WO2018216832A1 - 합금 조성과 합금 전위의 조절을 이용한 고내식 열교환기 시스템 - Google Patents

합금 조성과 합금 전위의 조절을 이용한 고내식 열교환기 시스템 Download PDF

Info

Publication number
WO2018216832A1
WO2018216832A1 PCT/KR2017/005432 KR2017005432W WO2018216832A1 WO 2018216832 A1 WO2018216832 A1 WO 2018216832A1 KR 2017005432 W KR2017005432 W KR 2017005432W WO 2018216832 A1 WO2018216832 A1 WO 2018216832A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
potential
content
weight
tube
Prior art date
Application number
PCT/KR2017/005432
Other languages
English (en)
French (fr)
Inventor
손희식
Original Assignee
손희식
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손희식 filed Critical 손희식
Priority to US16/614,059 priority Critical patent/US20200173740A1/en
Priority to EP17910909.5A priority patent/EP3633310A4/en
Priority to PCT/KR2017/005432 priority patent/WO2018216832A1/ko
Publication of WO2018216832A1 publication Critical patent/WO2018216832A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/12Electrodes characterised by the material
    • C23F13/14Material for sacrificial anodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/089Coatings, claddings or bonding layers made from metals or metal alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/16Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes extruded

Definitions

  • the present invention relates to heat exchanger systems, and more particularly to improved corrosion resistance of tubes, fins and headers made of aluminum, which are heat exchanger components.
  • it relates to the improvement of corrosion resistance by the proper selection of corrosion potential by part and the addition of special elements.
  • heat exchangers such as an evaporator, a condenser, and a pipe.
  • heat exchangers it consists of a condenser tube, fin (or heat sink), a header pipe, and various piping of an aluminum alloy extrusion material.
  • These heat exchangers are generally constructed by brazing and joining tubes and fins (generally coated with cladding plates on a fin core material or cladding) in a predetermined structure, and then brazing in a heating furnace in an inert gas atmosphere. Is completed.
  • a 1XXX series and A 3XXX series materials Widely used materials for heat exchangers are A 1XXX series and A 3XXX series materials, and when more strength is required, A 6XXX series materials are also used.
  • the A 4XXX series is widely used as a clad material for brazing tubes and pipes to pins and header pipes.
  • the extruded tube and the pipe of the heat exchanger are used as the refrigerant passage pipe, when penetration occurs due to corrosion during use, the refrigerant leaks and cannot function as a heat exchanger.
  • Zn zinc
  • the Zn diffusion layer formed on the tube surface layer acts as a sacrificial anode to the core portion, thereby suppressing corrosion in the plate thickness direction and extending the corrosion penetration life.
  • the tube after extruded, the tube requires a process for attaching Zn of a Zn coating (sprayed or the like), resulting in an increase in manufacturing cost.
  • Japanese Patent Laid-Open No. 11-21649 discloses 0.15 to 0.35% by weight of iron, 0.15% by weight or less of silicon, less than 0.03% by weight of zinc, 0.55% by weight of copper, and 0.02 to 0.05% by weight of zirconium.
  • An aluminum alloy containing 0.003 to 0.010% by weight of titanium, iron / silicon ⁇ 2.5, and the remainder of which is inevitably added with aluminum has been proposed.
  • Korean Patent Laid-Open Publication No. 10-2011-0072237 has proposed a method of omitting the Zn spraying process outside the tube by adding Zr and B to an aluminum alloy containing 0.15 to 0.45% of copper. .
  • This document contains the technical idea that due to the addition effect of Zr or B, the crystals of aluminum alloys become finer and corrosion resistance is increased.
  • the copper content is more than 0.1% by weight, copper precipitates at the grain boundary during heat exchanger operation, and as a result, the sensitivity of grain boundary corrosion is increased, resulting in tube grain boundary corrosion, which shortens the corrosion penetration life of the tube. .
  • An object of the present invention for the above problems to solve the above problems in order to improve the corrosion resistance of the heat exchanger.
  • An object of the present invention is to improve the corrosion resistance to maintain the airtightness of the heat exchanger even in harsh environments to prevent the leakage of refrigerant to extend the life of the heat exchanger system.
  • the corrosion potential of the tube ranges from -950 mV to 650 mV;
  • the corrosion potential of the header ranges from 0 mV to +150 mV based on the corrosion potential of the tube;
  • the corrosion potential of the header clad is in the range of 20 mV to +100 mV based on the corrosion potential of the tube;
  • Cu content of the aluminum alloy is 0.001 to 0.50% by weight
  • Zn content of the aluminum alloy is 0.001 ⁇ 5.00% by weight
  • the tube, header and fins are joined by a brazing process by the header cladding material and the pin cladding material, which is achieved by a high corrosion resistance heat exchanger system utilizing control of alloy composition and alloy potential.
  • Corrosion potential of the fin may be in the range of 20mV ⁇ -170mV based on the corrosion potential of the tube.
  • Corrosion potential of the pin clad material may be in the range of 40mV ⁇ + 80mV based on the corrosion potential of the tube.
  • the aluminum alloy may be one or more content change selected from Cu, Zn, Mn, Si, Fe, or Mg is a control factor of the main corrosion potential.
  • the aluminum alloy may contain at least one selected from the rare earth metals of atomic number 57 (La) to 71 (Lu) in the range of 0.005 to 1.00% by weight.
  • the aluminum alloy may contain at least 0.005% to 0.25% by weight of one or more selected from Zr and B.
  • any one of age hardening, zinc coating, chemical coating, resin coating, or a combination thereof may be further added to any one of the tube, fin (or heat sink), header, or a combination thereof.
  • Another object of the present invention is to provide a third object of the present invention.
  • the content of Cu is 0.001 to 0.50% by weight
  • Zn content is 0.001 to 5.00 wt%
  • the content of at least one selected from Zr and B is 0.001 to 0.25 wt%;
  • the at least one content selected from the rare earth metals is 0.001 to 1.00% by weight;
  • S% in the following formula is 0.05 ⁇ 0.30% by weight
  • a highly corrosion resistant heat exchanger system using a control of alloy composition and alloy potential, characterized in that it comprises a tube made of an aluminum alloy material which satisfies (wherein the range of M in the formula below is 1 to 5). .
  • Z% one or more contents selected from Zr, B,
  • R% at least one content selected from atomic numbers 57 (La) to 71 (Lu)),
  • the content of Zn is 0.001 to 3.00 wt%
  • the at least one content selected from the rare earth metals having the atomic numbers 57 (La) to 71 (Lu) is 0.05 to 0.50% by weight;
  • At least one content selected from Zr and B may include a tube made of an aluminum alloy material containing 0.01 to 0.07% by weight.
  • the aluminum alloy may include Fe in the range of 0.40 to 0.70% by weight.
  • the aluminum alloy is selected from Mn, Mg, Si, Fe, Ti, Cr, V, Ni, Co, In, Pb, Bi, Ca, Be, Ag, Pd, Sb, Sc, Nb, Hf, or Y It may further include the above.
  • the corrosion resistance in the aluminum alloy used in the heat exchanger, it is possible to improve the corrosion resistance by adjusting the corrosion potential for each individual part to improve the corrosion resistance.
  • special elements such as rare earth metals to improve the composition, corrosion resistance and strength can be further improved. This results in simplification and cost reduction of the manufacturing process due to increased component life, elimination of zinc coating and the elimination of additional post-treatment processes.
  • FIG. 1 is a diagram showing a preferred corrosion potential distribution of heat exchanger tubes, fins, headers and clads according to the present invention.
  • Figure 2 is a diagram showing a more preferred corrosion potential distribution of the heat exchanger tube, fins, header and clad according to the present invention.
  • FIG. 3 is a schematic perspective view of a heat exchanger system according to an embodiment of the present invention.
  • the heat exchanger system (1) generally has a supporting structure and includes a pipe-shaped header (3), and a plurality of tubes (5) which are pipes thinner than the header (3) by connecting the headers (3) to each other; , A fin (or heat sink) 7 interposed between the tubes 5 to increase the heat transfer rate. Fins 7 may be provided in corrugated form to increase the heat exchange area as shown.
  • the heat medium can communicate between the header 3 and the tube 5. And the header 3 and the tube 5 and the tube 5 and the pin 7 may be joined by brazing, respectively. (Hereinafter referred to as "pin" means that the heat sink is included in the present invention.)
  • the refrigerant flows out and ends its life. Since aluminum alloys are sensitive to pitting corrosion, much effort has been made to prevent them.
  • the content of Si, Fe and Cu, which form precipitates having a high corrosion potential that is, local cathodes, such as Si, FeAl 3 , Cu, CuAl 2 , and the like, is combined with Si and Fe.
  • a heat treatment method there is a method of avoiding heat treatment in the vicinity of 500 ° C. where many precipitates acting as a cathode are generated.
  • a macroscopic approach is cathode protection, in which the material to be protected is higher in corrosion potential than other contact materials.
  • a cathode method and a method of controlling an alloy composition are used in combination.
  • the alloying element Cu has a disadvantage in that the solid solution in the matrix (Matrix) increases the strength of the aluminum alloy, but greatly reduces the extrudability compared to Mn.
  • the addition of Cu is known to increase the corrosion potential.
  • the potential raising effect by Cu is predominant. That is, when there is much Cu content, the electric potential raising effect by Cu becomes more preferable than the electric potential lowering effect by Zn.
  • the content is less than 0.12% by weight, the effect of adding copper, such as corrosion resistance is difficult to appear, and when the content is more than 0.45% by weight, the extrudability and corrosion resistance are simultaneously reduced (where the content is a percentage of the total weight of the aluminum alloy. All content indications in the description and claims of the invention are also the same). If the Cu content is higher than the proper content, precipitates tend to form at the grain boundaries, thereby increasing sensitivity to grain boundary corrosion and local corrosion.
  • Alloy element Zn coexists with Mg to improve mechanical properties.
  • the addition of Zn lowers the corrosion potential, but the change in corrosion potential is smaller than that of Cu.
  • Alloying element Mn increases the strength of the aluminum alloy. If the Mn content is less than 0.5% by weight, the effect of increasing strength is small, and if it exceeds 1.2 to 1.7% by weight, the extrudability is lowered. The addition of Mn is significantly smaller in the extrudability, in particular the decrease in the limit extrusion speed, compared with the case where the same amount of Si, Cu or Mg is added. It also has the effect of increasing the corrosion potential of the alloy by precipitating with a fine intermetallic compound of Al 6 Mn. If the content is less than 0.6% by weight, the effect of adding manganese, such as corrosion resistance is less.
  • Alloying element Fe is an element which precipitates as an intermetallic compound in Al alloy and improves abrasion resistance. If the content is less than 0.1wt%, there is little abrasion resistance effect, and if the content exceeds 0.3wt%, the particles are coarsened and workability is poor.
  • the alloying element Si is precipitated as an Al-Mn-Si-based intermetallic compound to suppress grain growth through interfering grain boundary movement, and to improve the extrudability by reducing the deformation resistance during extrusion. If it is less than 0.05% by weight, the casting cost increases, and if it is 0.10% or more, the Al-Mn-Si-based intermetallic compound is formed in the alloy, thereby reducing the Mn solid solubility in the alloy. This can lead to a drop in corrosion potential. In addition, when the content exceeds 0.2% by weight, the strength of the alloy is increased to reduce the extrudability.
  • the alloying element Mg increases the strength by solid solution strengthening in the matrix, but decreases the extrudability as the amount is increased. If the amount is more than 2.0% by weight, a compound having a high melting point is formed due to the flux and the reaction and the like, which tends to significantly reduce the bonding property in the brazing process. In addition, when the content exceeds 3.5% by weight, Mg 2 Al 3 is precipitated to increase the susceptibility to grain boundary corrosion and stress corrosion.
  • aging reinforcement may occur depending on whether Si and Zn coexist. Excellent machinability, especially corrosion resistance against seawater and shrinkage during solidification. In addition, the fluidity of the molten metal is weakened, and in particular, the bonding force with oxygen is strong, so care must be taken in the inflow of oxides.
  • the composition of the aluminum alloy for the heat exchanger can be appropriately selected in consideration of the effects on the characteristics of the main alloying elements and the corrosion resistance.
  • Widely used alloys in heat exchangers are A 1XXX series and A 3XXX series alloys. Table 1 below shows the composition of typical alloy types.
  • the corrosion potential is most affected by Cu, and the corrosion potential is in the range of -950 mV to -650 mV in the range of 0.01 to 0.5% by weight depending on the copper content. Therefore, neglecting the influence of other alloying elements, the corrosion potential can be easily changed by adding or decreasing a small amount of copper in an aluminum alloy.
  • the corrosion potential decreases by about 30 to 40 mV as 1.0 wt% is increased in the general aluminum alloy, the change range is smaller than that of Cu. Therefore, it is possible to further control the corrosion potential with the zinc content.
  • Mn has the effect of increasing the corrosion potential
  • Si has the effect of lowering the corrosion potential. Therefore, the corrosion potential of the aluminum alloy can be easily changed by changing the content of the alloying elements, such as Cu, Zn, Mn, Si, Mg, Fe.
  • the corrosion potential of the alloy can be changed.
  • the content of Zn is preferably 5.0% by weight or less, and the content of Cu is preferably 0.5% by weight or less. Therefore, in the case of the tube, since the Cu content is preferably 0.5% by weight or less, the corrosion potential of the tube is preferably in the range of 950 to 650 mV, and more preferably in the range of 850 to 650 mV.
  • the corrosion potential of the fin should be lower than that of the tube, and the range is preferably in the range of -20 mV to -170 mV, and more preferably in the range of -20 mV to -100 mV. If the difference is too small, the effect of the cathode method is insignificant, and if it is too large, the corrosion rate of the pin is too large.
  • the corrosion potential decreases when the copper content is decreased or the zinc content is increased.
  • a tube with the copper potential increased by adding copper based on the A3003 material is used.
  • Combining the pins with the addition of zinc to lower the corrosion potential improves the corrosion resistance of the tube.
  • a portion where the refrigerant of the heat exchanger is easily leaked due to corrosion is a junction between the tube 5 and the header 3.
  • the through corrosion of the header 3 does not occur, even if the header 3 is partially corroded in the vertical direction of the contact surface with the tube at the tube / header junction, leakage occurs, so pay attention to the corrosion potential of the header 3.
  • the tube 5 has a constant tube thickness in the depth direction of the joint, leakage of the refrigerant is prevented until the entire thickness thereof is penetrated. Therefore, since the corrosion resistance of the header 3 needs to be strengthened rather than the tube 5, it is preferable that the corrosion potential of the header 3 is higher than the corrosion potential of the tube 5.
  • the difference is preferably in the range of +0 mV to +150 mV, more preferably in the range of +20 mV to +100 mV.
  • the heat exchanger system 1 also typically assembles the tubes 5, fins 7 and headers 3 and then joins the parts by brazing, for which purpose the cladding for brazing outside the fin core (fin clad) aluminum alloy is bonded.
  • the cladding material is present at the site where the tube 5 is coupled. This clad material is melted in the brazing process and serves to join the parts.
  • the corrosion potential of the fin 7 is low, and therefore, the range of -40 to +80 mV is preferable, and the range of +0 to +80 mV is more preferable than the corrosion potential of the tube 5.
  • the corrosion potential of the header 3 is high, it is preferable that it is rather high compared with the cladding material of the tube / pin.
  • the range is preferably in the range of -20 to +100 mV, more preferably in the range of +10 to +90 mV, compared to the corrosion potential of the tube 5.
  • FIG. 1 is a diagram showing the region of the preferred corrosion potential of the fin 7 and the header 3 and the clad material around the tube 5, and FIG. 2 shows the region of the more preferred corrosion potential.
  • Zirconium not only improves the strength by miniaturizing the size of the crystal grains, but also has the effect of suppressing the generation of locally occurring pitting corrosion by finely dispersing precipitates that generate a potential difference. This has the characteristic of inducing corrosion to occur uniformly over the whole area.
  • the deformation resistance of the extrusion process is reduced to improve the extrusion characteristics, and at the same time, to suppress the grain coarsening after brazing, thereby improving the strength. It is not effective at 0.005 wt% or less, and 0.25 wt% or less is preferable because of the difficulty of extrusion and economical cost increase. Boron has a similar effect to zirconium when added to aluminum alloys.
  • the effect of the rare earth metal added according to the present invention is as follows.
  • Rare earth metals of atomic number 57 (La) to 71 (Lu) mitigate local corrosion by reducing the local corrosion cathodic reaction due to precipitates precipitated in the matrix, and consequently reducing local corrosion To act.
  • La atomic number 57
  • Lu Lu
  • the impurity concentration such as Fe is more than 0.2% by weight, it helps to maintain corrosion resistance.
  • the rare earth metal since the rare earth metal has an effect of raising the corrosion potential, it is possible to minimize the addition of Cu or to replace Cu for the purpose of raising the corrosion potential. Therefore, when the Cu content is increased to increase the corrosion potential, there is an effect of minimizing these side effects, thereby improving the corrosion resistance.
  • the lifetime of the oxide film is extended to improve corrosion resistance.
  • the strength and fluidity of the aluminum alloy to improve the plastic workability of the metal, there is an effect to improve the brazing properties.
  • Corrosion resistance improvement effect of the rare earth metal is about 20% to 100% compared to the effect of Zr, so a similar effect can be realized with a dose of 1 to 5 times that of Zr. This can be a useful means to replace high priced Zr.
  • the appropriate amount of rare earth element is preferably in the range of 0.005 to 1.0% by weight, and more preferably in the range of 0.01 to 0.60% by weight or 0.05 to 0.50% by weight.
  • aluminum alloys contain alloying elements (Ti, Cr, V, Ni, Co, In, Pb, Bi, Ca, Be, Ag, Pd, Sb, Y) that are widely used in the aluminum industry and inevitable impurities. In addition, it may further include.
  • the sacrificial anode effect by applying zinc coating (spraying, etc.) to any one of the tube 5, the fin 7, the header 3, or a combination thereof. It may be given, and may further increase the corrosion resistance by applying a chemical coating.
  • a silicone or resin coating on the surface of the heat exchanger component according to the present invention it is possible to further improve the corrosion resistance, and may be subjected to additional age hardening heat treatment if necessary for increasing the strength.
  • composition (% by weight) of the aluminum alloy according to one preferred embodiment may be as shown in Table 2 below. These alloys have specifications for the widely used A 3003 and A 4343 alloy compositions, and each alloy may contain additional unavoidable impurities.
  • Table 3 shows the types of alloys used in the present invention.
  • the material of A 3003 was the basic material of the tube, the pin and the header (alloy symbol b) and the cladding material for the brazing was A4343 as the base material (alloy symbol h).
  • the alloy with high corrosion potential by adding copper is indicated by the high corrosion potential 1 (alloy symbol a) of Table 3
  • the alloy with low corrosion potential by adding zinc is low corrosion potential 1 (alloy symbol c) of Table 3 ).
  • an alloy containing La which is a rare earth metal
  • an alloy containing Zr was designated as an improved alloy 2 (alloy symbol e).
  • the alloy to which Zr was added at the same time is referred to as improved alloy 3 (alloy symbol f).
  • an alloy with an increased copper corrosion potential in the cladding alloy symbol h is indicated as a high corrosion potential 2 (alloy symbol g), and an alloy having a reduced copper potential by reducing copper has a low corrosion potential 2 (alloy symbol).
  • Alloy class Corrosion potential Alloy sign Zn Mn Si Cu Fe etc La Zr Al High corrosion potential1 -670 a 0.05 1.20 0.30 0.25 0.40 0.15max - - Rem Base alloy (A3003) -720 b 0.05 1.20 0.30 0.12 0.40 0.15max - - Rem Low corrosion potential1 -770 c 1.50 1.20 0.30 0.12 0.40 0.15max - - Rem Improved Alloy 1 -700 d 0.05 1.20 0.30 0.10 0.40 0.15max 0.15 - Rem Improved Alloy 2 -710 e 0.05 1.20 0.30 0.12 0.40 0.15max - 0.05 Rem Improved Alloy 3 -700 f 0.05 1.20 0.30 0.10 0.40 0.15max 0.15 0.05 Rem High corrosion potential2 -700 g 0.10 0.05 7.5 0.25 0.45 0.15max - - Rem Clad (A4343) -720 h 0.10 0.05 7.5 0.20 0.45 0.15max - - Rem Low corrosion
  • Table 4 shows the results of assembling the heat exchanger by selecting the type of aluminum alloy prepared as a tube, fin, header and clad material.
  • the material of the tube, the pin and the header is selected by the alloy symbol b and the clad material is selected by the h.
  • a total of 12 samples were made of 3 sets each.
  • SWAAT evaluation was performed and the results are shown in Table 4. In this case, the numerical values were expressed as the average of three sets.
  • SWAAT evaluation was a test according to ASTM standard G85 was added to the glacial Acetic acid to 4.2% by weight of NaCl solution to maintain a pH of 2.8 to 3.0 to perform a test spraying at 0.07MPa pressure under a temperature atmosphere of 49 °C. At this time, the spray amount was maintained at 1-2 ml / hr.
  • Sample number 5 shows the best corrosion resistance. This is the case when the order of corrosion potential is header> tube> pin.
  • La Sample No. 8
  • Zr Sample No. 9
  • La + Zr Sample No. 10
  • the corrosion potential of the cladding material was changed based on Sample No. 10. It has been shown that when the potential of the clad material is lower than the tube (sample no. 12), the corrosion resistance is weakened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geometry (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

본 발명은 열교환기 부품인 알루미늄 재질의 튜브, 핀 및 헤더의 내식성 향상에 관한 것이다. 그의 구성은; 알루미늄 합금 재질로 이루어진 1개 이상의 튜브(tube), 1개 이상의 헤더(header), 1개 이상의 브레이징용 헤더 클래드(clad), 1개 이상의 핀(fin)(또는 방열판), 1개 이상의 브레이징용 핀 클래드(clad); 상기 튜브의 부식전위는 -950mV ∼ 650mV의 범위; 상기 헤더의 부식전위는 상기 튜브의 부식전위를 기준으로 0mV ∼ +150mV의 범위; 상기 헤더 클래드의 부식전위는 상기 튜브의 부식전위를 기준으로 20mV ∼ +100mV의 범위; 상기 알루미늄 합금의 Cu 함량은 0.001~0.50중량%; 상기 알루미늄 합금의 Zn 함량은 0.001~5.00중량%;로 구성되고, 상기 튜브, 헤더 및 핀이 상기 헤더 클래드재와 핀 클래드재에 의해 브레이징 공정으로 접합되는 것을 특징으로 한다.

Description

합금 조성과 합금 전위의 조절을 이용한 고내식 열교환기 시스템
본 발명은 열교환기 시스템에 관한 것으로서, 보다 구체적으로는 열교환기 부품인 알루미늄 재질의 튜브, 핀 및 헤더의 내식성 향상에 관한 것이다. 특히 부품별 부식전위의 적절한 선택과 특수원소의 첨가로 인한 내식성 개선에 관한 것이다.
증발기, 콘덴서, 배관 등의 열교환기에는, 일반적으로 경량성과 열전도성이 양호한 알루미늄 또는 알루미늄 합금 재질이 사용되고 있다. 이들 열교환기에서는, 알루미늄 합금 압출재의 콘덴서 튜브(tube)와 핀(fin)(또는 방열판), 헤더 파이프(header pipe) 및 각종 배관으로 구성된다. 이들 열교환기는 일반적으로 튜브와 핀(일반적으로 핀 core재에 브레이징용 판재가 피복 또는 클래딩된다) 등이 소정 구조로 조립된 후, 불활성 가스 분위기의 가열로 내에서 브레이징(brazing) 접합하는 방법으로 구조가 완성된다.
열교환기용 재질로 널리 사용되는 것은 A 1XXX 계열과 A 3XXX 계열의 재질이며, 강도가 더 필요한 경우는 A 6XXX 계열의 재질도 일부 사용되고 있다. 또한 튜브 및 배관을 핀과 헤더 파이프에 브레이징(brazing)할 때 쓰이는 클래드(clad) 재질로는 A 4XXX 계열이 널리 사용되고 있다.
열교환기의 압출 튜브 및 배관은 냉매 통로관으로 사용되므로, 사용 중에 부식에 의한 관통이 생긴 경우, 냉매 누설이 발생하여 열교환기로서의 기능을 다할 수 없게 된다. 이 때문에, 종래에는 압출 튜브의 표면에 미리 용사 등에 의해 Zn(아연)을 부착시키고, 브레이징(납땜)에 의해 Zn을 확산시킨다. 이로 인해 튜브 표층에 형성된 Zn 확산층이 심부에 대하여 희생 양극으로서 작용하여, 판 두께 방향으로의 부식을 억제하여 부식 관통 수명을 연장시킨다. 이 경우, 튜브에는 압출된 후에 Zn 코팅(용사 등)의 Zn 부착 공정이 필요하게 되어 제조비용의 상승을 초래한다.
특히 튜브의 내식성 관점에서 보면, 일본 특개평11-21649호는 철을 0.15 내지 0.35중량%, 규소를 0.15중량% 이하, 아연을 0.03중량% 미만, 구리를 0.55중량%, 지르코늄을 0.02 내지 0.05중량% 미만, 티타늄을 0.003 내지 0.010중량% 함유하고, 철/규소≥2.5 이고, 나머지가 알루미늄과 불가피하게 첨가되는 불순물로 이루어지는 알루미늄 합금을 제안한 바 있다.
그러나 상기 특허문헌의 합금은 합금의 내식 특성을 확보하기 위하여 첨가원소로 구리를 첨가하였으나, 구리(0.55중량%)의 첨가량이 많아 Al-Cu계 금속간 화합물이 다수 형성되어 압출 특성이 저하되고, 금속간 화합물의 석출로 인하여 모재(재료)의 국부영역에서 부식전위가 낮아져 내식 특성이 열화되는 문제점이 있다.
이를 개선하기 위해 국내 공개특허 제10-2011-0072237호 에서는 0.15 내지 0.45 %의 구리를 함유한 알루미늄 합금에 Zr 과 B를 첨가하여, 튜브 외측의 Zn 용사공정을 생략할 수 있는 방법을 제안한 바 있다. 이 문헌에서는 Zr 또는 B의 첨가효과로 인해 알루미늄 합금의 결정이 미세화하여 내식성이 증가한다는 기술 사상을 담고 있다. 그러나 구리의 함량이 0.1중량% 이상일 경우, 열교환기 작동 중 구리가 입계에 석출하고, 그 결과 입계 부식의 민감도가 증대되어 튜브의 입계부식이 발생하여 튜브의 부식 관통 수명이 짧아진다는 문제점이 있다.
상기 문헌들의 경우 Cu를 주요원소로 첨가하여 내식성을 개선하고자 하였으나, Cu 첨가의 단점들은 충분히 극복하지 못한 상태이다.
이후, Cu 첨가의 불리한 점 때문에 국내 공개특허 제10-2014-0000406호에서는 내식성을 증가시키기 위하여 구리(Cu)를 0.01% 이하로 최소화하고, 0.50 내지 1.0중량%의 망간(Mn)과 0.2중량% 이하의 실리콘(Si)의 조성에 지르코늄(Zr)을 0.05 내지 0.15중량%를 첨가한 바 있으나, Cu의 제거로 인하여 Cu의 부식전위 증가 장점이 희생되고 열교환기 각 부품의 조립시 접촉에 의한 전위 설계에 제한을 주고 있어 열교환기 시스템에서의 채택이 어려운 점이 있다.
따라서 본 발명에서는 선행기술의 단점을 보완하기 위해서 열교환기의 개별 부품에 음극 방식 원리를 적용하여 내식성을 최대화 하고자 하였다.
위와 같은 문제에 대한 본 발명의 목적은, 열교환기의 내식성을 개선하기 위하여 전술한 문제점을 해결하려는 것이다. 본 발명의 목적은 내식성이 개선되어 가혹한 환경에서도 열교환기의 기밀성이 유지되어 냉매의 유출을 방지함으로써 열교환기 시스템의 수명을 연장하는데 있다.
위와 같은 목적은; 알루미늄 합금 재질로 이루어진 1개 이상의 튜브(tube), 1개 이상의 헤더(header), 1개 이상의 브레이징용 헤더 클래드(clad), 1개 이상의 핀(fin)(또는 방열판), 1개 이상의 브레이징용 핀 클래드(clad);
상기 튜브의 부식전위는 -950mV ∼ 650mV의 범위;
상기 헤더의 부식전위는 상기 튜브의 부식전위를 기준으로 0mV ∼ +150mV의 범위;
상기 헤더 클래드의 부식전위는 상기 튜브의 부식전위를 기준으로 20mV ∼ +100mV의 범위;
상기 알루미늄 합금의 Cu 함량은 0.001~0.50중량% ;
상기 알루미늄 합금의 Zn 함량은 0.001~5.00중량% ;로 구성되고,
상기 튜브, 헤더 및 핀이 상기 헤더 클래드재와 핀 클래드재에 의해 브레이징 공정으로 접합되는 것을 특징으로 하는, 합금 조성과 합금 전위의 조절을 이용한 고내식 열교환기 시스템에 의해 달성된다.
본 발명의 특징에 의하면,
상기 핀(또는 방열판)의 부식전위는 상기 튜브의 부식전위를 기준으로 20mV ∼ -170mV의 범위일 수 있다.
본 발명의 다른 특징에 의하면,
상기 핀 클래드재의 부식전위는 상기 튜브의 부식전위를 기준으로 40mV ∼ +80mV의 범위일 수 있다.
본 발명의 또 다른 특징에 의하면,
상기 알루미늄 합금은 Cu, Zn, Mn, Si, Fe, 또는 Mg 중 선택된 1종 이상의 함량 변화가 주된 부식전위의 제어 인자인 것일 수 있다.
본 발명의 또 다른 특징에 의하면,
상기 알루미늄 합금은 원자번호57(La) 내지 71번(Lu)의 희토류금속 중 선택된 1종 이상을 0.005~1.00중량% 범위로 함유할 수 있다.
본 발명의 또 다른 특징에 의하면,
상기 알루미늄 합금은 Zr, B 중 선택된 1종 이상을 0.005~0.25중량%로 함유할 수 있다.
본 발명의 또 다른 특징에 의하면,
상기 튜브, 핀(또는 방열판), 헤더 또는 이들의 조합 중 어느 하나에 시효경화 열처리, 아연 코팅, 화성 코팅, 수지 코팅 또는 이들의 조합 중 어느 하나의 공정이 더 부가될 수 있다.
본 발명의 다른 목적은,
Cu의 함량은 0.001~0.50중량% ;
Zn의 함량은 0.001~5.00중량% ;
Zr, B 중 선택된 1종 이상의 함량은 0.001~0.25중량% ;
희토류 금속(원자번호57(La) 내지 71번(Lu)) 중 선택된 1종 이상의 함량은 0.001~1.00중량%;
아래 수식에서의 S%는 0.05~0.30중량%;
를 만족시키는(단, 아래 수식에서의 M의 범위는 1~5) 알루미늄 합금 소재로 이루어진 튜브를 포함하는 것을 특징으로 하는, 합금 조성과 합금 전위의 조절을 이용한 고내식 열교환기 시스템에 의해 달성된다.
(수식)
Z% = Zr, B 중 선택된 1종 이상의 함량,
R% = 원자번호57(La) 내지 71번(Lu)) 중 선택된 1종 이상의 함량,
S% = ( (R% / M) + Z% )
여기서,
상기 Cu의 함유량은 0.001~0.12중량% ;
상기 Zn의 함유량은 0.001~3.00중량% ;
상기 Fe의 함유량은 0.001~0.25중량% ;
원자번호57(La) 내지 71번(Lu)인 희토류 금속 중 선택된 1종 이상의 함유량은 0.05~0.50중량%;
Zr, B 중 선택된 1종 이상의 함유량은 0.01~0.07중량%;로 함유하는 알루미늄 합금 소재로 이루어진 튜브를 포함할 수 있다.
본 발명의 또 다른 특징에 의하면,
상기 알루미늄 합금이 0.40~0.70중량% 범위의 Fe를 포함할 수 있다.
본 발명의 또 다른 특징에 의하면,
상기 알루미늄 합금은 Mn, Mg, Si, Fe, Ti, Cr, V, Ni, Co, In, Pb, Bi, Ca, Be, Ag, Pd, Sb, Sc, Nb, Hf, 또는 Y 중 선택된 1종 이상을 더 포함할 수 있다.
본 발명에 따르면, 열교환기에 사용되는 알루미늄 합금에서, 내식성 개선을 위해 개별 부품별로 부식전위를 조절하여 내식성을 향상시킬 수 있다. 또한 희토류 금속 등의 특수원소를 첨가하여 조성을 개선함으로써, 내식성 및 강도를 더 향상시킬 수 있다. 이로 인해 부품의 수명증가와 아연코팅 공정의 생략 및 추가적인 후처리 공정의 생략 등으로 인해 제조 공정의 단순화와 비용절감을 달성할 수 있다.
도 1은 본 발명에 따른 열교환기 튜브, 핀, 헤더 및 클래드의 바람직한 부식전위 분포를 나타내는 그림이다.
도 2은 본 발명에 따른 열교환기 튜브, 핀, 헤더 및 클래드의 더욱 바람직한 부식전위 분포를 나타내는 그림이다.
도 3은 본 발명의 실시예에 의한 열교환기 시스템의 개략 사시도이다.
이하 첨부된 도면을 참조로 본 발명에 의한 열교환기용 소재의 선택과 시스템 구성에 관해서 설명한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
열교환기 시스템(1)은 일반적으로 지지구조를 갖는 것으로서 파이프 형태의 헤더(3)와, 헤더(3)를 서로 연결하는 것으로서 헤더(3) 보다 가느다란 파이프로 되어 있는 복수 개의 튜브(5)와, 튜브(5) 사이에 개입되어 열전달율을 높이기 위한 핀(또는 방열판)(7)을 포함하는 구성을 가진다. 핀(7)은 도시된 것처럼 열교환 면적을 높이기 위하여 주름진 형태로 제공될 수 있다. 헤더(3)와 튜브(5) 사이에는 열매체가 소통될 수 있다. 그리고 헤더(3)와 튜브(5) 및 튜브(5)와 핀(7)은 브레이징에 의해 각각 접합될 수 있다. (이하 “핀”이라 표기한 것은 본 발명에서 방열판이 포함됨을 의미한다.)
열교환기 시스템(1)에서 알루미늄 재질의 튜브(5)가 관통 부식될 경우, 냉매가 유출되어 그의 수명이 끝나게 된다. 알루미늄 합금의 경우 공식(pitting corrosion)에 민감하기 때문에 공식을 방지하기 위해서 많은 노력이 있어 왔다. 먼저 합금 조성의 제어를 통한 방안으로서, 부식전위가 높은 석출물 즉, 국부적 음극이 되는 Si, FeAl3, Cu, CuAl2 등을 형성하는 Si, Fe 및 Cu의 함량을 낮추고, Si, Fe와 결합하여 전위가 낮은 상을 만드는 Mn 또는 Mg를 합금시키는 방안이 있다. 열처리 방안으로는, 음극으로 작용하는 석출물이 많이 생기는 500℃ 부근에서 열처리를 회피하는 방안이 있다.
거시적인 관점에서의 방안으로는 보호하고자 하는 소재를 여타의 접촉 재료에 비해 부식전위를 더 높이는 음극 방식(cathode protection) 방안이 있다. 본 발명에서는 음극 방식 방법과 합금 조성의 제어 방법을 혼용하여 적용한다.
알루미늄 합금에서 주요 합금원소인 Cu, Zn, Mn, Fe, Si, Mg 가 합금의 특성에 미치는 영향은 다음과 같다.
① Cu
합금원소 Cu는 기지(Matrix)에 고용하여 알루미늄 합금의 강도를 증가시키나, Mn과 비교하여 압출성을 크게 저하시키는 단점이 있다. Cu를 첨가하면 부식전위가 높아진다고 알려져 있다. Zn과 Cu가 공존하는 경우에는, 특히 Zn 함유량이 적은 경우에는 Cu에 의한 전위 상승효과가 우세하다. 즉 Cu 함유량이 많으면, Zn에 의한 전위 저하효과보다도 Cu에 의한 전위 상승효과 쪽이 우세해진다. 함량이 0.12중량% 미만일 경우 내식성 등 구리를 첨가한 효과가 나타나기 어려우며, 그 함량이 0.45중량%를 초과할 경우에는 압출성과 내식성이 동시에 저하된다(여기서의 함량은 알루미늄 합금 전체 중량에 대한 비율이다. 본 발명의 설명 및 청구항에서의 모든 함량표시도 같다). Cu가 적정함량 이상일 경우 입계에 석출물이 형성되는 경향이 있어 입계 부식 및 국부 부식에 대한 민감성이 높아진다.
② Zn
합금원소 Zn는 Mg와 공존하여 기계적 성질을 향상시킨다. 일반적으로 Zn을 첨가하면 부식전위는 낮아지나, Cu에 비해서 부식전위의 변화량이 작은 편이다.
③ Mn
합금원소 Mn은 알루미늄 합금의 강도를 증가시킨다. Mn 함유량이 0.5중량% 미만이면 강도 증가 효과는 작고, 1.2 내지 1.7중량%를 넘어서면 압출성이 저하된다. Mn의 첨가는 동일한 양의 Si, Cu 또는 Mg를 첨가한 경우와 비교하여, 압출성, 특히 한계 압출 속도의 저하가 현저하게 작다. 또한 Al6Mn의 미세한 금속간 화합물로 석출하여 합금의 부식 전위를 높이는 효과도 있다. 함량이 0.6중량% 미만일 경우 내식성 등 망간을 첨가한 효과가 적은 편이다. 또한 Fe 첨가의 나쁜 효과를 제거하는 효과와 결정립 미세화 효과가 있으며, 내식성을 해치지 않는 화합물을 형성하게 된다. 따라서 내식성을 저하시키지 않고 강도향상이 가능하다. 그러나 과량의 망간은 알루미늄 합금의 기계적 강도를 낮출 수 있으므로 주의해야 한다.
④ Fe
합금원소 Fe는 Al 합금에서 금속간 화합물로서 석출되고 내마모성을 향상시키는 원소이다. 그 함량이 0.1wt% 미만에는 내마모 효과가 거의 없고 0.3wt%를 초과하면 입자가 조대화되어 가공성이 떨어진다.
또한 극히 소량으로도 Al3Fe화합물을 형성하며, Si와 결합하여 Al-Fe-Si금속간 화합물을 형성하므로 기계적 성질의 저하 요인이 된다. 소량으로도 표면 광택이 나빠지며, 내식성 및 연성을 취약하게 한다. 또한 재결정립 조대화를 방지하여 결정립 미세화 효과가 있다. 다이캐스팅 공정에서 Fe를 0.5중량% 이하로 첨가할 경우 금형에 소착되는 것을 방지하는 효과가 있다.
⑤ Si
합금원소 Si는 Al-Mn-Si계 금속간 화합물로 석출되어 입계 이동의 방해를 통하여 결정립 성장을 억제하고, 압출시 변형저항을 작게 하여 압출성을 향상시킨다. 0.05중량% 미만일 경우에는 주조 비용이 상승하게 되고, 0.10% 이상이면, 합금 속에 Al-Mn-Si계 금속간 화합물을 형성하므로 합금 속의 Mn 고용도를 저하시키는 효과를 나타낸다. 이로 인해 부식전위의 강하가 나타날 수 있다. 또한 그 함량이 0.2중량%를 초과할 경우에는 합금의 강도를 높이게 되어 압출성이 저하된다.
⑥ Mg
합금원소 Mg는 기지내에서 고용강화에 의하여 강도를 증가시키나 양이 증가할수록 압출성을 저하시킨다. 첨가량이 2.0중량%를 초과하면 플럭스와 반응 등으로 인하여 고융점의 화합물을 형성하기 때문에 브레이징 공정에서 현저하게 접합성을 저하시키는 경향이 있다. 또한 3.5중량%를 초과할 경우, Mg2Al3가 석출하여 입계부식이나 응력부식에 대한 감수성이 커지게 된다.
또한 Si와 Zn의 공존 여부에 따라 시효 강화 특성이 생길 수 있다. 절삭 가공성이 우수해지며 특히 해수에 대한 내식성이 양호해지고 응고시 수축율이 적어진다. 또한 용탕의 유동성이 약화되고 특히 산소와의 결합력이 강해서 산화물 유입에 주의해야 한다.
상기 주요 합금 원소의 특징 및 부식 저항성에 미치는 영향을 고려하여 열교환기용 알루미늄 합금의 조성을 적절하게 선택할 수 있다. 열교환기에서 널리 사용되는 합금은 A 1XXX 계열 및 A 3XXX 계열의 합금이다. 아래 표 1에 대표적인 합금 종류의 조성을 나타내었다.
합금명 Zn Mn Si Cu Fe etc. Al
A1070 0.04max 0.03max 0.2max 0.04max 0.25max 0.15max Rem
A3003 0.1max 1.0-1.5 0.6max 0.05-0.20 0.7max 0.15max Rem
일반적인 알루미늄 합금에서 부식전위는 Cu 에 가장 크게 영향을 받고 구리함량에 따라 0.01 내지 0.5중량% 의 범위에서 부식전위는 -950mV 내지 -650mV 의 범위를 나타낸다. 따라서 여타의 합금원소의 영향을 무시하면 알루미늄 합금에서 소량의 구리 첨가 또는 감소로 부식전위를 용이하게 변화시킬 수 있다. 또한 아연의 경우는 통상의 알루미늄 합금에서 1.0중량%가 증가함에 따라 부식전위가 약 30∼40mV가 감소하게 되므로 Cu에 비해 변화의 폭이 작다. 따라서 아연의 함량으로도 부식전위를 추가적으로 조절하는 것이 가능해 진다. 또한 Mn은 부식전위를 높이는 효과가 있으며 Si은 부식전위를 낮추는 효과가 있다. 따라서 Cu, Zn, Mn, Si, Mg, Fe 등의 합금 원소의 함량 변화로 알루미늄 합금의 부식전위를 용이하게 변화시킬 수 있다.
예로서 상기 A1070 및 A3003을 대상으로 구리의 함량 및 아연의 함량 등을 조절하면 합금의 부식전위를 변화시킬 수 있다.
일반적으로 열교환기용 알루미늄 합금의 경우 Zn의 함량은 5.0중량% 이하가 바람직하며, Cu의 함량은 0.5중량%이하가 바람직하다. 따라서 튜브의 경우도 Cu의 함량이 0.5중량% 이하가 바람직하므로 튜브의 부식전위는 950 내지 650mV 의 범위가 바람직하고, 850 내지 650mV 범위가 더욱 바람직하다.
한편 전술한 바와 같이 튜브의 관통부식을 방지하는 방법으로는 음극 방식 방법이 있으므로, 이때 희생 양극으로 적당한 부품은 핀이다. 핀의 경우 관통부식이 일어난다 하더라도 냉매의 유출 염려가 없기 때문이다. 따라서 튜브를 음극 방식시키기 위해서는 핀의 부식전위가 튜브의 부식전위 보다 낮아야 하고, 그 범위는 -20mV 내지 -170mV 의 범위가 바람직하며, -20mV 내지 -100mV 의 범위가 더욱 바람직하다. 그 차이가 너무 작으면 음극 방식의 효과가 미미하고 너무 크면 핀의 부식속도가 너무 크게 된다. 따라서 핀(fin)의 재질이 A3003일 경우, 구리의 함량을 줄이거나 아연의 함량을 증가시키게 되면 부식전위가 낮아지게 되므로, 예로서 A3003재질을 기본으로 하여 구리를 첨가하여 부식전위를 높인 튜브와 아연을 첨가하여 부식전위를 낮춘 핀을 조합할 경우, 튜브의 내식성이 향상된다.
또한 통상적으로 열교환기의 냉매가 부식으로 인하여 유출되기 쉬운 부위는 튜브(5, tube)와 헤더(3, header)의 접합부이다. 특히 헤더(3)의 관통부식이 발생하지 않았음에도 불구하고, 튜브/헤더 접합부에서 헤더(3)가 튜브와의 접촉면 수직방향으로 일부만 부식되더라도 누설이 발생하므로 헤더(3)의 부식전위에 주의를 기울여야 한다. 반대로 튜브(5)의 경우 접합부의 깊이 방향으로 일정한 관 두께를 가지고 있으므로 그 두께 전체가 관통되기 전까지는 냉매의 누설이 방지된다. 따라서 튜브(5)보다 헤더(3)의 내식성을 강화할 필요가 있으므로 헤더(3)의 부식전위가 튜브(5)의 부식전위보다 높은 것이 바람직하다. 그 차이는 +0mV 내지 +150mV 의 범위가 바람직하며, +20mV 내지 +100mV 의 범위가 더욱 바람직하다.
또한 열교환기 시스템(1)은 통상적으로 튜브(5), 핀(7) 및 헤더(3)를 조립한 후 브레이징으로 부품을 접합하며, 이러한 목적으로 핀 심부재(fin core) 외부에 브레이징용 클래드(fin clad) 알루미늄 합금이 접합되어 있다. 헤더(3)의 경우에도 튜브(5)와 결합되는 부위에 클래드재가 존재한다. 이러한 클래드재는 브레이징 공정에서 용융되어 부품을 접합하는 역할을 한다. 튜브/핀 및 튜브/헤더의 접합부의 경우 전기적 접점 유지와 구조적 안정성을 위해 부식에 대한 저항성이 큰 것이 바람직하다.
튜브/핀의 클래드재의 경우, 핀(7)의 부식전위가 낮으므로 튜브(5) 부식전위에 비해 -40 내지 +80mV의 범위가 바람직하며, +0 내지 +80mV의 범위가 더욱 바람직하다. 튜브/헤더의 클래드재의 경우, 헤더(3)의 부식전위가 높으므로 튜브/핀의 클래드재에 비해 다소 높은 것이 바람직하다. 그 범위는 튜브(5) 부식전위에 비해 -20 내지 +100mV의 범위가 바람직하며, +10 내지 +90mV의 범위가 더욱 바람직하다.
이러한 부품간의 부식전위 관계를 도 1과 도 2에 나타내었다. 도 1은 튜브(5)를 중심으로 핀(7)과 헤더(3) 및 클래드 소재의 바람직한 부식전위의 영역을 표시한 그림이며, 도 2는 더욱 바람직한 부식전위의 영역을 표시한 것이다.
한편, 튜브(5)의 관통부식을 완화시키는 방법으로는 다음과 같은 합금원소의 첨가에 의해 달성될 수 있다.
⑦ Zr (지르코늄) 및 B(붕소)
지르코늄(Zr)은 결정 입자의 크기를 미세화하여 강도를 향상시킬 뿐만 아니라, 전위차이를 발생시키는 석출물들을 미세하게 분산시켜 국부적으로 발생하는 공식(pitting corrosion)의 발생을 억제하는 효과가 있다. 이로 인해 부식이 전체 면적으로 균일하게 일어나도록 유도하는 특징이 있다. 또한 압출 가공의 변형 저항을 작게 하여 압출 특성을 향상시킴과 동시에 브레이징 후에 결정립 조대화를 억제하여 강도를 향상시키는 작용을 한다. 0.005 중량% 이하에서는 효과가 없으며, 0.25중량% 이상에서는 압출의 어려움과 경제적인 비용상승이 발생하므로 0.25 중량% 이하가 바람직하다. 붕소는 알루미늄 합금에 첨가되었을 때 지르코늄과 유사한 효과를 나타낸다.
⑧ 희토류 금속 (RE : Rare Earth metal)
본 발명에 따른 희토류금속의 첨가 효과는 다음과 같다.
원자번호57(La) 내지 71번(Lu)의 희토류 금속은 기지 내에 석출된 석출물로 인한 국부부식의 음극반응을 감소시켜, 결과적으로 주변의 국부부식 양극반응을 감소시키는 효과가 있으므로 국부부식을 완화시키는 작용을 한다. 또한 알루미늄 제조시 용탕내에 존재하는 내식성 취약 원소인 Fe, Ni 등의 성분을 감소시켜 내식성을 강화한다. 따라서 Fe 등 불순물 농도가 0.2중량% 이상의 경우에도 내식성 유지에 도움이 된다.
또한 희토류 금속은 부식전위를 상승시키는 효과가 있으므로, 부식전위 상승 목적을 위한 Cu 첨가를 최소화시키거나 Cu를 대체하는 것도 가능하다. 따라서 부식전위의 상승을 위해 Cu 함량이 높아질 경우 이러한 부작용을 최소화하는 효과가 있으므로 내식성을 개선하게 된다.
이외에, 입계 또는 표면에서 형성된 산화막의 연성과 밀착성을 개선함으로써 산화막의 수명을 연장하여 내식성을 개선한다. 또한 알루미늄 합금의 강도와 유동성을 증가시켜 금속의 소성 가공성을 개선하며, 브레이징 특성을 개선하는 효과도 있다.
희토류 금속의 내식성 향상 효과는 Zr의 효과 비해 20% 내지 100% 정도의 효과를 보이므로 Zr 대비 1∼5배의 투입량으로 비슷한 효과를 구현할 수 있다. 이를 이용하면 고가격의 Zr을 대체할 수 있는 유용한 수단이 될 수 있다.
본 발명에서는 알루미늄 합금이 국부부식 및 입계부식에 취약해지는 것을 방지하기 위해 희토류 금속을 첨가함으로써 우수한 내식성을 얻을 수 있었다. 이때 희토류 원소의 적정 첨가량은 0.005~1.0중량%의 범위가 바람직하고, 더욱 바람직한 함량은 0.01~0.60중량% 또는 0.05~0.50중량%의 범위이다.
희토류 금속은 그 유익한 성질 때문에 많은 연구개발이 진행되고 있으나, 개발활동이 주로 마그네슘(합금)의 내식성 증가 분야, 일부 주물용 알루미늄 합금의 강도증가 분야 그리고 알루미늄 합금 표면에 화성코팅(conversion coating)에 의한 내식성 증가 분야에 집중되어 왔다.
그러나 현재까지 가공용 알루미늄 합금 중 1XXX, 3XXX 및 6XXX 계열과 브레이징용 4XXX 계열에 내식성 등의 특성을 개선하기 위해 희토류 원소를 합금에 직접 첨가한 관련 문헌은 찾아보기 힘들다.
그러나 극히 일부 문헌에서는 A 1XXX 계열과 A 4XXX 계열에 대한 기록을 찾아볼 수 있다. 그 문헌으로는 국내 등록특허 제10-1335680호, 국내 등록특허 제10-1349359호 및 국내 등록특허 제10-1194970호에 개시되어 있으나 본 발명과는 차별화되는 내용이다.
⑨ 기타 원소
전술한 모든 경우에서 알루미늄 합금은 알루미늄 산업에서 널리 이용되고 있는 합금원소(Ti, Cr, V, Ni, Co, In, Pb, Bi, Ca, Be, Ag, Pd, Sb, Y)와 불가피한 불순물을 추가적으로 더 포함할 수 있다.
한편, 본 발명에 따르면, 더욱 큰 내식성이 요구되는 경우에는 튜브(5), 핀(7), 헤더(3) 또는 이들의 조합 중 어느 하나에 아연코팅(용사 등) 처리를 시행하여 희생양극 효과를 부여할 수도 있으며, 추가적으로 화성코팅을 적용하여 내식성을 증가시킬 수도 있다. 또한, 본 발명에 따른 열교환기 부품 표면에 추가적으로 실리콘 또는 수지 코팅을 더 시행하여 내식성을 더욱 향상시킬 수 있으며, 강도증가를 위해 필요시 추가적인 시효경화 열처리를 실시할 수 도 있다.
(실 시 예)
이하, 본 발명의 이해를 돕기 위하여 보다 구체적으로 설명하기로 한다. 그러나 하기의 실시예는 본 발명의 예시에 불과할 뿐, 본 발명의 범위가 이에 한정되는 것은 아니다.
본 발명에서 하나의 바람직한 실시예에 따른 알루미늄 합금의 조성(중량%)은 다음의 표 2 와 같을 수 있다. 이 합금은 현재 널리 사용되고 있는 A 3003 합금과 A 4343 합금 조성의 규격을 나타낸 것으로 각 합금에는 불가피한 불순물을 더 함유할 수 도 있다.
합금 종류 Zn Mn Si Cu Fe 기타 Al
A 3003 Spec. 0.1max 1.0-1.5 0.6max 0.05-0.20 0.7max 0.15max Rem.
A 4343 Spec. <0.20 <0.10 6.8-8.2 <0.25 <0.80 0.15max Rem.
표 3은 본 발명에서 사용한 합금의 종류를 나타낸 것이다. A 3003의 재질을 튜브, 핀 및 헤더의 기본 재질(합금기호 b)로 하고 브레이징용 클래드재질은 A4343의 재질을 기본(합금기호 h)으로 하였다. A3003의 경우 구리를 첨가하여 부식전위를 높인 합금은 표 3의 높은 부식전위1(합금기호 a)로 표기하였고, 아연을 첨가하여 부식전위를 낮춘 합금은 표 3의 낮은 부식전위1(합금기호 c)로 표기하였다.
또한 합금기호 b를 기본으로 하고, 희토류 금속인 La을 첨가한 합금을 개량합금1(합금기호 d)로 표기하였고, Zr을 첨가한 합금을 개량합금2(합금기호 e)로 표기하였으며, La과 Zr을 동시에 첨가한 합금을 개량합금3(합금기호 f)으로 표기하였다. 또한 클래드재질인 합금기호 h에서 구리를 증가시켜 부식전위를 증가시킨 합금을 높은 부식전위2(합금기호 g)로 표기하였고, 구리를 감소시켜 부식전위를 감소시킨 합금을 낮은 부식전위2(합금기호 i)로 표기하였다.
합금 종류 부식전위 합금 기호 Zn Mn Si Cu Fe etc. La Zr Al
높은 부식전위1 -670 a 0.05 1.20 0.30 0.25 0.40 0.15max - - Rem
기본합금 (A3003) -720 b 0.05 1.20 0.30 0.12 0.40 0.15max - - Rem
낮은 부식전위1 -770 c 1.50 1.20 0.30 0.12 0.40 0.15max - - Rem
개량합금1 -700 d 0.05 1.20 0.30 0.10 0.40 0.15max 0.15 - Rem
개량합금2 -710 e 0.05 1.20 0.30 0.12 0.40 0.15max - 0.05 Rem
개량합금3 -700 f 0.05 1.20 0.30 0.10 0.40 0.15max 0.15 0.05 Rem
높은 부식전위2 -700 g 0.10 0.05 7.5 0.25 0.45 0.15max - - Rem
클래드 (A4343) -720 h 0.10 0.05 7.5 0.20 0.45 0.15max - - Rem
낮은 부식전위2 -740 i 0.10 0.05 7.5 0.15 0.45 0.15max - - Rem
이와 같이 제조된 알루미늄 합금의 종류를 튜브, 핀, 헤더 및 클래드용 재료로 선택하여 열교환기로 조립한 결과를 표 4에 나타내었다. 예로서 샘플 번호 1의 경우 튜브, 핀, 헤더의 재질을 합금기호 b 로 선택하고 클래드 재질은 h 로 선택한 것을 나타낸다. 총 샘플은 12가지로 각각 3 세트를 제작하였다.
열교환기 시스템의 내식 특성을 평가하기 위해 ASTM 규격에 따른 SWAAT 평가를 실시하였으며 그 결과를 표 4에 함께 나타내었다. 이때 결과 수치는 3세트의 평균치를 표기하였다. SWAAT 평가는 ASTM 표준 G85에 따른 시험으로 4.2중량%의 NaCl 용액에 Glacial Acetic acid를 첨가하여 pH2.8 내지 3.0이 유지되도록 하여 49℃의 온도 분위기 하에서 0.07MPa 압력으로 분사하는 시험을 수행하였다. 이때, 분무량은 1 내지 2㎖/hr를 유지하였다.
부품 종류 샘플 No.
1 2 3 4 5 6 7
튜브 합금기호 b a a b b c c
핀 합금기호 b b c a c a b
헤더 합금기호 b c b c a b a
클래드 합금기호 h h h h h h h
               
SWAAT Leak Time (hr) 504 645 1032 576 1416 432 528
부품 종류 샘플 No.
1 5 8 9 10 11 12
튜브 합금기호 b b d e f f f
핀 합금기호 b c c c c c c
헤더 합금기호 b a a a a a a
클래드 합금기호 h h h h h g i
               
SWAAT Leak Time (hr) 504 1416 1824 1704 2160 2304 1320
상기 표 4를 통해 확인할 수 있는 바와 같이, 동일한 클래드 재료(합금기호h)를 사용하고 튜브(5), 핀(7), 헤더(3)의 부식전위를 변화시켰을 경우(샘플 1 내지 7), 샘플번호 5가 가장 우수한 내식성을 보이고 있다. 이는 부식전위의 순서가 헤더>튜브>핀 인 경우에 해당하는 것이다. 또한 샘플 번호 8 내지 10의 경우는 샘플번호 5에서 튜브에 La(샘플번호8), Zr(샘플번호9) 및 La+Zr(샘플번호10)을 첨가한 것으로 희토류 금속과 지르코늄의 첨가가 내식성을 강화시킨다는 것을 보여주고 있다. 샘플 번호 10 내지 12의 경우는 샘플번호 10을 기준으로 클래드 재료의 부식전위를 변화시킨 것이다. 클래드 재료의 전위가 튜브 보다 낮을 경우(샘플번호12) 내식성을 약화시킨다는 것을 보여주고 있다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (11)

  1. 알루미늄 합금 재질로 이루어진 1개 이상의 튜브(tube), 1개 이상의 헤더(header), 1개 이상의 브레이징용 헤더 클래드(clad), 1개 이상의 핀(fin)(또는 방열판), 1개 이상의 브레이징용 핀 클래드(clad);
    상기 튜브의 부식전위는 -950mV ∼ 650mV의 범위;
    상기 헤더의 부식전위는 상기 튜브의 부식전위를 기준으로 0mV ∼ +150mV의 범위;
    상기 헤더 클래드의 부식전위는 상기 튜브의 부식전위를 기준으로 20mV ∼ +100mV의 범위;
    상기 알루미늄 합금의 Cu 함량은 0.001~0.50중량% ;
    상기 알루미늄 합금의 Zn 함량은 0.001~5.00중량% ;로 구성되고,
    상기 튜브, 헤더 및 핀이 상기 헤더 클래드재와 핀 클래드재에 의해 브레이징 공정으로 접합되는 것을 특징으로 하는, 합금 조성과 합금 전위의 조절을 이용한 고내식 열교환기 시스템.
  2. 제1항에 있어서,
    상기 핀(또는 방열판)의 부식전위는 상기 튜브의 부식전위를 기준으로 20mV ∼ -170mV의 범위인 것을 특징으로 하는, 합금 조성과 합금 전위의 조절을 이용한 고내식 열교환기 시스템.
  3. 제1항에 있어서,
    상기 핀 클래드재의 부식전위는 상기 튜브의 부식전위를 기준으로 40mV ∼ +80mV의 범위인 것을 특징으로 하는, 합금 조성과 합금 전위의 조절을 이용한 고내식 열교환기 시스템.
  4. 제1항에 있어서,
    상기 알루미늄 합금은 Cu, Zn, Mn, Si, Fe, 또는 Mg 중 선택된 1종 이상의 함량 변화가 주된 부식전위의 제어 인자인 것 특징으로 하는, 합금 조성과 합금 전위의 조절을 이용한 고내식 열교환기 시스템.
  5. 제1항에 있어서,
    상기 알루미늄 합금은 원자번호57(La) 내지 71번(Lu)의 희토류금속 중 선택된 1종 이상을 0.005~1.00중량% 범위로 함유하는 것을 특징으로 하는, 합금 조성과 합금 전위의 조절을 이용한 고내식 열교환기 시스템.
  6. 제1항에 있어서,
    상기 알루미늄 합금은 Zr, B 중 선택된 1종 이상을 0.005~0.25중량%로 함유하는 것을 특징으로 하는, 합금 조성과 합금 전위의 조절을 이용한 고내식 열교환기 시스템.
  7. 제1항에 있어서,
    상기 튜브, 핀(또는 방열판), 헤더 또는 이들의 조합 중 어느 하나에 시효경화 열처리, 아연 코팅, 화성 코팅, 수지 코팅 또는 이들의 조합 중 어느 하나의 공정이 더 부가된 것을 특징으로 하는, 합금 조성과 합금 전위의 조절을 이용한 고내식 열교환기 시스템.
  8. Cu의 함량은 0.001~0.50중량% ;
    Zn의 함량은 0.001~5.00중량% ;
    Zr, B 중 선택된 1종 이상의 함량은 0.001~0.25중량% ;
    희토류 금속(원자번호57(La) 내지 71번(Lu)) 중 선택된 1종 이상의 함량은 0.001~1.00중량%;
    아래 수식에서의 S%는 0.05~0.30중량%;
    를 만족시키는(단, 아래 수식에서의 M의 범위는 1~5) 알루미늄 합금 소재로 이루어진 튜브를 포함하는 것을 특징으로 하는, 합금 조성과 합금 전위의 조절을 이용한 고내식 열교환기 시스템.
    (수식)
    Z% = Zr, B 중 선택된 1종 이상의 함량,
    R% = 원자번호57(La) 내지 71번(Lu)) 중 선택된 1종 이상의 함량,
    S% = ( (R% / M) + Z% )
  9. 제8항에 있어서,
    Cu의 함유량은 0.001~0.12중량% ;
    Zn의 함유량은 0.001~3.00중량% ;
    Fe의 함유량은 0.001~0.25중량% ;
    원자번호57(La) 내지 71번(Lu)인 희토류 금속 중 선택된 1종 이상의 함유량은 0.05~0.50중량%;
    Zr, B 중 선택된 1종 이상의 함유량은 0.01~0.07중량%;로 함유하는 알루미늄 합금 소재로 이루어진 튜브를 포함하는 것을 특징으로 하는, 합금 조성과 합금 전위의 조절을 이용한 고내식 열교환기 시스템.
  10. 제8항에 있어서,
    상기 알루미늄 합금이 0.40~0.70중량% 범위의 Fe를 포함하는 것을 특징으로 하는, 합금 조성과 합금 전위의 조절을 이용한 고내식 열교환기 시스템.
  11. 제1항 또는 제8항 중 어느 하나에 있어서,
    상기 알루미늄 합금은 Mn, Mg, Si, Fe, Ti, Cr, V, Ni, Co, In, Pb, Bi, Ca, Be, Ag, Pd, Sb, Sc, Nb, Hf, 또는 Y 중 선택된 1종 이상을 더 포함하는 것을 특징으로 하는, 합금 조성과 합금 전위의 조절을 이용한 고내식 열교환기 시스템.
PCT/KR2017/005432 2017-05-25 2017-05-25 합금 조성과 합금 전위의 조절을 이용한 고내식 열교환기 시스템 WO2018216832A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/614,059 US20200173740A1 (en) 2017-05-25 2017-05-25 Highly corrosion-resistant heat exchanger system using control of alloy composition and alloy potential
EP17910909.5A EP3633310A4 (en) 2017-05-25 2017-05-25 HIGH CORROSION-RESISTANT HEAT EXCHANGER SYSTEM WITH CONTROL OF ALLOY COMPOSITION AND ALLOY POTENTIAL
PCT/KR2017/005432 WO2018216832A1 (ko) 2017-05-25 2017-05-25 합금 조성과 합금 전위의 조절을 이용한 고내식 열교환기 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/005432 WO2018216832A1 (ko) 2017-05-25 2017-05-25 합금 조성과 합금 전위의 조절을 이용한 고내식 열교환기 시스템

Publications (1)

Publication Number Publication Date
WO2018216832A1 true WO2018216832A1 (ko) 2018-11-29

Family

ID=64396803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005432 WO2018216832A1 (ko) 2017-05-25 2017-05-25 합금 조성과 합금 전위의 조절을 이용한 고내식 열교환기 시스템

Country Status (3)

Country Link
US (1) US20200173740A1 (ko)
EP (1) EP3633310A4 (ko)
WO (1) WO2018216832A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110106379A (zh) * 2019-05-20 2019-08-09 江苏亨通电力特种导线有限公司 挤压成型用耐腐蚀铝材及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112410629A (zh) * 2020-10-13 2021-02-26 江苏德联达智能科技有限公司 一种机顶盒壳体用材料及制作方法
KR20220130414A (ko) * 2021-03-18 2022-09-27 삼성전자주식회사 열교환기 및 이를 포함하는 공기 조화기

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203490A (en) * 1977-10-21 1980-05-20 Sumitomo Light Metal Industries, Ltd. Heat exchanger core having fin members serving as sacrificial anodes
JPH1121649A (ja) 1997-12-15 1999-01-26 Nippon Light Metal Co Ltd 微小構造断面の熱交換器押出チューブ用アルミニウム合金および微小構造断面の熱交換器押出チューブの製造方法
JP2000212668A (ja) * 1999-01-25 2000-08-02 Mitsubishi Alum Co Ltd 耐食性に優れた熱交換器用アルミニウム合金押出し管
JP2003119534A (ja) * 2001-10-10 2003-04-23 Mitsubishi Alum Co Ltd 熱交換器用高強度高耐食性アルミニウム合金押出材及びその製造方法並びに熱交換器
KR20110072237A (ko) 2009-12-22 2011-06-29 엘에스전선 주식회사 열교환기 튜브용 고내식성 알루미늄 합금 및 이를 이용한 열교환기 튜브의 제조방법
KR101194970B1 (ko) 2003-11-28 2012-10-25 알칸 롤드 프로덕츠-레이븐스우드, 엘엘씨. 알루미늄 합금 플레이트 브레이징 방법 및 이에 따른 알루미늄 합금 플레이트 조립 방법
US20130043013A1 (en) * 2010-04-27 2013-02-21 Yusuke Iino Heat Exchanger and Method for Producing Heat Exchanger
KR101335680B1 (ko) 2012-06-28 2013-12-03 한국전기연구원 내압특성을 향상시킨 열교환기용 콘덴서 튜브 및 그 제조 방법
KR20140000406A (ko) 2012-06-22 2014-01-03 현대자동차주식회사 알루미늄 합금 조성물, 이를 포함하는 내식성이 향상된 인터쿨러용 알루미늄 압출 튜브 및 이의 제조방법
KR101349359B1 (ko) 2012-06-12 2014-01-17 한국전기연구원 콘덴서 튜브의 인장강도를 증가시킨 열교환기 제조방법
KR20170004845A (ko) * 2015-07-03 2017-01-11 삼성전자주식회사 열 교환기 및 이를 포함하는 공기조화기

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20016355D0 (no) * 2001-12-21 2001-12-21 Norsk Hydro As Aluminium kjöleribbe med forbedret styrke og bestandighet
JP6186239B2 (ja) * 2013-10-15 2017-08-23 株式会社Uacj アルミニウム合金製熱交換器
KR101811332B1 (ko) * 2015-03-25 2018-01-30 주식회사 에프티넷 내식성이 향상된 열교환기 튜브 및 파이프용 알루미늄 합금, 그 합금을 이용한 알류미늄 튜브 또는 배관의 제조방법 및 이를 이용한 열교환기 시스템

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203490A (en) * 1977-10-21 1980-05-20 Sumitomo Light Metal Industries, Ltd. Heat exchanger core having fin members serving as sacrificial anodes
JPH1121649A (ja) 1997-12-15 1999-01-26 Nippon Light Metal Co Ltd 微小構造断面の熱交換器押出チューブ用アルミニウム合金および微小構造断面の熱交換器押出チューブの製造方法
JP2000212668A (ja) * 1999-01-25 2000-08-02 Mitsubishi Alum Co Ltd 耐食性に優れた熱交換器用アルミニウム合金押出し管
JP2003119534A (ja) * 2001-10-10 2003-04-23 Mitsubishi Alum Co Ltd 熱交換器用高強度高耐食性アルミニウム合金押出材及びその製造方法並びに熱交換器
KR101194970B1 (ko) 2003-11-28 2012-10-25 알칸 롤드 프로덕츠-레이븐스우드, 엘엘씨. 알루미늄 합금 플레이트 브레이징 방법 및 이에 따른 알루미늄 합금 플레이트 조립 방법
KR20110072237A (ko) 2009-12-22 2011-06-29 엘에스전선 주식회사 열교환기 튜브용 고내식성 알루미늄 합금 및 이를 이용한 열교환기 튜브의 제조방법
US20130043013A1 (en) * 2010-04-27 2013-02-21 Yusuke Iino Heat Exchanger and Method for Producing Heat Exchanger
KR101349359B1 (ko) 2012-06-12 2014-01-17 한국전기연구원 콘덴서 튜브의 인장강도를 증가시킨 열교환기 제조방법
KR20140000406A (ko) 2012-06-22 2014-01-03 현대자동차주식회사 알루미늄 합금 조성물, 이를 포함하는 내식성이 향상된 인터쿨러용 알루미늄 압출 튜브 및 이의 제조방법
KR101335680B1 (ko) 2012-06-28 2013-12-03 한국전기연구원 내압특성을 향상시킨 열교환기용 콘덴서 튜브 및 그 제조 방법
KR20170004845A (ko) * 2015-07-03 2017-01-11 삼성전자주식회사 열 교환기 및 이를 포함하는 공기조화기

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633310A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110106379A (zh) * 2019-05-20 2019-08-09 江苏亨通电力特种导线有限公司 挤压成型用耐腐蚀铝材及其制备方法和应用

Also Published As

Publication number Publication date
EP3633310A4 (en) 2020-07-08
EP3633310A1 (en) 2020-04-08
US20200173740A1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
WO2017065460A1 (ko) 내식성이 향상된 알루미늄 합금, 그 합금을 이용한 알루미늄 튜브 또는 배관의 제조방법 및 이를 이용한 열교환기 시스템
EP2741889B1 (en) Cooler for heat-generating device, and method of producing cooler for heat-generating device
KR100323375B1 (ko) 알루미늄합금납부착시이트
WO2018216832A1 (ko) 합금 조성과 합금 전위의 조절을 이용한 고내식 열교환기 시스템
WO2020040602A1 (ko) 다이캐스팅용 알루미늄 합금 및 그 제조방법, 다이캐스팅 방법
EP0938594B1 (en) Aluminium alloy for use as core material in brazing sheet
JP5079198B2 (ja) アルミニウム蝋付け合金
CN1652925A (zh) 超长寿命的高成型性铜焊接片材
EP1300480A1 (en) Aluminium alloy for making fin stock material
WO2022124448A1 (ko) 고내식 주물용 마그네슘 첨가 알루미늄 합금
KR102033820B1 (ko) 알루미늄 핀 합금 및 그 제조 방법
EP3018223A1 (en) Brazing sheet for heat exchanger, and method for manufacturing said sheet
WO2020209485A1 (ko) 굽힘가공성이 우수한 cu-co-si-fe-p계 구리합금 및 그 제조 방법
WO2017111533A1 (ko) 도금 밀착성이 우수한 고망간 용융 알루미늄계 도금강판
WO2019039743A1 (ko) V-cr-fe-ni계 고강도 고엔트로피 합금
JP7107690B2 (ja) 強度、導電性、耐食性、およびろう付性に優れる熱交換器用アルミニウム合金フィン材および熱交換器
KR102282585B1 (ko) 합금 조성과 합금 전위의 조절을 이용한 고내식 열교환기 시스템
WO2021112480A1 (ko) 용접구조물의 제조방법 및 이에 의해 제조된 용접구조물
KR20220026401A (ko) 무 플럭스 브레이징용 알루미늄 합금 및 이를 이용한 브레이징 방법
JP3333600B2 (ja) 高強度Al合金フィン材およびその製造方法
EP1435397B1 (en) High strength aluminium fin material for brazing
WO2017122999A1 (ko) 열교환기용 알루미늄 핀재와 용가재 및 이를 포함하는 알루미늄 열교환기
US11932922B2 (en) Strip of aluminium alloy for manufacturing brazed heat exchangers
WO2015099247A1 (ko) 열교환기 배관용 고내식성 알루미늄 합금 및 이로부터 제조된 열교환기 배관
WO2023096365A1 (ko) 고강도 및 고연성 알루미늄 합금

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017910909

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017910909

Country of ref document: EP

Effective date: 20200102