WO2018216931A1 - Ship including vortex generating fins - Google Patents

Ship including vortex generating fins Download PDF

Info

Publication number
WO2018216931A1
WO2018216931A1 PCT/KR2018/005370 KR2018005370W WO2018216931A1 WO 2018216931 A1 WO2018216931 A1 WO 2018216931A1 KR 2018005370 W KR2018005370 W KR 2018005370W WO 2018216931 A1 WO2018216931 A1 WO 2018216931A1
Authority
WO
WIPO (PCT)
Prior art keywords
hull
vortex generating
pin
vortex
propeller
Prior art date
Application number
PCT/KR2018/005370
Other languages
French (fr)
Korean (ko)
Inventor
이승호
Original Assignee
필드지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 필드지 주식회사 filed Critical 필드지 주식회사
Publication of WO2018216931A1 publication Critical patent/WO2018216931A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/28Other means for improving propeller efficiency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/16Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in recesses; with stationary water-guiding elements; Means to prevent fouling of the propeller, e.g. guards, cages or screens

Definitions

  • the present invention relates to a vessel comprising a vortex generating pin for regulating the flow of fluid flowing around the hull to improve the efficiency of the propeller and reduce the resistance of the hull.
  • the limit stream line may deviate from the shape of the hull at the stern portion, and the resistance increases along with the flow separation phenomenon.
  • the present invention is to solve the various problems including the above problems, the resistance and cavitation of the hull through the vortex generating pin to generate a vortex to change the flow field passing through the rotating surface of the propeller It is an object of the present invention to provide a vessel that can reduce vibrations and increase thrust efficiency of propellers.
  • the hull the hull; A propeller installed at the rear of the hull; And a vortex generating fin disposed at an optimum point Po of the port and starboard of the hull, respectively, to generate a vortex to change the flow field passing through the rotating surface of the propeller.
  • the optimal point Po is a limiting stream flowing along the surface of the hull when simulating the flow field around the hull assuming that the vessel is maneuvering at a design speed before the vortex generating pin is placed on the hull.
  • a limiting streamline is located 0 to 0.1 stations away in the bow direction along the reference stream line Sr passing through the reference point Pr closest to the bow side of the intersection points when viewed from the side of the hull.
  • the reference streamline is a limit streamline located further down the bow side of the two limit streamlines passing the reference point.
  • the vortex generation pin may be arranged such that the angle of attack with the reference stream line is 2 ⁇ 20 °.
  • the length of the vortex generating pin may be 1% to 3.5% of the repair length of the hull.
  • the height of the vortex generating pin is 0.1 to 0.2% of the repair length of the hull, the thickness may be about 5mm to 15mm.
  • the design speed of the vessel may be about 15 knots or less, and the block coefficient of the hull may be 0.8 to 0.85. That is, the vessel according to the present invention may be a vessel classified as a low speed vessel.
  • the optimum point Po is the vortex generating pin is arranged to straighten the rotational flow near the propeller, to simplify the complex flow to increase the thrust efficiency, to thin the thickness of the boundary layer As a result, the resistance is reduced, and the flow velocity of the upper end of the propeller is increased, thereby reducing the stern vibration caused by the cavitation.
  • the ship's design can be easily derived from the reference point and the reference streamline, which can be known from the simulation results without the vortex generating pin, without having to go through a number of time-consuming and costly simulations. Save money and time.
  • FIG. 1 is a perspective view showing a limiting streamline flowing along the starboard of a stern before the vortex generating pin is disposed, which is obtained through computer simulation using computational fluid dynamics (CFD).
  • CFD computational fluid dynamics
  • FIG. 2 is a right side view schematically showing the limit stream line flowing along the starboard of the stern before the vortex generating pins are disposed;
  • FIG 3 is a right side view schematically showing the limit stream line flowing along the starboard of the stern after the vortex generating pins are disposed.
  • FIG 4 is a perspective view showing a limit stream line flowing along the starboard of the stern after the vortex generating pins are disposed through computer simulation using computational fluid dynamics (CFD).
  • CFD computational fluid dynamics
  • FIG. 5 is a diagram showing the velocity distribution of the fluid around the ship and the hull in which the vortex generating pins 30 are arranged.
  • FIG. 6 is an experimental graph showing a change in resistance according to the presence or absence of vortex generating pins.
  • FIG. 7 is a diagram comparing isoflow velocity diagrams of stream lines with or without vortex generating pins in a cross section taken along line P1 of FIG. 4A.
  • FIG. 8 is a right side view schematically illustrating a vessel in which vortex generating pins having different angles of attack (AOA) with reference stream lines are arranged.
  • AOA angles of attack
  • FIG. 9 is an experimental graph showing a time-dependent resistance acting on a vessel having a vortex generating pin having different angles of attack.
  • FIG. 10 is a diagram comparing the isoflow velocity diagram at the cross section through a propeller of a vessel having a vortex generating pin with different angles of attack.
  • FIG. 11 is a perspective view of the hull stern showing the vortex generating pins of various lengths.
  • FIG. 12 is a perspective view showing a simulation of a limit stream line flowing around a ship having vortex generating pins having different lengths.
  • FIG. 13 is an experimental graph showing a time-dependent resistance acting on a vessel having vortex generating pins having different lengths.
  • FIG. 14 is a diagram comparing the isoflow velocity diagram according to the length of the vortex generating pins.
  • the x axis is the axis passing through the ship's bow and stern
  • the y axis is the axis passing through the ship's port and starboard
  • the z axis is the axis passing through the ship's bottom and upper deck.
  • the design speed is a speed that can be achieved at 85% or 90% of the maximum power of the main engine mounted on the ship, and means the speed that the shipyard must satisfy as a contract condition in the ship construction contract. .
  • a station refers to a boundary between respective sections after dividing the length between perpendicular (L.B.P.) into 20 equal sections.
  • the stations are numbered sequentially from the stern, with the first station numbering 0 and the last station numbering 20.
  • Length between repairs means the distance between the fore perpendicular (F.P.) and the after perpendicular (A.P.).
  • F.P. means a line drawn vertically after the intersection of the designed load water line (D.L.W.L.) and the front of the forebody.
  • a stern line (AP) means a line drawn vertically from the back of the other state on ships with a clear rudder post; otherwise, a vertical line passing through the intersection of the center line of the rudder stock and the planned full line draft to be.
  • the length water line (L.W.L.) of the hull means the distance from where the front surface of the planned full draft line meets the water surface to where the water surface on the stern side meets.
  • the starboard is described as a center, but the principles and effects described below may be applied symmetrically to the port.
  • Figure 1 shows a limiting streamline (S) flowing along the starboard at the stern before the vortex generating pins (FIGS. 3 and 30), which are derived from computer simulation using computational fluid dynamics (CFD), It is a perspective view shown. 1 shows only the starboard of the stern part of the hull.
  • S limiting streamline
  • CFD computational fluid dynamics
  • the limit stream flowing along the surface of the hull 10 in the flow field around the hull 10 assuming that the vessel before the vortex generating pin 30 is placed starts at the design speed.
  • Line S is shown.
  • the limit stream line will be abbreviated as stream line.
  • Such a shape of the stream line (S) can be found through a simulation, where 'simulation' may include a computer simulation using computational fluid dynamics (CFD) or a model simulation using a model ship.
  • CFD computational fluid dynamics
  • the shape of the limit stream line S derived through the simulation may be different according to the shape of the ship and the design speed (or the speed of the fluid passing around the ship).
  • the shape and design speed are fixed, the shape of the limit streamline S around the hull 10 can be clearly defined through simulation.
  • the streamline flowing parallel to the side of the hull 10 near the two stations 2ST and 50% in height between the bottom and the design draft Td is the hub of the propeller hub, 20H.
  • the stream line flowing from the bottom causes bilge vortex (V b ), and upward flow occurred toward the hub 20H.
  • V b bilge vortex
  • such downflows and upward flows form a rotating flow that rotates near the hub 20H to which the propeller is attached, thereby weakening propulsion performance of the propeller.
  • One embodiment of the present invention solves the above-described problem by placing the vortex generating pins 30 on the port and starboard of the hull 10, respectively. That is, the ship according to an embodiment of the present invention, the hull 10; A propeller 20 installed at the rear of the hull; And a vortex generating pin 30 disposed at an optimum point Po of the stern portion of the port and starboard of the hull 10 to generate a vortex to change the flow field of the rotating surface of the propeller 20.
  • the present invention uses the concept of 'reference point (Pr)' and 'reference streamline (Sr)' to derive the optimum point (Po) in which the vortex generating pins 30 are disposed. This is described below.
  • FIG. 2 is a right side view schematically showing the limit stream line S flowing along the starboard of the stern before the vortex generating pin 30 is disposed. In FIG. 2, only the lower portion of the stern draft Td is illustrated.
  • Streamline refers to the path of fluid particles over time. According to this definition, streamlines do not intersect with each other when viewed in three dimensions. However, when looking at the hull in a specific direction as shown in Figure 2, the streamlines appear to cross each other.
  • 'intersecting' the streamline means that the 'projection' of the xz-plane of the streamline intersects when the hull is viewed in a direction parallel to the y axis.
  • the angle of view of the modeled hull is adjusted, and in the case of model simulation, the photograph is taken with a line of sight parallel to the y axis. I can understand it.
  • FIG. 2 some of the intersection points of the stream lines are indicated by x characters.
  • the reference point Pr the point closest to the player side among the several points where the limit stream line S intersects. That is, on the xz-plane, the reference point means the point where the x coordinate is largest among several points where the limit streamline intersects.
  • the reference point Pr may mean a point where the downflow and the upstream begin to cross each other. The position of the reference point Pr may be clearly defined within an error range of the size of the lattice in the case of computer simulation and the spacing of the paint lines representing each streamline in the model simulation.
  • the position of the reference point Pr can be derived by simulating the flow field around the hull, assuming that the ship starts at a design speed before the vortex generating pins 30 are arranged on the hull 10.
  • the reference stream line Sr passing through the reference point Pr is defined. Since the point at which the streamlines (orthogonal projections of) are 'intersected' with each other on the xz-plane is defined as a reference point, the two streamlines (orthogonal projections of) pass through the reference point Pr. In FIG. 2, these two streamlines are represented as Sr and Sx.
  • the reference stream line Sr means a stream line located further below (the bottom side) from the athlete side of the two stream lines. That is, the reference stream line Sr may be one of streamlines included in the upstream, and may be one of streamlines separated from the hull surface by generating a bilge vortex (Vb) from the bottom of the hull.
  • another stream line (Sx) passing through the reference point may be one of the stream lines included in the down stream.
  • the optimum point Po on which the vortex generation pin 30 is disposed is derived using the reference point Pr and the reference stream line Sr described above.
  • the optimum point Po of the stern portion in which the vortex generating pins 30 are disposed is located at 0 to 0.1 station in the bow direction along the reference stream line Sr.
  • the 0 to 0.1 stations are based on the x coordinate of the ship, not based on the curve length of the reference streamline.
  • a line SSa passing through the reference point Pr and parallel to the z-axis and a parallel line SSb separated by 0.1ST from the line SSa is shown.
  • the length of 0.1ST is exaggerated for convenience of description.
  • the optimum point (Po) where the vortex generating pin 30 is to be arranged is any point of the curve AB, that is, It is placed on the thicker curve in 2.
  • the vortex generation pin 30 may be disposed such that the point closest to the bow is positioned at the optimum point Po.
  • the inventors found out that through the simulation of various low speed vessels, the optimum point Po can be derived from the above-mentioned reference point Pr and the reference stream line Sr, which is applied to various vessels, not specific vessels. It was.
  • 3 is a right side view schematically showing the limit stream line S flowing along the starboard of the stern after the vortex generating pin 30 is disposed. 3 also shows only the lower portion of the stern draft Td.
  • the flow field behind the vortex generating pin 30 (stern side) is changed by the vortex generating pin 30 to change the thickness of the boundary layer and the flow field passing through the rotating surface of the propeller 20.
  • the flow field in front of the vortex generating pin (the bow side) does not change. Therefore, even after the vortex generating pin 30 is attached, the reference stream line is maintained as it is only in front of the vortex generating pin (hereinafter, the reference stream line in front of the vortex generating pin will be referred to as Sr '). Therefore, the angle of attack (AOA) between the chord line of the vortex generating pin and the reference stream line Sr 'can be defined irrespective of the change in the flow field with or without the vortex generating pin 30. This will be described later.
  • AOA angle of attack
  • FIG. 4 is a perspective view showing the limit stream line S flowing along the starboard of the stern after the vortex generating pin 30 is disposed, which is derived through computer simulation using computational fluid dynamics (CFD).
  • CFD computational fluid dynamics
  • the repair length of the hull 10 was about 181 m, and the position of the vortex generating pin 30 was about 30 cm in the bow direction from the reference point, that is, about 0.03 stations apart.
  • the vortex generating pin 30 has a higher stern side and a lower bow side so that the angle with the reference stream line Sr, that is, the angle of attack is about 6 °.
  • the angle between the vortex generating pin 30 and the bottom was about 21.42 °.
  • the rotational flow around the hub 20H on which the propeller (not shown in FIG. 4) is installed changes close to the straight stream. That is, the vortex generating pin 30 may serve to simplify the shape of the complex flow field around the stern. As a result, the flow field passing through the rotating surface of the propeller becomes uniform, and the propulsion performance of the propeller is improved.
  • the thickness of the boundary layer at the stern portion becomes thin, thereby reducing the resistance acting on the hull as a whole.
  • FIG. 5 is a diagram showing the velocity distribution of the fluid around the ship and the hull 10, the vortex generating pin 30 is disposed.
  • (A) is a right side view which looked at the stern part from the right side
  • (b)-(d) is the iso velocity diagram of a stream line in the cross section cut along the P2, P3, P4 line
  • the left side of each isoflow velocity diagram shows a state in which the vortex generating pin 30 is attached, and the right side shows a state in which the vortex generating pin is not attached.
  • the vortex generating pin 30 itself acts as a resistance because it hinders the flow of fluid flowing around the hull 10, but the flow field behind the vortex generating pin 30 in the direction of increasing the velocity of the fluid around the hull 10. By changing the size of the resistance acting on the entire ship can be reduced.
  • FIG. 6 is an experimental graph showing a change in resistance according to the presence or absence of vortex generating pins. Referring to FIG. 6, a change in resistance magnitude with time is shown.
  • the vortex generating pin was arranged such that the angle of attack was 6 ° at a distance of 30 cm along the reference stream line, that is, about 0.03 stations. In this case, when the vortex generating pin is attached, the resistance is reduced by about 5% on average than when the vortex generating pin is not attached.
  • the resistance may be reduced by about 5% by merely placing the vortex generating pins 30 at the optimum points Po of the left and right strings of the hull.
  • the vortex generating pin can reduce the resistance of the ship without performing the simulation several times. 30) can be found.
  • FIG. 7 is a diagram comparing isoflow velocity diagrams of stream lines with or without vortex generating pins in a cross section taken along line P1 of FIG. 4A.
  • the vibration caused by the cavitation can be reduced when the flow velocity in the region between 10 o'clock and 2 o'clock is accelerated around the hub 20H of the propeller. That is, by increasing the flow rate of the stream line flowing in the upper portion of the propeller, it is possible to reduce the vibration.
  • the velocity distribution in the area shown in the lower part of FIG. 7 shows that the velocity of the stream line flowing in the upper portion of the propeller is relatively higher than when the vortex generating pin is attached (left) and the vortex generating pin is not attached (right). You can see it's fast.
  • the vortex generating pin 30 is disposed at the optimum point Po derived from the reference point Pr, which can be known from one simulation, and is generated by the hull resistance and the cavitation. The effect of reducing vibration can be obtained.
  • FIG. 8 is a right side view schematically showing a vessel in which the vortex generating pins 30 having different angles of attack (AOA) with reference stream lines are arranged.
  • AOA angles of attack
  • the vortex generating pin 30 may be arranged such that the angle of attack with the reference stream line Sr 'is 2 to 20 °.
  • the reference stream line Sr is defined in the flow field in the absence of the vortex generating pin 30, but is located in front of the vortex generating pin 30 (the bow side) even when the vortex generating pin 30 is disposed.
  • the angle of attack (AOA) between the portion Sr 'positioned on the bow side of the reference stream line Sr and the vortex generating pin 30 is constant regardless of the presence or absence of the vortex generating pin 30.
  • the vortex generating pin 30 is disposed to have an angle of 6 ° with the reference stream line Sr ', that is, the angle of attack is about 6 °.
  • FIG. 9 is an experimental graph showing a time-dependent resistance acting on a vessel having a vortex generating pin having different angles of attack.
  • the vortex generating pins 31, 32, 33, 34, and 35 having angles of attack of the pins 1 to 5, that is, the reference streamline Sr 'are 2, 6, 10, 14, and 20 °, respectively.
  • the variation of the hull resistance due to the difference was within about 1%. That is, when the angle of the vortex generating pin 30 is adjusted so that the angle of attack is about 2 to 20 °, the resistance reduction rate may be 4% or more as compared with when the vortex generating pin 30 is not present.
  • the angle of attack of the vortex generating pin 30 is greater than 20 °, the effect by the self-resistance of the vortex generating pin 30 becomes noticeable, thereby increasing the resistance.
  • the angle of attack is smaller than 2 °, the effect of forming the vortex (vortex) by the vortex generating pin 30 is insignificant, so that there is no great difference from the case where the vortex generating pin 30 is not present.
  • FIG. 10 is a diagram comparing the isoflow velocity diagram at the cross section through a propeller of a vessel having a vortex generating pin with different angles of attack.
  • the center region of each box represents the hub portion of the propeller. The difference in velocity distribution near the hub is distinguishable. In the absence of a pin, the relatively low speed range is wider near the bulb.
  • the flow velocity passing through the rotating surface of the propeller is preferably distributed evenly over the entire rotating surface in terms of the efficiency of the propeller. That is, the cavitation prevention and propeller efficiency are in a trade-off relationship with each other.
  • the flow velocity distribution on the propeller rotation surface is increased compared to pin 4 (34) or pin 5 (35) while increasing the flow rate above the propeller compared to pin 1 (31) or pin 2 (32). It is constant.
  • the vortex generating pin 30 may be arranged such that the angle of attack is around 10 °, that is, about 6 ° to 14 °.
  • FIG. 11 is a perspective view of the hull stern showing the vortex generating pins of various lengths. In FIG. 11, only the starboard of the stern part of the hull 10 is illustrated.
  • the length L of the vortex generating pin 30 may be 1 to 3.5% of the hull repair length.
  • the height of the vortex generating pin 30 may be 0.1 to 0.2% of the hull repair length.
  • the 'height' may be based on a direction perpendicular to the surface of the hull.
  • the thickness T of the vortex generating pin 30 may be about 5mm to 15mm.
  • the vortex generating pin 30 illustrated in black represents a vortex generating pin (pin 3) having an increased angle of attack of 4 ° from the vortex generating pin (pin 2) of FIG. 4. That is, it is assumed that the vortex generating pin (pin 3) of FIG. 11 forms an angle of 10 ° with the reference stream line Sr.
  • the length of the vortex generating pin 30 was 2.5 m, about 1.4% of the length of the hull repair, and the height from the surface of the hull was 35 cm, about 0.19% of the length of the hull repair.
  • the thickness of the vortex generating pin 30 was set to about 10 mm.
  • the vortex generating pin extending to point C is set to have a length of 50% longer than the reference vortex generating pin shown in black, i.e., about 2.1% of the length of the hull's repair, and creates a vortex extending to point D.
  • the pin was set to be 100% longer than the reference vortex generating pin, ie about 2.8% of the length of the hull's repair.
  • FIG. 12 is a perspective view showing a simulation of a limit stream line flowing around a ship having vortex generating pins having different lengths.
  • stream streams formed by the vortex generating pins having lengths of (a) without pins and having lengths of (b) 1.4%, (c) 2.1%, and (d) 2.8% of the repair length, respectively.
  • FIG. 13 is an experimental graph showing a time-dependent resistance acting on a vessel having vortex generating pins having different lengths.
  • the resistance change was about 0.5%. That is, when the length of the vortex generating pin 30 is 1 to 3.5% of the length of the hull, it may bring about a 4.5% or more resistance reduction effect than when the vortex generating pin 30 is not present.
  • the vortex generating pins 30 are arranged such that the angle of attack with the reference stream line Sr 'is 10 °. Referring to FIG. 14, when the length of the vortex generating pin 30 is 1.4%, it can be seen that the velocity distribution at the top of the propeller rotating surface is largest. That is, in terms of cavitation suppression, the length of the vortex generating pin 30 preferably has a length of about 1.4%, that is, about 1 to 2%.
  • the optimum point (Po) is the vortex generating pin 30 is arranged to straighten the rotational flow near the propeller 20, to simplify the complex flow to increase the thrust efficiency
  • the resistance is reduced, and the flow velocity of the upper end of the propeller 20 is increased, thereby reducing the stern vibration caused by the cavitation.
  • the optimal point Po from the reference point Pr and the reference stream line Sr which can be known from the simulation result without the vortex generating pin 30 without going through a number of simulations, which are time-consuming and expensive.

Abstract

According to one embodiment of the present invention, a ship comprises: a hull; a propeller provided at the rear of the hull; and vortex generating fins respectively arranged at optimal points (Po) of the port and the starboard of the hull, and generating a vortex so as to change a flow field passing a rotational surface of the propeller. The optimal point (Po) is positioned 0-0.1 stations apart toward a stem along a reference streamline (Sr), in which a limiting streamline flowing along the surface of the hull passes a reference point (Pr), which is closest to the stem, among the intersecting points when viewed from the side of the hull, when the flow field around the hull is simulated on the assumption that the ship operates at a design speed before the vortex generating fins are arranged on the hull. The reference streamline (Sr) is the limiting streamline positioned lower at the stem side, between two limiting streamlines passing the reference point (Pr).

Description

와류 생성핀을 포함하는 선박Vessels containing vortex generating pins
본 발명은 선체 주위에 흐르는 유체의 흐름을 조절하여 프로펠러의 효율을 향상시키고 선체의 저항을 감소시키는 와류 생성핀을 포함하는 선박에 관한 것이다.The present invention relates to a vessel comprising a vortex generating pin for regulating the flow of fluid flowing around the hull to improve the efficiency of the propeller and reduce the resistance of the hull.
저속 혹은 중속 비대선에는 중앙평행부의 선측 하단으로부터 선미로 이동하는 한 쌍의 강한 빌지 볼텍스(bilge vortex)가 존재한다. 이러한 빌지 볼텍스는 프로펠러 상부면으로 유입되고, 와류가 생성되는 지점에서부터 프로펠러까지는 저속영역(hook shape)이 된다. 이러한 저속영역은 프로펠러 회전면에서의 속도 분포를 불균일하게 하여 프로펠러의 성능을 저하시키는 요인이 된다. There is a pair of strong bilge vortices that move from the bottom of the side of the center parallel to the stern at low or medium speed hypertrophy. The bilge vortex flows into the propeller upper surface and becomes a hook shape from the point where the vortex is generated to the propeller. This low speed region causes non-uniform velocity distribution on the propeller rotational surface, which causes deterioration of the performance of the propeller.
최근 선박의 대형화가 진행됨에 따라 이러한 저속영역의 크기가 증가하고, 공동 현상(cavitation)으로 인한 선체 진동 문제가 발생하여 이를 해결하는 것이 시급한 현안으로 되고 있다. 이때 선체와 프로펠러의 모양을 그대로 두고, 프로펠러의 회전면에 유입되는 축방향 속도분포의 불균일성을 완화하는 방안으로 와류 생성기(vortex generator) 또는 와류 생성핀(vortex generating fin)과 같은 부가물을 부착시키는 방법이 제안되고 있다.Recently, as the size of the ship progresses, the size of the low speed region increases, and a problem of hull vibration caused by the cavitation occurs, which is an urgent issue. At this time, the shape of the hull and the propeller is left as it is, and a method of attaching an adduct such as a vortex generator or a vortex generating fin in order to alleviate the nonuniformity of the axial velocity distribution flowing into the rotating surface of the propeller. Is being proposed.
저속 선박이 일정 속도로 직진할 때, 선체평행부의 주위의 유체는 선체의 측면을 따라 평행하게 흐른다. 그러나 선체평행부의 후방에서는 선체의 측면에 평행하게 흐르는 스트림라인(유선, streamline)이 프로펠러의 설치를 위해 경사면의 하측에 선미 쪽으로 유선형으로 돌출된 돌출부를 지나기 때문에, 방향이 꺾어져 프로펠러의 허브(hub)를 향하는 하강류가 발생한다. When the low speed vessel travels at a constant speed, the fluid around the hull parallel flows parallel along the side of the hull. However, at the rear of the hull parallel part, the streamline flowing in parallel to the side of the hull crosses the streamlined protrusion protruding toward the stern at the lower side of the inclined surface for the installation of the propeller. Downflow to) occurs.
한편, 선체 바닥의 스트림라인은 빌지 볼텍스(bilge vortex)를 일으키며 프로펠러의 허브를 향하기 때문에, 프로펠러 근처의 선미부에서는 상승류가 발생한다. 이때, 선체를 측면에서 바라보면 상기 하강류와 상승류는 서로 위아래로 교차하게 된다. 한편, 이와 같은 하강류와 상승류는 프로펠러가 부착되는 허브 근처에서 회전하며 흐르는 회전류를 형성하여 프로펠러의 추진 성능을 약화시킨다.On the other hand, since the streamline at the bottom of the hull causes a bilge vortex and faces the hub of the propeller, upward flow occurs at the stern near the propeller. At this time, the downward flow and the upward flow cross each other up and down when looking at the hull from the side. On the other hand, such downflow and upflow form a rotating flow flowing around the hub to which the propeller is attached to weaken the propulsion performance of the propeller.
즉, 선미부의 형상이 급격하게 변하는 저속선은 선미부에서 한계 스트림라인이 선체의 형상을 따라가지 못하고 이탈하는 경우가 생겨, 유동 분리 현상과 함께 저항의 증가가 발생한다. That is, in the low speed vessel in which the shape of the stern portion is rapidly changed, the limit stream line may deviate from the shape of the hull at the stern portion, and the resistance increases along with the flow separation phenomenon.
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로써, 와류(vortex)를 발생시켜 상기 프로펠러의 회전면을 지나는 유동장을 변화시키는 와류 생성핀을 통해 선체의 저항 및 공동 현상(cavitation)에 의한 진동을 감소시키고 프로펠러의 추력 효율을 높일 수 있는 선박을 제공하는 것을 목적으로 한다. The present invention is to solve the various problems including the above problems, the resistance and cavitation of the hull through the vortex generating pin to generate a vortex to change the flow field passing through the rotating surface of the propeller It is an object of the present invention to provide a vessel that can reduce vibrations and increase thrust efficiency of propellers.
본 발명의 일 실시예에 따른 선박은, 선체; 상기 선체의 후미에 설치되는 프로펠러; 및 상기 선체의 좌현과 우현의 최적 지점(Po)에 각각 배치되고, 와류(vortex)를 발생시켜 상기 프로펠러의 회전면을 지나는 유동장을 변화시키는 와류 생성핀(vortex generating fin);을 포함한다. Ship according to an embodiment of the present invention, the hull; A propeller installed at the rear of the hull; And a vortex generating fin disposed at an optimum point Po of the port and starboard of the hull, respectively, to generate a vortex to change the flow field passing through the rotating surface of the propeller.
상기 최적 지점(Po)은, 상기 선체에 상기 와류 생성핀이 배치되기 전에, 상기 선박이 설계 속도로 기동함을 가정하여 상기 선체 주위의 유동장을 시뮬레이션할 때, 상기 선체의 표면을 따라 흐르는 한계 스트림라인(limiting streamline)이 상기 선체의 측면에서 보았을 때 교차하는 지점 중 선수 쪽에 가장 가까운 기준 지점(Pr)을 지나는 기준 스트림라인(Sr)을 따라 선수 방향으로 0 내지 0.1 스테이션 떨어진 곳에 위치한다.The optimal point Po is a limiting stream flowing along the surface of the hull when simulating the flow field around the hull assuming that the vessel is maneuvering at a design speed before the vortex generating pin is placed on the hull. A limiting streamline is located 0 to 0.1 stations away in the bow direction along the reference stream line Sr passing through the reference point Pr closest to the bow side of the intersection points when viewed from the side of the hull.
상기 기준 스트림라인은, 상기 기준 지점을 지나는 두 개의 한계 스트림라인 중 선수 쪽에서 더 아래에 위치한 한계 스트림라인이다. The reference streamline is a limit streamline located further down the bow side of the two limit streamlines passing the reference point.
일 실시예에 있어서, 상기 와류 생성핀은, 상기 기준 스트림라인과의 받음각이 2~20°가 되도록 배치될 수 있다. In one embodiment, the vortex generation pin may be arranged such that the angle of attack with the reference stream line is 2 ~ 20 °.
일 실시예에 있어서, 상기 와류 생성핀의 길이는 상기 선체의 수선 길이의 1% 내지 3.5%일 수 있다. In one embodiment, the length of the vortex generating pin may be 1% to 3.5% of the repair length of the hull.
일 실시예에 있어서, 상기 와류 생성핀의 높이는 상기 선체의 수선 길이의 0.1 내지 0.2%이고, 두께는 약 5mm 내지 15mm일 수 있다. In one embodiment, the height of the vortex generating pin is 0.1 to 0.2% of the repair length of the hull, the thickness may be about 5mm to 15mm.
일 실시예에 있어서, 선박의 설계 속도는 약 15 노트(knot) 이하일 수 있고, 선체의 방형 계수(block coefficient)는 0.8 내지 0.85일 수 있다. 즉 본 발명에 따른 선박은 저속선으로 분류되는 선박일 수 있다.In one embodiment, the design speed of the vessel may be about 15 knots or less, and the block coefficient of the hull may be 0.8 to 0.85. That is, the vessel according to the present invention may be a vessel classified as a low speed vessel.
본 발명의 일 실시예에 의한 선박에 의하면, 최적 지점(Po)은 와류 생성핀이 배치되어 프로펠러 근처에서의 회전 유동을 직진화하고, 복잡한 유동을 단순화시켜 추력 효율을 높이고, 경계층의 두께를 얇게 하여 저항이 감소하며, 프로펠러 상단부의 유속이 빨라지므로 공동 현상(cavitation)에 의한 선미 진동이 감소한다. 한편, 상당한 시간과 비용이 소모되는 시뮬레이션을 여러 번 거치지 않고서도, 와류 생성핀이 없는 상태에서의 시뮬레이션 결과로부터 알 수 있는 기준 지점 및 기준 스트림라인으로부터 최적 지점을 쉽게 도출할 수 있으므로, 선박의 설계 비용과 시간이 절약된다. According to the ship according to an embodiment of the present invention, the optimum point Po is the vortex generating pin is arranged to straighten the rotational flow near the propeller, to simplify the complex flow to increase the thrust efficiency, to thin the thickness of the boundary layer As a result, the resistance is reduced, and the flow velocity of the upper end of the propeller is increased, thereby reducing the stern vibration caused by the cavitation. On the other hand, the ship's design can be easily derived from the reference point and the reference streamline, which can be known from the simulation results without the vortex generating pin, without having to go through a number of time-consuming and costly simulations. Save money and time.
도 1은 전산유체역학(CFD)을 이용한 컴퓨터 시뮬레이션을 통해 도출한, 와류 생성핀이 배치되기 전 선미부의 우현을 따라 흐르는 한계 스트림라인(limiting streamline)을 나타낸 사시도이다.FIG. 1 is a perspective view showing a limiting streamline flowing along the starboard of a stern before the vortex generating pin is disposed, which is obtained through computer simulation using computational fluid dynamics (CFD).
도 2는 와류 생성핀이 배치되기 전, 선미부의 우현을 따라 흐르는 한계 스트림라인을 개략적으로 나타낸 우측면도이다.FIG. 2 is a right side view schematically showing the limit stream line flowing along the starboard of the stern before the vortex generating pins are disposed; FIG.
도 3은 와류 생성핀이 배치된 후, 선미부의 우현을 따라 흐르는 한계 스트림라인을 개략적으로 나타낸 우측면도이다.3 is a right side view schematically showing the limit stream line flowing along the starboard of the stern after the vortex generating pins are disposed.
도 4는 전산유체역학(CFD)을 이용한 컴퓨터 시뮬레이션을 통해 도출한, 와류 생성핀이 배치된 후 선미부의 우현을 따라 흐르는 한계 스트림라인을 나타낸 사시도이다.4 is a perspective view showing a limit stream line flowing along the starboard of the stern after the vortex generating pins are disposed through computer simulation using computational fluid dynamics (CFD).
도 5는 와류 생성핀(30)이 배치된 선박 및 선체 주위의 유체의 속도 분포를 나타낸 그림이다. 5 is a diagram showing the velocity distribution of the fluid around the ship and the hull in which the vortex generating pins 30 are arranged.
도 6은 와류 생성핀 유무에 따른 저항의 변화를 나타낸 실험 그래프이다.6 is an experimental graph showing a change in resistance according to the presence or absence of vortex generating pins.
도 7은 도 4의 (a)의 P1 선을 따라 자른 단면상에서, 와류 생성핀의 유무에 따른 스트림라인의 등유속선도를 비교한 그림이다. FIG. 7 is a diagram comparing isoflow velocity diagrams of stream lines with or without vortex generating pins in a cross section taken along line P1 of FIG. 4A.
도 8은 기준 스트림라인과의 받음각(AOA)이 다른 와류 생성핀이 배치된 선박을 개략적으로 나타낸 우측면도이다.FIG. 8 is a right side view schematically illustrating a vessel in which vortex generating pins having different angles of attack (AOA) with reference stream lines are arranged.
도 9은 각각 다른 받음각을 가지는 와류 생성핀을 가지는 선박에 작용하는 저항을 시간에 따라 나타낸 실험 그래프이다. FIG. 9 is an experimental graph showing a time-dependent resistance acting on a vessel having a vortex generating pin having different angles of attack.
도 10은 다른 받음각을 가지는 와류 생성핀을 가지는 선박의 프로펠러를 지나는 단면에서의 등유속선도를 비교한 그림이다. 10 is a diagram comparing the isoflow velocity diagram at the cross section through a propeller of a vessel having a vortex generating pin with different angles of attack.
도 11은 다양한 길이의 와류 생성핀을 표현한 선체 선미부의 사시도이다.11 is a perspective view of the hull stern showing the vortex generating pins of various lengths.
도 12는 각각 다른 길이를 가지는 와류 생성핀을 가지는 선박에 주위를 흐르는 한계 스트림라인을 시뮬레이션하여 나타낸 사시도이다.12 is a perspective view showing a simulation of a limit stream line flowing around a ship having vortex generating pins having different lengths.
도 13은 각각 다른 길이를 가지는 와류 생성핀을 가지는 선박에 작용하는 저항을 시간에 따라 나타낸 실험 그래프이다.FIG. 13 is an experimental graph showing a time-dependent resistance acting on a vessel having vortex generating pins having different lengths.
도 14는 와류 생성핀의 길이에 따른 등유속선도를 비교한 그림이다.14 is a diagram comparing the isoflow velocity diagram according to the length of the vortex generating pins.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다.As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail. Effects and features of the present invention, and methods of achieving them will be apparent with reference to the embodiments described below in detail together with the drawings. However, the present invention is not limited to the embodiments disclosed below but may be implemented in various forms.
이하의 실시예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용된다.In the following embodiments, the terms first, second, etc. are used for the purpose of distinguishing one component from other components rather than having a limiting meaning.
이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.In the following examples, the singular forms "a", "an" and "the" include plural forms unless the context clearly indicates otherwise.
이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.In the following examples, the terms including or having have meant that there is a feature or component described in the specification and does not preclude the possibility of adding one or more other features or components.
도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.In the drawings, components may be exaggerated or reduced in size for convenience of description. For example, the size and thickness of each component shown in the drawings are arbitrarily shown for convenience of description, and thus the present invention is not necessarily limited to the illustrated.
본 명세서에서, x축은 선박의 선수와 선미를 지나는 축이고, y축은 선박의 좌현(port)과 우현(starboard)을 지나는 축이며, z축은 선박의 선저와 상갑판을 지나는 축이다.In the present specification, the x axis is the axis passing through the ship's bow and stern, the y axis is the axis passing through the ship's port and starboard, and the z axis is the axis passing through the ship's bottom and upper deck.
본 명세서에서, 설계 속도란 선박에 장착되는 주 엔진(main engine)의 최대 출력의 85% 또는 90%에서 낼 수 있는 속도로, 선박 건조계약에서의 계약조건으로 조선소가 만족시켜야 하는 속도를 의미한다. In the present specification, the design speed is a speed that can be achieved at 85% or 90% of the maximum power of the main engine mounted on the ship, and means the speed that the shipyard must satisfy as a contract condition in the ship construction contract. .
본 명세서에서, 스테이션(station, ST)이란 수선 간 길이(length between perpendicular, L.B.P.)를 20개의 동일 구간으로 나눈 후 각각의 구간 간의 경계를 칭하는 말이다. 스테이션의 번호는 선미부에서부터 순서대로 부여되고, 첫번째 스테이션의 번호는 0번, 마지막 스테이션의 번호는 20번이다. 수선 간 길이(L.B.P.)는 선수수선(fore perpendicular, F.P.)과 선미수선(after perpendicular, A.P.)간의 거리를 의미한다. 선수수선(F.P.)은 계획 만재 흘수선(designed load water line, D.L.W.L.)과 선수재의 앞면과의 교점을 지나고 연직으로 그은 선을 의미한다. 선미수선(A.P.)은 명확한 타주(rudder post)를 가지는 선박에서는 타주의 뒷면에서 연직으로 그은 선을 의미하며, 그렇지 않은 선박에서는 타두재(rudder stock)의 중심선과 계획 만재 흘수선과의 교점을 지나는 연직선이다.In the present specification, a station (ST) refers to a boundary between respective sections after dividing the length between perpendicular (L.B.P.) into 20 equal sections. The stations are numbered sequentially from the stern, with the first station numbering 0 and the last station numbering 20. Length between repairs (L.B.P.) means the distance between the fore perpendicular (F.P.) and the after perpendicular (A.P.). F.P. means a line drawn vertically after the intersection of the designed load water line (D.L.W.L.) and the front of the forebody. A stern line (AP) means a line drawn vertically from the back of the other state on ships with a clear rudder post; otherwise, a vertical line passing through the intersection of the center line of the rudder stock and the planned full line draft to be.
본 명세서에서, 선체의 수선 길이(length water line, L.W.L.)란 계획 만재 흘수선에의 전면이 수면과 만나는 곳으로부터 선미 쪽의 수면이 만나는 곳까지의 거리를 의미한다.In the present specification, the length water line (L.W.L.) of the hull means the distance from where the front surface of the planned full draft line meets the water surface to where the water surface on the stern side meets.
본 명세서에서는 우현(starboard)을 중심으로 서술하였으나, 후술하는 원리 및 효과는 좌현(port)에서도 대칭적으로 적용될 수 있음은 물론이다. In the present specification, the starboard is described as a center, but the principles and effects described below may be applied symmetrically to the port.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 같거나 대응하는 구성 요소는 같은 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, and the same or corresponding components will be denoted by the same reference numerals, and redundant description thereof will be omitted. .
도 1은 전산유체역학(CFD)을 이용한 컴퓨터 시뮬레이션을 통해 도출한, 와류 생성핀(도 3, 30)이 배치되기 전 선미부의 우현(starboard)을 따라 흐르는 한계 스트림라인(limiting streamline, S)을 나타낸 사시도이다. 도 1에서는 선체 중 선미부의 우현(starboard)만을 도시하였다. Figure 1 shows a limiting streamline (S) flowing along the starboard at the stern before the vortex generating pins (FIGS. 3 and 30), which are derived from computer simulation using computational fluid dynamics (CFD), It is a perspective view shown. 1 shows only the starboard of the stern part of the hull.
도 1을 참조하면, 와류 생성핀(30)이 배치되기 전의 선박이 설계 속도로 기동함을 가정하였을 때의 선체(10) 주위의 유동장(flow field) 중 선체(10) 표면을 따라 흐르는 한계 스트림라인(S)이 도시되어 있다. 이하에서, 한계 스트림라인은 스트림라인으로도 약칭하기로 한다. 이와 같은 스트림라인(S)의 모양은 시뮬레이션을 통해 알아낼 수 있는데, 이때 '시뮬레이션'이란, 전산유체역학(CFD)을 이용한 컴퓨터 시뮬레이션 또는 모형 선박을 이용한 모형 시뮬레이션을 포함할 수 있다. 이때 시뮬레이션에을 통해 도출되는 한계 스트림라인(S)의 모양은 선박의 모양 및 설계 속도(또는 선박 주위를 지나는 유체의 속도)마다 다를 수 있다. 그러나 모양 및 설계 속도가 고정되는 경우, 선체(10) 주위의 한계 스트림라인(S)의 모양은 시뮬레이션을 통해 명확하게 정의될 수 있다. Referring to FIG. 1, the limit stream flowing along the surface of the hull 10 in the flow field around the hull 10 assuming that the vessel before the vortex generating pin 30 is placed starts at the design speed. Line S is shown. In the following, the limit stream line will be abbreviated as stream line. Such a shape of the stream line (S) can be found through a simulation, where 'simulation' may include a computer simulation using computational fluid dynamics (CFD) or a model simulation using a model ship. In this case, the shape of the limit stream line S derived through the simulation may be different according to the shape of the ship and the design speed (or the speed of the fluid passing around the ship). However, if the shape and design speed are fixed, the shape of the limit streamline S around the hull 10 can be clearly defined through simulation.
도 1의 실험예에서는, 선저와 설계 흘수(design draft, Td) 사이의 높이 50% 및 2 스테이션(2ST) 부근에서 선체(10)의 측면에 평행하게 흐르는 스트림라인은 프로펠러의 허브(hub, 20H)를 향하여, 하강류가 발생하였다. 또한 선저에서 흐르는 스트림라인은 빌지 볼텍스(bilge vortex, Vb)를 일으키며 허브(20H)를 향하여, 상승류가 발생하였다. 상술하였듯, 이러한 하강류와 상승류는 프로펠러가 부착되는 허브(20H) 근처에서 회전하며 흐르는 회전류를 형성하여 프로펠러의 추진 성능을 약화시킨다. In the experimental example of FIG. 1, the streamline flowing parallel to the side of the hull 10 near the two stations 2ST and 50% in height between the bottom and the design draft Td is the hub of the propeller hub, 20H. Towards) downward flow occurred. In addition, the stream line flowing from the bottom causes bilge vortex (V b ), and upward flow occurred toward the hub 20H. As described above, such downflows and upward flows form a rotating flow that rotates near the hub 20H to which the propeller is attached, thereby weakening propulsion performance of the propeller.
본 발명의 일 실시예는 선체(10)의 좌현, 우현에 각각 와류 생성핀(30)을 배치시켜 상술한 문제를 해결한다. 즉 본 발명의 일 실시예에 의한 선박은, 선체(10); 선체의 후미에 설치되는 프로펠러(20); 및 선체(10)의 좌현과 우현의 선미부의 최적 지점(Po)에 각각 배치되고, 와류를 발생시켜 프로펠러(20)의 회전면의 유동장을 변화시키는 와류 생성핀(30);을 포함한다. One embodiment of the present invention solves the above-described problem by placing the vortex generating pins 30 on the port and starboard of the hull 10, respectively. That is, the ship according to an embodiment of the present invention, the hull 10; A propeller 20 installed at the rear of the hull; And a vortex generating pin 30 disposed at an optimum point Po of the stern portion of the port and starboard of the hull 10 to generate a vortex to change the flow field of the rotating surface of the propeller 20.
이때 본 발명에서는 와류 생성핀(30)이 배치되는 최적 지점(Po)을 도출하기 위하여 '기준 지점(reference point, Pr)'과 '기준 스트림라인(reference streamline, Sr)'이라는 개념을 이용하는데, 이하 이에 관해 서술한다. At this time, the present invention uses the concept of 'reference point (Pr)' and 'reference streamline (Sr)' to derive the optimum point (Po) in which the vortex generating pins 30 are disposed. This is described below.
도 2는 와류 생성핀(30)이 배치되기 전, 선미부의 우현(starboard)을 따라 흐르는 한계 스트림라인(S)을 개략적으로 나타낸 우측면도이다. 도 2에서는 선미 흘수(Td)의 아랫부분만을 도시하였다. FIG. 2 is a right side view schematically showing the limit stream line S flowing along the starboard of the stern before the vortex generating pin 30 is disposed. In FIG. 2, only the lower portion of the stern draft Td is illustrated.
스트림라인은 유체 입자의 시간에 따른 경로를 의미한다. 이러한 정의에 따르면, 스트림라인은 입체적으로 보았을 때 서로 교차하지 않는다. 그러나 도 2와 같이 특정 방향에서 선체를 바라보는 경우, 스트림라인은 서로 교차하는 것처럼 보이게 된다. Streamline refers to the path of fluid particles over time. According to this definition, streamlines do not intersect with each other when viewed in three dimensions. However, when looking at the hull in a specific direction as shown in Figure 2, the streamlines appear to cross each other.
본 명세서에서, 스트림라인이 '교차'한다는 것은 선체를 y축에 평행한 방향으로 바라볼 때 스트림라인의 xz-평면에 대한 '정사영(projection)'이 교차함을 의미한다. 이때, 컴퓨터 시뮬레이션의 경우 모델링한 선체를 바라보는 각도를 조절하여, 모형 시뮬레이션의 경우 y축에 평행한 시선으로 사진을 찍는 등의 방법을 통해 스트림라인의 정사영이 xz-평면 상에서 교차하는 지점이 어디인지를 파악할 수 있다. 도 2에서는 스트림라인이 교차하는 지점 중 일부를 x자로 표시하였다. In the present specification, 'intersecting' the streamline means that the 'projection' of the xz-plane of the streamline intersects when the hull is viewed in a direction parallel to the y axis. In this case, in computer simulation, the angle of view of the modeled hull is adjusted, and in the case of model simulation, the photograph is taken with a line of sight parallel to the y axis. I can understand it. In FIG. 2, some of the intersection points of the stream lines are indicated by x characters.
이때, 한계 스트림라인(S)이 교차하는 여러 개의 지점 중 선수 쪽에 가장 가까운 지점을 기준 지점(Pr)으로 정의한다. 즉 xz-평면 상에서, 기준 지점은 한계 스트림라인이 교차하는 여러 개의 지점 중 x 좌표가 가장 큰 지점을 의미한다. 이때 기준 지점(Pr)은 하강류와 상승류가 서로 교차하기 시작하는 지점을 의미할 수 있다. 이러한 기준 지점(Pr)의 위치는 컴퓨터 시뮬레이션의 경우 격자(lattice)의 크기, 모형 시뮬레이션의 경우 각 스트림라인을 표현하는 페인트 선의 간격의 오차 범위 내에서 명확하게 정의될 수 있다. At this time, the point closest to the player side among the several points where the limit stream line S intersects is defined as the reference point Pr. That is, on the xz-plane, the reference point means the point where the x coordinate is largest among several points where the limit streamline intersects. In this case, the reference point Pr may mean a point where the downflow and the upstream begin to cross each other. The position of the reference point Pr may be clearly defined within an error range of the size of the lattice in the case of computer simulation and the spacing of the paint lines representing each streamline in the model simulation.
즉 기준 지점(Pr)의 위치는, 선체(10)에 와류 생성핀(30)이 배치되기 전에, 선박이 설계 속도로 기동함을 가정하여 선체 주위의 유동장을 시뮬레이션함으로써 도출할 수 있다. That is, the position of the reference point Pr can be derived by simulating the flow field around the hull, assuming that the ship starts at a design speed before the vortex generating pins 30 are arranged on the hull 10.
이하 기준 지점(Pr)을 지나는 기준 스트림라인(Sr)을 정의한다. xz-평면 상에서 스트림라인(의 정사영)이 서로 '교차'하는 지점을 기준 지점으로 정의하였으므로, 두 개의 스트림라인(의 정사영)이 기준 지점(Pr)을 지나게 된다. 도 2에서는 이러한 두 개의 스트림라인을 Sr, Sx로 표현하였다. 이때 기준 스트림라인(Sr)은 두 개의 스트림라인 중 선수 쪽에서 더 아래(선저 쪽)에 위치한 스트림라인을 의미한다. 즉 기준 스트림라인(Sr)은 상승류에 포함되는 스트림라인 중 하나일 수 있으며, 선체 바닥으로부터 빌지 볼텍스(bilge vortex, Vb)를 일으켜 선체 표면에서부터 박리된(separated) 스트림라인 중 하나일 수 있다. 반면 기준 지점을 지나는 다른 스트림라인(Sx)은 하강류에 포함되는 스트림라인 중 하나일 수 있다. Hereinafter, the reference stream line Sr passing through the reference point Pr is defined. Since the point at which the streamlines (orthogonal projections of) are 'intersected' with each other on the xz-plane is defined as a reference point, the two streamlines (orthogonal projections of) pass through the reference point Pr. In FIG. 2, these two streamlines are represented as Sr and Sx. In this case, the reference stream line Sr means a stream line located further below (the bottom side) from the athlete side of the two stream lines. That is, the reference stream line Sr may be one of streamlines included in the upstream, and may be one of streamlines separated from the hull surface by generating a bilge vortex (Vb) from the bottom of the hull. On the other hand, another stream line (Sx) passing through the reference point may be one of the stream lines included in the down stream.
와류 생성핀(30)이 배치되는 최적 지점(Po)은 상술한 기준 지점(Pr) 및 기준 스트림라인(Sr)을 이용하여 도출된다. The optimum point Po on which the vortex generation pin 30 is disposed is derived using the reference point Pr and the reference stream line Sr described above.
본 발명에 따르면, 와류 생성핀(30)이 배치되는 선미부의 최적 지점(Po)은, 기준 스트림라인(Sr)을 따라 선수 방향으로 0 내지 0.1 스테이션 떨어진 곳에 위치한다. 상기 0 내지 0.1 스테이션은 기준 스트림라인의 곡선 길이를 기준으로 하는 것이 아닌 선박의 x 좌표를 기준으로 한다. 도 2를 참조하면, 기준 지점(Pr)을 지나고 z축에 평행한 선(SSa) 및 상기 선(SSa)에서 0.1ST 만큼 떨어진 평행선(SSb)이 도시되어 있다. 도 2에서는 설명의 편의를 위하여 0.1ST의 길이를 과장하여 표현하였다.According to the present invention, the optimum point Po of the stern portion in which the vortex generating pins 30 are disposed is located at 0 to 0.1 station in the bow direction along the reference stream line Sr. The 0 to 0.1 stations are based on the x coordinate of the ship, not based on the curve length of the reference streamline. Referring to FIG. 2, a line SSa passing through the reference point Pr and parallel to the z-axis and a parallel line SSb separated by 0.1ST from the line SSa is shown. In FIG. 2, the length of 0.1ST is exaggerated for convenience of description.
이때 각 선(SSa, SSb)과 기준 스트림라인(Sr)이 만나는 점을 A, B라 할 때, 와류 생성핀(30)이 배치될 최적 지점(Po)은 곡선 AB의 어느 한 지점, 즉 도 2에서 두껍게 표현한 곡선에 놓이게 된다. 이때 와류 생성핀(30)은 선수에 가장 가까운 지점이 최적 지점(Po)에 위치하도록 배치될 수 있다.At this time, when the point where each line (SSa, SSb) and the reference stream line (Sr) meets A, B, the optimum point (Po) where the vortex generating pin 30 is to be arranged is any point of the curve AB, that is, It is placed on the thicker curve in 2. At this time, the vortex generation pin 30 may be disposed such that the point closest to the bow is positioned at the optimum point Po.
본 발명자는 다양한 저속선의 시뮬레이션을 통해, 상술한 기준 지점(Pr) 및 기준 스트림라인(Sr)으로부터 최적 지점(Po)을 도출할 수 있음은 특정 선박이 아니라 다양한 선박에 대해 공통으로 적용되는 것임을 발견하였다. The inventors found out that through the simulation of various low speed vessels, the optimum point Po can be derived from the above-mentioned reference point Pr and the reference stream line Sr, which is applied to various vessels, not specific vessels. It was.
도 3은 와류 생성핀(30)이 배치된 후, 선미부의 우현을 따라 흐르는 한계 스트림라인(S)을 개략적으로 나타낸 우측면도이다. 도 3에서도 역시 선미 흘수(Td)의 아랫부분만을 도시하였다.3 is a right side view schematically showing the limit stream line S flowing along the starboard of the stern after the vortex generating pin 30 is disposed. 3 also shows only the lower portion of the stern draft Td.
도 3을 참조하면, 와류 생성핀(30)에 의해, 와류 생성핀 뒤쪽(선미 쪽)의 유동장이 변하여, 경계층의 두께 및 프로펠러(20)의 회전면을 지나는 유동장이 변한다. 반면, 와류 생성핀의 앞쪽(선수 쪽)의 유동장은 변하지 않는다. 따라서 와류 생성핀(30) 부착 후에도, 와류 생성핀 앞쪽에 한하여는 기준 스트림라인이 그대로 유지된다(이하에서는 와류 생성핀 앞쪽의 기준 스트림라인을 Sr' 로 칭하기로 한다). 따라서 와류 생성핀의 시위선(chord line)과 기준 스트림라인(Sr') 사이의 받음각(angle of attack, AOA)은 와류 생성핀(30)의 유무에 따른 유동장의 변화와 무관하게 정의될 수 있는데, 이에 대하여는 후술한다.Referring to FIG. 3, the flow field behind the vortex generating pin 30 (stern side) is changed by the vortex generating pin 30 to change the thickness of the boundary layer and the flow field passing through the rotating surface of the propeller 20. On the other hand, the flow field in front of the vortex generating pin (the bow side) does not change. Therefore, even after the vortex generating pin 30 is attached, the reference stream line is maintained as it is only in front of the vortex generating pin (hereinafter, the reference stream line in front of the vortex generating pin will be referred to as Sr '). Therefore, the angle of attack (AOA) between the chord line of the vortex generating pin and the reference stream line Sr 'can be defined irrespective of the change in the flow field with or without the vortex generating pin 30. This will be described later.
도 4는 전산유체역학(CFD)을 이용한 컴퓨터 시뮬레이션을 통해 도출한, 와류 생성핀(30)이 배치된 후 선미부의 우현을 따라 흐르는 한계 스트림라인(S)을 나타낸 사시도이다. 도 4에서는 선체(10) 중 선미부의 우현만을 도시하였다. 4 is a perspective view showing the limit stream line S flowing along the starboard of the stern after the vortex generating pin 30 is disposed, which is derived through computer simulation using computational fluid dynamics (CFD). In FIG. 4, only the starboard of the stern part of the hull 10 is illustrated.
도 1과 도 4의 실험예에서, 선체(10)의 수선 길이는 약 181m이고, 와류 생성핀(30)의 위치는 기준 지점으로부터 선수 방향으로 약 30cm, 즉 약 0.03 스테이션만큼 떨어진 곳이었다. 한편, 와류 생성핀(30)은 기준 스트림라인(Sr)과의 각도, 즉 받음각이 약 6°가 되도록 선미 쪽이 더 높고 선수 쪽이 더 낮게 배치되었다. 이때 와류 생성핀(30)이 선저와 이루는 각도는 약 21.42°였다. 1 and 4, the repair length of the hull 10 was about 181 m, and the position of the vortex generating pin 30 was about 30 cm in the bow direction from the reference point, that is, about 0.03 stations apart. On the other hand, the vortex generating pin 30 has a higher stern side and a lower bow side so that the angle with the reference stream line Sr, that is, the angle of attack is about 6 °. At this time, the angle between the vortex generating pin 30 and the bottom was about 21.42 °.
도 4와 도 1을 비교하면, 와류 생성핀(30) 배치 후에는 프로펠러(도 4에서 미도시)가 설치되는 허브(20H) 주위의 회전류가 직진류에 가깝게 변한다. 즉 와류 생성핀(30)은, 선미부 주위의 복잡한 유동장의 모양을 단순화시키는 역할을 수행할 수 있다. 이에 따라 프로펠러의 회전면을 통과하는 유동장이 균일해져, 프로펠러의 추진 성능이 향상된다. Comparing FIG. 4 with FIG. 1, after the vortex generating pin 30 is disposed, the rotational flow around the hub 20H on which the propeller (not shown in FIG. 4) is installed changes close to the straight stream. That is, the vortex generating pin 30 may serve to simplify the shape of the complex flow field around the stern. As a result, the flow field passing through the rotating surface of the propeller becomes uniform, and the propulsion performance of the propeller is improved.
이렇게 와류 생성핀(30)을 배치하는 경우 선미부에서의 경계층(boundary layer)의 두께가 얇아져 선체에 작용하는 저항이 전체적으로 감소하는데, 이하 이에 대하여 서술한다. When the vortex generating pins 30 are arranged in this way, the thickness of the boundary layer at the stern portion becomes thin, thereby reducing the resistance acting on the hull as a whole.
도 5는 와류 생성핀(30)이 배치된 선박 및 선체(10) 주위의 유체의 속도 분포를 나타낸 그림이다. 도 5의 (a)는 선미부를 우측에서 바라본 우측면도이며, 도 5의 (b) 내지 (d)는 각각 (a)에서의 P2, P3, P4선을 따라 자른 단면상에서 스트림라인의 등유속선도 분포를 나타낸다. 이때 각 등유속선도의 좌측은 와류 생성핀(30)이 부착된 상태를, 우측은 와류 생성핀이 부착되지 않은 상태를 나타낸다. 5 is a diagram showing the velocity distribution of the fluid around the ship and the hull 10, the vortex generating pin 30 is disposed. (A) is a right side view which looked at the stern part from the right side, and (b)-(d) is the iso velocity diagram of a stream line in the cross section cut along the P2, P3, P4 line | wire in (a), respectively. Indicates a distribution. At this time, the left side of each isoflow velocity diagram shows a state in which the vortex generating pin 30 is attached, and the right side shows a state in which the vortex generating pin is not attached.
도 5의 (b) 내지 (d)에서 선체 표면 근처에서의 속도 분포를 보여주고 있으며, 선박의 속도를 10등분한 선으로 표시하고 있다. 이때 시뮬레이션한 선박의 설계 속도는 14 노트(knot) 였으며, 컴퓨터 시뮬레이션 상에서 프루드 수(Froude number)를 맞추기 위한 유체의 속도는 1.273m/s이었다. 이때 (b) 내지 (d) 등유속선도의 왼쪽과 오른쪽을 비교하면, 와류 생성핀(30)의 부착 여부에 따라 속도 분포의 차이가 발생하였다. 즉 와류 생성핀(30)이 부착된 왼쪽 그림에서는 오른쪽 그림과 비교하였을 때 선체의 하단 표면 주위를 흐르는 유체의 속도가 증가하였음을 확인할 수 있다. 즉 와류 생성핀(30)의 부착 여부에 따라 경계층의 두께에 차이가 발생하며, 이러한 차이에 의해 선체에 작용하는 저항에 차이가 발생하게 된다. 5 (b) to (d) show the speed distribution near the hull surface, and the speed of the ship is indicated by a line divided by ten. The design speed of the simulated vessel was 14 knots, and the speed of the fluid to match the Froude number in the computer simulation was 1.273 m / s. At this time, when comparing the left and right sides of the (b) to (d) iso velocity diagram, a difference in velocity distribution occurred depending on whether the vortex generating pin 30 was attached. That is, in the left figure where the vortex generating pin 30 is attached, it can be seen that the velocity of the fluid flowing around the lower surface of the hull is increased as compared with the right figure. That is, a difference occurs in the thickness of the boundary layer depending on whether or not the vortex generating pin 30 is attached, and the difference occurs in the resistance acting on the hull.
와류 생성핀(30) 자체는 선체(10) 주위를 흐르는 유체의 흐름을 방해하므로 저항으로 작용하게 되나, 선체(10) 주위의 유체의 속도를 증가시키는 방향으로 와류 생성핀(30) 뒤쪽의 유동장을 변화시키므로, 선박 전체에 작용하는 저항의 크기는 작아질 수 있다. The vortex generating pin 30 itself acts as a resistance because it hinders the flow of fluid flowing around the hull 10, but the flow field behind the vortex generating pin 30 in the direction of increasing the velocity of the fluid around the hull 10. By changing the size of the resistance acting on the entire ship can be reduced.
도 6은 와류 생성핀 유무에 따른 저항의 변화를 나타낸 실험 그래프이다. 도 6을 참조하면, 시간에 따른 저항 크기의 변화가 나타나 있다. 상기 실험예에서는 와류 생성핀이 기준 스트림라인을 따라 x축으로 30cm, 즉 약 0.03 스테이션만큼 떨어진 곳에서 받음각이 6°가 되도록 배치되었다. 이때 와류 생성핀을 부착한 경우, 와류 생성핀이 부착되지 않은 경우보다 평균적으로 저항이 약 5% 감소하였음을 확인할 수 있다. 6 is an experimental graph showing a change in resistance according to the presence or absence of vortex generating pins. Referring to FIG. 6, a change in resistance magnitude with time is shown. In the above experimental example, the vortex generating pin was arranged such that the angle of attack was 6 ° at a distance of 30 cm along the reference stream line, that is, about 0.03 stations. In this case, when the vortex generating pin is attached, the resistance is reduced by about 5% on average than when the vortex generating pin is not attached.
즉 본 발명의 일 실시예에 따르면, 선체의 좌우현의 최적 지점(Po)에 와류 생성핀(30)을 배치하는 것만으로도 저항을 약 5% 감소시킬 수 있다. 이때 최적 지점(Po)은 와류 생성핀(30)이 배치되지 않은 선체(10)의 시뮬레이션 결과로부터 바로 알 수 있으므로, 시뮬레이션을 여러 번 수행하지 않고서도 선박의 저항을 감소시킬 수 있는 와류 생성핀(30)의 위치를 알아낼 수 있게 된다. That is, according to an embodiment of the present invention, the resistance may be reduced by about 5% by merely placing the vortex generating pins 30 at the optimum points Po of the left and right strings of the hull. At this time, since the optimum point Po can be immediately known from the simulation result of the hull 10 in which the vortex generating pin 30 is not disposed, the vortex generating pin can reduce the resistance of the ship without performing the simulation several times. 30) can be found.
한편, 상술한 최적 지점(Po)에 와류 생성핀(30)을 배치하는 경우, 저항이 감소할 뿐만 아니라 공동 현상(cavitation)에 의한 진동 역시 감소하는 효과가 있는데, 이하 이에 관해 서술한다. On the other hand, when the vortex generating pin 30 is disposed at the optimum point Po described above, the resistance is reduced and the vibration caused by the cavitation is also reduced, which will be described below.
도 7은 도 4의 (a)의 P1 선을 따라 자른 단면상에서, 와류 생성핀의 유무에 따른 스트림라인의 등유속선도를 비교한 그림이다. FIG. 7 is a diagram comparing isoflow velocity diagrams of stream lines with or without vortex generating pins in a cross section taken along line P1 of FIG. 4A.
프로펠러의 허브(20H)를 중심으로 하여, 10시~2시 사이 영역에서의 유속이 빨라지는 경우, 공동 현상(cavitation)에 의한 진동을 줄일 수 있음이 알려져 있다. 즉 프로펠러의 위쪽에 유입되는 스트림라인의 유속을 빠르게 하면 진동을 감소시킬 수 있다. 이때 도 7의 하단 표시한 영역에서의 속도 분포를 보면 와류 생성핀을 부착한 경우(왼쪽), 와류 생성핀을 부착하지 않은 경우(오른쪽)보다 프로펠러의 위쪽에 유입되는 스트림라인의 속도가 상대적으로 빠름을 확인할 수 있다. It is known that the vibration caused by the cavitation can be reduced when the flow velocity in the region between 10 o'clock and 2 o'clock is accelerated around the hub 20H of the propeller. That is, by increasing the flow rate of the stream line flowing in the upper portion of the propeller, it is possible to reduce the vibration. In this case, the velocity distribution in the area shown in the lower part of FIG. 7 shows that the velocity of the stream line flowing in the upper portion of the propeller is relatively higher than when the vortex generating pin is attached (left) and the vortex generating pin is not attached (right). You can see it's fast.
본 발명의 일 실시예에 따르면, 한 번의 시뮬레이션으로부터 알 수 있는 기준 지점(Pr)으로부터 도출한 최적 지점(Po)에 와류 생성핀(30)을 배치해 선체 저항 및 공동 현상(caviation)에 의해 발생하는 진동을 감소시키는 효과를 얻을 수 있다. According to an embodiment of the present invention, the vortex generating pin 30 is disposed at the optimum point Po derived from the reference point Pr, which can be known from one simulation, and is generated by the hull resistance and the cavitation. The effect of reducing vibration can be obtained.
도 8은 기준 스트림라인과의 받음각(AOA)이 다른 와류 생성핀(30)이 배치된 선박을 개략적으로 나타낸 우측면도이다.FIG. 8 is a right side view schematically showing a vessel in which the vortex generating pins 30 having different angles of attack (AOA) with reference stream lines are arranged.
일 실시예에 따르면, 와류 생성핀(30)은, 기준 스트림라인(Sr')과의 받음각이 2~20°가 되도록 배치될 수 있다. According to one embodiment, the vortex generating pin 30 may be arranged such that the angle of attack with the reference stream line Sr 'is 2 to 20 °.
상술하였듯, 기준 스트림라인(Sr)은 와류 생성핀(30)이 없는 상태에서의 유동장에서 정의되나, 와류 생성핀(30)이 배치되더라도 와류 생성핀(30)보다 앞쪽(선수 쪽)에 있는 스트림라인에는 변화가 없다. 따라서 기준 스트림라인(Sr) 중 기준 지점(Pr)보다 선수 쪽에 위치한 부분(Sr')과 와류 생성핀(30) 사이의 '받음각(AOA)'은 와류 생성핀(30)의 유무와 관계없이 일정하게 정의될 수 있다. 상술한 실험예에서는 와류 생성핀(30)이 기준 스트림라인(Sr')과 6°의 각도를 가지도록, 즉 받음각이 약 6°가 되도록 배치되었다.As described above, the reference stream line Sr is defined in the flow field in the absence of the vortex generating pin 30, but is located in front of the vortex generating pin 30 (the bow side) even when the vortex generating pin 30 is disposed. There is no change in the streamline. Therefore, the angle of attack (AOA) between the portion Sr 'positioned on the bow side of the reference stream line Sr and the vortex generating pin 30 is constant regardless of the presence or absence of the vortex generating pin 30. Can be defined. In the above experimental example, the vortex generating pin 30 is disposed to have an angle of 6 ° with the reference stream line Sr ', that is, the angle of attack is about 6 °.
이때 와류 생성핀(30)의 각도를 조절하게 되면, 와류 생성핀(30)을 타고 흐르는 스트림라인에 변화가 생기므로, 선체의 저항 특성 및 공동 현상(cavitation) 특성이 변하게 된다. 도 8에는, 상기 6°의 받음각을 가지는 기준 와류 생성핀으로부터 -4, 0, +4, +8, +14°만큼 받음각이 변한 와류 생성핀(31, 32, 33, 34, 35)이 각각 도시되어 있다. 즉 일 실험예에서는 기준 스트림라인(Sr')과의 받음각을 각각 2, 6, 10, 14, 20°로 배치한 와류 생성핀(31, 32, 33, 34, 35)에 의한 유동장의 변화를 시뮬레이션하였다. 이하에서는 각각의 와류 생성핀(31, 32, 33, 34, 35)을 핀 1 내지 핀 5로 나타내기로 한다.In this case, when the angle of the vortex generating pin 30 is adjusted, a change occurs in the stream line flowing through the vortex generating pin 30, thereby changing the resistance characteristic and the cavitation characteristic of the hull. 8, the vortex generating pins 31, 32, 33, 34, and 35 whose angles of attack are changed by -4, 0, +4, +8, and + 14 ° from the reference vortex generating pins having the angle of attack of 6 ° are respectively shown. Is shown. That is, in one experimental example, the change in the flow field by the vortex generating pins 31, 32, 33, 34, and 35 with the angle of attack of the reference stream line Sr 'at 2, 6, 10, 14, and 20 °, respectively, Simulated. Hereinafter, each of the vortex generating pins 31, 32, 33, 34, and 35 will be represented by pins 1 to 5.
도 9은 각각 다른 받음각을 가지는 와류 생성핀을 가지는 선박에 작용하는 저항을 시간에 따라 나타낸 실험 그래프이다. 도 9를 참조하면, 핀 1 내지 핀 5, 즉 기준 스트림라인(Sr')에 대한 받음각이 각각 2, 6, 10, 14, 20°인 와류 생성핀(31, 32, 33, 34, 35)에 의한 선체 저항의 변화는 약 1% 내의 차이를 보였다. 즉 받음각이 약 2~20°가 되도록 와류 생성핀(30)의 각도를 조절하는 경우 와류 생성핀(30)이 없을 때와 비교하여 저항 감소율이 4% 이상이 되도록 할 수 있었다. FIG. 9 is an experimental graph showing a time-dependent resistance acting on a vessel having a vortex generating pin having different angles of attack. Referring to FIG. 9, the vortex generating pins 31, 32, 33, 34, and 35 having angles of attack of the pins 1 to 5, that is, the reference streamline Sr 'are 2, 6, 10, 14, and 20 °, respectively. The variation of the hull resistance due to the difference was within about 1%. That is, when the angle of the vortex generating pin 30 is adjusted so that the angle of attack is about 2 to 20 °, the resistance reduction rate may be 4% or more as compared with when the vortex generating pin 30 is not present.
한편, 도시하지는 않았으나 와류 생성핀(30)의 받음각이 20°보다 커지는 경우, 와류 생성핀(30)의 자체 저항에 의한 효과가 두드러져 저항이 증가한다. 반면 받음각이 2°보다 작아지는 경우, 와류 생성핀(30)에 의한 와류(vortex) 형성 효과가 미미하므로 와류 생성핀(30)이 없는 경우와 큰 차이가 없게 된다. On the other hand, although not shown, if the angle of attack of the vortex generating pin 30 is greater than 20 °, the effect by the self-resistance of the vortex generating pin 30 becomes noticeable, thereby increasing the resistance. On the other hand, when the angle of attack is smaller than 2 °, the effect of forming the vortex (vortex) by the vortex generating pin 30 is insignificant, so that there is no great difference from the case where the vortex generating pin 30 is not present.
도 10은 다른 받음각을 가지는 와류 생성핀을 가지는 선박의 프로펠러를 지나는 단면에서의 등유속선도를 비교한 그림이다. 이때 각 박스에서 중심영역은 프로펠러의 허브 부분을 나타낸다. 허브 근처에서의 속도 분포의 차이가 구별이 된다. 핀이 없는 경우는 벌브 근처에서 상대적으로 낮은 속도범위가 더 넓음을 알 수 있다.10 is a diagram comparing the isoflow velocity diagram at the cross section through a propeller of a vessel having a vortex generating pin with different angles of attack. In this case, the center region of each box represents the hub portion of the propeller. The difference in velocity distribution near the hub is distinguishable. In the absence of a pin, the relatively low speed range is wider near the bulb.
이때 박스 영역 중 허브를 중심으로 12시~2시 사이의 영역을 비교하면, 와류 생성핀(30)의 받음각이 특정한 범위에서 증가할수록 프로펠러 상단의 속도 분포가 점점 증가함을 확인할 수 있다. 상술한 대로, 프로펠러 회전면의 상단을 지나는 스트림라인의 유속이 증가하면, 공동 현상(cavitation)이 방지되어 진동이 감소하는 효과가 있다. 즉 받음각이 커질수록, 진동은 감소한다. At this time, when comparing the area between 12 o'clock and 2 o'clock around the hub, it can be seen that the velocity distribution at the top of the propeller gradually increases as the angle of attack of the vortex generating pin 30 increases in a specific range. As described above, when the flow rate of the stream line passing through the upper end of the propeller rotating surface is increased, cavitation is prevented and vibration is reduced. In other words, as the angle of attack increases, vibration decreases.
한편, 프로펠러의 회전면을 지나는 유속은 회전면 전체에 걸쳐 고르게 분포하는 것이 프로펠러의 효율면에서 바람직함이 알려져 있다. 즉 공동 현상(cavitation) 방지와 프로펠러의 효율은 서로 트레이드-오프(trade-off) 관계에 있다. 이때 핀 3(33)의 경우, 핀 1(31)이나 핀 2(32)에 비해 프로펠러 위쪽에서의 유속을 증가시키면서도 프로펠러 회전면에서의 유속 분포가 핀 4(34)나 핀 5(35)에 비해 일정하다. On the other hand, it is known that the flow velocity passing through the rotating surface of the propeller is preferably distributed evenly over the entire rotating surface in terms of the efficiency of the propeller. That is, the cavitation prevention and propeller efficiency are in a trade-off relationship with each other. In the case of pin 3 (33), the flow velocity distribution on the propeller rotation surface is increased compared to pin 4 (34) or pin 5 (35) while increasing the flow rate above the propeller compared to pin 1 (31) or pin 2 (32). It is constant.
즉 공동 현상 및 프로펠러의 효율을 모두 고려할 때, 와류 생성핀(30)은 받음각이 10°전후, 즉 약 6°내지 14°가 되도록 배치될 수 있다.That is, considering both the cavitation and the efficiency of the propeller, the vortex generating pin 30 may be arranged such that the angle of attack is around 10 °, that is, about 6 ° to 14 °.
도 11은 다양한 길이의 와류 생성핀을 표현한 선체 선미부의 사시도이다. 도 11에서는 선체(10) 중 선미부의 우현만을 도시하였다. 11 is a perspective view of the hull stern showing the vortex generating pins of various lengths. In FIG. 11, only the starboard of the stern part of the hull 10 is illustrated.
일 실시예에 따르면, 와류 생성핀(30)의 길이(L)는, 선체 수선 길이의 1 내지 3.5%일 수 있다. According to one embodiment, the length L of the vortex generating pin 30 may be 1 to 3.5% of the hull repair length.
일 실시예에 따르면, 와류 생성핀(30)의 높이는 선체 수선 길이의 0.1 내지 0.2%일 수 있다. 이때 '높이'는 선체의 표면으로부터 수직인 방향을 기준으로 할 수 있다. According to one embodiment, the height of the vortex generating pin 30 may be 0.1 to 0.2% of the hull repair length. In this case, the 'height' may be based on a direction perpendicular to the surface of the hull.
일 실시예에 따르면, 와류 생성핀(30)의 두께(T)는 약 5mm 내지 15mm일 수 있다. According to one embodiment, the thickness T of the vortex generating pin 30 may be about 5mm to 15mm.
도 11을 참조하면, 검은색으로 도시된 와류 생성핀(30)은 도 4의 와류 생성핀(핀 2)에서 받음각이 4°증가한 와류 생성핀(핀 3)을 나타낸다. 즉 도 11의 와류 생성핀(핀 3)이 기준 스트림라인(Sr)과 이루는 각도가 10°인 상태를 가정하였다. Referring to FIG. 11, the vortex generating pin 30 illustrated in black represents a vortex generating pin (pin 3) having an increased angle of attack of 4 ° from the vortex generating pin (pin 2) of FIG. 4. That is, it is assumed that the vortex generating pin (pin 3) of FIG. 11 forms an angle of 10 ° with the reference stream line Sr.
한편, 와류 생성핀(30)의 길이는 2.5m로, 선체의 수선 길이의 약 1.4%이었으며, 선체 표면으로부터의 높이는 35cm로 선체의 수선 길이의 약 0.19%이었다. 와류 생성핀(30)의 두께는 약 10mm로 설정되었다.  On the other hand, the length of the vortex generating pin 30 was 2.5 m, about 1.4% of the length of the hull repair, and the height from the surface of the hull was 35 cm, about 0.19% of the length of the hull repair. The thickness of the vortex generating pin 30 was set to about 10 mm.
이때 본 발명의 실험예에서는 C지점 또는 D지점까지 연장된 와류 생성핀(30)을 통해, 길이의 변화에 따른 저항의 변화를 측정하였다. 이때 C지점까지 연장된 와류 생성핀은 검은색으로 도시된 기준 와류 생성핀보다 50% 더 길도록, 즉 선체의 수선 길이의 약 2.1%의 길이를 가지도록 설정되었고, D지점까지 연장된 와류 생성핀은 기준 와류 생성핀보다 100% 더 길도록, 즉 선체의 수선 길이의 약 2.8%의 길이를 가지도록 설정되었다. At this time, in the experimental example of the present invention through the vortex generating pin 30 extending to the point C or D, the change in resistance according to the change in length was measured. The vortex generating pin extending to point C is set to have a length of 50% longer than the reference vortex generating pin shown in black, i.e., about 2.1% of the length of the hull's repair, and creates a vortex extending to point D. The pin was set to be 100% longer than the reference vortex generating pin, ie about 2.8% of the length of the hull's repair.
도 12는 각각 다른 길이를 가지는 와류 생성핀을 가지는 선박에 주위를 흐르는 한계 스트림라인을 시뮬레이션하여 나타낸 사시도이다. 도 12에서는 (a) 핀이 없는 상태, 각각 수선 길이의 (b) 1.4%, (c) 2.1%, (d) 2.8%의 길이를 가지는 와류 생성핀에 의한 스트림라인을 도시하였다. 12 is a perspective view showing a simulation of a limit stream line flowing around a ship having vortex generating pins having different lengths. In FIG. 12, stream streams formed by the vortex generating pins having lengths of (a) without pins and having lengths of (b) 1.4%, (c) 2.1%, and (d) 2.8% of the repair length, respectively.
도 12의 (a)를 참조하면, 와류 생성핀(30)이 없는 경우에는 도 1에서 상술하였듯 경계층의 두께가 크고 프로펠러 근처에서 회전류가 발생하여 프로펠러의 효율이 떨어진다. 반면, 와류 생성핀(30)이 다양한 길이로 부착된 (b), (c), (d)의 경우에는 도 4와 비슷하게 상승류가 와류 생성핀(30)을 지나면서 회전류가 직진류로 변환되어 프로펠러의 상부를 지나게 된다. 이때 와류 생성핀(30)의 길이가 너무 짧으면 회전류가 직진류로 변하지 않게 되며, 와류 생성핀(30)의 길이가 너무 길면 직진류가 프로펠러 회전면을 지나지 않게 되어 프로펠러의 효율이 떨어지고 핀 자체에 의한 저항이 증가하게 된다. Referring to FIG. 12A, when there is no vortex generating pin 30, as described above with reference to FIG. 1, the thickness of the boundary layer is large and rotational flow occurs near the propeller, thereby degrading the efficiency of the propeller. On the other hand, in the case of (b), (c), and (d) in which the vortex generating pins 30 are attached to various lengths, as shown in FIG. It is converted and passes over the top of the propeller. At this time, if the length of the vortex generating pin 30 is too short, the rotational flow does not change to a straight stream, and if the length of the vortex generating pin 30 is too long, the straight stream does not pass the propeller rotating surface, which decreases the efficiency of the propeller and the pin itself. Resistance increases.
도 13은 각각 다른 길이를 가지는 와류 생성핀을 가지는 선박에 작용하는 저항을 시간에 따라 나타낸 실험 그래프이다. FIG. 13 is an experimental graph showing a time-dependent resistance acting on a vessel having vortex generating pins having different lengths.
도 13을 참조하면, 와류 생성핀(30)이 길어질수록 저항의 크기 역시 증가함을 볼 수 있으나, 저항의 변화는 0.2% 미만이었다. 한편 도시되지는 않았으나, 수선 길이의 1%, 3.5%의 길이를 가지는 와류 생성핀(30)의 경우 저항의 변화가 약 0.5%인 것으로 나타났다. 즉 와류 생성핀(30)의 길이가 선체의 길이 대비 1~3.5%인 경우, 와류 생성핀(30)이 없는 경우보다 약 4.5% 이상의 저항 감소 효과를 가져올 수 있다. Referring to FIG. 13, the longer the vortex generating pin 30 is, the larger the resistance increases, but the resistance change is less than 0.2%. On the other hand, although not shown, in the case of the vortex generating pin 30 having a length of 1% and 3.5% of the repair length, the resistance change was about 0.5%. That is, when the length of the vortex generating pin 30 is 1 to 3.5% of the length of the hull, it may bring about a 4.5% or more resistance reduction effect than when the vortex generating pin 30 is not present.
도 14는 와류 생성핀의 길이에 따른 등유속선도를 비교한 그림이다. 네모 상자안의 밝은 영역(하얀색 영역)은 상대적으로 낮은 속도 분포를 나타낸다. 핀을 부착함으로써 이 부분에서 유속이 빨라졌음이 확인된다. 와류 생성핀(30)은 기준 스트림라인(Sr')과의 받음각이 10°가 되도록 배치되었다. 도 14를 참조하면, 와류 생성핀(30)의 길이가 1.4%일 때 프로펠러 회전면 상부에서의 속도 분포가 가장 커짐을 확인할 수 있다. 즉 공동 발생(cavitation) 억제의 측면에서, 와류 생성핀(30)의 길이는 약 1.4% 부근, 즉 약 1 내지 2%의 길이를 가지는 것이 바람직하다. 14 is a diagram comparing the isoflow velocity diagram according to the length of the vortex generating pins. The bright area (white area) in the square box shows a relatively low velocity distribution. By attaching a pin, it is confirmed that the flow velocity is increased in this area. The vortex generating pins 30 are arranged such that the angle of attack with the reference stream line Sr 'is 10 °. Referring to FIG. 14, when the length of the vortex generating pin 30 is 1.4%, it can be seen that the velocity distribution at the top of the propeller rotating surface is largest. That is, in terms of cavitation suppression, the length of the vortex generating pin 30 preferably has a length of about 1.4%, that is, about 1 to 2%.
본 발명의 일 실시예에 의한 선박에 의하면, 최적 지점(Po)은 와류 생성핀(30)이 배치되어 프로펠러(20) 근처에서의 회전 유동을 직진화하고, 복잡한 유동을 단순화시켜 추력 효율을 높이고, 경계층의 두께를 얇게 하여 저항이 감소하며, 프로펠러(20) 상단부의 유속이 빨라지므로 공동 현상(cavitation)에 의한 선미 진동이 감소한다. 이때 상당한 시간과 비용이 소모되는 시뮬레이션을 여러 번 거치지 않고서도, 와류 생성핀(30)이 없는 상태에서의 시뮬레이션 결과로부터 알 수 있는 기준 지점(Pr) 및 기준 스트림라인(Sr)으로부터 최적 지점(Po)을 쉽게 도출할 수 있으므로, 선박의 설계 비용과 시간이 절약된다. According to the ship according to an embodiment of the present invention, the optimum point (Po) is the vortex generating pin 30 is arranged to straighten the rotational flow near the propeller 20, to simplify the complex flow to increase the thrust efficiency To reduce the thickness of the boundary layer, the resistance is reduced, and the flow velocity of the upper end of the propeller 20 is increased, thereby reducing the stern vibration caused by the cavitation. At this time, the optimal point Po from the reference point Pr and the reference stream line Sr, which can be known from the simulation result without the vortex generating pin 30 without going through a number of simulations, which are time-consuming and expensive. ) Can be easily derived, saving ship design costs and time.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시 예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

Claims (5)

  1. 선체;hull;
    상기 선체의 후미에 설치되는 프로펠러; 및A propeller installed at the rear of the hull; And
    상기 선체의 좌현과 우현의 최적 지점(Po)에 각각 배치되고, 와류(vortex)를 발생시켜 상기 프로펠러의 회전면을 지나는 유동장을 변화시키는 와류 생성핀(vortex generating fin);을 포함하는 선박에 있어서, In the ship comprising: a vortex generating fin disposed at the optimum point (Po) of the port and starboard of the hull, respectively, to generate a vortex to change the flow field passing through the rotating surface of the propeller;
    상기 최적 지점(Po)은, The optimal point Po,
    상기 선체에 상기 와류 생성핀이 배치되기 전에, 상기 선박이 설계 속도로 기동함을 가정하여 상기 선체 주위의 유동장을 시뮬레이션할 때, When simulating the flow field around the hull, assuming that the vessel is maneuvered at a design speed before the vortex generating pin is placed on the hull,
    상기 선체의 표면을 따라 흐르는 한계 스트림라인(limiting streamline)이 상기 선체의 측면에서 보았을 때 교차하는 지점 중 선수 쪽에 가장 가까운 기준 지점(Pr)을 지나는 기준 스트림라인(Sr)을 따라 선수 방향으로 0 내지 0.1 스테이션 떨어진 곳에 위치하고, A limiting streamline flowing along the surface of the hull is 0 to the bow direction along the reference stream line Sr passing through the reference point Pr closest to the fore side of the intersection points when viewed from the side of the hull. 0.1 station away,
    상기 기준 스트림라인은, 상기 기준 지점을 지나는 두 개의 한계 스트림라인 중 선수 쪽에서 더 아래에 위치한 한계 스트림라인인, 선박. The reference streamline is a limit streamline located further down the bow side of the two limit streamlines passing the reference point.
  2. 제1항에 있어서, The method of claim 1,
    상기 와류 생성핀은, The vortex generation pin,
    상기 기준 스트림라인과의 받음각이 2~20°가 되도록 배치되는, 선박. And a receiving angle with the reference stream line is 2 to 20 degrees.
  3. 제1항에 있어서, The method of claim 1,
    상기 와류 생성핀의 길이는 상기 선체의 수선 길이의 1% 내지 3.5%인, 선박The length of the vortex generating pin is 1% to 3.5% of the length of the repair of the hull
  4. 제1항에 있어서, 상기 와류 생성핀의 높이는 상기 선체의 수선 길이의 0.1 내지 0.2%이고, 두께는 약 5mm 내지 15mm인, 선박.The ship of claim 1, wherein the height of the vortex generating pins is between 0.1 and 0.2% of the length of the hull repair and the thickness is between about 5 mm and 15 mm.
  5. 제1항에 있어서, 상기 설계 속도는 약 15 노트(knot) 이하이고, The method of claim 1, wherein the design speed is about 15 knots or less,
    상기 선체의 방형 계수(block coefficient)는 0.8 내지 0.85인, 선박.The vessel's block coefficient is 0.8 to 0.85.
PCT/KR2018/005370 2017-05-24 2018-05-10 Ship including vortex generating fins WO2018216931A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170064390A KR20180128804A (en) 2017-05-24 2017-05-24 Ship including vortex generating fin
KR10-2017-0064390 2017-05-24

Publications (1)

Publication Number Publication Date
WO2018216931A1 true WO2018216931A1 (en) 2018-11-29

Family

ID=64395709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/005370 WO2018216931A1 (en) 2017-05-24 2018-05-10 Ship including vortex generating fins

Country Status (2)

Country Link
KR (1) KR20180128804A (en)
WO (1) WO2018216931A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111210522A (en) * 2020-01-14 2020-05-29 西南石油大学 Method for tracking streamline distribution in three-dimensional unstructured grid flow field by using FEM (finite element modeling)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004042881A (en) * 2002-05-15 2004-02-12 Shin Kurushima Dockyard Co Ltd Unsymmetrical stern fin structure
JP2005098694A (en) * 2002-10-10 2005-04-14 Sukeaki Kunugi Heat exchanging system between solid and fluid
KR20150076332A (en) * 2013-12-26 2015-07-07 성동조선해양(주) Asymmetric control fin for mounting on a ship

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004042881A (en) * 2002-05-15 2004-02-12 Shin Kurushima Dockyard Co Ltd Unsymmetrical stern fin structure
JP2005098694A (en) * 2002-10-10 2005-04-14 Sukeaki Kunugi Heat exchanging system between solid and fluid
KR20150076332A (en) * 2013-12-26 2015-07-07 성동조선해양(주) Asymmetric control fin for mounting on a ship

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BACKBEAR'S BLOG, LINEAR COEFFICIENT, 5 April 2014 (2014-04-05), Retrieved from the Internet <URL:https://m.blog.naver.com/PostView.nhn?blogd=lovekim13&logNo=60212342536&proxyReferer=https%3A%2F%2Fwww.google.co.kr%2F> *
HANGOOK KYUNGJAE, STX SHIPBUILDING, RECEIVING AN ORDER TO BUILD 8 TANKER SHIPS FOR $340 MILLION, 15 June 2009 (2009-06-15), Retrieved from the Internet <URL:http://news.hankyung.com/article/200906150477?nv=o> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111210522A (en) * 2020-01-14 2020-05-29 西南石油大学 Method for tracking streamline distribution in three-dimensional unstructured grid flow field by using FEM (finite element modeling)

Also Published As

Publication number Publication date
KR20180128804A (en) 2018-12-04

Similar Documents

Publication Publication Date Title
KR100718934B1 (en) Flow control appendages for improvement of pressur resistance and hull vibration
WO2018216931A1 (en) Ship including vortex generating fins
WO2023155922A1 (en) Flexible vortex generator for inhibiting vortex-induced vibration of bridges
WO2016076489A1 (en) Asymmetric fan-shaped stern duct for energy saving of ship
WO2014123397A1 (en) Propulsion device for ship
KR101516839B1 (en) Duct Structure for Ship
WO2010068024A2 (en) Rudder with asymmetric cross section
WO2016076488A1 (en) Ship flow control device having combination of asymmetric duct and fin structures
WO2019027126A1 (en) Duct-type ship energy reducing device
CN105365999B (en) Wide flat Full Ship water conservancy diversion fin system
WO2013122404A1 (en) Hull having stern fins attached thereto for protection against floating ice
Pena et al. Achieving a high accuracy numerical simulations of the flow around a full scale ship
WO2019194350A1 (en) Propeller for ship
JP2008247050A (en) Vessel drag reducing device and vessel
CN205524798U (en) Ship drag reduction device
CN213442941U (en) Propeller kuppe, advancing device and ship
Miyata et al. CFD performance prediction simulation for hull-form design of sailing boats
Xie et al. Naoe-FOAM-SJTU solver for numerical study of vortex-induced motions of a buoyancy can in currents
WO2021153857A1 (en) Steering apparatus and ship comprising same
CN112668253A (en) Aircraft carrier wake numerical simulation method based on LBM-LES
Pearce et al. The effect of vapour cavitation occurrence on the hydrodynamic performance of an intercepted base-ventilated hydrofoil
Mousaviraad et al. Complimentary EFD and CFD on effects of headwinds on towing tank resistance and PMM tests for ONR tumblehome
JP2007253697A (en) Vessel
Yokoi Numerical experiment of flow characteristics of tandem arrangement two symmetrical airfoils
WO2010050680A2 (en) Moon pool and drillship comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806509

Country of ref document: EP

Kind code of ref document: A1