JP2005098694A - Heat exchanging system between solid and fluid - Google Patents

Heat exchanging system between solid and fluid Download PDF

Info

Publication number
JP2005098694A
JP2005098694A JP2004321606A JP2004321606A JP2005098694A JP 2005098694 A JP2005098694 A JP 2005098694A JP 2004321606 A JP2004321606 A JP 2004321606A JP 2004321606 A JP2004321606 A JP 2004321606A JP 2005098694 A JP2005098694 A JP 2005098694A
Authority
JP
Japan
Prior art keywords
fluid
temperature
plate
water
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004321606A
Other languages
Japanese (ja)
Inventor
Sukeaki Kunugi
資彰 功刀
Katsumi Mukai
勝己 向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISEYA KIKAI SEISAKUSHO KK
Original Assignee
ISEYA KIKAI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISEYA KIKAI SEISAKUSHO KK filed Critical ISEYA KIKAI SEISAKUSHO KK
Priority to JP2004321606A priority Critical patent/JP2005098694A/en
Publication of JP2005098694A publication Critical patent/JP2005098694A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanging system with low cost and high heat transfer efficiency. <P>SOLUTION: This system for exchanging heat between a solid and a fluid comprises a solid such as metal having a surface in contact with a fluid. A porous layer formed of a group of one or more types of particles having a diameter of 100nm or less selected from copper oxide (CuO), carbon C and alumina Al<SB>2</SB>O<SB>3</SB>and including a number of pores is formed on the surface. The solid has a second surface in contact with a second fluid having a temperature different from a first fluid to separate the first fluid and the second fluid to prevent them from being mixed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、固体と流体との間の熱交換システムに属する。   The present invention belongs to a heat exchange system between a solid and a fluid.

熱エネルギーの伝達と移動は、熱放射(thermal radiation)、熱伝導(heat conduction)、熱伝達(heat transfer)の3つの移動現象に大別でき、その工学利用においては、なんらかの熱媒体による顕熱および潜熱輸送 (heat transport)や、他の媒質内に変換および伝播移動 (heat transmission)を利用して、熱的な効率を高めることは単に省エネルギーのみならず、今や全地球的規模に於ける大きな課題となってきている。     The transfer and transfer of thermal energy can be broadly divided into three transfer phenomena: thermal radiation, heat conduction, and heat transfer. In engineering applications, sensible heat is generated by some kind of heat medium. And using heat transport and transformation and heat transmission into other media to increase thermal efficiency is not only energy saving, but is now a significant on a global scale. It has become an issue.

この発明の課題は、伝熱現象のなかの対流熱伝達(convective heat transfer)に関して、低コストで画期的に高い効率を示す熱交換システムを提供することにある。   It is an object of the present invention to provide a heat exchange system that exhibits an epoch-making high efficiency at a low cost with respect to convective heat transfer in a heat transfer phenomenon.

従来、熱伝達現象は、流体運動の動的特性を表すRe(レイノルズ数)、作動流体の動的物性を特徴付けるPr(プラントル数)、作動流体と固体表面との間の熱伝達を表すNu(ヌセルト数)、作動流体が温度差或いは密度差による浮力駆動流れである場合の熱流動特性を表すGr(グラスホフ数)などを関数とした実験相関式として議論・整理され、固有の条件を有する熱伝達率の推定に関して多大なる成果を上げてきた。   Conventionally, the heat transfer phenomenon is Re (Reynolds number) representing the dynamic characteristics of fluid motion, Pr (Prandtl number) characterizing the dynamic physical properties of the working fluid, and Nu (representing heat transfer between the working fluid and the solid surface. (Nosselt number), thermal correlation with Gr (Grasshof number) representing the thermal flow characteristics when the working fluid is a buoyancy driven flow due to temperature difference or density difference, etc. Great results have been achieved in terms of transmission rate estimation.

しかしながら、これらの無次元数に基づく実験相関式の多くは、境界層理論を背景とした流体の温度分布及び速度分布に基づくものである。この発明によれば、従来の理論では流体側の分子熱伝導としか取り扱われていない層流境界底層内の伝熱機構が大幅に改善され、熱伝達率が増大する。
対流伝熱においては、この発明のシステムは高温熱源が固体側にある場合には高温固体から低温流体へ熱を伝達させることに利用でき、逆に、高温熱源が流体側にある場合には高温流体から低温固体へ熱伝達させる際にも適用可能である。
However, many of these experimental correlation equations based on these dimensionless numbers are based on the temperature distribution and velocity distribution of the fluid against the background of the boundary layer theory. According to the present invention, the heat transfer mechanism in the laminar boundary bottom layer, which is handled only by molecular heat conduction on the fluid side in the conventional theory, is greatly improved, and the heat transfer rate is increased.
In convective heat transfer, the system of the present invention can be used to transfer heat from a hot solid to a cold fluid if the hot source is on the solid side, and conversely, if the hot source is on the fluid side, It is also applicable when transferring heat from a fluid to a low-temperature solid.

その課題を解決するために、この発明の熱交換システムは、
金属等の固体と水や空気等の流体との間で熱を交換するシステムにおいて、流体と接する表面を有する固体を備え、その表面に直径100nm以下の粒子の群からなり直径100nm以下の多数の気孔を含む多孔質層が形成されていることを特徴とする。
前記粒子群としては、酸化銅CuO、炭素C、アルミナAl23等が挙げられる。粒子は通常球状をなすが、これに限定されず例えば炭素の場合は単層または多層のチューブ状であってよく、炭素ナノチューブの場合には直径が100nm程度以下であればよい。
In order to solve the problem, the heat exchange system of the present invention is:
In a system for exchanging heat between a solid such as a metal and a fluid such as water or air, the system includes a solid having a surface in contact with the fluid, and the surface is composed of a group of particles having a diameter of 100 nm or less. A porous layer including pores is formed.
Examples of the particle group include copper oxide CuO, carbon C, and alumina Al 2 O 3 . The particles are usually spherical, but are not limited thereto. For example, in the case of carbon, the particles may be a single-layer or multilayer tube, and in the case of carbon nanotubes, the diameter may be about 100 nm or less.

以上のように、この発明によれば、熱伝達の対象流体と接する固体の表面をナノ粒子で処理する、あるいは多数のナノサイズの気孔を有する層を形成するだけで熱伝達率が著しく向上するので、空調機、温水器などにおける熱交換システムや熱伝達を必要とするあらゆる分野で有益である。   As described above, according to the present invention, the heat transfer rate is remarkably improved by simply treating the solid surface in contact with the target fluid for heat transfer with nanoparticles or forming a layer having a large number of nano-sized pores. Therefore, it is useful in all fields that require heat exchange systems and heat transfer in air conditioners and water heaters.

−実施例1−
[実験装置]
この発明のシステムによる効果を確認するための実験に用いた装置の概念図を図1に示す。実験装置は、主に円筒状の密閉室1、冷却室2、温度制御部3、温度モニター4、対象流体用循環ポンプ5、冷却水用循環ポンプ6及び冷却水タンク7を備え、25℃の屋内に設置した。
Example 1
[Experimental device]
A conceptual diagram of an apparatus used in an experiment for confirming the effect of the system of the present invention is shown in FIG. The experimental apparatus mainly comprises a cylindrical sealed chamber 1, a cooling chamber 2, a temperature control unit 3, a temperature monitor 4, a target fluid circulation pump 5, a cooling water circulation pump 6, and a cooling water tank 7. Installed indoors.

密閉室1は、硬質塩化ビニール製で内径100mm、高さ100mmの円筒8と、その上端面に液密に固定されたSUS304製の蓋板9と、下端面に液密に固定されたSUS304製の底板10とで構築されている。蓋板9及び底板10は、厚み10mmの円盤状をなす。蓋板9の下面には、外径99.5mm、厚み1.5mmで円盤状銅製の伝達板11が図略のシリコングリス(台湾 Plowstar社製型式:AK-100)を介して図略のビスにて固着されている。また、蓋板9の上面には外径100mmで容量80Wのパネルヒータ12がシリコングリス(同上)を介して装着されている。シリコングリスの厚さはいずれも0.05mm程度であり、パネルヒータ12から伝達板11までの距離は熱伝導(固体内部の熱移動)の領域である。蓋板9、伝達板11及びパネルヒータ12は、いずれも中心に直径10mmの貫通孔を有し、そこに空気抜きと対象流体の体積膨張時の体積膨張分・圧力逃げを兼ねてパイプ13が液密に嵌合されている。円筒8の外周面及びパネルヒータ12の中心を除く上面は、断熱材25にて覆われている。   The sealed chamber 1 is made of hard vinyl chloride and has a cylinder 8 with an inner diameter of 100 mm and a height of 100 mm, a SUS304 lid plate 9 that is liquid-tightly fixed to the upper end surface thereof, and a SUS304 liquid-tightly fixed to the lower end surface. The bottom plate 10 is constructed. The lid plate 9 and the bottom plate 10 have a disk shape with a thickness of 10 mm. On the lower surface of the cover plate 9, a disc-shaped copper transmission plate 11 having an outer diameter of 99.5 mm and a thickness of 1.5 mm is inserted through a silicon grease (model: AK-100, Taiwan Plowstar) and a screw (not shown). It is fixed with. A panel heater 12 having an outer diameter of 100 mm and a capacity of 80 W is mounted on the upper surface of the lid plate 9 via silicon grease (same as above). The thickness of each silicon grease is about 0.05 mm, and the distance from the panel heater 12 to the transmission plate 11 is a region of heat conduction (heat transfer inside the solid). The cover plate 9, the transmission plate 11, and the panel heater 12 all have a through hole with a diameter of 10 mm at the center, and the pipe 13 is used for air expansion and volume expansion / pressure relief at the time of volume expansion of the target fluid. Closely fitted. The outer surface of the cylinder 8 and the upper surface excluding the center of the panel heater 12 are covered with a heat insulating material 25.

蓋板9の内部には白金抵抗体からなる2本の温度センサー14、15が装填され、1本の温度センサー14は温度制御部3に接続して蓋板9を所定の温度にPI自動制御し、もう1本の温度センサー15は温度モニター4に接続して蓋板9内部の温度をモニターするために用いられる。尚、蓋板9と伝達板11との境界には厚さ0.9mm程度の白金抵抗体薄膜からなる温度センサー16が埋め込まれており、伝達板11上面の温度をモニターするために温度モニター4と接続されている。また、円筒8内にも上下方向に等間隔で計5本の温度センサー17〜21が挿入され、更に底板10の内部に1本の温度センサー22が埋め込まれ、冷却水タンク7の水の中にもう1本の温度センサー23が浸けられ、いずれも温度モニター4と接続されている。   Two temperature sensors 14 and 15 made of a platinum resistor are loaded inside the cover plate 9, and one temperature sensor 14 is connected to the temperature control unit 3 to automatically control the cover plate 9 to a predetermined temperature by PI. The other temperature sensor 15 is connected to the temperature monitor 4 and used to monitor the temperature inside the lid plate 9. A temperature sensor 16 made of a platinum resistor thin film having a thickness of about 0.9 mm is embedded in the boundary between the lid plate 9 and the transmission plate 11, and the temperature monitor 4 is used to monitor the temperature of the upper surface of the transmission plate 11. Connected with. Also, a total of five temperature sensors 17 to 21 are inserted into the cylinder 8 at equal intervals in the vertical direction, and further, one temperature sensor 22 is embedded in the bottom plate 10, so that the water in the cooling water tank 7 is submerged. Another temperature sensor 23 is immersed in each of them, and both are connected to the temperature monitor 4.

一方、冷却室2は密閉室1を支持するように密閉室1の下に設置され、上面にあるSUS304製の台24が底板10と密接している。冷却室2の内径は100mmで、室内は冷却水タンク7から送られる温度27.7℃の冷却水が実験中常時満たされた状態で冷却水循環ポンプ6により強制循環させられている。また、密閉室1内には水道水が満たされた状態で、対象流体用循環ポンプ5により上部から吸い込み、下部から吐き出すように強制循環させられている。
以上の実験装置において、蓋板9の温度が50℃になるようにパネルヒータ12に通電したところ、各部の温度が40分後に定常状態になることを確認した。
On the other hand, the cooling chamber 2 is installed under the hermetic chamber 1 so as to support the hermetic chamber 1, and a base 24 made of SUS304 on the upper surface is in close contact with the bottom plate 10. The inside diameter of the cooling chamber 2 is 100 mm, and the inside of the chamber is forcibly circulated by the cooling water circulation pump 6 in a state where the cooling water having a temperature of 27.7 ° C. sent from the cooling water tank 7 is always filled during the experiment. The sealed chamber 1 is forcibly circulated so as to be sucked in from the upper portion and discharged from the lower portion by the target fluid circulation pump 5 in a state filled with tap water.
In the above experimental apparatus, when the panel heater 12 was energized so that the temperature of the cover plate 9 was 50 ° C., it was confirmed that the temperature of each part reached a steady state after 40 minutes.

次に、酸化銅CuOの粒子(米国 Nanophase Technologies社製、BET法に基づくSSA(比表面積)の測定から決まる平均粒径=16〜32nm、ほぼ球状)と硝酸を混合してペースト状に調製し、これを伝達板11の下面全体に塗布し、乾燥後に水洗した。塗布された下面には酸化銅のナノ粒子に由来すると認められる薄い層が形成されていた。この層を走査型電子顕微鏡(以下、SEMという。)にて観察すると、直径100nm以下の多数の気孔を有していた。   Next, copper oxide CuO particles (manufactured by Nanophase Technologies, USA, average particle diameter determined from measurement of SSA (specific surface area) based on BET method = 16 to 32 nm, almost spherical) and nitric acid are mixed to prepare a paste. This was applied to the entire lower surface of the transmission plate 11, and washed with water after drying. A thin layer recognized to be derived from copper oxide nanoparticles was formed on the coated lower surface. When this layer was observed with a scanning electron microscope (hereinafter referred to as SEM), it had many pores with a diameter of 100 nm or less.

[実験手順及び結果]
酸化銅ナノ粒子に由来する多孔質層が形成された伝達板11を再度上記実験装置に組み込み、蓋板9の温度が50℃又は45℃になるようにパネルヒータ12に通電し、開始後1分毎に各部を測温し、各部の温度が一定となる定常状態から更に20分経過した時点で終了した。尚、予め比較のために、伝達板11に多孔質層を形成する前に同一条件で測温しておいた。測定結果を図2に示す。図のグラフ上の各温度は20回の測定値の平均値、横軸は温度センサーの位置を示し、横軸の数値は底板10からの距離である。図中、[銅板+CuO粒子 01]は、酸化銅ナノ粒子に由来する多孔質層が形成された伝達板11を用いて蓋板9の設定温度を50℃に設定した場合のデータであり、[銅板+CuO粒子 02]は再現性を確認するために同じ条件で繰り返して測定して得られたデータである。また、[銅板+CuO粒子 03]は設定温度を45℃に設定した場合のデータである。そして、[銅板のみ 01]、[銅板のみ 02]及び[銅板のみ 03] は、酸化銅ナノ粒子と硝酸の混合液に代えて硝酸単独を用いた以外は上記と同一条件で測定して得られたデータである。
[Experimental procedure and results]
The transmission plate 11 on which the porous layer derived from the copper oxide nanoparticles is formed is incorporated into the experimental apparatus again, and the panel heater 12 is energized so that the temperature of the lid plate 9 becomes 50 ° C. or 45 ° C. The temperature of each part was measured every minute, and the process was terminated when 20 minutes passed from the steady state where the temperature of each part was constant. For comparison, the temperature was measured under the same conditions before the porous layer was formed on the transmission plate 11. The measurement results are shown in FIG. Each temperature on the graph in the figure is an average value of 20 measured values, the horizontal axis indicates the position of the temperature sensor, and the numerical value on the horizontal axis is the distance from the bottom plate 10. In the figure, [copper plate + CuO particle 01] is data when the set temperature of the cover plate 9 is set to 50 ° C. using the transmission plate 11 in which the porous layer derived from the copper oxide nanoparticles is formed, Copper plate + CuO particle 02] is data obtained by repeated measurement under the same conditions in order to confirm reproducibility. [Copper plate + CuO particles 03] is data when the set temperature is set to 45 ° C. And [Copper plate only 01], [Copper plate only 02] and [Copper plate only 03] were obtained under the same conditions as above except that nitric acid alone was used instead of the mixed liquid of copper oxide nanoparticles and nitric acid. Data.

先ず、[銅板のみ 01]及び[銅板のみ 02]のデータが殆ど重なっていることから、この発明の方法に再現性があることが認められる。注目すべきことは、伝達板から[80mm]〜[20mm]の位置の水への熱伝達が、ナノ粒子の有無による明確な水温の差として確認できることである。一方、密閉室中の下層の水[20mm]から底板に対しての熱伝達は、冷却水を含め全ての実験において同じ条件として良く、当然のことながら水温に応じた底板温度となっている。   First, since the data of [copper plate only 01] and [copper plate only 02] almost overlap, it is recognized that the method of the present invention has reproducibility. It should be noted that the heat transfer from the transmission plate to the water at a position of [80 mm] to [20 mm] can be confirmed as a clear difference in water temperature depending on the presence or absence of nanoparticles. On the other hand, the heat transfer from the lower layer water [20 mm] in the sealed chamber to the bottom plate may be the same condition in all experiments including cooling water, and naturally, the bottom plate temperature corresponds to the water temperature.

[熱伝達率]
上述のデータは、全て各部の温度が定常になった状態を基としている。また、データから判るように、密閉室内の流体温度は蓋板9の上面温度と底板10の下面温度の平均温度を示しており、密閉室からの熱損失が無いこと、また、密閉室中間部の流体域が等温であることから流体部分では断熱層が形成されていることを証明している。したがって、直径100mmの密閉室上面を通過した熱流は、密閉室の上層部で中間流体層と対流熱伝達し、熱損失することなく中間層を輸送され、下層部で底板と対流熱伝達しており、この際に上下層部を通過する熱流の大きさは同一であると言える。この実験により、伝熱機構が定常的に存在することも明らかとなっている。
[Heat transfer coefficient]
The above-mentioned data are all based on the state where the temperature of each part is steady. Further, as can be seen from the data, the fluid temperature in the sealed chamber indicates the average temperature of the upper surface temperature of the lid plate 9 and the lower surface temperature of the bottom plate 10, and there is no heat loss from the sealed chamber, and the middle portion of the sealed chamber It is proved that a heat insulating layer is formed in the fluid portion because the fluid region is isothermal. Therefore, the heat flow that has passed through the upper surface of the sealed chamber with a diameter of 100 mm is convectively transferred to the intermediate fluid layer at the upper layer of the sealed chamber, transported through the intermediate layer without heat loss, and convectively transferred to the bottom plate at the lower layer. In this case, it can be said that the magnitude of the heat flow passing through the upper and lower layer portions is the same. This experiment also reveals that the heat transfer mechanism exists constantly.

伝達板、密閉室内水温、底板の温度をそれぞれTC, TwM, TBとし、面積Sの伝達板から水への熱流束及び熱伝達率をqupper, αCuTop、また下層の水から底板へのそれをqlower, αbottomとするとき、各々に対して次式が成立する。
upper*S=αCuTop*(TC−TwM)*S
lower*S=αbottom*(TwM−TB)*S
前述の如く定常状態に於いては、熱流は同一:qupper*S=qlower*Sであるから、
次式が成立する。
αCuTopbottom=(TwM−TB)/(TC−TwM)
The temperature of the transfer plate, sealed indoor water temperature, and bottom plate are TC, TwM, and TB, respectively, and the heat flux and heat transfer coefficient from the transfer plate of area S to water are q upper , α CuTop , and those from the lower layer water to the bottom plate Where q lower and α bottom are the following:
q upper * S = α CuTop * (TC-TwM) * S
q lower * S = α bottom * (TwM-TB) * S
As described above, in the steady state, the heat flow is the same: q upper * S = q lower * S.
The following equation holds.
α CuTop / α bottom = (TwM−TB) / (TC−TwM)

図2を基に、このαCuTopbottomの値を各実験ケースに対して図示したのが、図3である。ポンプ5の回転数を一定とした条件下では、流動条件は同一と考えられるので、下層の水から底板への熱伝達率αbottomは不変と考えて良い。したがって、αCuTopbottomの値はそのままαCuTopの特性、即ち上層の伝達板から水への熱伝達率の相対的な増加割合の指標を示していると考えることが出来る。 FIG. 3 shows the values of α CuTop / α bottom for each experimental case based on FIG. Under the condition where the rotational speed of the pump 5 is constant, the flow conditions are considered to be the same, so the heat transfer rate α bottom from the lower layer water to the bottom plate may be considered unchanged. Therefore, it can be considered that the value of α CuTop / α bottom shows the characteristic of α CuTop as it is, that is, an index of the relative increase rate of the heat transfer coefficient from the upper transfer plate to the water.

図3より蓋の設定温度が50℃及び45℃と異なっても、αCuTopbottomの値には差異が出ないということが判る。このことはデータに再現性が認められることを含めて、上記の熱伝達率の評価に関する推論の正当性を立証していると言える。
驚くべきことに、銅から水への熱伝達率は、微量の酸化銅CuOナノ粒子に由来する多孔質層が伝達板(銅板)表面に形成されたことによって、伝達板単体の特性より6割以上も向上している。従って、流体の境界層理論に立脚する熱伝達の概念からすれば、多孔質層自体がまさに温度境界層に多大な影響を及ぼすとしか考えられない。そして、その影響は母体たる金属や用いるナノ粒子の化学種には大きく依存しないであろうということが推察される。
It can be seen from FIG. 3 that even if the set temperature of the lid is different from 50 ° C. and 45 ° C., there is no difference in the value of α CuTop / α bottom . It can be said that this proves the justification of the inference regarding the evaluation of the heat transfer coefficient, including the reproducibility of the data.
Surprisingly, the heat transfer coefficient from copper to water is 60% higher than the characteristics of a single transfer plate due to the formation of a porous layer derived from a small amount of copper oxide CuO nanoparticles on the surface of the transfer plate (copper plate). These are also improving. Therefore, based on the concept of heat transfer based on the fluid boundary layer theory, it can be considered that the porous layer itself has a great influence on the temperature boundary layer. And it is speculated that the effect will not depend greatly on the base metal and the chemical species of the nanoparticles used.

−実施例2−
酸化銅ナノ粒子に代えて直径20〜30nm、長さ5〜10μmのカーボンナノチューブを用いて伝達板11を処理した以外は実施例1の[銅板+CuO粒子 01]と同一条件で測温した。測温結果を[銅板+Cチューブ 01]として図4に示す。尚、伝達板11の表面をSEM観察したところ、直径100nm以下の多数の気孔を有する層が形成されていた。また、元の形状を維持した微量のカーボンナノチューブが付着していた。
-Example 2-
The temperature was measured under the same conditions as [Copper plate + CuO particles 01] in Example 1 except that the transmission plate 11 was treated with carbon nanotubes having a diameter of 20 to 30 nm and a length of 5 to 10 μm instead of the copper oxide nanoparticles. The temperature measurement result is shown in FIG. 4 as [copper plate + C tube 01]. When the surface of the transmission plate 11 was observed with an SEM, a layer having a large number of pores having a diameter of 100 nm or less was formed. In addition, a small amount of carbon nanotubes maintaining the original shape were adhered.

酸化銅ナノ粒子の層に代えて酸化アルミニウムAl23の粒子(米国 Nanophase Technologies社製、平均粒径27〜56nm、ほぼ球状)を用いて伝達板11を処理した以外は実施例1の[銅板+CuO粒子 01]と同一条件で測温した。測温結果を[銅板+Al2O3粒子 01]として図4に示す。尚、伝達板11の表面をSEM観察したところ、直径100nm以下の多数の気孔を有する層が形成されていた。 Example 1 except that the transmission plate 11 was treated with aluminum oxide Al 2 O 3 particles (manufactured by Nanophase Technologies, USA, average particle size 27 to 56 nm, almost spherical) instead of the copper oxide nanoparticle layer. The temperature was measured under the same conditions as copper plate + CuO particles 01]. The temperature measurement results are shown in FIG. 4 as [copper plate + Al2O3 particles 01]. When the surface of the transmission plate 11 was observed with an SEM, a layer having a large number of pores having a diameter of 100 nm or less was formed.

伝達板11の材質を銅に代えて真鍮にした以外は実施例1の[銅板+CuO粒子 01]又は[銅板のみ 01]と同一条件で測温した。測温結果をそれぞれ[真鍮板+CuO粒子 01]又は[真鍮板のみ 01]として図4に示す。
伝達板11の材質を銅に代えてアルミニウムにし、酸化アルミニウムAl23の粒子を苛性ソーダで処理した以外は実施例1の[銅板+CuO粒子 01]又は[銅板のみ 01]と同一条件で測温した。測温結果をそれぞれ[アルミ板+Al2O3粒子 01]又は[アルミ板のみ 01]として図4に示す。
尚、[銅板のみ 01]及び[銅板のみ 02]は、比較のために図3のデータを複写したものである。
The temperature was measured under the same conditions as [Copper plate + CuO particles 01] or [Copper plate only 01] in Example 1 except that the material of the transmission plate 11 was changed to brass instead of copper. The temperature measurement results are shown in FIG. 4 as [brass plate + CuO particles 01] or [brass plate only 01].
The temperature of the transmission plate 11 was measured under the same conditions as [Copper plate + CuO particles 01] or [Copper plate only 01] in Example 1 except that aluminum was used instead of copper and aluminum oxide Al 2 O 3 particles were treated with caustic soda. did. The temperature measurement results are shown in FIG. 4 as [aluminum plate + Al2O3 particles 01] or [aluminum plate only 01].
Note that [copper plate only 01] and [copper plate only 02] are copies of the data of FIG. 3 for comparison.

図より明らかなように、伝達板の材質や用いるナノ粒子の化学種に拘わらず、ナノ粒子に由来する多孔質層の有無による実験水温の相違が確認できる。銅の伝達板とカーボンナノチューブ(銅板+Cチューブ)の結果が比較的低い水温を示したのは、カーボンナノチューブが他のナノ粒子と比べて伝達板に多孔質層を形成しにくかったためと考えられる。いずれにしても多孔質層形成の再現性は確認されており、実験を繰り返す毎に形成の度合いが悪くなったり熱伝達率が劣化したりするというような現象は見られ無かった。
次に実施例1と同じ計算式を用いて熱伝達率を算出した結果を図5に示す。この一連のデータに限れば、真鍮の伝達板と酸化銅ナノ粒子の組み合わせ(真鍮板+CuO粒子)の値が最も高い、即ち熱伝達率が最も良いという結果が得られた。その値は伝達板のみに比較して8割以上という驚異的な向上を示している。
As is apparent from the figure, the difference in the experimental water temperature depending on the presence or absence of the porous layer derived from the nanoparticles can be confirmed regardless of the material of the transmission plate and the chemical species of the nanoparticles used. The reason why the results of the copper transmission plate and the carbon nanotube (copper plate + C tube) showed a relatively low water temperature is thought to be because the carbon nanotube was less likely to form a porous layer on the transmission plate than the other nanoparticles. In any case, the reproducibility of the formation of the porous layer was confirmed, and there was no phenomenon that the degree of formation deteriorated or the heat transfer rate deteriorated each time the experiment was repeated.
Next, the result of calculating the heat transfer coefficient using the same calculation formula as in Example 1 is shown in FIG. As far as this series of data is concerned, the value of the combination of the brass transmission plate and the copper oxide nanoparticles (brass plate + CuO particles) was the highest, that is, the heat transfer coefficient was the best. The value shows a tremendous improvement of 80% or more compared to the transmission plate alone.

−比較例−
実施例1の実験装置から伝達板11及び温度センサー16を取り除いた。そして、密閉室1内の水に前記カーボンナノチューブを0.01g/Lの濃度で添加した。即ち、蓋板9の下面にカーボンナノチューブ含有水が接する構成とした。その他は実施例1の[銅板+CuO粒子 01]と同一条件で測温した。また、対照としてカーボンナノチューブを水に添加しない場合も測温した。これらの測温結果をそれぞれ順に[Cチューブ添加]及び[無し]として図6に示す。
-Comparative example-
The transmission plate 11 and the temperature sensor 16 were removed from the experimental apparatus of Example 1. The carbon nanotubes were added to the water in the sealed chamber 1 at a concentration of 0.01 g / L. That is, the carbon nanotube-containing water is in contact with the lower surface of the lid plate 9. Others were measured under the same conditions as [Copper plate + CuO particles 01] in Example 1. As a control, the temperature was also measured when no carbon nanotubes were added to water. These temperature measurement results are shown in FIG. 6 as [Add C tube] and [None], respectively.

図6から判るように、[Cチューブ添加]よりもむしろ[無し]の水温の方が0.6℃程度高くなった。ちなみにカーボンナノチューブは水に溶けず、実験終了時には粒子間がくっついて固まりとなる現象も認められた。
αCuTopbottomの値についても水だけの場合のαCuTopbottom=0.3667に対して、カーボンナノチューブ含有水の場合のαCuTopbottom=0.3576が若干小さかった。従って、カーボンナノチューブを添加することにより、熱伝達率はむしろ低下していると認められる。
As can be seen from FIG. 6, the water temperature of [None] rather than [Add C tube] was about 0.6 ° C. higher. By the way, carbon nanotubes did not dissolve in water, and at the end of the experiment, a phenomenon was observed in which the particles were stuck together and solidified.
against α CuTop / α bottom = 0.3667 in the case of only water also for values of α CuTop / α bottom, α CuTop / α bottom = 0.3576 in the case of carbon nanotube-containing water is small somewhat. Therefore, it is recognized that the heat transfer coefficient is rather lowered by adding carbon nanotubes.

−実施例3−
[実験装置]
図7に示すように、温水槽28と冷水槽29を準備した。また、厚さ10mmの硬質塩化ビニ−ル樹脂製の直方体状の箱30にて上下二層の流路31,32を形成した。流路31,32は、流れ方向に各々高さ15mm×幅310mmの一様な大きさの断面を有し、上流路31と下流路32とが厚さ1.5mmの銅板33により仕切られている。流路31,32は、流れ方向の一端に入り口、他端に出口を有する。
Example 3
[Experimental device]
As shown in FIG. 7, a hot water tank 28 and a cold water tank 29 were prepared. Further, upper and lower two-layer flow paths 31 and 32 were formed in a rectangular parallelepiped box 30 made of a hard vinyl chloride resin having a thickness of 10 mm. The flow paths 31 and 32 have a uniform cross section each having a height of 15 mm and a width of 310 mm in the flow direction, and the upper flow path 31 and the lower flow path 32 are partitioned by a copper plate 33 having a thickness of 1.5 mm. Yes. The flow paths 31 and 32 have an inlet at one end in the flow direction and an outlet at the other end.

箱30を入り口が下、出口が上になるように傾け、上流路31の入り口に温水、下流路32の入り口に冷水(いずれも上水道水)をポンプ34,35により供給した。そして、流路31,32の出口から出た温水及び冷水は各々温水槽28及び冷水槽29に流れ落ちるとともに、その流量が同じになるよう図略のバルブで調節した。流路31,32の上流(入り口付近)と下流(出口付近)にL=1.8mの距離を置いて温度センサー36,37,38,39を設置し、水温を自動計測した。温水と冷水の入口温度が定常状態に達した後、更に10分間10秒毎に計測し、その内から少なくとも5分間以上にわたる計測値(データ数30個)の各平均値をもって計測結果とした。   The box 30 was tilted so that the entrance was down and the exit was up, and hot water was supplied to the entrance of the upper flow path 31 and cold water (both tap water) was supplied to the entrance of the lower flow path 32 by pumps 34 and 35. And the warm water and cold water which came out of the exit of the flow paths 31 and 32 flowed down to the hot water tank 28 and the cold water tank 29, respectively, and it adjusted with the valve | bulb of omission so that the flow volume might become the same. Temperature sensors 36, 37, 38, 39 were installed at a distance of L = 1.8 m upstream (near the entrance) and downstream (near the exit) of the flow paths 31, 32, and the water temperature was automatically measured. After the inlet temperature of hot water and cold water reached a steady state, it was further measured every 10 seconds for 10 minutes, and the average value of the measured values (30 data items) over at least 5 minutes was taken as the measurement result.

上層の温水より銅板33を通じて下層の冷水に熱が移動し、1.8m通過後の温水は温度が低下し、逆に冷水は温度が上昇する。その各々の温度差は、上下二層の流体を仕切る銅板33自体の物性による熱伝導と、温水から銅板33への熱伝達、及び銅板33から冷水への熱伝達により決まることになり、当然ながら熱伝達率が高い程その温度差が大きくなる。
実験は銅板33が硝酸だけで処理されたもの[銅板のみ]、銅板33の両面を実施例1と同じ酸化銅のナノ粒子含有ペーストで処理したもの[両面ナノ粒子]、銅板33の温水側片面だけを酸化銅ナノ粒子含有ペーストで処理したもの[温面ナノ粒子]、逆に銅板33の冷水側片面だけを酸化銅ナノ粒子含有ペーストで処理したもの[冷面ナノ粒子]の4条件について行った。
Heat is transferred from the upper layer of hot water to the lower layer of cold water through the copper plate 33, and the temperature of the hot water after passing through 1.8 m decreases, and conversely, the temperature of the cold water increases. Each temperature difference is determined by the heat conduction due to the physical properties of the copper plate 33 itself separating the upper and lower two layers of fluid, the heat transfer from the hot water to the copper plate 33, and the heat transfer from the copper plate 33 to the cold water. The higher the heat transfer rate, the greater the temperature difference.
In the experiment, the copper plate 33 was treated only with nitric acid [copper plate only], both sides of the copper plate 33 were treated with the same copper oxide nanoparticle-containing paste as in Example 1 [both sides nanoparticles], the hot water side of the copper plate 33 4 treatments were performed on the copper oxide nanoparticles containing paste [warm surface nanoparticles], and on the other hand, only the cold water side of the copper plate 33 was treated with copper oxide nanoparticles containing paste [cold surface nanoparticles] It was.

[実験結果1]
流速 u=4.41cm/secの際の実験結果を図8(Heat exchange Nano vs Cu-only graphF)に示す。4条件とも温水の入口温度(Hinlet)と冷水のそれ(Cinlet)は殆ど同じ条件となっている。
[両面ナノ粒子]と[銅板のみ]の比較により、温水・冷水ともその入口と出口の温度差に明確な差異が生じている。両者の流量と伝熱面積(0.31m x 1.8m)が同じであるから、この差異は温水から銅板、銅板から冷水への熱伝達率の相違により生じたと考えて良い。
[銅板のみ]の場合の結果は、従来の実験相関式(ダクト内層流のChurchill & Ozoeの式)によって推定でき、その計算値と実験値とはかなりの精度(出口温度の計算値と実験値との差は0.36℃)で符合した。それに対して[両面ナノ粒子]の実験値は、温水から銅、銅から冷水への各々の熱伝達率が計算値の1.8倍に向上していた。
[温面ナノ粒子]及び[冷面ナノ粒子]の結果は、それぞれナノ粒子に由来する多孔質層が形成された方の熱伝達率が向上することを示している。
[Experimental result 1]
The experimental results when the flow velocity u = 4.41 cm / sec is shown in FIG. 8 (Heat exchange Nano vs Cu-only graph F). In all four conditions, the hot water inlet temperature (Hinlet) and cold water (Cinlet) are almost the same.
By comparing [Double-sided nanoparticles] and [Copper plate only], there is a clear difference in the temperature difference between the inlet and outlet of both hot and cold water. Since the flow rate and heat transfer area (0.31mx 1.8m) of both are the same, this difference can be considered to have been caused by the difference in heat transfer rate from hot water to copper plate and from copper plate to cold water.
The result in the case of [copper plate only] can be estimated by the conventional experimental correlation (Churchill &Ozoe's equation for laminar flow in the duct), and the calculated value and experimental value are quite accurate (calculated outlet temperature and experimental value). The difference between the two was 0.36 ° C. On the other hand, in the experimental value of [double-sided nanoparticles], the heat transfer coefficients from hot water to copper and from copper to cold water were improved to 1.8 times the calculated values.
The results of [warm surface nanoparticles] and [cold surface nanoparticles] indicate that the heat transfer coefficient is improved when the porous layer derived from the nanoparticles is formed.

以上の結果を柱状グラフで示したものが図9(熱交換による水温変化率U=4.4cm/s)である。温水と冷水の入口温度差(Inlet)を基に、温水の温度差(Hot=Hinlet−Houtlet)及び冷水のそれ(Cool=Coutlet−Cinlet)との比率を示したものが(Hot/Inlet) 及び(Cool/Inlet)である。[1-(Outlet)/(Inlet)]は温水と冷水の出口温度差(Outlet)を組み込んだもので、(Hot/Inlet)と(Cool/Inlet)の和が[1-(Outlet)/(Inlet)]の値を示すことにもなる。概念的にいえば、[1-(Outlet)/(Inlet)]の値の大小が熱交換、即ち熱伝達の向上度を示し、(Hot/Inlet)と(Cool/Inlet)はそれぞれの貢献度を示唆していることになる。 FIG. 9 (the rate of change in water temperature due to heat exchange U = 4.4 cm / s) shows the above results in a columnar graph. Based on the inlet temperature difference (Inlet) of hot water and cold water, the ratio of the temperature difference of hot water (Hot = H inlet −H outlet ) and that of cold water (Cool = C outlet −C inlet ) is shown as (Hot / Inlet) and (Cool / Inlet). [1- (Outlet) / (Inlet)] incorporates the outlet temperature difference (Outlet) of hot water and cold water, and the sum of (Hot / Inlet) and (Cool / Inlet) is [1- (Outlet) / ( Inlet)] value. Conceptually speaking, the value of [1- (Outlet) / (Inlet)] indicates the degree of improvement in heat exchange, that is, heat transfer, and (Hot / Inlet) and (Cool / Inlet) are the respective contributions. It will be suggested.

[両面ナノ粒子]と[銅板のみ]の場合に、(Hot/Inlet)と(Cool/Inlet)の値が何れも同程度であることは、通常の並行流の場合の熱交換が定常的に成立していることを示しており、熱交換の理論が適用できると考えられ、前述の実験相関式による推算も有効であると判断できる。   In the case of [Double-sided nanoparticles] and [Copper plate only], the values of (Hot / Inlet) and (Cool / Inlet) are almost the same. Therefore, it is considered that the theory of heat exchange can be applied, and it can be determined that the above-described estimation using the experimental correlation equation is also effective.

[実験結果2]
流速 u=8cm/sec前後の実験結果を図10(Heat exchange Nano vs Cu-only graphE)に示す。流速が速いため4条件の温水の入口温度(Hinlet)と冷水のそれ(Cinlet)は制御が難しく若干異なった条件となっている。
実験結果1と同じく柱状グラフで示したものを図11(熱交換による水温変化率U=約8cm/s)に示す。各条件の実験結果は、先の流速u=4.41cm/sの場合の結果とまったく同じ傾向を示している。上記実験相関式に乱流を加えた式(ダクト内乱流のPetukhovの修正式と層流のChurchill & Ozoeの式)による[銅板のみ]の場合の計算結果と実験結果との差は、出口温度で0.02℃以内と良い精度で符合した。それに対して[両面ナノ粒子]の実験値は、温水から銅、銅から冷水への各々の熱伝達率が計算値の2.1倍も向上していた。
図11は、また4種類の実験条件を端的に示唆している。[片面ナノ粒子]が、[銅板のみ]と[両面ナノ粒子]の中間になっているからである。
[Experimental result 2]
FIG. 10 (Heat exchange Nano vs. Cu-only graph E) shows the experimental results at a flow velocity around u = 8 cm / sec. Because of the high flow rate, the four conditions of hot water inlet temperature (H inlet ) and cold water (C inlet ) are difficult to control and have slightly different conditions.
FIG. 11 (the rate of change in water temperature due to heat exchange U = about 8 cm / s) shows a columnar graph similar to the experimental result 1. The experimental results under each condition show exactly the same tendency as the results when the flow velocity u = 4.41 cm / s. The difference between the calculation result and the experimental result in the case of [copper plate only] by the above-mentioned experimental correlation equation plus turbulent flow (Petukhov's modified equation for turbulent flow in the duct and Churchill &Ozoe's equation for laminar flow) It matched with good accuracy within 0.02 ° C. On the other hand, the experimental value of [Double-sided Nanoparticle] showed that the heat transfer coefficient from hot water to copper and from copper to cold water was improved 2.1 times the calculated values.
FIG. 11 also suggests four types of experimental conditions. This is because [single-sided nanoparticles] is intermediate between [copper plate only] and [double-sided nanoparticles].

[流体の流動に伴う損失について]
通常の一般的な熱交換システムを考えた場合、例えば伝熱面積を増やすためフィンなどが考慮される場合が多い。しかし、それ等は流体の流動に伴うエネルギー損失が増加するという負の要素を合わせ持つことになる。従って多孔質層による流路の摩擦損失の増加もシステム全体の評価には欠かせない。
[Loss associated with fluid flow]
When considering a general heat exchange system, for example, fins are often considered to increase the heat transfer area. However, they have a negative factor that energy loss associated with fluid flow increases. Therefore, an increase in friction loss of the flow path due to the porous layer is also indispensable for evaluating the entire system.

この実験に於いて、我々はその摩擦損失を計測することを意図したが、従来の実験相関式(滑らかな管の普遍抵抗法則Prandtle・Karman公式、及び等価砂粗さを考慮したColebrookの近似式)に基づく計算では1.5m間の流路長に対して0.9mm水柱程度の損失しか発生せず、事実1.0mm水柱以下であるというマノメータでの目視判断しか出来なかった。多孔質層の有無による摩擦損失の評価に関しては、更に流速を速くした実験を実施せざるを得ない。但し、多孔質層が形成された表面は、塗装したような面であり、等価砂粗さを導入したムーディ線図を基にした計算では、滑らかな管と比較しても摩擦係数に於いて3%以下の増加しかもたらさないという結果が得られていることを付記しておく。   In this experiment, we intended to measure the friction loss, but the conventional experimental correlation (Prandtle-Karman formula for smooth pipe universal resistance and Colebrook's approximation considering equivalent sand roughness) In the calculation based on), only a loss of about 0.9 mm water column was generated with respect to the flow path length of 1.5 m, and only a visual judgment with a manometer that it was actually 1.0 mm water column or less could be made. Regarding the evaluation of the friction loss depending on the presence or absence of the porous layer, an experiment in which the flow rate is further increased must be carried out. However, the surface on which the porous layer is formed is a painted surface, and in the calculation based on the Moody diagram that introduces equivalent sand roughness, the coefficient of friction is higher than that of a smooth tube. It should be noted that results have been obtained that result in only an increase of less than 3%.

−実施例4−
これまでの実施例は、流体が水の場合である。本例では流体を空気とした。実施例1の[銅板+CuO粒子 01]及び[銅板のみ]と同じ工程を経て得られた試験板40を図12に平面図、図13に正面図として示すように送風ダクト41の出口の一端に斜め(仰角α=30度)に固定した。また、試験板40の裏面に白金抵抗体薄膜の温度センサー42、送風ダクト41の出口付近に温度センサー43を取り付けた。そして、試験板40に温風(117℃)を0.5m/sの風速で吹きつけ、温風が試験板40の裏側に回り込まないことを確認した。温度センサー42により定常状態に達した試験板40の温度を計測した結果、[銅板のみ]の温度が57.5℃で[銅板+CuO粒子 01]の温度が59.2℃と明らかな差異が認められた。
Example 4
The previous examples are where the fluid is water. In this example, the fluid is air. A test plate 40 obtained through the same steps as [copper plate + CuO particles 01] and [copper plate only] in Example 1 is shown in a plan view in FIG. 12, and as a front view in FIG. Fixed obliquely (elevation angle α = 30 degrees). In addition, a temperature sensor 42 of a platinum resistor thin film was attached to the back surface of the test plate 40, and a temperature sensor 43 was attached near the outlet of the air duct 41. Then, hot air (117 ° C.) was blown onto the test plate 40 at a wind speed of 0.5 m / s, and it was confirmed that the hot air did not enter the back side of the test plate 40. As a result of measuring the temperature of the test plate 40 that reached a steady state by the temperature sensor 42, the temperature of the [copper plate only] was 57.5 ° C., and the temperature of the [copper plate + CuO particles 01] was 59.2 ° C.

この発明の効果を確認する実験装置の概念図である。It is a conceptual diagram of the experimental apparatus which confirms the effect of this invention. 上記装置を用いて測温した実施例1の結果を示すグラフである。It is a graph which shows the result of Example 1 measured using the said apparatus. 上記グラフに基づいて算出した熱伝達率の相対的評価である。It is relative evaluation of the heat transfer coefficient computed based on the said graph. 上記装置を用いて測温した実施例2の結果を示すグラフである。It is a graph which shows the result of Example 2 measured using the said apparatus. 上記グラフに基づいて算出した熱伝達率の相対的評価である。It is relative evaluation of the heat transfer coefficient computed based on the said graph. 上記装置から伝達板を除いたものを用いて測温した比較例の結果を示すグラフである。It is a graph which shows the result of the comparative example measured using the thing except a transmission board from the said apparatus. この発明の効果を確認するもう一つの実験装置の概念図である。It is a conceptual diagram of another experimental apparatus which confirms the effect of this invention. 上記装置を用いて測温した実施例3の実験結果1を示すグラフである。It is a graph which shows the experimental result 1 of Example 3 measured using the said apparatus. 実験結果1の水温変化率を示すグラフである。It is a graph which shows the water temperature change rate of the experimental result 1. 上記装置を用いて測温した実施例3の実験結果2を示すグラフである。It is a graph which shows the experimental result 2 of Example 3 measured using the said apparatus. 実験結果2の水温変化率を示すグラフである。It is a graph which shows the water temperature change rate of the experimental result 2. この発明の効果を確認する更にもう一つの実験装置の平面図である。It is a top view of another experimental apparatus which confirms the effect of this invention. 同じく正面図である。It is also a front view.

符号の説明Explanation of symbols

1 密閉室
2 冷却室
3 温度制御部
4 温度モニター
5、6 循環ポンプ
7 冷却水タンク
8 円筒
9 蓋板
10 底板
11 伝達板
12 パネルヒーター
13 パイプ
14〜23 温度センサー
24 台
25 断熱材
DESCRIPTION OF SYMBOLS 1 Sealing chamber 2 Cooling chamber 3 Temperature control part 4 Temperature monitor 5, 6 Circulation pump 7 Cooling water tank 8 Cylinder 9 Cover plate 10 Bottom plate 11 Transmission plate 12 Panel heater 13 Pipe 14-23 Temperature sensor 24 Stand 25 Insulation material

Claims (6)

固体と流体との間で熱を交換するシステムにおいて、
流体と接する表面を有する固体を備え、その表面に直径100nm以下の粒子の群からなり直径100nm以下の多数の気孔を含む多孔質層が形成されていることを特徴とする熱交換システム。
In a system for exchanging heat between a solid and a fluid,
A heat exchange system comprising a solid having a surface in contact with a fluid, and a porous layer including a large number of pores having a diameter of 100 nm or less formed of a group of particles having a diameter of 100 nm or less.
前記固体は、前記流体と温度の異なる第二の流体と接する第二の表面を有し、第一の流体と第二の流体とが混ざらないように仕切っている請求項1に記載の熱交換システム。   The heat exchange according to claim 1, wherein the solid has a second surface in contact with a second fluid having a temperature different from that of the fluid, and is partitioned so that the first fluid and the second fluid are not mixed. system. 前記固体が金属である請求項1又は2に記載の熱交換システム。   The heat exchange system according to claim 1 or 2, wherein the solid is a metal. 前記粒子群が酸化銅CuO、炭素C及びアルミナAl23のうちから選ばれる1種以上である請求項1〜3のいずれかに記載の熱交換システム。 The heat exchange system according to any one of claims 1 to 3, wherein the particle group is one or more selected from copper oxide CuO, carbon C, and alumina Al 2 O 3 . 前記固体が金属であり、前記粒子群が固体と同一の金属又はその酸化物からなる請求項1〜4のいずれかに記載の熱交換システム。   The heat exchange system according to any one of claims 1 to 4, wherein the solid is a metal, and the particle group is made of the same metal as the solid or an oxide thereof. 流体が水又は空気である請求項1〜5のいずれかに記載の熱交換システム。
The heat exchange system according to any one of claims 1 to 5, wherein the fluid is water or air.
JP2004321606A 2002-10-10 2004-11-05 Heat exchanging system between solid and fluid Pending JP2005098694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004321606A JP2005098694A (en) 2002-10-10 2004-11-05 Heat exchanging system between solid and fluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002297088 2002-10-10
JP2004321606A JP2005098694A (en) 2002-10-10 2004-11-05 Heat exchanging system between solid and fluid

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004542803A Division JP3690527B2 (en) 2002-10-10 2002-12-25 Manufacturing method of heat exchange system

Publications (1)

Publication Number Publication Date
JP2005098694A true JP2005098694A (en) 2005-04-14

Family

ID=34466599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004321606A Pending JP2005098694A (en) 2002-10-10 2004-11-05 Heat exchanging system between solid and fluid

Country Status (1)

Country Link
JP (1) JP2005098694A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100585321C (en) * 2007-04-25 2010-01-27 中国科学院工程热物理研究所 Method and device for acoustic cavitation and titanium dioxide nano particle controlling boiling and heat conduction
JP2018155483A (en) * 2017-03-15 2018-10-04 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド Heat transfer pipe with ultra water repellent surface, and manufacturing method thereof
WO2018216931A1 (en) * 2017-05-24 2018-11-29 필드지 주식회사 Ship including vortex generating fins
JP2019120465A (en) * 2018-01-10 2019-07-22 三菱日立パワーシステムズ株式会社 Leak detection method of heat exchanger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100585321C (en) * 2007-04-25 2010-01-27 中国科学院工程热物理研究所 Method and device for acoustic cavitation and titanium dioxide nano particle controlling boiling and heat conduction
JP2018155483A (en) * 2017-03-15 2018-10-04 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド Heat transfer pipe with ultra water repellent surface, and manufacturing method thereof
WO2018216931A1 (en) * 2017-05-24 2018-11-29 필드지 주식회사 Ship including vortex generating fins
JP2019120465A (en) * 2018-01-10 2019-07-22 三菱日立パワーシステムズ株式会社 Leak detection method of heat exchanger
JP7000166B2 (en) 2018-01-10 2022-01-19 三菱パワー株式会社 Heat exchanger leak detection method

Similar Documents

Publication Publication Date Title
Ranjbarzadeh et al. An experimental study on heat transfer and pressure drop of water/graphene oxide nanofluid in a copper tube under air cross-flow: applicable as a heat exchanger
Sarafraz et al. Low-frequency vibration for fouling mitigation and intensification of thermal performance of a plate heat exchanger working with CuO/water nanofluid
Allahyar et al. Experimental investigation on the thermal performance of a coiled heat exchanger using a new hybrid nanofluid
Poongavanam et al. Experimental investigation on heat transfer and pressure drop of MWCNT-Solar glycol based nanofluids in shot peened double pipe heat exchanger
Chandrasekar et al. Experimental studies on heat transfer and friction factor characteristics of Al2O3/water nanofluid in a circular pipe under laminar flow with wire coil inserts
Nieh et al. Enhanced heat dissipation of a radiator using oxide nano-coolant
Suresh et al. Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer
Coursey et al. Nanofluid boiling: The effect of surface wettability
Duangthongsuk et al. Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger
Setoodeh et al. Subcooled flow boiling of alumina/water nanofluid in a channel with a hot spot: An experimental study
Sarafraz et al. Upward flow boiling to DI-water and Cuo nanofluids inside the concentric annuli
Naphon Experimental investigation the nanofluids heat transfer characteristics in horizontal spirally coiled tubes
Sommers et al. Condensate drainage performance of a plain fin-and-tube heat exchanger constructed from anisotropic micro-grooved fins
Kim et al. The effect of surface area on pool boiling heat transfer coefficient and CHF of Al 2 O 3/water nanofluids
JP3690527B2 (en) Manufacturing method of heat exchange system
Meikandan et al. Experimental investigation on thermal performance of nanocoated surfaces for air-conditioning applications
Hatami et al. Experimental investigation of preparing and using the H2O based nanofluids in the heating process of HVAC system model
Sharma Fabricating an experimental setup to investigate the performance of an automobile car radiator by using aluminum/water nanofluid
Lai et al. Influence of pore density on heat transfer and pressure drop characteristics of wet air in hydrophilic metal foams
Kiepfer et al. Polymer film heat transfer surfaces in seawater desalination: fouling layer formation and technology
Khan et al. Design, synthesis, and characterization of hybrid micro‐nano surface coatings for enhanced heat transfer applications
Murshed et al. Nanofluids as advanced coolants
JP2005098694A (en) Heat exchanging system between solid and fluid
Sen et al. Pool Boiling Heat Transfer on a Micro‐Structured Copper Oxide Surface with Varying Wettability
CN108473856B (en) Quantum heat transfer medium