WO2018217012A1 - 다중 캐리어 시스템에서 셀의 송신 전력 조절 방법 및 장치 - Google Patents

다중 캐리어 시스템에서 셀의 송신 전력 조절 방법 및 장치 Download PDF

Info

Publication number
WO2018217012A1
WO2018217012A1 PCT/KR2018/005847 KR2018005847W WO2018217012A1 WO 2018217012 A1 WO2018217012 A1 WO 2018217012A1 KR 2018005847 W KR2018005847 W KR 2018005847W WO 2018217012 A1 WO2018217012 A1 WO 2018217012A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
transmission power
information
base station
transmit power
Prior art date
Application number
PCT/KR2018/005847
Other languages
English (en)
French (fr)
Inventor
김봉찬
이병하
허훈
이재영
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to CN201880033775.5A priority Critical patent/CN110651508A/zh
Priority to EP18805227.8A priority patent/EP3606189A4/en
Priority to US16/613,683 priority patent/US20210084599A1/en
Publication of WO2018217012A1 publication Critical patent/WO2018217012A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/086Load balancing or load distribution among access entities
    • H04W28/0861Load balancing or load distribution among access entities between base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/343TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading taking into account loading or congestion level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/267TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the information rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels

Definitions

  • the present invention relates to a method and apparatus for controlling real-time transmit power of a cell, and more particularly, to adjust real-time transmit power of each cell for improving UE throughput in a multi-carrier environment.
  • a method and apparatus are disclosed.
  • Conventional techniques for controlling transmit power include a technique for adjusting a transmit power of a cell in real time in accordance with a radio channel and a loading state in order to improve UE throughput, but the corresponding techniques include multi-carrier, carrier aggregation, There is no consideration of the operation of the base station and the terminal in the CA) system and does not distinguish a cell type such as a macro or a pico. In addition, this technique has a problem that can not eliminate the coverage hole by adjusting the transmission power.
  • the throughput of the terminal through the integrated transmission power optimization between carriers in a multi-carrier environment. For example, generating a coverage mismatch between carriers through transmission power adjustment (which means that a cell region between carriers does not match) and distributing resources through Proportional Fair (PF) scheduling.
  • the UE throughput can be improved by transmitting data to the UE using a carrier having a good radio channel state.
  • the pico-to-macro interference and the macro cell according to the loading state of the macro cell and the pico cell in a heterogeneous network (HetNet) environment in which the macro cell and the pico cell are mixed UE throughput can be improved by adjusting transmit power considering off-loading from cell to pico cell.
  • HetNet heterogeneous network
  • the present invention provides a method for controlling transmission power of each cell by a server, the method comprising: receiving configuration information from a system management server; Receiving channel state information and loading related information from a base station controlling each cell; Determining transmission power to be applied to each cell based on the configuration information, the channel state information, and the loading related information; And transmitting the determined transmission power information to a base station controlling each cell.
  • the server for controlling the transmission power of each cell comprising: a transceiver for transmitting and receiving signals to and from the base station and system management server controlling each cell; And receiving configuration information from the system management server, receiving channel state information and loading related information from a base station controlling each cell, and based on the configuration information, the channel state information and the loading related information. And a control unit for determining transmission power to be applied to each cell and controlling to transmit the determined transmission power information to a base station controlling each cell.
  • the present invention describes a method for adjusting real-time transmit power of a cell for improving UE throughput in a multi-carrier environment.
  • the present invention includes a method for detecting network quality degradation due to transmission power adjustment and updating transmission power adjustment range through network statistics based network quality monitoring.
  • the present invention provides a transmission power control range so that SINR does not fall below SINR that causes communication outage through signal-to-interference-noise ratio (SINR) prediction according to a change in transmission power. Including how to update it. Also disclosed is an apparatus capable of performing the method.
  • SINR signal-to-interference-noise ratio
  • UE throughput can be improved by controlling transmission power of real-time cells in consideration of multi-carrier information such as radio channel and loading-related information for each carrier, CA operation, and each cell type without degrading network quality in a multi-carrier environment.
  • multi-carrier information such as radio channel and loading-related information for each carrier, CA operation, and each cell type without degrading network quality in a multi-carrier environment.
  • FIG. 1 is a diagram illustrating a heterogeneous network environment.
  • FIG. 2 is a diagram illustrating the procedure of the present invention.
  • FIG. 3 is a diagram showing the configuration of the present invention in a heterogeneous network system.
  • FIG. 4 is a diagram illustrating the steps of the present invention.
  • FIG. 5 is a diagram illustrating the effect of determining the transmission power of the present invention in a heterogeneous network environment.
  • FIG. 6 is a diagram illustrating a specific transmission power determination process according to the present invention.
  • FIG. 7 is a diagram illustrating a specific example of determining transmission power for forced load balancing.
  • FIG. 8 is a diagram illustrating a method in which an optimization server monitors network quality and updates a transmission power adjustment range.
  • FIG. 9 is a block diagram illustrating an optimization server that can implement the present invention.
  • FIG. 10 is a block diagram illustrating a UE capable of carrying out the present invention.
  • FIG. 11 is a block diagram illustrating a base station capable of carrying out the present invention.
  • each block of the flowchart illustrations and combinations of flowchart illustrations may be performed by computer program instructions. Since these computer program instructions may be mounted on a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment, those instructions executed through the processor of the computer or other programmable data processing equipment may be described in flow chart block (s). It creates a means to perform the functions. These computer program instructions may be stored in a computer usable or computer readable memory that can be directed to a computer or other programmable data processing equipment to implement functionality in a particular manner, and thus the computer usable or computer readable memory. It is also possible for the instructions stored in to produce an article of manufacture containing instruction means for performing the functions described in the flowchart block (s).
  • Computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operating steps may be performed on the computer or other programmable data processing equipment to create a computer-implemented process to create a computer or other programmable data. Instructions for performing the processing equipment may also provide steps for performing the functions described in the flowchart block (s).
  • each block may represent a portion of a module, segment, or code that includes one or more executable instructions for executing a specified logical function (s).
  • logical function e.g., a module, segment, or code that includes one or more executable instructions for executing a specified logical function (s).
  • the functions noted in the blocks may occur out of order.
  • the two blocks shown in succession may in fact be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending on the corresponding function.
  • ' ⁇ part' used in the present embodiment refers to software or a hardware component such as an FPGA or an ASIC, and ' ⁇ part' performs certain roles.
  • ' ⁇ ' is not meant to be limited to software or hardware.
  • ' ⁇ Portion' may be configured to be in an addressable storage medium or may be configured to play one or more processors.
  • ' ⁇ ' means components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, procedures, and the like. Subroutines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables.
  • the functionality provided within the components and the 'parts' may be combined into a smaller number of components and the 'parts' or further separated into additional components and the 'parts'.
  • the components and ' ⁇ ' may be implemented to play one or more CPUs in the device or secure multimedia card.
  • the present invention describes a method and apparatus for adjusting transmission power of a real-time cell in consideration of multi-carrier information such as radio channel and loading related information per carrier in a multi-carrier environment, CA operation, and type of each cell.
  • a network capable of carrying out the present invention is composed of a system management server, a base station controlling a cell (the base station may control a macro cell and / or a pico cell) and an optimization server.
  • the system management server transmits configuration information of all cells managed by the optimization server to the optimization server.
  • the base station collects necessary information during the execution period of the transmission power adjustment algorithm, and delivers the collected information to the optimization server.
  • the optimization server uses the information collected from the base station to determine the transmit power of the cell that improves the UE throughput and notify the base station again.
  • FIG. 1 is a diagram illustrating a heterogeneous network environment to which the present invention is applied.
  • pico cell 1 120 is located within coverage of macro cell 1 100
  • pico cell 2 130 is located within coverage of macro cell 2 110.
  • FIG. 2 is a diagram illustrating the procedure of the present invention.
  • the UE 200 is a CA support terminal
  • cell 1 is a primary cell (PCell) of the UE
  • cell 2 is a secondary cell (SCell) of the UE.
  • the base station 210 controlling the cell 1 and the base station 220 controlling the cell 2 are located in the network.
  • cell 1 uses carrier 1
  • cell 2 uses carrier 2.
  • a UE receives data on a PCell (cell 1, carrier 1) and an SCell (cell 2, carrier 2).
  • the UE indicates a PCell UE and the UE indicates an SCell UE from the SCell position.
  • the optimization server 230 and the system management server 240 is located in the network.
  • the names of these network entities may vary, and each entity may be located at the same physical location or at a different location, but may be understood as the present network entity if it performs the functions described below.
  • the transmission power adjustment procedure of each cell is as follows.
  • the system management server 240 may configure configuration information of all cells managed by the optimization server 230 (for example, transmission power control range, transmission power control cycle, neighbor cell information, and PCell change condition). , Cell type information, etc.) and CA-related information (such as collocated cells, SCell add, release, change, activation, and deactivation). Condition information and the like) may be transmitted to the optimization server 230 (S200). Subsequently, the base station 1 210 controlling the cell 1 (PCell, carrier 1) and the base station controlling the neighbor cell having the same carrier as the cell 1 are sounding reference signals (SRS) from the UE.
  • SRS sounding reference signals
  • the signal measurement collects radio channel information for the PCell UE (which can be derived from the SRS reception power of the base station) and transmits the information to the optimization server 330 (s205).
  • the base station detects the radio channel status through the SRS transmitted by the UE, but the radio channel status is determined through other reference signals or pilot signals or channel status information transmitted by the UE even if the SRS is not SRS. It can be determined and delivered to the optimization server 230.
  • the base station 2 220 that controls the cell 2 (SCell, carrier 2) is the radio channel information (for example, reference signal reception power, Reference Signal Received Power, RSRP) may be collected and delivered to the optimization server (s210).
  • the base station 1 210 collects loading related information (for example, a physical resource block (PRB) usage rate) for the PCell and the PCell UE during the transmission power control period and transmits the information related to the optimization server 230 to the optimization server 230 (S215).
  • the base station 2 220 also collects loading-related information (for example, PRB usage rate) for the SCell and the SCell UE during the transmission power control period and delivers it to the optimization server 230 (s220).
  • the base station 1 210 transmits the PCell and SCell related information (eg, cell IDs (Cell ID) and frequency assignments (FA) of the PCell and the SCell) of the UE to the optimization server 230 every transmission power control period (s225). )do.
  • PCell and SCell related information eg, cell IDs (Cell ID) and frequency assignments (FA) of the PCell and the SCell
  • the optimization server 230 may be configured based on various channel state and loading related information, CA related information and cell configuration information and cell type collected from the base station 1 210 and the base station 2 220 for each transmission power control period. The transmit power of the cell is determined (s230). Thereafter, the optimization server transmits the determined transmission power information to the base station 1 210 and the base station 2 220 (s235).
  • Base station 1 (210) and base station 2 (220) receiving the transmission power information applies the corresponding transmission power to cell 1 and cell 2 (s240).
  • the base station 1 210 and the base station 2 220 transmits the transmission power applied to the cell 1 and the cell 2 to the UE through a control message (s245). Thereafter, the processes s205 to s245 are repeated.
  • the network entities perform the following network quality monitoring procedure to prevent network quality degradation due to transmission power adjustment.
  • Base station 1 (210) collects network quality statistics (for example, handover (HO) related statistics, call drop statistics) during the transmission power control period and delivers to the optimization server 230 (s250).
  • the base station 2 (220) also collects network quality statistics during the transmission power control period and transmits to the optimization server (330) (s255).
  • the optimization server 230 manages history information on network quality statistics and transmission power (S260), checks network quality based on network quality statistics information, and transmit power of a base station of a cell where network quality degradation has occurred. Update the adjustment range (s265). Thereafter, steps s250 to s265 are repeated.
  • FIG. 3 is a diagram showing the configuration of the present invention in a heterogeneous network system.
  • the EMS 300 transmits system information, cell type information, and CA configuration information to the SON unit 310 (S340).
  • the base station 320 or 330 controlling each cell transmits radio channel state and loading related information for each carrier and PCell and SCell information to the SON unit 310 (S350).
  • the SON unit 310 determines transmission power to be applied to a cell controlled by each base station based on the received information and notifies each base station (S360).
  • 3 may be understood as the system management server of FIG. 2, and the SON unit of FIG. 3 as the optimization server of FIG. 2.
  • FIG. 4 is a diagram illustrating the steps of the present invention. According to Figure 4, the present invention is largely composed of three steps.
  • the system management server stores cell configuration information, and the system management server transmits configuration information of all cells managed by the optimization server to the optimization server.
  • the cell setting information is as follows.
  • PCell change condition e.g., Event A3, which means that the state of the neighbor cell is better by a predetermined offset than the serving cell
  • the system management server also stores CA related information of the cell.
  • the system management server transmits CA related information of all cells managed by the optimization server to the optimization server.
  • CA related information of the cell is as follows.
  • a collocated cell means a cell having the same or similar coverage area while using a different carrier from the cell.
  • SCell additional condition e.g., Event A4, which means a situation that is better than the state specific threshold of the neighboring cell
  • SCell release condition (eg, Event A2, which means that the serving cell is worse than a certain threshold)
  • SCell change condition (eg, Event A6, which means that the state of the neighbor cell is better than the current SCell by an offset).
  • the base station controlling each cell collects channel state information, loading related information, and CA related information and delivers the information to the optimization server. Specific information collection and transfer procedures are as follows.
  • the channel state information collection and delivery procedure for the PCell UE is as follows.
  • a base station controlling a PCell (cell 1, carrier 1) and a base station controlling a neighbor cell having a carrier such as the PCell measure and transmit the SRS of the PCell UE to the optimization server.
  • the optimization server stores radio channel state information between the PCell UE and the neighboring cell having a carrier such as PCell and PCell based on the collected information (SRS reception power).
  • the PCell UE may transmit an SRS or other reference signal or pilot signal to the base station, and may also transmit channel state information measured by the PCell UE to the base station.
  • the channel state information collection procedure for the SCell UE is as follows.
  • the base station controlling the SCell collects RSRP values for neighbor cells having carriers such as SCell and SCell from the UE through periodic measurement reports and delivers them to the optimization server.
  • the optimization server stores radio channel state information between the SCell UE and the neighboring cell having a carrier such as SCell and SCell based on the collected information (RSRP).
  • RSRP collected information
  • the procedure of collecting information related to loading of the PCell and the PCell UE is as follows.
  • the base station controlling the PCell calculates the PRB utilization rate of the PCell during the transmission power control period.
  • the base station controlling the PCell calculates the PRB utilization rate of the PCell UE during the transmission power control period.
  • the base station controlling the PCell transmits the PRB utilization rates of the PCell and the PCell UE to the optimization server every transmission power control cycle.
  • the optimization server stores the PRB usage rates of the PCell and the PCell UE.
  • the procedure of collecting and transmitting loading information of SCell and SCell UE is as follows.
  • the base station controlling the SCell calculates the PRB utilization rate of the SCell during the transmission power control period.
  • the base station controlling the SCell calculates the PRB utilization rate of the SCell UE during the transmission power control period.
  • the base station controlling the SCell delivers the PRB utilization rates of the SCell and the SCell UE to the optimization server every transmission power control period.
  • the optimization server stores the PRB usage rates of the SCell and the SCell UE.
  • PCell and SCell information collection and delivery procedure of the UE is as follows.
  • the base station controlling the PCell delivers the PCell and SCell information (cell identifier, FA) information of the UE to the optimization server every transmission power control cycle.
  • the optimization server stores the PCell and SCell information of the UE.
  • the procedure for collecting network quality statistics of a cell is as follows.
  • the base station controlling the cell performs HO related statistics (HO attempts, HO success counts, etc.) and call disconnection related statistics (Connect setup success counts, hand-in) of the corresponding cell during the transmission power control period. ) (Which means accessing a cell through handover from another cell), the number of successes, the number of call drop occurrences, and the like.
  • the base station controlling the cell transmits the cell's HO statistics and call disconnection related statistics to the optimization server at every transmission power control cycle.
  • the optimization server manages HO-related statistics, call disconnection-related statistics, and history information on transmission power of the cell. However, the history information keeps only the information for a recent specific time.
  • the following describes a transmission power determination process to be applied to each base station.
  • the optimization server determines the transmission power to be applied to all cells managed by the multi-carrier information (carrier-specific radio channel status and loading related information, CA related information, and cell type information) collected from each base station.
  • the optimization server determines the transmission power to be applied to each cell so that the target values described below are optimized while obtaining load-balancing effects between the cells in terms of PRB utilization or UE number during transmission power determination.
  • FIG. 5 is a diagram illustrating the effect of determining the transmission power of the present invention in a heterogeneous network environment.
  • the power applied to the macro cell 1 500 having a relatively low load results in a high power
  • a macro having a relatively high load ie, a large number of UEs serving.
  • the power applied to cell 2 510 is lowered. This enables load balancing between macro cells, where the power of pico cell 1 520 located within the coverage of macro cell 1 is lowered to reduce pico-to-macro interference on macro cell 1.
  • power is increased for macro-to-pico offloading.
  • FIG. 6 is a diagram illustrating a specific transmission power determination process according to the present invention. According to FIG. 6, the transmission power determination process is as follows.
  • the optimization server checks whether the UE is a full buffer UE by using the PRB utilization rate of the cell at the current transmit power CurrP, the PRB usage rate of the UE, and capacity information.
  • the full buffer UE refers to a UE having a large amount of data to transmit, and UEs satisfying the following Equations 1, 2 and 3 are determined to be full buffer UEs.
  • Equation 1 Is the PRB utilization rate of the cell of the serving cell of UE m at the current transmit power CurrP, j CurrP, m is the serving cell index of the UE m at the current transmit power CurrP, i.e. PCell or SCell index of UE m).
  • the Threshold HighLoadCell is a predetermined value and serves as a reference for the cell PRB utilization rate of the serving cell of UE m at the current transmit power. If the cell PRB usage rate of the serving cell of UE m is higher than the Threshold HighLoadCell , it may be determined that the cell has a high load.
  • Equation 2 Denotes the PRB utilization rate of the UE of UE m at the current transmit power (CurrP), Denotes the number of UEs in the serving cell of UE m at the current transmit power CurrP. That is, Equation 2 refers to a case where the PRB usage rate of UE m is higher than the PRB usage rate of UE expected on average in the serving cells j CurrP, m of UE m.
  • Equation 3 means that the PRB usage rate of UE m is higher than the predicted PRB usage rate of UE m when the serving cell j CurrP and the cell PRB usage rate of m are 1.
  • the determination of the load balancing mode is made as follows.
  • the optimization server selects a UE number balancing mode if the PRB utilization rate of all cells managed by the optimization server is greater than or equal to a specific threshold, and otherwise selects a PRB balancing mode. This means that if the PRB utilization of all cells is higher than a certain threshold, it is already using a lot of transmission resources (PRB), so the UE throughput is increased by balancing the number of UEs, otherwise it is balanced because it is not using much transmission resources. It is to increase the UE throughput through the use of transmission resources.
  • PRB transmission resources
  • the optimization server determines the power direction of the power control according to the load state of the macro cell with respect to the macro cell in the optimization server. Macro cells in high load power down to lower the load and macro cells in low load power up to increase the load.
  • the specific procedure is as follows.
  • the optimization server calculates LoadDegree of the macro cell according to Equation 4 below.
  • LoadDegree (CellLoad Macro, j -AvgOfCellLoad Macro ) / StdOfCellLoad Macro
  • CellLoad Macro j of Equation 4 denotes the number of UEs (in case of UE balancing mode) or PRB utilization (in case of PRB balancing mode) of macro cell j, and AvgOfCellLoad Macro is an average value of CellLoad Macro of a macro cell in the optimization server.
  • StdOfCellLoad Macro refers to the standard deviation of the CellLoad Macro of the macro cell in the optimization server.
  • the optimization server determines the power control direction of the macro cell according to Equation 5 below.
  • the load of the macro cell is high, so the transmission power is reduced to reduce the load. If the LoadDegree is less than -1, the load of the macro cell is low, the transmission power is increased to increase the load.
  • the optimization server also determines the power control direction of the pico cell in the optimization server.
  • the optimization server determines the transmission power LoadBalP for forced load balancing according to the power control direction of the cell determined in the above step.
  • the cell with higher power is considered first.
  • FIG. 7 is a diagram illustrating a specific example of determining transmission power for forced load balancing.
  • macro cell 1 700 and macro cell 2 710 are present in the network.
  • macro cell 1 with a high load is determined to have a power control direction down
  • macro cell 2 with a low load is determined to have a power control direction up
  • each of the macro cells has a transmit power control range of 33-43 dBm and a current transmit power. If both macro cells 1 and 2 are 40 dBm, the optimization server determines the transmit power for forced load balancing as follows.
  • the optimization server determines the minimum power change amount (including HO margin) for the UE 720 located at the edges of the macro cell 1 and the macro cell 2 to handover from the macro cell 1 to the macro cell 2.
  • the HO margin may use a PCell change condition (eg, an Event A3 condition) in the case of a PCell UE, and an SCell change condition (eg, an Event A6 condition) in the case of a SCell UE.
  • the optimization server determines transmission power applied to each cell through a transmission power determination process for improving load balancing described below.
  • the optimization server sets a transmission power control range of all cells according to Equation 6 below.
  • LoadBalP is 43 dBm and the current transmit power is 40 dBm. Therefore, the transmit power control range of the macro cell 2 becomes LoadBalP and the maximum transmit power value of 43 dBm.
  • LoadBalP is 39 dBm and current transmit power is 40 dBm, so the transmit power control range is 33 dBm (minimum transmit power) to 39 dBm.
  • the optimization server selects a cell and randomly selects a transmit power P within the transmit power control range of the selected cell.
  • the third optimization server determines the primary cell (PCell P ) of the UE at the selected transmit power (P).
  • PCell P the primary cell of the UE at the selected transmit power
  • PCell CurrP The primary cell ( PCell CurrP) of the UE at the current transmit power (CurrP);
  • the predicted receive power of the PCell CurrP (predicted receive power may be understood as a product of link gain of the wireless channel and transmit power, that is, the power of the signal received by the UE. If the prediction reception power of BestCell, which is the cell with the largest prediction reception power, satisfies the PCell change condition, the optimization server determines PCell P as BestCell. If not (if the PCell change condition is not satisfied), the optimization server determines PCell P as PCell CurrP . At this time, the PCell change condition may be a PCell handover condition, for example, Event A3 may be applied.
  • the optimization server determines the secondary cell SCell P of the UE at the selected transmission power P.
  • the following information is used in the SCell P decision process.
  • PCell P of UE PCell P of UE, Secondary Cell (SCell CurrP ) of UE at current transmit power ( CurrP )
  • the optimization server uses the above information to determine the SCell P of the UE in the following manner. Optimization server once set TempSCell P by juxtaposed cells, or SCell CurrP of PCell P, and cell set having the maximum predicted received power by the transmission power (P) is selected to BestCell. If the predicted received power of BestCell is equal to or greater than the threshold received power of the set TempSCell P (the threshold value may be based on an SCell change condition, for example, Event A6), TempSCell P is changed to BestCell and set. If not TempSCell P maintains the juxtaposed cells, or SCell CurrP the original set PCell P.
  • the threshold value may be based on an SCell change condition, for example, Event A6
  • the optimization server After setting the TempSCell P, the optimization server performs SCell release / addition / activation / deactivation processing as follows. Optimization server sets the prediction is the received power or SINR prediction is below a certain threshold value of the P TempSCell (the threshold value SCell release conditions can be based on the Event condition A2, for example) P TempSCell to NULL. Setting it to NULL means that TempSCell P is not selected. This is because the channel condition of TempSCell P is not good enough. If there is a cell where TempSCell P is NULL and the predicted received power or the predicted SINR is above a certain threshold (the threshold value may be based on the SCell additional condition, for example, Event A4 condition), the cell is in a good channel state. Set TempSCell P to the cell.
  • the threshold value SCell release conditions can be based on the Event condition A2, for example
  • Optimization server sets the back TempSCell P are (can be referred to these as SCell activation condition) is NULL but are a PRB amount of the UE is less than a specific threshold value P TempSCell to NULL.
  • the TempSCell P is not NULL and can be expressed as the product of the UE's prediction channel quality (temporary channel quality indicator (CQI) and prediction rank indicator (RI)) for the TempSCell P. If is equal to or less than the threshold (which can be referred to as SCell deactivation condition), TempSCell P is set to NULL.
  • CQI temporary channel quality indicator
  • RI prediction rank indicator
  • the optimization server then sets SCell P to TempSCell P. This means that when it TempSCell P is NULL yiraseo SCell P is set to NULL, do not select the SCell.
  • the optimization server calculates an objective at the selected transmit power P.
  • the optimization server calculates SumOfLogUETput Full, P as a target value of transmission power control.
  • Full UETput, P which is the sum of the predicted amount of from PCell and SCell P P UE of the UE the throughput is predicted when the transmission power (P) selected from pool loaded (full loading) application environment.
  • the target value SumOfLogUETput Full, P is the sum of Log (UETput Full, P ) for all UEs managed by the optimization server when the selected transmit power P is applied in the full loading environment.
  • P j, m is the transmit power (P) (cell index of PCell and SCell P P m of the UE) of the UE serving cell index m in equation 7, and Denotes the predicted capacity of UE m for cell j P, m when transmit power P is applied in a full loading environment, Denotes the number of UEs served by cells j P, m in transmit power P.
  • the optimization server calculates SumOfLogTotalUEPRBusageRatio P and SumOfLogUETput Partial, P as targets for power control.
  • SumOfLogTotalUEPRBusageRatio P calculates the sum of Log (TotalEstimatedUEPRBusageRatio P ) for all UEs managed by the server at the selected transmission power P , and is calculated according to Equation 8 below.
  • TotalEstimatedUEPRBusageRatio P, m which is the predicted total UE PRB usage rate of the UE .
  • TotalEstimatedUEPRBusageRatio P, m is the predicted UE PRB utilization of each cell for UE m. It can be seen that the addition. remind Is calculated differently for a full buffer UE and a non-full buffer UE in a partial loading environment.
  • the predicted PRB utilization of the full buffer UE for the serving cell is calculated as in Equation 10 below.
  • Equation 10 Is a 1- “full buffer UE for cell j P, m when transmit power (P) is applied. Sum ". Also Denotes the number of full buffer UEs for the cell j P, m when the transmit power P is applied.
  • DataSize m is the amount of predictive data that can be transmitted from the UE m CurrP PCell and SCell CurrP. DataSize m is calculated according to Equation 11 below.
  • Equation 11 j CurrP, m denotes a serving cell index of UE m (cell indexes of PCell CurrP and SCell CurrP of UE m) at the current transmit power CurrP, Denotes the PRB usage rate allocated to UE m by cell j CurrP, m at the current transmit power CurrP, and corresponds to loading information received by Cell j CurrP, m from the optimization server. Denotes the predicted capacity of UE m for cell j CurrP, m when the current transmit power (CurrP) in a partial loading environment. DataSize m in Equation 11 is Used for calculation.
  • the optimization server is a temporary prediction UE PRB utilization rate of UE m for cell j P, m when a transmission power P is applied in a partial loading environment. Is calculated according to Equation 12 below.
  • Equation 12 If the sum of the temporary prediction UE PRB utilization rates of the UEs other than the full buffer UEs for the serving cell calculated according to Equation 12 is more than 1 (more specifically, the sum of the PRB utilization rates of UEs other than the full buffer UEs in one serving cell) Predictive UE PRB utilization for UEs that are not full buffer UEs Calculate as shown in Equation 13 below.
  • the temporary prediction PRB usage rate may be determined as the prediction UE PRB usage rate of the UE, not the full buffer UE.
  • Equation 14 assumes that the PRB utilization of the cells j P and m is 1, when the average PRB usage of the UEs served by the cells j P and m is lower than the calculated temporary prediction PRB usage, not the full buffer UE. It can be determined by the predicted UE PRB utilization of the UE, that is, to guarantee the PRB originally assigned to the UE m.
  • m at transmit power (P) It means the number of UEs corresponding to. In other words Means the number of UEs that need to allocate more resources because it is necessary to transmit data using more resources because the channel condition is not good and the UE has a higher predicted PRB utilization than the average PRB utilization of the UE.
  • Is Means the remaining resources used by the UE, divided by the number of UEs with poor channel state ( Remaining resources / channels in bad state than the number of UEs Is small To Decided to, otherwise The number of UEs with poor resource / channel health left Of Means to decide.
  • P is the sum of the estimated amount from the PCell and SCell P P of the UE as the following equation 16.
  • UETput Partial, P, m is a predicted UE throughput of UE m when the selected transmission power P is applied in a partial loading environment
  • j P, m is a serving cell index of UE m at transmission power P.
  • cell index of PCell and SCell P P m of the UE Denotes the predicted capacity of UE m for cell j P, m when the selected transmit power P in a partial loading environment.
  • SumOfLogUETput Partial P is a sum of Logs (predictive UE throughputs) for all UEs managed by a server when a transmission power P is applied in a partial loading environment, as shown in Equation 17 below.
  • the optimization server determines the transmission power for optimizing the target value according to each balancing mode while repeating the first to fifth processes.
  • the transmission power maximizing SumOfLogUETput Full, P is determined. However, when at least one of the following constraints is satisfied in the selected transmission power P, the transmission power P is excluded from the candidate transmission power value for optimizing the target value.
  • VarOfNumUE Macro P denotes a variance of predicted UE numbers of all macro cells in transmit power P.
  • FIG. This means that the load balancing of the number of UEs should not worsen when the selected transmission power is applied than when the current transmission power is applied.
  • VarOfNumUE Pico P, k
  • Equation 19 applies only when the selected cell k is a pico cell.
  • VarOfNumUE Pico, P, k means the variance of the predicted UE number of the neighboring cells of the pico cell k and pico cell k in the selected transmit power (P).
  • SINR Full, CurrP, m SINR Full, P, m and SINR outage > SINR Full, P, m
  • SINR Full, P, m denotes a predictive full loading SINR of UE m at transmit power P
  • SINR outage denotes an SINR value that can cause communication outage . That is, it means that the full loading SINR of UE m must be higher than that of the current transmission power, and the communication interruption must be higher than a possible SINR value.
  • NumEdgeUE P is the number of predicted PCell UEs present in a handoverable area (HO region) at the transmission power P. This aims to prevent too many handovers.
  • Equation 22 EdgUETput Full, P means lower 5% predicted UE throughput when transmitting power P in a full loading environment, which means that the throughput of the UE located at the edge should be better than the current case.
  • Equation 23 SumOfLogUETput Partial, P is a sum of predicted UE throughput when power (P) in a full loading environment, which means that the sum of throughputs of all terminals should be better than the current case assuming a full loading environment. it means.
  • the transmit power control range of the selected cell is adjusted as shown in Equation 24 to prevent the occurrence of communication failure. Can be reduced.
  • Transmission power adjustment range of selected cell (selected transmit power (P) + 1 [dB] of selected cell) to maximum transmit power
  • Equation 24 adjusts the minimum value of the transmission power adjustment range to + 1dB in the currently selected transmission power to prevent communication loss, and the optimization server performs transmission power control again in the new adjustment range.
  • the optimization server determines the transmission power that maximizes the target SumOfLogUETput Partial, P or minimizes SumOfLogTotalUEPRBusageRatio P. However, when at least one of the following constraints is satisfied in the selected transmission power P, the transmission power P is excluded from the candidate transmission power value for optimizing the target value.
  • Equation 25 VarOfCellPRBusageRatio Macro, P means the variance of the predicted PRB utilization rate of all macro cells in transmit power (P), and the load balancing of PRB utilization rate is applied when the selected transmit power is applied than when the current transmit power is applied. It should not be worse.
  • Equation 26 applies only when the selected cell k is a pico cell.
  • VarOfCellPRBusageRatio Pico, P, k denotes the variance of the predicted PRB utilization of the neighboring cells of the pico cell k and the pico cell k in the transmission power (P).
  • SINR Full, CurrP, m SINR Full, P, m and SINR outage > SINR Full, P, m
  • SINR Full, P, m denotes a full loading SINR of UE m at a transmit power P
  • SINR outage denotes an SINR value at which communication disruption may occur. It means that the full loading SINR of the UE m must be higher than the current transmission power, and the communication interruption must be higher than the possible SINR value.
  • Equation 28 SumOfLogUETput Partial, P means the sum of Log (predictive UE throughput) at the transmission power P in the partial loading environment, and means that the sum of the UE throughputs should not be lower than the current state.
  • NumEdgeUE P denotes the number of predicted PCell UEs present in a handoverable area (HO region) in the transmission power P, which aims to prevent the handover from becoming too large.
  • the optimization server calculates the transmit power adjustment range of the selected cell to prevent the communication failure. Can be reduced to
  • Transmission power control range of selected cell (selected power (P) + 1 [dB]) ⁇ maximum transmit power of selected cell
  • Equation 30 adjusts the minimum value of the power adjustment range to + 1dB in the currently selected transmission power to prevent communication loss, and the optimization server performs transmission power control again in the new adjustment range.
  • the optimization server determines transmission power that maximizes the target value by determining transmission power for interference control.
  • the transmission power determination process for interference control is performed only when there is no transmission power value for improving a target value compared to the current transmission power in the transmission power determination process for load balancing.
  • the transmission power determination process for interference control is almost similar to the transmission power control process for improving load balancing.
  • the optimization server sets a transmission power control range of all cells according to Equation 31 below.
  • the transmission power control range of the cell is different from the case of determining the transmission power for the load balancing.
  • the optimization server selects a cell and randomly selects a transmit power P within the transmit power control range of the selected cell.
  • the third optimization server determines the primary cell (PCell P ) of the UE at the selected transmit power (P).
  • PCell P the primary cell of the UE at the selected transmit power
  • PCell CurrP The primary cell ( PCell CurrP) of the UE at the current transmit power (CurrP);
  • the predicted receive power of the PCell CurrP (predicted receive power may be understood as a product of link gain of the wireless channel and transmit power, that is, the power of the signal received by the UE. If the prediction reception power of BestCell, which is the cell with the largest prediction reception power, satisfies the PCell change condition, the optimization server determines PCell P as BestCell. If not (if the PCell change condition is not satisfied), the optimization server determines PCell P as PCell CurrP . At this time, the PCell change condition may be a PCell handover condition, for example, Event A3 may be applied.
  • the optimization server determines the secondary cell SCell P of the UE at the selected transmission power P.
  • the following information is used in the SCell P decision process.
  • PCell P of UE PCell P of UE, Secondary Cell (SCell CurrP ) of UE at current transmit power ( CurrP )
  • the optimization server uses the above information to determine the SCell P of the UE in the following manner. Optimization server once set TempSCell P by juxtaposed cells, or SCell CurrP of PCell P, and cell set having the maximum predicted received power by the transmission power (P) is selected to BestCell. If the predicted received power of BestCell is equal to or greater than the threshold received power of the set TempSCell P (the threshold value may be based on an SCell change condition, for example, Event A6), TempSCell P is changed to BestCell and set. If not TempSCell P maintains the juxtaposed cells, or SCell CurrP the original set PCell P.
  • the threshold value may be based on an SCell change condition, for example, Event A6
  • the optimization server After setting the TempSCell P, the optimization server performs SCell release / addition / activation / deactivation processing as follows. Optimization server sets the prediction is the received power or SINR prediction is below a certain threshold value of the P TempSCell (the threshold value SCell release conditions can be based on the Event condition A2, for example) P TempSCell to NULL. Setting it to NULL means that TempSCell P is not selected. This is because the channel condition of TempSCell P is not good enough. If there is a cell where TempSCell P is NULL and the predicted received power or the predicted SINR is above a certain threshold (the threshold value may be based on the SCell additional condition, for example, Event A4 condition), the cell is in a good channel state. Set TempSCell P to the cell.
  • the threshold value SCell release conditions can be based on the Event condition A2, for example
  • Optimization server sets the back TempSCell P are (can be referred to these as SCell activation condition) is NULL but are a PRB amount of the UE is less than a specific threshold value P TempSCell to NULL.
  • the TempSCell P is not NULL and can be expressed as the product of the UE's prediction channel quality (temporary channel quality indicator (CQI) and prediction rank indicator (RI)) for the TempSCell P. If is equal to or less than the threshold (which can be referred to as SCell deactivation condition), TempSCell P is set to NULL.
  • CQI temporary channel quality indicator
  • RI prediction rank indicator
  • the optimization server then sets SCell P to TempSCell P. This means that when it TempSCell P is NULL yiraseo SCell P is set to NULL, do not select the SCell.
  • the optimization server calculates an objective at the selected transmit power P.
  • the optimization server calculates SumOfLogUETput Full, P as a target value of transmission power control.
  • Full UETput, P which is the sum of the predicted amount of from PCell and SCell P P UE of the UE the throughput is predicted when the transmission power (P) selected from pool loaded (full loading) application environment.
  • the target value SumOfLogUETput Full, P is the sum of Log (UETput Full, P ) for all UEs managed by the optimization server when the selected transmit power P is applied in the full loading environment.
  • Means P j, m is the transmit power (P) (cell index of PCell and SCell P P of the UE m) serving cell index of the UE 32, and m in the formula, Denotes the predicted capacity of UE m for cell j P, m when transmit power P is applied in a full loading environment, Denotes the number of UEs served by cells j P, m in transmit power P.
  • the optimization server calculates SumOfLogTotalUEPRBusageRatio P and SumOfLogUETput Partial, P as targets for power control.
  • SumOfLogTotalUEPRBusageRatio P calculates the sum of Log (TotalEstimatedUEPRBusageRatio P ) for all UEs managed by the server at the selected transmission power P , and is calculated according to Equation 33 below.
  • TotalEstimatedUEPRBusageRatio P, m which is the predicted total UE PRB usage rate of the UE .
  • TotalEstimatedUEPRBusageRatio P, m is the predicted UE PRB utilization of each cell for UE m. It can be seen that the addition. remind Is calculated differently for a full buffer UE and a non-full buffer UE in a partial loading environment.
  • the predicted PRB utilization of the full buffer UE for the serving cell is calculated as shown in Equation 35 below.
  • Eq 35 Is a 1- “full buffer UE for cell j P, m when transmit power (P) is applied. Sum ". Also Denotes the number of full buffer UEs for the cell j P, m when the transmit power P is applied.
  • DataSize m is the amount of predictive data that can be transmitted from the UE m CurrP PCell and SCell CurrP. DataSize m is calculated according to Equation 36 below.
  • Equation 36 j CurrP, m denotes a serving cell index of UE m (cell indexes of PCell CurrP and SCell CurrP of UE m) at a current transmit power CurrP, Denotes the PRB usage rate allocated to UE m by cell j CurrP, m at the current transmit power CurrP, and corresponds to loading information received by Cell j CurrP, m from the optimization server. Denotes the predicted capacity of UE m for cell j CurrP, m when the current transmit power (CurrP) in a partial loading environment. DataSize m in the formula 36 is Used for calculation.
  • the optimization server is a temporary prediction UE PRB utilization rate of UE m for cell j P, m when a transmission power P is applied in a partial loading environment. Is calculated according to Equation 37 below.
  • Equation 37 If the sum of the temporary prediction UE PRB usage rates of the UE other than the full buffer UE for the serving cell calculated according to Equation 37 (more specifically, the sum of the PRB utilization rates of the UEs other than the full buffer UE in one serving cell) is 1 or less Predictive UE PRB utilization for UEs that are not full buffer UEs Calculate as shown in Equation 38 below.
  • the temporary prediction PRB usage rate may be determined as the prediction UE PRB usage rate of the UE, not the full buffer UE.
  • Equation 39 assumes that the PRB utilization of the cells j P and m is 1, when the average PRB utilization of the UE served by the cells j P and m is lower than the calculated temporary prediction PRB usage , the equation is not a full buffer UE. It can be determined by the predicted UE PRB utilization of the UE, that is, to guarantee the PRB originally assigned to the UE m.
  • Is 1- for cell j P, m at selected transmit power P.
  • UE Sum of Is not a full buffer UE for cell j P, m at transmit power P It means the number of UEs corresponding to.
  • Is Means the remaining resources used by the UE, divided by the number of UEs with poor channel state ( Remaining resources / channels in bad state than the number of UEs ⁇ Is small To Decided to, otherwise The number of UEs with poor resource / channel health left Of Means to decide.
  • P is the sum of the estimated amount from the PCell and SCell P P of the UE as the following equation 41.
  • UETput Partial, P, m is a predicted UE throughput of UE m when the selected transmission power P is applied in a partial loading environment
  • j P, m is a serving cell index of UE m at transmission power P.
  • cell index of PCell and SCell P P m of the UE Denotes the predicted capacity of UE m for cell j P, m when the selected transmit power P in a partial loading environment.
  • SumOfLogUETput Partial P is a sum of Logs (predictive UE throughputs) for all UEs managed by the server when the transmission power P is applied in the partial loading environment, as shown in Equation 42 below.
  • the optimization server determines the transmission power for optimizing the target value according to each balancing mode while repeating the first to fifth processes.
  • the transmission power maximizing SumOfLogUETput Full, P is determined. However, when at least one of the following constraints is satisfied in the selected transmission power P, the transmission power P is excluded from the candidate transmission power value for optimizing the target value.
  • VarOfNumUE Macro P denotes a variance of predicted UE numbers of all macro cells in transmit power P.
  • FIG. the equation 18 and the equation 43, which are cases for determining the transmission power for load balancing, have the difference that the equation 43 is not included. This means that load balancing of UE numbers should be better for interference control.
  • VarOfNumUE Pico P, k
  • Equation 44 applies only when the selected cell k is a pico cell.
  • VarOfNumUE Pico, P, k means the variance of the predicted UE number of the neighboring cells of the pico cell k and pico cell k in the selected transmit power (P).
  • Equation 19 and Equation 44 which are cases for determining transmission power for load balancing, do not include an equal sign in Equation 44. This means that load balancing of UE numbers should be better for interference control.
  • SINR Full, CurrP, m SINR Full, P, m and SINR outage > SINR Full, P, m
  • SINR Full, P, m denotes a predictive full loading SINR of UE m at transmit power P
  • SINR outage denotes an SINR value capable of communication outage . That is, it means that the full loading SINR of UE m must be higher than that of the current transmission power, and the communication interruption must be higher than a possible SINR value.
  • NumEdgeUE P is the number of predicted PCell UEs present in a handoverable area (HO region) at the transmission power P. This aims to prevent too many handovers.
  • Equation 47 EdgUETput Full, P means lower 5% predicted UE throughput when transmitting power P in a full loading environment, which means that the throughput of the UE located at the edge should be better than the current case.
  • Equation 48 SumOfLogUETput Partial, P is the sum of the predicted UE throughput when power (P) in the full loading environment, which means that the sum of the throughputs of all terminals should be better than the current case assuming the full loading environment. it means.
  • the transmit power control range of the selected cell is adjusted as shown in Equation 49 to prevent the occurrence of communication failure. Can be reduced.
  • Transmission power adjustment range of selected cell (selected transmit power (P) + 1 [dB] of selected cell) to maximum transmit power
  • Equation 49 adjusts the minimum value of the transmission power adjustment range to + 1dB in the currently selected transmission power to prevent communication loss, and the optimization server performs transmission power control again in the new adjustment range.
  • the optimization server determines the transmission power that maximizes the target SumOfLogUETput Partial, P or minimizes SumOfLogTotalUEPRBusageRatio P. However, when at least one of the following constraints is satisfied in the selected transmission power P, the transmission power P is excluded from the candidate transmission power value for optimizing the target value.
  • VarOfCellPRBusageRatio Macro P means variance of the predicted PRB utilization rate of all macro cells in transmit power (P), wherein Equation 25 and Equation 50 are used to determine transmit power for load balancing. The difference is that Eq 50 does not contain an equal sign. This means that load balancing of PRB utilization should be better for interference control.
  • Equation 51 applies only when the selected cell k is a pico cell.
  • VarOfCellPRBusageRatio Pico, P, k denotes the variance of the predicted PRB utilization of the neighboring cells of the pico cell k and the pico cell k in the transmission power (P).
  • Equation 26 and Equation 51 which are cases for determining transmission power for load balancing, do not include an equal sign in Equation 51. This means that load balancing of PRB utilization should be better for interference control.
  • SINR Full, CurrP, m SINR Full, P, m and SINR outage > SINR Full, P, m
  • SINR Full, P, m denotes a full loading SINR of UE m at a transmit power P
  • SINR outage denotes an SINR value in which communication disruption may occur. It means that the full loading SINR of the UE m must be higher than the current transmission power, and the communication interruption must be higher than the possible SINR value.
  • Equation 53 SumOfLogUETput Partial, P means the sum of Log (predictive UE throughput) at the transmission power P in the partial loading environment, and means that the sum of UE throughputs should not be lower than the current state.
  • NumEdgeUE P denotes the number of predicted PCell UEs present in a handoverable area (HO region) in the transmission power P, which aims to prevent an excessive handover.
  • the optimization server calculates the transmit power control range of the selected cell to prevent the occurrence of communication loss. Can be reduced to
  • Transmission power control range of selected cell (selected power (P) + 1 [dB]) ⁇ maximum transmit power of selected cell
  • Equation 55 adjusts the minimum value of the power adjustment range to + 1dB in the currently selected transmission power to prevent communication loss, and the optimization server performs transmission power control again in the new adjustment range.
  • the base station transmits the cell handover statistics and call drop statistics to the optimization server at every transmission power control cycle, and the optimization server manages the history information on the cell handover statistics, call drop statistics and transmission power.
  • the history information keeps only the history information for a recent specific time.
  • the optimization server updates the transmission power adjustment range for each cell as shown in FIG. 8 by using network quality statistics and transmission power history information for each transmission power control cycle.
  • FIG. 8 is a diagram illustrating a method in which an optimization server monitors network quality and updates a transmission power adjustment range.
  • an optimization server uses handover statistics and call disconnection statistics history information to indicate a handover success rate and a call.
  • the break rate is calculated 800.
  • the optimization server determines that the network quality is deteriorated when the performance degradation of the handover success rate or the call disconnection rate occurs. The determination follows the criteria in Equation 55 below.
  • KPI_HO_SUCCESS_RATE of Equation 55 is a predetermined target value for the handover success rate
  • KPI_CALL_DROP_RATE is a target value for the call disconnection rate
  • the optimization server adjusts (820) the transmission power adjustment range with respect to the cell determined that the network quality is degraded as shown in Equation 56 below.
  • Transmission power adjustment range (minimum transmission power [dB] + 1 [dB] in history information) to maximum transmission power
  • FIG. 9 is a block diagram illustrating an optimization server that can implement the present invention.
  • the optimization server 900 may include a transceiver 910, a controller 920, and a storage 930.
  • the transceiver may transmit / receive information with the system management server and the base station, and the storage may store information transmitted by the system management server and the base station.
  • the controller controls the transceiver and the storage.
  • the control unit collects and transmits transmission power control related information, determines transmission power to be applied to each cell, and performs network quality monitoring according to the present invention.
  • FIG. 10 is a block diagram illustrating a UE capable of carrying out the present invention.
  • the UE 1000 may include a transceiver 1010 and a controller 1020.
  • the transceiver 1000 may transmit / receive a signal with a base station according to a transmission power applied according to the present invention, and the controller may transmit or receive a signal. Can be controlled.
  • FIG. 11 is a block diagram illustrating a base station capable of carrying out the present invention.
  • the base station 1100 may include a transceiver 1110 and a controller 1120.
  • the transceiver may transmit and receive signals with the optimization server and the UE according to the present invention, and the controller may control the transceiver.
  • UE throughput can be improved through real-time transmission power control considering radio channel state, loading state, and CA operation for multiple cells of multiple carriers and heterogeneous networks without degrading network quality in a CA environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 기지국의 실시간 송신 전력 제어 방법 및 장치에 대한 것으로, 보다 구체적으로 다중캐리어(multi-carrier) 환경에서 단말의 처리량(UE throughput) 개선을 위한 각 셀(cell) 의 실시간 송신 전력 조절 방법 및 장치에 관한 것이다. 본 발명의 서버가 각 셀의 송신 전력을 제어하는 방법은 시스템 관리 서버로부터 설정 정보를 수신하는 단계, 상기 각 셀을 제어하는 기지국으로부터 채널 상태 정보 및 로딩(loading) 관련 정보를 수신하는 단계, 상기 설정 정보, 상기 채널 상태 정보 및 상기 로딩 관련 정보를 기반으로 각 셀에 적용될 송신 전력을 결정하는 단계, 및 상기 각 셀을 제어하는 기지국으로 상기 결정된 송신 전력 정보를 전송하는 단계를 포함하는 것을 특징으로 한다.

Description

다중 캐리어 시스템에서 셀의 송신 전력 조절 방법 및 장치
본 발명은 셀의 실시간 송신 전력 제어 방법 및 장치에 대한 것으로, 보다 구체적으로 다중캐리어(multi-carrier) 환경에서 단말의 처리량(UE throughput) 개선을 위한 각 셀(cell) 의 실시간 송신 전력 조절을 위한 방법 및 장치에 관한 것이다.
종래 송신 전력 제어를 위한 기술 중 UE 처리량(UE throughput) 향상을 위해 무선 채널 및 로딩 상태에 적합하게 실시간으로 셀의 송신 전력을 조절하는 기술이 있으나, 해당 기술은 다중 캐리어, 반송파 집성(carrier aggregation, CA) 시스템 내에서의 기지국과 단말의 동작에 대한 고려가 없고 매크로(macro)나 피코(pico)와 같은 셀 유형(cell type)을 구분하지 않는다. 또한, 해당 기술은 송신 전력 조절에 의한 커버리지 홀을 해소할 수 없다는 문제점이 있다.
그러므로 다중 캐리어 환경에서 캐리어 간 통합 송신 전력 최적화를 통해 단말의 처리량 향상이 가능하다. 일례로, 송신 전력 조절을 통한 캐리어 간 커버리지 미스매치(coverage mismatch)(이는 캐리어간 셀 영역이 서로 맞지 않음(mismatch)을 의미한다)를 생성하고 PF(Proportional Fair) 스케줄링(scheduling)을 통한 자원 분배를 통해 무선 채널 상태가 좋은 캐리어를 이용해 UE로 데이터를 전달함으로써 UE 처리량 개선이 가능하다. 또한, 도 2와 같이 매크로 셀과 피코 셀이 혼재된 이종망(heterogeneous network, HetNet) 환경에서 매크로 셀과 피코 셀의 로딩 상태에 따른 피코 셀에서 매크로 셀로의(Pico-to-Macro) 간섭 및 매크로 셀에서 피코 셀로의(Macro-to-Pico) 오프로딩(off-loading)을 고려한 송신전력 조절을 통해 UE 처리량 개선이 가능하다.
그러므로 다중 캐리어 환경에서 캐리어 별 무선 채널 및 로딩 관련 정보와 같은 다중 캐리어 정보, CA 동작 및 각 셀의 유형을 고려한 기지국의 송신 전력 조절 방안이 필요하다.
상기와 같은 문제점을 해결하기 위한 본 발명은 서버가 각 셀의 송신 전력을 제어하는 방법에 있어서, 시스템 관리 서버로부터 설정 정보를 수신하는 단계; 상기 각 셀을 제어하는 기지국으로부터 채널 상태 정보 및 로딩(loading) 관련 정보를 수신하는 단계; 상기 설정 정보, 상기 채널 상태 정보 및 상기 로딩 관련 정보를 기반으로 각 셀에 적용될 송신 전력을 결정하는 단계; 및 상기 각 셀을 제어하는 기지국으로 상기 결정된 송신 전력 정보를 전송하는 단계를 포함하는 것을 특징으로 한다.
또한, 각 셀의 송신 전력을 제어하는 서버에 있어서, 각 셀을 제어하는 기지국과 시스템 관리 서버와 신호를 송수신하는 송수신부; 및 상기 시스템 관리 서버로부터 설정 정보를 수신하고, 상기 각 셀을 제어하는 기지국으로부터 채널 상태 정보 및 로딩(loading) 관련 정보를 수신하고, 상기 설정 정보, 상기 채널 상태 정보 및 상기 로딩 관련 정보를 기반으로 각 셀에 적용될 송신 전력을 결정하고, 상기 각 셀을 제어하는 기지국으로 상기 결정된 송신 전력 정보를 전송하도록 제어하는 제어부를 포함하는 것을 특징으로 한다.
본 발명은 다중 캐리어 환경에서 UE 처리량 개선을 위해 셀의 실시간 송신 전력 조절 방법을 기술한다. 본 발명은 망 통계 기반의 망 품질 모니터링을 통해 송신 전력 조절에 의한 망 품질 저하를 감지하고 송신 전력 조절 범위를 업데이트하는 방법을 포함한다. 또한, 본 발명은 송신 전력 변경에 따른 신호 대 간섭 및 잡음비(signal-to-interference-noise ratio, SINR) 예측을 통해 통신 두절(outage)을 유발하는 SINR 이하로 SINR이 내려가지 않도록 송신 전력 조절 범위를 업데이트하는 방법을 포함한다. 또한 상기 방법을 수행할 수 있는 장치를 개시한다.
본 발명에 따르면 다중 캐리어 환경에서 망 품질의 열화 없이 캐리어 별 무선 채널 및 로딩 관련 정보와 같은 다중 캐리어 정보, CA 동작 및 각 셀의 유형을 고려한 실시간 셀의 송신 전력 조절을 통해 UE 처리량을 향상시킬 수 있다.
도 1는 이종망 환경을 도시한 도면이다.
도 2은 본 발명의 절차를 도시한 도면이다.
도 3는 본 발명의 구성을 이종망 시스템에서 도시한 도면이다.
도 4는 본 발명의 단계를 도시한 도면이다.
도 5은 이종망 환경에서 본 발명의 송신 전력 결정에 따른 효과를 도시한 도면이다.
도 6은 본 발명에 따른 구체적인 송신 전력 결정 과정을 도시한 도면이다.
도 7은 강제 로드 밸런싱을 위한 송신 전력을 결정하는 구체적인 일례를 도시한 도면이다.
도 8는 최적화 서버가 망 품질을 모니터링해 송신 전력 조절 범위를 업데이트하는 방법을 도시한 도면이다.
도 9은 본 발명을 수행할 수 있는 최적화 서버를 도시한 블록도이다.
도 10은 본 발명을 수행할 수 있는 UE를 도시한 블록도이다.
도 11는 본 발명을 수행할 수 있는 기지국을 도시한 블록도이다.
이하, 본 발명의 실시예를 첨부한 도면과 함께 상세히 설명한다. 또한 본 발명을 설명함에 있어서 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
또한, 본 발명의 실시예들을 구체적으로 설명함에 있어서, 본 발명의 주요한 요지는 유사한 기술적 배경 및 채널형태를 가지는 여타의 통신 시스템에도 본 발명의 범위를 크게 벗어나지 아니하는 범위에서 약간의 변형으로 적용 가능하며, 이는 본 발명의 기술분야에서 숙련된 기술적 지식을 가진 자의 판단으로 가능할 것이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
이 때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
이 때, 본 실시 예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA또는 ASIC과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다.
본 발명은 다중 캐리어 환경에서 캐리어 별 무선 채널 및 로딩 관련 정보와 같은 다중 캐리어 정보, CA 동작 및 각 셀의 유형을 고려한 실시간 셀의 송신 전력 조절을 위한 방법 및 장치를 기술한다.
본 발명을 수행할 수 있는 망은 시스템 관리 서버, 셀을 제어하는 기지국(상기 기지국은 매크로 셀 및/또는 피코 셀을 제어할 수 있다) 및 최적화 서버로 구성된다. 시스템 관리 서버는 최적화 서버가 관리하는 모든 셀의 설정 정보를 최적화 서버로 전달한다. 기지국은 송신 전력 조절 알고리즘 수행 주기 동안 필요한 정보를 수집하고, 수집한 정보를 최적화 서버에 전달한다. 최적화 서버는 기지국으로부터 수집된 정보를 이용하여 UE 처리량을 향상시키는 셀의 송신 전력을 결정하고 이를 기지국으로 다시 통지한다.
도 1은 본 발명이 적용되는 이종망 환경을 도시한 도면이다. 도 1에 따르면, 매크로 셀 1(100)의 커버리지 내에는 피코 셀1(120)이 위치해 있고, 매크로 셀 2(110)의 커버리지 내에는 피코 셀 2(130)이 위치해 있다. 이런 경우 기술한 바와 같이 UE 처리량을 높이기 위해 기지국의 송신 전력 조절의 최적화가 필요하다.
도 2는 본 발명의 절차를 도시한 도면이다.
도 2에 따르면, UE(200)는 CA 지원 단말이고, 셀 1은 UE 의 프라이머리 셀(primary cell, PCell) 이고 셀 2는 UE 의 세컨더리 셀(secondary cell, SCell) 이라고 가정한다. 이 때 셀 1을 제어하는 기지국(210)과 셀 2를 제어하는 기지국(220)이 망에 위치한다. 또한, 셀 1 는 캐리어 1, 셀 2 는 캐리어 2 를 사용한다고 가정한다. CA 동작에서 UE 는 PCell(셀 1, 캐리어 1) 과 SCell(셀 2, 캐리어 2) 상으로 데이터를 수신한다. 여기서 PCell 입장에서 UE 는 PCell UE, SCell 입장에서 UE 는 SCell UE 라고 표기한다. 또한 망에는 최적화 서버(230) 및 시스템 관리 서버(240)이 위치한다. 이러한 망 엔티티(network entity)의 명칭은 달라질 수 있으며, 각 엔티티는 물리적으로 같은 위치에 위치하거나 또는 다른 위치에 위치할 수 있으나 아래 기술된 기능을 수행한다면 본 망 엔티티로 이해할 수 있다.
각 셀의 송신 전력 조절 절차는 다음과 같다.
시스템 관리 서버(240)는 최적화 서버(230)가 관리하는 모든 셀의 설정(configuration) 정보(일례로 송신 전력 조절 범위, 송신 전력 제어 주기, 이웃 셀(neighbor cell) 정보, PCell 변경(change 조건), 셀 유형 정보 등이 있을 수 있다) 및 CA 관련 정보 (일례로 병치된 셀(collocated cell), SCell 부가(add), 해제(release), 변경(change), 활성화(activation) 및 비활성화(deactivation) 조건 정보 등이 있을 수 있다)를 최적화 서버(230)에 전달(s200)한다. 이후 셀 1(PCell, 캐리어 1)을 제어하는 기지국 1(210) 및 셀 1 과 동일한 캐리어를 갖는 이웃 셀(neighbor cell)을 제어하는 기지국은 UE 로부터의 사운딩 기준 신호(sounding reference signal, SRS) 신호 측정을 통해 PCell UE에 대한 무선 채널 정보(이는 기지국의 SRS 수신 전력으로부터 도출될 수 있다)를 수집하여 최적화 서버(330)에 전달(s205)한다. 상기 s205 단계에서는 기지국이 UE가 전송한 SRS를 통해 무선 채널 상태를 파악하였으나, SRS가 아니더라도 다른 기준 신호 또는 파일럿(pilot) 신호 또는 UE가 전송한 채널 상태 정보(channel status information)을 통해 무선 채널 상태를 파악해 최적화 서버(230)에 전달할 수 있다. 또한 셀 2(SCell, 캐리어 2)를 제어하는 기지국 2(220)은 UE가 전송하는 주기적인 측정 보고(periodic measurement report, MR) 를 통해 SCell UE에 대한 무선 채널 정보(일례로 기준 신호 수신 전력, Reference Signal Received Power, RSRP가 될 수 있다) 를 수집하여 최적화 서버에 전달(s210)한다.
이후 기지국 1(210)은 송신 전력 제어 주기 동안 PCell과 PCell UE에 대한 로딩 관련 정보(일례로 물리 자원 블록(physical resource block, PRB) 사용률)를 수집하여 최적화 서버(230)에 전달(s215)한다. 또한 기지국 2(220) 역시 송신 전력 제어 주기 동안 SCell과 SCell UE에 대한 로딩 관련 정보(일례로 PRB 사용률) 를 수집하여 최적화 서버(230)에 전달(s220)한다.
또한, 기지국 1(210)은 송신 전력 제어 주기 마다 UE의 PCell 및 SCell 관련 정보(일례로 PCell과 SCell의 셀 식별자(Cell ID), FA(frequency assignment)) 를 최적화 서버(230)에 전달(s225)한다.
상기 최적화 서버(230)는 송신 전력 제어 주기 마다 기지국 1(210)과 기지국 2(220)로부터 수집된 각종 채널 상태 및 로딩 관련 정보, CA 관련 정보 및 셀의 설정 정보 및 셀의 유형을 기초로 각 셀의 송신 전력을 결정(s230)한다. 이후 최적화 서버는 결정된 송신 전력 정보를 기지국 1(210)과 기지국 2(220)로 전달(s235)한다.
송신 전력 정보를 전달받은 기지국 1(210)과 기지국 2(220)은 셀 1과 셀 2에 해당 송신 전력을 적용(s240)한다. 또한 기지국 1(210)과 기지국 2(220)은 셀 1과 셀 2에 적용된 송신 전력을 제어 메시지를 통해 UE 에게 전달(s245)한다. 이후 s205 내지 s245 과정을 반복해 수행한다.
또한, 상기 망 엔티티들은 송신 전력 조절에 따른 망 품질 저하를 방지하기 위하여 아래와 같은 망 품질 모니터링 절차를 수행한다.
기지국 1(210)은 송신 전력 제어 주기 동안 망 품질 통계(일례로 핸드오버(handover, HO) 관련 통계, 호 단절(call drop) 통계)를 수집하여 최적화 서버(230)에 전달(s250)한다. 또한 기지국 2(220) 역시 송신 전력 제어 주기 동안 망 품질 통계를 수집해 최적화 서버(330)에 전달(s255)한다. 이후 최적화 서버(230)는 망 품질 통계 및 송신 전력에 대한 히스토리(history) 정보를 관리(s260)하고, 망 품질 통계 정보를 기반으로 망 품질을 확인하고 망 품질 열화가 발생한 셀의 기지국의 송신 전력 조절 범위를 업데이트(s265)한다. 이후 s250 내지 s265 단계를 반복해 수행한다.
도 3은 본 발명의 구성을 이종망 시스템에서 도시한 도면이다.
도 3에 따르면, EMS(300)은 SON 유닛(310)으로 시스템 정보, 셀 유형 정보 및 CA 설정 정보를 전송(s340)한다. 각 셀을 제어하는 기지국(320, 330)은 캐리어 별 무선 채널 상태 및 로딩 관련 정보와 PCell 및 SCell 정보를 SON 유닛(310)으로 전송(s350)한다. SON 유닛(310)은 상기 전송받은 정보를 기반으로 각 기지국이 제어하는 셀에 적용될 송신 전력을 결정해 각 기지국으로 통지(s360)한다. 이 때 도 3의 EMS는 도 2의 시스템 관리 서버, 도 3의 SON 유닛은 도 2의 최적화 서버로 이해할 수 있다.
아래에서는 도 2 및 도 3에 개시된 본 발명의 절차를 보다 자세하게 기술한다.
도 4는 본 발명의 단계를 도시한 도면이다. 도 4에 따르면, 본 발명은 크게 세 단계로 구성된다.
- 관련 정보 수집 및 전달(400)
- 각 셀의 송신 전력 결정(410)
- 망 품질 모니터링(420)
아래에서는 정보 수집 및 전달 과정에 대해 기술한다.
시스템 관리 서버는 셀의 설정 정보를 저장하고 있으며, 시스템 관리 서버는 최적화 서버가 관리하는 모든 셀의 설정 정보를 최적화 서버에 전달한다. 셀의 설정 정보는 아래와 같다.
- 송신 전력 조절 범위: 최소 송신전력 ~ 최대 송신전력
- 송신 전력 제어 주기
- 이웃 셀의 셀 식별자
- PCell 변경 조건: PCell 핸드오버 조건 (일례로, 이웃 셀의 상태가 서빙 셀보다 미리 정해진 오프셋만큼 더 좋은 상황을 의미하는 Event A3)
- 셀 유형: 매크로 이면 셀 유형 = 매크로 셀이고, 피코이면 셀 유형 = 셀로 결정
또한, 시스템 관리 서버는 셀의 CA 관련 정보를 저장하고 있다. 시스템 관리 서버는 최적화 서버가 관리하는 모든 셀의 CA 관련 정보를 최적화 서버에 전달한다. 셀의 CA 관련 정보는 아래와 같다.
- 병치된 셀(Collocated cell) 관련 정보: 병치된 셀이란 해당 셀과 다른 캐리어를 사용하면서 동일 또는 유사한 커버리지 영역을 가지는 셀을 의미한다
- SCell 부가 조건 (일례로, 이웃 셀의 상태 특정 문턱값보다 더 좋은 상황을 의미하는 Event A4)
- SCell 해제 조건 (일례로, 서빙 셀이 특정 문턱값보다 더 나쁜 상황을 의미하는 Event A2)
- SCell 변경 조건 (일례로, 이웃 셀의 상태가 현재 SCell 보다 오프셋만큼 좋은 상황을 의미하는 Event A6)
- SCell 활성화 조건
- SCell 비활성화 조건
각 셀을 제어하는 기지국은 채널 상태 정보, 로딩 관련 정보 및 CA 관련 정보를 수집하여 최적화 서버에 전달한다. 구체적인 정보 수집 및 전달 절차는 아래와 같다.
PCell UE에 대한 채널 상태 정보 수집 및 전달 절차는 아래와 같다.
- PCell(셀 1, 캐리어 1)을 제어하는 기지국 및 PCell과 같은 캐리어를 가지는 이웃 셀을 제어하는 기지국들은 PCell UE 의 SRS를 측정하여 최적화 서버에 전달한다.
- 최적화 서버는 수집된 정보(SRS 수신전력) 를 기초로 PCell 및 PCell과 같은 캐리어를 가지는 이웃 셀과 PCell UE 간의 무선 채널 상태 정보를 저장한다.
- PCell UE는 SRS 또는 다른 기준 신호 또는 파일럿 신호를 기지국으로 전송할 수 있으며, 또한 자신이 측정한 채널 상태 정보를 기지국으로 전송할 수 있다.
SCell UE에 대한 채널 상태 정보 수집 절차는 아래와 같다.
- SCell(셀 2, 캐리어 2)을 제어하는 기지국은 주기적 측정 보고를 통해 UE로부터 SCell 및 SCell 과 같은 캐리어를 가지는 이웃 셀에 대한 RSRP 값을 수집하고 최적화 서버에 전달한다.
- 최적화 서버는 수집된 정보(RSRP) 를 기초로 SCell 및 SCell과 같은 캐리어를 갖는 이웃 셀과 SCell UE 간의 무선 채널 상태 정보를 저장한다.
PCell과 PCell UE 의 로딩 관련 정보 수집 절차는 아래와 같다.
- PCell을 제어하는 기지국은 송신 전력 제어 주기 동안 PCell의 PRB 사용률을 계산한다.
- PCell을 제어하는 기지국은 송신 전력 제어 주기 동안 PCell UE의 PRB 사용률을 계산한다.
- PCell을 제어하는 기지국은 송신 전력 제어 주기 마다 PCell과 PCell UE의 PRB 사용률을 최적화 서버에 전달한다.
- 최적화 서버는 PCell과 PCell UE의 PRB 사용률을 저장한다.
SCell 과 SCell UE 의 loading 정보 수집 및 전달 절차는 아래와 같다.
- SCell을 제어하는 기지국은 송신 전력 제어 주기 동안 SCell의 PRB 사용률을 계산한다.
- SCell을 제어하는 기지국은 송신 전력 제어 주기 동안 SCell UE의 PRB 사용률을 계산한다.
- SCell을 제어하는 기지국은 송신 전력 제어 주기마다 SCell과 SCell UE의 PRB 사용률을 최적화 서버에 전달한다.
- 최적화 서버는 SCell과 SCell UE의 PRB 사용률을 저장한다.
UE 의 PCell 및 SCell 정보 수집 및 전달 절차는 아래와 같다.
- PCell을 제어하는 기지국은 송신 전력 제어 주기 마다 UE의 PCell 및 SCell 정보 (셀 식별자, FA) 정보를 최적화 서버에 전달한다.
- 최적화 서버는 UE 의 PCell 및 SCell 정보를 저장한다.
셀의 망 품질 통계 수집 절차는 아래와 같다.
- 셀을 제어하는 기지국은 송신 전력 제어 주기 동안 해당하는 셀의 HO 관련 통계(HO 시도 횟수, HO 성공 횟수 등) 및 호 단절 관련 통계(연결(Connect) 설정 성공 횟수, 핸드-인(Hand-in)(다른 셀로부터 핸드오버를 통해 셀에 접속하는 것을 의미한다) 성공 횟수, 호 단절(call drop) 발생 횟수 등) 를 수집한다.
- 셀을 제어하는 기지국은 송신 전력 제어 주기 마다 셀의 HO 통계 및 호 단절 관련 통계를 최적화 서버에 전달한다.
- 최적화 서버는 셀의 HO 관련 통계, 호 단절 관련 통계, 송신 전력에 대한 히스토리 정보를 관리한다. 단 히스토리 정보는 최근 특정 시간 동안의 정보만을 유지한다.
아래에서는 각 기지국에 적용될 송신 전력 결정 과정에 대해 기술한다.
최적화 서버는 각 기지국으로부터 수집된 다중 캐리어 정보(캐리어 별 무선 채널 상태 및 로딩 관련 정보, CA 관련 정보, 셀 유형 정보)를 이용하여 자신이 관리하는 모든 셀에 적용될 송신 전력을 결정한다. 최적화 서버는 송신 전력 결정과정에서 PRB 사용률 혹은 UE 수 측면의 각 셀간의 로드 밸런싱(load-balancing) 효과를 얻으면서 아래 기술하는 목표치가 최적화되도록 각 셀에 적용될 송신 전력을 결정한다.
도 5은 이종망 환경에서 본 발명의 송신 전력 결정에 따른 효과를 도시한 도면이다.
도 5에 따르면, 전력 제어 결과 상대적으로 로드가 작은(즉 서비스하는 UE의 수가 적은) 매크로 셀 1(500)에 적용되는 전력은 높아지고, 상대적으로 로드가 큰(즉 서비스하는 UE의 수가 많은) 매크로 셀 2(510)에 적용되는 전력은 낮아진다. 이를 통해 매크로 셀간의 로드 밸런싱이 가능하고, 이 때 매크로 셀 1의 커버리지 내에 위치한 피코 셀 1(520)의 전력은 매크로 셀 1에 미치는 피코-to-매크로 간섭을 줄이기 위해 낮아진다. 또한 매크로 셀 2의 커버리지 내에 위치한 피코 셀 2(530)에 대해서는 매크로-to-피코 오프로딩을 위해 전력을 높이게 된다.
도 6은 본 발명에 따른 구체적인 송신 전력 결정 과정을 도시한 도면이다. 도 6에 따르면 송신 전력 결정 과정은 아래와 같다.
풀 버퍼(Full buffer) UE 판정(600)
로드 밸런싱 모드(Load-balancing mode) 결정(610)
로딩 상태에 따른 전력 제어 방향 (power direction) 결정(620)
강제 로드 밸런싱을 위한 송신 전력 결정(630)
로드 밸런싱 개선을 위한 전력 결정(640)
간섭 제어를 위한 전력 결정(650)
아래에서는 각 송신 전력 결정 과정을 자세하게 기술한다.
1. 풀 버퍼 UE 판정
최적화 서버는 현재 송신 전력(CurrP)에서의 셀의 PRB 사용률, UE의 PRB 사용률 및 캐패시티(capacity) 정보를 이용하여 UE가 풀 버퍼(full buffer) UE 인지 여부를 확인한다. 풀 버퍼 UE는 전송할 데이터의 양이 많은 UE를 의미하며, 아래 식 1, 식 2 및 식 3을 조건을 모두 만족하는 UE는 풀 버퍼 UE 로 판정한다.
[식 1]
Figure PCTKR2018005847-appb-I000001
상기 식 1에서
Figure PCTKR2018005847-appb-I000002
는 현재 송신 전력(CurrP)에서 UE m 의 서빙 셀(serving cell)의 셀의 PRB 사용률을 의미하고, jCurrP,m 은 현재 송신 전력(CurrP)에서 UE m 의 서빙 셀 인덱스(serving cell index, 즉 UE m 의 PCell 혹은 SCell 인덱스)를 의미한다. ThresholdHighLoadCell은 미리 정해진 값으로, 현재 송신 전력에서 UE m의 서빙 셀의 셀 PRB 사용률의 기준이 된다. ThresholdHighLoadCell보다 현재 송신 전력에서 UE m의 서빙 셀의 셀 PRB 사용률이 높다면 높은 로드의 셀로 판단할 수 있다.
[식 2]
Figure PCTKR2018005847-appb-I000003
상기 식 2에서
Figure PCTKR2018005847-appb-I000004
는 현재 송신 전력(CurrP)에서 UE m 의 UE의 PRB 사용률을 의미하고,
Figure PCTKR2018005847-appb-I000005
는 현재 송신 전력(CurrP)에서 UE m 의 서빙 셀의 UE 수를 의미한다. 즉 상기 식 2는 UE m의 서빙 셀 jCurrP, m에서 평균적으로 기대되는 UE의 PRB 사용률보다 UE m 의 PRB 사용률이 높은 경우를 의미한다.
[식 3]
Figure PCTKR2018005847-appb-I000006
Figure PCTKR2018005847-appb-I000007
는 현재 송신 전력(CurrP)에서 UE m의 서빙 셀의 Cell PRB 사용률 이 1 이고 UE m 의 서빙 셀 내에 모든 UE 의 데이터 전송 레이트(rate)가 동일할 때 UE m의 예측 PRB 사용률을 의미하고,
Figure PCTKR2018005847-appb-I000008
는 현재 송신 전력(CurrP)에서 UE m 의 UE의 PRB 사용률을 의미한다. 즉 식 3은 UE m의 PRB 사용률이 서빙 셀 jCurrP, m의 셀 PRB 사용률이 1일 때 UE m의 예측 PRB 사용률보다 높은 경우를 의미한다.
2. 로드 밸런싱 모드(Load-balancing mode) 결정
로드 밸런싱 모드의 결정은 다음과 같이 이루어진다. 최적화 서버는 최적화 서버가 관리하는 모든 셀의 PRB 사용률이 특정 문턱값(Threshold) 이상이면 UE 수 밸런싱 모드(balancing mode)를 선택하고 그렇지 않으면 PRB 밸런싱 모드를 선택한다. 이는 모든 셀의 PRB 사용률이 특정 문턱값 이상으로 높다면 이미 전송 자원(PRB)을 많이 사용하고 있는 중이므로 UE 수의 밸런싱을 통해 UE 처리량을 높이고, 그렇지않다면 전송 자원을 많이 사용하고 있지 않은 중이므로 균형잡힌 전송 자원의 사용을 통해 UE 처리량을 높이도록 하는 것이다.
3. 로딩 상태에 따른 전력 제어 방향 (power direction) 결정
최적화 서버는 최적화 서버 내에 매크로 셀을 대상으로 매크로 셀의 로드 상태에 따른 전력 제어의 방향(power direction) 을 결정한다. 높은 로드(High load) 상태인 매크로 셀은 로드를 낮추기 위해 전력을 낮추고(power down) 하고 낮은 로드(low load) 상태인 매크로 셀은 로드를 높이기 위해 전력을 높인다(power up). 구체적인 절차는 아래와 같다.
최적화 서버는 아래 식 4에 따른 매크로 셀의 로드 정도(LoadDegree)를 계산한다.
[식 4]
LoadDegree = (CellLoadMacro,j - AvgOfCellLoadMacro) / StdOfCellLoadMacro
상기 식 4의 CellLoadMacro,j는 매크로 셀 j 의 UE 수(UE 밸런싱 모드의 경우) 혹은 PRB 사용률(PRB 밸런싱 모드의 경우)를 의미하고, AvgOfCellLoadMacro는 최적화 서버 내 매크로 셀의 CellLoadMacro의 평균값이고, StdOfCellLoadMacro는 최적화 서버 내 매크로 셀의 CellLoadMacro 의 표준 편차를 의미한다.
최적화 서버는 아래 식 5에 따라 매크로 셀의 전력 제어 방향을 결정한다.
[식 5]
LoadDegree >= 1 이면 매크로 셀 j의 전력을 낮춤 (PowerDirectionj = down)
LoadDegree =< -1 이면 매크로 셀 j의 전력을 높임 (PowerDirectionj = up)
위 두 조건을 만족하지 않으면 매크로 셀의 전력 변화 제한 없음 (PowerDirectionj = not limited)
이는 LoadDegree가 1보다 크면 매크로 셀의 로드가 높은 상태이므로 송신 전력을 낮춰 로드를 줄이고, LoadDegree가 -1보다 작으면 매크로 셀의 로드가 낮은 상태이므로 송신 전력을 높여 로드를 크게 하는 것이다.
또한, 최적화 서버는 최적화 서버 내에 피코 셀의 전력 제어 방향을 결정한다. 피코 셀의 송신 전력은 Pico 의 로드 상태에 상관없이 전력 변화 제한이 없도록 설정한다. 즉 PowerDirectionj = not limited 으로 결정한다.
4. 강제 로드 밸런싱을 위한 송신 전력 결정
최적화 서버는 상기 단계에서 결정된 셀의 전력 제어 방향에 따라 강제 로드 밸런싱을 위한 송신 전력 (LoadBalP)을 결정한다. 강제 로드 밸런싱 송신 전력은 최소한의 전력 변화로 power direction = up 인 셀은 서비스하는 UE 수를 늘리고 power direction = down 인 셀은 서비스하는 UE 수를 줄이기 위한 송신 전력이다. 단, 강제 로드 밸런싱 송신 전력 계산 시 전력을 높이는 셀을 우선적으로 고려한다.
도 7은 강제 로드 밸런싱을 위한 송신 전력을 결정하는 구체적인 일례를 도시한 도면이다.
도 7에 따르면 망 내에는 매크로 셀 1(700) 및 매크로 셀 2(710)이 존재한다. 이 때 로드가 큰 매크로 셀 1은 전력 제어 방향이 down으로 결정되었고, 로드가 작은 매크로 셀 2는 전력 제어 방향이 up으로 결정되었으며, 각 매크로 셀 모두 송신 전력 조절 범위가 33-43dBm이고 현재 송신 전력이 매크로 셀 1 및 2 모두 40dBm일 경우 최적화 서버는 다음과 같이 강제 로드 밸런싱을 위한 송신 전력을 결정한다.
최적화 서버는 매크로 셀 1과 매크로 셀 2의 가장자리(edge)에 위치한 UE(720)이 매크로 셀 1에서 매크로 셀 2로 핸드오버 하기 위한 최소 전력 변화량(HO 마진(margin) 포함)을 결정한다. HO 마진은 PCell UE의 경우 PCell 변경 조건(일례로, Event A3 조건)을 사용하고, SCell UE의 경우 SCell 변경 조건(일례로, Event A6 조건)을 사용할 수 있다.
매크로 셀 1의 UE에 에 대한 신호의 세기가 -100dBm이고 매크로 셀 2의 UE에 대한 신호의 세기가 -102dBm으로 HO 마진이 2dB 일 때 최소 전력 변화량=(-100 + 102) + 2 = 4dB로 결정되었다면, 이 때 최적화 서버는 우선적으로 전력을 높이는 매크로 셀 2를 고려한다. 최적화 서버는 강제 로드 밸런싱 전력 LoadBalP를 매크로 셀 2의 송신 전력 조절 범위의 최대값(즉 43dBm)으로 설정한다. 이 때 매크로 셀 2의 현재 송신 전력에 비해 강제 로드 밸런싱 전력은 3dBm가 높아지게 된다. 매크로 셀 1의 LoadBalP는 매크로 셀 2의 전력 변화량을 고려해 매크로 셀 2와 4dB 차이가 나도록 현재 송신 전력에서 1dB 낮춘 39dBm으로 결정된다.
5. 로드 밸런싱 개선을 위한 송신 전력 결정
최적화 서버는 아래 기술된 로드 밸런싱 개선을 위한 송신 전력 결정 과정을 통해 각 셀에 적용되는 송신 전력을 결정한다.
첫 번째로 최적화 서버는 아래 식 6에 따라 모든 셀의 송신 전력 제어 범위(transmission power control range)를 설정한다.
[식 6]
LoadBalP(강제 로드 밸런싱 송신 전력) > CurrP(현재 송신 전력)인 셀의 송신 전력 제어 범위: LoadBalP ~ 최대 송신 전력
LoadBalP < CurrP인 셀의 송신 전력 제어 범위 = 최소 송신전력 ~ LoadBalP
LoadBalP == CurrP인 셀의 송신 전력 제어 범위 = 최소 송신전력 ~ 최대 송신전력
도 7의 경우를 참고하면, 매크로 셀 2(710)의 경우 LoadBalP는 43dBm이고 현재 송신 전력은 40dBm이므로 매크로 셀 2의 송신 전력 제어 범위는 LoadBalP와 최대 송신 전력값인 43dBm이 된다. 매크로 셀 1(700)의 경우 LoadBalP는 39dBm이고 현재 송신 전력은 40dBm이므로 송신 전력 제어 범위는 33dBm(최소 송신 전력) ~ 39dBm이 된다.
두 번째로 최적화 서버는 셀을 선택하고 선택된 셀의 송신 전력 제어 범위 내에서 임의로 송신 전력(P)을 선택한다.
이후 세 번째로 최적화 서버는 선택된 송신 전력(P)에서 UE의 프라이머리 셀(PCellP)을 결정한다. PCellP 결정 과정에서 다음 정보가 이용된다.
― 현재 송신 전력(CurrP)에서 UE의 프라이머리 셀(PCellCurrP)
― PCell 변경 조건
― 채널 상태 정보
이 때 선택된 송신 전력(P) 적용시, PCellCurrP의 예측 수신 전력(예측 수신 전력이란 무선 채널의 링크 게인(link gain)과 송신 전력의 곱으로 이해될 수 있으며 즉 UE가 수신하는 신호의 전력을 의미한다) 대비 예측 수신 전력이 가장 큰 셀인 BestCell의 예측 수신 전력이 PCell 변경 조건을 만족할 경우 최적화 서버는 PCellP을 BestCell로 결정한다. 그렇지 않을 경우(PCell 변경 조건을 만족하지 못할 경우) 최적화 서버는 PCellP을 PCellCurrP으로 결정한다. 이 때 PCell 변경 조건은 PCell 핸드오버 조건으로 일례로 Event A3이 적용될 수 있다.
네 번째로 최적화 서버는 선택된 송신 전력(P)에서 UE의 세컨더리 셀(SCellP)을 결정한다. SCellP 결정 과정에서 다음 정보가 이용된다.
― UE 의 PCellP, 현재 송신 전력(CurrP)에서 UE의 세컨더리 셀(SCellCurrP)
― PCellP의 병치된 셀(collocated cell)
― PCellP의 SCell 부가 조건
― PCellP의 SCell 해제 조건
― PCellP의 SCell 변경 조건
최적화 서버는 상기 정보를 이용하여 아래와 같은 방법으로 UE의 SCellP을 결정한다. 최적화 서버는 일단 TempSCellP을 PCellP의 병치된 셀 또는 SCellCurrP로 설정하고, BestCell 을 선택된 송신 전력(P)에서 최대 예측 수신 전력을 갖는 셀로 설정한다. BestCell 의 예측 수신 전력이 설정된 TempSCellP의 예측 수신 전력 대비 문턱값 이상(상기 문턱값은 SCell 변경 조건, 일례로 Event A6, 에 기반할 수 있다)이면 TempSCellP을 BestCell로 변경해 설정한다. 그렇지 않다면 TempSCellP은 원래 설정된 PCellP의 병치된 셀 또는 SCellCurrP으로 유지한다.
최적화 서버는 TempSCellP 설정 후에 다음과 같이 SCell 해제/부가/활성화/비활성화 처리를 수행한다. 최적화 서버는 TempSCellP 의 예측 수신 전력 혹은 예측 SINR이 특정 문턱값 이하(상기 문턱값은 SCell 해제 조건, 일례로 Event A2 조건, 에 기반할 수 있다)이면 TempSCellP을 NULL 로 설정한다. NULL로 설정한다는 의미는 TempSCellP 을 선택하지 않음을 의미한다. 이는 TempSCellP의 채널 상태가 충분히 좋지 못하기 때문이다. TempSCellP이 NULL 이고 예측 수신 전력 혹은 예측 SINR이 특정 문턱값 이상(상기 문턱값은 SCell 부가 조건, 일례로 Event A4 조건, 에 기반할 수 있다)인 셀이 있으면 상기 셀은 채널 상태가 좋은 셀이므로 TempSCellP을 해당 셀로 설정한다.
최적화 서버는 TempSCellP이 NULL이 아니나 UE의 PRB 사용량이 특정 문턱값 미만(이를 SCell 활성화 조건이라 칭할 수 있다)이면 TempSCellP 을 NULL 로 설정한다. 또한 TempSCellP이 NULL이 아니고 TempSCellP에 대한 UE 의 예측 채널 품질(channel quality, 일례로 예측 채널 품질 지시자(channel quality indicator, CQI)와 예측 랭크 지시자(rank indicator, RI)의 곱으로 표현할 수 있다)가 문턱값 이하(이를 SCell 비활성화 조건이라 칭할 수 있다)이면 TempSCellP 을 NULL로 설정한다. 이는 단말에게 더 이상의 자원을 할당할 필요가 없거나, TempSCellP을 SCell로 활성화시켜 UE에게 서비스를 제공하더라도 TempSCellP의 채널 품질이 좋지 않아 효율적으로 서비스를 제공할 수 없을 경우 굳이 SCell을 활성화시킬 필요가 없기 때문이다.
이후 최적화 서버는 SCellP을 TempSCellP로 설정한다. 이 때 TempSCellP이 NULL이라서 SCellP이 NULL로 설정된다는 것은 SCell 을 선택하지 않음을 의미한다.
다섯 번째로 최적화 서버는 선택된 송신 전력(P)에서의 목표치(objective)를 계산한다.
밸런싱 모드가 UE 수 밸런싱 모드일 경우 최적화 서버는 송신 전력 제어의 목표치로 SumOfLogUETputFull,P를 계산한다. UETputFull,P는 풀 로딩(full loading) 환경에서 선택된 송신 전력(P)이 적용되었을 때 예측되는 UE 처리량으로 이는 UE의 PCellP 과 SCellP로부터의 예측 처리량의 합이다. 목표치인 SumOfLogUETputFull,P는 풀 로딩 환경에서 선택된 송신 전력(P)이 적용되었을 때 최적화 서버에 의해 관리되는 모든 UE에 대한 Log(UETputFull,P)의 합이다.
UETputFull,P는 아래 식 7에 따라 계산된다.
[식 7]
Figure PCTKR2018005847-appb-I000009
식 7에서 jP,m 은 송신 전력(P)에서 UE m의 서빙 셀 인덱스(UE m의 PCellP과 SCellP의 셀 인덱스)를 의미하고,
Figure PCTKR2018005847-appb-I000010
은 풀 로딩 환경에서 송신 전력(P)이 적용될 경우 셀 jP,m 에 대한 UE m의 예측 캐패시티를 의미하고,
Figure PCTKR2018005847-appb-I000011
는 송신 전력(P)에서 셀 jP,m 이 서비스하는 UE의 수를 의미한다.
밸런싱 모드가 PRB 밸런싱 모드이면 최적화 서버는 전력 제어의 목표치로 SumOfLogTotalUEPRBusageRatioP와 SumOfLogUETputPartial,P 를 계산한다.
SumOfLogTotalUEPRBusageRatioP는 선택된 송신 전력(P)에서 서버에 의해 관리되는 모든 UE에 대해 Log (TotalEstimatedUEPRBusageRatioP)의 합을 계산한 것으로, 아래 식 8에 따라 계산된다.
[식 8]
Figure PCTKR2018005847-appb-I000012
이 때 UE의 예측 Total UE PRB 사용률인 TotalEstimatedUEPRBusageRatioP, m은 아래 식 9와 같이 계산된다.
[식 9]
Figure PCTKR2018005847-appb-I000013
상기 식 9에 따르면 TotalEstimatedUEPRBusageRatioP, m는 UE m에 대해 각 셀의 예측된 UE PRB 사용률인
Figure PCTKR2018005847-appb-I000014
을 더한 것임을 알 수 있다. 상기
Figure PCTKR2018005847-appb-I000015
는 부분적 로딩 환경에서 풀 버퍼 UE와 풀 버퍼 UE가 아닌 UE의 경우 서로 다르게 계산된다.
서빙 셀에 대한 풀 버퍼 UE의 예측 PRB 사용률은 아래 식 10과 같이 계산된다.
[식 10]
Figure PCTKR2018005847-appb-I000016
식 10에서
Figure PCTKR2018005847-appb-I000017
는 송신 전력(P)이 적용될 경우 셀 jP, m에 대한 1-“풀 버퍼 UE가 아닌 UE 의
Figure PCTKR2018005847-appb-I000018
의 합”으로 정의된다. 또한
Figure PCTKR2018005847-appb-I000019
은 송신 전력(P)이 적용될 경우 셀 jP,m 에 대한 풀 버퍼 UE의 수를 의미한다.
아래에서는 풀 버퍼 UE가 아닌 UE의 경우 UE m에 대해 부분적 로딩 환경에서 셀 jP, m에서의 예측된 UE PRB 사용률인
Figure PCTKR2018005847-appb-I000020
를 계산하는 방법에 대해 기술한다.
부분적 로딩(Partial loading) 환경에서 UE m의 예측 데이터 사이즈(data size) DataSizem는 UE m이 PCellCurrP 과 SCellCurrP로부터 전송받을 수 있는 예측 데이터의 양이다. DataSizem은 아래 식 11에 따라 계산된다.
[식 11]
Figure PCTKR2018005847-appb-I000021
식 11에서 jCurrP,m은 현재 송신 전력(CurrP)에서 UE m의 서빙 셀 인덱스(UE m의 PCellCurrP 및 SCellCurrP의 셀 인덱스)를 의미하고,
Figure PCTKR2018005847-appb-I000022
은 현재 송신 전력(CurrP)에서 셀 jCurrP, m이 UE m에게 할당한 PRB 사용률을 의미하고, 이는 최적화 서버가 Cell jCurrP, m로부터 수신한 로딩 정보에 해당한다.
Figure PCTKR2018005847-appb-I000023
은 부분적 로딩 환경에서 현재 송신 전력(CurrP)일 때 셀 jCurrP, m에 대한 UE m의 예측 캐패시티를 의미한다. 상기 식 11의 DataSizem
Figure PCTKR2018005847-appb-I000024
계산에 사용된다.
Figure PCTKR2018005847-appb-I000025
는 부분적 로딩 환경에서 송신 전력(P)이 적용될 때 셀 jP,m 에 대한 UE m 의 임시 예측 UE PRB 사용률로 최적화 서버는
Figure PCTKR2018005847-appb-I000026
를 아래 식 12에 따라 계산한다.
[식 12]
Figure PCTKR2018005847-appb-I000027
상기 식 12에 따라 계산한 서빙 셀에 대한 풀 버퍼 UE가 아닌 UE의 임시 예측 UE PRB 사용률의 합(보다 구체적으로, 한 서빙 셀 내의 풀 버퍼 UE가 아닌 UE들의 PRB 사용률의 합)이 1 이하이면 풀 버퍼 UE가 아닌 UE의 예측 UE PRB 사용률
Figure PCTKR2018005847-appb-I000028
을 아래 식 13과 같이 계산한다.
[식 13]
Figure PCTKR2018005847-appb-I000029
PRB 사용률의 합이 1 이하라는 것은 PRB를 여유있게 사용하고 있는 것이므로, 임시 예측 PRB 사용률을 풀 버퍼 UE가 아닌 UE의 예측 UE PRB 사용률로 결정할 수 있다.
서빙 셀에 대한 풀 버퍼 UE가 아닌 UE의 임시 예측 UE PRB 사용률의 합이 1 이상이면 (즉 예측 데이터 량을 전송하기 위해 1 이상의 PRB 사용률이 요구되는 경우) 풀 버퍼 UE가 아닌 UE의 예측 UE PRB 사용률
Figure PCTKR2018005847-appb-I000030
은 아래 식 14와 같이 계산한다.
[식 14]
Figure PCTKR2018005847-appb-I000031
이면
Figure PCTKR2018005847-appb-I000032
상기 식 14는 셀 jP, m의 PRB 사용률이 1이라고 가정시 셀 jP, m가 서비스하는 단말의 평균 PRB 사용률이 계산한 임시 예측 PRB 사용률보다 낮을 경우 임시 예측 PRB 사용률을 풀 버퍼 UE가 아닌 UE의 예측 UE PRB 사용률로 결정할 수 있다는 것으로 즉 원래 UE m에게 원래 할당할 수 있는 PRB를 보장하겠다는 의미이다.
그렇지 않을 경우, 즉
Figure PCTKR2018005847-appb-I000033
이면 아래 식 15에 따라 풀 버퍼 UE가 아닌 UE의 예측 UE PRB 사용률
Figure PCTKR2018005847-appb-I000034
을 계산한다.
[식 15]
Figure PCTKR2018005847-appb-I000035
상기 식 15의
Figure PCTKR2018005847-appb-I000036
는 선택된 송신 전력(P)에서 셀 jP, m에 대한 1-(
Figure PCTKR2018005847-appb-I000037
인 UE 의
Figure PCTKR2018005847-appb-I000038
의 합)을 의미하고,
Figure PCTKR2018005847-appb-I000039
은 송신 전력(P)에서 셀 jP, m에 대한 풀 버퍼 UE는 아니나
Figure PCTKR2018005847-appb-I000040
에 해당하는 UE의 수를 의미한다. 즉
Figure PCTKR2018005847-appb-I000041
는 UE의 평균 PRB 사용률보다 더 예측된 PRB 사용률이 높은 UE로 채널 상태가 좋지 않아 더 많은 자원을 이용해 데이터를 전송하여야 할 필요성이 있으므로 자원을 더 할당해줘야 하는 UE의 수를 의미하고,
Figure PCTKR2018005847-appb-I000042
Figure PCTKR2018005847-appb-I000043
인 UE가 사용하고 남은 자원을 의미하므로, 사용하고 남은 자원을 채널 상태가 좋지 않은 UE의 수로 나눈 (
Figure PCTKR2018005847-appb-I000044
가 사용하고 남은 자원)/채널 상태가 좋지 않은 UE의 수보다
Figure PCTKR2018005847-appb-I000045
가 작다면
Figure PCTKR2018005847-appb-I000046
Figure PCTKR2018005847-appb-I000047
로 결정하고, 그렇지 않다면
Figure PCTKR2018005847-appb-I000048
의 값을 사용하고 남은 자원/채널 상태가 좋지 않은 UE의 수인
Figure PCTKR2018005847-appb-I000049
/
Figure PCTKR2018005847-appb-I000050
로 결정한다는 의미이다.
부분적 로딩 환경에서 선택된 송신 전력(P)일 때 예측 UE 처리량인 UETputPartial,P 는 아래 식 16과 같이 UE 의 PCellP 과 SCellP 로부터 예측된 처리량의 합이다.
[식 16]
Figure PCTKR2018005847-appb-I000051
이 때 식 16에서 UETputPartial,P,m 은 부분적 로딩 환경에서 선택된 송신 전력(P)이 적용될 경우 UE m 의 예측 UE 처리량이고, jP, m 은 송신 전력(P)에서 UE m 의 서빙 셀 인덱스(UE m 의 PCellP and SCellP 의 셀 인덱스)이고
Figure PCTKR2018005847-appb-I000052
은 부분적 로딩 환경에서 선택된 송신 전력(P) 일 때 셀 jP,m 에 대한 UE m 의 예측 캐패시티를 의미한다.
이 때 SumOfLogUETputPartial,P 는 부분적 로딩 환경에서 송신 전력(P)가 적용될 때 서버에 의해 관리되는 모든 UE 에 대한 Log(예측 UE 처리량)의 합이으로 아래 식 17과 같이 표현된다.
[식 17]
Figure PCTKR2018005847-appb-I000053
최적화 서버는 상기 첫 번째 내지 다섯 번째 과정을 반복하면서 각 밸런싱 모드에 따라 목표치를 최적화하는 송신 전력을 결정한다.
밸런싱 모드가 UE 수 밸런싱 모드이면 SumOfLogUETputFull,P 를 최대화하는 송신 전력을 결정한다. 단, 선택된 송신 전력(P)에서 아래 제한 조건(constraint) 중에서 적어도 하나라도 만족하는 경우 그 송신 전력(P) 는 목표치를 최적화하는 후보 송신 전력값에서 제외한다.
첫 번째로 로드 밸런싱에 관련된 제한 조건이 있다.
[식 18]
VarOfNumUEMacro,CurrP =< VarOfNumUEMacro,P
상기 식 18에서 VarOfNumUEMacro,P는 송신 전력(P)에서 모든 매크로 셀의 예측 UE 수에 대한 분산을 의미한다. 현재 송신 전력을 적용했을 때보다 선택된 송신 전력을 적용하였을 때 UE 수의 로드 밸런싱이 더 나빠지지 않아야 한다는 의미이다.
[식 19]
VarOfNumUEPico,CurrP,k =< VarOfNumUEPico,P,k
상기 식 19는 선택된 셀 k 가 피코 셀인 경우에만 적용된다. VarOfNumUEPico,P,k는 선택된 전송 전력(P) 에서 피코 셀 k 와 피코 셀 k 의 이웃 셀의 예측 UE 수에 대한 분산을 의미한다.
두 번째로 SINR에 관련된 제한 조건이 있다.
[식 20]
SINRFull,CurrP,m > SINRFull,P,m 이고 SINRoutage > SINRFull,P,m
상기 식 20에서 SINRFull,P, m는 전송 전력(P)에서 UE m 의 예측 풀 로딩 SINR을 의미하고,SINRoutage 는 통신 두절(Outage)이 발생 가능한 SINR 값을 의미한다. 즉 UE m의 풀 로딩 SINR이 현재 전송 전력의 경우보다 높아져야 하고, 통신 두절이 발생 가능한 SINR 값보다 높아야 한다는 조건을 의미한다.
세 번째로 가장자리(edge)에 위치한 UE에 대한 제한 조건이 있다.
[식 21]
NumEdgeUECurrP < NumEdgeUEP
상기 식 21에서 NumEdgeUEP는 송신 전력(P)에서 핸드오버 가능한 영역(HO region)에 존재하는 예측 PCell UE 수이다. 이는 핸드오버가 너무 많아지는 것을 방지하는 것을 그 목적으로 한다.
네 번째로 UE의 처리량에 관련된 제한 조건이 있다.
[식 22]
EdgeUETputFull,CurrP > EdgeUETputFull,P
상기 식 22에서 EdgUETputFull,P는 풀 로딩 환경에서 송신 전력(P)일 때 하위 5% 예측 UE 처리량을 의미하고, 이는 가장자리에 위치한 UE의 처리량이 현재의 경우보다 더 좋아져야 한다는 것을 의미한다.
[식 23]
SumOfUETputFull,CurrP > SumOfUETputFull,P
상기 식 23에서 SumOfLogUETputPartial,P는 풀 로딩 환경에서 power (P) 일 때 예측 UE 처리량의 합으로, 이는 풀 로딩 환경을 가정할 때 모든 단말의 처리량의 합이 현재의 경우보다 더 좋아져야 한다는 것을 의미한다.
또한, SINRFull,CurrP,m > SINRFull,P,m 이고 SINRoutage > SINRFull,P,m 이 만족되는 경우 통신 두절의 발생을 방지하기 위하여 선택된 셀의 송신 전력 조절 범위를 아래 식 24와 같이 줄일 수 있다.
[식 24]
선택된 셀의 송신전력 조절 범위 = (선택된 셀의 선택된 송신 전력(P) + 1 [dB]) ~ 최대 송신 전력
상기 식 24는 통신 두절을 방지하기 위해 송신 전력 조절 범위의 최소값을 현재 선택된 송신 전력에서 +1dB로 조절하는 것으로 최적화 서버는 새로운 조절 범위에서 다시 송신 전력 제어를 수행하게 된다.
밸런싱 모드가 PRB 밸런싱 모드이면 최적화 서버는 목표치인 SumOfLogUETputPartial,P 를 최대화 혹은 SumOfLogTotalUEPRBusageRatioP 를 최소화하는 송신 전력을 결정한다. 단, 선택된 송신 전력(P)에서 아래 제한 조건 중에서 적어도 하나라도 만족하는 경우 그 송신 전력(P)은 목표치를 최적화하는 후보 송신 전력값에서 제외한다.
첫 번째로 로드 밸런싱에 관련된 제한 조건이 있다.
[식 25]
VarOfCellPRBusageRatioMacro,CurrP =< VarOfCellPRBusageRatioMacro,P
상기 식 25에서 VarOfCellPRBusageRatioMacro,P는 송신 전력(P)에서 모든 매크로 셀의 예측 PRB 사용률에 대한 분산을 의미하고, 현재 송신 전력을 적용했을 때보다 선택된 송신 전력을 적용하였을 때 PRB 사용률의 로드 밸런싱이 더 나빠지지 않아야 한다는 의미이다.
[식 26]
VarOfCellPRBusageRatioPico,CurrP,k =< VarOfCellPRBusageRatioPico,P,k
상기 식 26은 선택된 셀 k 가 피코 셀인 경우에만 적용된다. VarOfCellPRBusageRatioPico,P, k는 송신 전력(P)에서 피코 셀 k 와 피코 셀 k 의 이웃 셀의 예측 PRB 사용률에 대한 분산을 의미한다.
두 번째로 SINR에 에 관련된 제한 조건이 있다.
[식 27]
SINRFull,CurrP,m > SINRFull,P,m 이고 SINRoutage > SINRFull,P,m
상기 식 27에서 SINRFull,P,m는 송신 전력(P)에서 UE m 의 풀 로딩 SINR을 의미하고, SINRoutage는 통신 두절이 발생 가능한 SINR 값을 의미한다. UE m의 풀 로딩 SINR이 현재 전송 전력의 경우보다 높아져야 하고, 통신 두절이 발생 가능한 SINR 값보다 높아야 한다는 조건을 의미한다.
세 번째로 UE 처리량에 관련된 제한 조건이 있다.
[식 28]
SumOfLogUETputPartial,CurrP >= SumOfLogUETputPartial,P
상기 식 28에서 SumOfLogUETputPartial,P는 부분적 로딩 환경에서 송신 전력(P)에서 Log(예측 UE 처리량)의 합을 의미하며, UE 처리량의 합이 현재 상태보다 낮아지지 않아야 한다는 것을 의미한다.
네 번째로 가장자리(edge)에 위치한 UE에 대한 제한 조건이 있다.
[식 29]
NumEdgeUECurrP < NumEdgeUEP
상기 식 29에서 NumEdgeUEP는 송신 전력(P)에서 핸드오버 가능한 영역(HO region)에 존재하는 예측 PCell UE 수를 의미하고, 이는 핸드오버가 너무 많아지는 것을 방지하는 것을 그 목적으로 한다.
또한, SINRFull,CurrP,m > SINRFull,P,m 이고 SINRoutage > SINRFull,P,m 이 만족되는 경우 최적화 서버는 통신 두절 발생을 방지하기 위하여 선택된 셀의 송신 전력 조절 범위를 아래 식 30과 같이 줄일 수 있다.
[식 30]
선택된 셀의 송신전력 조절 범위 = (선택된 셀의 선택된 power (P) + 1 [dB]) ~ 최대 송신 전력
상기 식 30은 통신 두절을 방지하기 위해 전력 조절 범위의 최소값을 현재 선택된 송신 전력에서 +1dB로 조절하는 것으로 최적화 서버는 새로운 조절 범위에서 다시 송신 전력 제어를 수행하게 된다.
6. 간섭 제어 개선을 위한 전력 결정
여섯 번째로 최적화 서버는 간섭 제어를 위한 송신 전력 결정을 통해 아래와 같이 목표치를 최대화하는 송신 전력을 결정한다. 단, 간섭 제어를 위한 송신 전력 결정 과정은 로드 밸런싱을 위한 송신 전력 결정 과정에서 현재 송신 전력 대비 목표치를 개선하는 송신 전력값이 존재하지 않는 경우에만 수행한다.
간섭 제어를 위한 송신 전력 결정 과정은 로드 밸런싱 개선을 위한 송신 전력 제어 과정과 거의 유사하다.
첫 번째로 최적화 서버는 아래 식 31에 따라 모든 셀의 송신 전력 제어 범위(transmission power control range)를 설정한다.
[식 31]
셀의 전력 제어 범위: 최소 송신 전력 ~ 최대 송신 전력
상기 식 31에 따라 셀의 송신 전력 제어 범위는 상기 로드 밸런싱을 위한 송신 전력 결정의 경우와 달라지게 된다.
두 번째로 최적화 서버는 셀을 선택하고 선택된 셀의 송신 전력 제어 범위 내에서 임의로 송신 전력(P)을 선택한다.
이후 세 번째로 최적화 서버는 선택된 송신 전력(P)에서 UE의 프라이머리 셀(PCellP)을 결정한다. PCellP 결정 과정에서 다음 정보가 이용된다.
― 현재 송신 전력(CurrP)에서 UE의 프라이머리 셀(PCellCurrP)
― PCell 변경 조건
― 채널 상태 정보
이 때 선택된 송신 전력(P) 적용시, PCellCurrP의 예측 수신 전력(예측 수신 전력이란 무선 채널의 링크 게인(link gain)과 송신 전력의 곱으로 이해될 수 있으며 즉 UE가 수신하는 신호의 전력을 의미한다) 대비 예측 수신 전력이 가장 큰 셀인 BestCell의 예측 수신 전력이 PCell 변경 조건을 만족할 경우 최적화 서버는 PCellP을 BestCell로 결정한다. 그렇지 않을 경우(PCell 변경 조건을 만족하지 못할 경우) 최적화 서버는 PCellP을 PCellCurrP으로 결정한다. 이 때 PCell 변경 조건은 PCell 핸드오버 조건으로 일례로 Event A3이 적용될 수 있다.
네 번째로 최적화 서버는 선택된 송신 전력(P)에서 UE의 세컨더리 셀(SCellP)을 결정한다. SCellP 결정 과정에서 다음 정보가 이용된다.
― UE 의 PCellP, 현재 송신 전력(CurrP)에서 UE의 세컨더리 셀(SCellCurrP)
― PCellP의 병치된 셀(collocated cell)
― PCellP의 SCell 부가 조건
― PCellP의 SCell 해제 조건
― PCellP의 SCell 변경 조건
최적화 서버는 상기 정보를 이용하여 아래와 같은 방법으로 UE의 SCellP을 결정한다. 최적화 서버는 일단 TempSCellP을 PCellP의 병치된 셀 또는 SCellCurrP로 설정하고, BestCell 을 선택된 송신 전력(P)에서 최대 예측 수신 전력을 갖는 셀로 설정한다. BestCell 의 예측 수신 전력이 설정된 TempSCellP의 예측 수신 전력 대비 문턱값 이상(상기 문턱값은 SCell 변경 조건, 일례로 Event A6, 에 기반할 수 있다)이면 TempSCellP을 BestCell로 변경해 설정한다. 그렇지 않다면 TempSCellP은 원래 설정된 PCellP의 병치된 셀 또는 SCellCurrP으로 유지한다.
최적화 서버는 TempSCellP 설정 후에 다음과 같이 SCell 해제/부가/활성화/비활성화 처리를 수행한다. 최적화 서버는 TempSCellP 의 예측 수신 전력 혹은 예측 SINR이 특정 문턱값 이하(상기 문턱값은 SCell 해제 조건, 일례로 Event A2 조건, 에 기반할 수 있다)이면 TempSCellP을 NULL 로 설정한다. NULL로 설정한다는 의미는 TempSCellP 을 선택하지 않음을 의미한다. 이는 TempSCellP의 채널 상태가 충분히 좋지 못하기 때문이다. TempSCellP이 NULL 이고 예측 수신 전력 혹은 예측 SINR이 특정 문턱값 이상(상기 문턱값은 SCell 부가 조건, 일례로 Event A4 조건, 에 기반할 수 있다)인 셀이 있으면 상기 셀은 채널 상태가 좋은 셀이므로 TempSCellP을 해당 셀로 설정한다.
최적화 서버는 TempSCellP이 NULL이 아니나 UE의 PRB 사용량이 특정 문턱값 미만(이를 SCell 활성화 조건이라 칭할 수 있다)이면 TempSCellP 을 NULL 로 설정한다. 또한 TempSCellP이 NULL이 아니고 TempSCellP에 대한 UE 의 예측 채널 품질(channel quality, 일례로 예측 채널 품질 지시자(channel quality indicator, CQI)와 예측 랭크 지시자(rank indicator, RI)의 곱으로 표현할 수 있다)가 문턱값 이하(이를 SCell 비활성화 조건이라 칭할 수 있다)이면 TempSCellP 을 NULL로 설정한다. 이는 단말에게 더 이상의 자원을 할당할 필요가 없거나, TempSCellP을 SCell로 활성화시켜 UE에게 서비스를 제공하더라도 TempSCellP의 채널 품질이 좋지 않아 효율적으로 서비스를 제공할 수 없을 경우 굳이 SCell을 활성화시킬 필요가 없기 때문이다.
이후 최적화 서버는 SCellP을 TempSCellP로 설정한다. 이 때 TempSCellP이 NULL이라서 SCellP이 NULL로 설정된다는 것은 SCell 을 선택하지 않음을 의미한다.
다섯 번째로 최적화 서버는 선택된 송신 전력(P)에서의 목표치(objective)를 계산한다.
밸런싱 모드가 UE 수 밸런싱 모드일 경우 최적화 서버는 송신 전력 제어의 목표치로 SumOfLogUETputFull,P를 계산한다. UETputFull,P는 풀 로딩(full loading) 환경에서 선택된 송신 전력(P)이 적용되었을 때 예측되는 UE 처리량으로 이는 UE의 PCellP 과 SCellP로부터의 예측 처리량의 합이다. 목표치인 SumOfLogUETputFull,P는 풀 로딩 환경에서 선택된 송신 전력(P)이 적용되었을 때 최적화 서버에 의해 관리되는 모든 UE에 대한 Log(UETputFull,P)의 합이다.
UETputFull,P는 아래 식 32에 따라 계산된다.
[식 32]
Figure PCTKR2018005847-appb-I000054
식 32에서 jP,m 은 송신 전력(P)에서 UE m의 서빙 셀 인덱스(UE m의 PCellP과 SCellP의 셀 인덱스)를 의미하고,
Figure PCTKR2018005847-appb-I000055
은 풀 로딩 환경에서 송신 전력(P)이 적용될 경우 셀 jP,m 에 대한 UE m의 예측 캐패시티를 의미하고,
Figure PCTKR2018005847-appb-I000056
는 송신 전력(P)에서 셀 jP,m 이 서비스하는 UE의 수를 의미한다.
밸런싱 모드가 PRB 밸런싱 모드이면 최적화 서버는 전력 제어의 목표치로 SumOfLogTotalUEPRBusageRatioP와 SumOfLogUETputPartial,P 를 계산한다.
SumOfLogTotalUEPRBusageRatioP는 선택된 송신 전력(P)에서 서버에 의해 관리되는 모든 UE에 대해 Log (TotalEstimatedUEPRBusageRatioP)의 합을 계산한 것으로, 아래 식 33에 따라 계산된다.
[식 33]
Figure PCTKR2018005847-appb-I000057
이 때 UE의 예측 Total UE PRB 사용률인 TotalEstimatedUEPRBusageRatioP, m은 아래 식 34와 같이 계산된다.
[식 34]
Figure PCTKR2018005847-appb-I000058
상기 식 34에 따르면 TotalEstimatedUEPRBusageRatioP, m는 UE m에 대해 각 셀의 예측된 UE PRB 사용률인
Figure PCTKR2018005847-appb-I000059
을 더한 것임을 알 수 있다. 상기
Figure PCTKR2018005847-appb-I000060
는 부분적 로딩 환경에서 풀 버퍼 UE와 풀 버퍼 UE가 아닌 UE의 경우 서로 다르게 계산된다.
서빙 셀에 대한 풀 버퍼 UE의 예측 PRB 사용률은 아래 식 35과 같이 계산된다.
[식 35]
Figure PCTKR2018005847-appb-I000061
식 35에서
Figure PCTKR2018005847-appb-I000062
는 송신 전력(P)이 적용될 경우 셀 jP, m에 대한 1-“풀 버퍼 UE가 아닌 UE 의
Figure PCTKR2018005847-appb-I000063
의 합”으로 정의된다. 또한
Figure PCTKR2018005847-appb-I000064
은 송신 전력(P)이 적용될 경우 셀 jP,m 에 대한 풀 버퍼 UE의 수를 의미한다.
아래에서는 풀 버퍼 UE가 아닌 UE의 경우 UE m에 대해 부분적 로딩 환경에서 셀 jP, m에서의 예측된 UE PRB 사용률인
Figure PCTKR2018005847-appb-I000065
를 계산하는 방법에 대해 기술한다.
부분적 로딩(Partial loading) 환경에서 UE m의 예측 데이터 사이즈(data size) DataSizem는 UE m이 PCellCurrP 과 SCellCurrP로부터 전송받을 수 있는 예측 데이터의 양이다. DataSizem은 아래 식 36에 따라 계산된다.
[식 36]
Figure PCTKR2018005847-appb-I000066
식 36에서 jCurrP,m은 현재 송신 전력(CurrP)에서 UE m의 서빙 셀 인덱스(UE m의 PCellCurrP 및 SCellCurrP의 셀 인덱스)를 의미하고,
Figure PCTKR2018005847-appb-I000067
은 현재 송신 전력(CurrP)에서 셀 jCurrP, m이 UE m에게 할당한 PRB 사용률을 의미하고, 이는 최적화 서버가 Cell jCurrP, m로부터 수신한 로딩 정보에 해당한다.
Figure PCTKR2018005847-appb-I000068
은 부분적 로딩 환경에서 현재 송신 전력(CurrP)일 때 셀 jCurrP, m에 대한 UE m의 예측 캐패시티를 의미한다. 상기 식 36의 DataSizem
Figure PCTKR2018005847-appb-I000069
계산에 사용된다.
Figure PCTKR2018005847-appb-I000070
는 부분적 로딩 환경에서 송신 전력(P)이 적용될 때 셀 jP,m 에 대한 UE m 의 임시 예측 UE PRB 사용률로 최적화 서버는
Figure PCTKR2018005847-appb-I000071
를 아래 식 37에 따라 계산한다.
[식 37]
Figure PCTKR2018005847-appb-I000072
상기 식 37에 따라 계산한 서빙 셀에 대한 풀 버퍼 UE가 아닌 UE의 임시 예측 UE PRB 사용률의 합(보다 구체적으로, 한 서빙 셀 내의 풀 버퍼 UE가 아닌 UE들의 PRB 사용률의 합)이 1 이하이면 풀 버퍼 UE가 아닌 UE의 예측 UE PRB 사용률
Figure PCTKR2018005847-appb-I000073
을 아래 식 38과 같이 계산한다.
[식 38]
Figure PCTKR2018005847-appb-I000074
PRB 사용률의 합이 1 이하라는 것은 PRB를 여유있게 사용하고 있는 것이므로, 임시 예측 PRB 사용률을 풀 버퍼 UE가 아닌 UE의 예측 UE PRB 사용률로 결정할 수 있다.
서빙 셀에 대한 풀 버퍼 UE가 아닌 UE의 임시 예측 UE PRB 사용률의 합이 1 이상이면 (즉 예측 데이터 량을 전송하기 위해 1 이상의 PRB 사용률이 요구되는 경우) 풀 버퍼 UE가 아닌 UE의 예측 UE PRB 사용률
Figure PCTKR2018005847-appb-I000075
은 아래 식 39와 같이 계산한다.
[식 39]
Figure PCTKR2018005847-appb-I000076
이면
Figure PCTKR2018005847-appb-I000077
상기 식 39는 셀 jP, m의 PRB 사용률이 1이라고 가정시 셀 jP, m가 서비스하는 단말의 평균 PRB 사용률이 계산한 임시 예측 PRB 사용률보다 낮을 경우 임시 예측 PRB 사용률을 풀 버퍼 UE가 아닌 UE의 예측 UE PRB 사용률로 결정할 수 있다는 것으로 즉 원래 UE m에게 원래 할당할 수 있는 PRB를 보장하겠다는 의미이다.
그렇지 않을 경우, 즉
Figure PCTKR2018005847-appb-I000078
이면 아래 식 40에 따라 풀 버퍼 UE가 아닌 UE의 예측 UE PRB 사용률
Figure PCTKR2018005847-appb-I000079
을 계산한다.
[식 40]
Figure PCTKR2018005847-appb-I000080
상기 식 40의
Figure PCTKR2018005847-appb-I000081
는 선택된 송신 전력(P)에서 셀 jP,m에 대한 1- (
Figure PCTKR2018005847-appb-I000082
인 UE 의
Figure PCTKR2018005847-appb-I000083
의 합)을 의미하고,
Figure PCTKR2018005847-appb-I000084
은 송신 전력(P)에서 셀 jP,m에 대한 풀 버퍼 UE는 아니나
Figure PCTKR2018005847-appb-I000085
에 해당하는 UE의 수를 의미한다. 즉
Figure PCTKR2018005847-appb-I000086
는 UE의 평균 PRB 사용률보다 더 예측된 PRB 사용률이 높은 UE로 채널 상태가 좋지 않아 더 많은 자원을 이용해 데이터를 전송하여야 할 필요성이 있으므로 자원을 더 할당해줘야 하는 UE의 수를 의미하고,
Figure PCTKR2018005847-appb-I000087
Figure PCTKR2018005847-appb-I000088
인 UE가 사용하고 남은 자원을 의미하므로, 사용하고 남은 자원을 채널 상태가 좋지 않은 UE의 수로 나눈 (
Figure PCTKR2018005847-appb-I000089
가 사용하고 남은 자원)/채널 상태가 좋지 않은 UE의 수보다
Figure PCTKR2018005847-appb-I000090
}가 작다면
Figure PCTKR2018005847-appb-I000091
Figure PCTKR2018005847-appb-I000092
로 결정하고, 그렇지 않다면
Figure PCTKR2018005847-appb-I000093
의 값을 사용하고 남은 자원/채널 상태가 좋지 않은 UE의 수인
Figure PCTKR2018005847-appb-I000094
/
Figure PCTKR2018005847-appb-I000095
로 결정한다는 의미이다.
부분적 로딩 환경에서 선택된 송신 전력(P)일 때 예측 UE 처리량인 UETputPartial,P 는 아래 식 41과 같이 UE 의 PCellP 과 SCellP 로부터 예측된 처리량의 합이다.
[식 41]
Figure PCTKR2018005847-appb-I000096
이 때 식 41에서 UETputPartial,P,m 은 부분적 로딩 환경에서 선택된 송신 전력(P)이 적용될 경우 UE m 의 예측 UE 처리량이고, jP, m 은 송신 전력(P)에서 UE m 의 서빙 셀 인덱스(UE m 의 PCellP and SCellP 의 셀 인덱스)이고
Figure PCTKR2018005847-appb-I000097
은 부분적 로딩 환경에서 선택된 송신 전력(P) 일 때 셀 jP,m 에 대한 UE m 의 예측 캐패시티를 의미한다.
이 때 SumOfLogUETputPartial,P 는 부분적 로딩 환경에서 송신 전력(P)가 적용될 때 서버에 의해 관리되는 모든 UE 에 대한 Log(예측 UE 처리량)의 합이으로 아래 식 42과 같이 표현된다.
[식 42]
Figure PCTKR2018005847-appb-I000098
최적화 서버는 상기 첫 번째 내지 다섯 번째 과정을 반복하면서 각 밸런싱 모드에 따라 목표치를 최적화하는 송신 전력을 결정한다.
밸런싱 모드가 UE 수 밸런싱 모드이면 SumOfLogUETputFull,P 를 최대화하는 송신 전력을 결정한다. 단, 선택된 송신 전력(P)에서 아래 제한 조건(constraint) 중에서 적어도 하나라도 만족하는 경우 그 송신 전력(P) 는 목표치를 최적화하는 후보 송신 전력값에서 제외한다.
첫 번째로 로드 밸런싱에 관련된 제한 조건이 있다.
[식 43]
VarOfNumUEMacro,CurrP < VarOfNumUEMacro,P
상기 식 43에서 VarOfNumUEMacro,P는 송신 전력(P)에서 모든 매크로 셀의 예측 UE 수에 대한 분산을 의미한다. 이 때 로드 밸런싱을 위한 송신 전력을 결정하기 위한 경우인 식 18의 경우와 식 43은 식 43의 경우 등호가 포함되어 있지 않다는 차이점이 있다. 이는 간섭 제어를 위해서는 UE 수의 로드 밸런싱이 더 좋아져야 한다는 의미이다.
[식 44]
VarOfNumUEPico,CurrP,k =< VarOfNumUEPico,P,k
상기 식 44는 선택된 셀 k 가 피코 셀인 경우에만 적용된다. VarOfNumUEPico,P,k는 선택된 전송 전력(P) 에서 피코 셀 k 와 피코 셀 k 의 이웃 셀의 예측 UE 수에 대한 분산을 의미한다. 이 때 로드 밸런싱을 위한 송신 전력을 결정하기 위한 경우인 식 19의 경우와 식 44는 식 44의 경우 등호가 포함되어 있지 않다는 차이점이 있다. 이는 간섭 제어를 위해서는 UE 수의 로드 밸런싱이 더 좋아져야 한다는 의미이다.
두 번째로 SINR에 관련된 제한 조건이 있다.
[식 45]
SINRFull,CurrP,m > SINRFull,P,m 이고 SINRoutage > SINRFull,P,m
상기 식 45에서 SINRFull,P, m는 전송 전력(P)에서 UE m 의 예측 풀 로딩 SINR을 의미하고,SINRoutage 는 통신 두절(Outage)이 발생 가능한 SINR 값을 의미한다. 즉 UE m의 풀 로딩 SINR이 현재 전송 전력의 경우보다 높아져야 하고, 통신 두절이 발생 가능한 SINR 값보다 높아야 한다는 조건을 의미한다.
세 번째로 가장자리(edge)에 위치한 UE에 대한 제한 조건이 있다.
[식 46]
NumEdgeUECurrP < NumEdgeUEP
상기 식 46에서 NumEdgeUEP는 송신 전력(P)에서 핸드오버 가능한 영역(HO region)에 존재하는 예측 PCell UE 수이다. 이는 핸드오버가 너무 많아지는 것을 방지하는 것을 그 목적으로 한다.
네 번째로 UE의 처리량에 관련된 제한 조건이 있다.
[식 47]
EdgeUETputFull,CurrP > EdgeUETputFull,P
상기 식 47에서 EdgUETputFull,P는 풀 로딩 환경에서 송신 전력(P)일 때 하위 5% 예측 UE 처리량을 의미하고, 이는 가장자리에 위치한 UE의 처리량이 현재의 경우보다 더 좋아져야 한다는 것을 의미한다.
[식 48]
SumOfUETputFull,CurrP > SumOfUETputFull,P
상기 식 48에서 SumOfLogUETputPartial,P는 풀 로딩 환경에서 power (P) 일 때 예측 UE 처리량의 합으로, 이는 풀 로딩 환경을 가정할 때 모든 단말의 처리량의 합이 현재의 경우보다 더 좋아져야 한다는 것을 의미한다.
또한, SINRFull,CurrP,m > SINRFull,P,m 이고 SINRoutage > SINRFull,P,m 이 만족되는 경우 통신 두절의 발생을 방지하기 위하여 선택된 셀의 송신 전력 조절 범위를 아래 식 49와 같이 줄일 수 있다.
[식 49]
선택된 셀의 송신전력 조절 범위 = (선택된 셀의 선택된 송신 전력(P) + 1 [dB]) ~ 최대 송신 전력
상기 식 49는 통신 두절을 방지하기 위해 송신 전력 조절 범위의 최소값을 현재 선택된 송신 전력에서 +1dB로 조절하는 것으로 최적화 서버는 새로운 조절 범위에서 다시 송신 전력 제어를 수행하게 된다.
밸런싱 모드가 PRB 밸런싱 모드이면 최적화 서버는 목표치인 SumOfLogUETputPartial,P 를 최대화 혹은 SumOfLogTotalUEPRBusageRatioP 를 최소화하는 송신 전력을 결정한다. 단, 선택된 송신 전력(P)에서 아래 제한 조건 중에서 적어도 하나라도 만족하는 경우 그 송신 전력(P)은 목표치를 최적화하는 후보 송신 전력값에서 제외한다.
첫 번째로 로드 밸런싱에 관련된 제한 조건이 있다.
[식 50]
VarOfCellPRBusageRatioMacro,CurrP =< VarOfCellPRBusageRatioMacro,P
상기 식 50에서 VarOfCellPRBusageRatioMacro,P는 송신 전력(P)에서 모든 매크로 셀의 예측 PRB 사용률에 대한 분산을 의미하고, 이 때 로드 밸런싱을 위한 송신 전력을 결정하기 위한 경우인 식 25의 경우와 식 50은 식 50의 경우 등호가 포함되어 있지 않다는 차이점이 있다. 이는 간섭 제어를 위해서는 PRB 사용률의 로드 밸런싱이 더 좋아져야 한다는 의미이다.
[식 51]
VarOfCellPRBusageRatioPico,CurrP,k =< VarOfCellPRBusageRatioPico,P,k
상기 식 51은 선택된 셀 k 가 피코 셀인 경우에만 적용된다. VarOfCellPRBusageRatioPico,P, k는 송신 전력(P)에서 피코 셀 k 와 피코 셀 k 의 이웃 셀의 예측 PRB 사용률에 대한 분산을 의미한다. 이 때 로드 밸런싱을 위한 송신 전력을 결정하기 위한 경우인 식 26의 경우와 식 51은 식 51의 경우 등호가 포함되어 있지 않다는 차이점이 있다. 이는 간섭 제어를 위해서는 PRB 사용률의 로드 밸런싱이 더 좋아져야 한다는 의미이다.
두 번째로 SINR에 에 관련된 제한 조건이 있다.
[식 52]
SINRFull,CurrP,m > SINRFull,P,m 이고 SINRoutage > SINRFull,P,m
상기 식 52에서 SINRFull,P,m는 송신 전력(P)에서 UE m 의 풀 로딩 SINR을 의미하고, SINRoutage는 통신 두절이 발생 가능한 SINR 값을 의미한다. UE m의 풀 로딩 SINR이 현재 전송 전력의 경우보다 높아져야 하고, 통신 두절이 발생 가능한 SINR 값보다 높아야 한다는 조건을 의미한다.
세 번째로 UE 처리량에 관련된 제한 조건이 있다.
[식 53]
SumOfLogUETputPartial,CurrP >= SumOfLogUETputPartial,P
상기 식 53에서 SumOfLogUETputPartial,P는 부분적 로딩 환경에서 송신 전력(P)에서 Log(예측 UE 처리량)의 합을 의미하며, UE 처리량의 합이 현재 상태보다 낮아지지 않아야 한다는 것을 의미한다.
네 번째로 가장자리(edge)에 위치한 UE에 대한 제한 조건이 있다.
[식 54]
NumEdgeUECurrP < NumEdgeUEP
상기 식 54에서 NumEdgeUEP는 송신 전력(P)에서 핸드오버 가능한 영역(HO region)에 존재하는 예측 PCell UE 수를 의미하고, 이는 핸드오버가 너무 많아지는 것을 방지하는 것을 그 목적으로 한다.
또한, SINRFull,CurrP,m > SINRFull,P,m 이고 SINRoutage > SINRFull,P,m 이 만족되는 경우 최적화 서버는 통신 두절 발생을 방지하기 위하여 선택된 셀의 송신 전력 조절 범위를 아래 식 55과 같이 줄일 수 있다.
[식 55]
선택된 셀의 송신전력 조절 범위 = (선택된 셀의 선택된 power (P) + 1 [dB]) ~ 최대 송신 전력
상기 식 55은 통신 두절을 방지하기 위해 전력 조절 범위의 최소값을 현재 선택된 송신 전력에서 +1dB로 조절하는 것으로 최적화 서버는 새로운 조절 범위에서 다시 송신 전력 제어를 수행하게 된다.
아래에서는 망 품질 모니터링 과정에 대해 기술한다.
기지국은 송신 전력 제어 주기 마다 셀의 핸드오버 통계 및 호 두절 통계를 최적화 서버에 전달하고 최적화 서버는 셀의 핸드오버 통계, 호 두절 통계 및 송신 전력에 대한 히스토리 정보를 관리한다. 단, 히스토리 정보는 최근 특정 시간 동안의 히스토리 정보만을 유지한다.
최적화 서버는 송신 전력 제어 주기마다 망 품질 통계 및 송신 전력 히스토리 정보를 이용하여 각각의 셀에 대하여 도 8과 같이 송신 전력 조절 범위를 업데이트한다.
도 8은 최적화 서버가 망 품질을 모니터링해 송신 전력 조절 범위를 업데이트하는 방법을 도시한 도면으로, 도 8에 따르면, 최적화 서버는 핸드오버 통계와 호 단절 통계 히스토리 정보를 이용하여 핸드오버 성공률과 호 단절 레이트를 계산(800)한다. 이후 최적화 서버는 핸드오버 성공률이나 호 단절 레이트의 성능 열화 발생시 망 품질이 저하된 것으로 판단(810)한다. 상기 판단은 다음 식 55의 기준을 따른다.
[식 55]
핸드오버 성공률 < KPI_HO_SUCCESS_RATE
호 단절 레이트 > KPI_CALL_DROP_RATE
상기 식 55의 KPI_HO_SUCCESS_RATE는 핸드오버 성공률에 대한 미리 설정된 목표치이고, KPI_CALL_DROP_RATE는 호 단절 레이트에 대한 목표치이다.
이후 최적화 서버는 망 품질이 저하된 것으로 판단된 셀에 대해서 송신 전력 조절 범위를 다음 식 56과 같이 조절(820)한다.
[식 56]
송신 전력 조절 범위 = (히스토리 정보 내 최소 송신전력[dB] + 1 [dB]) ~ 최대 송신전력
도 9는 본 발명을 수행할 수 있는 최적화 서버를 도시한 블록도이다.
도 9에 따르면, 최적화 서버(900)은 송수신부(910), 제어부(920) 및 저장부(930)으로 구성될 수 있다. 송수신부는 시스템 관리 서버 및 기지국과 정보를 송수신하고, 저장부는 시스템 관리 서버 및 기지국이 전송한 정보를 저장할 수 있다. 제어부는 상기 송수신부 및 저장부를 제어한다. 또한 제어부는 본 발명에 따라 송신 전력 제어 관련 정보를 수집 및 전달하고, 각 셀에 적용될 송신 전력을 결정하고, 망 품질 모니터링을 수행한다.
도 10은 본 발명을 수행할 수 있는 UE를 도시한 블록도이다.
도 10에 따르면, UE(1000)은 송수신부(1010) 및 제어부(1020)으로 구성될 수 있다 송수신부는 본 발명에 따라 적용된 송신 전력에 따라 기지국과 신호를 송수신할 수 있으며, 제어부는 상기 송수신부를 제어할 수 있다.
도 11는 본 발명을 수행할 수 있는 기지국을 도시한 블록도이다.
도 11에 따르면, 기지국(1100)은 송수신부(1110)과 제어부(1120)으로 구성될 수 있다. 송수신부는 본 발명에 따라 최적화 서버 및 UE와 신호를 송수신하고, 제어부는 상기 송수신부를 제어할 수 있다.
상기 기술된 본 발명에 따르면 CA 환경에서 망 품질 열화 없이 다중 캐리어와 이종망의 다중 셀에 대한 무선 채널 상태, 로딩 상태 및 CA 동작을 고려한 실시간 송신 전력 제어를 통해 UE 처리량을 향상시킬 수 있다.

Claims (14)

  1. 서버가 각 셀의 송신 전력을 제어하는 방법에 있어서,
    시스템 관리 서버로부터 설정 정보를 수신하는 단계;
    상기 각 셀을 제어하는 기지국으로부터 채널 상태 정보 및 로딩(loading) 관련 정보를 수신하는 단계;
    상기 설정 정보, 상기 채널 상태 정보 및 상기 로딩 관련 정보를 기반으로 각 셀에 적용될 송신 전력을 결정하는 단계; 및
    상기 각 셀을 제어하는 기지국으로 상기 결정된 송신 전력 정보를 전송하는 단계를 포함하는 것을 특징으로 하는 송신 전력 제어 방법.
  2. 제1항에 있어서, 상기 송신 전력 제어 단계는,
    단말 수 밸런싱 모드 또는 자원 사용률 밸런싱 모드 중 하나로 상기 송신 전력을 결정하기 위한 로드 밸런싱 모드를 결정하는 단계를 더 포함하는 것을 특징으로 하는 송신 전력 제어 방법.
  3. 제2항에 있어서, 상기 송신 전력 제어 단계는,
    상기 각 셀 중 매크로 셀에 대한 송신 전력 제어 방향을 송신 전력 상승 또는 송신 전력 하강으로 결정하는 단계를 더 포함하는 것을 특징으로 하는 송신 전력 제어 방법.
  4. 제3항에 있어서, 상기 송신 전력 제어 단계는,
    상기 송신 전력 제어 방향을 기반으로 로드 밸런싱을 위한 송신 전력값을 결정하는 단계를 더 포함하는 것을 특징으로 하는 송신 전력 제어 방법.
  5. 제4항에 있어서, 상기 송신 전력 제어 단계는,
    상기 로드 밸런싱 모드와 상기 로드 밸런싱을 위한 송신 전력값을 기반으로, 송신 전력값을 가정하고 계산한 목표값을 최소화하거나 최대화하는 상기 각 셀의 송신 전력값을 결정하는 것을 특징으로 하는 송신 전력 제어 방법.
  6. 제5항에 있어서,
    상기 로드 밸런싱 모드가 상기 단말 수 밸런싱 모드이면 상기 목표값은 모든 단말의 처리량(throughput)의 합이고, 상기 로드 밸런싱 모드가 상기 자원 사용률 밸런싱 모드이면 상기 목표값은 상기 모든 단말의 처리량의 합이거나 모든 단말의 자원 사용률의 합이 되고,
    상기 각 셀의 송신 전력값은 상기 모든 단말의 처리량의 합을 최대화하거나 상기 모든 단말의 자원 사용률의 합을 최소화하는 값인 것을 특징으로 하는 송신 전력 제어 방법.
  7. 제 1항에 있어서,
    상기 각 셀을 제어하는 기지국으로부터 망 품질 관련 통계 정보를 수신하는 단계;
    상기 망 품질 관련 통계 정보를 기반으로 망 품질 저하 여부를 판단하는 단계; 및
    상기 망 품질 저하 여부를 기반으로 송신 전력 조절 범위를 업데이트하는 단계를 더 포함하는 것을 특징으로 하는 송신 전력 제어 방법.
  8. 각 셀의 송신 전력을 제어하는 서버에 있어서,
    각 셀을 제어하는 기지국과 시스템 관리 서버와 신호를 송수신하는 송수신부; 및
    상기 시스템 관리 서버로부터 설정 정보를 수신하고, 상기 각 셀을 제어하는 기지국으로부터 채널 상태 정보 및 로딩(loading) 관련 정보를 수신하고, 상기 설정 정보, 상기 채널 상태 정보 및 상기 로딩 관련 정보를 기반으로 각 셀에 적용될 송신 전력을 결정하고, 상기 각 셀을 제어하는 기지국으로 상기 결정된 송신 전력 정보를 전송하도록 제어하는 제어부를 포함하는 것을 특징으로 하는 서버.
  9. 제8항에 있어서, 상기 제어부는,
    단말 수 밸런싱 모드 또는 자원 사용률 밸런싱 모드 중 하나로 상기 송신 전력을 결정하기 위한 로드 밸런싱 모드를 결정하도록 더 제어하는 것을 특징으로 하는 서버.
  10. 제9항에 있어서, 상기 제어부는,
    상기 각 셀 중 매크로 셀에 대한 송신 전력 제어 방향을 송신 전력 상승 또는 송신 전력 하강으로 결정하도록 더 제어하는 것을 특징으로 하는 서버.
  11. 제10항에 있어서, 상기 제어부는,
    상기 송신 전력 제어 방향을 기반으로 로드 밸런싱을 위한 송신 전력값을 결정하도록 더 제어하는 것을 특징으로 하는 서버.
  12. 제11항에 있어서, 상기 제어부는,
    상기 로드 밸런싱 모드와 상기 로드 밸런싱을 위한 송신 전력값을 기반으로, 송신 전력값을 가정하고 계산한 목표값을 최소화하거나 최대화하는 상기 각 셀의 송신 전력값을 결정하도록 더 제어하는 것을 특징으로 하는 서버.
  13. 제12항에 있어서,
    상기 로드 밸런싱 모드가 상기 단말 수 밸런싱 모드이면 상기 목표값은 모든 단말의 처리량(throughput)의 합이고, 상기 로드 밸런싱 모드가 상기 자원 사용률 밸런싱 모드이면 상기 목표값은 상기 모든 단말의 처리량의 합이거나 모든 단말의 자원 사용률의 합이 되고,
    상기 각 셀의 송신 전력값은 상기 모든 단말의 처리량의 합을 최대화하거나 상기 모든 단말의 자원 사용률의 합을 최소화하는 값인 것을 특징으로 하는 서버.
  14. 제8항에 있어서, 상기 제어부는,
    상기 각 셀을 제어하는 기지국으로부터 망 품질 관련 통계 정보를 수신하고, 상기 망 품질 관련 통계 정보를 기반으로 망 품질 저하 여부를 판단하고, 상기 망 품질 저하 여부를 기반으로 송신 전력 조절 범위를 업데이트하도록 더 제어하는 것을 특징으로 하는 서버.
PCT/KR2018/005847 2017-05-22 2018-05-23 다중 캐리어 시스템에서 셀의 송신 전력 조절 방법 및 장치 WO2018217012A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880033775.5A CN110651508A (zh) 2017-05-22 2018-05-23 在多载波系统中调整小区发射功率的方法和装置
EP18805227.8A EP3606189A4 (en) 2017-05-22 2018-05-23 METHOD AND DEVICE FOR ADJUSTING THE TRANSMISSION PERFORMANCE OF A CELL IN A MULTI-CARRIER SYSTEM
US16/613,683 US20210084599A1 (en) 2017-05-22 2018-05-23 Method and apparatus for adjusting transmit power of cell in multi-carrier system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0063113 2017-05-22
KR1020170063113A KR20180127842A (ko) 2017-05-22 2017-05-22 다중 캐리어 시스템에서 셀의 송신 전력 조절 방법 및 장치

Publications (1)

Publication Number Publication Date
WO2018217012A1 true WO2018217012A1 (ko) 2018-11-29

Family

ID=64396831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/005847 WO2018217012A1 (ko) 2017-05-22 2018-05-23 다중 캐리어 시스템에서 셀의 송신 전력 조절 방법 및 장치

Country Status (5)

Country Link
US (1) US20210084599A1 (ko)
EP (1) EP3606189A4 (ko)
KR (1) KR20180127842A (ko)
CN (1) CN110651508A (ko)
WO (1) WO2018217012A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112752327A (zh) * 2019-10-29 2021-05-04 上海华为技术有限公司 功率调节方法和接入网设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102387505B1 (ko) 2018-01-09 2022-04-18 삼성전자주식회사 무선 통신 시스템에서 송신 전력을 조절하기 위한 방법 및 장치
EP4133770A4 (en) * 2020-04-08 2023-12-27 Apple Inc. USER DEVICE SUPPORTED CARRIER AGGREGATION
US11277318B2 (en) * 2020-04-30 2022-03-15 Accenture Global Solutions Limited Analyzing a communication network device, based on capacity analyses associated with decommissioning the communication network device, to determine next actions
US11438273B2 (en) * 2020-07-20 2022-09-06 Altiostar Networks, Inc. Real-time processing in wireless communications systems
US11368877B2 (en) * 2020-07-23 2022-06-21 Verizon Patent And Licensing Inc. System and method for load balancing traffic over multiple radio frequency bands for self-organizing network optimization
CN115175229A (zh) * 2021-04-07 2022-10-11 华为技术有限公司 通信方法及通信装置
CN114071546B (zh) * 2021-11-04 2023-06-06 中国联合网络通信集团有限公司 一种数据传输方法、装置及电子设备
CN114071683B (zh) * 2021-11-04 2023-04-14 中国联合网络通信集团有限公司 一种数据传输方法、装置和电子设备
WO2023082180A1 (en) * 2021-11-12 2023-05-19 Telefonaktiebolaget Lm Ericsson (Publ) Power consumption management of radio access network (ran) node
WO2024098338A1 (en) * 2022-11-10 2024-05-16 Nokia Shanghai Bell Co., Ltd. Power control for carrier aggregation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100559757B1 (ko) * 1998-09-30 2006-03-13 루센트 테크놀러지스 인크 페이징 및 초기 트래픽 채널 전력에 대한 cdma 전력 제어
KR20100046755A (ko) * 2008-10-28 2010-05-07 서울대학교산학협력단 다중 셀 다중 안테나 환경의 무선통신 시스템 및 그 방법
KR20140021064A (ko) * 2011-10-13 2014-02-19 미쓰비시덴키 가부시키가이샤 연료펌프
JP2015154184A (ja) * 2014-02-13 2015-08-24 株式会社日立製作所 無線通信システム、基地局装置及び制御装置
KR20150126137A (ko) * 2014-05-02 2015-11-11 삼성전자주식회사 무선 통신 시스템에서 실시간 송신 전력 조절 방법 및 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101787464B1 (ko) * 2010-11-17 2017-10-19 삼성전자주식회사 다중 셀 무선 접속 시스템에서 로드 밸런싱 장치 및 방법
CN103561427B (zh) * 2013-09-11 2016-11-02 东南大学 一种lte-a系统多小区无线网络的基站功率控制方法
US20160057679A1 (en) * 2014-08-22 2016-02-25 Qualcomm Incorporated Cson-aided small cell load balancing based on backhaul information
CN105898801B (zh) * 2016-06-07 2019-04-02 中国联合网络通信集团有限公司 一种负载均衡方法及基站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100559757B1 (ko) * 1998-09-30 2006-03-13 루센트 테크놀러지스 인크 페이징 및 초기 트래픽 채널 전력에 대한 cdma 전력 제어
KR20100046755A (ko) * 2008-10-28 2010-05-07 서울대학교산학협력단 다중 셀 다중 안테나 환경의 무선통신 시스템 및 그 방법
KR20140021064A (ko) * 2011-10-13 2014-02-19 미쓰비시덴키 가부시키가이샤 연료펌프
JP2015154184A (ja) * 2014-02-13 2015-08-24 株式会社日立製作所 無線通信システム、基地局装置及び制御装置
KR20150126137A (ko) * 2014-05-02 2015-11-11 삼성전자주식회사 무선 통신 시스템에서 실시간 송신 전력 조절 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3606189A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112752327A (zh) * 2019-10-29 2021-05-04 上海华为技术有限公司 功率调节方法和接入网设备
WO2021083230A1 (zh) * 2019-10-29 2021-05-06 华为技术有限公司 功率调节方法和接入网设备
CN112752327B (zh) * 2019-10-29 2023-10-20 上海华为技术有限公司 功率调节方法和接入网设备

Also Published As

Publication number Publication date
CN110651508A (zh) 2020-01-03
EP3606189A4 (en) 2020-04-29
KR20180127842A (ko) 2018-11-30
EP3606189A1 (en) 2020-02-05
US20210084599A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
WO2018217012A1 (ko) 다중 캐리어 시스템에서 셀의 송신 전력 조절 방법 및 장치
WO2018030819A1 (en) Method and apparatus for supporting movement of user equipment in wireless communications
WO2018030825A1 (en) Method and apparatus for selecting resources in v2x communications
WO2020204501A1 (en) Method for supporting access to closed network, ue, base station and readable storage medium
WO2013048121A1 (en) Comp measurement system and method
WO2017179951A1 (en) Method and apparatus for transmitting and receiving signal through beamforming in communication system
WO2017171454A1 (en) Methods for determining paging occasions in edrx cycle and monitoring paging occasions based on cel
WO2018045678A1 (zh) 通信方法和通信装置
WO2019139414A1 (en) Method and apparatus for selecting carrier in wireless communication system
WO2021066515A1 (en) Master node, secondary node and user equipment in mobile communication network and communication methods therebetween
WO2010087687A2 (en) Apparatus and method for relaying multiple links in a communication system
WO2012165794A2 (ko) 이기종 네트워크 기반 데이터 동시 전송 서비스 시스템 및 그 방법
WO2013027993A2 (en) Mobility state enhancements
WO2017065544A1 (en) Apparatus and method for controlling operation of user equipment based on interference characteristic in communication system
WO2020067812A1 (en) An apparatus and a method for configurating and reporting of minimization of drive tests measurement and access network device
CN105009679A (zh) 一种广播消息的方法及基站、用户设备
WO2022025393A1 (en) Bwp allocation method, apparatus, electronic device and computer readable storage medium
WO2021150014A1 (en) Self-optimization method and device
WO2022015077A1 (en) Information processing method, apparatus, device and computer readable storage medium
EP3424237A1 (en) Method for controlling wireless local area network aggregation and associated equipment
WO2018070767A1 (ko) 무선 통신 시스템에서 위상 잡음을 제거하는 신호 전송 방법 및 그 장치
WO2013100658A1 (en) Apparatus and method for controlling in-device coexistence interference in wireless communication system
WO2022108388A1 (en) Method and ue for determining default beam behavior in wireless network
WO2013066120A1 (en) Apparatus and method for estimating mobility state
WO2015152554A1 (ko) 단말의 세컨더리 셀 동작 제어 방법 및 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805227

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018805227

Country of ref document: EP

Effective date: 20191101

NENP Non-entry into the national phase

Ref country code: DE