is distorted. The phenomenon in which such a distorted image is generated is called foreshortening.
- Patent Documents 1 and 2 disclose apparatuses that perform correction processing called ortho correction in order to correct foreshortening.
- Patent Document 3 discloses a technique for correcting not only foreshortening but also a phenomenon called layover.
- the layover is a phenomenon in which a reflected wave signal from a position at a certain height and a reflected wave signal from a position different from the position overlap in the SAR image.
- the ortho correction as disclosed in Patent Documents 1 and 2 is not assumed to be performed on a SAR image in which a layover has occurred.
- the ortho correction is a correction in which the position of a point where distortion occurs in the SAR image is shifted to a position estimated as a true position where a signal (reflected wave) represented at the point is generated.
- the ortho correction is a correction performed on the assumption that there is one position candidate that is estimated to be a true position where a reflected wave is emitted at a point to be corrected.
- Patent Document 3 discloses a method for correcting layover, but this method requires a plurality of SAR images having different distortion methods. Thus, in the absence of any supplemental information, the reflected waves from two or more points that contribute to the signal at a point in the region where layover occurs in one SAR image are distinguished. That is impossible in principle.
- layover that is, if a candidate point that contributes to a signal at a certain point in the SAR image is not narrowed down, a person can select a candidate point that contributes to the signal while viewing the SAR image and the optical image. It is customary to estimate based on experience and various information.
- the images used in the present invention are obtained by other methods for estimating the state of an object by observing the reflection of electromagnetic waves such as images based on RAR (Real Aperture Radar) in addition to SAR images. It may be an image.
- RAR Real Aperture Radar
- An information processing apparatus includes a position in a three-dimensional space of a target point, which is a point specified in an intensity map of a signal from an observed object acquired by a radar, and a shape of the observed object Based on the candidate point extraction means for extracting candidate points that are points that contribute to the signal at the target point, and, based on the geographic information indicating the state of the ground surface including the candidate points for the candidate points, And an evaluation unit that evaluates reliability related to the analysis of the signal generated by the candidate point, and an output unit that outputs information indicating a result of the evaluation.
- An information processing method includes a position in a three-dimensional space of a target point, which is a point specified in an intensity map of a signal from an observed object acquired by a radar, and a shape of the observed object Based on the above, candidate points that are points that contribute to the signal at the target point are extracted, and the candidate points are issued to the candidate points based on geographic information indicating the state of the ground surface including the candidate points. The reliability related to the analysis of the signal is evaluated, and information indicating the result of the evaluation is output.
- a program is configured to determine a position in a three-dimensional space of a target point, which is a point specified in an intensity map of a signal from an observed object acquired by a radar, and a shape of the observed object. Based on candidate point extraction processing for extracting candidate points that are points that contribute to the signal at the target point, and geographic information indicating the state of the ground surface that includes the candidate points for the candidate points.
- the computer is caused to execute an evaluation process for evaluating reliability related to the analysis of the signal generated by the point, and an output process for outputting information indicating the result of the evaluation.
- the program is stored in, for example, a computer-readable non-transitory storage medium.
- useful information is provided regarding points that contribute to a signal at a point in a region where a layover occurs in an intensity map of a signal from an observed object acquired by a radar.
- FIG. 1 is a diagram for explaining layover.
- an observation device S 0 that performs observation by SAR and an object M that exists in the observed range are shown.
- Observation device S for example, mounting the radar, a satellite or aircraft or the like.
- Observation device S while moving the sky, transmits electromagnetic waves by the radar receives the reflected waves.
- the arrows indicate the traveling direction of the observation device S 0 , that is, the radar traveling direction (also referred to as azimuth direction).
- Observation equipment S waves emitted from 0 reflects the ground, and the back-scattered by some structure M on the ground, part of the reflected wave is received back to the radar. Thereby, the distance between the electromagnetic wave reflection point of the position and the structure M of the observation devices S 0 is specified.
- a point Q a is a point on the ground
- a point Q b is a point on the surface of the structure M away from the ground.
- the distance between the observation equipment S 0 and the point Q a is equal to the distance between the observation equipment S 0 and the point Q b.
- the straight line connecting the point Q b and the point Q a, and the traveling direction of the radar are in a vertical relationship.
- the reflected wave at the point Q a, the reflected wave at the point Q b can not be distinguished by taking the observation equipment S 0. That is, the intensity of the reflected waves from the intensity of the reflected wave and the point Q b from the point Q a, is observed intermingled.
- FIG. 2 An example of an image representing the intensity distribution of the reflected wave (hereinafter referred to as “SAR image”) generated in such a case is shown in FIG.
- the arrow indicates the traveling direction of the radar.
- the SAR image is generated based on the intensity of the reflected wave received by the radar and the distance between the point where the reflected wave is emitted and the radar.
- reflected waves from two or more points that are on the plane perpendicular to the traveling direction of the radar including the position of the radar and are equal in distance from the radar are not distinguished.
- Point P is a point which reflects the intensity of the reflected wave from a point Q a, the strength indicated in this respect P, is also reflected in the strength of the reflected wave from the point Q b.
- a white area including the point P is an area where a layover has occurred.
- an area painted black represents an area shaded by the structure M against the radar. This region is also called radar shadow.
- a reference three-dimensional space is defined in the processing performed by the information processing apparatus 11.
- a three-dimensional coordinate system is defined for the reference three-dimensional space.
- this three-dimensional coordinate system is referred to as a reference three-dimensional coordinate system or a reference coordinate system.
- the reference coordinate system may be, for example, a geodetic system or a coordinate system of model data 1113 that is three-dimensional data described later.
- the first coordinate system is related to the second coordinate system. Is written.
- FIG. 3 is a block diagram showing a configuration of the information processing apparatus 11 according to the first embodiment.
- the information processing apparatus 11 includes a storage unit 111, a feature point extraction unit 112, a geocoding unit 113, a candidate point extraction unit 114, an evaluation unit 115, and an output information generation unit 116.
- the storage unit 111, the feature point extraction unit 112, the geocoding unit 113, the candidate point extraction unit 114, the evaluation unit 115, and the output information generation unit 116 are connected so that they can communicate data with each other.
- data exchange between the respective units of the information processing apparatus 11 may be performed directly via a signal line, or may be performed by reading and writing to a shared storage area (for example, the storage unit 111).
- data movement is described by the words “send data” and “receive data”, but the method of transmitting data is not limited to the method of transmitting directly.
- the information processing apparatus 11 is connected to the display device 21 so as to be communicable.
- the storage unit 111 stores SAR data 1111, SAR data parameters 1112, model data 1113, geographic information 1114, and a spatial image 1115.
- SAR data 1111 is data obtained by observation using SAR.
- Targets observed by the SAR (hereinafter also referred to as “observed object”) are, for example, the ground and buildings.
- the SAR data 1111 is data that can generate at least a SAR image represented under a coordinate system related to a reference coordinate system.
- the SAR data 1111 includes an observation value and information associated with the observation value.
- the observed value is, for example, the intensity of the observed reflected wave.
- the information associated with the observation value is, for example, the position and traveling direction of the radar that observed the reflected wave, and the position between the reflected point and the radar derived from the observation of the reflected wave. Information such as distance.
- the SAR data 1111 may include information on the depression angle of the radar (the elevation angle of the radar viewed from the reflection point) with respect to the object to be observed. The information regarding the position is described by, for example, a combination of longitude, latitude, and altitude in the geodetic system.
- the SAR data 1111 may be a SAR image itself.
- observation data by SAR is assumed as data to be used.
- data of observation results by, for example, RAR (Real Aperture Radar) is used instead of SAR. May be used.
- the electromagnetic wave used in the measurement by the radar is an electromagnetic wave having a wavelength longer than that of visible light (for example, a radio wave of 100 ⁇ m or more).
- the SAR data parameter 1112 is a parameter indicating the relationship between the data included in the SAR data 1111 and the reference coordinate system.
- the SAR data parameter 1112 is a parameter for assigning a position in the reference coordinate system to the observation value included in the SAR data 1111.
- the SAR data 1111 when the observation value is associated with the information about the position and direction of the radar and the distance between the radar and the observed object described under the geodetic system, the SAR data
- the parameter 1112 is a parameter for converting the information into information described under a reference coordinate system.
- the coordinate system of the SAR image is related to the reference coordinate system by the SAR data parameter 1112. That is, an arbitrary point in the SAR image is associated with one point in the reference coordinate system.
- the model data 1113 is data representing the shape of an object in three dimensions, such as topography and building structure.
- the model data 1113 is, for example, DEM (Digital Elevation Model; digital elevation model).
- the model data 1113 may be a DSM (Digital Surface Model) that is data of the earth surface including a structure, or a DTM (Digital Terrain Model) that is data of the shape of the ground.
- the model data 1113 may have DTM and three-dimensional data of a structure separately.
- the coordinate system used for the model data 1113 is related to the reference coordinate system. That is, an arbitrary point in the model data 1113 can be described by coordinates in the reference coordinate system.
- the geographic information 1114 is information representing the state of the ground surface. More specifically, the geographic information 1114 is information in which an index value indicating the state of the ground surface is associated with a point or region on the ground surface.
- earth's surface includes the surface of a structure on the ground.
- the index indicating the state of the ground surface is, for example, NDVI (Normalized Difference Vegetation Index) which is an index indicating the state of vegetation.
- NDVI Near-infrared light
- NIR the intensity of the reflected near-infrared light
- VIS the intensity of the reflected red light. The larger the value of NDVI, the darker the vegetation. This is because the darker the vegetation, the better the red light is absorbed and the near infrared light is more strongly reflected.
- the geographic information 1114 may be, for example, information in which a value of NDWI (Normalized Difference Water Index) that is an index of water on the ground surface is recorded in association with the ground surface.
- Document 1 also describes a method for calculating NDWI.
- NDWI is also an index based on the reflectance of visible red light and near infrared light. In an area containing a lot of water, the electromagnetic wave from the radar is not easily scattered back in the direction of the radar. This is because electromagnetic waves are likely to be specularly reflected in a region containing a lot of water.
- the geographic information 1114 may be a pixel value of each pixel in the optical image.
- the pixel value of the point in the optical image is information indicating the state of the ground surface at the point on the ground surface corresponding to the point.
- the pixel value is, for example, an RGB value.
- the pixel value may be a luminance value indicating brightness.
- the optical image may be a spatial image 1115 described later. That is, geographic information 1114 may be acquired from a spatial image 1115 described later.
- the geographic information 1114 may be SAR data.
- the signal strength of the point in the SAR data is information indicating the state of the ground surface at the point on the ground surface corresponding to the point.
- the space image 1115 is an image in which a space including the SAR observed object is captured.
- the spatial image 1115 may be, for example, any of optical images such as satellite photographs and aerial photographs, maps, topographic maps, and CG (Computer Graphics) images representing the topography.
- the aerial image 1115 may be a projection view of the model data 1113.
- the spatial image 1115 the geographical shape and arrangement of the object in the space represented by the spatial image 1115 are browsed by the user of the information processing apparatus 11 (that is, the image output by the information processing apparatus 11). It is an image that is easy to understand intuitively.
- the spatial image 1115 may be captured from outside the information processing apparatus 11 or may be generated by projecting the model data 1113 by an image generation unit 1163 described later.
- the space image 1115 may be associated with shooting condition information that is information related to shooting conditions of the space image 1115.
- the imaging condition of the spatial image 1115 is how the spatial image 1115 is acquired.
- the shooting condition information is information that can uniquely specify the shooting range of the spatial image 1115.
- the shooting condition information is represented by a plurality of parameter values related to the shooting range of the spatial image 1115, for example.
- the spatial image is a captured image captured from a specific position, and a subject (for example, an imaging device such as a camera) that has performed the imaging is referred to as an imaging object.
- a subject for example, an imaging device such as a camera
- the imaging body may be virtually assumed. .
- the photographing condition information is described by, for example, the position of the photographing object and information indicating the range of the photographing object.
- the imaging condition information includes coordinates in the reference coordinate system of the photographic body and four coordinates in the reference coordinate system corresponding to the points that appear in the four corners of the spatial image 1115. And may be described by:
- the shooting range is an area surrounded by four half lines extending from the position of the shooting body to the four coordinates.
- the position of the photographing object is strictly the position of the viewpoint of the photographing object with respect to the spatial image 1115, but in practice, the information on the position of the photographing object does not have to be exact.
- the information indicating the position of the photographing body may be information on a position acquired by a device having a GPS (Global Positioning System) function mounted on a device (aircraft, artificial satellite, etc.) on which the photographing body is mounted.
- GPS Global Positioning System
- the information indicating the position in the shooting condition information is given by, for example, a set of values of parameters (for example, longitude, latitude, and altitude) in the reference coordinate system. That is, the position in the reference three-dimensional space of any point included in the range of the space included in the spatial image 1115 can be uniquely specified by the shooting condition information.
- the spatial image 1115 at that point is based on the shooting condition information. The position in can be uniquely identified.
- Each parameter of the shooting condition information may be a parameter in a coordinate system different from the reference coordinate system.
- the imaging condition information only needs to include a conversion parameter for converting the parameter value in the coordinate system to the parameter value in the reference coordinate system.
- the shooting condition information may be described by, for example, the position, posture, and angle of view of the shooting body.
- the posture of the photographing object can be described by a photographing direction, that is, an optical axis direction of the photographing object at the time of photographing, and a parameter indicating a relationship between a vertical direction of the spatial image 1115 and a reference coordinate system.
- the angle of view can be described by parameters indicating a vertical viewing angle and a horizontal viewing angle.
- the information indicating the position of the photographic body is described by the value of a parameter indicating the direction of the photographic body viewed from the subject. May be.
- the information indicating the position of the photographic object may be a set of azimuth and elevation angle.
- the storage unit 111 does not always need to hold data in the information processing apparatus 11.
- the storage unit 111 may record data on a device or a recording medium outside the information processing apparatus 11 and acquire the data as necessary. That is, the storage unit 111 only needs to be configured to acquire data requested by each unit in the processing of each unit of the information processing apparatus 11 described below.
- a feature point is a point extracted by a predetermined method from points indicating signal intensity that is not at least 0 in the SAR data 1111. That is, the feature point extraction unit 112 extracts one or more points from the SAR data 1111 by a predetermined method for extracting points.
- the points extracted from the SAR data 1111 are a data group related to one point in the SAR image (for example, a set of an observation value and information associated with the observation value).
- the feature point extraction unit 112 extracts feature points by, for example, a method of extracting points that may give useful information in the analysis of the SAR data 1111.
- the feature point extraction unit 112 may extract the permanent scattering points specified by the above-described PS-InSAR as feature points.
- the feature point extraction unit 112 may extract a point that satisfies a predetermined condition (for example, the signal intensity exceeds a predetermined threshold) as the feature point.
- a predetermined condition for example, the signal intensity exceeds a predetermined threshold
- This predetermined condition may be set by a user or a designer of the information processing apparatus 11, for example.
- the feature point extraction unit 112 may extract points selected by human judgment as feature points.
- the feature point extraction unit 112 sends the extracted feature point information to the geocoding unit 113.
- the feature point information includes at least information capable of specifying coordinates in the reference coordinate system.
- the feature point information is represented by the position and traveling direction of the observation device that has acquired the SAR data in the range including the feature point, and the distance between the observation device and the signal reflection point at the feature point.
- the geocoding unit 113 converts the information based on the SAR data parameter 1112 into information represented by the position, traveling direction, and distance of the observation device in the reference coordinate system. Then, the geocoding unit 113 identifies points (coordinates) that satisfy all of the following conditions in the reference coordinate system. -The distance between the point and the position of the observation device is the distance indicated by the feature point information. ⁇ Included in a plane perpendicular to the direction of travel of the observation equipment.
- the coordinates of the identified point are the coordinates in the reference coordinate system of the feature point indicated by the feature point information.
- the geocoding unit 113 assigns the coordinates of the points specified in this way to the feature points indicated by the feature point information.
- candidate point a point related to the feature point (hereinafter, “candidate point”) with the feature point given the coordinate in the reference coordinate system.
- the candidate points related to the feature points will be described below.
- the signal intensity indicated at the feature point (referred to as point P) in the region where the layover occurs may be the sum of the intensity of the reflected waves from a plurality of points.
- a point in the three-dimensional space that may contribute to the signal intensity indicated at the point P is referred to as a candidate point related to the point P in this embodiment.
- FIG. 4 is a diagram for explaining an example of candidate points.
- FIG. 4 is a cross-sectional view of the reference three-dimensional space cut out by a plane passing through the point P and perpendicular to the radar traveling direction (azimuth direction).
- a line GL is a cross-sectional line of a reference plane in a reference three-dimensional space, that is, a plane on which a feature point is located.
- a line ML is a cross-sectional line having a three-dimensional structure represented by the model data 1113.
- Point S 1 is a point indicating the position of the radar.
- the position of the point P is the position of the coordinates given by the geocoding unit 113.
- the distance between the points P and S 1 is assumed to be "R".
- Reflected in the signal intensity indicated at the point P is a reflected wave from a point whose distance from the point S 1 is “R” in the cross-sectional view. That is, the point involved in the point P is the point at which arc centered on the point S 1 radius "R” intersects the line ML.
- points Q 1 , Q 2 , Q 3 , and Q 4 are points other than the point P where the circular arc with the radius “R” centering on the point S 1 intersects the line ML. Therefore, these points Q 1 , Q 2 , Q 3 , Q 4 are candidate points related to the point P.
- the candidate point extraction unit 114 extracts, as candidate points, points on the plane that includes the point P and that is perpendicular to the traveling direction of the radar and whose distance from the radar is equal to the distance between the radar and the point P. That's fine.
- the candidate points extracted by the candidate point extraction unit 114 may be points Q 1 , Q 2 , Q 4 excluding the point Q 3 .
- the candidate point extracting unit 114 based on the line segment connecting the point Q 3 and the point S 1 is crossing the line ML outside point Q 3, may exclude the point Q 3 from the candidate point.
- the three-dimensional space as a reference according to a plane perpendicular to the point P as the azimuth direction, the section line of the model data 1113, the position of the point S 1 and the point P, In addition, the distance “R” between the point S 1 and the point P.
- a candidate point Q 3 is that a straight line passing through point Q 3 and parallel to the incident line of the electromagnetic wave from the radar intersects line ML (ie, is in the radar shadow). May be removed from the point.
- the candidate point extraction unit 114 may extract candidate points under the approximation that the incident directions of the electromagnetic waves from the observation device to the object to be observed are all parallel to each other.
- the position of the candidate point can be calculated using the azimuth and depression angle ⁇ of the point S 1 instead of the coordinate of the point S 1 and the distance “R”.
- the candidate point extraction unit 114 sends the candidate points related to the feature points to the evaluation unit 115 and the output information generation unit 116.
- Evaluation performed by the evaluation unit 115 is evaluation of high reliability as an analysis target.
- PS-InSAR it is possible to observe the change in topography by following the change over time in the position of the point where the reflection signal is generated.
- the point to be tracked is a point where the scattering characteristics with respect to radio waves are stable.
- the reliability as the object of analysis can be paraphrased as, for example, the possibility that the scattering characteristic with respect to radio waves is stable.
- the evaluation unit 115 may evaluate the possibility that the candidate point is a stable point with respect to radio wave scattering characteristics, for example, as an evaluation of the reliability as a candidate point analysis target.
- the evaluation unit 115 evaluates the degree of contribution of the signal from the candidate point to the strength of the signal indicated by the feature point as an evaluation of the reliability as an object of the candidate point analysis. Also good.
- the evaluation unit 115 performs the evaluation as follows, for example.
- the evaluation unit 115 derives an evaluation value representing the high reliability of the candidate point based on the geographic information 1114.
- the geographic information 1114 indicates information on the state of the ground surface.
- the evaluation unit 115 acquires state information at the position of the candidate point based on the geographic information 1114, and derives an evaluation value based on the acquired information. For example, it is assumed that the larger the evaluation value is, the higher the reliability is.
- the evaluation unit 115 acquires the NDVI value at the position of the candidate point. And the evaluation part 115 derives
- NDVI is an index representing the vegetation status of the ground surface, and it is considered that reflection of electromagnetic waves is more likely to occur at points where the value of NDVI is smaller. In addition, as the vegetation is darker, electromagnetic waves are more likely to be diffusely reflected, and stable backscattering is less likely to occur.
- the evaluation value of the candidate point is derived by an evaluation method in which the evaluation value increases as the value of NDVI decreases, a larger evaluation value is given to a point with higher reliability as an analysis target.
- the evaluation unit 115 may derive the evaluation value of the candidate point by an evaluation method in which the evaluation value increases as the NDWI value decreases.
- NDWI is also correlated with the likelihood of electromagnetic wave reflection (backscattering). Further, the ground or water surface containing a lot of moisture is not suitable as an analysis target because the shape is not stable. Therefore, even with the evaluation method based on NDWI, a higher evaluation value is given to a point with higher reliability.
- a point having a large evaluation value greatly contributes to the strength of the signal detected by the radar and has a stable scattering characteristic with respect to the electromagnetic wave. Can be interpreted.
- the evaluation unit 115 may derive the evaluation value of the candidate point using information on the state of the ground surface having a correlation with the reliability in addition to NDVI and NDWI.
- the evaluation unit 115 calculates a luminance gradient of a local region including a candidate point in the optical image using an optical image in which a predetermined region including the candidate point is captured, and the evaluation value increases as the calculated luminance gradient increases.
- the evaluation value may be derived by an evaluation method that gives Such an evaluation method is based on the fact that the larger the luminance gradient, the more uneven the surface of the region, and the higher the intensity of the electromagnetic wave reflected in the radar direction. Therefore, also by this evaluation method, the evaluation unit 115 can evaluate the reliability of the candidate points. In this evaluation method, the evaluation unit 115 may use a value indicating luminance variation instead of the luminance gradient.
- the evaluation unit 115 may derive the evaluation based on SAR data obtained by measuring the candidate points (different from the SAR data 1111 that has been processed by the feature point extraction unit 112). For example, the evaluation unit 115 may derive the evaluation value by an evaluation method that gives a higher evaluation value as the signal strength at the candidate point indicated by the SAR data is higher.
- the evaluation unit 115 may derive a second evaluation value that is an evaluation value based on the first evaluation value after deriving the evaluation value derived by the above-described evaluation method as the first evaluation value.
- the second evaluation value may be an evaluation value derived based on the relationship between the first evaluation value and a predetermined criterion, for example. Specifically, for example, the evaluation unit 115 derives “B” as the second evaluation value if the value of the first evaluation value is lower than the value indicated by the predetermined reference, and the first evaluation value If the value is equal to or greater than the value indicated by a predetermined criterion, “A” may be derived as the second evaluation value.
- the second evaluation value may be an evaluation value derived based on the relationship between the evaluation values of a plurality of candidate points for which the first evaluation value is calculated.
- the second evaluation value may be a value representing an order of magnitude of the first evaluation value in a group of candidate points related to the same feature point.
- the second evaluation value may be a value obtained by integrating the evaluation values derived as the first evaluation values by a plurality of evaluation methods by averaging or the like.
- FIG. 6 is a diagram illustrating an example of candidate points and evaluation values associated with each candidate point by the evaluation unit 115.
- the evaluation unit 115 may generate data as illustrated in FIG. 6 as a result of the evaluation.
- the output information generation unit 116 generates an image in which a plurality of candidate points are displayed in a display mode according to the evaluation value.
- the display mode is a state of display determined by, for example, the shape, size, color, brightness, transparency, movement, and change with time of a figure to be displayed.
- the “candidate point display mode” is a display mode for displaying the position of the candidate point.
- Display candidate points means to display a display indicating the positions of candidate points.
- a point display image an image in which a plurality of candidate points are displayed in a display mode corresponding to the evaluation value is referred to as a point display image.
- the output information generation unit 116 generates a point display image
- the output information generation unit 116 includes a display mode determination unit 1161, a display position determination unit 1162, an image generation unit 1163, and a display control unit 1164.
- the output information generation unit 116 outputs a point display image through processing by each component in the output information generation unit 116.
- the output information generation unit 116 receives, as input data, the position of the spatial image that is one of the spatial images 1115 and the candidate point extracted by the candidate point extraction unit 114 in the reference three-dimensional space, and Evaluation information is given.
- the output information generation unit 116 reads a spatial image used for the point display image from the spatial image 1115 stored in the storage unit 111.
- the output information generation unit 116 may determine the image to be read based on an instruction from the user, for example.
- the output information generation unit 116 may accept information specifying one of the plurality of spatial images 1115 from the user.
- the output information generation unit 116 may receive information specifying a range in the three-dimensional space and read a spatial image including the specified range.
- the output information generation unit 116 may accept information designating feature points or candidate points that the user desires to display. Then, the output information generation unit 116 may specify a range in the reference three-dimensional space including the designated feature point or candidate point, and read a spatial image including the specified range. Note that the information that specifies the feature points or candidate points that the user desires to display may be information that specifies the SAR data 1111.
- the output information generation unit 116 may cut out a part of the spatial image 1115 stored in the storage unit 111 and read it out as a spatial image to be used. For example, when the output information generation unit 116 reads out a spatial image based on candidate points that the user desires to display, the output information generation unit 116 cuts out a range including all the candidate points from the spatial image 1115 and uses the cut-out image as a space to use You may read as an image.
- the display mode determination unit 1161 determines the display mode of candidate points.
- the display mode determination unit 1161 determines the display mode for each candidate point based on the evaluation value given to the candidate point.
- the display mode determination unit 1161 may use data defining the relationship between the evaluation value and the display mode. That is, an evaluation value given to a candidate point may specify a display mode associated with the data in the data, and the specified display mode may be determined as a display mode of the candidate point.
- FIG. 7 is a diagram showing an example of data defining the relationship between the evaluation value and the display mode.
- the example of FIG. 7 shows the relationship between each evaluation value and the brightness of the display when the evaluation value is given as an integer in the range of 1 to 10.
- the display mode determination unit 1161 determines that the display opacity indicating the position of the candidate point having the evaluation value “5” is “70%”.
- the opacity is a scale indicating the degree to which the pixel value of the graphic contributes to the pixel value at the position where the graphic is superimposed when the graphic to be displayed is superimposed on the image. The lower the opacity, the lower the contribution of the pixel value of the graphic at the position where the graphic is displayed.
- the display mode determination unit 1161 may determine a different display mode according to the evaluation value by deriving a parameter related to the display mode by calculation using the evaluation value.
- the display mode determination unit 1161 may calculate the saturation of the display of the candidate points using an expression of evaluation value / 10. As described above, the display mode determination unit 1161 may calculate the saturation of the display of the candidate points by a calculation method that increases as the evaluation value increases.
- Parameters related to the display mode are not limited to opacity and lightness.
- the parameter set according to the evaluation value is, for example, a parameter that defines the shape, size, color, brightness, transparency, movement, and change with time of the figure to be displayed. But you can.
- the display mode determination unit 1161 may determine the display mode so that, for example, the display of candidate points to which a large evaluation value is assigned is more conspicuously displayed.
- the display position determination unit 1162 determines the display position of the candidate point displayed in the point display image.
- the display position determination unit 1162 specifies the position of the candidate point in the spatial image, for example, by calculation based on the shooting condition information.
- the display position determination unit 1162 specifies the shooting range and shooting direction of the spatial image based on the shooting condition information. Then, the display position determination unit 1162 obtains a cut surface of the shooting range by a plane that includes the candidate point and is perpendicular to the shooting direction. The positional relationship between the cut surface and the candidate point corresponds to the positional relationship between the spatial image and the candidate point.
- the display position determination unit 1162 may specify the coordinates of the candidate points when the coordinates of the cut surface are related to the coordinates of the spatial image.
- the identified coordinates are the coordinates of candidate points in the spatial image.
- the optical satellite image may be corrected by ortho correction or the like.
- the position where the candidate point is indicated is also corrected.
- the position of the candidate point may be corrected using the correction parameter used in the correction for the optical satellite image.
- the above-described method for specifying the position of the candidate point in the spatial image is an example.
- the display position determination unit 1162 may specify the position of the candidate point in the spatial image based on the position of the candidate point in the reference coordinate system and the relationship between the spatial image and the reference coordinate system.
- the image generation unit 1163 generates a point display image. Specifically, the image generation unit 1163 generates an image in which a display indicating the position of the candidate point is superimposed on the spatial image as a point display image.
- “generating an image” means generating data for displaying an image.
- the format of data generated by the image generation unit 1163 is not limited to the image format.
- the image generated by the image generation unit 1163 may be data having information necessary for the display device 21 to display.
- the image generation unit 1163 superimposes the display indicated by the display mode determined by the display mode determination unit 1161 on the spatial image at the position determined by the display position determination unit 1162. Thereby, a spatial image in which candidate points are displayed, that is, a point display image is generated.
- the display control unit 1164 performs control to display the point display image generated by the image generation unit 1163 on the display device 21. For example, the display control unit 1164 outputs the point display image to the display device 21 to cause the display device 21 to display the point display image.
- the display device 21 is a display such as a liquid crystal monitor or a projector.
- the display device 21 may have a function as an input unit like a touch panel.
- the display device 21 is connected to the information processing device 11 as an external device of the information processing device 11, but even if the display device 21 is included in the information processing device 11 as a display unit. Good.
- the viewer who sees the display on the display device 21 knows the result of the processing by the information processing device 11. Specifically, the viewer can observe the point display image generated by the image generation unit 1163.
- the feature point extraction unit 112 of the information processing apparatus 11 acquires the SAR data 1111 from the storage unit 111 (S111).
- the acquired SAR data 1111 includes at least SAR data in a range included in the spatial image used in step S117 described later.
- the feature point extraction unit 112 extracts feature points from the acquired SAR data 1111 (step S112).
- the geocoding unit 113 assigns coordinates indicating the position of the feature point in the reference coordinate system to the extracted feature point (step S113).
- the geocoding unit 113 sends the coordinates assigned to the extracted feature points to the candidate point extraction unit 114.
- the candidate point extraction unit 114 extracts candidate points related to the feature point based on the coordinates of the feature point and the model data 1113 (step S114). That is, the candidate point extraction unit 114 specifies the coordinates of candidate points related to the feature points. Then, the candidate point extraction unit 114 sends the coordinates of the candidate points to the evaluation unit 115 and the output information generation unit 116.
- the candidate point extraction unit 114 may store the coordinates of the candidate points in the storage unit 111 in a format in which the feature points and the candidate points are associated with each other.
- the evaluation unit 115 evaluates the candidate points (step S115). Then, the evaluation unit 115 sends information indicating the evaluation of the candidate points to the output information generation unit 116.
- the output information generation unit 116 generates a point display image in which the positions of the candidate points in the spatial image are displayed in a display mode according to the evaluation (step S116).
- the display mode determination unit 1161 determines the display mode of each candidate point based on the evaluation given by the evaluation unit 115.
- the display position determination unit 1162 determines the display position of the candidate point in the spatial image based on the position of the candidate point, the shooting condition information, and the model data 1113.
- the image generation unit 1163 generates a point display image, which is a spatial image on which candidate points are displayed, based on the determined display mode and the determined position.
- the output information generation unit 116 reads a spatial image used for generating a point display image from the storage unit 111 when performing the process of step S116.
- the timing at which the spatial image read by the output information generation unit 116 is determined may be before or after the timing at which the SAR data acquisition process is performed. That is, in one example, the information processing apparatus 11 specifies the SAR data 1111 that is data obtained by measuring a range including the range included in the determined spatial image after the spatial image to be used is determined, The identified SAR data 1111 may be acquired in step S111.
- the information processing apparatus 11 performs the processes from step S111 to step S115 in advance on the SAR data 1111 in a range that can be included in the spatial image 1115 before the spatial image to be used is determined. May be. Information generated in each processing from step S112 to step S115 may be held in the storage unit 111, for example.
- the output information generation unit 116 determines candidate points to be displayed by specifying candidate points included in the range of the spatial image based on the shooting condition information. May be.
- the display control unit 1164 of the output information generation unit 116 performs control to display the generated point display image (step S118), whereby the display device 21 displays the point display image.
- FIG. 9 is an example of a point display image generated by the information processing apparatus 11 and displayed by the display device 21. Thirteen small circles indicating the positions of the thirteen candidate points are each displayed in a display mode corresponding to the evaluation value. In the example of FIG. 9, the brightness of the graphic displayed at the position of each candidate point depends on the evaluation value. For example, if the viewer knows that the higher the lightness, the higher the evaluation is, the display allows the viewer to easily know the candidate points with high evaluation, that is, candidate points with high reliability. be able to.
- a viewer can easily understand a point that contributes to a signal at a point in a region where a layover occurs in the SAR image.
- the reason is that the candidate point extraction unit 114 extracts candidate points that may have contributed to the signal at the feature points based on the model data 1113, and the image generation unit 1163 displays the space where the candidate points are displayed. This is because a point display image that is an image is generated.
- the evaluation unit 115 and the output information generation unit 116 provide the user of the information processing apparatus 11 with information indicating the evaluation of the candidate points.
- the user can see a point display image in which a plurality of candidate points are displayed in a display mode corresponding to the evaluation by the evaluation unit 115.
- the viewer can easily know candidate points that are highly evaluated among a plurality of candidate points, that is, have high reliability as an analysis target. This effect is particularly noticeable when the candidate points to which a large evaluation value is assigned are displayed more conspicuously.
- the evaluation information given to the candidate point related to the feature is useful for analyzing the variation of the topography.
- the viewer can obtain accurate information regarding the change in the terrain by observing the displacement of the permanent scattering point using the SAR data 1111 over a plurality of times.
- ⁇ Modification 1 In the operation example of the information processing apparatus 11 described above, the order of the process of step S111 and the process of step S112 may be reversed. That is, the feature point extraction unit 112 may extract a feature point from the points given coordinates by the geocoding unit 113.
- the image generation unit 1163 may generate a point display image in which a candidate point having the highest evaluation among a plurality of candidate points contributing to the signal of the same feature point is displayed in a display mode that is most noticeable. With such a configuration, the viewer can easily know the candidate point with the highest reliability among the plurality of candidate points contributing to the signal of the same feature point.
- the output information generation unit 116 may exclude candidate points whose evaluation value is equal to or less than a predetermined threshold from the displayed candidate points. That is, the output information generation unit 116 may identify candidate points having an evaluation value larger than a predetermined threshold among candidate points extracted by the candidate point extraction unit 114 included in the range included in the spatial image. . Then, the output information generation unit 116 may generate a point display image in which only the identified candidate points are displayed.
- FIG. 10 is an example of a point display image in which only candidate points whose evaluation value is larger than a predetermined threshold are displayed. Thus, by discarding the displayed candidate points, the viewer can focus only on information on candidate points with high evaluation.
- the display mode determination unit 1161 may be further configured to determine the display mode so that the display mode of candidate points related to a specific feature point is different from the display mode of other candidate points.
- the display mode determination unit 1161 may determine the display mode so that candidate points related to the feature points designated by the user are displayed in white and other candidate points are displayed in black.
- FIG. 11 is a block diagram illustrating a configuration of the information processing apparatus 11 a including the designation receiving unit 117.
- the designation accepting unit 117 accepts designation of feature points from the user of the information processing apparatus 11a, for example.
- the information processing apparatus 11a may cause the display device 21 to display a SAR image showing feature points.
- designated reception part 117 may receive selection of 1 or more of the feature points shown in the SAR image by a user. The selection may be performed via an input / output device such as a mouse. The selected feature point is the designated feature point.
- the designation accepting unit 117 may accept designation of a plurality of feature points.
- the designation receiving unit 117 sends information on the designated feature point to the output information generating unit 116.
- the designated feature point information is, for example, an identification number or coordinates associated with each feature point.
- the output information generation unit 116 identifies candidate points related to the specified feature point. For example, the output information generation unit 116 may cause the candidate point extraction unit 114 to extract candidate points related to the designated feature point and receive information on the extracted candidate points. Alternatively, when information that associates the feature points with the candidate points is stored in the storage unit 111, the output information generation unit 116 may specify the candidate points based on the information.
- the designation receiving unit 117 may receive designation of candidate points instead of designation of feature points. For example, the user may select any candidate point among candidate points included in the point display image displayed by the process of step S117.
- the designation accepting unit 117 may accept the selection and specify a feature point related to the selected candidate point.
- designated reception part 117 may specify the candidate point which concerns on the feature point.
- the display mode determination unit 1161 determines a display mode different from the display mode of other candidate points as the display mode of the identified candidate points. Then, the image generation unit 1163 generates a point display image in which candidate points are displayed according to the determined display mode. By displaying this point display image on the display device 21, the viewer can see information on candidate points related to the designated feature point.
- FIG. 12 is a diagram illustrating an example of a point display image generated by the information processing apparatus 11a according to the fourth modification.
- the display size of candidate points related to a specific feature point is larger than the display size of other candidate points.
- FIG. 13 is a diagram illustrating another example of the point display image generated by the information processing apparatus 11a according to the fourth modification. In FIG. 13, only candidate points related to a specific feature point are displayed.
- Such a display allows the viewer to better understand the candidate points. That is, the viewer can compare evaluations between candidate points related to a specific feature point. The viewer can know, for example, the degree of contribution of the displayed candidate points to the signals of specific feature points.
- FIG. 14 is a block diagram illustrating a configuration of the information processing apparatus 12.
- the information processing device 12 is connected to the storage device 31 instead of the display device 21.
- the information processing apparatus 12 includes an output information generation unit 126 instead of the output information generation unit 116.
- the rest of the configuration of the information processing device 12 is the same as the configuration of the information processing device 11.
- the storage device 31 is a device that stores information.
- the storage device 31 is, for example, a hard disk or a portable memory.
- the output information generation unit 126 generates output data for outputting information indicating the relationship between the evaluation by the evaluation unit 115 and the candidate points. For example, the output information generation unit 126 generates a point display image in which the identified candidate points are displayed in a manner different from other candidate points. For example, the output information generation unit 126 generates a data set indicating the relationship between candidate points and evaluation values.
- the generated data set is, for example, tabular data.
- the output information generation unit 126 outputs the generated output data to the storage device 31. Thereby, the storage device 31 stores the information generated by the information processing device 12.
- the storage device 31 may output the stored information to another information processing device.
- This embodiment also provides useful information regarding points that contribute to the signal at points in the region where the layover occurs in the intensity map of the signal from the observed object acquired by the radar.
- FIG. 15 is a block diagram illustrating a configuration of the information processing apparatus 10.
- the information processing apparatus 10 includes a candidate point extraction unit 104, an evaluation unit 105, and an output unit 106.
- Candidate point extraction unit 104 determines the target point based on the position in the three-dimensional space of the target point, which is a point specified in the intensity map of the signal from the target object acquired by the radar, and the shape of the target object Candidate points that are points that contribute to the signal at the point are extracted.
- the candidate point extraction unit 114 of each of the above embodiments is an example of the candidate point extraction unit 104.
- the signal is, for example, a signal of a reflected wave of a radio wave transmitted from a radar.
- the signal intensity map is, for example, a SAR image.
- a point specified in the intensity map is associated with a point in the three-dimensional space.
- An example of the target point is a feature point in the first embodiment. Note that the shape of the object to be observed is given by, for example, three-dimensional model data.
- the evaluation unit 105 evaluates the reliability of the candidate points extracted by the candidate point extraction unit 104 based on the geographic information indicating the state of the ground surface including the candidate points for the analysis of the signal emitted by the candidate points. Do.
- the evaluation unit 115 in each of the above embodiments is an example of the evaluation unit 105.
- the output unit 106 outputs information indicating the result of evaluation by the evaluation unit 105. For example, the output unit 106 generates a point display image in which candidate points are displayed in a display mode according to the evaluation result in the spatial image.
- the display control unit 1164, the output information generation unit 126, and the display device 21 of each of the above embodiments are examples of the output unit 106.
- FIG. 16 is a flowchart showing an operation flow of the information processing apparatus 10.
- the candidate point extraction unit 104 selects candidate points that are points that contribute to the signal at the target point based on the position in the three-dimensional space of the target point that is specified in the intensity map and the shape of the observed object. Extract (step S101).
- the evaluation unit 105 is based on the geographical information indicating the state of the ground surface including the candidate points, and the reliability related to the analysis of the signal emitted by the candidate points. Is evaluated (step S102).
- the output part 106 outputs the information which shows the result of evaluation by the evaluation part 105 (step S103).
- the candidate point extraction unit 104 extracts candidate points that contribute to the signal at the target point based on the model data, the evaluation unit 105 evaluates the candidate points, and the output unit 106 outputs the result of the evaluation. Because it does.
- each component of each device represents a functional unit block.
- Computer-readable storage media includes, for example, portable media such as optical disks, magnetic disks, magneto-optical disks, and nonvolatile semiconductor memories, and ROMs (Read Only Memory) and hard disks built into computer systems. It is a storage device.
- Computer-readable storage medium is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line,
- a program or a program that temporarily holds a program such as a volatile memory in a computer system corresponding to a server or a client is also included.
- the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already stored in a computer system.
- the “computer system” is a system including a computer 900 as shown in FIG. 17 as an example.
- the computer 900 includes the following configuration.
- CPU Central Processing Unit
- ROM902 -RAM Random Access Memory
- a storage device 905 that stores the program 904A and storage information 904B
- a drive device 907 that reads / writes from / to the storage medium 906
- a communication interface 908 connected to the communication network 909
- each component of each device in each embodiment is realized by the CPU 901 loading the program 904A for realizing the function of the component into the RAM 903 and executing it.
- a program 904A for realizing the function of each component of each device is stored in advance in the storage device 905 or the ROM 902, for example. Then, the CPU 901 reads the program 904A as necessary.
- the storage device 905 is, for example, a hard disk.
- the program 904A may be supplied to the CPU 901 via the communication network 909, or may be stored in advance in the storage medium 906, read out to the drive device 907, and supplied to the CPU 901.
- the storage medium 906 is a portable medium such as an optical disk, a magnetic disk, a magneto-optical disk, and a nonvolatile semiconductor memory.
- each device may be realized by a possible combination of a separate computer 900 and a program for each component.
- a plurality of constituent elements included in each device may be realized by a possible combination of one computer 900 and a program.
- each device may be realized by other general-purpose or dedicated circuits, computers, or combinations thereof. These may be configured by a single chip or may be configured by a plurality of chips connected via a bus.
- each component of each device When a part or all of each component of each device is realized by a plurality of computers, circuits, etc., the plurality of computers, circuits, etc. may be centrally arranged or distributedly arranged.
- the computer, the circuit, and the like may be realized as a form in which each is connected via a communication network, such as a client and server system and a cloud computing system.
- Appendix 1 Based on the position in the three-dimensional space of the target point, which is the point specified in the intensity map of the signal from the observed object acquired by the radar, and the shape of the observed object, the signal at the target point
- Candidate point extracting means for extracting candidate points that are contributing points
- Evaluation means for evaluating the reliability of the candidate point based on geographical information indicating the state of the ground surface including the candidate point, and analyzing the reliability of the signal generated by the candidate point
- Output means for outputting information indicating the result of the evaluation;
- An information processing apparatus comprising: [Appendix 2] An image generation means for generating a point display image in which a plurality of candidate points are displayed in a display mode corresponding to the result of the evaluation in a spatial image in which the observed object is captured; The output means outputs the point display image;
- the information processing apparatus according to attachment 1.
- the image generation means generates the point display image in which the candidate point is displayed in a more conspicuous display mode as the reliability of the candidate point is higher.
- the image generation means displays the point display in a display mode in which a display showing the candidate point having the highest reliability among the plurality of candidate points contributing to the signal of the same feature point is displayed most conspicuously Generate images, The information processing apparatus according to attachment 3.
- the output unit specifies the candidate point having a reliability value greater than a predetermined threshold among the candidate points extracted by the candidate point extraction unit, and outputs information of the specified candidate point , The information processing apparatus according to any one of appendices 1 to 4.
- the geographic information is information in which an index value indicating stability of backscattering with respect to radio waves is associated with the ground surface.
- the information processing apparatus according to any one of appendices 1 to 5.
- the index value is a value indicating a state of vegetation on the ground surface.
- the geographic information includes information indicating an intensity of light or radio waves reflected on the ground surface.
- [Appendix 9] Based on the position in the three-dimensional space of the target point, which is the point specified in the intensity map of the signal from the observed object acquired by the radar, and the shape of the observed object, the signal at the target point Extract candidate points that contribute, For the candidate point, based on geographic information indicating the state of the ground surface including the candidate point, evaluate reliability related to the analysis of the signal emitted by the candidate point, Outputting information indicating the result of the evaluation;
- An information processing method comprising: [Appendix 10] Generating a point display image in which a plurality of the candidate points are displayed in a display mode according to the result of the evaluation, and outputting the point display image in a spatial image in which the observed object is captured; The information processing method according to attachment 9.
- [Appendix 11] The higher the reliability of the candidate point, the more the point display image in which the candidate point is displayed in a more prominent display mode is generated.
- [Appendix 12] Generating the point display image displayed in a display mode in which a display indicating the candidate point having the highest reliability among the plurality of candidate points contributing to the signal of the same feature point is most prominent;
- [Appendix 13] Specifying the candidate point having a reliability value greater than a predetermined threshold among the candidate points, and outputting information on the specified candidate point;
- the geographic information is information in which an index value indicating stability of backscattering with respect to radio waves is associated with the ground surface.
- [Appendix 15] 15.
- [Appendix 16] 14 14.
- a plurality of candidate points are displayed in a display mode corresponding to the result of the evaluation, and a point display image is generated.
- the output process outputs the point display image.
- the image generation process generates the point display image in which the candidate point is displayed in a more conspicuous display mode as the reliability of the candidate point is higher.
- the point display in which the image generation processing is displayed in a display mode in which a display showing the candidate point having the highest reliability among the plurality of candidate points contributing to the signal of the same feature point is most conspicuous. Generate images, The storage medium according to appendix 19.
- the output process identifies the candidate point having a reliability value greater than a predetermined threshold among the candidate points extracted by the candidate point extraction process, and outputs information on the identified candidate point ,
- the geographic information is information in which an index value indicating stability of backscattering with respect to radio waves is associated with the ground surface.
- Appendix 23 The storage medium according to appendix 22, wherein the index value is a value indicating a state of vegetation on the ground surface.
- the storage medium according to any one of appendices 17 to 21, wherein the geographic information includes information indicating the intensity of light or radio waves reflected on the ground surface.
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
- Image Processing (AREA)
Abstract
レーダによって取得された被観測体からの信号の強度マップ中の、レイオーバが発生する領域内の点における信号に寄与する、被観測体上の点の理解を容易にする。情報処理装置は、レーダによって取得された被観測体からの信号の強度マップにおいて特定される点である対象点の、三次元空間における位置と、前記被観測体の形状とに基づいて、前記対象点における前記信号に寄与する点である候補点を抽出する候補点抽出部と、前記候補点に対し、当該候補点を含む地表の状態を示す地理情報に基づいて、当該候補点が発する前記信号に対する解析に関わる信頼性の評価を行う評価部と、前記評価の結果を示す情報を出力する出力部と、を備える。
Description
本開示は、レーダによって取得されたデータの処理に関する。
地表の様子等を観測することを目的として、観測したい地域を上空から観測して解析する技術が普及している。
合成開口レーダ(Synthetic Aperture Radar;SAR)は、上空から電磁波を照射し、後方散乱により反射された電磁波(以下、「反射波」とも表記)の強度を取得することで、地表の様子を観測する技術の1つである。
非特許文献1は、SARによって得られたデータにおいて恒久散乱点(Permanent Scatterer;PS)に対する解析を行う技術である、PS-InSAR(Permanent Scatterer Interferometric SAR)と呼ばれる技術を記載している。恒久散乱点とは、電磁波に対する散乱特性が恒常的である(安定的であるとも言う)、すなわち、時間経過によって変化しにくい、点である。PS-InSARでは、複数回にわたって取得されたSARのデータにおける恒久散乱点の変位を観測することにより、地形の変動等を観測することが可能である。
SARによって得られた、反射波のデータは、例えば、反射波の強度の二次元マップ(以下、「SAR画像」)により表される。SAR画像は、反射波を、定義された基準面(例えば地面)からの反射波とみなして、基準面を表す面上に反射波の強度が表されたマップである。
反射波の強度がSAR画像において表される位置は、その反射波が発生した位置と反射波を受信するアンテナの位置との間の距離に基づく。そのため、基準面から離れた(すなわち、標高が0でない)位置からの反射波の強度は、SAR画像において、実際の位置よりも、基準面からの高さに応じてレーダ側にずれた位置にて表される。結果として、形状が平面でない物体からの反射波がSAR画像においてなす像は、実際の物体の形状が歪められたような像となる。このように歪められた像が生成する現象は、フォアショートニングと呼ばれる。
フォアショートニングを補正するために、オルソ補正と呼ばれる補正の処理を行う装置が、特許文献1や2に開示されている。
特許文献3は、フォアショートニングだけでなく、レイオーバと呼ばれる現象に対しても補正を行う技術を開示している。レイオーバとは、ある高さの位置からの反射波の信号と、その位置とは別の位置からの反射波の信号とが、SAR画像中で重なりあってしまう現象である。
Ferretti, Alessandro, Claudio Prati, and Fabio Rocca, "Permanent scatterers in SAR interferometry", IEEE transactions on geoscience and remote sensing, Vol. 39, No. 1, January 2001, p. 8-20.
特許文献1および2に開示されるようなオルソ補正は、レイオーバが生じているSAR画像に対して補正を行うことは想定されていない。具体的には、オルソ補正は、SAR画像において歪みが生じた点の位置を、その点において表される信号(反射波)が発せられた真の位置と推定される位置にずらす補正である。換言すれば、オルソ補正は、補正の対象となる点における反射波が発せられた真の位置であると推定される位置の候補が、1つである場合を前提として行われる補正である。
特許文献1や2に開示されるようなオルソ補正では、レイオーバが生じている領域内にある点については補正をすることができない。なぜなら、レイオーバが生じている場合、レイオーバが生じている領域に存在する点において表される信号が発せられた真の位置と推定される位置の候補は、複数存在しうるからである。
特許文献3はレイオーバを補正する方法を開示しているが、この方法では、歪み方の異なる複数のSAR画像が必要である。このように、何らかの補足的な情報がなければ、1つのSAR画像中の、レイオーバが生じている領域内にある点における信号に寄与している、2つ以上の地点からの反射波を区別することは、原理的に不可能である。
レイオーバが補正されない場合、すなわち、SAR画像中のある点における信号に寄与する地点の候補が絞られない場合、人が、SAR画像と光学画像とを見ながら、その信号に寄与する地点の候補を、経験や諸々の情報に基づいて推定するのが通例である。
しかし、SAR画像を理解し、SAR画像中の点が示す信号に寄与する地点の候補を推定することは、難しい。また、複数の候補が見つかった場合に、それらの候補がそれぞれ本当に信号に寄与しているか、または、どの程度寄与しているか等を判断することも、観測結果を分析する上で重要である。
本発明は、SAR画像中の、レイオーバが生じている領域内の点における信号に寄与する地点に関する有用な情報を提供する装置および方法等を提供することを目的の1つとする。ただし、本発明に用いられる画像は、SAR画像の他、RAR(Real Aperture Radar;実開口レーダ)に基づく画像等、電磁波の反射を観測することにより対象物の状態を推定する他の手法により取得される画像でもよい。
本発明の一態様に係る情報処理装置は、レーダによって取得された被観測体からの信号の強度マップにおいて特定される点である対象点の、三次元空間における位置と、前記被観測体の形状とに基づいて、前記対象点における前記信号に寄与する点である候補点を抽出する候補点抽出手段と、前記候補点に対し、当該候補点を含む地表の状態を示す地理情報に基づいて、当該候補点が発する前記信号に対する解析に関わる信頼性の評価を行う評価手段と、前記評価の結果を示す情報を出力する出力手段と、を備える。
本発明の一態様に係る情報処理方法は、レーダによって取得された被観測体からの信号の強度マップにおいて特定される点である対象点の、三次元空間における位置と、前記被観測体の形状とに基づいて、前記対象点における前記信号に寄与する点である候補点を抽出し、前記候補点に対し、当該候補点を含む地表の状態を示す地理情報に基づいて、当該候補点が発する前記信号に対する解析に関わる信頼性の評価を行い、前記評価の結果を示す情報を出力する。
本発明の一態様に係るプログラムは、レーダによって取得された被観測体からの信号の強度マップにおいて特定される点である対象点の、三次元空間における位置と、前記被観測体の形状とに基づいて、前記対象点における前記信号に寄与する点である候補点を抽出する候補点抽出処理と、前記候補点に対し、当該候補点を含む地表の状態を示す地理情報に基づいて、当該候補点が発する前記信号に対する解析に関わる信頼性の評価を行う評価処理と、前記評価の結果を示す情報を出力する出力処理と、をコンピュータに実行させる。上記プログラムは、例えば、コンピュータ読み取り可能な非一時的な記憶媒体に記憶される。
本発明によれば、レーダによって取得された被観測体からの信号の強度マップにおいてレイオーバが生じている領域内の点における信号に寄与する地点に関する、有用な情報が提供される。
本発明の実施形態の説明に先んじて、SARによる観測においてレイオーバが生じる原理を説明する。
図1は、レイオーバについて説明するための図である。図1では、SARによる観測を行う観測機器S0と、観測される範囲に存在する物体Mが示されている。観測機器S0は、例えば、レーダを搭載する、人工衛星又は航空機等である。観測機器S0は、上空を移動しながら、レーダにより電磁波を発信し、反射された電磁波を受信する。図1において、矢印は、観測機器S0の進行方向、すなわちレーダの進行方向(アジマス方向とも言う)を示す。観測機器S0から発せられた電磁波は、地面、および地上にある構造物Mで後方散乱により反射し、その反射波の一部がレーダに戻って受信される。それにより、観測機器S0の位置と構造物Mにおける電磁波の反射点との間の距離が特定される。
図1において、点Qaは地面上の点、点Qbは構造物Mの表面上の、地面から離れた点である。観測機器S0と点Qaとの距離は、観測機器S0と点Qbとの距離に等しいとする。また、点Qbと点Qaとを結ぶ直線と、レーダの進行方向とは、垂直な関係にある。このような場合、点Qaにおける反射波と、点Qbにおける反射波とは、観測機器S0にとって区別することができない。すなわち、点Qaからの反射波の強度と点Qbからの反射波の強度とは、混ざり合って観測される。
このような場合に生成される、反射波の強度分布を表す画像(以下、「SAR画像」と称す)の例が、図2に示される。図2において、矢印は、レーダの進行方向を表す。SAR画像は、レーダにより受信された反射波の強度と、その反射波が発せられた地点とレーダとの間の距離と、に基づいて、生成される。SARでは、レーダの位置を含みレーダの進行方向に対して垂直な平面上にある、レーダからの距離が等しい2以上の地点からの反射波は、区別されない。点Pは、点Qaからの反射波の強度を反映している点であるが、この点Pにおいて示される強度には、点Qbからの反射波の強度も反映されている。このように、2以上の地点からの反射波の強度がSAR画像において一点で重なり合う現象が、レイオーバである。図2において、点Pを含む白い領域が、レイオーバが生じている領域である。なお、図2において黒く塗られている領域は、構造物Mによってレーダに対して陰になった領域を表す。この領域はレーダシャドウとも呼ばれる。
以下、図面を参照しながら、本発明の実施形態を詳細に説明する。
<<第1の実施形態>>
まず、本発明の第1の実施形態について説明する。
まず、本発明の第1の実施形態について説明する。
<構成>
以下の説明においては、情報処理装置11が行う処理において、基準となる三次元空間が定義されているとする。基準となる三次元空間に対しては、三次元座標系が定義されている。この三次元座標系を、以下、基準の三次元座標系または基準の座標系と表記する。基準の座標系は、例えば、測地系でもよいし、後述の、三次元データであるモデルデータ1113の座標系でもよい。
以下の説明においては、情報処理装置11が行う処理において、基準となる三次元空間が定義されているとする。基準となる三次元空間に対しては、三次元座標系が定義されている。この三次元座標系を、以下、基準の三次元座標系または基準の座標系と表記する。基準の座標系は、例えば、測地系でもよいし、後述の、三次元データであるモデルデータ1113の座標系でもよい。
また、以下、第1の座標系のもとで記述される点が第2の座標系のもとで記述可能であることを、第1の座標系が第2の座標系に関係づけられている、と表記する。
図3は、第1の実施形態に係る情報処理装置11の構成を示すブロック図である。情報処理装置11は、記憶部111、特徴点抽出部112、ジオコーディング部113、候補点抽出部114、評価部115、および出力情報生成部116を備える。記憶部111、特徴点抽出部112、ジオコーディング部113、候補点抽出部114、評価部115、および出力情報生成部116は、互いにデータの通信が可能であるように接続される。なお、情報処理装置11の各部のデータのやりとりは、直接、信号線を介して行われてもよいし、共有の記憶領域(例えば記憶部111)に対する読み書きによって行われてもよい。以下の説明では、「データを送出する」「データを受け取る」という語によってデータの移動を説明するが、データを伝達する方法は直接的に伝達する方法に限定されない。
情報処理装置11は、表示装置21と通信可能に接続される。
===記憶部111===
記憶部111は、情報処理装置11による処理に必要なデータを記憶する。たとえば、記憶部111は、SARデータ1111、SARデータパラメータ1112、モデルデータ1113、地理情報1114および空間画像1115を記憶する。
記憶部111は、情報処理装置11による処理に必要なデータを記憶する。たとえば、記憶部111は、SARデータ1111、SARデータパラメータ1112、モデルデータ1113、地理情報1114および空間画像1115を記憶する。
SARデータ1111は、SARを用いた観測によって得られたデータである。SARにより観測される対象(以下、「被観測体」とも表記)は、例えば、地面および建造物等である。SARデータ1111は、少なくとも、基準の座標系に関係づけられた座標系のもとで表されたSAR画像を、生成可能なデータである。
例えば、SARデータ1111は、観測値と、観測値に関連づけられた情報とを含む。観測値は、例えば、観測された反射波の強度である。観測値に関連づけられた情報は、例えば、その反射波を観測したレーダの、その反射波を観測した時の位置および進行方向、ならびに、反射波の観測によって導出される反射点とレーダとの間の距離、等の情報を含む。SARデータ1111は、被観測体に対するレーダの俯角(反射点から見たレーダの仰角)の情報を含んでもよい。位置に関する情報は、例えば、測地系における経度、緯度および高度の組で記述される。
SARデータ1111は、SAR画像それ自体でもよい。
なお、本実施形態の説明では、用いられるデータとしてSARによる観測データが想定されるが、他の実施形態では、SARではなく、例えばRAR(Real Aperture Radar;実開口レーダ)による観測結果のデータが用いられてもよい。
なお、レーダによる計測において用いられる電磁波は、可視光よりも波長が長い電磁波(例えば、100μm以上の電波)である。
SARデータパラメータ1112は、SARデータ1111に含まれるデータと、基準の座標系との関係を示すパラメータである。言い換えれば、SARデータパラメータ1112は、SARデータ1111に含まれる観測値に、基準の座標系における位置を付与するためのパラメータである。
例えば、SARデータ1111において、観測値に、測地系のもとで記述された、レーダの位置および方向、ならびにレーダと被観測体との間の距離に関する情報が、関連づけられている場合、SARデータパラメータ1112は、その情報を、基準の座標系のもとで記述される情報に変換するパラメータである。
SARデータ1111がSAR画像である場合、SAR画像の座標系は、SARデータパラメータ1112によって、基準の座標系に関連づけられる。すなわち、SAR画像における任意の点は、基準の座標系における一点に対応づけられる。
モデルデータ1113は、地形や建物の構造等、物体の形状を三次元で表すデータである。モデルデータ1113は、例えば、DEM(Digital Elevation Model;数値標高モデル)である。モデルデータ1113は、構造物を含む地球表面のデータであるDSM(Digital Surface Model;数値表面モデル)でもよいし、地面の形状のデータであるDTM(Digital Terrain Model)でもよい。モデルデータ1113は、DTMおよび構造物の三次元データを別々に有していてもよい。
モデルデータ1113に用いられる座標系は、基準の座標系に関係づけられる。すなわち、モデルデータ1113内の任意の点は、基準の座標系における座標によって記述可能である。
地理情報1114は、地表の状態を表す情報である。より具体的には、地理情報1114は、地表の点または領域に対して、地表の状態を示す指標の値が関連づけられた情報である。
なお、本開示において、「地表」(earth’s surface)とは、地上の構造物の表面を含む。
地表の状態を示す指標は、例えば、植生の状況を示す指標であるNDVI(Normalized Difference Vegetation Index)である。
NDVIについては、次の文献1に詳しい記載がある。
文献1:布和敖斯尓、金子正美、高田雅之、「湿原植生分類のためのリモートセンシング手法の研究」、北海道環境科学研究センター所報、北海道環境科学研究センター、2002年、第29号、p.53-58
NDVIの値は、可視域赤色光および近赤外光の反射率を用いて算出される。例えば、NDVIは、反射された近赤外光の強度をNIR、反射された赤色光の強度をVISとした場合、NDVI=(NIR-VIS)/(NIR+VIS)という式により算出される。NDVIの値が大きいほど、植生が濃いことを表す。植生が濃いほど、赤色光はよく吸収され、近赤外光は強く反射されるからである。
文献1:布和敖斯尓、金子正美、高田雅之、「湿原植生分類のためのリモートセンシング手法の研究」、北海道環境科学研究センター所報、北海道環境科学研究センター、2002年、第29号、p.53-58
NDVIの値は、可視域赤色光および近赤外光の反射率を用いて算出される。例えば、NDVIは、反射された近赤外光の強度をNIR、反射された赤色光の強度をVISとした場合、NDVI=(NIR-VIS)/(NIR+VIS)という式により算出される。NDVIの値が大きいほど、植生が濃いことを表す。植生が濃いほど、赤色光はよく吸収され、近赤外光は強く反射されるからである。
なお、植生が濃いほど、レーダからの電磁波(電波)は上空に後方散乱されにくい。植生が濃いほど、電波は吸収されやすいからである。すなわち、NDVIの値と、電波の反射信号の強さとの間には、相関がある。
地理情報1114は、例えば、地表における水の指標であるNDWI(Normalized Difference Water Index)の値が地表に関連づけられて記録されている情報でもよい。上記文献1には、NDWIの算出方法も記載されている。NDWIも、可視域赤色光および近赤外光の反射率に基づく指標である。なお、水を多く含む領域ではレーダからの電磁波はレーダの方向に後方散乱されにくい。水を多く含む領域では、電磁波は鏡面反射されやすいからである。
地理情報1114は、光学画像における各画素の画素値でもよい。光学画像における点と、地表の点との対応が定まっている場合、光学画像における点の画素値は、その点に相当する地表の点における、地表の状態を示す情報である。なお、画素値は、例えば、RGB値である。画素値は、明るさを示す輝度値でもよい。
なお、上記光学画像は、後述の空間画像1115でもよい。すなわち、後述の空間画像1115から地理情報1114が取得されてもよい。
地理情報1114は、SARデータでもよい。SARデータにおける点と、地表の点との対応が定まっている場合、SARデータにおける点の信号強度は、その点に相当する地表の点における、地表の状態を示す情報である。
空間画像1115は、SARの被観測体を含む空間が写された画像である。空間画像1115は、例えば、衛星写真や航空写真等の光学画像、地図、地形図、および地形を表したCG(Computer Graphics)の画像の、いずれでもよい。空間画像1115は、モデルデータ1113の投影図でもよい。好ましくは、空間画像1115は、その空間画像1115によって表された空間内の物体の地理的形状および配置等が、情報処理装置11の利用者(すなわち、情報処理装置11が出力する画像を閲覧する人)にとって直感的に理解しやすい画像である。
空間画像1115は、情報処理装置11の外部から取り込まれてもよいし、後述の画像生成部1163がモデルデータ1113を射影することにより、生成されてもよい。
空間画像1115には、その空間画像1115の撮影条件(capturing conditions)に関する情報である撮影条件情報が関連づけられていてもよい。空間画像1115の撮影条件とは、空間画像1115の取得のされ方である。撮影条件情報は、空間画像1115の撮影範囲を一意に特定可能な情報である。撮影条件情報は、例えば、空間画像1115の撮影範囲に関する、複数のパラメータの値により表される。
なお、本開示では、空間画像が特定の位置から撮影された撮影画像(captured image)であると見なし、撮影を行った主体(例えばカメラ等の撮像装置)を撮影体と称す。空間画像1115がモデルデータ1113の射影により生成された場合等、空間画像1115が実際に装置による撮影の工程を経ずに得られた画像である場合、撮影体は仮想的に想定されればよい。
撮影条件情報は、例えば、撮影体の位置と、被撮影体の範囲を示す情報とにより記述される。例として、空間画像1115が矩形である場合、撮影条件情報は、撮影体の基準の座標系における座標と、空間画像1115の4つの角において写る地点に相当する、基準の座標系における4つの座標と、によって記述されてもよい。なお、この場合、撮影範囲は、撮影体の位置から上記4つの座標へそれぞれのびる、4つの半直線に囲まれる領域である。
なお、撮影体の位置は、厳密には、空間画像1115に対する撮影体の視点の位置であるが、実用上、撮影体の位置の情報は、厳密である必要はない。一例として、撮影体の位置を示す情報は、撮影体を搭載した装置(航空機、人工衛星等)が搭載する、GPS(Global Positioning System)機能を有する装置により取得された位置の情報でもよい。
なお、撮影条件情報において位置を表す情報は、例えば、基準の座標系におけるパラメータ(例えば、経度、緯度および高度)の値の組によって与えられる。すなわち、撮影条件情報により、空間画像1115が含む空間の範囲に含まれる任意の点の、基準となる三次元空間における位置は、一意に特定され得る。逆に、基準となる三次元空間における任意の点(少なくとも後述する特徴点および候補点)について、空間画像1115にその点が含まれる場合には、撮影条件情報に基づき、その点の空間画像1115における位置が一意に特定され得る。
撮影条件情報の各パラメータは、基準の座標系と異なる座標系のパラメータであってもよい。その場合は、撮影条件情報は、その座標系におけるパラメータの値を基準の座標系におけるパラメータの値に変換するための変換パラメータを含んでいればよい。
撮影条件情報は、例えば、撮影体の位置、姿勢および画角により記述されてもよい。撮影体の姿勢は、撮影方向、すなわち撮影時における撮影体の光軸方向と、空間画像1115の上下方向と基準の座標系との関係を示すパラメータと、により記述され得る。画角は、例えば空間画像1115が矩形である場合、上下方向の視野角と左右方向の視野角とを示すパラメータにより記述され得る。
撮影体が人工衛星に搭載されたカメラである場合等、撮影体が被写体から十分に遠い場合、撮影体の位置を表す情報は、被写体から見た撮影体の方向を示すパラメータの値によって記述されてもよい。例えば、撮影体の位置を表す情報は、方位および仰角の組でもよい。
なお、記憶部111は、常に情報処理装置11の内部にデータを保持している必要はない。例えば、記憶部111は、情報処理装置11の外部の装置や記録媒体等にデータを記録し、必要に応じて、データを取得してもよい。すなわち、記憶部111は、以降で説明する情報処理装置11の各部の処理において、各部が要求するデータを取得できるよう構成されていればよい。
===特徴点抽出部112===
特徴点抽出部112は、SARデータ1111から、特徴点を抽出する。本開示において、特徴点とは、SARデータ1111において、少なくとも0でない信号強度を示す点のうち、所定の方法により抽出される点である。すなわち、特徴点抽出部112は、点を抽出する所定の方法により、SARデータ1111から1つ以上の点を抽出する。なお、本開示において、SARデータ1111から抽出される点とは、SAR画像における一点に関するデータ群(例えば、観測値と、観測値に関連づけられた情報との組)である。
特徴点抽出部112は、SARデータ1111から、特徴点を抽出する。本開示において、特徴点とは、SARデータ1111において、少なくとも0でない信号強度を示す点のうち、所定の方法により抽出される点である。すなわち、特徴点抽出部112は、点を抽出する所定の方法により、SARデータ1111から1つ以上の点を抽出する。なお、本開示において、SARデータ1111から抽出される点とは、SAR画像における一点に関するデータ群(例えば、観測値と、観測値に関連づけられた情報との組)である。
特徴点抽出部112は、例えば、SARデータ1111に対する分析において有用な情報を与える可能性のある点を抽出する方法により、特徴点を抽出する。
例えば、特徴点抽出部112は、上述されたPS-InSARにより特定される恒久散乱点を、特徴点として抽出してもよい。
あるいは、特徴点抽出部112は、所定の条件(例えば、信号強度が所定の閾値を超える、等)を満たす点を、特徴点として抽出してもよい。この所定の条件は、例えば、情報処理装置11の利用者又は設計者により設定されればよい。特徴点抽出部112は、人の判断によって選択された点を、特徴点として抽出してもよい。
特徴点抽出部112は、抽出した特徴点の情報を、ジオコーディング部113に送出する。特徴点の情報は、少なくとも基準の座標系における座標を特定可能な情報を含む。例として、特徴点の情報は、その特徴点を含む範囲のSARデータを取得した観測機器の位置、進行方向、および、観測機器とその特徴点における信号の反射地点との距離により表される。
===ジオコーディング部113===
ジオコーディング部113は、特徴点抽出部112により抽出された特徴点のそれぞれに、基準の座標系における座標を付与する。ジオコーディング部113は、例えば、抽出された特徴点の情報を特徴点抽出部112から受け取る。ジオコーディング部113は、受け取った特徴点の情報と、SARデータパラメータ1112とに基づき、その特徴点の信号が、基準となる三次元空間のどの位置からの信号に相当するかを特定する。
ジオコーディング部113は、特徴点抽出部112により抽出された特徴点のそれぞれに、基準の座標系における座標を付与する。ジオコーディング部113は、例えば、抽出された特徴点の情報を特徴点抽出部112から受け取る。ジオコーディング部113は、受け取った特徴点の情報と、SARデータパラメータ1112とに基づき、その特徴点の信号が、基準となる三次元空間のどの位置からの信号に相当するかを特定する。
例えば、特徴点の情報が、その特徴点を含む範囲のSARデータを取得した観測機器の位置、進行方向、および、観測機器とその特徴点における信号の反射地点との距離により表される場合、まず、ジオコーディング部113は、SARデータパラメータ1112に基づき、その情報を、基準の座標系における観測機器の位置、進行方向および距離により表される情報に変換する。そして、ジオコーディング部113は、基準の座標系における、次の条件をすべて満たす点(座標)を特定する。
・当該点と観測機器の位置との距離が、特徴点の情報により示された距離である。
・観測機器の進行方向と垂直な平面に含まれる。
・基準面(基準の座標系において高度が0である面)に含まれる。
特定された点の座標が、特徴点の情報により示される特徴点の、基準の座標系における座標である。ジオコーディング部113は、例えばこのようにして特定された点の座標を、特徴点の情報により示された特徴点に付与する。
・当該点と観測機器の位置との距離が、特徴点の情報により示された距離である。
・観測機器の進行方向と垂直な平面に含まれる。
・基準面(基準の座標系において高度が0である面)に含まれる。
特定された点の座標が、特徴点の情報により示される特徴点の、基準の座標系における座標である。ジオコーディング部113は、例えばこのようにして特定された点の座標を、特徴点の情報により示された特徴点に付与する。
===候補点抽出部114===
候補点抽出部114は、基準の座標系における座標が付与された特徴点に、その特徴点に関与する点(以下、「候補点」)を関連づける。特徴点に関与する候補点について、以下で説明する。
候補点抽出部114は、基準の座標系における座標が付与された特徴点に、その特徴点に関与する点(以下、「候補点」)を関連づける。特徴点に関与する候補点について、以下で説明する。
レイオーバが生じている領域にある特徴点(点Pとする)において示される信号強度は、複数の点からの反射波の強度の足し合わせである可能性がある。この時、点Pにおいて示される信号強度に寄与している可能性のある、三次元空間内の点を、本実施形態では、点Pに関与する候補点と呼ぶ。
図4は、候補点の例を説明するための図である。図4は、基準となる三次元空間を、点Pを通り、レーダの進行方向(アジマス方向)に垂直な平面により切り出した断面図である。
線GLは、基準となる三次元空間における基準面、すなわち、特徴点が位置する面の断面線である。上記基準面内には、線MLは、モデルデータ1113が表す三次元構造の断面線である。点S1はレーダの位置を示す点である。点Pの位置は、ジオコーディング部113によって付与された座標の位置である。点Pと点S1との距離は“R”であるとする。
点Pにおいて示される信号強度に反映されるのは、断面図において点S1との距離が“R”であるような点からの反射波である。すなわち、点Pに関与する点は、点S1を中心とした半径“R”の円弧が線MLと交差する点である。図4において、点Q1、Q2、Q3、Q4が、点S1を中心とした半径“R”の円弧が線MLと交差する、点P以外の点である。したがって、これらの点Q1、Q2、Q3、Q4が点Pに関与する候補点である。
候補点抽出部114は、このように、点Pを含みレーダの進行方向に垂直な平面上の、レーダとの距離がレーダと点Pとの間の距離に等しい点を、候補点として抽出すればよい。
ただし、点Q3は、点S1に対しては陰になっている(いわゆるレーダシャドウ内にある)ため、この点で反射された電磁波が点Pにおいて示される信号強度に寄与した可能性は低い。したがって、候補点抽出部114が抽出する候補点は、点Q3を除いた、点Q1、Q2、Q4であってもよい。すなわち、候補点抽出部114は、点Q3と点S1とを結ぶ線分が点Q3以外で線MLと交差することに基づき、点Q3を候補点から除外してもよい。
上述したような候補点の抽出において必要な情報は、基準となる三次元空間の、点Pを通りアジマス方向に垂直な平面による、モデルデータ1113の断面線、点S1および点Pの位置、ならびに点S1と点Pとの距離“R”である。
点S1が十分に遠い場合、点S1から被観測体への電磁波の入射方向は全て互いに平行であると近似できる。従って、点S1が十分に遠い場合、図5に示されるように、候補点は、点Pを通る、レーダから点Pへの電磁波の入射線に垂直な直線と、線MLとの交点を求めることによって特定可能である。ただし、図5において、点Q3については、その点Q3を通る、レーダからの電磁波の入射線に平行な直線が、線MLに交差するため(すなわち、レーダシャドウ内にあるため、)候補点から除かれてもよい。候補点抽出部114は、このように、観測機器から被観測体への電磁波の入射方向が全て互いに平行であるという近似のもとで、候補点を抽出してもよい。このような方法による抽出においては、点S1の座標および距離“R”の代わりに、点S1の方位および俯角θを用いて、候補点の位置を算出することができる。
候補点抽出部114は、特徴点に関与する候補点を、評価部115と出力情報生成部116とに送出する。
===評価部115===
評価部115は、候補点抽出部114が抽出した候補点に対する評価を行う。具体的には、評価部115は、候補点に対する評価値を導出する。そして、例えば、評価部115は、評価値を候補点の情報に関連づける。
評価部115は、候補点抽出部114が抽出した候補点に対する評価を行う。具体的には、評価部115は、候補点に対する評価値を導出する。そして、例えば、評価部115は、評価値を候補点の情報に関連づける。
評価部115により行われる評価は、解析の対象としての信頼性の高さの評価である。例えば、上述したPS-InSARのように、反射信号を発した地点の位置の経時変化を追うことにより、地形の変化の様子を観測することができる。地形の変化を正確に観測するためには、追跡される地点の、電波に対する散乱特性が安定的である地点であることが望ましい。つまり、解析の対象としての信頼性とは、例えば、電波に対する散乱特性が安定的である地点である可能性、とも言い換えられる。
評価部115は、たとえば、候補点の解析の対象としての信頼性の高さの評価として、該候補点の、電波に対する散乱特性が安定的である地点である可能性を評価してもよい。
また、一般論として、計測された信号を用いて精度の高い解析を行う際には、計測された信号の強度はより大きいことが望ましい。このことから、評価部115は、候補点の解析の対象としての信頼性の高さの評価として、該候補点からの信号が特徴点で示される信号の強度への寄与の度合いを評価してもよい。
具体的には、評価部115は、例えば次のように評価を行う。
評価部115は、地理情報1114に基づいて、候補点に対する信頼性の高さを表す評価値を導出する。
上述の通り、地理情報1114は、地表の状態の情報を示す。評価部115は、地理情報1114に基づき、候補点の位置における状態の情報を取得し、その取得された情報に基づいて評価値を導出する。たとえば、評価値は、大きいほど、信頼性がより高いことを意味するとする。
例えば、地理情報1114が、地表のNDVIの値を示す情報である場合、評価部115は、候補点の位置におけるNDVIの値を取得する。そして、評価部115は、例えば、NDVIの値が小さいほど評価値が大きくなるような評価方法により、候補点の評価値を導出する。一例として、評価部115は、NDVIの値の逆数を評価値として導出してもよい。
上述したように、NDVIは、地表の植生状況を表す指標であり、NDVIの値が小さい地点ほど、電磁波の反射が起こりやすいと考えられる。また、植生が濃いほど、電磁波は乱反射されやすく、安定的な後方散乱が起こりにくい。
したがって、NDVIの値が小さいほど評価値が大きくなるような評価方法により候補点の評価値を導出すれば、解析の対象としての信頼性がより高い地点に、より大きい評価値が与えられる。
地理情報1114がNDWIである場合も同様である。すなわち、評価部115は、NDWIの値が小さいほど評価値が大きくなるような評価方法により、候補点の評価値を導出してもよい。NDWIも、電磁波の反射(後方散乱)の起こりやすさと相関がある。また、水分を多く含む地面又は水面は、形状が安定しないため、解析の対象として適切でない。したがって、NDWIに基づいた上記評価方法によっても、信頼性がより高い地点に、より大きい評価値が与えられる。
以上のようにして評価部115が評価を行った場合、評価値が大きい地点は、レーダにより検出された信号の強さに大きく寄与し、かつ電磁波に対する散乱特性が安定的である地点であると解釈できる。
評価部115は、NDVIおよびNDWIの他、信頼性と相関がある、地表の状態の情報を用いて、候補点の評価値を導出してもよい。
例えば、評価部115は、候補点を含む所定の領域が写る光学画像を用いて、当該光学画像における候補点を含む局所領域の輝度勾配を算出し、算出された輝度勾配が大きいほど大きい評価値を与える評価方法により、評価値を導出してもよい。このような評価方法は、輝度勾配が大きいほど当該領域の表面の凹凸が激しく、レーダの方向へ反射した電磁波の強度が大きい可能性が高いということに基づく。したがって、この評価方法によっても、評価部115は、候補点の信頼性を評価可能である。なお、この評価方法において、評価部115は、輝度勾配の代わりに、輝度のばらつきを示す値を用いてもよい。
あるいは、例えば、評価部115は、候補点を測定したSARデータ(特徴点抽出部112による処理の対象となったSARデータ1111とは異なる)に基づいて評価を導出してもよい。例えば、評価部115は、当該SARデータが示す、候補点における信号強度が大きいほど大きい評価値を与える評価方法により、評価値を導出してもよい。
評価部115は、上述の評価方法で導出される評価値を第1の評価値として導出したあと、第1の評価値に基づいた評価値である第2の評価値を導出してもよい。第2の評価値は、例えば、第1の評価値と所定の基準との関係に基づき導出される評価値でもよい。具体的には、例えば、評価部115は、第1の評価値の値が所定の基準により示される値よりも低ければ第2の評価値として“B”を導出し、第1の評価値の値が所定の基準により示される値以上であれば第2の評価値として“A”を導出してもよい。
あるいは、第2の評価値は、第1の評価値が算出された複数の候補点の、それぞれの評価値どうしの関係に基づき導出される評価値でもよい。具体的には、例えば、第2の評価値は、同一の特徴点に関与する候補点のグループにおける、第1の評価値の大きさの序列を表す値でもよい。
あるいは、第2の評価値は、複数の評価方法によってそれぞれ第1の評価値として導出された評価値を、平均等により統合することにより得られる値でもよい。
図6は、候補点と、評価部115によりそれぞれの候補点に関連づけられた評価値と、の例を示す図である。評価部115は、評価の結果として、図6に示されるようなデータを生成してもよい。
===出力情報生成部116===
出力情報生成部116は、評価部115が行った評価の結果を示す情報を、生成し出力する。
出力情報生成部116は、評価部115が行った評価の結果を示す情報を、生成し出力する。
例えば、出力情報生成部116は、複数の候補点が評価値に応じた表示態様により表示された画像を、生成する。表示態様とは、例えば、表示される図形等の形状、大きさ、色、明るさ、透過性、動き及びそれらの経時変化等により定まる、表示の様子である。なお、本開示において、「候補点の表示態様」とは、候補点の位置を示す表示の表示態様である。「候補点を表示する」とは、候補点の位置を示す表示を表示することである。
以下、複数の候補点が評価値に応じた表示態様により表示された画像を点表示画像と表記する。本実施形態の説明では、出力情報生成部116が点表示画像を生成する処理について詳述する。
図3に示される通り、出力情報生成部116は、表示態様決定部1161、表示位置決定部1162、画像生成部1163、および表示制御部1164を含む。出力情報生成部116は、出力情報生成部116内の各構成による処理を通して、点表示画像を出力する。
前提として、出力情報生成部116には、入力データとして、空間画像1115の一つである空間画像と、候補点抽出部114により抽出された候補点の、基準となる三次元空間における位置、および評価の情報とが与えられる。
出力情報生成部116は、点表示画像に用いられる空間画像を、記憶部111が記憶する空間画像1115の内から読み出す。出力情報生成部116は、読み出す画像を、例えば、利用者からの指示に基づいて決定すればよい。例えば、出力情報生成部116は、利用者から、複数の空間画像1115のうちの1つを指定する情報を受け付ければよい。あるいは、例えば、出力情報生成部116は、三次元空間における範囲を指定する情報を受け付け、指定された範囲を含む空間画像を読み出せばよい。
あるいは、出力情報生成部116は、利用者が表示を希望する特徴点又は候補点を指定する情報を受け付けてもよい。そして、出力情報生成部116は、指定された特徴点又は候補点を含む、基準となる三次元空間における範囲を特定し、特定された範囲を含む空間画像を読み出せばよい。なお、利用者が表示を希望する特徴点又は候補点を指定する情報は、SARデータ1111を指定する情報でもよい。
出力情報生成部116は、記憶部111に記憶された空間画像1115の一部を切り出し、使用する空間画像として読み出してもよい。例えば、出力情報生成部116は、利用者が表示を希望する候補点に基づいて空間画像を読み出す場合、その候補点をすべて含む範囲を空間画像1115から切り出し、切り出された画像を、使用する空間画像として読み出してもよい。
表示態様決定部1161は、候補点の表示態様を決定する。
表示態様決定部1161は、候補点ごとに、該候補点に付与された評価値に基づいて、表示態様を決定する。
表示態様決定部1161は、評価値と表示態様との関係を定義したデータを用いてもよい。すなわち、候補点に付与された評価値が、上記データにおいて、関連づけられている表示態様を特定し、その特定された表示態様を、当該候補点の表示態様として決定しても関よい。
図7は、評価値と表示態様との関係を定義したデータの例を示す図である。図7の例は、評価値が1から10の範囲の整数で与えられる場合における、各評価値と表示の明度との関係を示している。この表に基づく場合、例えば、表示態様決定部1161は、評価値が“5”である候補点の位置を示す表示の不透明率を“70%”であると決定する。なお、不透明度とは、表示される図形が画像に重畳された場合に当該図形が重畳された位置の画素値に当該図形の画素値が寄与する度合いを示す、尺度である。不透明度が低いほど、図形が表示される位置における、その図形の画素値の寄与は、低くなる。
あるいは、表示態様決定部1161は、表示態様に関するパラメータを、評価値を用いた計算により導出することにより、評価値に応じて異なる表示態様を決定してもよい。
例えば、表示態様決定部1161は、候補点の表示の彩度を、評価値/10という式により算出してもよい。このように表示態様決定部1161は、候補点の表示の彩度を、評価値が高いほど高くなるような算出方法で算出してもよい。
表示態様に関するパラメータは、不透明度、明度に限られない。評価値に応じて設定されるパラメータは、表示態様とは、例えば、表示される図形等の形状、大きさ、色、明るさ、透過性、動き及びそれらの経時変化等を規定するパラメータのいずれでもよい。
表示態様決定部1161は、例えば、大きい評価値が付与された候補点の表示ほど目立って表示されるように、表示態様を決定してもよい。
表示位置決定部1162は、点表示画像において表示される候補点の表示位置を決定する。表示位置決定部1162は、空間画像における候補点の位置を、例えば、撮影条件情報に基づいた計算によって特定する。
例えば、表示位置決定部1162は、撮影条件情報に基づき、空間画像の撮影範囲と、撮影方向とを特定する。そして、表示位置決定部1162は、候補点を含み撮影方向に垂直な平面による、撮影範囲の切断面を求める。その切断面と候補点との位置関係が、空間画像と候補点との位置関係に相当する。表示位置決定部1162は、その切断面の座標を空間画像の座標に関係づけた場合の、候補点の座標を特定すればよい。特定された座標が、空間画像における候補点の座標である。
なお、光学衛星画像は、オルソ補正等により補正されていてもよい。光学衛星画像が補正される場合、候補点が示される位置も補正される。候補点の位置は、光学衛星画像に対する補正において用いられた補正パラメータを用いて補正されればよい。
以上に説明した、候補点の空間画像における位置を特定する方法は、一例である。表示位置決定部1162は、基準の座標系における候補点の位置、および空間画像と基準の座標系との関係に基づいて、候補点の空間画像における位置を特定すればよい。
画像生成部1163は、点表示画像を生成する。具体的には、画像生成部1163は、空間画像に候補点の位置を示す表示が重畳された画像を、点表示画像として生成する。なお、本開示において「画像を生成する」とは、画像が表示されるためのデータを生成することである。画像生成部1163が生成するデータの形式は、画像形式に限られない。画像生成部1163が生成する画像は、表示装置21が表示するために必要な情報を有するデータであればよい。
画像生成部1163は、空間画像に、表示位置決定部1162により決定された位置に、表示態様決定部1161により決定された表示態様で示される表示を重畳する。これにより、候補点が表示された空間画像、すなわち点表示画像が、生成される。
表示制御部1164は、画像生成部1163により生成された点表示画像を表示装置21に表示させる制御を行う。表示制御部1164は、例えば、点表示画像を表示装置21に出力することにより、表示装置21に点表示画像を表示させる。
===表示装置21===
表示装置21は、表示制御部1164から受け取った情報を表示する。
表示装置21は、表示制御部1164から受け取った情報を表示する。
表示装置21は、例えば、液晶モニタ、プロジェクタ等のディスプレイである。表示装置21は、タッチパネルのように、入力部としての機能を有していてもよい。本実施形態の説明では、表示装置21は情報処理装置11の外部の装置として情報処理装置11に接続されているが、表示装置21が表示部として情報処理装置11の内部に含まれていてもよい。
表示装置21による表示を見る閲覧者は、情報処理装置11による処理の結果を知る。具体的には、閲覧者は、画像生成部1163により生成された点表示画像を観察できる。
<動作>
情報処理装置11による処理の流れの例を、図8のフローチャートに沿って説明する。
情報処理装置11による処理の流れの例を、図8のフローチャートに沿って説明する。
情報処理装置11の特徴点抽出部112は、記憶部111からSARデータ1111を取得する(S111)。取得されるSARデータ1111は、少なくとも後述のステップS117で用いられる空間画像に含まれる範囲のSARデータを含む。
そして、特徴点抽出部112が、取得されたSARデータ1111において特徴点を抽出する(ステップS112)。
次に、ジオコーディング部113が、抽出された特徴点に、当該特徴点の基準の座標系における位置を示す座標を付与する(ステップS113)。ジオコーディング部113は、抽出された特徴点に付与された座標を、候補点抽出部114に送出する。
次に、候補点抽出部114が、特徴点の座標とモデルデータ1113とに基づき、当該特徴点に関与する候補点を抽出する(ステップS114)。すなわち、候補点抽出部114は、特徴点に関与する候補点の座標を特定する。そして、候補点抽出部114は、候補点の座標を、評価部115と出力情報生成部116とに送出する。候補点抽出部114は、候補点の座標を、特徴点と候補点とが関連づけられる形式で、記憶部111に記憶させてもよい。
次に、評価部115が、候補点に対して評価を行う(ステップS115)。そして、評価部115は、候補点に対する評価を示す情報を出力情報生成部116に送出する。
そして、出力情報生成部116が、評価に応じた表示態様で空間画像における候補点の位置が示された、点表示画像を生成する(ステップS116)。
具体的には、例えば、出力情報生成部116において、表示態様決定部1161が、候補点のそれぞれの表示態様を、評価部115により付与された評価に基づいて決定する。また、表示位置決定部1162は、空間画像における候補点の表示位置を、候補点の位置と撮影条件情報とモデルデータ1113とに基づいて決定する。そして、画像生成部1163が、候補点が表示された空間画像である点表示画像を、決定された表示態様と決定された位置とに基づいて生成する。
なお、出力情報生成部116は、ステップS116の処理を行うのに際して、記憶部111から、点表示画像の生成に使用される空間画像を読み出す。
なお、出力情報生成部116が読み出す空間画像が決定されるタイミングは、SARデータを取得する処理が行われるタイミングの前でもよいし、後でもよい。すなわち、一つの例では、情報処理装置11は、使用される空間画像が決定されてから、決定された空間画像に含まれる範囲を含む範囲を測定したデータであるSARデータ1111を特定し、その特定されたSARデータ1111をステップS111において取得してもよい。
また一つの例では、情報処理装置11は、使用される空間画像が決定される前に、空間画像1115に含まれ得る範囲のSARデータ1111に対し、予めステップS111からステップS115の処理を実行してもよい。ステップS112からステップS115の各処理において生成される情報は、例えば、記憶部111に保持されればよい。
出力情報生成部116が読み出す空間画像が決定された場合、出力情報生成部116は、撮影条件情報に基づき、空間画像の範囲に含まれる候補点を特定することで、表示させる候補点を決定してもよい。
そして、出力情報生成部116の表示制御部1164が、生成された点表示画像を表示させる制御を行い(ステップS118)、それにより、表示装置21が点表示画像を表示する。
図9は、情報処理装置11により生成され表示装置21により表示される、点表示画像の一例である。13個の候補点の位置を示す13個の小円が、それぞれ評価値に応じた表示態様で表示されている。図9の例では、それぞれの候補点の位置に表示される図形の明度が、評価値に応じている。例えば、明度が高いほど評価が高いことを意味することを閲覧者が知っていれば、このような表示により、閲覧者は評価が高い候補点、すなわち信頼性が高い候補点を、容易に知ることができる。
<効果>
第1の実施形態に係る情報処理装置11によれば、閲覧者は、SAR画像中の、レイオーバが生じている領域内の点における信号に寄与する地点への理解を容易にすることができる。その理由は、候補点抽出部114が、特徴点における信号に寄与した可能性のある地点である候補点をモデルデータ1113に基づいて抽出し、画像生成部1163が、候補点が表示された空間画像である点表示画像を生成するからである。
第1の実施形態に係る情報処理装置11によれば、閲覧者は、SAR画像中の、レイオーバが生じている領域内の点における信号に寄与する地点への理解を容易にすることができる。その理由は、候補点抽出部114が、特徴点における信号に寄与した可能性のある地点である候補点をモデルデータ1113に基づいて抽出し、画像生成部1163が、候補点が表示された空間画像である点表示画像を生成するからである。
評価部115および出力情報生成部116により、情報処理装置11の利用者には、候補点に対する評価を示す情報が提供される。本実施形態では、利用者は、複数の候補点が、評価部115による評価に応じた表示態様で表示された点表示画像を見ることができる。これにより、閲覧者は、複数の候補点の中でも評価が高い、すなわち、解析の対象としての信頼性が高い候補点を容易に知ることができる。この効果は、特に、大きい評価値が付与された候補点の表示ほど目立って表示される場合、顕著である。
また、特徴点が恒久散乱点である場合、その特徴に関与する候補点に付与された評価の情報は、地形の変動を解析する上で有用である。具体的には、例えば、恒久散乱点に関与する候補点が2つ以上存在する場合に、いずれの候補点が実際に安定的な散乱反射を生じる地点であるのかを、閲覧者は判断しやすくなる。そして、閲覧者は、複数回にわたるSARデータ1111を用いて恒久散乱点の変位を観察することにより、地形の変動に関する正確な情報を得ることができる。
<<変形例1>>
上述の情報処理装置11の動作例において、ステップS111の処理とステップS112の処理との順番は逆でもよい。すなわち、特徴点抽出部112は、ジオコーディング部113により座標が付与された点の中から特徴点を抽出してもよい。
上述の情報処理装置11の動作例において、ステップS111の処理とステップS112の処理との順番は逆でもよい。すなわち、特徴点抽出部112は、ジオコーディング部113により座標が付与された点の中から特徴点を抽出してもよい。
<<変形例2>>
画像生成部1163は、同一の特徴点の信号に寄与する複数の候補点のうち評価が最も高い候補点が最も目立つ表示態様で表示された、点表示画像を生成してもよい。そのような構成により、閲覧者は、同一の特徴点の信号に寄与する複数の候補点のうち信頼性が最も高い候補点を容易に知ることができる。
画像生成部1163は、同一の特徴点の信号に寄与する複数の候補点のうち評価が最も高い候補点が最も目立つ表示態様で表示された、点表示画像を生成してもよい。そのような構成により、閲覧者は、同一の特徴点の信号に寄与する複数の候補点のうち信頼性が最も高い候補点を容易に知ることができる。
<<変形例3>>
出力情報生成部116は、評価値が所定の閾値以下である候補点を、表示される候補点から除外してもよい。すなわち、出力情報生成部116は、空間画像に含まれる範囲に含まれる、候補点抽出部114により抽出された候補点のうち、評価値が所定の閾値よりも大きい候補点を特定してもよい。そして、出力情報生成部116は、特定された候補点のみが表示された点表示画像を生成してもよい。
出力情報生成部116は、評価値が所定の閾値以下である候補点を、表示される候補点から除外してもよい。すなわち、出力情報生成部116は、空間画像に含まれる範囲に含まれる、候補点抽出部114により抽出された候補点のうち、評価値が所定の閾値よりも大きい候補点を特定してもよい。そして、出力情報生成部116は、特定された候補点のみが表示された点表示画像を生成してもよい。
図10は、評価値が所定の閾値よりも大きい候補点のみが表示された点表示画像の例である。このように、表示される候補点が取捨されることにより、閲覧者は、評価が高い候補点の情報だけに着目することができる。
<<変形例4>>
表示態様決定部1161は、さらに、特定の特徴点に関与する候補点の表示態様が他の候補点の表示態様とは異なるように表示態様を決定するよう、構成されていてもよい。
表示態様決定部1161は、さらに、特定の特徴点に関与する候補点の表示態様が他の候補点の表示態様とは異なるように表示態様を決定するよう、構成されていてもよい。
例えば、表示態様決定部1161は、利用者が指定した特徴点に関与する候補点を白色で、その他の候補点を黒色で表示するよう、表示態様を決定してもよい。
利用者による特徴点の指定は、例えば、指定受付部117により行われる。図11は、指定受付部117を備える情報処理装置11aの構成を示すブロック図である。
指定受付部117は、たとえば、情報処理装置11aの利用者から特徴点の指定を受け付ける。例えば、情報処理装置11aは、表示装置21に、特徴点が示されたSAR画像を表示させてもよい。そして、指定受付部117は、利用者による、そのSAR画像において示される特徴点のうちの1つ以上の選択を受け付けてもよい。選択はマウス等の入出力装置を介して行われればよい。選択された特徴点が、指定された特徴点である。指定受付部117は、複数の特徴点の指定を受け付けてもよい。
指定受付部117は、指定された特徴点の情報を、出力情報生成部116に送出する。指定された特徴点の情報は、たとえば、特徴点の各々に関連づけられた識別番号や、座標等である。
出力情報生成部116は、指定された特徴点に関与する候補点を特定する。出力情報生成部116は、例えば、候補点抽出部114に、指定された特徴点に関与する候補点を抽出させ、抽出された候補点の情報を受け取ればよい。あるいは、特徴点と候補点とを関連づける情報が記憶部111に記憶されている場合は、出力情報生成部116は、その情報に基づき候補点を特定すればよい。
指定受付部117は、特徴点の指定の代わりに、候補点の指定を受け付けてもよい。例えば、利用者は、ステップS117の処理によって表示された点表示画像に含まれる候補点のうち、いずれかの候補点の選択を行ってもよい。指定受付部117は、その選択を受け付け、選択された候補点が関与する特徴点を特定してもよい。そして、指定受付部117は、その特徴点に関与する候補点を特定してもよい。
出力情報生成部116において、表示態様決定部1161は、特定された候補点の表示態様として、他の候補点の表示態様と異なる表示態様を決定する。そして、画像生成部1163は、決定された表示態様による候補点の表示がされた点表示画像を生成する。この点表示画像が表示装置21により表示されることにより、閲覧者は、指定した特徴点に関与する候補点の情報を見ることができる。
図12は、本変形例4に係る情報処理装置11aにより生成される、点表示画像の例を示す図である。図12では、特定の特徴点に関与する候補点の表示の大きさが、その他の候補点の表示の大きさよりも大きい。
図13は、本変形例4に係る情報処理装置11aにより生成される、点表示画像の別の例を示す図である。図13では、特定の特徴点に関与する候補点のみが表示される。
このような表示によれば、閲覧者が候補点について更によく理解することができる。すなわち、閲覧者は、特定の特徴点に関与する候補点間の評価を比較することができる。閲覧者は、例えば、表示された候補点の、特定の特徴点の信号への寄与の程度を知ることができる。
<<第2の実施形態>>
本発明の第2の実施形態に係る情報処理装置12について説明する。図14は、情報処理装置12の構成を示すブロック図である。情報処理装置12は、表示装置21の代わりに記憶装置31に接続される。また、情報処理装置12は、出力情報生成部116の代わりに出力情報生成部126を備える。それ以外の、情報処理装置12の構成は情報処理装置11の構成と同様である。
本発明の第2の実施形態に係る情報処理装置12について説明する。図14は、情報処理装置12の構成を示すブロック図である。情報処理装置12は、表示装置21の代わりに記憶装置31に接続される。また、情報処理装置12は、出力情報生成部116の代わりに出力情報生成部126を備える。それ以外の、情報処理装置12の構成は情報処理装置11の構成と同様である。
記憶装置31は、情報を記憶する装置である。記憶装置31は、例えば、ハードディスク、可搬メモリ等である。
出力情報生成部126は、評価部115による評価と候補点との関係を示す情報を出力するための出力データを生成する。たとえば、出力情報生成部126は、特定された候補点が他の候補点とは異なる態様で表示された点表示画像を生成する。また、例えば、出力情報生成部126は、候補点と評価値との関係を示すデータセットを生成する。生成されるデータセットは、例えば、表形式のデータである。
出力情報生成部126は、生成された出力データを、記憶装置31に出力する。これにより、記憶装置31が、情報処理装置12により生成された情報を記憶する。
記憶装置31は、記憶された情報を、他の情報処理装置に出力してもよい。
本実施形態によっても、レーダによって取得された被観測体からの信号の強度マップにおいてレイオーバが生じている領域内の点における信号に寄与する地点に関する、有用な情報が提供される。
<<第3の実施形態>>
本発明の一実施形態に係る情報処理装置10について説明する。
本発明の一実施形態に係る情報処理装置10について説明する。
図15は、情報処理装置10の構成を示すブロック図である。情報処理装置10は、候補点抽出部104と、評価部105と、出力部106とを含む。
候補点抽出部104は、レーダによって取得された被観測体からの信号の強度マップにおいて特定される点である対象点の、三次元空間における位置と、被観測体の形状とに基づいて、対象点における信号に寄与する点である候補点を抽出する。上記各実施形態の候補点抽出部114は、候補点抽出部104の一例である。
信号は、例えば、レーダから発信された電波の反射波の信号である。信号の強度マップは、例えば、SAR画像である。強度マップにおいて特定される点は、三次元空間における一地点に関連づけられる。対象点の一例は、第1の実施形態における特徴点である。なお、被観測体の形状は、例えば、三次元のモデルデータによって与えられる。
評価部105は、候補点抽出部104により抽出された候補点に対し、当該候補点を含む地表の状態を示す地理情報に基づいて、当該候補点が発する信号に対する解析に関わる信頼性の評価を行う。
上記各実施形態の評価部115は、評価部105の一例である。
出力部106は、評価部105による評価の結果を示す情報を出力する。例えば、出力部106は、空間画像において、候補点が評価の結果に応じた表示態様により表示された、点表示画像を生成する。
上記各実施形態の表示制御部1164、出力情報生成部126、および表示装置21は、出力部106の一例である。
図16は、情報処理装置10の動作の流れを示すフローチャートである。
候補点抽出部104は、強度マップにおいて特定される点である対象点の、三次元空間における位置と、被観測体の形状とに基づいて、対象点における信号に寄与する点である候補点を抽出する(ステップS101)。
次に、評価部105は、候補点抽出部104により抽出された候補点に対し、当該候補点を含む地表の状態を示す地理情報に基づいて、当該候補点が発する信号に対する解析に関わる信頼性の評価を行う(ステップS102)。
そして、出力部106は、評価部105による評価の結果を示す情報を出力する(ステップS103)。
本構成によれば、レーダによって取得された被観測体からの信号の強度マップ中の、レイオーバが生じている領域内の点における信号に寄与する、被観測体上の点への理解を容易にすることができる。その理由は、候補点抽出部104が、対象点における信号に寄与する候補点をモデルデータに基づいて抽出し、評価部105が候補点に対する評価を行い、出力部106が、評価の結果を出力するからである。
<実施形態の各部を実現するハードウェアの構成>
以上、説明した本発明の各実施形態において、各装置の各構成要素は、機能単位のブロックを示している。
以上、説明した本発明の各実施形態において、各装置の各構成要素は、機能単位のブロックを示している。
各構成要素の処理は、たとえば、コンピュータシステムが、コンピュータ読み取り可能な記憶媒体により記憶された、その処理をコンピュータシステムに実行させるプログラムを、読み込み、実行することによって、実現されてもよい。「コンピュータ読み取り可能な記憶媒体」は、たとえば、光ディスク、磁気ディスク、光磁気ディスク、および不揮発性半導体メモリ等の可搬媒体、ならびに、コンピュータシステムに内蔵されるROM(Read Only Memory)およびハードディスク等の記憶装置である。「コンピュータ読み取り可能な記憶媒体」は、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントにあたるコンピュータシステム内部の揮発性メモリのように、プログラムを一時的に保持しているものも含む。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、更に前述した機能をコンピュータシステムにすでに記憶されているプログラムとの組み合わせで実現できるものであってもよい。
「コンピュータシステム」とは、一例として、図17に示されるようなコンピュータ900を含むシステムである。コンピュータ900は、以下のような構成を含む。
・CPU(Central Processing Unit)901
・ROM902
・RAM(Random Access Memory)903
・RAM903へロードされるプログラム904Aおよび記憶情報904B
・プログラム904Aおよび記憶情報904Bを格納する記憶装置905
・記憶媒体906の読み書きを行うドライブ装置907
・通信ネットワーク909と接続する通信インタフェース908
・データの入出力を行う入出力インタフェース910
・各構成要素を接続するバス911
たとえば、各実施形態における各装置の各構成要素は、その構成要素の機能を実現するプログラム904AをCPU901がRAM903にロードして実行することで実現される。各装置の各構成要素の機能を実現するプログラム904Aは、例えば、予め、記憶装置905やROM902に格納される。そして、必要に応じてCPU901がプログラム904Aを読み出す。記憶装置905は、たとえば、ハードディスクである。プログラム904Aは、通信ネットワーク909を介してCPU901に供給されてもよいし、予め記憶媒体906に格納されており、ドライブ装置907に読み出され、CPU901に供給されてもよい。なお、記憶媒体906は、たとえば、光ディスク、磁気ディスク、光磁気ディスク、および不揮発性半導体メモリ等の、可搬媒体である。
・CPU(Central Processing Unit)901
・ROM902
・RAM(Random Access Memory)903
・RAM903へロードされるプログラム904Aおよび記憶情報904B
・プログラム904Aおよび記憶情報904Bを格納する記憶装置905
・記憶媒体906の読み書きを行うドライブ装置907
・通信ネットワーク909と接続する通信インタフェース908
・データの入出力を行う入出力インタフェース910
・各構成要素を接続するバス911
たとえば、各実施形態における各装置の各構成要素は、その構成要素の機能を実現するプログラム904AをCPU901がRAM903にロードして実行することで実現される。各装置の各構成要素の機能を実現するプログラム904Aは、例えば、予め、記憶装置905やROM902に格納される。そして、必要に応じてCPU901がプログラム904Aを読み出す。記憶装置905は、たとえば、ハードディスクである。プログラム904Aは、通信ネットワーク909を介してCPU901に供給されてもよいし、予め記憶媒体906に格納されており、ドライブ装置907に読み出され、CPU901に供給されてもよい。なお、記憶媒体906は、たとえば、光ディスク、磁気ディスク、光磁気ディスク、および不揮発性半導体メモリ等の、可搬媒体である。
各装置の実現方法には、様々な変形例がある。例えば、各装置は、構成要素毎にそれぞれ別個のコンピュータ900とプログラムとの可能な組み合わせにより実現されてもよい。また、各装置が備える複数の構成要素が、一つのコンピュータ900とプログラムとの可能な組み合わせにより実現されてもよい。
また、各装置の各構成要素の一部または全部は、その他の汎用または専用の回路、コンピュータ等やこれらの組み合わせによって実現されてもよい。これらは、単一のチップによって構成されてもよいし、バスを介して接続される複数のチップによって構成されてもよい。
各装置の各構成要素の一部または全部が複数のコンピュータや回路等により実現される場合には、複数のコンピュータや回路等は、集中配置されてもよいし、分散配置されてもよい。例えば、コンピュータや回路等は、クライアントアンドサーバシステム、クラウドコンピューティングシステム等、各々が通信ネットワークを介して接続される形態として実現されてもよい。
本願発明は以上に説明した実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
上記実施形態の一部または全部は以下の付記のようにも記載され得るが、以下には限られない。
<<付記>>
[付記1]
レーダによって取得された被観測体からの信号の強度マップにおいて特定される点である対象点の、三次元空間における位置と、前記被観測体の形状とに基づいて、前記対象点における前記信号に寄与する点である候補点を抽出する候補点抽出手段と、
前記候補点に対し、当該候補点を含む地表の状態を示す地理情報に基づいて、当該候補点が発する前記信号に対する解析に関わる信頼性の評価を行う評価手段と、
前記評価の結果を示す情報を出力する出力手段と、
を備える情報処理装置。
[付記2]
前記被観測体が写った空間画像に、複数の前記候補点が、前記評価の結果に応じた表示態様で表示された、点表示画像を生成する、画像生成手段を備え、
前記出力手段は、前記点表示画像を出力する、
付記1に記載の情報処理装置。
[付記3]
前記画像生成手段は、前記候補点の前記信頼性が高いほど、より目立つ表示態様で前記候補点が表示された、前記点表示画像を生成する、
付記2に記載の情報処理装置。
[付記4]
前記画像生成手段は、同一の前記特徴点の前記信号に寄与する前記複数の前記候補点のうち前記信頼性が最も高い前記候補点を示す表示が最も目立つ表示態様で表示された、前記点表示画像を生成する、
付記3に記載の情報処理装置。
[付記5]
前記出力手段は、前記候補点抽出手段により抽出された前記候補点のうち前記信頼性を示す値が所定の閾値よりも大きい前記候補点を特定し、特定された前記候補点の情報を出力する、
付記1から4のいずれか一つに記載の情報処理装置。
[付記6]
前記地理情報は、電波に対する後方散乱の安定性を示す指標値が地表に関連づけられた情報である、
付記1から5のいずれか一つに記載の情報処理装置。
[付記7]
前記指標値は、地表における植生の状況を示す値である、付記6に記載の情報処理装置。
[付記8]
前記地理情報は、地表において反射される光または電波の強度を示す情報を含む、付記1から5のいずれか一つに記載の情報処理装置。
[付記9]
レーダによって取得された被観測体からの信号の強度マップにおいて特定される点である対象点の、三次元空間における位置と、前記被観測体の形状とに基づいて、前記対象点における前記信号に寄与する点である候補点を抽出し、
前記候補点に対し、当該候補点を含む地表の状態を示す地理情報に基づいて、当該候補点が発する前記信号に対する解析に関わる信頼性の評価を行い、
前記評価の結果を示す情報を出力する、
を備える情報処理方法。
[付記10]
前記被観測体が写った空間画像に、複数の前記候補点が、前記評価の結果に応じた表示態様で表示された、点表示画像を生成し、前記点表示画像を出力する、
付記9に記載の情報処理方法。
[付記11]
前記候補点の前記信頼性が高いほど、より目立つ表示態様で前記候補点が表示された、前記点表示画像を生成する、
付記10に記載の情報処理方法。
[付記12]
同一の前記特徴点の前記信号に寄与する前記複数の前記候補点のうち前記信頼性が最も高い前記候補点を示す表示が最も目立つ表示態様で表示された、前記点表示画像を生成する、
付記11に記載の情報処理方法。
[付記13]
前記候補点のうち前記信頼性を示す値が所定の閾値よりも大きい前記候補点を特定し、特定された前記候補点の情報を出力する、
付記9から12のいずれか一つに記載の情報処理方法。
[付記14]
前記地理情報は、電波に対する後方散乱の安定性を示す指標値が地表に関連づけられた情報である、
付記9から13のいずれか一つに記載の情報処理方法。
[付記15]
前記指標値は、地表における植生の状況を示す値である、付記14に記載の情報処理方法。
[付記16]
前記地理情報は、地表において反射される光または電波の強度を示す情報を含む、付記9から13のいずれか一つに記載の情報処理方法。
[付記17]
レーダによって取得された被観測体からの信号の強度マップにおいて特定される点である対象点の、三次元空間における位置と、前記被観測体の形状とに基づいて、前記対象点における前記信号に寄与する点である候補点を抽出する候補点抽出処理と、
前記候補点に対し、当該候補点を含む地表の状態を示す地理情報に基づいて、当該候補点が発する前記信号に対する解析に関わる信頼性の評価を行う評価処理と、
前記評価の結果を示す情報を出力する出力処理と、
をコンピュータに実行させるプログラムを記憶した、コンピュータ読み取り可能な記憶媒体。
[付記18]
前記プログラムは、前記コンピュータに、
前記被観測体が写った空間画像に、複数の前記候補点が、前記評価の結果に応じた表示態様で表示された、点表示画像を生成する、画像生成処理を、さらに実行させ、
前記出力処理は、前記点表示画像を出力する、
付記17に記載の記憶媒体。
[付記19]
前記画像生成処理は、前記候補点の前記信頼性が高いほど、より目立つ表示態様で前記候補点が表示された、前記点表示画像を生成する、
付記18に記載の記憶媒体。
[付記20]
前記画像生成処理は、同一の前記特徴点の前記信号に寄与する前記複数の前記候補点のうち前記信頼性が最も高い前記候補点を示す表示が最も目立つ表示態様で表示された、前記点表示画像を生成する、
付記19に記載の記憶媒体。
[付記21]
前記出力処理は、前記候補点抽出処理により抽出された前記候補点のうち前記信頼性を示す値が所定の閾値よりも大きい前記候補点を特定し、特定された前記候補点の情報を出力する、
付記17から20のいずれか一つに記載の記憶媒体。
[付記22]
前記地理情報は、電波に対する後方散乱の安定性を示す指標値が地表に関連づけられた情報である、
付記17から21のいずれか一つに記載の記憶媒体。
[付記23]
前記指標値は、地表における植生の状況を示す値である、付記22に記載の記憶媒体。
[付記24]
前記地理情報は、地表において反射される光または電波の強度を示す情報を含む、付記17から21のいずれか一つに記載の記憶媒体。
[付記1]
レーダによって取得された被観測体からの信号の強度マップにおいて特定される点である対象点の、三次元空間における位置と、前記被観測体の形状とに基づいて、前記対象点における前記信号に寄与する点である候補点を抽出する候補点抽出手段と、
前記候補点に対し、当該候補点を含む地表の状態を示す地理情報に基づいて、当該候補点が発する前記信号に対する解析に関わる信頼性の評価を行う評価手段と、
前記評価の結果を示す情報を出力する出力手段と、
を備える情報処理装置。
[付記2]
前記被観測体が写った空間画像に、複数の前記候補点が、前記評価の結果に応じた表示態様で表示された、点表示画像を生成する、画像生成手段を備え、
前記出力手段は、前記点表示画像を出力する、
付記1に記載の情報処理装置。
[付記3]
前記画像生成手段は、前記候補点の前記信頼性が高いほど、より目立つ表示態様で前記候補点が表示された、前記点表示画像を生成する、
付記2に記載の情報処理装置。
[付記4]
前記画像生成手段は、同一の前記特徴点の前記信号に寄与する前記複数の前記候補点のうち前記信頼性が最も高い前記候補点を示す表示が最も目立つ表示態様で表示された、前記点表示画像を生成する、
付記3に記載の情報処理装置。
[付記5]
前記出力手段は、前記候補点抽出手段により抽出された前記候補点のうち前記信頼性を示す値が所定の閾値よりも大きい前記候補点を特定し、特定された前記候補点の情報を出力する、
付記1から4のいずれか一つに記載の情報処理装置。
[付記6]
前記地理情報は、電波に対する後方散乱の安定性を示す指標値が地表に関連づけられた情報である、
付記1から5のいずれか一つに記載の情報処理装置。
[付記7]
前記指標値は、地表における植生の状況を示す値である、付記6に記載の情報処理装置。
[付記8]
前記地理情報は、地表において反射される光または電波の強度を示す情報を含む、付記1から5のいずれか一つに記載の情報処理装置。
[付記9]
レーダによって取得された被観測体からの信号の強度マップにおいて特定される点である対象点の、三次元空間における位置と、前記被観測体の形状とに基づいて、前記対象点における前記信号に寄与する点である候補点を抽出し、
前記候補点に対し、当該候補点を含む地表の状態を示す地理情報に基づいて、当該候補点が発する前記信号に対する解析に関わる信頼性の評価を行い、
前記評価の結果を示す情報を出力する、
を備える情報処理方法。
[付記10]
前記被観測体が写った空間画像に、複数の前記候補点が、前記評価の結果に応じた表示態様で表示された、点表示画像を生成し、前記点表示画像を出力する、
付記9に記載の情報処理方法。
[付記11]
前記候補点の前記信頼性が高いほど、より目立つ表示態様で前記候補点が表示された、前記点表示画像を生成する、
付記10に記載の情報処理方法。
[付記12]
同一の前記特徴点の前記信号に寄与する前記複数の前記候補点のうち前記信頼性が最も高い前記候補点を示す表示が最も目立つ表示態様で表示された、前記点表示画像を生成する、
付記11に記載の情報処理方法。
[付記13]
前記候補点のうち前記信頼性を示す値が所定の閾値よりも大きい前記候補点を特定し、特定された前記候補点の情報を出力する、
付記9から12のいずれか一つに記載の情報処理方法。
[付記14]
前記地理情報は、電波に対する後方散乱の安定性を示す指標値が地表に関連づけられた情報である、
付記9から13のいずれか一つに記載の情報処理方法。
[付記15]
前記指標値は、地表における植生の状況を示す値である、付記14に記載の情報処理方法。
[付記16]
前記地理情報は、地表において反射される光または電波の強度を示す情報を含む、付記9から13のいずれか一つに記載の情報処理方法。
[付記17]
レーダによって取得された被観測体からの信号の強度マップにおいて特定される点である対象点の、三次元空間における位置と、前記被観測体の形状とに基づいて、前記対象点における前記信号に寄与する点である候補点を抽出する候補点抽出処理と、
前記候補点に対し、当該候補点を含む地表の状態を示す地理情報に基づいて、当該候補点が発する前記信号に対する解析に関わる信頼性の評価を行う評価処理と、
前記評価の結果を示す情報を出力する出力処理と、
をコンピュータに実行させるプログラムを記憶した、コンピュータ読み取り可能な記憶媒体。
[付記18]
前記プログラムは、前記コンピュータに、
前記被観測体が写った空間画像に、複数の前記候補点が、前記評価の結果に応じた表示態様で表示された、点表示画像を生成する、画像生成処理を、さらに実行させ、
前記出力処理は、前記点表示画像を出力する、
付記17に記載の記憶媒体。
[付記19]
前記画像生成処理は、前記候補点の前記信頼性が高いほど、より目立つ表示態様で前記候補点が表示された、前記点表示画像を生成する、
付記18に記載の記憶媒体。
[付記20]
前記画像生成処理は、同一の前記特徴点の前記信号に寄与する前記複数の前記候補点のうち前記信頼性が最も高い前記候補点を示す表示が最も目立つ表示態様で表示された、前記点表示画像を生成する、
付記19に記載の記憶媒体。
[付記21]
前記出力処理は、前記候補点抽出処理により抽出された前記候補点のうち前記信頼性を示す値が所定の閾値よりも大きい前記候補点を特定し、特定された前記候補点の情報を出力する、
付記17から20のいずれか一つに記載の記憶媒体。
[付記22]
前記地理情報は、電波に対する後方散乱の安定性を示す指標値が地表に関連づけられた情報である、
付記17から21のいずれか一つに記載の記憶媒体。
[付記23]
前記指標値は、地表における植生の状況を示す値である、付記22に記載の記憶媒体。
[付記24]
前記地理情報は、地表において反射される光または電波の強度を示す情報を含む、付記17から21のいずれか一つに記載の記憶媒体。
10、11 情報処理装置
104 候補点抽出部
105 評価部
106 出力部
111 記憶部
112 特徴点抽出部
113 ジオコーディング部
114 候補点抽出部
115 評価部
116、126 出力情報生成部
1161 表示態様決定部
1162 表示位置決定部
1163 画像生成部
1164 表示制御部
117 指定受付部
1111 SARデータ
1112 SARデータパラメータ
1113 モデルデータ
1114 地理情報
1115 空間画像
21 表示装置
31 記憶装置
900 コンピュータ
901 CPU
902 ROM
903 RAM
904A プログラム
904B 記憶情報
905 記憶装置
906 記憶媒体
907 ドライブ装置
908 通信インタフェース
909 通信ネットワーク
910 入出力インタフェース
911 バス
104 候補点抽出部
105 評価部
106 出力部
111 記憶部
112 特徴点抽出部
113 ジオコーディング部
114 候補点抽出部
115 評価部
116、126 出力情報生成部
1161 表示態様決定部
1162 表示位置決定部
1163 画像生成部
1164 表示制御部
117 指定受付部
1111 SARデータ
1112 SARデータパラメータ
1113 モデルデータ
1114 地理情報
1115 空間画像
21 表示装置
31 記憶装置
900 コンピュータ
901 CPU
902 ROM
903 RAM
904A プログラム
904B 記憶情報
905 記憶装置
906 記憶媒体
907 ドライブ装置
908 通信インタフェース
909 通信ネットワーク
910 入出力インタフェース
911 バス
Claims (24)
- レーダによって取得された被観測体からの信号の強度マップにおいて特定される点である対象点の、三次元空間における位置と、前記被観測体の形状とに基づいて、前記対象点における前記信号に寄与する点である候補点を抽出する候補点抽出手段と、
前記候補点に対し、当該候補点を含む地表の状態を示す地理情報に基づいて、当該候補点が発する前記信号に対する解析に関わる信頼性の評価を行う評価手段と、
前記評価の結果を示す情報を出力する出力手段と、
を備える情報処理装置。 - 前記被観測体が写った空間画像に、複数の前記候補点が、前記評価の結果に応じた表示態様で表示された、点表示画像を生成する、画像生成手段を備え、
前記出力手段は、前記点表示画像を出力する、
請求項1に記載の情報処理装置。 - 前記画像生成手段は、前記候補点の前記信頼性が高いほど、より目立つ表示態様で前記候補点が表示された、前記点表示画像を生成する、
請求項2に記載の情報処理装置。 - 前記画像生成手段は、同一の前記特徴点の前記信号に寄与する前記複数の前記候補点のうち前記信頼性が最も高い前記候補点を示す表示が最も目立つ表示態様で表示された、前記点表示画像を生成する、
請求項3に記載の情報処理装置。 - 前記出力手段は、前記候補点抽出手段により抽出された前記候補点のうち前記信頼性を示す値が所定の閾値よりも大きい前記候補点を特定し、特定された前記候補点の情報を出力する、
請求項1から4のいずれか一項に記載の情報処理装置。 - 前記地理情報は、電波に対する後方散乱の安定性を示す指標値が地表に関連づけられた情報である、
請求項1から5のいずれか一項に記載の情報処理装置。 - 前記指標値は、地表における植生の状況を示す値である、請求項6に記載の情報処理装置。
- 前記地理情報は、地表において反射される光または電波の強度を示す情報を含む、請求項1から5のいずれか一項に記載の情報処理装置。
- レーダによって取得された被観測体からの信号の強度マップにおいて特定される点である対象点の、三次元空間における位置と、前記被観測体の形状とに基づいて、前記対象点における前記信号に寄与する点である候補点を抽出し、
前記候補点に対し、当該候補点を含む地表の状態を示す地理情報に基づいて、当該候補点が発する前記信号に対する解析に関わる信頼性の評価を行い、
前記評価の結果を示す情報を出力する、
を備える情報処理方法。 - 前記被観測体が写った空間画像に、複数の前記候補点が、前記評価の結果に応じた表示態様で表示された、点表示画像を生成し、前記点表示画像を出力する、
請求項9に記載の情報処理方法。 - 前記候補点の前記信頼性が高いほど、より目立つ表示態様で前記候補点が表示された、前記点表示画像を生成する、
請求項10に記載の情報処理方法。 - 同一の前記特徴点の前記信号に寄与する前記複数の前記候補点のうち前記信頼性が最も高い前記候補点を示す表示が最も目立つ表示態様で表示された、前記点表示画像を生成する、
請求項11に記載の情報処理方法。 - 前記候補点のうち前記信頼性を示す値が所定の閾値よりも大きい前記候補点を特定し、特定された前記候補点の情報を出力する、
請求項9から12のいずれか一項に記載の情報処理方法。 - 前記地理情報は、電波に対する後方散乱の安定性を示す指標値が地表に関連づけられた情報である、
請求項9から13のいずれか一項に記載の情報処理方法。 - 前記指標値は、地表における植生の状況を示す値である、請求項14に記載の情報処理方法。
- 前記地理情報は、地表において反射される光または電波の強度を示す情報を含む、請求項9から13のいずれか一項に記載の情報処理方法。
- レーダによって取得された被観測体からの信号の強度マップにおいて特定される点である対象点の、三次元空間における位置と、前記被観測体の形状とに基づいて、前記対象点における前記信号に寄与する点である候補点を抽出する候補点抽出処理と、
前記候補点に対し、当該候補点を含む地表の状態を示す地理情報に基づいて、当該候補点が発する前記信号に対する解析に関わる信頼性の評価を行う評価処理と、
前記評価の結果を示す情報を出力する出力処理と、
をコンピュータに実行させるプログラムを記憶した、コンピュータ読み取り可能な記憶媒体。 - 前記プログラムは、前記コンピュータに、
前記被観測体が写った空間画像に、複数の前記候補点が、前記評価の結果に応じた表示態様で表示された、点表示画像を生成する、画像生成処理を、さらに実行させ、
前記出力処理は、前記点表示画像を出力する、
請求項17に記載の記憶媒体。 - 前記画像生成処理は、前記候補点の前記信頼性が高いほど、より目立つ表示態様で前記候補点が表示された、前記点表示画像を生成する、
請求項18に記載の記憶媒体。 - 前記画像生成処理は、同一の前記特徴点の前記信号に寄与する前記複数の前記候補点のうち前記信頼性が最も高い前記候補点を示す表示が最も目立つ表示態様で表示された、前記点表示画像を生成する、
請求項19に記載の記憶媒体。 - 前記出力処理は、前記候補点抽出処理により抽出された前記候補点のうち前記信頼性を示す値が所定の閾値よりも大きい前記候補点を特定し、特定された前記候補点の情報を出力する、
請求項17から20のいずれか一項に記載の記憶媒体。 - 前記地理情報は、電波に対する後方散乱の安定性を示す指標値が地表に関連づけられた情報である、
請求項17から21のいずれか一項に記載の記憶媒体。 - 前記指標値は、地表における植生の状況を示す値である、請求項22に記載の記憶媒体。
- 前記地理情報は、地表において反射される光または電波の強度を示す情報を含む、請求項17から21のいずれか一項に記載の記憶媒体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/018524 WO2018211625A1 (ja) | 2017-05-17 | 2017-05-17 | 情報処理装置、情報処理方法、プログラムを記憶した記憶媒体 |
JP2019518666A JP6741154B2 (ja) | 2017-05-17 | 2017-05-17 | 情報処理装置、情報処理方法、及びプログラム |
US16/613,180 US20200166626A1 (en) | 2017-05-17 | 2017-05-17 | Information processing device, information processing method, and storage medium having program stored thereon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/018524 WO2018211625A1 (ja) | 2017-05-17 | 2017-05-17 | 情報処理装置、情報処理方法、プログラムを記憶した記憶媒体 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018211625A1 true WO2018211625A1 (ja) | 2018-11-22 |
Family
ID=64274417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/018524 WO2018211625A1 (ja) | 2017-05-17 | 2017-05-17 | 情報処理装置、情報処理方法、プログラムを記憶した記憶媒体 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20200166626A1 (ja) |
JP (1) | JP6741154B2 (ja) |
WO (1) | WO2018211625A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113932703B (zh) * | 2021-11-09 | 2023-06-16 | 中国有色金属长沙勘察设计研究院有限公司 | 一种形变监测雷达区域数据处理方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06148321A (ja) * | 1992-10-31 | 1994-05-27 | Nec Corp | フォアショートニング歪補正テーブル作成装置 |
JP2008185375A (ja) * | 2007-01-29 | 2008-08-14 | Mitsubishi Electric Corp | Sar画像の3d形状算出装置及びsar画像の歪補正装置 |
JP2011185834A (ja) * | 2010-03-10 | 2011-09-22 | Nikko Tankai Kk | Sarデータ処理方法及びsarデータ処理システム |
WO2016125206A1 (ja) * | 2015-02-06 | 2016-08-11 | 三菱電機株式会社 | 合成開口レーダ信号処理装置 |
-
2017
- 2017-05-17 WO PCT/JP2017/018524 patent/WO2018211625A1/ja active Application Filing
- 2017-05-17 US US16/613,180 patent/US20200166626A1/en not_active Abandoned
- 2017-05-17 JP JP2019518666A patent/JP6741154B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06148321A (ja) * | 1992-10-31 | 1994-05-27 | Nec Corp | フォアショートニング歪補正テーブル作成装置 |
JP2008185375A (ja) * | 2007-01-29 | 2008-08-14 | Mitsubishi Electric Corp | Sar画像の3d形状算出装置及びsar画像の歪補正装置 |
JP2011185834A (ja) * | 2010-03-10 | 2011-09-22 | Nikko Tankai Kk | Sarデータ処理方法及びsarデータ処理システム |
WO2016125206A1 (ja) * | 2015-02-06 | 2016-08-11 | 三菱電機株式会社 | 合成開口レーダ信号処理装置 |
Also Published As
Publication number | Publication date |
---|---|
US20200166626A1 (en) | 2020-05-28 |
JPWO2018211625A1 (ja) | 2020-05-07 |
JP6741154B2 (ja) | 2020-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10430961B2 (en) | Using satellite imagery to enhance a 3D surface model of a real world cityscape | |
Eltner et al. | Analysis of different methods for 3D reconstruction of natural surfaces from parallel‐axes UAV images | |
US8179393B2 (en) | Fusion of a 2D electro-optical image and 3D point cloud data for scene interpretation and registration performance assessment | |
KR101489984B1 (ko) | 스테레오-영상 정합 및 변화 검출 시스템 및 방법 | |
EP2111530B1 (en) | Automatic stereo measurement of a point of interest in a scene | |
US20120155744A1 (en) | Image generation method | |
US20160014395A1 (en) | Data fusion processing to identify obscured objects | |
US20090154793A1 (en) | Digital photogrammetric method and apparatus using intergrated modeling of different types of sensors | |
JP6571262B2 (ja) | 複数のモデルに基づくオブジェクトの表示 | |
US20210132214A1 (en) | Synthetic aperture radar image analysis system, synthetic aperture radar image analysis method, and synthetic aperture radar image analysis program | |
WO2022077190A1 (zh) | 数据处理方法、控制设备及存储介质 | |
AU2016396487A1 (en) | Map creation system and map creation method | |
CN115825067A (zh) | 一种基于无人机的地质信息采集方法、系统及电子设备 | |
JP2022013152A (ja) | 雲高計測装置、計測点決定方法、および雲種類決定方法 | |
Stark et al. | From consumer to enterprise grade: How the choice of four UAS impacts point cloud quality | |
JPWO2019188509A1 (ja) | レーダ画像処理装置、レーダ画像処理方法、および、プログラム | |
Yoo et al. | True orthoimage generation by mutual recovery of occlusion areas | |
JP7020418B2 (ja) | 情報処理装置、情報処理方法、およびプログラム | |
JP6741154B2 (ja) | 情報処理装置、情報処理方法、及びプログラム | |
JP2013109624A (ja) | 画像処理装置、画像処理方法 | |
US8818124B1 (en) | Methods, apparatus, and systems for super resolution of LIDAR data sets | |
CN115334247B (zh) | 摄像模块标校方法、视觉定位方法、装置及电子设备 | |
US11978161B2 (en) | 3D modelling method and system | |
Penne et al. | Investigating new calibration methods without feature detection for ToF cameras | |
US12085641B2 (en) | Image processing device, image processing method, and image processing computer program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17909824 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019518666 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17909824 Country of ref document: EP Kind code of ref document: A1 |