WO2018218685A1 - 一种三维治疗床的位置监测机构及方法、三维治疗床 - Google Patents

一种三维治疗床的位置监测机构及方法、三维治疗床 Download PDF

Info

Publication number
WO2018218685A1
WO2018218685A1 PCT/CN2017/087079 CN2017087079W WO2018218685A1 WO 2018218685 A1 WO2018218685 A1 WO 2018218685A1 CN 2017087079 W CN2017087079 W CN 2017087079W WO 2018218685 A1 WO2018218685 A1 WO 2018218685A1
Authority
WO
WIPO (PCT)
Prior art keywords
bed
position monitoring
disposed
control system
dimensional treatment
Prior art date
Application number
PCT/CN2017/087079
Other languages
English (en)
French (fr)
Inventor
杨勇强
Original Assignee
西安大医集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安大医集团有限公司 filed Critical 西安大医集团有限公司
Priority to CN201790000621.7U priority Critical patent/CN209916025U/zh
Priority to PCT/CN2017/087079 priority patent/WO2018218685A1/zh
Publication of WO2018218685A1 publication Critical patent/WO2018218685A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment

Definitions

  • the invention relates to the field of medical equipment, in particular to a position monitoring mechanism and method for a three-dimensional treatment bed, and a three-dimensional treatment bed.
  • the radiotherapy system is a medical radiotherapy apparatus, including a rack, a source device disposed at an upper portion of the rack, a three-dimensional treatment bed disposed at the bottom of the rack, and a control for controlling three-dimensional movement of the three-dimensional treatment bed on the rack. system.
  • the control system is used to control the three-dimensional movement of the three-dimensional treatment bed in the X-axis direction, the Z-axis direction and the Y-axis direction, so that the radiation emitted by the source device is focused on the target to be treated, thereby achieving accurate radiation. treatment.
  • the movement of the three-dimensional treatment bed in the X-axis direction and the Z-axis direction can be understood as the forward and backward movement and the left and right movement on the same horizontal plane, and the movement in the Y-axis direction can be understood as being performed on the vertical plane. move up and down.
  • a three-dimensional treatment bed it includes a base, an X-direction moving mechanism disposed on the base, a Z-direction moving mechanism, and a Y-direction moving mechanism, and a bed disposed above the base.
  • the X-direction moving mechanism, the Z-direction moving mechanism and the Y-direction moving mechanism each include: a motor 1 (which is a servo motor), a first encoder 2 coaxially coupled with the motor 1, and the same as the motor 1 A shaft-coupled transmission mechanism 3.
  • the transmission structures in the above-mentioned moving mechanisms are respectively connected to the bed 5, and at the same time, the motor 1 and the first encoder 2 are electrically connected to the control system 4 of the radiation therapy apparatus.
  • the control system 4 issues a work command to the motor 1, and the motor 1 drives the bed 5 through the transmission mechanism 3 to perform movement in three directions of X, Y, and Z.
  • the first encoder 2 collects pulses of the corresponding motor 1.
  • the signal is fed back to the control system 4, and the control system 4 controls the operating state of the motor 1 in real time by the motor pulse signal.
  • it is generally determined by a motor pulse signal fed back to the control system 4.
  • the embodiment of the invention provides a position monitoring mechanism and method for a three-dimensional treatment bed, and a three-dimensional treatment bed.
  • the specific technical solutions are as follows:
  • a three-dimensional treatment bed position monitoring mechanism comprising: a base, a moving mechanism disposed on the base, and a bed disposed above the base;
  • the moving mechanism includes: a transmission mechanism connected to the bed body;
  • the position monitoring mechanism is disposed on the transmission mechanism and/or the bed body, and the position monitoring mechanism is electrically connected to the control system.
  • the three-dimensional treatment bed further includes: a coaxially coupled motor and a first encoder;
  • the transmission mechanism is coaxially coupled to the motor
  • the motor and the first encoder are also electrically coupled to the control system.
  • the position monitoring mechanism includes: a plurality of sensing blocks uniformly disposed on the transmission mechanism in a circumferential direction;
  • a proximity switch is disposed on the bed body and opposite to a circumference of the sensing block, the proximity switch is electrically connected to the control system.
  • the transmission mechanism includes: a transmission screw coaxially coupled to the motor through a coupling, fixed to the bed body and the transmission wire a transmission nut with a rod thread connection;
  • the position monitoring mechanism further includes: a mounting plate coaxially connected to the free end of the drive screw, and the plurality of sensing blocks are evenly disposed on the mounting plate in a circumferential direction.
  • the transmission mechanism includes: a transmission screw coaxially coupled to the motor via a transmission shaft, fixed to the bed body and the transmission screw a threaded transmission nut, a driving gear fixed on the transmission shaft, a driven gear meshing with the driving gear, and a manual shaft coaxially connected with the driven gear;
  • a plurality of the sensing blocks are evenly disposed on the end plane of the driven gear about the circumferential direction.
  • the sensing block is a screw that is screwed onto the transmission.
  • the bed body is provided with a proximity switch bracket, and the proximity switch is disposed on the proximity switch bracket.
  • the position monitoring mechanism includes: a color standard plate disposed on the bed body along a driving direction;
  • a color code sensor disposed on the base by a bracket and opposite to the color code plate;
  • the color code sensor is electrically connected to the control system.
  • the transmission mechanism when the transmission mechanism adopts a scissor lifting mode, the transmission mechanism includes: a scissor lifting mechanism connected to the bed body;
  • the position monitoring mechanism includes: a rack disposed on the bed body along a driving direction;
  • a monitoring gear rotatably disposed on the gear carrier and meshing with the rack;
  • a second encoder coaxially coupled to the monitoring gear, the second encoder being further electrically coupled to the control system.
  • the position monitoring mechanism further includes: a color code plate disposed on the side wall of the rack along the driving direction;
  • a color code sensor disposed on the gear carrier and electrically connected to the control system
  • the color code sensor is opposite to the color code plate.
  • the location monitoring mechanism further includes:
  • a plurality of sensing blocks uniformly disposed on an end plane of the monitoring gear in a circumferential direction; a proximity switch disposed on the gear carrier and opposite to a circumference of the sensing block, the proximity switch and the control
  • the system is electrically connected.
  • the position monitoring mechanism further includes: an alarm electrically connected to the control system.
  • a three-dimensional treatment bed comprising any of the position monitoring mechanisms described above.
  • a method for position monitoring a three-dimensional treatment bed using any of the above-described position monitoring mechanisms comprising:
  • a position monitoring mechanism to acquire a position signal of the transmission mechanism and/or the bed of the three-dimensional treatment bed in the X-axis direction, the Z-axis direction or the Y-axis direction, and feed back to the control system;
  • the control system processes the position signal to obtain position information of the three-dimensional treatment couch.
  • the method further includes:
  • the first encoder collects a motor pulse signal of the motor in the X-axis direction, the Z-axis direction or the Y-axis direction, and feeds back to the control system;
  • the control system compares the position signal in the same direction with the motor pulse signal to obtain position information of the three-dimensional treatment bed.
  • the method further includes: the control system compares the position signal in the same direction with the motor pulse signal, and determines whether the position signal and the motor pulse signal have a corresponding relationship according to the comparison result;
  • the control system issues an alarm instruction to the alarm.
  • the position monitoring mechanism of the three-dimensional treatment bed provided by the embodiment of the invention can collect the position signals of the transmission mechanism of the three-dimensional treatment bed and/or the bed body in the X-axis direction, the Z-axis direction or the Y-axis direction, and feed back to the control system.
  • the control system can accurately determine the position information of the three-dimensional treatment bed, thereby ensuring the reliability and safety of the three-dimensional treatment bed movement, and is of great significance for ensuring the patient's treatment safety.
  • FIG. 1 is a schematic view showing a partial connection relationship of a three-dimensional treatment bed provided by the prior art
  • FIG. 2 is a schematic diagram showing a partial connection relationship of a three-dimensional treatment bed according to an embodiment of the present invention
  • 3-1 is a schematic view showing a first type of partial installation structure of a position monitoring mechanism on a transmission mechanism when the transmission mechanism adopts a screw drive mode according to an embodiment of the present invention
  • 3-2 is a schematic view showing a second type of partial installation structure of the position monitoring mechanism on the transmission mechanism when the transmission mechanism adopts the screw drive mode according to an embodiment of the present invention
  • 3-3 is a schematic view showing a partial installation structure of a position monitoring mechanism on a transmission mechanism when the transmission mechanism adopts a scissor lifting mode according to an embodiment of the present invention.
  • 601a-sensing block 602a-proximity switch, 603a-mounting plate,
  • 601b rack 602b-gear bracket, 603b-monitoring gear, 604b-second encoder,
  • 605b-color standard board 606b-color standard sensor
  • the three-dimensional treatment bed is a mechanism in the radiotherapy system, comprising: a base, a bed disposed above the base, an X-direction moving mechanism disposed on the base, and a Z-direction moving mechanism And Y to move the mechanism.
  • the X-direction moving mechanism, the Z-direction moving mechanism and the Y-direction moving mechanism each include: a motor 1, a first encoder 2 coaxially coupled with the motor 1, and a transmission mechanism 3 coaxially coupled to the motor 1.
  • the transmission mechanism 3 is also connected to the bed 5. Both the motor 1 and the first encoder 2 are electrically connected to the control system 4 of the gamma knife.
  • the driving force it provides is transmitted to the bed 5 through the transmission mechanism 3 to move the bed 5 in the X-axis direction, the Z-axis direction or the Y-axis direction.
  • the first encoder 2 in each direction collects the motor pulse signal of the corresponding motor 1 and feeds it back to the control system 4, and the control system 4 controls the working state of the motor 1 in real time by the motor pulse signal.
  • the open loop control in this process, when it is necessary to determine the position information of the bed 5 in all directions, such as the moving distance, the prior art is based on feedback to The motor pulse signal of the control system 4 is determined. Based on the above open loop control mode, this causes the motor 1 and the transmission mechanism 3 to be poorly connected. Even when idling, the motor pulse signal emitted by the motor 1 is invalid for determining the position information of the three-dimensional treatment bed.
  • an embodiment of the present invention provides a three-dimensional treatment bed.
  • the position monitoring mechanism wherein, as shown in FIG. 2, the three-dimensional treatment bed comprises: a base, a moving mechanism disposed on the base, and a bed 5 disposed above the base.
  • the moving mechanism comprises: a transmission mechanism 3 connected to the bed 5;
  • the position monitoring mechanism 6 is disposed on the transmission mechanism 3 and/or the bed 5, and the position monitoring mechanism 6 is electrically connected to the control system 4.
  • moving mechanism refers to an X-direction moving mechanism, a Z-direction moving mechanism, and a Y-direction moving mechanism, and each moving mechanism is independent of each other.
  • the position monitoring mechanism 6 of the three-dimensional treatment bed provided by the embodiment of the invention can collect the position signals of the transmission mechanism 3 of the three-dimensional treatment bed and/or the bed body 5 in the X-axis direction, the Z-axis direction or the Y-axis direction, and feed back to Control system 4.
  • the control system 4 can accurately determine the position information of the three-dimensional treatment bed by processing the position signal.
  • the three-dimensional treatment bed further comprises: a coaxially coupled motor 1 and a first encoder 2;
  • the transmission mechanism 3 is coaxially coupled with the motor 1;
  • the motor 1 and the first encoder 2 are also electrically connected to the control system 4.
  • the pulse signal of the motor 1 can be collected and fed back to the control system 4.
  • the position monitoring mechanism 6 cooperates with the first encoder 2 to form a closed loop control of the three-dimensional treatment bed: that is, the position monitoring mechanism 6 collects a three-dimensional treatment bed
  • the position signals of the transmission mechanism 3 and/or the bed 5 in the X-axis direction, the Z-axis direction or the Y-axis direction are fed back to the control system 4.
  • the first encoder 2 collects the motor pulse signals of the motor 1 in the X-axis direction, the Z-axis direction or the Y-axis direction, and feeds back to the control system 4, which controls the position signal and the motor pulse in the same direction.
  • the comparison of the signals not only accurately determines the position information of the three-dimensional treatment bed, but also determines whether the connection between the motor 1 and the transmission mechanism 3 is good (that is, also monitors the operating state of the three-dimensional treatment bed), thereby ensuring the movement of the three-dimensional treatment bed. Reliability and safety are of great significance for ensuring the safety of patients.
  • the motor pulse signal collected by the first encoder 2 and the position signal collected by the position monitoring mechanism 6 have a certain correspondence relationship (correspondence in function relationship), and the control system 4 comparing the two, and obtaining the corresponding comparison results.
  • the control system 4 comparing the two, and obtaining the corresponding comparison results.
  • the position information of the three-dimensional treatment bed can be accurately determined, and at the same time, the motor 1 can be determined.
  • the transmission mechanism 2 is well connected.
  • the motor pulse signal collected by the first encoder 2 does not have a corresponding relationship with the position monitoring mechanism 6 for collecting the position signal, and the control system 4 performs the two. Comparing, the comparison results of the two are not obtained.
  • the position signal the position information of the three-dimensional treatment bed can be accurately determined, and at the same time, the unreliable factors and safety hazards of the three-dimensional treatment bed are determined, so as to stop the maintenance in time.
  • the first encoder 2 can collect the motor pulse signal. Since the transmission mechanism 3 is not driven by the motor 1, the transmission mechanism 3 and the bed body are provided. 5 There is no displacement. At this time, the position monitoring mechanism 6 cannot collect the position signal. Although the control system 4 can obtain the motor pulse signal, but can not obtain the position signal, based on this, it can be judged that the motor 1 is idling, and the position of the three-dimensional treatment bed has not changed, and it is determined that the maintenance needs to be stopped.
  • the position monitoring mechanism 6, the first encoder 2 and the control system 4 cooperate to form a closed loop control, which can accurately determine the position information of the three-dimensional treatment bed, thereby ensuring the reliability and safety of the three-dimensional treatment bed movement. To improve the safety of patients during treatment.
  • the transmission mechanism 3 can have a variety of transmission methods, such as screw drive, scissor transmission and the like. Further, for the same three-dimensional treatment bed, the transmission mechanism 3 used for each of the X-direction moving mechanism, the Z-direction moving mechanism, and the Y-direction moving mechanism may be the same or different.
  • the transmission mode of the transmission mechanism 3 is different, the position monitoring can be realized quickly and accurately, and the installation convenience is improved, and the structure of the position monitoring mechanism 6 and its mounting manner on the transmission mechanism 3 are also different.
  • the transmission mode of the transmission mechanism 3 is different, the position monitoring can be realized quickly and accurately, and the installation convenience is improved, and the structure of the position monitoring mechanism 6 and its mounting manner on the transmission mechanism 3 are also different.
  • the position monitoring mechanism 6 includes: a plurality of sensing blocks 601a uniformly disposed on the transmission mechanism 3 in the circumferential direction;
  • the proximity switch 602a is disposed on the bed 5 and is opposite to the circumference of the sensing block 601a, and the proximity switch 602a is electrically connected to the control system 4.
  • the transmission mechanism 3 adopts the screw drive mode
  • the rotary motion of the transmission mechanism 3 is converted into a linear motion of the bed body 5, and at this time, the transmission mechanism is uniformly disposed on the transmission mechanism 3 by circumferentially arranging the plurality of induction blocks 601a.
  • the plurality of sensing blocks 601a rotate synchronously.
  • the proximity switch 602a is disposed on the bed 5 opposite to the circumference of the rotating sensing block 601a.
  • a pulse signal corresponding to the motor pulse signal is generated (ie, the position is Signal) and fed back to control system 4.
  • the control system 4 can obtain three-dimensionally through the position signal Location information for the treatment bed.
  • control system 4 can accurately determine whether the connection between the motor 1 and the transmission mechanism 3 is good, and is important for ensuring the movement safety of the three-dimensional treatment bed.
  • the transmission mechanism 3 includes: a transmission screw 301 coaxially coupled to the motor 1 through a coupling, and fixed to the bed body a transmission nut that is screwed onto the drive screw 301;
  • the position monitoring mechanism 6 further includes a mounting plate 603a coaxially connected to the free end of the drive screw 301, and the plurality of sensing blocks 601a are evenly disposed on the mounting plate 603a in the circumferential direction.
  • the motor 1 drives the driving screw 301 to rotate in the original direction, thereby driving the transmission nut to move linearly along the axial direction of the driving screw 301, thereby driving the bed 5 to move.
  • the mounting plate 603a By mounting the mounting plate 603a at the free end of the drive screw 301 (the end opposite the coupling end of the motor 1), the mounting plate 603a is rotated synchronously with the drive screw 301, on the basis of which the plurality of sensing blocks 601a are wound around the circumference. Uniformly disposed on the mounting plate 603a, not only can ensure that the sensing block 601a rotates synchronously with the driving screw 301, so that the position signal sensed by the proximity switch 602a corresponds to the motor driving signal collected by the first encoder 2, and the sensing block is made The installation process of 601a is more convenient.
  • the mounting plate 603a can be fixed to the free end of the driving screw 301 by welding, snapping, or screwing. In order to securely mount the mounting plate 603a on the drive screw 301 while facilitating disassembly, it is preferably fixed by screwing.
  • the mounting plate 603a includes an annular disk body and a cover body coaxially connected to the inner ring of the annular disk body.
  • the inner wall of the cover body is provided with internal threads, and the outer wall of the free end of the transmission screw 301 is disposed to be adapted thereto.
  • the external thread is equipped to be securely mounted by fitting the cover thread to the free end of the drive screw 301, and is also easy to disassemble.
  • a plurality of sensing blocks 601a are evenly disposed on the annular disk body in the circumferential direction. It will be appreciated that the sensing block 601a must be used in conjunction with the proximity switch 602a to enable the proximity switch 602a to sense its position and to emit a corresponding position signal.
  • the sensing block 601a is made of a metal material, and its structure may be cylindrical, prismatic, sheet-shaped or the like.
  • the sensing block 601a may be screwed through the thread.
  • the connection mode is set on the transmission mechanism 3.
  • a plurality of internally threaded holes are arranged in the circumferential direction, and the sensing block 601a of the screw structure is screwed to the internally threaded hole.
  • the spacing between the proximity switch 602a and the sensing block 601a mentioned above is not specifically limited in the embodiment of the present invention, as long as the proximity switch 602a can ensure that the sensing block 601a can be sensed in real time.
  • the number of sensing blocks 601a is determined. It can be understood that the more the number of sensing blocks 601a, the higher the monitoring accuracy. In general, at least five sensing blocks 601a may be provided, for example, eight, ten, twelve, fourteen, sixteen, and the like.
  • monitoring accuracy can be expressed by the linear distance of the transmission nut after the proximity switch 602a senses the adjacent two sensing blocks 601a.
  • linear distance is defined as “monitoring distance”, which is as follows. The formula is calculated:
  • M is the monitoring distance in mm
  • p is the lead of the drive screw, the unit is mm, after the specification of the general drive screw 301 is determined, the lead is also determined;
  • k is the number of sensing blocks 601a.
  • the monitoring distance M is 0.5 mm at this time.
  • the proximity switch 602a can sense an inductive block 601a, that is, the control system 4 acquires the position signal of the bed 5 at a time. In this case, high monitoring accuracy can be achieved.
  • the proximity switch 602a If the theoretical movement stroke of the bed 5 reaches 0.5 mm, the proximity switch 602a has not sensed the sensing block 601a. For example, after the actual movement stroke of the bed 5 exceeds 0.5 mm, the proximity switch 602a senses the sensing block 601a. At the same time, the control system 4 acquires the motor pulse signal of "the moving stroke of the bed 5 exceeds 0.5 mm" fed back by the first encoder 2, and simultaneously acquires the "moving stroke of the bed 5 of 0.5 mm which is fed back by the proximity switch 602a. The position signal, at this time means that the motor 1 and the transmission mechanism 3 are poorly connected, and the control system 4 can make a stop command.
  • the transmission mechanism 3 further includes: a transmission screw 301 coaxially coupled to the motor 1 via a drive shaft, a transmission nut fixed to the bed 5 and threadedly coupled to the drive screw 301, a drive gear 302 fixedly mounted on the drive shaft, and meshing with the drive gear 302
  • the driven gear 303 and the manual shaft 304 coaxially connected to the driven gear 303.
  • a plurality of sensing blocks 601a are uniformly disposed on the end plane of the driven gear 303 in the circumferential direction.
  • the coupling between the drive shaft and the motor 1 and the drive shaft and the drive screw 301 can be achieved by a coupling.
  • the drive nut By rotating the manual shaft 304 or rotating the motor 1, the drive nut can be driven to move linearly along the drive screw 301, except that the two transmission sequences are just the opposite.
  • the manual shaft 304 when the manual shaft 304 is rotated, it drives the driven gear 303 to rotate in the same direction, thereby driving the driving gear 302 to rotate in the opposite direction, thereby driving the driving shaft and the driving screw 301 to rotate in the same direction as the driving gear 302.
  • the drive transmission nut moves linearly along the axial direction of the drive screw 301, thereby driving the bed 5 to move.
  • the motor 1 also rotates synchronously.
  • the mounting position of the proximity switch 602a and the sensing block 601a is not limited to that described in the first embodiment above.
  • the plurality of sensing blocks 601a may also be uniformly disposed in the circumferential direction on the end plane of the driven gear 303.
  • the proximity switch 602a is disposed on the bed 5 opposite to the circumference of the sensing block 601a.
  • the "monitoring distance" in the second embodiment described above can be calculated by the following formula:
  • M is the monitoring distance in mm
  • p is the lead of the drive screw, the unit is mm, after the specification of the general drive screw 301 is determined, the lead is also determined;
  • k is the number of sensing blocks 601a.
  • the monitoring distance M is 0.508.
  • Mm similar to the above principle, can also achieve higher monitoring accuracy in this case.
  • the above monitoring distance is preferably 0.3-1.5 mm, such as 0.5 mm, 0.8 mm, 1.0 mm, 1.2 mm, and the like.
  • the proximity switch 602a is opposite the circumference of the corresponding sensing block 601a and the position signal of the sensing block 601a can be sensed, it can be disposed at any position of the bed 5.
  • a proximity switch bracket 7 is provided on the bed 5, and the proximity switch 602a is disposed on the proximity switch bracket 7.
  • the proximity switch bracket 7 may include a vertically connected connecting plate and a mounting plate, the connecting plate being fixed to the bed 5, and the proximity switch 602a being fixed to the mounting plate.
  • the fixed connection relationship between the two it can be realized by bolt connection for easy adjustment.
  • the position monitoring mechanism 6 includes: a color code plate 605b disposed on the bed 5 along the driving direction;
  • a color code sensor 606b disposed on the pedestal by the bracket and opposite to the color code plate 605b;
  • the color scale sensor 606b is electrically connected to the control system 4.
  • the color code sensor 606b fixed on the base by the bracket can monitor the color on the color mark plate 605b in real time.
  • the change (which directly characterizes the position information of the bed 5) and outputs a corresponding pulse signal and fed back to the control system 4, the control system 4 can obtain accurate position information of the bed 5.
  • control system 4 can accurately determine whether the connection between the motor 1 and the transmission mechanism 3 is good by comparing the pulse signal fed back by the color code sensor 606b with the motor pulse signal fed back by the first encoder 2, and to ensure the movement of the three-dimensional treatment bed. Safety is of great significance.
  • the design of the support on the pedestal can be opposite to the color mark plate 605b when the color mark sensor 606b is fixed thereon, and the color change of the color mark plate 605b can be sensed.
  • the transmission mechanism 3 when the transmission mechanism 3 adopts the scissor lifting mode, the transmission mechanism 3 includes: a scissor lifting mechanism connected to the bed 5;
  • the position monitoring mechanism 6 includes: a rack 601b disposed on the bed 5 along the driving direction;
  • a monitoring gear 603b rotatably disposed on the gear bracket 602b and meshing with the rack 601b;
  • the motor 1 drives the scissor lift mechanism to lift and lower
  • the driven bed 5 and the rack 601b thereon are lifted and lowered in the driving direction.
  • the monitoring gear 603b engaged with the rack 601b rotates, thereby driving the second encoder 604b.
  • the second encoder 604b outputs a corresponding coded pulse signal (corresponding to the rotation information of the monitoring gear 603b) and feeds back to the control system 4, that is, converts the scissor lift into a displacement of the bed 5 in the transmission direction. monitor.
  • the position monitoring mechanism 6 further includes: a color code plate 605b disposed on the side wall of the rack 601b along the driving direction;
  • a color code sensor 606b disposed on the gear holder 602b and electrically connected to the control system 4;
  • the color scale sensor 606b is opposed to the color mark plate 605b.
  • the position monitoring mechanism 6 is defined as above.
  • the color code sensor 606b fixed on the gear holder 602b can monitor the color change on the color mark plate 605b in real time (directly characterizing the position information of the bed 5), and output corresponding The pulse signal is fed back to the control system 4, and the control system 4 can obtain accurate position information of the bed 5.
  • control system 4 also acquires the pulse signal collected by the second encoder 604b, and the second encoder 604b cooperates with the color code sensor 606b to realize closed-loop monitoring, and realizes double monitoring of the position information of the bed 5:
  • the connection between the monitoring gear 603b and the second encoder 604b is good, and The position information of the bed 5 can be accurately determined by selecting the signal fed back by the second encoder 604b or the color code sensor 606b.
  • the control system 4 determines that the connection between the monitoring gear 603b and the second encoder 604b is poor, so that the maintenance can be stopped in time.
  • the spot spot spot diameter of the color code sensor 606b can be as small as 1 mm, so that it can distinguish the light and dark stripes with a pitch of 1 mm on the color mark plate 605b, which can meet the requirements of monitoring accuracy.
  • the control system 4 can obtain a comparison between the two by comparing the motor pulse signal and the position signal. As a result, it is further determined that the motor 1 and the transmission mechanism 3 are poorly coupled.
  • the scissor lifting mode is generally adopted. At this time, the scissor lifting mechanism is connected to the bottom of the bed body 5, the rack 601b is disposed on the bed body 5 in the vertical direction, and the color-coded plate 605b is vertical. The direction is placed on the side wall of the rack 601b, see Figure 3-3.
  • the structure of the gear holder 602b can be as follows, including: a bracket body disposed on the base, and connected to the bracket body. The carrier and the encoder frame connected to the bracket body.
  • the first rotating shaft of the monitoring gear 603b is rotatably disposed on the carrier, the monitoring gear 603b is fixedly disposed on the first rotating shaft; the second rotating shaft of the second encoder 604b is rotatably disposed on the encoder frame, and the second The encoder 604b is fixedly disposed on the second rotating shaft; the first rotating shaft and the second rotating shaft are coaxially coupled through the coupling, so that the monitoring gear 603b and the second encoder 604b are synchronously coupled, that is, the two rotate synchronously.
  • the color-coded sensor 606b can be fixed to the carrier, for example, to the free end of the carrier, as long as it can be opposed to the color-coded plate 605b and can sense the color change on the color-coded plate 605b.
  • the position monitoring mechanism 6 further includes:
  • a plurality of sensing blocks 601a are uniformly disposed on the end plane of the monitoring gear 603b in the circumferential direction;
  • the proximity switch 602a is disposed on the gear holder 602b and opposite to the circumference of the sensing block 601a, and the proximity switch 602a is electrically connected to the control system 4.
  • control system 4 is also capable of acquiring the motor pulse signal acquired by the first encoder 2 and comparing it with the pulse signal collected by the second encoder 604b and/or the position signal collected by the proximity switch 602a. To judge whether there is a safety hazard in the bed 5 .
  • the second encoder 604b cooperates with the proximity switch 602a to implement closed-loop monitoring, and achieves dual monitoring of the position information of the bed 5.
  • the position monitoring mechanism 6 further includes: an alarm electrically connected to the control system 4.
  • control system 4 If the control system 4 does not receive the position signal sent by the position monitoring mechanism 6, or the monitoring distance monitored by the position monitoring mechanism 6 exceeds the preset monitoring distance threshold, it indicates that the motor 1 and the driving screw 301 are poorly connected or not connected. At this time, the control system 4 issues an alarm command to the alarm device, so that the operator can know the bad position information of the three-dimensional treatment bed in time, thereby stopping the machine in time. Alternatively, the control system 4 can automatically issue an instruction to stop processing based on the alarm signal.
  • the embodiment of the present invention takes the following three-dimensional treatment bed as an example, and performs position monitoring and safety detection by installing the position monitoring mechanism 6 thereon, thereby achieving the purpose of mobile reliability and safety:
  • the X-direction moving mechanism and the Z-direction moving mechanism of the three-dimensional treatment bed adopt a screw driving mode, and the difference is that the transmission mechanism 3 of the X-direction moving mechanism is as described in the above first embodiment, and the Z-direction moving mechanism is driven.
  • Mechanism 3 is as described in the second embodiment above.
  • the transmission mechanism 3 of the Y-direction moving mechanism of the three-dimensional treatment bed adopts a scissor lifting method.
  • the mounting disk 603a is coaxially connected at the free end of the driving screw 301 so that a plurality of, for example, 10 sensing blocks 601a are uniformly disposed on the mounting plate 603a in the circumferential direction.
  • the proximity switch bracket 7 is disposed on the bed 5 such that the proximity switch 602a is disposed on the proximity switch bracket 7 and opposite to the circumference of the plurality of sensing blocks 601a, and the proximity switch 602a is electrically connected to the control system 4.
  • a plurality of, for example, 16 sensing blocks 601a are uniformly disposed in the circumferential direction on the end plane of the driven gear 303.
  • the proximity switch bracket 7 is disposed on the bed 5 such that the proximity switch 602a is disposed on the proximity switch bracket 7 and opposite to the circumference of the plurality of sensing blocks 601a, and the proximity switch 602a is electrically connected to the control system 4.
  • a rack 601b is vertically disposed on the bed 5, and a gear bracket 602b is disposed on the base, and the gear bracket 602b is rotatably provided with the teeth
  • the bar 601b engages the monitoring gear 603b, the monitoring gear 603b is also coaxially coupled to the second encoder 604b, and the second encoder 604b is electrically coupled to the control system 4.
  • a color code plate 605b is disposed on the sidewall of the rack 601b; a color code sensor 606b opposite to the color code plate 605b is disposed on the gear support 602b, and the color code sensor 606b is electrically connected to the control system 4.
  • the three-dimensional treatment can be accurately determined.
  • the position information of the treatment bed, and the position monitoring mechanism 6 cooperates with the first encoder 2 to form a closed loop control.
  • the control system 4 based on accurately determining the position information of the three-dimensional treatment bed, the motor 1 can be accurately judged.
  • the connection information of the transmission mechanism 3 is of great significance for ensuring the reliability and safety of the movement of the three-dimensional treatment bed and improving the safety of the patient during treatment.
  • an embodiment of the present invention provides a three-dimensional treatment bed comprising any of the above-described position monitoring mechanisms 6.
  • the three-dimensional treatment bed provided by the embodiment of the present invention optimizes the structure by setting the position monitoring mechanism 6, and under the control of the control system 4, not only can the position information be accurately obtained, but also the operation state can be accurately obtained, and the operation is ensured. The reliability and security of its movement.
  • the position monitoring mechanism 6 is disposed on the transmission mechanism 3 and/or the bed 5 and is electrically connected to the control system 4. Moreover, based on the above, the appropriate position monitoring mechanism 6 can be selected according to the structure of the transmission mechanism 3, and details are not described herein again.
  • an embodiment of the present invention provides a method for performing position monitoring on a three-dimensional treatment bed by using any of the above-mentioned position monitoring mechanisms, including:
  • the position monitoring mechanism 6 is used to collect the position signal of the transmission mechanism 3 of the three-dimensional treatment bed and/or the bed body 5 in the X-axis direction, the Z-axis direction or the Y-axis direction, and fed back to the control system 4;
  • the control system 4 processes the position signal to obtain positional information of the three-dimensional treatment couch.
  • the processing performed by the control system 4 on the position signal can be understood as converting the electrical signal into a digital signal that can be directly read by an operator.
  • the method further includes: the first encoder 2 collects a motor pulse signal of the motor 1 in the X-axis direction, the Z-axis direction or the Y-axis direction, and feeds back to the control system 4.
  • the control system 4 compares the position signal in the same direction with the motor pulse signal to obtain position information of the three-dimensional treatment bed.
  • the method further includes: the control system 4 compares the position signal in the same direction with the motor pulse signal, and determines whether the position signal has a corresponding relationship with the motor pulse signal according to the comparison result;
  • the control system 4 issues an alarm instruction to the alarm.
  • the control system 4 determines that the position signal does not have a corresponding relationship with the motor pulse signal, the control system 4 issues an alarm command to the alarm device, so that the operator can know the safety hazard of the three-dimensional treatment bed in time, so as to timely stop the maintenance. .
  • the embodiment of the present invention further provides a method for position monitoring of the three-dimensional treatment bed, the method comprising:
  • the first encoder 2 acquires a motor pulse signal of the motor 1 in the X-axis direction, the Z-axis direction or the Y-axis direction, and feeds it back to the control system 4.
  • the position monitoring mechanism 6 acquires a position signal of the transmission mechanism 3 of the three-dimensional treatment bed and/or the bed 5 in the X-axis direction, the Z-axis direction or the Y-axis direction, and feeds it back to the control system 4.
  • the control system 4 compares the position signal in the same direction with the motor pulse signal to obtain position information of the three-dimensional treatment bed.
  • the motor pulse signal collected by the first encoder 2 has a certain correspondence with the position signal collected by the position monitoring mechanism 6, and the control system 4 performs the two. Comparing, the corresponding comparison results are obtained. At this time, the position information of the three-dimensional treatment bed can be accurately determined according to any one of the above-mentioned motor pulse signal and position signal.
  • the control system 4 compares the two to obtain a difference between the two. Corresponding comparison results, according to the position signal, the position information of the three-dimensional treatment bed can be accurately determined, and the unreliable factors and safety hazards of the three-dimensional treatment bed are determined, so as to stop the maintenance in time.
  • the first encoder 2 can collect the motor pulse signal. Since the transmission mechanism 3 is not driven by the motor 1, the transmission mechanism 3 and the bed 5 are not displaced. At this time, the position monitoring mechanism 6 The position signal could not be acquired. At this time, although the control system 4 can acquire the motor pulse signal, but cannot obtain the position signal, it can be judged that the motor 1 is idling, and the position of the three-dimensional treatment bed has not changed, and it is determined that the maintenance needs to be stopped.
  • the position information of the three-dimensional treatment bed can be accurately determined, thereby ensuring the reliability and safety of the three-dimensional treatment bed movement.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Accommodation For Nursing Or Treatment Tables (AREA)

Abstract

一种三维治疗床的位置监测机构(6)及方法、三维治疗床,属于医疗设备领域。该三维治疗床包括:基座、设置在基座上的移动机构、设置在基座上方的床体(5);移动机构包括:与床体(5)连接的传动机构(3);位置监测机构(6)设置在传动机构(3)和/或床体(5)上,且位置监测机构(6)与控制系统(4)电性连接。利用位置监测机构(6)能够准确判断三维治疗床的位置信息,保证三维治疗床移动的可靠性及安全性。

Description

一种三维治疗床的位置监测机构及方法、三维治疗床 技术领域
本发明涉及医疗设备领域,特别涉及一种三维治疗床的位置监测机构及方法、三维治疗床。
背景技术
放疗系统是一种医疗用放射治疗设备,包括机架、设置在机架上部的射源装置、设置在机架底部的三维治疗床、用于控制三维治疗床在机架上进行三维移动的控制系统。在进行放射治疗时,利用控制系统控制三维治疗床在X轴方向、Z轴方向和Y轴方向上的三维移动,来使射源装置发射的放射线聚焦于待治疗的靶点上,实现精确放射治疗。其中,三维治疗床在X轴方向和Z轴方向上的移动可理解为在同一水平面上进行的前后移动和左右移动,而其在Y轴方向上的移动可理解为在竖直平面上进行的上下移动。
对于三维治疗床来说,其包括基座、设置在基座上的X向移动机构、Z向移动机构和Y向移动机构、设置在基座上方的床体。如附图1所示,X向移动机构、Z向移动机构和Y向移动机构均包括:电机1(其为伺服电机)、与电机1同轴联接的第一编码器2、与电机1同轴联接的传动机构3。上述各移动机构中的传动结构分别与床体5连接,同时,电机1和第一编码器2均与放射治疗设备的控制系统4电性连接。控制系统4对电机1发出作业指令,电机1通过传动机构3来驱动床体5进行X、Y、Z三个方向上的移动,与此同时,第一编码器2采集所对应电机1的脉冲信号并反馈至控制系统4,控制系统4通过该电机脉冲信号对电机1的作业状态进行实时控制。在此过程中,当需要判断三维治疗床在各方向上的位置信息,例如移动距离时,一般由反馈至控制系统4的电机脉冲信号来确定。
发明人发现现有技术至少存在以下问题:
当电机1与传动机构3联接不良,甚至空转时,其发出的电机脉冲信号对于确定三维治疗床的位置信息为无效的,此时并不能准确判断三维治疗床的位置,进而无法保证三维治疗床移动的可靠性及安全性。
发明内容
为了解决以上技术问题本,本发明实施例提供了一种三维治疗床的位置监测机构及方法、三维治疗床。具体技术方案如下:
第一方面,提供了一种三维治疗床的位置监测机构,该三维治疗床包括:基座、设置在所述基座上的移动机构、设置在所述基座上方的床体;
所述移动机构包括:与床体连接的的传动机构;
所述位置监测机构设置在所述传动机构和/或所述床体上,且所述位置监测机构与所述控制系统电性连接。
进一步地,所述三维治疗床还包括:同轴联接的电机和第一编码器;
所述传动机构与所述电机同轴联接;
所述电机和所述第一编码器还与所述控制系统电性连接。
在第一种可能的设计中,当所述传动机构采用丝杠传动方式时;
所述位置监测机构包括:多个感应块,绕圆周方向均匀设置在所述传动机构上;
接近开关,设置在所述床体上,且与所述感应块所在的圆周相对,所述接近开关与所述控制系统电性连接。
在第一种可能的设计地基础上,可选地,所述传动机构包括:通过联轴器与所述电机同轴联接的传动丝杆、固定在所述床体上且与所述传动丝杆螺纹连接的传动螺母;
所述位置监测机构还包括:与所述传动丝杆的自由端同轴连接的安装盘,多个所述感应块绕圆周方向均匀设置在所述安装盘上。
在第一种可能的设计地基础上,可选地,所述传动机构包括:通过传动轴与所述电机同轴联接的传动丝杆、固定在所述床体上且与所述传动丝杆螺纹连接的传动螺母、固定套装在所述传动轴上的主动齿轮、与所述主动齿轮啮合的从动齿轮、与所述从动齿轮同轴连接的手动轴;
多个所述感应块绕圆周方向均匀设置在所述从动齿轮的端平面上。
在一个可能的设计中,所述感应块为螺钉,通过螺纹连接方式设置在所述传动机构上。
在一个可能的设计中,所述床体上设置有接近开关支架,所述接近开关设置在所述接近开关支架上。
在第二种可能的设计中,当所述传动机构采用丝杠传动方式时;
所述位置监测机构包括:沿传动方向设置在所述床体上的色标板;
通过支架设置在所述基座上,且与所述色标板相对的色标传感器;
所述色标传感器与所述控制系统电性连接。
在第三种可能的设计中,当所述传动机构采用剪式升降方式时,所述传动机构包括:与所述床体连接的剪式升降机构;
所述位置监测机构包括:沿传动方向设置在所述床体上的齿条;
设置在所述基座上的齿轮支架;
可转动地设置在所述齿轮支架上,并与所述齿条啮合的监测齿轮;
与所述监测齿轮同轴联接的第二编码器,所述第二编码器还与控制系统电性连接。
在第三种可能的设计的基础上,可选地,所述位置监测机构还包括:沿传动方向设置在所述齿条侧壁上的色标板;
设置在所述齿轮支架上,且与所述控制系统电性连接的色标传感器;
所述色标传感器与所述色标板相对。
在第三种可能的设计的基础上,可选地,所述位置监测机构还包括:
多个感应块,绕圆周方向均匀设置在所述监测齿轮的端平面上;接近开关,设置在所述齿轮支架上,并与所述感应块所在的圆周相对,所述接近开关与所述控制系统电性连接。
进一步地,所述位置监测机构还包括:与所述控制系统电性连接的报警器。
第二方面,提供了一种三维治疗床,包括上述的任意一种位置监测机构。
第三方面,提供了利用上述任意一种位置监测机构对三维治疗床进行位置监测的方法,包括:
利用位置监测机构采集三维治疗床的传动机构和/或床体在所述X轴方向、所述Z轴方向或所述Y轴方向上的位置信号,并反馈给控制系统;
所述控制系统处理所述位置信号,获取所述三维治疗床的位置信息。
进一步地,所述方法还包括:
第一编码器采集电机在X轴方向、Z轴方向或Y轴方向上的电机脉冲信号,并反馈给控制系统;
所述控制系统将同一方向上的所述位置信号和所述电机脉冲信号进行比较,获取所述三维治疗床的位置信息。
进一步地,所述方法还包括:所述控制系统将同一方向上的所述位置信号和所述电机脉冲信号进行比较,根据比较结果确定所述位置信号与所述电机脉冲信号是否具有对应关系;
若是,则根据所述位置信号或者所述电机脉冲信号,获取所述三维治疗床的位置信息;
若否,则根据所述位置信号,获取所述三维治疗床的位置信息,同时,所述控制系统向报警器发出报警指令。
本发明实施例提供的技术方案带来的有益效果是:
本发明实施例提供的三维治疗床的位置监测机构,能够采集三维治疗床的传动机构和/或床体在X轴方向、Z轴方向或Y轴方向上的位置信号,并反馈给控制系统。控制系统通过处理该位置信号,能够准确判断三维治疗床的位置信息,进而保证三维治疗床移动的可靠性及安全性,对于保证病人的治疗安全具有重要的意义。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术提供的三维治疗床的局部连接关系示意图;
图2是本发明实施例提供的三维治疗床的局部连接关系示意图;
图3-1是本发明实施例提供的,当传动机构采用丝杠传动方式时,位置监测机构在传动机构上的第一类局部安装结构示意图;
图3-2是本发明实施例提供的,当传动机构采用丝杠传动方式时,位置监测机构在传动机构上的第二类局部安装结构示意图;
图3-3是本发明实施例提供的,当传动机构采用剪式升降方式时,位置监测机构在传动机构上的局部安装结构示意图。
附图标记分别表示:
1-电机,
2-第一编码器,
3-传动机构,
301-传动丝杆,302主动齿轮,303-从动齿轮,304手动轴,
4-控制系统,
5-床体,
6-位置监测机构,
601a-感应块,602a-接近开关,603a-安装盘,
601b齿条,602b-齿轮支架,603b-监测齿轮,604b-第二编码器,
605b-色标板,606b-色标传感器,
7-接近开关支架。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
本领域技术人员可以理解的是,三维治疗床为放疗系统中的一个机构,其包括:基座、设置在基座上方的床体、设置在基座上的X向移动机构、Z向移动机构和Y向移动机构。如附图1所示,X向移动机构、Z向移动机构和Y向移动机构均包括:电机1、与电机1同轴联接的第一编码器2、与电机1同轴联接的传动机构3,传动机构3还与床体5连接。电机1和第一编码器2均与伽玛刀的控制系统4电性连接。
当电机1转动时,其提供的驱动力通过传动机构3传递至床体5,以带动床体5在X轴方向、Z轴方向或者Y轴方向上移动。与此同时,各个方向上的第一编码器2采集与所对应电机1的电机脉冲信号并反馈至控制系统4,控制系统4通过该电机脉冲信号对电机1的作业状态进行实时控制。
由于床体5的位置受电机1的控制,此时为开环控制,在此过程中,当需要判断床体5在各方向上的位置信息,例如移动距离时,现有技术多根据反馈至控制系统4的电机脉冲信号来确定。基于上述开环控制方式,这就造成了电机1与传动机构3联接不良,甚至空转时,其发出的电机脉冲信号对于确定三维治疗床的位置信息为无效的。
为了解决这个技术问题,第一方面,本发明实施例提供了一种三维治疗床 的位置监测机构,其中,如附图2所示,该三维治疗床包括:基座、设置在基座上的移动机构、设置在基座上方的床体5。
该移动机构包括:与床体5连接的传动机构3;
该位置监测机构6设置在传动机构3和/或床体5上,且位置监测机构6与控制系统4电性连接。
需要说明的是,上述的“移动机构”指的是X向移动机构、Z向移动机构和Y向移动机构,并且,各个移动机构之间为相互独立的。
本发明实施例提供的三维治疗床的位置监测机构6,能够采集三维治疗床的传动机构3和/或床体5在X轴方向、Z轴方向或Y轴方向上的位置信号,并反馈给控制系统4。控制系统4通过处理该位置信号,能够准确判断三维治疗床的位置信息。
当采用伺服电机对传动机构3进行驱动时,该三维治疗床还包括:同轴联接的电机1和第一编码器2;
该传动机构3与电机1同轴联接;
电机1和第一编码器2还与控制系统4电性连接。
基于第一编码器2能够采集电机1的脉冲信号并反馈至控制系统4,该位置监测机构6配合第一编码器2能够对三维治疗床形成闭环控制:即,位置监测机构6采集三维治疗床的传动机构3和/或床体5在X轴方向、Z轴方向或Y轴方向上的位置信号,并反馈给控制系统4。与此同时,第一编码器2采集电机1在X轴方向、Z轴方向或Y轴方向上的电机脉冲信号,并反馈给控制系统4,控制系统4将同一方向上的位置信号和电机脉冲信号进行比较,不仅能够准确判断三维治疗床的位置信息,而且还能判断电机1与传动机构3的联接是否良好(即,还对三维治疗床的运行状态进行监测),保证了三维治疗床移动的可靠性及安全性,对于保证病人的治疗安全具有重要的意义。
具体地,当电机1与传动机构3联接良好时,第一编码器2采集的电机脉冲信号与位置监测机构6采集的位置信号实质上具有一定的对应关系(函数关系上的对应),控制系统4对两者进行比较,得出两者对应的比较结果,此时根据上述电机脉冲信号和位置信号中的任意一个,即可准确判断三维治疗床的位置信息,同时,还能够确定电机1与传动机构2联接良好。
反之,当电机1与传动机构3联接不良时,第一编码器2采集的电机脉冲信号与位置监测机构6采集位置信号不具有对应关系,控制系统4对两者进行 比较,得出两者不对应的比较结果,此时,根据该位置信号即可准确判断三维治疗床的位置信息,同时,确定三维治疗床存在不可靠因素及安全隐患,以便于及时停机维修。
以电机1与传动机构3联接不良举例来说,当电机1空转时,第一编码器2能够采集到电机脉冲信号,由于传动机构3并没有被电机1所驱动,所以传动机构3和床体5并没有发生位移,此时,位置监测机构6无法采集到位置信号。而控制系统4虽然能获取电机脉冲信号,但是,却无法获取位置信号,基于此,即可判断电机1空转,且三维治疗床的位置未发生变化,并确定需要停机维修。
综上,针对上述各情况,基于位置监测机构6、第一编码器2和控制系统4配合构成闭环控制,能够准确判断三维治疗床的位置信息,进而保证三维治疗床移动的可靠性及安全性,从而提高病人治疗时的安全性。
对于不同型号的三维治疗床来说,其传动机构3可以有多种传动方式,例如丝杠传动、剪式传动等。并且,针对同一台三维治疗床来说,其X向移动机构、Z向移动机构和Y向移动机构各自采用的传动机构3可以相同,也可以不同。当传动机构3的传动方式不同时,考虑快速准确地实现位置监测,同时提高安装便利性,位置监测机构6的结构及其在传动机构3上的安装方式也有所不同。以下给出几种示例:
(一)、作为一种实施方式,当传动机构3采用丝杠传动方式时:
如附图3-1及附图3-2所示,该位置监测机构6包括:多个感应块601a,绕圆周方向均匀设置在传动机构3上;
接近开关602a,设置在床体5上,且与感应块601a所在的圆周相对,接近开关602a与控制系统4电性连接。
当传动机构3采用丝杠传动方式时,传动机构3的旋转运动将转换为床体5的直线运动,此时,通过将多个感应块601a绕圆周方向均匀设置在传动机构3上,传动机构3转动时,多个感应块601a随之同步转动。而接近开关602a设置在床体5上,与转动的感应块601a所在圆周相对,当接近开关602a每感应到一个感应块601a时,均会发出一个与电机脉冲信号相对应的脉冲信号(即位置信号),并反馈至控制系统4。控制系统4通过该位置信号,即可获取三维 治疗床的位置信息。
而且,控制系统4通过将该位置信号与电机脉冲信号进行比较,能够准确判断电机1与传动机构3的联接是否良好,对于保证三维治疗床的移动安全具有重要的意义。
基于(一)所述的实施方式,作为第一种示例:如附图3-1所示,传动机构3包括:通过联轴器与电机1同轴联接的传动丝杆301、固定在床体5上且与传动丝杆301螺纹连接的传动螺母;
该情况下,位置监测机构6还包括:与传动丝杆301的自由端同轴连接的安装盘603a,多个感应块601a绕圆周方向均匀设置在安装盘603a上。
可以理解的是,电机1驱动传动丝杆301原位旋转,进而驱动传动螺母沿传动丝杆301的轴向直线运动,进而带动床体5移动。
通过在传动丝杆301的自由端(与电机1联接端相对的一端)设置安装盘603a,使安装盘603a与传动丝杆301同步转动,在此基础上,将多个感应块601a绕圆周方向均匀设置在安装盘603a上,不仅能确保感应块601a与传动丝杆301同步转动,使接近开关602a感应到的位置信号与第一编码器2采集的电机驱动信号相对应,而且,使感应块601a的安装过程更加便利。
其中,安装盘603a可以通过焊接、卡接、或者螺纹连接等方式固定在传动丝杆301的自由端。为了使安装盘603a在传动丝杆301上稳固安装,同时便于拆卸,优选以螺纹连接方式进行固定。
举例来说,安装盘603a包括环形盘体、与环形盘体的内环同轴连接的盖体,盖体的内壁上设置内螺纹,而传动丝杆301的自由端外壁上设置有与其相适配的外螺纹,通过将盖体螺纹套装在传动丝杆301的自由端即可完成稳固安装,并且还便于拆卸。
而多个感应块601a绕圆周方向均匀设置在该环形盘体上。可以理解的是,感应块601a须与接近开关602a配合使用,即能够使接近开关602a感应到其位置,并发出对应的位置信号。
一般来说,感应块601a采用金属材质即可,并且其结构可以为圆柱形、棱柱形、片形等。
为了便于感应块601a在传动机构3上的安装,并且利于调整其数量,以及调整其与接近开关602a之间的间距,感应块601a可以采用螺钉,通过螺纹 连接方式设置在传动机构3上。以环形盘体举例来说,其上绕圆周方向设置多个内螺纹孔,将螺钉结构的感应块601a与内螺纹孔螺纹连接即可。
对于上述提及的接近开关602a与感应块601a之间的间距,本发明实施例不作具体限定,只要确保接近开关602a能实时感应到感应块601a即可。
根据对监测精度的要求,来确定感应块601a的数目,可以理解的是,感应块601a的数目越多,监测精度越高。一般情况下,可以设置至少5个感应块601a,例如8个、10个、12个、14个、16个等。
其中,上述监测精度可以用接近开关602a感应到相邻两个感应块601a后,传动螺母移动的直线距离来表示,为了便于描述,将该直线距离定义为“监测距离”,其通过如下所述公式计算得到:
Figure PCTCN2017087079-appb-000001
其中,M为监测距离,单位为mm;
p为传动丝杆导程,单位为mm,一般传动丝杆301的规格确定后,其导程也是确定的;
i为传动比,由于感应块601a设置在传动丝杆301的自由端,此时i=1;
k为感应块601a的数量。
举例来说,当传动丝杆301导程为5mm,且感应块601a的数量为10个时,此时监测距离M为0.5mm。
以床体5在X轴方向上的移动举例来说,床体5每移动0.5mm,接近开关602a即可感应到一个感应块601a,即控制系统4获取到一次床体5的位置信号,该种情况下能达到较高的监测精度。
如若床体5的理论移动行程达到0.5mm时,接近开关602a还未感应到感应块601a,例如,在床体5的实际移动行程超过0.5mm后,接近开关602a才感应到感应块601a,此时,控制系统4获取到第一编码器2所反馈的“床体5的移动行程超过0.5mm”的电机脉冲信号,同时获取到接近开关602a所反馈的“床体5的移动行程为0.5mm”的位置信号,此时意味着电机1与传动机构3联接不良,控制系统4即可作出停机指令。
基于(一)所述的实施方式,作为第二种示例:目前还存在通过手动轴304辅助传动机构3进行传动作业的情况,如附图3-2所示,传动机构3还包括: 通过传动轴与电机1同轴联接的传动丝杆301、固定在床体5上且与传动丝杆301螺纹连接的传动螺母、固定套装在传动轴上的主动齿轮302、与主动齿轮302啮合的从动齿轮303、与从动齿轮303同轴连接的手动轴304。多个感应块601a绕圆周方向均匀设置在从动齿轮303的端平面上。
可以理解的是,传动轴与电机1,以及传动轴与传动丝杆301之间的联接均可以通过联轴器实现。
通过转动手动轴304,或者使电机1转动,均可驱动传动螺母沿着传动丝杆301直线运动,只不过两种传动顺序恰好相反而已。举例来说,当转动手动轴304时,其带动从动齿轮303同向转动,进而驱动主动齿轮302以相反的方向转动,进而驱动传动轴和传动丝杆301与主动齿轮302同向转动,进而驱动传动螺母沿传动丝杆301的轴向直线运动,进而带动床体5移动。同时,电机1也随之同步转动。
当传动机构3如上所述时,接近开关602a和感应块601a的安装位置不仅仅限于如上述第一种实施方式所述。考虑安装位置的便利性,多个感应块601a还可绕圆周方向均匀设置在从动齿轮303的端平面上。此时,接近开关602a设置在与感应块601a所在圆周相对的床体5上。
基于感应块601a设置在从动齿轮303的端平面上,上述第二种实施方式下的“监测距离”可以通过如下所述公式计算得到:
Figure PCTCN2017087079-appb-000002
其中,M为监测距离,单位为mm;
p为传动丝杆导程,单位为mm,一般传动丝杆301的规格确定后,其导程也是确定的;
i为传动比,由于感应块601a设置在从动齿轮303上,而主动齿轮302与传动丝杆301同轴连接,此时,i=主动齿轮302的齿数/从动齿轮303的齿数;
k为感应块601a的数量。
举例来说,当传动丝杆301导程为5mm,感应块601a的数量为16个,且主动齿轮302的齿数为52,而从动齿轮303的齿数为32时,此时监测距离M为0.508mm,与上述原理类似,该种情况下同样能达到较高的监测精度。
为了确保对三维治疗床位置信息的监测精度,上述监测距离优选为0.3-1.5mm,例如0.5mm、0.8mm、1.0mm、1.2mm等。
本领域技术人员可以理解的是,只要接近开关602a与对应的感应块601a所在圆周相对,并且能感应到感应块601a的位置信号,其可以设置在床体5的任意位置处。
为了使接近开关602a的安装更加便利,在床体5上设置有接近开关支架7,接近开关602a设置在接近开关支架7上。
举例来说,接近开关支架7可以包括:垂直连接的连接板和安装板,连接板固定在床体5上,而接近开关602a固定在安装板上。至于两者的固定连接关系,可以通过螺栓连接方式实现,以便于调整。
(二),作为另一种实施方式,当传动机构3采用丝杠传动方式时;
位置监测机构6包括:沿传动方向设置在床体5上的色标板605b;
通过支架设置在基座上,且与色标板605b相对的色标传感器606b;
色标传感器606b与控制系统4电性连接。
由于床体5与色标板605b沿着传动方向同步运动,在色标板605b沿传动方向发生位移时,通过支架固定在基座上的色标传感器606b能够实时监测色标板605b上的颜色变化(其直接表征了床体5的位置信息),并输出相应的脉冲信号并反馈至控制系统4,控制系统4即可获取准确的床体5的位置信息。
而且,控制系统4通过将色标传感器606b反馈的脉冲信号与第一编码器2反馈的电机脉冲信号进行比较,能够准确判断电机1与传动机构3的联接是否良好,对于保证三维治疗床的移动安全具有重要的意义。
其中,对于基座上支架的设计,只要满足色标传感器606b固定在其上时,能够与色标板605b相对,并且能感应到色标板605b的颜色变化即可。
(三),作为再一种实施方式,当传动机构3采用剪式升降方式时,该传动机构3包括:与床体5连接的剪式升降机构;
如附图3-3所示,该位置监测机构6包括:沿传动方向设置在床体5上的齿条601b;
设置在基座上的齿轮支架602b;
可转动地设置在齿轮支架602b上,并与齿条601b啮合的监测齿轮603b;
与监测齿轮603b同轴联接的第二编码器604b,第二编码器604b还与控制系统4电性连接。
当电机1驱动剪式升降机构升降,带动床体5及其上的齿条601b在传动方向上升降,在此过程中,与齿条601b啮合的监测齿轮603b转动,进而带动第二编码器604b同步转动。在转动过程中,第二编码器604b输出相应的编码脉冲信号(对应监测齿轮603b的转动信息),并反馈给控制系统4,即将剪式升降转化为对床体5在传动方向上的位移的监测。
在(三)所述实施方式的基础上,作为第一种示例:该位置监测机构6还包括:沿传动方向设置在齿条601b的侧壁上的色标板605b;
设置在齿轮支架602b上,且与控制系统4电性连接的色标传感器606b;
色标传感器606b与色标板605b相对。
由于监测齿轮603b与第二编码器604b同轴联接,两者有可能出现联接不良的情况,此时,第二编码器604b所采集的床体5的位置信息并不准确。为了准确获取床体5的位置信息,同时对监测齿轮603b与第二编码器604b联接情况进行实时监测,对位置监测机构6进行了如上限定。
在色标板605b沿传动方向发生位移时,固定在齿轮支架602b上的色标传感器606b能够实时监测色标板605b上的颜色变化(直接表征了床体5的位置信息),并输出相应的脉冲信号并反馈至控制系统4,控制系统4即可获取准确的床体5的位置信息。
同时,控制系统4还获取第二编码器604b所采集的脉冲信号,第二编码器604b与色标传感器606b配合实现闭环监测,对床体5的位置信息实现双重监测:
如若第二编码器604b所反馈的床体5的位置信息与色标传感器606b所反馈的床体5的位置信息相对应,说明监测齿轮603b与第二编码器604b之间联接良好,并且,任一地选择第二编码器604b或色标传感器606b所反馈的信号,即可准确判断床体5的位置信息。
如若第二编码器604b所反馈的床体5的位置信息与色标传感器606b所反馈的床体5的位置信息不对应,说明监测齿轮603b与第二编码器604b之间联接不良,此时,以色标传感器606b所反馈的床体5的位置信息为准,同时,控制系统4判断出监测齿轮603b与第二编码器604b之间联接不良,以便于及时停机维修。
而且,色标传感器606b的聚焦点光斑直径最小可达到1mm,因此它可分辨色标板605b上间距1mm的明暗条纹,可以满足监测精度的要求。
如上对“监测距离”的描述,当床体5在特定方向上的实际行程超过1mm的监测范围时,控制系统4通过对电机脉冲信号和位置信号进行比较,即可获得两者不对应的比较结果,进而确定电机1与传动机构3联接不良。
对于Y向移动机构,其通常采用剪式升降方式,此时,剪式升降机构与床体5的底部连接,齿条601b沿竖直方向设置在床体5上,色标板605b沿竖直方向设置在齿条601b侧壁上,参见附图3-3。
为了使第二编码器604b与监测齿轮603b同步转动,同时保证色标传感器606b位置固定,该齿轮支架602b的结构可如下所示,包括:设置在基座上的支架本体、与支架本体连接的齿轮架、与支架本体连接的编码器架。
其中,监测齿轮603b的第一转轴可转动地设置在齿轮架上,监测齿轮603b固定套装在第一转轴上;第二编码器604b的第二转轴可转动地设置在编码器架上,第二编码器604b固定套装在第二转轴上;第一转轴与第二转轴通过联轴器同轴联接,进而实现监测齿轮603b与第二编码器604b同步联接,即两者同步转动。
而色标传感器606b可以固定在齿轮架上,例如固定在齿轮架的自由端,只要能够与色标板605b相对,且能感应到色标板605b上的颜色变化即可。
在(三)所述实施方式的基础上,作为第二种示例:位置监测机构6还包括:
多个感应块601a,绕圆周方向均匀设置在监测齿轮603b的端平面上;
接近开关602a,设置在齿轮支架602b上,并与感应块601a所在的圆周相对,接近开关602a与控制系统4电性连接。
通过将多个感应块601a绕圆周方向均匀设置在监测齿轮603b的端平面上,能确保感应块601a与监测齿轮603b同步转动,使接近开关602a感应到床体5的位置信号并反馈至控制系统4,获取床体5的位置信息。
而且,一方面,控制系统4还能够获取第一编码器2所采集的电机脉冲信号,并将其与第二编码器604b所采集的脉冲信号和/或接近开关602a所采集的位置信号进行比较,以对床体5是否存在安全隐患作出判断。另一方面,第二编码器604b与接近开关602a配合实现闭环监测,对床体5的位置信息实现双重监测。
进一步地,该位置监测机构6还包括:与控制系统4电性连接的报警器。
如若控制系统4接收不到位置监测机构6发出的位置信号,或者位置监测机构6所监测到的监测距离超出预设的监测距离阈值时,表明电机1与传动丝杆301联接不良或者没有联接,此时,控制系统4对报警器发出报警指令,以使操作人员及时获知该三维治疗床的不良位置信息,从而及时停机。或者,控制系统4也可根据报警信号自动发出停机处理的指令。
基于上述,本发明实施例以下述三维治疗床为例,通过在其上安装位置监测机构6来对其进行位置监测以及安全检测,进而实现移动可靠性及安全性的目的:
该三维治疗床的X向移动机构、Z向移动机构均采用丝杠传动方式,区别在于:X向移动机构的传动机构3如上述第一种实施方式中所述,而Z向移动机构的传动机构3如上述第二种实施方式中所述。该三维治疗床的Y向移动机构的传动机构3采用剪式升降方式。
由于该三维治疗床的X向移动机构、Z向移动机构和Y向移动机构的传动方式有所区别,以下分别就位置监测机构6的结构和安装方式进行详述:
对于X向移动机构:如附图3-1所示,在传动丝杆301的自由端同轴连接安装盘603a,使多个,例如10个感应块601a绕圆周方向均匀设置在安装盘603a上。同时,在床体5上设置接近开关支架7,使接近开关602a设置在接近开关支架7上,并与多个感应块601a所在圆周相对,同时,接近开关602a与控制系统4电性连接。
对于Z向移动机构:如附图3-2所示,将多个,例如16个感应块601a绕圆周方向均匀设置在从动齿轮303的端平面上。同时,在床体5上设置接近开关支架7,使接近开关602a设置在接近开关支架7上,并与多个感应块601a所在圆周相对,同时,接近开关602a与控制系统4电性连接。
对于Y向移动机构:如附图3-3所示,在床体5上竖直设置齿条601b,在基座上设置有齿轮支架602b,设置在齿轮支架602b上可转动地设置有与齿条601b啮合的监测齿轮603b,监测齿轮603b还与第二编码器604b同轴联接,且第二编码器604b与控制系统4电性连接。
在齿条601b的侧壁上设置色标板605b;在齿轮支架602b上设置与色标板605b相对的色标传感器606b,且色标传感器606b与控制系统4电性连接。
可见,通过在该三维治疗床上设置位置监测机构6,能够准确判断三维治 疗床的位置信息,并且,位置监测机构6配合第一编码器2形成闭环控制,在控制系统4的控制下,在准确判断三维治疗床的位置信息的基础上,还能准确判断电机1与传动机构3的联接信息,对于保证三维治疗床移动的可靠性及安全性,提高病人治疗时的安全性具有重要的意义。
第二方面,本发明实施例提供了一种三维治疗床,包括上述的任意一种位置监测机构6。
本发明实施例提供的三维治疗床,通过设置位置监测机构6,对其进行了结构优化,在控制系统4的控制下,不仅能准确获取其位置信息,且能准确获取其运行状态,保证了其移动的可靠性及安全性。
可以理解的是,位置监测机构6设置在传动机构3和/或床体5上,且与控制系统4电性连接。并且,基于上述,可以根据传动机构3的结构,来选择合适的位置监测机构6,在此不再赘述。
第三方面,本发明实施例提供了利用上述的任意一种位置监测机构对三维治疗床进行位置监测的方法,包括:
利用位置监测机构6采集三维治疗床的传动机构3和/或床体5在X轴方向、Z轴方向或Y轴方向上的位置信号,并反馈给控制系统4;
控制系统4处理该位置信号,获取三维治疗床的位置信息。
其中,控制系统4对位置信号进行的处理,可以理解为,将电信号转化为能够被操作人员直接读取的数字信号。
进一步地,该方法还包括:第一编码器2采集电机1在X轴方向、Z轴方向或Y轴方向上的电机脉冲信号,并反馈给控制系统4。
控制系统4将同一方向上的位置信号和电机脉冲信号进行比较,获取三维治疗床的位置信息。
通过将同一方向上的位置信号和电机脉冲信号进行比较,不仅能准确获取三维治疗床的位置信息,而且,还能准确获取电机1与传动机构3的联接信息,保证了三维治疗床移动的可靠性及安全性。
进一步地,该方法还包括:控制系统4将同一方向上的位置信号和电机脉冲信号进行比较,根据比较结果确定位置信号与电机脉冲信号是否具有对应关系;
若是,则根据位置信号或者电机脉冲信号,获取三维治疗床的位置信息;
若否,则根据位置信号,获取三维治疗床的位置信息,同时,控制系统4向报警器发出报警指令。
通过上述方法,当控制系统4确定位置信号与电机脉冲信号不具有对应关系时,控制系统4对报警器发出报警指令,以使操作人员及时获知该三维治疗床存在安全隐患,以便于及时停机检修。
第四方面,本发明实施例还提供了上述三维治疗床的位置监测的方法,该方法包括:
第一编码器2采集电机1在X轴方向、Z轴方向或Y轴方向上的电机脉冲信号,并反馈给控制系统4。
位置监测机构6采集三维治疗床的传动机构3和/或床体5在X轴方向、Z轴方向或Y轴方向上的位置信号,并反馈给控制系统4。
控制系统4将同一方向上的位置信号和电机脉冲信号进行比较,获取三维治疗床的位置信息。
可以理解的是,当电机1与传动机构3联接良好时,第一编码器2采集的电机脉冲信号与位置监测机构6采集的位置信号实质上具有一定的对应关系,控制系统4对两者进行比较,得出两者对应的比较结果,此时根据上述电机脉冲信号和位置信号中的任意一个即可准确判断三维治疗床的位置信息。
反之,当电机1与传动机构3联接不良时,第一编码器2采集的电机脉冲信号与位置监测机构6采集位置信号不具有对应关系,控制系统4对两者进行比较,得出两者不对应的比较结果,此时根据位置信号即可准确判断三维治疗床的位置信息,并确定三维治疗床存在不可靠因素及安全隐患,以便于及时停机维修。
当电机1空转时,第一编码器2能够采集到电机脉冲信号,由于传动机构3并没有被电机1所驱动,所以传动机构3和床体5并没有发生位移,此时,位置监测机构6无法采集到位置信号。此时控制系统4虽然能获取电机脉冲信号,但是无法获取位置信号,即可判断电机1空转,且三维治疗床的位置未发生变化,并确定需要停机维修。
综上,通过上述位置监测的方法,能够准确判断三维治疗床的位置信息,进而保证三维治疗床移动的可靠性及安全性。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种三维治疗床的位置监测机构,所述三维治疗床包括:基座、设置在所述基座上的移动机构、设置在所述基座上方的床体(5);
    所述移动机构包括:与所述床体(5)连接的传动机构(3);
    其特征在于,所述位置监测机构(6)设置在所述传动机构(3)和/或所述床体(5)上,且所述位置监测机构(6)与所述三维治疗床的控制系统(4)电性连接。
  2. 根据权利要求1所述的位置监测机构,其特征在于,所述三维治疗床还包括:同轴联接的电机(1)和第一编码器(2);
    所述传动机构(3)与所述电机(1)同轴联接;
    所述电机(1)和所述第一编码器(2)还与所述控制系统(4)电性连接。
  3. 根据权利要求1或2所述的位置监测机构,其特征在于,当所述传动机构(3)采用丝杠传动方式时;
    所述位置监测机构(6)包括:多个感应块(601a),绕圆周方向均匀设置在所述传动机构(3)上;
    接近开关(602a),设置在所述床体(5)上,且与所述感应块(601a)所在的圆周相对,所述接近开关(602a)与所述控制系统(4)电性连接。
  4. 根据权利要求3所述的位置监测机构,其特征在于,所述传动机构(3)包括:通过联轴器与所述电机(1)同轴联接的传动丝杆(301)、固定在所述床体(5)上且与所述传动丝杆(301)螺纹连接的传动螺母;
    所述位置监测机构(6)还包括:与所述传动丝杆(301)的自由端同轴连接的安装盘(603a),多个所述感应块(601a)绕圆周方向均匀设置在所述安装盘(603a)上。
  5. 根据权利要求3所述的位置监测机构,其特征在于,所述传动机构(3)包括:通过传动轴与所述电机(1)同轴联接的传动丝杆(301)、固定在所述床体(5)上且与所述传动丝杆(301)螺纹连接的传动螺母、固定套装在所述传 动轴上的主动齿轮(302)、与所述主动齿轮(302)啮合的从动齿轮(303)、与所述从动齿轮(303)同轴连接的手动轴(304);
    多个所述感应块(601a)绕圆周方向均匀设置在所述从动齿轮(303)的端平面上。
  6. 根据权利要求3所述的位置监测机构,其特征在于,所述感应块(601a)为螺钉,通过螺纹连接方式设置在所述传动机构(3)上。
  7. 根据权利要求3所述的位置监测机构,其特征在于,所述床体(5)上设置有接近开关支架(7),所述接近开关(602a)设置在所述接近开关支架(7)上。
  8. 根据权利要求1或2所述的位置监测机构,其特征在于,当所述传动机构(3)采用丝杠传动方式时;
    所述位置监测机构(6)包括:沿传动方向设置在所述床体(5)上的色标板(605b);
    通过支架设置在所述基座上,且与所述色标板(605b)相对的色标传感器(606b);
    所述色标传感器(606b)与所述控制系统(4)电性连接。
  9. 根据权利要求1或2所述的位置监测机构,其特征在于,当所述传动机构(3)采用剪式升降方式时,所述传动机构(3)包括:与所述床体(5)连接的剪式升降机构;
    所述位置监测机构(6)包括:沿传动方向设置在所述床体(5)上的齿条(601b);
    设置在所述基座上的齿轮支架(602b);
    可转动地设置在所述齿轮支架(602b)上,并与所述齿条(601b)啮合的监测齿轮(603b);
    与所述监测齿轮(603b)同轴联接的第二编码器(604b),所述第二编码器(604b)还与控制系统(4)电性连接。
  10. 根据权利要求9所述的位置监测机构,其特征在于,所述位置监测机构(6)还包括:沿传动方向设置在所述齿条(601b)侧壁上的色标板(605b);
    设置在所述齿轮支架(602b)上,且与所述控制系统(4)电性连接的色标传感器(606b);
    所述色标传感器(606b)与所述色标板(605b)相对。
  11. 根据权利要求9所述的位置监测机构,其特征在于,所述位置监测机构(6)还包括:
    多个感应块(601a),绕圆周方向均匀设置在所述监测齿轮(603b)的端平面上;接近开关(602a),设置在所述齿轮支架(602b)上,并与所述感应块(601a)所在的圆周相对,所述接近开关(602a)与所述控制系统(4)电性连接。
  12. 根据权利要求1或2所述的位置监测机构,其特征在于,所述位置监测机构(6)包括:与所述控制系统(4)电性连接的报警器。
  13. 一种三维治疗床,包括权利要求1-12任一项所述的位置监测机构(6)。
  14. 利用权利要求1-12任一项所述的位置监测机构对三维治疗床进行位置监测的方法,包括:
    利用位置监测机构(6)采集三维治疗床的传动机构(3)和/或床体(5)在所述X轴方向、所述Z轴方向或所述Y轴方向上的位置信号,并反馈给控制系统(4);
    所述控制系统(4)处理所述位置信号,获取所述三维治疗床的位置信息。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    第一编码器(2)采集电机(1)在X轴方向、Z轴方向或Y轴方向上的电机脉冲信号,并反馈给控制系统(4);
    所述控制系统(4)将同一方向上的所述位置信号和所述电机脉冲信号进行比较,获取所述三维治疗床的位置信息。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:所述控 制系统(4)将同一方向上的所述位置信号和所述电机脉冲信号进行比较,根据比较结果确定所述位置信号与所述电机脉冲信号是否具有对应关系;
    若是,则根据所述位置信号或者所述电机脉冲信号,获取所述三维治疗床的位置信息;
    若否,则根据所述位置信号,获取所述三维治疗床的位置信息,同时,所述控制系统(4)向报警器发出报警指令。
PCT/CN2017/087079 2017-06-02 2017-06-02 一种三维治疗床的位置监测机构及方法、三维治疗床 WO2018218685A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201790000621.7U CN209916025U (zh) 2017-06-02 2017-06-02 一种三维治疗床的位置监测机构及三维治疗床
PCT/CN2017/087079 WO2018218685A1 (zh) 2017-06-02 2017-06-02 一种三维治疗床的位置监测机构及方法、三维治疗床

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/087079 WO2018218685A1 (zh) 2017-06-02 2017-06-02 一种三维治疗床的位置监测机构及方法、三维治疗床

Publications (1)

Publication Number Publication Date
WO2018218685A1 true WO2018218685A1 (zh) 2018-12-06

Family

ID=64454356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087079 WO2018218685A1 (zh) 2017-06-02 2017-06-02 一种三维治疗床的位置监测机构及方法、三维治疗床

Country Status (2)

Country Link
CN (1) CN209916025U (zh)
WO (1) WO2018218685A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050065580A1 (en) * 2003-08-13 2005-03-24 Ceragem Co., Ltd. Bed type hot compress and acupressure apparatus and a method of controlling it
CN101015452A (zh) * 2006-11-29 2007-08-15 新奥博为技术有限公司 用于永磁开放式磁共振设备中的三维运动电动病床系统
US20080016620A1 (en) * 2006-07-19 2008-01-24 Gabriel Haras Method and patient bed for positioning a patient in a medical examination system
CN203802464U (zh) * 2014-01-16 2014-09-03 上海西门子医疗器械有限公司 医疗设备及其病床系统
CN104085821A (zh) * 2014-07-02 2014-10-08 沈阳东软医疗系统有限公司 一种扫描床升降同步控制方法、设备及系统
CN104546130A (zh) * 2013-10-29 2015-04-29 上海联影医疗科技有限公司 扫描床位置控制方法及系统
CN204759133U (zh) * 2015-07-02 2015-11-11 奥泰医疗系统有限责任公司 一种全闭环控制的病床系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050065580A1 (en) * 2003-08-13 2005-03-24 Ceragem Co., Ltd. Bed type hot compress and acupressure apparatus and a method of controlling it
US20080016620A1 (en) * 2006-07-19 2008-01-24 Gabriel Haras Method and patient bed for positioning a patient in a medical examination system
CN101015452A (zh) * 2006-11-29 2007-08-15 新奥博为技术有限公司 用于永磁开放式磁共振设备中的三维运动电动病床系统
CN104546130A (zh) * 2013-10-29 2015-04-29 上海联影医疗科技有限公司 扫描床位置控制方法及系统
CN203802464U (zh) * 2014-01-16 2014-09-03 上海西门子医疗器械有限公司 医疗设备及其病床系统
CN104085821A (zh) * 2014-07-02 2014-10-08 沈阳东软医疗系统有限公司 一种扫描床升降同步控制方法、设备及系统
CN204759133U (zh) * 2015-07-02 2015-11-11 奥泰医疗系统有限责任公司 一种全闭环控制的病床系统

Also Published As

Publication number Publication date
CN209916025U (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
CN110037918A (zh) 一种全自动艾灸机械臂的艾灸系统
WO2022105151A1 (zh) 自平衡调节支撑平台、机器人及自平衡调节方法
CN201775653U (zh) 定向电动颅骨钻
CN107997814A (zh) 一种内科穿刺定位装置
CN108175434A (zh) 一种ct放射检查旋转探测装置
CN104689489A (zh) 直线摆臂式机器人治疗床
WO2018218685A1 (zh) 一种三维治疗床的位置监测机构及方法、三维治疗床
CN108820855A (zh) 一种机械自动化抓取装置
CN210408457U (zh) 一种与血管b超仪探头配套使用的辅助支撑架装置
CN110151111B (zh) 一种支撑调整型口腔护理装置
CN112173988B (zh) 一种用于环抛机校正盘的吊装设备及辅助装置
CN114609339A (zh) 一种二氧化碳监测设备校准方法
CN210044023U (zh) 一种用于口腔牙齿拍摄的射线机
CN211876960U (zh) 一种ccd视觉检测设备
CN204522032U (zh) 直线摆臂式机器人治疗床
CN205322347U (zh) C型臂的升降控制装置
CN208276912U (zh) 一种水利生产用机械手
CN215874608U (zh) 一种乳腺外科的检查支架结构
CN218947743U (zh) 一种机械臂视觉相机固定装置
CN111595858A (zh) 试验梁的集成检测系统及检测方法
CN112345376A (zh) 一种防断裂的基于pvdf管材加工生产用拉伸装置
CN220268857U (zh) 一种医用电子加速器的检测装置
CN214454578U (zh) 一种外科缝针上料装置
CN217467523U (zh) 一种远程多功能测试装置
CN207152652U (zh) 一种神经外科辅助锥颅手术的简易定位装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911737

Country of ref document: EP

Kind code of ref document: A1