WO2019027126A1 - Duct-type ship energy reducing device - Google Patents

Duct-type ship energy reducing device Download PDF

Info

Publication number
WO2019027126A1
WO2019027126A1 PCT/KR2018/005372 KR2018005372W WO2019027126A1 WO 2019027126 A1 WO2019027126 A1 WO 2019027126A1 KR 2018005372 W KR2018005372 W KR 2018005372W WO 2019027126 A1 WO2019027126 A1 WO 2019027126A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
duct
ship
propeller
disposed
Prior art date
Application number
PCT/KR2018/005372
Other languages
French (fr)
Korean (ko)
Inventor
이승호
Original Assignee
필드지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 필드지 주식회사 filed Critical 필드지 주식회사
Publication of WO2019027126A1 publication Critical patent/WO2019027126A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/16Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in recesses; with stationary water-guiding elements; Means to prevent fouling of the propeller, e.g. guards, cages or screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/28Other means for improving propeller efficiency

Definitions

  • the present invention relates to a duct-type ship energy saving device.
  • the ship is designed to move by using its propulsive force to propeller the propeller to rotate in the fluid.
  • a rudder is attached to the rear of the propeller, and as the rudder rotates to the left and right, the direction of flow of the fluid is changed to change the direction of navigation.
  • ESD Energy Saving Device
  • a duct is typically used to enhance the propulsion efficiency by attaching an additional adduct.
  • Korean Patent No. 10-1453210, Korean Patent No. 10-1453209, and Korean Patent Laid-Open No. 2016-0149877 disclose various types of duct type energy saving devices.
  • a duct-type ship energy saving apparatus includes: a duct disposed in a form surrounding a part of a stern protrusion of a ship; And a support portion connecting the stern protruding portion and the inner surface of the duct, wherein the first end connected to the stern protrusion and the second end connected to the inner surface of the duct are bent in directions opposite to each other, And a first support disposed on a first side of the ship.
  • the inclination of the first end with respect to the propelling shaft may be greater than the inclination of the second end with respect to the propelling shaft.
  • the slope of the first support may decrease from the first end to the second end.
  • the support portion may further include a second support disposed on a second side of the ship, the second support having a positive average slope with respect to the propeller shaft of the ship.
  • the duct-type ship energy saving apparatus may further include a plurality of pins disposed on a second side of the ship and protruding from the inner surface of the duct toward the central axis of the duct have.
  • the pin disposed relatively above the plurality of pins may have an average slope greater than the pin disposed relatively below.
  • the support portion may further include a third support formed symmetrically with respect to a central vertical plane of the ship, the third support being connected to the stern protrusion and the inner surface of the duct.
  • the first support which is disposed on the starboard and bent at opposite ends in opposite directions minimizes the fluid stagnation at the stern protruding portion, The increase of the resistance can be reduced.
  • the propulsion efficiency of the propeller can be improved by changing the flow of the fluid from the ascending flow to the descending flow by the second support disposed at the port and having a positive average slope.
  • the flow of the fluid before passing through the second support is changed from the ascending flow to the descending flow by the pin disposed further on the port side where the flow field can be adversely formed and the size of the resistance acting on the second support is reduced,
  • the propulsion efficiency of the propeller can be improved.
  • Fig. 1 is an illustration showing the ideal flow of the fluid to increase the propeller rotation direction and the efficiency of the propeller, and the actual flow of the fluid in the vessel.
  • FIG. 2 is a right side view showing a stern portion of a ship with a duct-type ship energy saving device according to an embodiment of the present invention.
  • 3 and 4 are a perspective view and a front view, respectively, showing a stern portion of a ship equipped with a duct-type ship energy saving device according to an embodiment of the present invention.
  • FIG. 5 and 6 are enlarged perspective views of the first support and sectional views of the first support taken along lines I-I ', II-II', III-III ', IV-IV' and V-V ', respectively.
  • FIG. 7 is a cross-sectional view taken along the line I-I ', II-II', III-III ', IV-IV' and V-V ' This is a picture that expresses existence.
  • FIG 8 is a graph showing the flow rate and the streamline of the fluid flowing around the stern protrusion S, obtained through computational fluid dynamics (CFD) simulation.
  • 9 and 10 are respectively an enlarged perspective view of the second support and a cross-sectional view of the second support along VI-VI 'and VII-VII', respectively.
  • FIG. 11 is a perspective view showing a stern portion of a ship with a duct-type ship energy saving device further including a pin.
  • FIG. 12 is a perspective view of a ducted ship energy saving device including a pin according to one embodiment.
  • FIG. 13 is a perspective view showing a stern portion of a ship with a duct-type ship energy saving device further including a third support member.
  • FIG. 14 is a diagram comparing v-w velocity vector fields of a fluid in a yz section of a duct-type ship energy saving apparatus according to an embodiment of the present invention.
  • 15 is a diagram illustrating a change in the v-w velocity vector field of a fluid at the yz cross section of a propeller when a duct-type ship energy saving device according to an embodiment of the present invention is installed on a ship.
  • the x-axis is the axis passing through the bow and stern of the ship
  • the y-axis is the axis passing through the port of the ship and the starboard
  • the z-axis is the axis passing through the bottom of the ship and the upper deck.
  • the direction in which the ship moves forward is defined as forward / forward and vice versa as rear / back.
  • left and right are defined based on the direction in which the ship is moving forward.
  • the propulsion axis means the axis on which the propeller rotates as the ship moves forward.
  • &quot refers to the side of the ship, and represents either a port or a starboard.
  • the design speed means the speed at which the shipyard must satisfy the contract terms in the shipbuilding contract, at a rate that can be reached at 85% or 90% of the maximum output of the main engine mounted on the ship .
  • a duct disposed in front of the propeller or surrounding the propeller can reduce the energy by improving the performance of the propeller by controlling the flow of the fluid to the propeller. Therefore, when installing the duct, it is necessary to examine the fluid flow (velocity vector field) at the end of the propeller.
  • Figure 1 is an illustration of an ideal flow of fluid to increase the propeller rotation direction and the efficiency of the propeller and the actual flow of fluid in the vessel.
  • the propeller of most ships turns clockwise as shown in (a). It is known that the efficiency of the propeller is further increased when the fluid introduced into the propeller flows into the propeller while rotating in the direction opposite to the direction of rotation of the propeller. Therefore, when the propeller rotates in the clockwise direction as shown in (a), it is preferable that the v-w velocity vector field indicating the velocity in the y and z directions of the fluid passing through the yz plane is rotated counterclockwise as shown in (b).
  • the component when placing the duct, the component should be designed so that the actual velocity vector field approaches the ideal velocity vector field.
  • the existing duct has a problem that the propeller efficiency is low by designing the support without considering the difference between the port side and the starboard side and the difference in the flow of the fluid at the side closer to the central portion and the flow at the far side.
  • FIG. 2 is a right side view showing a stern portion of a ship with a duct-type ship energy saving device according to an embodiment of the present invention.
  • the duct-type ship energy saving device of the present invention may be disposed in front of a propeller (P) which is coupled to a ship's stern protrusion (S) and provides a thrust, or may be disposed so as to surround a propeller (P).
  • the duct-type ship energy saving device is arranged in front of the propeller (P).
  • the duct-type ship energy saving device according to one embodiment can improve the efficiency of the propeller by controlling the flow of the fluid flowing into the propeller (P) behind the duct (10) or the duct (10).
  • a downstream (DS) flows along the center hull of the ship.
  • an upstream flow (US) flows.
  • the first end (Figs. 3 and 21-1) connected to the stern protrusion S and the second end (Figs. 4 and 21-2) connected to the inner surface of the duct 10 are bent
  • the flow of the fluid flowing near the first stage 21-1 and the flow of the fluid flowing near the second stage 21-2 can be adjusted differently through the support 1 (Figs. 3 and 21). That is, the propulsion efficiency of the propeller P can be improved through the structural characteristics of the first support 21, which will be described below.
  • FIGS. 3 and 4 are a perspective view and a front view, respectively, showing a stern portion of a ship equipped with a duct-type ship energy saving device according to an embodiment of the present invention.
  • the first support 21 is illustratively disposed on the starboard of the ship except for the propeller of the ship, but the present invention is not limited thereto.
  • a duct-type ship energy saving apparatus includes a duct (10) and a support portion (20).
  • the duct 10 is arranged to surround at least a part of the stern protrusion S from outside.
  • the duct 10 has a shape in which the front side and the rear side are open, and can have a space therein.
  • the duct 10 may have a complementary shape to the outer surface of the stern protrusion S, and the cross section of the duct 10 may have various structures such as a circle and an ellipse.
  • the duct 10 may have a structure such that the radius of the cross section becomes larger toward the front of the ship, such as a lamp shade.
  • the duct 10 can function as an accelerating duct.
  • the duct 10 may have a structure in which the radius of the cross section increases as the duct 10 moves toward the rear direction of the ship.
  • the duct 10 may function as a deceleration duct.
  • the duct 10 can suppress the generation of a vortex generated in the vicinity of the stern protrusion S, and can play a role of equalizing the velocity distribution of the fluid flowing in the propeller P in the x direction.
  • a support portion (20) is disposed inside the duct (10).
  • the support portion 20 connects the stern protrusion S and the inner surface of the duct 10 to fix the position of the duct 10 to the stern protrusion S. Since the support portion 20 is disposed inside the duct 10, it can act as a resistance to obstruct the flow of the fluid flowing into the duct 10. Accordingly, in the present invention, the shape of the support portion 20 can be modified to improve the propelling efficiency of the propeller so as to change the flow of the fluid flowing into the duct 10 and minimize the increase of the resistance.
  • the support portion 20 may include a plurality of supports having different shapes and positions.
  • a first support 21 and a second support 22 are arranged on a starboard and a port, respectively.
  • the first support 21 and the second support 22 have different shapes.
  • the structures of the first support 21 and the second support 22 are different from each other, Describe the effect in turn.
  • the first end 21-1 of the first support 21 connected to the stern protrusion S and the second end 21-2 connected to the inner surface of the duct 10 are connected to each other Bend in the opposite direction. More specifically, the first end 21-1 of the first support 21 is bent forward and the second end 21-2 of the first support 21 is bent forward. That is, the first support base 21 may have a structure in which both sides of the plate are bent and bent in opposite directions. Because of this structural feature, the flow of the fluid in the first hinge side moving in the direction in which the propeller ascends is changed to improve the propelling efficiency of the propeller, which will be described later.
  • FIG. 5 and 6 are enlarged perspective views of the first support and a cross-sectional view of the first support along the lines I-I ', II-II', III-III ', IV-IV' and V-V, respectively.
  • the first support 21 may have a streamlined plate shape.
  • the plate refers to a shape having a longer length in the left-right direction (y) and the back-and-forth direction (x) than the thickness in the up-and-down direction (z).
  • the length of the first support frame 21 in the left-right direction y may be longer than the length of the fore-and-aft direction x.
  • Each longitudinal section of the first support 21 has a streamlined airfoil shape to minimize resistance due to fluid flowing into the interior of the duct 10. At this time, the airfoil can have various shapes.
  • the upper boundary line of the first support frame 21 may be flat, and the lower boundary line may have a convex downward structure.
  • both the upper border and the lower border may have a convex structure
  • the lower border line may have a convex structure. That is, the curvature of the upper surface of the first support 21 may be gentler than that of the lower surface.
  • the velocity of the fluid flowing under the lower surface of the first support 21 having such a structure is fast and the velocity of the fluid flowing on the upper surface is relatively slow. In this case, the velocity component in the upward direction of the fluid passing through the rear end of the first support table 21 becomes large, so that the upward flow becomes strong and the propelling efficiency of the propeller P increases.
  • the slope of the first stage 21-1 with respect to the propulsion shaft PA may be greater than the slope of the second stage 21-2 with respect to the propulsion shaft PA.
  • the inclination of the first stage 21-1 with respect to the propeller shaft PA is determined by the angle of the airfoil section (section cut along the line II ') cut along the boundary between the first support 21 and the stern protrusion S, 0.0 > PA. ≪ / RTI >
  • the inclination of the second stage 21-2 with respect to the propelling shaft is determined such that the end face of the airfoil cut along the boundary between the first support 21 and the inner surface of the duct 10 0.0 > PA. ≪ / RTI >
  • the 'slope of the airfoil section' may be defined as the slope or angle of the chord line of the airfoil section with respect to the propulsion shaft PA.
  • a flat upper boundary line of the cross section of the first support 21 is a protrusion line for convenience. That is, 'slope' in FIG. 6 means an angle formed by the upper boundary of the end surface of the first support 21 with the propeller shaft PA.
  • the slope of the first stage 21-1 with respect to the propeller shaft PA is 0 ° for convenience, but the present invention is not limited thereto. That is, the inclination of the first stage 21-1 with respect to the propeller shaft PA may have a positive or negative value depending on the size, shape, and the like of the ship.
  • Sectional view of the airfoil in the first stage 21-1 the airfoil section in the first stage 21-1 is inclined more upward than the airfoil section in the second stage 21-2.
  • a downward flow from I 'to I occurs in the vicinity of the hull.
  • an upstream flow from V 'to V is generated in a region farther from the central portion of the stern projection S, that is, in the vicinity of the duct 10. Accordingly, in the present invention, by increasing the inclination? IS of the first stage 21-1 to minimize the resistance due to the downward flow and reducing the inclination? OS of the second stage 21-2, Minimize the resistance.
  • the difference? IS between the slope S IS of the first stage 21-1 and the mean slope S M of the first support 21 can be 0 to 20 °
  • the difference? OS between the slope S OS of the second stage 21-2 and the average slope S M of the first support stage 21 may be -20 to 0 °.
  • the difference in slope is expressed by an angle.
  • the angle in the counterclockwise direction has a positive angle
  • the angle in the clockwise direction has a negative angle
  • the 'average slope' means the average of several airfoil section slopes cut parallel to the propeller shaft (PA). That is, from the first end 21-1 to the second end 21-2 of the first support 21, the average value of the slope of the cross section of the airfoil depending on the position is the Becomes the average slope ( SM ).
  • the average slope S M is determined by 'a first support 21 in the form of a flat plate' ). ≪ / RTI >
  • the average slope S M of the first support 21 may mean the extent to which the first support 21 is wholly rotated in the reference state.
  • the average slope of the first support 21 is represented by a line S M
  • the slope of the III-III 'airfoil section is illustrated as an average slope (S M ).
  • the difference? IS between the slope S IS of the first stage 21-1 and the mean slope S M of the first support 21 is smaller than the flatness? (21-1) is bent.
  • the difference? OS 'between the slope S OS of the second stage 21-2 and the mean slope S M of the first support 21 is such that the second stage 21-2 is''Is a measure of how much it is bent when compared to the state of'
  • the angle ⁇ IS between the slope S IS of the first stage 21-1 and the mean slope S M may be about 0-20 °. If the first stage 21-1 is bent excessively, the fluid may 'bump' the first support 21, rather the resistance may increase.
  • the optimal value of the angle? IS depends on the shape, size, and shape of the ship, and therefore can be determined using computer simulation using computational fluid dynamics (CFD) or model simulation using a model ship.
  • the angle between the slope (S OS) with the average slope (S M) if the VV ', see the sectional view, a second end (21-2) ( ⁇ OS) may be between about -20 ⁇ 0 °. If the second stage 21-2 is excessively curved, the fluid may 'strike' the first support 21, but the resistance may increase.
  • the optimum value of the angle? OS depends on the shape, size, and shape of the ship, and therefore can be determined using a computer simulation using computational fluid dynamics (CFD) or a model simulation using a model ship.
  • CFD computational fluid dynamics
  • the slope of the first support 21 may decrease from the first end 21-1 to the second end 21-2.
  • the 'slope of the first support 21' means the slope of the cross section of the airfoil depending on the position. 6 shows the mean slope line S M and the slope line S IS of the airfoil from the first end 21-1 to the second end 21-2 of the first support 21, ( ⁇ IS , ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ OS ) formed by the S II , S III , S IV and S OS can be made smaller.
  • the slopes (? IS ,? 2 ,? 3 ,? 4 ,? OS ) of the airfoil section of the first support 21 can be continuously changed.
  • the surface of the first support 21 can have a smooth curved surface without a sudden breaking portion. In this case, the resistance can be minimized without the area where the fluid stagnates.
  • FIG. 7 is a cross-sectional view of the first support 21 of FIG. 5 taken along lines I-I ', II-II', III-III ', IV-IV' It is a picture that it is inclined downward.
  • the first support 21 may have a negative average slope &thetas; 21 with respect to the propulsion shaft PA.
  • the average slope ( ⁇ 21) of the first support 21 may be -20 ⁇ 0 °. That is, the first support 21 can be inclined such that the leading edge is directed downward as a whole.
  • a relatively upward flow US flows near the inner surface of the duct 10, and a downward flow DS relatively flows in a region near the stern protruding portion S. That is, toward the second end 21-2 of the first support, that is, in FIG. 7, an upward flow flows toward the VV 'sectional view direction. Therefore, when the front end of the first support 21 is tilted downward, the angle of the first support 21 is reduced with respect to the flow of the upward flow. That is, when the average slope? 21 of the first support is maintained at a negative angle, the resistance by the fluid can be reduced.
  • the fluid may 'bump' the first support 21, rather the resistance may increase.
  • the optimum value of the mean slope of the first support 21 may depend on the shape, size, and shape of the ship, and may thus be determined using computer simulation using computational fluid dynamics (CFD) or model simulation using a model ship have.
  • CFD computational fluid dynamics
  • a downward flow relatively occurs at the central portion of the duct 10, that is, near the stern projection S. Accordingly, the first end 21-1 of the first support member bends the leading edge relatively upward to reduce the angle of attack with the downward flow. That is, the first support 21 is tilted downward as a whole, and only the first end 21-1 is tilted upward, whereby the resistance by the fluid can be reduced for each position.
  • the slope S IS of the first stage 21-1 is parallel to the propeller shaft PA for convenience.
  • the present invention is not limited thereto.
  • FIG. 8 is a graph showing the flow rate and the stream line of the fluid flowing around the stern protrusion S, obtained through computational fluid dynamics (CFD) simulation.
  • the region with a high concentration is a reference region having a relative speed of 1.
  • Each line separated by concentration is a kerosene line followed by a point at which it decreases by 10% at the reference speed.
  • the area with a low concentration means a place where the relative velocity is zero and the fluid stagnates.
  • the design speed of the simulated ship was 14 knots and the velocity of the fluid was 1.273 m / s to match the froude number on computer simulation.
  • FIG. 8 (a) shows a bare hull state without a duct and a supporting portion. As described above, a descending flow flows in a region closer to the stern projection S and an upward flow flows in a region far from the stern projection S.
  • Fig. 8C shows a case in which the star support 21 " is rotated by 20 DEG in the downward direction.
  • the reason why the support is rotated and disposed is to reduce the angle of attack of the starboard current with respect to the ascending current to reduce the resistance, as described above.
  • the velocity of the ascending current increases near the second stage 21-2, but the stream line also becomes more complicated in the vicinity of the inner boundary of the supporter and the stern protrusion S.
  • FIG. 8 (d) shows a case where a duct-type ship energy saving device according to an embodiment of the present invention is installed.
  • the first support 21 is disposed such that the average inclination (average angle) of the first support 21 is -20 ⁇ and the first end 21-1 and the second end 21 -2) was twisted so that the slopes were 20 and -20 degrees, respectively, with respect to the average slope. That is, the first support 21 of (d) has such a structure as to grasp both ends of the support 21 '' of (c). At this time, it can be seen that the phenomenon of congestion of the fluid near the first stage 21-1 is reduced, and the twisting of the stream line is alleviated.
  • the structure of the first support 21 of the present invention that is, the first end 21-1 connected to the stern protrusion S and the second end 21-2 connected to the inner surface of the duct 10, Due to the fin structure, it is possible to minimize an increase in resistance caused by stagnation of the fluid near the hull where a downward flow is generated.
  • the resistance reduction effect described above can be applied regardless of whether the first support member 21 is located at the port or starboard side.
  • the position where the first support table 21 is disposed is selected as either the port or the starboard depending on the direction of rotation of the propeller. Specifically, when the propeller of the ship rotates in the clockwise direction when viewed from the stern side, the first support base 21 is disposed on the starboard. Conversely, when the propeller rotates in the counterclockwise direction, the first support 21 is disposed at a port.
  • the reason why the first support 21 is selectively disposed in the port or starboard according to the rotation direction of the propeller is to obtain the effect of reducing the resistance as well as the effect of regulating the flow of the fluid to increase the propelling efficiency of the propeller .
  • the propeller rotates in the clockwise direction
  • the fluid flowing into the propeller must be rotated in the counterclockwise direction to increase the propelling efficiency of the propeller (see FIG. 1).
  • the propeller rotates from top to bottom, so that it is preferable that the fluid passing through the starboard side of the duct 10 is directed upward from below, that is, . Therefore, it is effective that, in the starboard side, the upward flow near the inner surface of the duct 10 is left as it is, and the downward flow near the stern protruding portion S is changed. In the present invention, this effect is achieved through the first support 21.
  • the propeller rotates from the bottom to the top in the port side, it is preferable that the fluid passing through the port side of the duct 10 is directed downward, that is, (See Fig. 1).
  • the propulsion efficiency is improved by controlling the flow of the fluid in the second side through the second support 22, which will be described below.
  • 9 and 10 are respectively an enlarged perspective view of the second support and a cross-sectional view of the second support along VI-VI 'and VII-VII', respectively.
  • the support 20 includes a second support 22 disposed on a second side of the vessel, i.e., a port, and having a positive average slope &thetas; 22 with respect to the propulsion axis PA of the vessel .
  • the second support 22 is disposed on the second hinge side.
  • the second support base 22 also connects the stern protrusion S and the duct 10 like the first support base 21 so that the position of the duct 10 can be relatively fixed.
  • the second support 22 may have a streamlined plate shape.
  • Each longitudinal section of the second support 22 may have the form of a streamlined airfoil.
  • the average inclination? 22 of the second support 22 is positive, and the upward flow introduced from the port is guided to be deflected by the second support 22 to be a downward flow. Since the second support rods 22 are arranged to change the fluid flow direction, the overall energy efficiency of the ship can be improved by increasing the resistance but forming the flow field in a direction favorable to the propeller efficiency.
  • the descending flow in the vicinity of the stern protrusion S in the port side is a "favorable" flow in the resistance surface acting on the second support table 22 inclined in the positive direction. Therefore, unlike the first support 21, the inner end of the second support 22 (the end connected to the aft protrusion S) may not be bent. That is, the inclination of the cross section of the second support table 22 can be constant depending on the position without warping.
  • the shape of the cross-section of the airfoil according to the position of the second support 22 may be constant.
  • the angle formed between the propulsion shaft PA and the airfoil section, that is, the average inclination? 22 may be 0 to 20 °.
  • Second optimal value of the average slope ( ⁇ 22) of the support (22) is simulated, so the left and right shape of the vessel, the size, the shape of the wire (streamline) or the like, using a computer simulation or model ships using computational fluid dynamics (CFD) model . ≪ / RTI >
  • a second support 22 of may vary depending on the location.
  • the lower boundary of the longitudinal section of the second support 22 may be flat, and the upper boundary may have a convex structure.
  • both the upper boundary and the lower boundary may have a convex structure, and the upper boundary line may have a more convex structure than the lower boundary. That is, the curvature of the lower surface of the second support table 22 may be gentler than the curvature of the upper surface.
  • the velocity of the fluid flowing on the upper surface of the second support 22 having such a structure is fast and the velocity of the fluid flowing below the lower surface is relatively slow. In this case, the velocity of the fluid passing through the rear end of the second support table 22 is changed in the downward direction to form a downward flow, thereby contributing to an improvement in the propulsion efficiency of the propeller P.
  • the average inclination ( ⁇ 22) that due to the structure that is maintained in an amount, at a second side resistance is changed a little increase of the fluid flow through the one propeller propulsion efficiency of the propeller of the second brace 22 is .
  • the overall energy efficiency of the ship is improved.
  • FIG. 11 is a perspective view showing a stern part of a ship equipped with a duct-type ship energy saving device further including a fin.
  • the duct-type ship energy saving device according to one embodiment is disposed on the second side of the ship, And a plurality of fins 30 protruding from the inner surface of the duct 10 toward the center axis of the duct 10.
  • a pin 30 is additionally installed on the second side where the second support base 22 is disposed to improve the propelling efficiency of the propeller by controlling the flow of the fluid passing through the duct 10.
  • the fins 30 may protrude from the inner surface of the duct 10 at regular intervals and have a shape capable of rotating the fluid flowing inside the duct 10. At this time, rotating the fluid may mean that the v-w velocity vector field in the yz cross section of the propeller has a shape of rotation as shown in FIG. 1 (b).
  • the pin 30 may have a streamlined plate shape. I.e. each longitudinal section of the fins 30 may have the form of a streamlined airfoil. The shape of the cross section of the airfoil according to the position of the pin 30 may be constant.
  • the lower surface of the pin 30 may be flat and the upper surface may have a convex structure.
  • both the upper boundary and the lower boundary may have a convex structure, and the upper boundary line may have a more convex structure than the lower boundary. That is, the curvature of the lower surface of the pin 30 may be gentle as compared with the curvature of the upper surface. In this case, the downward speed component of the fluid passing through the rear end of the pin 30 becomes large, so that the downward flow becomes strong and the propelling efficiency of the propeller P becomes high.
  • FIG. 12 is a perspective view of a ducted ship energy saving device including a pin according to one embodiment.
  • the pins disposed relatively above one of the plurality of pins may have an average slope greater than the pins disposed on the relatively lower side. That is, the more the pin 30 is disposed above the ship, the larger the average slope can be.
  • FIG. 12 there is illustrated a duct-type ship energy saving device with six pins 31, 32, 33, 34, 35, 36 attached to the inner surface of the duct 10.
  • the average slope of the airfoil section of each fin is similar to the average slope of the airfoil section S31, S32, S33, S34, S35, and S35, similar to the definition of the average slope of the first support 21 and the second support 22. [ S36) and the propulsion shaft of the ship (? 31 ,? 32 ,? 33 ,? 34 ,? 35 ,? 36 ).
  • the angle between the pin and the propeller shaft becomes larger toward the upper side, that is, toward the positive z direction. That is, in the embodiment of FIG. 12, for example, the average slope? 31 - of the pin 31 disposed at the uppermost position is larger than the mean slope? 32 of the pin 32 disposed immediately below, The average slope? 36- of the pin 36 is smaller than the average slope? 35 of the pin 35 disposed immediately thereabove .
  • the average slope of the propulsion shaft PA and each of the fins 30 may be 0 to 20 degrees.
  • the plurality of fins 30 may also have a structure in which the average slope (? 31 ,? 32 ,? 33 ,? 34 ,? 35 ,? 36 ) is maintained in a positive manner similar to the second support 22. As a result, the resistance of the second side increases slightly, but the flow of the fluid through the propeller is changed to improve the propulsion efficiency of the propeller. Thus, the overall energy efficiency of the ship is improved.
  • the fins 30 can be arranged at the same interval from the 7 o'clock direction to the 11 o'clock position when the stern protrusions S are viewed from the stern side.
  • the number and shape of the pins 30, the average slope of each pin, and the like can be optimized using a computer simulation using computational fluid dynamics (CFD) or a model simulation using a model ship.
  • CFD computational fluid dynamics
  • FIG. 13 is a perspective view showing a stern part of a ship to which a duct-type ship energy saving device further including a third support 23 is attached.
  • the support portion 20 may further include a third support 23 formed symmetrically with respect to a central longitudinal profile of the ship and connected to the inner surface of the stern protrusion S and the duct 10.
  • the third support 23 can extend from the stern protrusion S in the lower (6 o'clock direction) or upward (12 o'clock direction) of the ship.
  • the third support bar 23 also connects the stern protrusion S and the duct 10 in the same manner as the first support bar 21 and the second support bar 22 so that the position of the duct 10 can be relatively fixed.
  • the duct 10 and the stern protrusion S are connected using the first support 21, the second support 22 and the third support 23, the duct 10 can be supported more stably have.
  • the third support 23 since the third support 23 is disposed inside the duct 10, it can act as a resistance to obstruct the flow of the fluid flowing into the duct 10.
  • the third support 23 may have a streamlined plate shape. That is to say each longitudinal section of the second support 22 may have the form of a streamlined airfoil. With this configuration, it is possible to minimize an increase in resistance due to the third support 23.
  • FIG. 14 is a diagram comparing v-w velocity vector fields of a fluid in a yz section of a duct-type ship energy saving apparatus according to an embodiment of the present invention.
  • Fig. 14 (b) shows a state in which the supporter is attached at 0
  • Fig. 14 (c) shows a state in which the supports of the port / starboard are rotated so as to have an angle in the opposite direction (D) shows an embodiment of the present invention. It can be seen that the shape of the flow field passing through the duct changes according to each state.
  • FIG. 15 is a diagram illustrating a change in the v-w velocity vector field of a fluid at the yz cross section of a propeller when a duct-type ship energy saving device according to an embodiment of the present invention is installed on a ship.
  • Fig. 15 (a) is a bare hull state
  • Fig. 15 (b) is a state in which a duct-type ship energy saving device according to an embodiment of the present invention is installed on a ship.
  • the flow of the fluid passing through the propeller is formed disadvantageously at the port side, similarly to (c) of FIG. (b), similar to FIG. 1 (b), it can be seen that the flow of fluid passing through the propeller is changed to rotate counterclockwise as a whole and becomes closer to the ideal shape.
  • the propulsion efficiency of the propeller is improved by rotating the fluid in the direction opposite to the propeller rotation.
  • the present inventor has found that the average inclination of the first support 21 and the second support 22 in the state where both the third support 23 and the pin 30 are in contact with the Korean Marine Science and Technology Laboratory's vessel and marine plant laboratory (KRISO) And the model experiment was carried out. At this time, the slopes of the first stage 21-1 and the second stage 21-2 of the first support 21 have an angle of 10 ° and -10 ° with the average slope of the first support.
  • KRISO Korean Marine Science and Technology Laboratory's vessel and marine plant laboratory
  • Table 1 shows the relationship between the average inclination (angle) of the starboard first supporting frame 21 and the average inclination (angle) of the second supporting frame 22 on the port side in relation to the bare hull state Represents the amount of reduction of the horsepower (DHP-delivery horse power).
  • the average tilt change (angle change) of the first support table 21 and the second support table 22 is about 3.3% , And a maximum horsepower reduction of about 3.7%.
  • the stagnation phenomenon of the fluid at the stern protruding portion (S) side by the first support base (21) disposed on the starboard and bent at opposite ends in opposite directions Can be minimized and the increase in the excessive resistance acting on the ship can be reduced.
  • the propulsion efficiency of the propeller can be improved by changing the flow of the fluid from the ascending flow to the descending flow by the second support disposed at the port and having a positive average slope.
  • the flow of the fluid before passing through the second support is changed from the ascending flow to the descending flow by the pin disposed further on the port side where the flow field can be adversely formed and the size of the resistance acting on the second support is reduced,
  • the propulsion efficiency of the propeller can be improved.
  • the propeller rotates in the clockwise direction
  • the first side on which the first support is disposed is assumed to be the starboard.
  • the principle of the present invention can be applied to the case where the propeller is rotated in the counterclockwise direction and the above description is symmetrical.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

A duct-type ship energy reducing device according to an embodiment of the present invention comprises: a duct disposed to surround a part of the rear protruding part of a ship; and a support part for connecting the rear protruding part to the inner surface of the duct to fix the position of the duct with respect to the rear protruding part. The support part comprises a first support disposed on a first side of the ship and having a first end connected to the rear protruding part and a second end connected to the inner surface of the duct, the ends being curved in opposite directions, respectively. The support part may further comprise a second support disposed on a second side of the ship and having a positive average slope with respect to a propelling shaft of the ship.

Description

덕트형 선박 에너지 절감 장치Duct type ship energy saving device
본 발명은 덕트형 선박 에너지 절감 장치에 관한 것이다.The present invention relates to a duct-type ship energy saving device.
일반적으로 선박은 선미에 프로펠러(Propeller)를 부착하여 유체 내에서 회전하도록 함으로써 그 추진력을 이용해 움직이도록 설계된다. 이때 프로펠러의 후방에는 러더(Rudder)가 부착되며, 러더가 좌우로 회전함에 따라 유체의 흐름 방향을 조절함으로써 항해 방향을 변경한다. Generally, the ship is designed to move by using its propulsive force to propeller the propeller to rotate in the fluid. At this time, a rudder is attached to the rear of the propeller, and as the rudder rotates to the left and right, the direction of flow of the fluid is changed to change the direction of navigation.
이처럼 프로펠러의 회전을 통해 일정 속도를 내기 위해서는 엔진을 구동해야 하는데, 이때 많은 양의 연료가 소모되고 이로 인한 온실가스의 배출량이 많아져 환경 파괴 문제를 일으킨다. 최근에는 선박의 추진(propulsion)시 소비되는 에너지를 절감하여 연료 사용량을 줄이는 방안에 대한 연구가 다양하게 수행되고 있다. In order to achieve a constant speed through the rotation of the propeller, the engine must be driven. At this time, a large amount of fuel is consumed, and the amount of greenhouse gas emissions resulting from the consumption of the fuel is increased. Recently, various studies have been carried out to reduce fuel consumption by reducing energy consumed in propulsion of a ship.
연료절감형 기술의 일례로, 선박의 후미, 프로펠러, 러더 등의 형상을 개량하거나 별도의 부가물을 부착함으로써 추진 효율을 높이는 동시에, 연료를 절감하는 에너지 절감 장치(ESD: Energy Saving Device)가 큰 관심을 받게 되었다.As an example of the fuel saving type technology, it is possible to improve the propulsion efficiency by improving the shape of the rear end of the ship, the propeller, the rudder, etc., or by attaching additional additives, and at the same time, an energy saving device (ESD: Energy Saving Device) Interest.
이러한 에너지 절감 장치 중 별도의 부가물을 부착함으로써 추진 효율을 높이는 것에는 대표적으로 덕트(duct)가 있다. 예를 들어 한국 등록특허 제10-1453210호, 한국 등록특허 제10-1453209호, 한국공개특허 제2016-0149877호 등은 다양한 형태의 덕트(duct)형 에너지 절약 장치를 개시한다. Among these energy saving devices, a duct is typically used to enhance the propulsion efficiency by attaching an additional adduct. For example, Korean Patent No. 10-1453210, Korean Patent No. 10-1453209, and Korean Patent Laid-Open No. 2016-0149877 disclose various types of duct type energy saving devices.
본 발명의 실시예는, 좌현과 우현에 배치되는 지지대를 유체의 흐름에 맞게 설계하여 저항의 증가를 줄이고 프로펠러의 추진 효율을 높이는 덕트형 선박 에너지 절감 장치를 제공하는 것을 일 목적으로 한다. 그러나, 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.It is an object of the present invention to provide a duct-type ship energy saving apparatus which reduces the increase of resistance and improves the propulsion efficiency of a propeller by designing a support plate disposed at the port and starboards in accordance with the flow of the fluid. However, these problems are illustrative and do not limit the scope of the present invention.
본 발명의 일 실시예에 따른 덕트형 선박 에너지 절감 장치는, 선박의 선미돌출부의 일부를 둘러싸는 형태로 배치되는 덕트; 및 상기 선미돌출부와 상기 덕트의 내면(inner surface)을 연결하는 지지부;를 포함하고, 상기 지지부는, 상기 선미돌출부와 연결된 제1 단 및 상기 덕트의 내면과 연결된 제2 단이 서로 반대 방향으로 휘어지고, 상기 선박의 제1 현측에 배치된 제1 지지대;를 포함한다. A duct-type ship energy saving apparatus according to an embodiment of the present invention includes: a duct disposed in a form surrounding a part of a stern protrusion of a ship; And a support portion connecting the stern protruding portion and the inner surface of the duct, wherein the first end connected to the stern protrusion and the second end connected to the inner surface of the duct are bent in directions opposite to each other, And a first support disposed on a first side of the ship.
일 실시예에 있어서, 상기 제1 단의 추진축에 대한 기울기는, 상기 제2 단의 상기 추진축에 대한 기울기보다 클 수 있다.In one embodiment, the inclination of the first end with respect to the propelling shaft may be greater than the inclination of the second end with respect to the propelling shaft.
일 실시예에 있어서, 상기 제1 지지대의 기울기는 상기 제1 단에서 상기 제2 단으로 갈수록 감소할 수 있다. In one embodiment, the slope of the first support may decrease from the first end to the second end.
일 실시예에 있어서, 상기 지지부는, 상기 선박의 제2 현측에 배치되고, 상기 선박의 추진축에 대해 양의 평균 기울기를 가지는 제2 지지대;를 더 포함할 수 있다. In one embodiment, the support portion may further include a second support disposed on a second side of the ship, the second support having a positive average slope with respect to the propeller shaft of the ship.
본 발명의 일 실시예에 따른 덕트형 선박 에너지 절감 장치는, 상기 선박의 제2 현측에 배치되고, 상기 덕트의 내면에서 상기 덕트의 중심축 방향을 향해 돌출된 복수 개의 핀;을 더 포함할 수 있다. The duct-type ship energy saving apparatus according to an embodiment of the present invention may further include a plurality of pins disposed on a second side of the ship and protruding from the inner surface of the duct toward the central axis of the duct have.
일 실시예에 있어서, 상기 복수 개의 핀 중 상대적으로 위쪽에 배치된 핀은 상대적으로 아래쪽에 배치된 핀보다 평균 기울기가 클 수 있다.In one embodiment, the pin disposed relatively above the plurality of pins may have an average slope greater than the pin disposed relatively below.
일 실시예에 있어서, 상기 지지부는, 상기 선박의 중앙 종단면에 대칭으로 형성되고, 상기 선미돌출부 및 상기 덕트의 내면과 연결된 제3 지지대를 더 포함할 수 있다. In one embodiment, the support portion may further include a third support formed symmetrically with respect to a central vertical plane of the ship, the third support being connected to the stern protrusion and the inner surface of the duct.
전술한 것 외의 다른 측면, 특징, 이점이 이하의 도면, 특허청구범위 및 발명의 상세한 설명으로부터 명확해질 것이다. Other aspects, features, and advantages will become apparent from the following drawings, claims, and detailed description of the invention.
본 발명의 일 실시예에 의한 덕트형 선박 에너지 절감 장치에 따르면, 우현(starboard)에 배치되고 양 끝단이 반대 방향으로 휘어진 제1 지지대에 의하여 선미돌출부 쪽에서의 유체의 정체 현상을 최소화해 선박에 작용하는 과도한 저항의 증가를 감소시킬 수 있다. According to the duct-type ship energy saving apparatus according to an embodiment of the present invention, the first support which is disposed on the starboard and bent at opposite ends in opposite directions minimizes the fluid stagnation at the stern protruding portion, The increase of the resistance can be reduced.
좌현에 배치되고 양의 평균 기울기를 가지는 제2 지지대에 의하여, 유체의 흐름을 상승류에서 하강류로 바꾸어 프로펠러의 추진 효율을 향상시킬 수 있다. The propulsion efficiency of the propeller can be improved by changing the flow of the fluid from the ascending flow to the descending flow by the second support disposed at the port and having a positive average slope.
유동장이 불리하게 형성될 수 있는 좌현(port) 쪽에 추가 배치되는 핀에 의하여, 제2 지지대를 지나기 전의 유체의 흐름을 상승류에서 하강류로 바꾸고, 제2 지지대에 작용하는 저항의 크기를 줄여, 프로펠러의 추진 효율을 향상시킬 수 있다. The flow of the fluid before passing through the second support is changed from the ascending flow to the descending flow by the pin disposed further on the port side where the flow field can be adversely formed and the size of the resistance acting on the second support is reduced, The propulsion efficiency of the propeller can be improved.
물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.Of course, the scope of the present invention is not limited by these effects.
도 1은 프로펠러의 회전 방향 및 프로펠러의 효율을 증가시키기 위한 유체의 이상적인 흐름 및 선박에서의 유체의 실제 흐름을 나타낸 그림이다. Fig. 1 is an illustration showing the ideal flow of the fluid to increase the propeller rotation direction and the efficiency of the propeller, and the actual flow of the fluid in the vessel.
도 2는 본 발명의 일 실시예에 따른 덕트형 선박 에너지 절감 장치가 부착된 선박의 선미부를 나타낸 우측면도이다. FIG. 2 is a right side view showing a stern portion of a ship with a duct-type ship energy saving device according to an embodiment of the present invention. FIG.
도 3 및 도 4는 각각 본 발명의 일 실시예에 따른 덕트형 선박 에너지 절감 장치가 부착된 선박의 선미부를 나타낸 사시도와 정면도이다.3 and 4 are a perspective view and a front view, respectively, showing a stern portion of a ship equipped with a duct-type ship energy saving device according to an embodiment of the present invention.
도 5 및 도 6은 각각 제1 지지대의 확대 사시도 및 제1 지지대를 각각 I-I', II-II', III-III', IV-IV', V-V’선을 따라 자른 단면도이다. 5 and 6 are enlarged perspective views of the first support and sectional views of the first support taken along lines I-I ', II-II', III-III ', IV-IV' and V-V ', respectively.
도 7은 도 5의 제1 지지대를 각각 I-I', II-II', III-III', IV-IV', V-V’선을 따라 자른 단면이 전체적으로 추진축에 대해 아래 방향으로 기울어져 있음을 표현한 그림이다. FIG. 7 is a cross-sectional view taken along the line I-I ', II-II', III-III ', IV-IV' and V-V ' This is a picture that expresses existence.
도 8은 전산유체역학(CFD) 시뮬레이션을 통해 얻은, 선미돌출부(S) 주위를 흐르는 유체의 유속 및 스트림라인(streamline)을 나타낸 그림이다.8 is a graph showing the flow rate and the streamline of the fluid flowing around the stern protrusion S, obtained through computational fluid dynamics (CFD) simulation.
도 9 및 도 10은 각각 제2 지지대의 확대 사시도 및 제2 지지대를 각각 VI-VI', VII-VII' 선을 따라 자른 단면도이다. 9 and 10 are respectively an enlarged perspective view of the second support and a cross-sectional view of the second support along VI-VI 'and VII-VII', respectively.
도 11은 핀을 더 포함하는 덕트형 선박 에너지 절감 장치가 부착된 선박의 선미부를 나타낸 사시도이다.11 is a perspective view showing a stern portion of a ship with a duct-type ship energy saving device further including a pin.
도 12는 일 실시예에 따른 핀을 포함하는 덕트형 선박 에너지 절감 장치의 사시도이다. 12 is a perspective view of a ducted ship energy saving device including a pin according to one embodiment.
도 13은 제3 지지대를 더 포함하는 덕트형 선박 에너지 절감 장치가 부착된 선박의 선미부를 나타낸 사시도이다.13 is a perspective view showing a stern portion of a ship with a duct-type ship energy saving device further including a third support member.
도 14는 본 발명의 일 실시예에 따른 덕트형 선박 에너지 절감 장치의 yz 단면에서, 유체의 v-w 속도 벡터장을 비교한 그림이다.FIG. 14 is a diagram comparing v-w velocity vector fields of a fluid in a yz section of a duct-type ship energy saving apparatus according to an embodiment of the present invention.
도 15는 본 발명의 일 실시예에 따른 덕트형 선박 에너지 절감 장치를 선박에 설치하였을 때, 프로펠러의 yz 단면에서 유체의 v-w 속도 벡터장의 변화를 예시한 그림이다.15 is a diagram illustrating a change in the v-w velocity vector field of a fluid at the yz cross section of a propeller when a duct-type ship energy saving device according to an embodiment of the present invention is installed on a ship.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 상세한 설명에 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다.The present invention is capable of various modifications and various embodiments, and specific embodiments are illustrated in the drawings and described in the detailed description. The effects and features of the present invention and methods of achieving them will be apparent with reference to the embodiments described in detail below with reference to the drawings. However, the present invention is not limited to the embodiments described below, but may be implemented in various forms.
이하의 실시예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용된다.In the following embodiments, the terms first, second, etc. are used for the purpose of distinguishing one element from another element, rather than limiting.
이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.In the following examples, the singular forms "a", "an" and "the" include plural referents unless the context clearly dictates otherwise.
이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.In the following embodiments, terms such as inclusive or possessive are intended to mean that a feature, or element, described in the specification is present, and does not preclude the possibility that one or more other features or elements may be added.
본 명세서에서, x축은 선박의 선수와 선미를 지나는 축이고, y축은 선박의 좌현(port)과 우현(starboard)을 지나는 축이며, z축은 선박의 선저와 상갑판을 지나는 축이다.In this specification, the x-axis is the axis passing through the bow and stern of the ship, the y-axis is the axis passing through the port of the ship and the starboard, and the z-axis is the axis passing through the bottom of the ship and the upper deck.
본 명세서에서, 선박이 앞으로 나아가는 방향을 앞/앞쪽, 그 반대를 뒤/뒤쪽으로 정의한다. 한편, 선박이 앞으로 나아가는 방향을 기준으로 왼쪽과 오른쪽을 정의한다. In this specification, the direction in which the ship moves forward is defined as forward / forward and vice versa as rear / back. On the other hand, left and right are defined based on the direction in which the ship is moving forward.
본 명세서에서, 추진축(propulsion axis, PA)은 선박이 앞으로 나아갈 때 프로펠러가 회전하는 축을 의미한다. In this specification, the propulsion axis (PA) means the axis on which the propeller rotates as the ship moves forward.
본 명세서에서, 현측(side)은 선박의 측면을 의미하는 것으로, 좌현(port) 또는 우현(starboard)의 어느 하나를 나타낸다. In this specification, the term " side " refers to the side of the ship, and represents either a port or a starboard.
본 명세서에서, 설계 속도란 선박에 장착되는 주 엔진(main engine)의 최대 출력의 85% 또는 90%에서 낼 수 있는 속도로, 선박 건조계약에서의 계약조건으로 조선소가 만족시켜야 하는 속도를 의미한다. In this specification, the design speed means the speed at which the shipyard must satisfy the contract terms in the shipbuilding contract, at a rate that can be reached at 85% or 90% of the maximum output of the main engine mounted on the ship .
도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.In the drawings, components may be exaggerated or reduced in size for convenience of explanation. For example, the size and thickness of each component shown in the drawings are arbitrarily shown for convenience of explanation, and thus the present invention is not necessarily limited to those shown in the drawings.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 같거나 대응하는 구성 요소는 같은 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, wherein like reference numerals refer to like or corresponding components throughout the drawings, and a duplicate description thereof will be omitted .
프로펠러 앞쪽에 배치되거나 프로펠러를 감싸는 덕트는, 프로펠러로 유입되는 유체의 흐름을 조절하여 프로펠러의 성능을 향상시켜 에너지를 절감시킬 수 있다. 따라서 덕트를 설치할 때는 프로펠러 단면에서의 유체의 흐름(속도 벡터장)을 살펴볼 필요가 있다. A duct disposed in front of the propeller or surrounding the propeller can reduce the energy by improving the performance of the propeller by controlling the flow of the fluid to the propeller. Therefore, when installing the duct, it is necessary to examine the fluid flow (velocity vector field) at the end of the propeller.
도 1은 프로펠러의 회전 방향 및 프로펠러의 효율을 증가시키기 위한 유체의 이상적인 흐름 및 선박에서의 유체의 실제 흐름을 예시한 그림이다. Figure 1 is an illustration of an ideal flow of fluid to increase the propeller rotation direction and the efficiency of the propeller and the actual flow of fluid in the vessel.
선미 쪽에서 보았을 때, 대부분 선박의 프로펠러는 (a)와 같이 시계방향으로 회전한다. 프로펠러로 유입되는 유체가 프로펠러 회전 방향에 반대 방향으로 회전하면서 프로펠러로 유입되는 경우, 프로펠러의 효율이 더 증가함이 알려져 있다. 따라서 (a)와 같이 프로펠러가 시계방향으로 회전할 때, yz 평면을 통과하는 유체의 y, z 방향 속도를 나타내는 v-w 속도 벡터장은 (b)와 같이 반시계방향으로 회전하는 것이 바람직하다.When viewed from the stern side, the propeller of most ships turns clockwise as shown in (a). It is known that the efficiency of the propeller is further increased when the fluid introduced into the propeller flows into the propeller while rotating in the direction opposite to the direction of rotation of the propeller. Therefore, when the propeller rotates in the clockwise direction as shown in (a), it is preferable that the v-w velocity vector field indicating the velocity in the y and z directions of the fluid passing through the yz plane is rotated counterclockwise as shown in (b).
도 1의 (c)는 베어 헐(bare hull) 상태에서의 유체의 실제 흐름(속도 벡터장)을 나타낸다. (c)를 참조하면, 우현(starboard) 쪽에서는 대부분 상승류가 일어나 프로펠러 효율에 유리한 흐름이 형성되어 있으나, 프로펠러의 중앙부에 가까운 쪽에서는 하강류가 일어나, 이상적인 흐름인 (b)와 비교할 때 프로펠러 효율에 다소 불리한 면이 있다. 한편, 좌현(port)의 중앙부는 하강류가 일어나므로 프로펠러 효율에 좋으나, 중앙부에서 먼 곳에서는 대부분 상승류가 발생하므로 프로펠러 효율에 좋지 않다.1 (c) shows the actual flow (velocity vector field) of the fluid in the bare hull state. (c), the most upstream flow is generated on the starboard side, and a flow favorable to the propeller efficiency is formed. However, a descending flow occurs near the central portion of the propeller, and compared with the ideal flow (b) There are some disadvantages to efficiency. On the other hand, the middle part of the port is inferior in propeller efficiency because a downward flow occurs, but the upward flow is generated mostly in the far part from the center part, which is not good for the propeller efficiency.
따라서 덕트를 배치할 때는 실제 속도 벡터장이 이상적인 속도 벡터장에 가까워지도록 구성요소를 설계하여야 한다. 그러나 기존의 덕트는, 좌현과 우현의 차이 및 중앙부에 가까운 쪽과 먼 쪽에서의 유체의 흐름의 차이를 고려하지 않고 지지대를 설계하여, 프로펠러 효율이 낮은 문제가 있다. Therefore, when placing the duct, the component should be designed so that the actual velocity vector field approaches the ideal velocity vector field. However, the existing duct has a problem that the propeller efficiency is low by designing the support without considering the difference between the port side and the starboard side and the difference in the flow of the fluid at the side closer to the central portion and the flow at the far side.
도 2는 본 발명의 일 실시예에 따른 덕트형 선박 에너지 절감 장치가 부착된 선박의 선미부를 나타낸 우측면도이다. 본 발명의 덕트형 선박 에너지 절감 장치는, 선박의 선미돌출부(S)에 결합하여 추력을 제공하는 프로펠러(P)의 앞쪽에 배치되거나 프로펠러(P)를 둘러싸도록 배치될 수 있다. 도 2에서는 덕트형 선박 에너지 절감 장치가 프로펠러(P)의 앞쪽에 배치된 것을 예시하였다. 일 실시예에 따른 덕트형 선박 에너지 절감 장치는 덕트(10) 뒤쪽 또는 덕트(10) 내부의 프로펠러(P)로 유입되는 유체의 흐름을 조절해, 프로펠러의 효율을 향상시킬 수 있다. FIG. 2 is a right side view showing a stern portion of a ship with a duct-type ship energy saving device according to an embodiment of the present invention. FIG. The duct-type ship energy saving device of the present invention may be disposed in front of a propeller (P) which is coupled to a ship's stern protrusion (S) and provides a thrust, or may be disposed so as to surround a propeller (P). In FIG. 2, the duct-type ship energy saving device is arranged in front of the propeller (P). The duct-type ship energy saving device according to one embodiment can improve the efficiency of the propeller by controlling the flow of the fluid flowing into the propeller (P) behind the duct (10) or the duct (10).
도 2를 참조하면, 선미돌출부(S)에 가까운 중앙 영역에서는, 선박의 중앙 헐(hull)을 따라 하강류(downstream, DS)가 흐른다. 반면, 선미돌출부(S)에서 조금 더 떨어진 영역, 즉 덕트(10)에 가까운 곳에서는 상승류(upstream, US)가 흐른다. Referring to FIG. 2, in a central region close to the stern protrusion S, a downstream (DS) flows along the center hull of the ship. On the other hand, in a region slightly further away from the stern protrusion S, that is, near the duct 10, an upstream flow (US) flows.
일 실시예에 따르면, 선미돌출부(S)와 연결된 제1 단(도 3, 21-1) 및 덕트(10)의 내면과 연결된 제2 단(도 4, 21-2)이 반대 방향으로 휘어진 제1 지지대(도 3, 21)를 통해, 제1 단(21-1)에 가까운 곳에 흐르는 유체의 흐름과, 제2 단(21-2)에 가까운 곳에 흐르는 유체의 흐름이 다르게 조절될 수 있다. 즉 제1 지지대(21)의 구조적 특징을 통해 프로펠러(P)의 추진 효율을 향상시킬 수 있는데, 이하 이에 대해 서술한다. According to one embodiment, the first end (Figs. 3 and 21-1) connected to the stern protrusion S and the second end (Figs. 4 and 21-2) connected to the inner surface of the duct 10 are bent The flow of the fluid flowing near the first stage 21-1 and the flow of the fluid flowing near the second stage 21-2 can be adjusted differently through the support 1 (Figs. 3 and 21). That is, the propulsion efficiency of the propeller P can be improved through the structural characteristics of the first support 21, which will be described below.
도 3 및 도 4는 각각 본 발명의 일 실시예에 따른 덕트형 선박 에너지 절감 장치가 부착된 선박의 선미부를 나타낸 사시도와 정면도이다. 도 3 및 도 4에서는 설명의 편의를 위하여 선박의 프로펠러를 제외하고, 예시적으로 제1 지지대(21)가 선박의 우현에 배치된 것으로 도시하였으나 본 발명이 이에 제한되는 것은 아니다. 3 and 4 are a perspective view and a front view, respectively, showing a stern portion of a ship equipped with a duct-type ship energy saving device according to an embodiment of the present invention. In FIGS. 3 and 4, for the sake of convenience, the first support 21 is illustratively disposed on the starboard of the ship except for the propeller of the ship, but the present invention is not limited thereto.
본 발명의 일 실시예에 따른 덕트형 선박 에너지 절감 장치는 덕트(10)와 지지부(20)를 포함한다. A duct-type ship energy saving apparatus according to an embodiment of the present invention includes a duct (10) and a support portion (20).
도 3을 참조하면, 덕트(10)는 선미돌출부(S)의 적어도 일부를 바깥에서 둘러싸는 형태로 배치된다. 예컨대 덕트(10)는 앞쪽과 뒤쪽이 개방된 형태의 형상을 가져, 내부에 공간을 가질 수 있다. 덕트(10)는 선미돌출부(S)의 외면(outer surface)에 상보적인 형상을 가질 수 있으며, 덕트(10)의 단면은 원, 타원 등 다양한 구조를 가질 수 있다. 일 실시예에 따르면, 덕트(10)는 마치 전등갓과 같이 선박의 앞방향으로 갈수록 단면의 반지름이 커지는 구조를 가질 수 있다. 이 경우, 넓은 '입구'를 가진 덕트(10)의 앞쪽에서 유입된 유체는 좁은 '출구'를 가진 덕트(10)의 뒤쪽으로 빠져나가므로, 연속 방정식(continuity equation)에 의해 유체의 유출 속도가 유입 속도보다 빨라지게 된다. 이로 인하여, 덕트(10)가 없을 때와 비교할 때 덕트(10) 뒤쪽에 배치된 프로펠러로 유입되는 유체의 속도가 증가한다. 즉 이 경우 덕트(10)는 가속 덕트로 기능할 수 있다. 이와 달리 덕트(10)가 선박의 뒷방향으로 갈수록 단면의 반지름이 커지는 구조를 가질 수 있는데, 이 경우 덕트(10)는 감속 덕트로 기능할 수 있다. 한편, 덕트(10)는 선미돌출부(S) 근처에서 발생하는 와류(vortex)의 발생을 억제하고, 프로펠러(P)로 유입되는 유체의 x방향 속도 분포를 균일화하는 역할을 수행할 수 있다.Referring to FIG. 3, the duct 10 is arranged to surround at least a part of the stern protrusion S from outside. For example, the duct 10 has a shape in which the front side and the rear side are open, and can have a space therein. The duct 10 may have a complementary shape to the outer surface of the stern protrusion S, and the cross section of the duct 10 may have various structures such as a circle and an ellipse. According to one embodiment, the duct 10 may have a structure such that the radius of the cross section becomes larger toward the front of the ship, such as a lamp shade. In this case, the fluid introduced from the front of the duct 10 having a wide 'inlet' will escape to the rear of the duct 10 with a narrow 'outlet', so that the outlet velocity of the fluid Which is faster than the inflow rate. This increases the velocity of the fluid flowing into the propeller disposed behind the duct 10 as compared to when the duct 10 is absent. In this case, the duct 10 can function as an accelerating duct. Alternatively, the duct 10 may have a structure in which the radius of the cross section increases as the duct 10 moves toward the rear direction of the ship. In this case, the duct 10 may function as a deceleration duct. On the other hand, the duct 10 can suppress the generation of a vortex generated in the vicinity of the stern protrusion S, and can play a role of equalizing the velocity distribution of the fluid flowing in the propeller P in the x direction.
덕트(10)의 안쪽에는 지지부(20)가 배치된다. 지지부(20)는 선미돌출부(S)와 덕트(10)의 내면(inner surface)을 연결하여, 덕트(10)의 위치를 선미돌출부(S)에 대해 고정시킨다. 지지부(20)는 덕트(10)의 안쪽에 배치되므로, 덕트(10) 안으로 유입되는 유체의 흐름을 방해하는 저항으로 작용할 수 있다. 이에, 본 발명에서는 덕트(10) 안으로 유입되는 유체의 흐름을 바꾸고 저항의 증가를 최소화할 수 있도록 지지부(20)의 형태를 변형시켜, 프로펠러의 추진 효율을 향상시킬 수 있다. A support portion (20) is disposed inside the duct (10). The support portion 20 connects the stern protrusion S and the inner surface of the duct 10 to fix the position of the duct 10 to the stern protrusion S. Since the support portion 20 is disposed inside the duct 10, it can act as a resistance to obstruct the flow of the fluid flowing into the duct 10. Accordingly, in the present invention, the shape of the support portion 20 can be modified to improve the propelling efficiency of the propeller so as to change the flow of the fluid flowing into the duct 10 and minimize the increase of the resistance.
지지부(20)는 모양과 위치가 다른 여러 개의 지지대를 포함할 수 있다. 도 3 및 도 4에서는 우현(starboard), 좌현(port)에 제1 지지대(21), 제2 지지대(22)가 각각 배치된 것을 예시하였다. 본 발명의 일 실시예에서, 제1 지지대(21)와 제2 지지대(22)는 다른 모양을 가지는데, 이하 제1 지지대(21) 및 제2 지지대(22)의 구조의 차이점 및 구조에 따른 효과를 차례로 서술한다. The support portion 20 may include a plurality of supports having different shapes and positions. In FIGS. 3 and 4, a first support 21 and a second support 22 are arranged on a starboard and a port, respectively. In one embodiment of the present invention, the first support 21 and the second support 22 have different shapes. Hereinafter, the structures of the first support 21 and the second support 22 are different from each other, Describe the effect in turn.
도 3 및 도 4를 참조하면, 선미돌출부(S)와 연결된 제1 지지대(21)의 제1 단(21-1) 및 덕트(10)의 내면과 연결된 제2 단(21-2)은 서로 반대 방향으로 휘어진다. 더욱 상세하게는, 제1 지지대(21)의 제1 단(21-1)은 앞쪽이 위를 향하도록 휘어지고, 제2 단(21-2)은 앞쪽이 아래를 향하도록 휘어질 수 있다. 즉 마치 제1 지지대(21)는 판의 양옆을 반대 방향으로 구부려 휘게 한 구조를 가질 수 있다. 이러한 구조적 특징으로 인해, 프로펠러가 올라오는 방향으로 움직이는 제1 현측에서의 유체의 흐름이 달라져 프로펠러의 추진 효율이 향상되는데, 이에 대하여는 후술한다. 3 and 4, the first end 21-1 of the first support 21 connected to the stern protrusion S and the second end 21-2 connected to the inner surface of the duct 10 are connected to each other Bend in the opposite direction. More specifically, the first end 21-1 of the first support 21 is bent forward and the second end 21-2 of the first support 21 is bent forward. That is, the first support base 21 may have a structure in which both sides of the plate are bent and bent in opposite directions. Because of this structural feature, the flow of the fluid in the first hinge side moving in the direction in which the propeller ascends is changed to improve the propelling efficiency of the propeller, which will be described later.
도 5 및 도 6은 각각 제1 지지대의 확대 사시도 및 제1 지지대를 각각 I-I', II-II', III-III', IV-IV', V-V??선을 따라 자른 단면도이다. 5 and 6 are enlarged perspective views of the first support and a cross-sectional view of the first support along the lines I-I ', II-II', III-III ', IV-IV' and V-V, respectively.
도 5 및 도 6을 참조하면, 제1 지지대(21)는 유선형의 판 형태를 가질 수 있다. 이때 판은 위아래 방향(z)의 두께에 비해 좌우 방향(y), 앞뒤 방향(x)의 길이가 긴 형태를 모두 지칭한다. 특히, 제1 지지대(21)는 좌우 방향(y)의 길이가 앞뒤 방향(x)의 길이보다 길 수 있다. 제1 지지대(21)의 각각의 종단면은 유선형의 에어포일(airfoil) 형태를 가져, 덕트(10)의 내부로 유입되는 유체에 의한 저항을 최소화할 수 있다. 이때 에어포일은 다양한 모양을 가질 수 있다. 5 and 6, the first support 21 may have a streamlined plate shape. At this time, the plate refers to a shape having a longer length in the left-right direction (y) and the back-and-forth direction (x) than the thickness in the up-and-down direction (z). In particular, the length of the first support frame 21 in the left-right direction y may be longer than the length of the fore-and-aft direction x. Each longitudinal section of the first support 21 has a streamlined airfoil shape to minimize resistance due to fluid flowing into the interior of the duct 10. At this time, the airfoil can have various shapes.
일 실시예에 따르면, 제1 지지대(21)의 종단면 중 위쪽 경계선은 평평하고, 아래쪽 경계선은 아래로 볼록한 구조를 가질 수 있다. 또는, 위쪽 경계선과 아래쪽 경계선 모두 볼록하나, 위쪽 경계선보다 아래쪽 경계선이 더 볼록한 구조를 가질 수 있다. 즉 제1 지지대(21)의 윗면의 곡률은 아랫면의 곡률에 비해 완만할 수 있다. 이러한 구조를 가지는 제1 지지대(21)의 아랫면 아래를 흐르는 유체의 속도는 빠르고, 윗면 위를 흐르는 유체의 속도는 상대적으로 느리다. 이 경우, 제1 지지대(21)의 뒤쪽 끝단을 지나는 유체의 위쪽 방향 속도 성분이 커지게 되어, 상승류가 강해져 프로펠러(P)의 추진 효율이 높아진다. According to one embodiment, the upper boundary line of the first support frame 21 may be flat, and the lower boundary line may have a convex downward structure. Alternatively, both the upper border and the lower border may have a convex structure, and the lower border line may have a convex structure. That is, the curvature of the upper surface of the first support 21 may be gentler than that of the lower surface. The velocity of the fluid flowing under the lower surface of the first support 21 having such a structure is fast and the velocity of the fluid flowing on the upper surface is relatively slow. In this case, the velocity component in the upward direction of the fluid passing through the rear end of the first support table 21 becomes large, so that the upward flow becomes strong and the propelling efficiency of the propeller P increases.
일 실시예에 따르면, 제1 단(21-1)의 추진축(PA)에 대한 기울기는, 제2 단(21-2)의 추진축(PA)에 대한 기울기보다 클 수 있다. According to one embodiment, the slope of the first stage 21-1 with respect to the propulsion shaft PA may be greater than the slope of the second stage 21-2 with respect to the propulsion shaft PA.
'제1 단(21-1)의 추진축(PA)에 대한 기울기'는 제1 지지대(21)와 선미돌출부(S)의 경계를 따라 자른 에어포일 단면(I-I' 선을 따라 자른 단면)이 추진축(PA)과 이루는 각도를 의미할 수 있다. 한편, '제2 단(21-2)의 추진축에 대한 기울기'는 제1 지지대(21)와 덕트(10) 내면의 경계를 따라 자른 에어포일 단면(V-V??선을 따라 자른 단면)이 추진축(PA)과 이루는 각도를 의미할 수 있다.The inclination of the first stage 21-1 with respect to the propeller shaft PA is determined by the angle of the airfoil section (section cut along the line II ') cut along the boundary between the first support 21 and the stern protrusion S, 0.0 > PA. ≪ / RTI > The inclination of the second stage 21-2 with respect to the propelling shaft is determined such that the end face of the airfoil cut along the boundary between the first support 21 and the inner surface of the duct 10 0.0 > PA. ≪ / RTI >
이때 '에어포일 단면의 기울기'는, 추진축(PA)에 대한 에어포일 단면의 시위선(chord line)의 기울기 또는 각도로 정의될 수 있다. 도 6에서는 편의를 위해 제1 지지대(21)의 단면의 평평한 위쪽 경계선이 시위선인 것으로 가정한다. 즉 도 6에서 '기울기'는 제1 지지대(21) 단면의 위쪽 경계선이 추진축(PA)과 이루는 각도를 의미한다. 도 6에서는 편의상 제1 단(21-1)의 추진축(PA)에 대한 기울기가 0°인 것으로 도시하였으나 본 발명이 이에 제한되는 것은 아니다. 즉 제1 단(21-1)의 추진축(PA)에 대한 기울기는 선박의 크기, 모양 등에 따라 양 또는 음의 값을 가질 수도 있다. The 'slope of the airfoil section' may be defined as the slope or angle of the chord line of the airfoil section with respect to the propulsion shaft PA. In FIG. 6, it is assumed that a flat upper boundary line of the cross section of the first support 21 is a protrusion line for convenience. That is, 'slope' in FIG. 6 means an angle formed by the upper boundary of the end surface of the first support 21 with the propeller shaft PA. In FIG. 6, the slope of the first stage 21-1 with respect to the propeller shaft PA is 0 ° for convenience, but the present invention is not limited thereto. That is, the inclination of the first stage 21-1 with respect to the propeller shaft PA may have a positive or negative value depending on the size, shape, and the like of the ship.
I-I' 단면도, V-V' 단면도를 참조하면, 제1 단(21-1)에서의 에어포일 단면은 제2 단(21-2)에서의 에어포일 단면보다 더 위쪽을 향해 기울어져 있다. 상술하였듯, 헐(hull) 부근, 즉 선미돌출부(S)의 중앙부에 가까운 영역에서는 I'에서 I로 향하는 하강류(downstream)가 발생한다. 반면 선미돌출부(S)의 중앙부로부터 더 먼 영역, 즉 덕트(10)에 가까운 영역에서는 V'에서 V로 향하는 상승류(upstream)가 발생한다. 이에, 본 발명에서는 제1 단(21-1)의 기울기(θIS)를 높여 하강류에 의한 저항을 최소화하고, 제2 단(21-2)의 기울기(θOS)를 줄여 상승류에 의한 저항을 최소화한다. Sectional view of the airfoil in the first stage 21-1, the airfoil section in the first stage 21-1 is inclined more upward than the airfoil section in the second stage 21-2. As described above, in the vicinity of the hull, that is, in the vicinity of the center portion of the stern projection S, a downward flow from I 'to I occurs. On the other hand, in a region farther from the central portion of the stern projection S, that is, in the vicinity of the duct 10, an upstream flow from V 'to V is generated. Accordingly, in the present invention, by increasing the inclination? IS of the first stage 21-1 to minimize the resistance due to the downward flow and reducing the inclination? OS of the second stage 21-2, Minimize the resistance.
일 실시예에 따르면, 제1 단(21-1)의 기울기(SIS)와 제1 지지대(21)의 평균 기울기(SM)의 차이(θIS)는 0 ~ 20°일 수 있고, 제2 단(21-2)의 기울기(SOS)와 제1 지지대(21)의 평균 기울기(SM)의 차이(θOS)는 -20 ~ 0°일 수 있다. According to one embodiment, the difference? IS between the slope S IS of the first stage 21-1 and the mean slope S M of the first support 21 can be 0 to 20 °, The difference? OS between the slope S OS of the second stage 21-2 and the average slope S M of the first support stage 21 may be -20 to 0 °.
본 명세서에서는, 기울기의 차이를 각도로 표현한다. 이때 시계 반대 방향으로의 각도는 양의 각도를 갖는 것으로, 시계방향으로의 각도는 음의 각도를 갖는 것으로 정의할 수 있다.In the present specification, the difference in slope is expressed by an angle. In this case, the angle in the counterclockwise direction has a positive angle, and the angle in the clockwise direction has a negative angle.
본 명세서에서, '평균 기울기'는 추진축(PA)에 평행하게 자른 여러 개의 에어포일 단면 기울기의 평균을 의미한다. 즉 제1 지지대(21)의 제1 단(21-1)에서부터 제2 단(21-2)까지 이동하면서, 위치에 따른 에어포일 단면의 기울기의 값을 평균한 것이 제1 지지대(21)의 평균 기울기(SM)가 된다. 또는, '평판(flat plane)'의 양 끝단을 구부려 제1 지지대(21) 형태를 만드는 것을 상정할 때, 평균 기울기(SM)는 '평판 형태의 제1 지지대(21)'가 추진축(PA)과 이루는 각도로 이해될 수 있다. 또는, 제1 지지대(21)의 평균 기울기(SM)는 제1 지지대(21)가 기준 상태에서 전체적으로 회전된 정도를 의미할 수 있다. 도 6에서는, 제1 지지대(21)의 평균 기울기를 선(SM)으로 표현하였고, III-III' 에어포일 단면의 기울기가 평균 기울기(SM)인 것으로 예시하였다.In this specification, the 'average slope' means the average of several airfoil section slopes cut parallel to the propeller shaft (PA). That is, from the first end 21-1 to the second end 21-2 of the first support 21, the average value of the slope of the cross section of the airfoil depending on the position is the Becomes the average slope ( SM ). Alternatively, when it is assumed that the both ends of the 'flat plane' are bent to form the first support 21, the average slope S M is determined by 'a first support 21 in the form of a flat plate' ). ≪ / RTI > Alternatively, the average slope S M of the first support 21 may mean the extent to which the first support 21 is wholly rotated in the reference state. In FIG. 6, the average slope of the first support 21 is represented by a line S M , and the slope of the III-III 'airfoil section is illustrated as an average slope (S M ).
이때, '제1 단(21-1)의 기울기(SIS)와 제1 지지대(21)의 평균 기울기(SM)의 차이(θIS)'는 '평판'인 상태와 비교할 때 제1 단(21-1)이 얼마만큼 휘어졌는지를 나타내는 척도가 된다. 마찬가지로, '제2 단(21-2)의 기울기(SOS)와 제1 지지대(21)의 평균 기울기(SM)의 차이(θOS)'는 제2 단(21-2)이 '평판'인 상태와 비교할 때 얼마만큼 휘어졌는지를 나타내는 척도가 된다. At this time, the difference? IS between the slope S IS of the first stage 21-1 and the mean slope S M of the first support 21 is smaller than the flatness? (21-1) is bent. Similarly, the difference? OS 'between the slope S OS of the second stage 21-2 and the mean slope S M of the first support 21 is such that the second stage 21-2 is''Is a measure of how much it is bent when compared to the state of'
이때 I-I' 단면도를 참조하면, 제1 단(21-1)의 기울기(SIS)와 평균 기울기(SM) 사이의 각도(θIS)는 약 0~20°일 수 있다. 제1 단(21-1)이 지나치게 휘어진 경우, 유체가 제1 지지대(21)에 '부딪혀' 오히려 저항이 증가할 수 있다. 상기 각도(θIS)의 최적값은 선박의 모양, 크기, 유선(streamline)의 모양 등에 좌우되므로, 전산유체역학(CFD)을 이용한 컴퓨터 시뮬레이션 또는 모형 선박을 이용한 모형 시뮬레이션을 이용하여 결정될 수 있다. Referring now to the cross-sectional view of II ', the angle θ IS between the slope S IS of the first stage 21-1 and the mean slope S M may be about 0-20 °. If the first stage 21-1 is bent excessively, the fluid may 'bump' the first support 21, rather the resistance may increase. The optimal value of the angle? IS depends on the shape, size, and shape of the ship, and therefore can be determined using computer simulation using computational fluid dynamics (CFD) or model simulation using a model ship.
한편, V-V' 단면도를 참조하면, 제2 단(21-2)의 기울기(SOS)와 평균 기울기(SM) 사이의 각도(θOS)는 약 -20~0°일 수 있다. 제2 단(21-2)이 지나치게 휘어진 경우, 유체가 제1 지지대(21)에 '부딪혀' 오히려 저항이 증가할 수 있다. 상기 각도(θOS)의 최적값은 선박의 모양, 크기, 유선(streamline)의 모양 등에 좌우되므로, 전산유체역학(CFD)을 이용한 컴퓨터 시뮬레이션 또는 모형 선박을 이용한 모형 시뮬레이션을 이용하여 결정될 수 있다.On the other hand, the angle between the slope (S OS) with the average slope (S M) if the VV ', see the sectional view, a second end (21-2) (θ OS) may be between about -20 ~ 0 °. If the second stage 21-2 is excessively curved, the fluid may 'strike' the first support 21, but the resistance may increase. The optimum value of the angle? OS depends on the shape, size, and shape of the ship, and therefore can be determined using a computer simulation using computational fluid dynamics (CFD) or a model simulation using a model ship.
일 실시예에 따르면, 제1 지지대(21)의 기울기는 상기 제1 단(21-1)에서 상기 제2 단(21-2)으로 갈수록 감소할 수 있다. '제1 지지대(21)의 기울기'는 위치에 따른 에어포일 단면의 기울기를 의미한다. 즉 도 6을 제1 지지대(21)의 제1 단(21-1)에서 제2 단(21-2) 쪽으로 갈수록 평균 기울기선(SM)과 에어포일의 기울기선(SIS, SII,SIII,SIV,SOS)이 이루는 각도(θIS, θ2, θ3, θ4, θOS)는 점점 작아질 수 있다. 이때 제1 지지대(21)의 에어포일 단면의 기울기(θIS, θ2, θ3, θ4, θOS)는 연속적으로 변할 수 있다. 즉 제1 지지대(21)의 표면은 급격하게 꺾이는 부분 없이 부드러운(smooth) 곡면을 가질 수 있다. 이 경우, 유체가 정체되는 영역 없이 저항이 최소화될 수 있다. According to one embodiment, the slope of the first support 21 may decrease from the first end 21-1 to the second end 21-2. The 'slope of the first support 21' means the slope of the cross section of the airfoil depending on the position. 6 shows the mean slope line S M and the slope line S IS of the airfoil from the first end 21-1 to the second end 21-2 of the first support 21, IS , θ 2 , θ 3 , θ 4 , θ OS ) formed by the S II , S III , S IV and S OS can be made smaller. At this time, the slopes (? IS ,? 2 ,? 3 ,? 4 ,? OS ) of the airfoil section of the first support 21 can be continuously changed. In other words, the surface of the first support 21 can have a smooth curved surface without a sudden breaking portion. In this case, the resistance can be minimized without the area where the fluid stagnates.
도 7은 도 5의 제1 지지대(21)를 각각 I-I', II-II', III-III', IV-IV', V-V??선을 따라 자른 단면이 전체적으로 추진축(PA)에 대해 아래 방향으로 기울어져 있음을 표현한 그림이다. FIG. 7 is a cross-sectional view of the first support 21 of FIG. 5 taken along lines I-I ', II-II', III-III ', IV-IV' It is a picture that it is inclined downward.
일 실시예에 따르면, 제1 지지대(21)는 추진축(PA)에 대해 음의 평균 기울기(θ21)를 가질 수 있다. 이때 제1 지지대(21)의 평균 기울기(θ21)는 -20 ~ 0°일 수 있다. 즉 제1 지지대(21)는 전체적으로 앞전(leading edge)이 아래쪽을 향하도록 기울어질 수 있다.According to one embodiment, the first support 21 may have a negative average slope &thetas; 21 with respect to the propulsion shaft PA. The average slope (θ 21) of the first support 21 may be -20 ~ 0 °. That is, the first support 21 can be inclined such that the leading edge is directed downward as a whole.
도 1의 (c)를 다시 참조하면, 덕트의 yz 단면에서의 유체의 v-w 속도 벡터장을 살펴볼 때, 중앙부를 제외하고 덕트를 지나는 대부분의 유체는 상승류이다. Referring again to FIG. 1 (c), looking at the v-w velocity vector field of the fluid at the yz cross section of the duct, most of the fluid passing through the duct, except for the center, is ascending.
도 2 및 도 7을 참조하면, 덕트(10) 내면에 가까운 곳에서는 상대적으로 상승류(US)가 흐르며, 선미돌출부(S)에 가까운 영역에서는 상대적으로 하강류(DS)가 흐른다. 즉 제1 지지대의 제2 단(21-2)) 쪽으로 갈수록, 즉 도 7에서는 V-V' 단면도 방향으로 갈수록 상승류가 흐른다. 따라서 제1 지지대(21)의 앞전을 전체적으로 아래로 기울이는 경우, 상승류인 유체의 흐름에 대해 제1 지지대(21)의 받음각이 전체적으로 줄어들게 된다. 즉 제1 지지대의 평균 기울기(θ21)를 음의 각도로 유지하는 경우, 유체에 의한 저항을 줄일 수 있다. Referring to FIGS. 2 and 7, a relatively upward flow US flows near the inner surface of the duct 10, and a downward flow DS relatively flows in a region near the stern protruding portion S. That is, toward the second end 21-2 of the first support, that is, in FIG. 7, an upward flow flows toward the VV 'sectional view direction. Therefore, when the front end of the first support 21 is tilted downward, the angle of the first support 21 is reduced with respect to the flow of the upward flow. That is, when the average slope? 21 of the first support is maintained at a negative angle, the resistance by the fluid can be reduced.
제1 지지대(21)가 지나치게 기울어지거나 반대쪽으로 기울어지는 경우, 유체가 제1 지지대(21)에 '부딪혀' 오히려 저항이 증가할 수 있다. 제1 지지대(21) 평균 기울기의 최적값은 선박의 모양, 크기, 유선(streamline)의 모양 등에 좌우되므로, 전산유체역학(CFD)을 이용한 컴퓨터 시뮬레이션 또는 모형 선박을 이용한 모형 시뮬레이션을 이용하여 결정될 수 있다. If the first support 21 is too tilted or tilted to the opposite side, the fluid may 'bump' the first support 21, rather the resistance may increase. The optimum value of the mean slope of the first support 21 may depend on the shape, size, and shape of the ship, and may thus be determined using computer simulation using computational fluid dynamics (CFD) or model simulation using a model ship have.
한편, 덕트(10)의 중앙부, 즉 선미돌출부(S)에 가까운 곳에서는 상대적으로 하강류가 발생한다. 따라서 제1 지지대의 제1 단(21-1)은 앞전(leading edge)을 상대적으로 위쪽으로 휘게 하여 하강류와의 받음각을 줄어들게 한다. 즉 제1 지지대(21)를 전체적으로 아래로 기울이고, 제1 단(21-1)만 위로 기울여, 위치별로 유체에 의한 저항을 줄일 수 있다. On the other hand, a downward flow relatively occurs at the central portion of the duct 10, that is, near the stern projection S. Accordingly, the first end 21-1 of the first support member bends the leading edge relatively upward to reduce the angle of attack with the downward flow. That is, the first support 21 is tilted downward as a whole, and only the first end 21-1 is tilted upward, whereby the resistance by the fluid can be reduced for each position.
한편, 도 7에서는 편의상 제1 단(21-1)의 기울기(SIS)가 추진축(PA)과 평행한 것으로 예시하였으나, 본 발명이 이에 제한되는 것이 아님은 물론이다. In FIG. 7, the slope S IS of the first stage 21-1 is parallel to the propeller shaft PA for convenience. However, the present invention is not limited thereto.
도 8은 전산유체역학(CFD) 시뮬레이션을 통해 얻은, 선미돌출부(S) 주위를 흐르는 유체의 유속 및 스트림라인을 나타낸 그림이다. 도 8의 (a) 내지 (d)에서, 농도가 진한 영역은 상대 속도가 1인 기준 영역(reference)이다. 농도로 구분하는 각각의 선은 상기 기준 속도에서 10%씩 감소하는 속도 지점을 이은 등유속선이다. 농도가 옅은 영역은 상대 속도가 0인 곳으로, 유체가 정체되는 곳을 의미한다. 이때 시뮬레이션한 선박의 설계 속도는 14 노트(knot)이었으며, 컴퓨터 시뮬레이션 상에서 프루드수(Froude number)를 맞추기 위한 유체의 속도는 1.273m/s이었다. FIG. 8 is a graph showing the flow rate and the stream line of the fluid flowing around the stern protrusion S, obtained through computational fluid dynamics (CFD) simulation. In FIGS. 8A to 8D, the region with a high concentration is a reference region having a relative speed of 1. Each line separated by concentration is a kerosene line followed by a point at which it decreases by 10% at the reference speed. The area with a low concentration means a place where the relative velocity is zero and the fluid stagnates. The design speed of the simulated ship was 14 knots and the velocity of the fluid was 1.273 m / s to match the froude number on computer simulation.
도 8의 왼편에 배치된 그림에서는 농도를 통해 유속 분포만을 표현하였고, 오른편에 배치된 그림에서는 선체 주위를 흐르는 유체의 스트림라인(streamline)까지도 표현하였다.In the figure located on the left side of Fig. 8, only the flow velocity distribution is represented through the concentration, and in the figure arranged on the right side, the streamline of the fluid flowing around the hull is also expressed.
도 8의 (a)는 덕트 및 지지부가 없는 베어 헐(bare hull) 상태를 나타낸다. 상술하였듯, 선미돌출부(S)에 더 가까운 영역에서는 하강류가, 선미돌출부(S)에서 먼 영역에서는 상승류가 흐른다.8 (a) shows a bare hull state without a duct and a supporting portion. As described above, a descending flow flows in a region closer to the stern projection S and an upward flow flows in a region far from the stern projection S.
도 8의 (b)는 우현의 지지대(21')를 추진축(PA)에 대해 0°로 설치한 경우이다. 이 경우 A 영역, 즉 지지대와 선미돌출부(S)의 안쪽 경계 부근에서 유체의 속도가 0임을 확인할 수 있다. 유체가 정체됨에 따라, 지지대에 저항이 크게 작용하고, 프로펠러로 유입되는 유체의 속력이 낮아져 추진 효율이 감소한다. 8 (b) shows a case in which the starboard 21 'on the starboard side is installed at 0 ° with respect to the propeller shaft PA. In this case, it can be confirmed that the velocity of the fluid is zero near the inner boundary of the area A, that is, the support and the stern protrusion S. As the fluid stagnates, the resistance to the support greatly acts, and the propulsion efficiency decreases due to the lowering of the speed of the fluid flowing into the propeller.
도 8의 (c)는 우현의 지지대(21'')를 아래 방향으로 20° 회전시켜 배치한 경우이다. 지지대를 회전하여 배치하는 이유는, 상술하였듯 우현의 상승류에 대한 받음각(angle of attack)을 작게 하여 저항이 작아지도록 하기 위함이다. 이로 인해, 제2 단(21-2) 근처에서는 상승류의 속도가 증가하지만 지지대와 선미돌출부(S)의 안쪽 경계 부근에서는 스트림라인 역시 더 복잡하게 엉키는 것을 확인할 수 있다. Fig. 8C shows a case in which the star support 21 " is rotated by 20 DEG in the downward direction. The reason why the support is rotated and disposed is to reduce the angle of attack of the starboard current with respect to the ascending current to reduce the resistance, as described above. As a result, the velocity of the ascending current increases near the second stage 21-2, but the stream line also becomes more complicated in the vicinity of the inner boundary of the supporter and the stern protrusion S.
도 8의 (d)는 본 발명의 일 실시예에 따른 덕트형 선박 에너지 절감 장치를 설치한 경우이다. 본 발명의 실험예에서는, 제1 지지대(21)의 평균 기울기 (평균 각도)가 -20°가 되도록 배치되었고, 제1 지지대(21)의 제1 단(21-1)과 제2 단(21-2)의 기울기가 평균 기울기에 대해 각각 20°, -20°가 되도록 휘어졌다(twisted). 즉 (d)의 제1 지지대(21)는, (c)의 지지대(21'')의 양 끝단을 잡고 비튼 것과 같은 구조를 가진다. 이때, 제1 단(21-1) 근처에서의 유체의 정체 현상이 감소하고, 스트림라인이 꼬이는 현상이 완화됨을 확인할 수 있다. FIG. 8 (d) shows a case where a duct-type ship energy saving device according to an embodiment of the present invention is installed. In the experimental example of the present invention, the first support 21 is disposed such that the average inclination (average angle) of the first support 21 is -20 占 and the first end 21-1 and the second end 21 -2) was twisted so that the slopes were 20 and -20 degrees, respectively, with respect to the average slope. That is, the first support 21 of (d) has such a structure as to grasp both ends of the support 21 '' of (c). At this time, it can be seen that the phenomenon of congestion of the fluid near the first stage 21-1 is reduced, and the twisting of the stream line is alleviated.
즉 본 발명의 제1 지지대(21)의 구조, 즉 선미돌출부(S)와 연결된 제1 단(21-1) 및 덕트(10)의 내면과 연결된 제2 단(21-2)이 반대 방향으로 휜 구조로 인해, 특히 하강류가 발생하는 헐(hull) 근처에서 유체가 정체되어 생기는 저항의 증가를 최소화할 수 있다. That is, the structure of the first support 21 of the present invention, that is, the first end 21-1 connected to the stern protrusion S and the second end 21-2 connected to the inner surface of the duct 10, Due to the fin structure, it is possible to minimize an increase in resistance caused by stagnation of the fluid near the hull where a downward flow is generated.
상술한 저항 감소 효과는, 제1 지지대(21)가 좌현, 우현 어느 곳에 있어도 적용될 수 있는 내용이다. 그러나, 본 발명에서는 제1 지지대(21)가 배치되는 위치가 프로펠러의 회전 방향에 따라 좌현 또는 우현 어느 한 곳으로 선택된다. 상세하게는, 선미 쪽에서 보았을 때 선박의 프로펠러가 시계방향으로 회전하는 경우, 제1 지지대(21)는 우현(starboard)에 배치된다. 반대로 프로펠러가 반시계방향으로 회전하는 경우, 제1 지지대(21)는 좌현(port)에 배치된다. The resistance reduction effect described above can be applied regardless of whether the first support member 21 is located at the port or starboard side. However, in the present invention, the position where the first support table 21 is disposed is selected as either the port or the starboard depending on the direction of rotation of the propeller. Specifically, when the propeller of the ship rotates in the clockwise direction when viewed from the stern side, the first support base 21 is disposed on the starboard. Conversely, when the propeller rotates in the counterclockwise direction, the first support 21 is disposed at a port.
이렇게 제1 지지대(21)를 프로펠러의 회전 방향에 따라 좌현 또는 우현에 선택적으로 배치하는 이유는, 저항 감소 효과뿐만 아니라 프로펠러의 추진 효율을 증가시키도록 유체의 흐름을 조절하는 효과를 같이 얻기 위함이다. The reason why the first support 21 is selectively disposed in the port or starboard according to the rotation direction of the propeller is to obtain the effect of reducing the resistance as well as the effect of regulating the flow of the fluid to increase the propelling efficiency of the propeller .
상술하였듯 예컨대 프로펠러가 시계방향으로 회전하는 경우, 프로펠러에 유입되는 유체는 반시계방향으로 회전하여야 프로펠러의 추진 효율이 높아진다(도 1 참조). 이때 우현(starboard) 쪽에서, 프로펠러는 위에서 아래를 향하도록 회전하므로, 덕트(10)의 우현 쪽을 통과하는 유체는 아래에서 위로 향하는 것이, 즉 상승류가 발생하도록 하는 것이 프로펠러 추진 효율 면에서 바람직하다. 따라서 우현 쪽에서는, 덕트(10) 내면에 가까운 곳의 상승류는 그대로 두고, 선미돌출부(S)에 가까운 곳에서의 하강류는 방향을 바꿔주는 것이 효과적이다. 본 발명에서는 제1 지지대(21)를 통해 이러한 효과를 달성한다. As described above, for example, when the propeller rotates in the clockwise direction, the fluid flowing into the propeller must be rotated in the counterclockwise direction to increase the propelling efficiency of the propeller (see FIG. 1). At this time, on the starboard side, the propeller rotates from top to bottom, so that it is preferable that the fluid passing through the starboard side of the duct 10 is directed upward from below, that is, . Therefore, it is effective that, in the starboard side, the upward flow near the inner surface of the duct 10 is left as it is, and the downward flow near the stern protruding portion S is changed. In the present invention, this effect is achieved through the first support 21.
이와 반대로, 좌현(port) 쪽에서 프로펠러는 아래에서 위를 향하도록 회전하므로, 덕트(10)의 좌현 쪽을 통과하는 유체는 위에서 아래로 향하는 것이, 즉 하강류가 발생하도록 하는 것이 프로펠러 추진 효율 면에서 바람직하다(도 1 참조). 본 발명에서는 제2 지지대(22)를 통해 제2 현측에서의 유체의 흐름을 조절하여 프로펠러 추진 효율을 향상시키는데, 이하 이를 서술한다. On the contrary, since the propeller rotates from the bottom to the top in the port side, it is preferable that the fluid passing through the port side of the duct 10 is directed downward, that is, (See Fig. 1). In the present invention, the propulsion efficiency is improved by controlling the flow of the fluid in the second side through the second support 22, which will be described below.
도 9 및 도 10은 각각 제2 지지대의 확대 사시도 및 제2 지지대를 각각 VI-VI', VII-VII' 선을 따라 자른 단면도이다. 9 and 10 are respectively an enlarged perspective view of the second support and a cross-sectional view of the second support along VI-VI 'and VII-VII', respectively.
일 실시예에 따르면, 지지부(20)는, 선박의 제2 현측, 즉, 좌현에 배치되고, 선박의 추진축(PA)에 대해 양의 평균 기울기(θ22)를 가지는 제2 지지대(22)를 더 포함할 수 있다. According to one embodiment, the support 20 includes a second support 22 disposed on a second side of the vessel, i.e., a port, and having a positive average slope &thetas; 22 with respect to the propulsion axis PA of the vessel .
도 9를 참조하면, 제2 현측에 제2 지지대(22)가 배치된다. 제2 지지대(22) 역시 제1 지지대(21)와 마찬가지로, 선미돌출부(S) 및 덕트(10)를 연결하여 덕트(10)의 위치가 상대적으로 고정될 수 있게 한다. 제1 지지대(21)와 제2 지지대(22)를 모두 이용하여 덕트(10)와 선미돌출부(S)를 연결하는 경우, 덕트(10)를 더욱 안정적으로 지지할 수 있다. 일 실시예에 따르면, 상기 제2 지지대(22)는 유선형 판 형태를 가질 수 있다. 제2 지지대(22)의 각각의 종단면은 유선형의 에어포일(airfoil) 형태를 가질 수 있다. Referring to Fig. 9, the second support 22 is disposed on the second hinge side. The second support base 22 also connects the stern protrusion S and the duct 10 like the first support base 21 so that the position of the duct 10 can be relatively fixed. When the duct 10 and the stern protrusion S are connected using both the first support 21 and the second support 22, the duct 10 can be more stably supported. According to one embodiment, the second support 22 may have a streamlined plate shape. Each longitudinal section of the second support 22 may have the form of a streamlined airfoil.
본 발명에서는 제2 지지대(22)의 평균 기울기(θ22)를 양(positive)으로 하여, 좌현에서 유입된 상승류가 제2 지지대(22)에 의해 방향이 꺾여 하강류가 되도록 유도한다. 제2 지지대(22)는 유체 흐름 방향을 바꾸도록 배치되므로, 저항을 증가시키나 프로펠러 효율에 유리한 방향으로 유동장을 형성시키므로, 선박의 전체적인 에너지 효율은 향상될 수 있다. In the present invention, the average inclination? 22 of the second support 22 is positive, and the upward flow introduced from the port is guided to be deflected by the second support 22 to be a downward flow. Since the second support rods 22 are arranged to change the fluid flow direction, the overall energy efficiency of the ship can be improved by increasing the resistance but forming the flow field in a direction favorable to the propeller efficiency.
한편, 좌현에서 선미돌출부(S) 근처의 하강류는 양의 방향으로 기울어진 제2 지지대(22)에 작용하는 저항 면에서 '유리한' 흐름이므로, 그 흐름을 바꾸지 않아도 무방하다. 따라서 제1 지지대(21)와 달리 제2 지지대(22)의 안쪽 끝단(선미돌출부(S)와 연결되는 끝단)은 휘어지지 않을 수 있다. 즉 제2 지지대(22)는 휘어짐 없이 단면의 기울기가 위치에 따라 일정할 수 있다. On the other hand, the descending flow in the vicinity of the stern protrusion S in the port side is a "favorable" flow in the resistance surface acting on the second support table 22 inclined in the positive direction. Therefore, unlike the first support 21, the inner end of the second support 22 (the end connected to the aft protrusion S) may not be bent. That is, the inclination of the cross section of the second support table 22 can be constant depending on the position without warping.
도 10의 선 VI-VI', VII-VII'에 의한 단면도를 참조하면, 제2 지지대(22)는 위치에 따른 에어포일 단면의 형태가 일정할 수 있다. 이때 추진축(PA)과 에어포일 단면이 이루는 각도, 즉 평균 기울기(θ22)는 0~20°일 수 있다. 제2 지지대(22)의 평균 기울기(θ22)의 최적값은 선박의 모양, 크기, 유선(streamline)의 모양 등에 좌우되므로, 전산유체역학(CFD)을 이용한 컴퓨터 시뮬레이션 또는 모형 선박을 이용한 모형 시뮬레이션을 이용하여 결정될 수 있다.Referring to the sectional view taken along the line VI-VI ', VII-VII' in FIG. 10, the shape of the cross-section of the airfoil according to the position of the second support 22 may be constant. At this time, the angle formed between the propulsion shaft PA and the airfoil section, that is, the average inclination? 22 may be 0 to 20 °. Second optimal value of the average slope (θ 22) of the support (22) is simulated, so the left and right shape of the vessel, the size, the shape of the wire (streamline) or the like, using a computer simulation or model ships using computational fluid dynamics (CFD) model . ≪ / RTI >
한편, 제2 지지대(22)의 평균 기울기(θ22)가 양으로 유지된다면, 제2 지지대(22)의 에어포일 단면의 형태 및 기울기는 위치에 따라 변할 수도 있다. On the other hand, the shape and inclination of the airfoil section of the second support (22), if the average slope (θ 22) is held in an amount, a second support 22 of may vary depending on the location.
일 실시예에 따르면, 제2 지지대(22)의 종단면 중 아래쪽 경계선은 평평하고, 위쪽 경계선은 위로 볼록한 구조를 가질 수 있다. 또는, 위쪽 경계선과 아래쪽 경계선 모두 볼록하나, 아래쪽 경계선보다 위쪽 경계선이 더 볼록한 구조를 가질 수 있다. 즉 제2 지지대(22)의 아랫면의 곡률은 윗면의 곡률에 비해 완만할 수 있다. 이러한 구조를 가지는 제2 지지대(22)의 윗면 위를 흐르는 유체의 속도는 빠르고, 아랫면 아래를 흐르는 유체의 속도는 상대적으로 느리다. 이 경우, 제2 지지대(22)의 뒤쪽 끝단을 지나는 유체의 속도가 아래쪽 방향으로 전환되어 하강류를 형성함으로써, 프로펠러(P)의 추진 효율 향상에 기여할 수 있다.According to one embodiment, the lower boundary of the longitudinal section of the second support 22 may be flat, and the upper boundary may have a convex structure. Alternatively, both the upper boundary and the lower boundary may have a convex structure, and the upper boundary line may have a more convex structure than the lower boundary. That is, the curvature of the lower surface of the second support table 22 may be gentler than the curvature of the upper surface. The velocity of the fluid flowing on the upper surface of the second support 22 having such a structure is fast and the velocity of the fluid flowing below the lower surface is relatively slow. In this case, the velocity of the fluid passing through the rear end of the second support table 22 is changed in the downward direction to form a downward flow, thereby contributing to an improvement in the propulsion efficiency of the propeller P.
본 발명에 따르면, 제2 지지대(22)의 평균 기울기(θ22)가 양으로 유지되는 구조로 인해, 제2 현측에서 저항은 다소 증가하나 프로펠러를 통과하는 유체의 흐름이 바뀌어 프로펠러의 추진 효율이 향상된다. 따라서, 선박의 전체적인 에너지 효율이 향상된다.According to the invention, the average inclination (θ 22) that due to the structure that is maintained in an amount, at a second side resistance is changed a little increase of the fluid flow through the one propeller propulsion efficiency of the propeller of the second brace 22 is . Thus, the overall energy efficiency of the ship is improved.
도 11은 핀을 더 포함하는 덕트형 선박 에너지 절감 장치가 부착된 선박의 선미부를 나타낸 사시도이다.일 실시예에 따른 덕트형 선박 에너지 절감 장치는, 선박의 제2 현측에 배치되고, 덕트(10)의 내면에서 덕트(10)의 중심축 방향을 향해 돌출된 복수 개의 핀(30)을 더 포함할 수 있다.  11 is a perspective view showing a stern part of a ship equipped with a duct-type ship energy saving device further including a fin. The duct-type ship energy saving device according to one embodiment is disposed on the second side of the ship, And a plurality of fins 30 protruding from the inner surface of the duct 10 toward the center axis of the duct 10.
상술하였듯, 프로펠러가 시계방향으로 회전할 때, 스타보드(starboard) 쪽에는 유리한 유동장이 형성되나 포트(port) 쪽에는 불리한 유동장이 형성될 수 있다. 따라서 본 발명에서는 제2 지지대(22)가 배치된 제2 현측에 핀(30)을 추가로 설치하여 덕트(10)를 지나는 유체의 흐름을 조절해 프로펠러의 추진 효율을 향상시킨다. As described above, when the propeller rotates in the clockwise direction, a favorable flow field is formed on the starboard side but an adverse flow field is formed on the port side. Accordingly, in the present invention, a pin 30 is additionally installed on the second side where the second support base 22 is disposed to improve the propelling efficiency of the propeller by controlling the flow of the fluid passing through the duct 10.
핀(30)은 덕트(10)의 내면에 일정한 간격으로 돌출되어 형성될 수 있으며, 덕트(10)의 안쪽을 흐르는 유체를 회전시킬 수 있는 형태를 가지게 된다. 이때, 유체를 회전시킨다는 것은 도 1의 (b)에 도시된 것과 같이 프로펠러의 yz 단면에서의 v-w 속도 벡터장이 회전하는 형태를 가지게 하는 것을 의미할 수 있다.The fins 30 may protrude from the inner surface of the duct 10 at regular intervals and have a shape capable of rotating the fluid flowing inside the duct 10. At this time, rotating the fluid may mean that the v-w velocity vector field in the yz cross section of the propeller has a shape of rotation as shown in FIG. 1 (b).
일 실시예에 따르면, 핀(30)은 유선형 판 형태를 가질 수 있다. 즉 핀(30)의 각각의 종단면은 유선형의 에어포일(airfoil) 형태를 가질 수 있다. 핀(30)은 위치에 따른 에어포일 단면의 형태가 일정할 수 있다.According to one embodiment, the pin 30 may have a streamlined plate shape. I.e. each longitudinal section of the fins 30 may have the form of a streamlined airfoil. The shape of the cross section of the airfoil according to the position of the pin 30 may be constant.
일 실시예에 따르면, 핀(30)의 아랫면은 평평하고, 윗면은 위로 볼록한 구조를 가질 수 있다. 또는, 위쪽 경계선과 아래쪽 경계선 모두 볼록하나, 아래쪽 경계선보다 위쪽 경계선이 더 볼록한 구조를 가질 수 있다. 즉 핀(30)의 아랫면의 곡률은 윗면의 곡률에 비해 완만할 수 있다. 이 경우, 핀(30)의 뒤쪽 끝단을 지나는 유체의 아래쪽 방향 속도 성분이 커지게 되어, 하강류가 강해져 프로펠러(P)의 추진 효율이 높아진다.According to one embodiment, the lower surface of the pin 30 may be flat and the upper surface may have a convex structure. Alternatively, both the upper boundary and the lower boundary may have a convex structure, and the upper boundary line may have a more convex structure than the lower boundary. That is, the curvature of the lower surface of the pin 30 may be gentle as compared with the curvature of the upper surface. In this case, the downward speed component of the fluid passing through the rear end of the pin 30 becomes large, so that the downward flow becomes strong and the propelling efficiency of the propeller P becomes high.
도 12는 일 실시예에 따른 핀을 포함하는 덕트형 선박 에너지 절감 장치의 사시도이다. 12 is a perspective view of a ducted ship energy saving device including a pin according to one embodiment.
일 실시예에 있어서, 복수 개의 핀 중 상대적으로 위쪽에 배치된 핀은 상대적으로 아래쪽에 배치된 핀보다 평균 기울기가 클 수 있다. 즉 핀(30)이 선박의 위쪽에 배치될수록, 평균 기울기는 커질 수 있다.In one embodiment, the pins disposed relatively above one of the plurality of pins may have an average slope greater than the pins disposed on the relatively lower side. That is, the more the pin 30 is disposed above the ship, the larger the average slope can be.
도 12를 참조하면, 덕트(10)의 내면에 6개의 핀(31, 32, 33, 34, 35, 36)이 부착된 덕트형 선박 에너지 절감 장치가 예시되어 있다. 제1 지지대(21) 및 제2 지지대(22)의 평균 기울기를 정의한 것과 비슷하게, 각각의 핀의 에어포일 단면의 평균 기울기는 에어포일 단면의 평균 기울기선(S31, S32, S33, S34, S35, S36)과 선박의 추진축이 이루는 각도(θ31, θ32, θ33, θ34, θ35, θ36)를 의미할 수 있다. 이때, 위쪽, 즉 양의 z 방향으로 갈수록 핀과 추진축이 이루는 각도는 커질 수 있다. 즉 도 12의 실시예에서, 예컨대 최상부에 배치된 핀(31)의 평균 기울기(θ31 -)는 바로 아래에 배치된 핀(32)의 평균 기울기(θ32)보다 크며, 최하부에 배치된 핀(36)의 평균 기울기(θ36-)는 바로 위에 배치된 핀(35)의 평균 기울기(θ35)보다 작다.Referring to FIG. 12, there is illustrated a duct-type ship energy saving device with six pins 31, 32, 33, 34, 35, 36 attached to the inner surface of the duct 10. The average slope of the airfoil section of each fin is similar to the average slope of the airfoil section S31, S32, S33, S34, S35, and S35, similar to the definition of the average slope of the first support 21 and the second support 22. [ S36) and the propulsion shaft of the ship (? 31 ,? 32 ,? 33 ,? 34 ,? 35 ,? 36 ). At this time, the angle between the pin and the propeller shaft becomes larger toward the upper side, that is, toward the positive z direction. That is, in the embodiment of FIG. 12, for example, the average slope? 31 - of the pin 31 disposed at the uppermost position is larger than the mean slope? 32 of the pin 32 disposed immediately below, The average slope? 36- of the pin 36 is smaller than the average slope? 35 of the pin 35 disposed immediately thereabove .
이때 추진축(PA)과 각각의 핀(30)의 평균 기울기는 0~20°일 수 있다. 일 실시예에서는 각각의 핀(31, 32, 33, 34, 35, 36)의 평균 기울기(θ31, θ32, θ33, θ34, θ35, θ36)를 각각 20°, 17°, 14°, 11°, 8°, 5°로 하여, 아래쪽으로 갈수록 기울기가 3°씩 감소하게 하였다. 복수 개의 핀(30) 역시 제2 지지대(22)와 비슷하게, 평균 기울기(θ31, θ32, θ33, θ34, θ35, θ36)가 양으로 유지되는 구조를 가질 수 있다. 이로 인해, 제2 현측에서 저항은 다소 증가하나 프로펠러를 통과하는 유체의 흐름이 바뀌어 프로펠러의 추진 효율이 향상된다. 따라서, 선박의 전체적인 에너지 효율이 향상된다.At this time, the average slope of the propulsion shaft PA and each of the fins 30 may be 0 to 20 degrees. In one embodiment, the average slopes (? 31 ,? 32 ,? 33 ,? 34 ,? 35 ,? 36 ) of the respective pins 31, 32, 33, 34, 35, 14 °, 11 °, 8 °, and 5 °, and the inclination was decreased by 3 ° toward the bottom. The plurality of fins 30 may also have a structure in which the average slope (? 31 ,? 32 ,? 33 ,? 34 ,? 35 ,? 36 ) is maintained in a positive manner similar to the second support 22. As a result, the resistance of the second side increases slightly, but the flow of the fluid through the propeller is changed to improve the propulsion efficiency of the propeller. Thus, the overall energy efficiency of the ship is improved.
일 실시예에 따르면, 핀(30)은 선미돌출부(S)를 선미 쪽에서 바라볼 때 7시 방향에서 11시 방향까지 같은 간격으로 배치될 수 있다. 핀(30)의 개수와 형태, 각각의 핀의 평균 기울기 등은 전산유체역학(CFD)을 이용한 컴퓨터 시뮬레이션 또는 모형 선박을 이용한 모형 시뮬레이션을 이용하여 최적화될 수 있다.According to one embodiment, the fins 30 can be arranged at the same interval from the 7 o'clock direction to the 11 o'clock position when the stern protrusions S are viewed from the stern side. The number and shape of the pins 30, the average slope of each pin, and the like can be optimized using a computer simulation using computational fluid dynamics (CFD) or a model simulation using a model ship.
도 13은 제3 지지대(23)를 더 포함하는 덕트형 선박 에너지 절감 장치가 부착된 선박의 선미부를 나타낸 사시도이다.13 is a perspective view showing a stern part of a ship to which a duct-type ship energy saving device further including a third support 23 is attached.
일 실시예에 따르면, 지지부(20)는, 선박의 중앙 종단면에 대칭으로 형성되고, 선미돌출부(S) 및 덕트(10)의 내면과 연결된 제3 지지대(23)를 더 포함할 수 있다. 도 13을 참조하면, 제3 지지대(23)는, 선미돌출부(S)로부터 선박의 아래쪽(6시 방향) 또는 위쪽(12시 방향)으로 연장될 수 있다. 제3 지지대(23) 역시 제1 지지대(21), 제2 지지대(22)와 마찬가지로 선미돌출부(S) 및 덕트(10)를 연결하여 덕트(10)의 위치가 상대적으로 고정될 수 있게 한다. 제1 지지대(21), 제2 지지대(22), 제3 지지대(23)를 모두 이용하여 덕트(10)와 선미돌출부(S)를 연결하는 경우, 덕트(10)를 더욱 안정적으로 지지할 수 있다.According to one embodiment, the support portion 20 may further include a third support 23 formed symmetrically with respect to a central longitudinal profile of the ship and connected to the inner surface of the stern protrusion S and the duct 10. Referring to Fig. 13, the third support 23 can extend from the stern protrusion S in the lower (6 o'clock direction) or upward (12 o'clock direction) of the ship. The third support bar 23 also connects the stern protrusion S and the duct 10 in the same manner as the first support bar 21 and the second support bar 22 so that the position of the duct 10 can be relatively fixed. When the duct 10 and the stern protrusion S are connected using the first support 21, the second support 22 and the third support 23, the duct 10 can be supported more stably have.
그러나 제3 지지대(23)는 덕트(10)의 안쪽에 배치되므로, 덕트(10) 안으로 유입되는 유체의 흐름을 방해하는 저항으로 작용할 수 있다. 일 실시예에 따르면, 제3 지지대(23)는 유선형 판 형태를 가질 수 있다. 즉 제2 지지대(22)의 각각의 종단면은 유선형의 에어포일(airfoil) 형태를 가질 수 있다. 이와 같은 형태를 통해, 제3 지지대(23)에 의한 저항의 증가를 최소화할 수 있다.However, since the third support 23 is disposed inside the duct 10, it can act as a resistance to obstruct the flow of the fluid flowing into the duct 10. According to one embodiment, the third support 23 may have a streamlined plate shape. That is to say each longitudinal section of the second support 22 may have the form of a streamlined airfoil. With this configuration, it is possible to minimize an increase in resistance due to the third support 23.
도 14는 본 발명의 일 실시예에 따른 덕트형 선박 에너지 절감 장치의 yz 단면에서, 유체의 v-w 속도 벡터장을 비교한 그림이다. 도 14의 (a)는 베어 헐(bare hull) 상태, (b)는 지지대가 0°로 부착된 상태, (c)는 좌현/우현의 지지대가 반대 방향으로 각도를 가지도록 회전된 상태를 각각 나타내며, (d)는 본 발명의 일 실시예를 나타낸다. 각각의 상태에 따라, 덕트를 지나는 유동장의 형태가 변함을 확인할 수 있다. FIG. 14 is a diagram comparing v-w velocity vector fields of a fluid in a yz section of a duct-type ship energy saving apparatus according to an embodiment of the present invention. Fig. 14 (b) shows a state in which the supporter is attached at 0, Fig. 14 (c) shows a state in which the supports of the port / starboard are rotated so as to have an angle in the opposite direction (D) shows an embodiment of the present invention. It can be seen that the shape of the flow field passing through the duct changes according to each state.
도 15는 본 발명의 일 실시예에 따른 덕트형 선박 에너지 절감 장치를 선박에 설치하였을 때, 프로펠러의 yz 단면에서 유체의 v-w 속도 벡터장의 변화를 예시한 그림이다. 도 15의 (a)는 베어 헐(bare hull) 상태, (b)는 본 발명의 일 실시예에 따른 덕트형 선박 에너지 절감 장치를 선박에 설치한 상태이다. (a)를 참조하면, 도 1의 (c)와 비슷하게 프로펠러를 지나는 유체의 흐름이 좌현(port) 쪽에서 불리하게 형성되어 있다. (b)를 참조하면, 도 1의 (b)와 비슷하게, 프로펠러를 지나는 유체의 흐름이 전체적으로 반시계방향으로 회전하도록 변하여, 이상적인 형태에 가까워짐을 확인할 수 있다. 즉 제2 현측에 배치되고 양의 평균 기울기를 가지는 제2 지지대(22) 및 핀(30)에 의해, 유동장이 불리하게 형성된 좌현(port) 쪽의 유체의 흐름이 상승류에서 하강류로 바뀌고, 프로펠러 회전과 반대 방향으로 유체가 회전하여 프로펠러의 추진 효율이 향상된다.15 is a diagram illustrating a change in the v-w velocity vector field of a fluid at the yz cross section of a propeller when a duct-type ship energy saving device according to an embodiment of the present invention is installed on a ship. Fig. 15 (a) is a bare hull state, and Fig. 15 (b) is a state in which a duct-type ship energy saving device according to an embodiment of the present invention is installed on a ship. (a), the flow of the fluid passing through the propeller is formed disadvantageously at the port side, similarly to (c) of FIG. (b), similar to FIG. 1 (b), it can be seen that the flow of fluid passing through the propeller is changed to rotate counterclockwise as a whole and becomes closer to the ideal shape. That is, the second support 22 and the pin 30, which are disposed on the second hinge side and have a positive average slope, change the flow of the fluid on the port side in which the flow field is unfavorably changed from the ascending flow to the descending flow, The propulsion efficiency of the propeller is improved by rotating the fluid in the direction opposite to the propeller rotation.
본 발명자는, 한국해양과학기술원 선박해양플랜트연구실(KRISO)에 의뢰해 제3 지지대(23)와 핀(30)이 모두 있는 상태에서 제1 지지대(21)와 제2 지지대(22)의 평균 기울기를 변화시켜가며 모형실험을 수행하였다. 이때 제1 지지대(21)의 제1 단(21-1)및 제2 단(21-2)의 기울기는 제1 지지대의 평균 기울기와 10°, --10°의 각도를 가지도록 하였다. The present inventor has found that the average inclination of the first support 21 and the second support 22 in the state where both the third support 23 and the pin 30 are in contact with the Korean Marine Science and Technology Laboratory's vessel and marine plant laboratory (KRISO) And the model experiment was carried out. At this time, the slopes of the first stage 21-1 and the second stage 21-2 of the first support 21 have an angle of 10 ° and -10 ° with the average slope of the first support.
아래의 [표 1]은 우현의 제1 지지대(21)의 평균 기울기(각도) 및 좌현의 제2 지지대(22)의 평균 기울기(각도)의 변화에 따른, 베어 헐(bare hull) 상태 대비 전달마력(DHP-delivery horse power)의 감소량을 나타낸다.Table 1 below shows the relationship between the average inclination (angle) of the starboard first supporting frame 21 and the average inclination (angle) of the second supporting frame 22 on the port side in relation to the bare hull state Represents the amount of reduction of the horsepower (DHP-delivery horse power).
<ESD/Bare Hull (power reduction, %)><ESD / Bare Hull (power reduction,%)>
우현좌현Starboard star -10°-10 ° -5°-5 ° 0
20°20 ° -3.22%-3.22% -3.11%-3.11% -3.39%-3.39%
15°15 ° -3.22%-3.22% -3.66%-3.66% -3.11%-3.11%
상기 결과를 살펴보면, 본 발명의 일 실시예에 따른 덕트형 선박 에너지 절감 장치를 설치한 경우 제1 지지대(21) 및 제2 지지대(22)의 평균 기울기 변화(각도 변화)에 따라 평균 약 3.3%, 최대 약 3.7%의 마력 감소 효과가 있음을 확인할 수 있다. When the duct-type ship energy saving device according to the embodiment of the present invention is installed, the average tilt change (angle change) of the first support table 21 and the second support table 22 is about 3.3% , And a maximum horsepower reduction of about 3.7%.
본 발명의 일 실시예에 의한 덕트형 선박 에너지 절감 장치에 따르면, 우현(starboard)에 배치되고 양 끝단이 반대 방향으로 휘어진 제1 지지대(21)에 의해 선미돌출부(S) 쪽에서의 유체의 정체 현상을 최소화하여 선박에 작용하는 과도한 저항의 증가를 감소시킬 수 있다.According to the duct-type ship energy saving apparatus according to the embodiment of the present invention, the stagnation phenomenon of the fluid at the stern protruding portion (S) side by the first support base (21) disposed on the starboard and bent at opposite ends in opposite directions Can be minimized and the increase in the excessive resistance acting on the ship can be reduced.
좌현에 배치되고 양의 평균 기울기를 가지는 제2 지지대에 의하여, 유체의 흐름을 상승류에서 하강류로 바꾸어 프로펠러의 추진 효율을 향상시킬 수 있다. The propulsion efficiency of the propeller can be improved by changing the flow of the fluid from the ascending flow to the descending flow by the second support disposed at the port and having a positive average slope.
유동장이 불리하게 형성될 수 있는 좌현(port) 쪽에 추가 배치되는 핀에 의하여, 제2 지지대를 지나기 전의 유체의 흐름을 상승류에서 하강류로 바꾸고, 제2 지지대에 작용하는 저항의 크기를 줄여, 프로펠러의 추진 효율을 향상시킬 수 있다.The flow of the fluid before passing through the second support is changed from the ascending flow to the descending flow by the pin disposed further on the port side where the flow field can be adversely formed and the size of the resistance acting on the second support is reduced, The propulsion efficiency of the propeller can be improved.
본 명세서에서는 프로펠러가 시계방향으로 회전하는 경우를 주로 상정하여, 제1 지지대가 배치되는 제1 현측이 우현인 것을 위주로 설명하였다. 그러나 이와 달리 프로펠러가 반시계방향으로 회전하는 경우라도 상술한 내용을 좌우 대칭시키는 경우 본 발명의 원리가 적용될 수 있음은 물론이다.In the present specification, it is assumed that the propeller rotates in the clockwise direction, and the first side on which the first support is disposed is assumed to be the starboard. However, it is needless to say that the principle of the present invention can be applied to the case where the propeller is rotated in the counterclockwise direction and the above description is symmetrical.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시 예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the invention. Accordingly, the true scope of the present invention should be determined by the technical idea of the appended claims.

Claims (7)

  1. 선박의 선미돌출부의 일부를 둘러싸는 형태로 배치되는 덕트; 및A duct disposed in a shape surrounding a part of the stern projection of the ship; And
    상기 선미돌출부와 상기 덕트의 내면(inner surface)을 연결하는 지지부;를 포함하고,And a support connecting the stern protrusion to an inner surface of the duct,
    상기 지지부는,The support portion
    상기 선미돌출부와 연결된 제1 단 및 상기 덕트의 내면과 연결된 제2 단이 서로 반대 방향으로 휘어지고, 상기 선박의 제1 현측에 배치된 제1 지지대;를 포함하는, 덕트형 선박 에너지 절감 장치.And a first support disposed at a first side of the ship, the first end connected to the stern protrusion and the second end connected to the inner surface of the duct being bent in directions opposite to each other.
  2. 제1 항에 있어서,The method according to claim 1,
    상기 제1 단의 추진축에 대한 기울기는, 상기 제2 단의 상기 추진축에 대한 기울기보다 큰, 덕트형 선박 에너지 절감 장치.Wherein the inclination of the first end with respect to the propelling shaft is greater than the inclination of the second end with respect to the propelling shaft.
  3. 제2 항에 있어서,3. The method of claim 2,
    상기 제1 지지대의 기울기는 상기 제1 단에서 상기 제2 단으로 갈수록 감소하는, 덕트형 선박 에너지 절감 장치.Wherein the inclination of the first support decreases from the first end to the second end.
  4. 제1 항에 있어서, The method according to claim 1,
    상기 지지부는, The support portion
    상기 선박의 제2 현측에 배치되고, 상기 선박의 추진축에 대해 양의 평균 기울기를 가지는 제2 지지대;를 더 포함하는, 덕트형 선박 에너지 절감 장치.And a second support disposed at a second proximal side of the vessel and having a positive average slope with respect to the propulsion shaft of the vessel.
  5. 제1 항에 있어서,The method according to claim 1,
    상기 선박의 제2 현측에 배치되고,A second hinge disposed on the second hinge side of the ship,
    상기 덕트의 내면에서 상기 덕트의 중심축 방향을 향해 돌출된 복수 개의 핀;을 더 포함하는, 덕트형 선박 에너지 절감 장치.Further comprising: a plurality of fins protruding from an inner surface of the duct toward the center axis of the duct.
  6. 제5 항에 있어서, 상기 복수 개의 핀 중 상대적으로 위쪽에 배치된 핀은 상대적으로 아래쪽에 배치된 핀보다 평균 기울기가 큰, 덕트형 선박 에너지 절감 장치.6. The duct-type energy saving device according to claim 5, wherein the fins disposed on the relatively upper side of the plurality of fins have a larger average slope than the fins disposed on the lower side.
  7. 제1 항에 있어서,The method according to claim 1,
    상기 지지부는, 상기 선박의 중앙 종단면에 대칭으로 형성되고, Wherein the support portion is formed symmetrically with respect to a central vertical cross-section of the ship,
    상기 선미돌출부 및 상기 덕트의 내면과 연결된 제3 지지대를 더 포함하는, 덕트형 선박 에너지 절감 장치.Further comprising a third support connected to the stern protrusion and the inner surface of the duct.
PCT/KR2018/005372 2017-08-04 2018-05-10 Duct-type ship energy reducing device WO2019027126A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0099090 2017-08-04
KR1020170099090A KR20190014935A (en) 2017-08-04 2017-08-04 Duct-type energy saving device for a ship

Publications (1)

Publication Number Publication Date
WO2019027126A1 true WO2019027126A1 (en) 2019-02-07

Family

ID=65233922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/005372 WO2019027126A1 (en) 2017-08-04 2018-05-10 Duct-type ship energy reducing device

Country Status (2)

Country Link
KR (1) KR20190014935A (en)
WO (1) WO2019027126A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112027017A (en) * 2020-08-17 2020-12-04 西北工业大学 Internal and external double-channel passive propeller and design method
CN112319727A (en) * 2020-11-12 2021-02-05 江苏新时代造船有限公司 Positioning method of energy-saving flow guide device for ship

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58139396U (en) * 1982-03-17 1983-09-19 三菱重工業株式会社 Reaction fin rectifier type strut
JPS6238800U (en) * 1985-08-28 1987-03-07
JPS6252598U (en) * 1985-09-24 1987-04-01
KR20120058632A (en) * 2010-07-26 2012-06-08 대우조선해양 주식회사 Ducted Pre-Swirl Stator
KR20160017763A (en) * 2014-08-04 2016-02-17 현대중공업 주식회사 A propulsion apparatus for ship

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58139396U (en) * 1982-03-17 1983-09-19 三菱重工業株式会社 Reaction fin rectifier type strut
JPS6238800U (en) * 1985-08-28 1987-03-07
JPS6252598U (en) * 1985-09-24 1987-04-01
KR20120058632A (en) * 2010-07-26 2012-06-08 대우조선해양 주식회사 Ducted Pre-Swirl Stator
KR20160017763A (en) * 2014-08-04 2016-02-17 현대중공업 주식회사 A propulsion apparatus for ship

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112027017A (en) * 2020-08-17 2020-12-04 西北工业大学 Internal and external double-channel passive propeller and design method
CN112319727A (en) * 2020-11-12 2021-02-05 江苏新时代造船有限公司 Positioning method of energy-saving flow guide device for ship
CN112319727B (en) * 2020-11-12 2021-12-14 江苏新时代造船有限公司 Positioning method of energy-saving flow guide device for ship

Also Published As

Publication number Publication date
KR20190014935A (en) 2019-02-13

Similar Documents

Publication Publication Date Title
WO2019027126A1 (en) Duct-type ship energy reducing device
US4836473A (en) Apparatus for influencing a boundary layer on the surface of a body moving through a medium
WO2016140398A1 (en) Asymmetric wake generating vortex generator for reducing propeller noise and vibration
KR20120126910A (en) Propeller Duct Structure of Ship with Multi-Column Fin
EP2692623B1 (en) Ship with reduced frictional drag and frictional drag reduction device for ship
JPH0678735B2 (en) Nacelle structure
JP3155993B2 (en) Cylinder head cooling structure for multi-valve engine
WO2014042296A1 (en) Propeller boss cap comprising fins
KR20120068158A (en) Tilting duct structure for ship
KR970003811Y1 (en) Twin screw of a ship
DK168204B1 (en) Vessel with a single-hull hull
WO2019194350A1 (en) Propeller for ship
JP2008247050A (en) Vessel drag reducing device and vessel
KR101467074B1 (en) A propulsion apparatus for ship
WO2024025376A1 (en) Ship structure
KR20030003918A (en) Asymmetric preswirl stator
WO2021153857A1 (en) Steering apparatus and ship comprising same
KR101402484B1 (en) A propulsion apparatus for ship
JP2004009951A (en) Thruster water discharge angle adjustment grid
WO2010053317A2 (en) Rotating blade and air foil with structure for increasing flow rate
WO2019245088A1 (en) Propulsion device for ship
WO2022119007A1 (en) Unmanned surface vehicle and method for manufacturing same
CN87105375A (en) Boats and ships
JP3117202B2 (en) Marine reaction fins
KR102060494B1 (en) Propulsion efficiency enhancing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18840707

Country of ref document: EP

Kind code of ref document: A1