WO2018216829A1 - 이산화탄소 포집 탄산칼슘이 포함된 저분체 고유동 콘크리트 조성물 - Google Patents

이산화탄소 포집 탄산칼슘이 포함된 저분체 고유동 콘크리트 조성물 Download PDF

Info

Publication number
WO2018216829A1
WO2018216829A1 PCT/KR2017/005396 KR2017005396W WO2018216829A1 WO 2018216829 A1 WO2018216829 A1 WO 2018216829A1 KR 2017005396 W KR2017005396 W KR 2017005396W WO 2018216829 A1 WO2018216829 A1 WO 2018216829A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
calcium carbonate
carbon dioxide
concrete composition
Prior art date
Application number
PCT/KR2017/005396
Other languages
English (en)
French (fr)
Inventor
강현진
박만석
김병환
Original Assignee
(주)노빌
(주)대우건설
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)노빌, (주)대우건설 filed Critical (주)노빌
Priority to PCT/KR2017/005396 priority Critical patent/WO2018216829A1/ko
Publication of WO2018216829A1 publication Critical patent/WO2018216829A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/26Carbonates
    • C04B14/28Carbonates of calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/02Cellulosic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention replaces a part of the cement with carbon dioxide (CO) capture calcium carbonate and slag to reduce the amount of cement used while ensuring high fluidity without degrading strength, as well as to recycle the carbon dioxide (CO) capture in an eco-friendly concrete composition. It is about.
  • the high flow concrete has a relatively high binder content compared to general concrete as the amount of coarse aggregate decreases, resulting in the increase of heat of hydration of concrete, creep and shrinkage, and the cost of concrete production.
  • the problems such as the increase of the high strength, it is difficult to apply in the general strength level of concrete that is generally used.
  • the present invention is to provide a concrete composition to include a CO2 collection to solve the above problems to ensure high fluidity without reducing the strength while reducing the amount of cement used as a low powder.
  • Low powder high flow concrete composition containing carbon dioxide trapping calcium carbonate of the present invention 20 to 30 parts by weight of blast furnace slag, 5 to 10 parts by weight of CO trapping calcium carbonate, 1 to 5 parts by weight of sodium hydroxide Characterized in that.
  • the CO trapping calcium carbonate is characterized in that the powder degree is 4,000 ⁇ 6,000 cm 2 / g.
  • lithium silicate 1 to 5 parts by weight of anionic surfactant, and 1 to 5 parts by weight of nonionic surfactant are added to 100 parts by weight of the cement.
  • hydroxyethyl fiber and 1 to 3 parts by weight of vanadium dioxide are further blended with respect to 100 parts by weight of the cement.
  • the present invention replaces a part of the cement with carbon dioxide (CO) capture calcium carbonate and slag to reduce the amount of cement used while ensuring high fluidity without degrading strength, as well as enabling the recycling of carbon dioxide (CO) capture, which is environmentally friendly. .
  • CO carbon dioxide
  • Figure 2 is a graph showing the experimental results of the compressive strength according to the addition amount of carbon dioxide (CO) trapped calcium carbonate.
  • Low powder high flow concrete composition containing carbon dioxide trapping calcium carbonate of the present invention 20 to 30 parts by weight of blast furnace slag, 5 to 10 parts by weight of CO trapping calcium carbonate, 1 to 5 parts by weight of sodium hydroxide Characterized in that. That is, the present invention is to ensure a high fluidity without lowering the strength despite the low powder by reducing the amount of cement used, and to propose an environment-friendly concrete composition by enabling the recycling of the CO collection.
  • the blast furnace slag powder is preferably 2,500 ⁇ 9,000 cm2 / g bar bargeul, which is less reactive when the powder degree of blast furnace slag is less than 2,500 cm2 / g, the powder degree is 9,000 cm2 / g
  • the reactivity may be large, which may be advantageous for the development of the initial strength, but it is not possible to control the generation of heat of hydration, and the workability is somewhat reduced, so it is preferable to limit the above.
  • the blast furnace slag is self-dissolved in the slag powder immediately after contact with water, and the amorphous ASH6 film having poor permeability is formed on the surface, thereby preventing the penetration of water into the slag particles and the elution of ions from the slag particles. Hydration reaction does not progress well by itself. Therefore, in the present invention, sodium hydroxide is added as an alkali activator to activate the reactivity of the blast furnace slag.
  • the present invention is to allow the addition of CO2 traps, that is, CO2 trapping calcium carbonate collected through direct reaction with CO2, CO2, a power generation exhaust gas, to limit the powder concentration of CO2 trapping calcium carbonate to 4,000 to 6,000 cm2 / g.
  • the CO 2 trapping calcium carbonate is appropriately blended at 5 to 10% by weight of the cement blending amount.
  • CO2 trapped calcium carbonate does not significantly affect the flowability of concrete depending on the amount of use, but it affects the setting time, the initial strength and the long-term strength, and the strength may be lowered when the mixing range is exceeded. It is reasonable to limit to.
  • the CO 2 trapping calcium carbonate allows the maximum and minimum addition amount to be determined according to the blast furnace slag content in the above-mentioned mixing range.
  • the lower limit is to prevent the relative strength expression rate from slowing down when the maximum amount of blast furnace slag is added
  • the upper limit is to ensure viscosity when the blast furnace slag is a minimum amount.
  • the aluminum hydroxide absorbs heat generated in the cement hydration process and is decomposed into aluminum trioxide and water. That is to reduce the heat of hydration to control the temperature cracks.
  • the temperature cracking is controlled by the addition of aluminum hydroxide.
  • aluminum hydroxide absorbs heat and at the same time may be decomposed into aluminum trioxide and water, so that the generated water may reduce the strength of the paste.
  • ammonium dinonyl naphthyl sulfonate is added.
  • the blast furnace slag dissolves Ca 2-in the slag immediately after contact with water, and forms a poorly permeable amorphous ASH6 film on the surface, which hinders the progress of the hydration reaction.
  • the ammonium dinonyl naphthyl sulfonate Is to prevent the eluted ions (Ca2-) from reacting and at the same time to remove the eluted water itself through water absorption by dinonyl naphthyl sulfonic acid ammonium salt.
  • the addition of aluminum hydroxide and dinonyl naphthyl sulfonic acid ammonium salt mixture to improve the crack resistance without deterioration in strength and durability.
  • the present invention further provides an example that is formulated to include 1 to 5 parts by weight of lithium silicate, 1 to 5 parts by weight of anionic surfactant, and 1 to 5 parts by weight of nonionic surfactant, based on 100 parts by weight of the cement.
  • the lithium silicate produces calcium silicate hydrate through the reaction with calcium hydroxide produced during the cement hydration reaction, and the calcium silicate hydrate is filled in the micropores and finally provides a dense paste so that a favorable effect in terms of compressive strength is expressed. will be.
  • the surfactant is blended in the present invention.
  • the lithium silicate is to be stably mixed with the other composition, it is appropriate to use a mixture of anionic surfactant and nonionic surfactant in a 1: 1 ratio.
  • the present invention provides an example in which 1 to 3 parts by weight of hydroxyethyl fiber and 1 to 3 parts by weight of vanadium dioxide are further blended with respect to 100 parts by weight of the cement.
  • the hydroxyethyl fiber is added as a water-soluble polymer to impart a film function through the polymer emulsion of the aqueous component.
  • the hydroxyethyl fiber is applied in a state in which the hydroxyethyl fiber is dispersed, and the polymer film is formed by evaporation of water, thereby suppressing evaporation of water from the surface of the cement particles.
  • the vanadium dioxide (VO2) is used as a heat-modifying material by using an optical property change in which electrical resistance decreases due to a decrease in electrical resistance above a specific temperature.
  • the vanadium dioxide changes its electrical characteristics from semiconductor to conductor at 70 (phase transition temperature), which is relatively close to room temperature. In the semiconductor region, the vanadium dioxide exhibits negative electrical resistance characteristics with temperature increase and the temperature increases to below the phase transition temperature. As a result, the electrical resistance decreases exponentially.
  • vanadium dioxide As vanadium dioxide is added as described above, the electrical resistance is reduced to improve the infrared ray blocking efficiency. In other words, when exposed to infrared rays in the curing process after casting can bring a bad effect on the compressive strength due to the property conversion, etc.
  • VO2 vanadium dioxide

Abstract

본 발명은 시멘트 100중량부에 대해 고로슬래그 20 내지 30중량부, CO 포집 탄산칼슘 5 내지 10중량부, 수산화나트륨 1 내지 5중량부를 포함하는 것을 특징으로 하는 이산화탄소 포집 탄산칼슘이 포함된 저분체 고유동 콘크리트 조성물에 관한 것이다.

Description

이산화탄소 포집 탄산칼슘이 포함된 저분체 고유동 콘크리트 조성물
본 발명은 시멘트 일부를 이산화탄소(CO) 포집 탄산칼슘 및 슬래그로 대체하여 시멘트 사용량을 줄이면서도 강도저하 없이 고유동성이 확보되도록 하는 것은 물론 이산화탄소(CO) 포집물의 재활용이 가능하도록 하여 친환경적인 콘크리트 조성물에 관한 것이다.
온실가스 저감이 글로벌 이슈로 부각됨에 따라 지구온난화에 영향을 미치는 온실가스 배출에 관한 문제는 산업 전반에 걸쳐 해결해야할 문제로 인식되고 있다. 이러한 가운데 온실가스 배출 비중이 높은 발전소 및 시멘트·콘크리트 산업에서 온실가스 문제는 필수적으로 해결해야할 문제이다.
이에 시멘트를 주재료로 사용하는 콘크리트 산업에서 온실가스 감축을 위하여 산업부산물을 시멘트 대체재로써 활용한 다양한 콘크리트가 개발되어 유용하게 활용되는 추세이며, 산업부산물의 재활용은 온실감축 이외에도 환경보존, 에너지 절감 등의 효과 등을 기대할 수 있어 지속가능한 건설 기술로 부각되고 있다.
한편 사회전반에 걸친 급속한 발전은 교량, 도로, 철도 및 항만 등의 사회기반시설물에 대한 수요를 다량으로 창출하였으며, 콘크리트는 사회기반시설을 구축하기 위한 중요한 구조재료로서 안전성 및 내구성을 인정받고 있다.
그러나 최근 콘크리트 구조물이 대형화, 고층화 및 장대화 됨에 따라 콘크리트 단면은 복잡해지고 있으며 콘크리트 타설시 거푸집을 밀실하게 채우지 못하거나 과도한 다짐으로 인한 재료분리 현상 등의 문제점이 나타남에 따라 이러한 문제점을 해결하기 위하여 콘크리트의 성능 및 시공효율을 향상시킨 고유동 콘크리트의 현장적용이 요구되고 있다.
이러한 고유동 콘크리트는 높은 유동성과 충전성 및 균질성을 유지하기 위하여 굵은골재의 양이 감소함에 따라 일반 콘크리트와 비교하여 상대적으로 높은 결합재량이 사용되며 이로 인한 콘크리트 수화열 상승, 크리프 및 수축, 콘크리트 제조 비용의 증가 등의 문제점 뿐만 아니라 높은 강도 발현으로 인하여 일반적으로 사용되는 보통강도수준의 콘크리트에서는 적용이 어려운 실정이다.
한편 최근 발전소에서는 배출되는 온실가스 중 CO2를 직접반응을 시켜 포집하는 기술이 개발됨에 따라 CO2 포집물이 발생되고 있다. 그러나 발생된 포집물은 대부분 매립되거나 방치됨에 따라 발생된 포집물을 활용 또는 저장 할 수 있는 기술 개발이 요구되고 있는 실정이다.
따라서 본 발명에서는 상기의 문제점을 해결하고자 CO2 포집물을 포함하도록 하여 저분체로 시멘트 사용량을 줄이면서도 강도저하 없이 고유동성이 확보되도록 하는 콘크리트 조성물을 제공하고자 함이다.
본 발명의 이산화탄소 포집 탄산칼슘이 포함된 저분체 고유동 콘크리트 조성물은, 시멘트 100중량부에 대해 고로슬래그 20 내지 30중량부, CO 포집 탄산칼슘 5 내지 10중량부, 수산화나트륨 1 내지 5중량부를 포함하는 것을 특징으로 한다.
*하나의 예로 상기 CO 포집 탄산칼슘은 분말도는 4,000∼6,000cm2/g인 것을 특징으로 한다.
하나의 예로 상기 시멘트 100중량부에 대해 리튬실리케이트 1 내지 5중량부, 음이온계 계면활성제 1 내지 5중량부, 비이온계 계면활성제 1 내지 5중량부를 포함하도록 배합되는 것을 특징으로 한다.
하나의 예로 상기 시멘트 100중량부에 대해 하이드록시에틸섬유소 1 내지 3중량부, 이산화바나듐 1 내지 3중량부가 더 배합되는 것을 특징으로 한다.
본 발명은 시멘트 일부를 이산화탄소(CO) 포집 탄산칼슘 및 슬래그로 대체하여 시멘트 사용량을 줄이면서도 강도저하 없이 고유동성이 확보되도록 하는 것은 물론 이산화탄소(CO) 포집물의 재활용이 가능하도록 하여 친환경적인 장점이 있다.
도 1은 이산화탄소(CO) 포집 탄산칼슘의 첨가량에 따른 유동성 실험결과를 나타내는 그래프.
도 2는 이산화탄소(CO) 포집 탄산칼슘의 첨가량에 따른 압축강도 실험결과를 나타내는 그래프.
이하, 본 발명의 구성 및 작용을 좀 더 구체적으로 설명한다. 본 발명을 설명함에 있어서, 본 명세서 및 청구범위에 사용된 용어나 단어는 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 이산화탄소 포집 탄산칼슘이 포함된 저분체 고유동 콘크리트 조성물은, 시멘트 100중량부에 대해 고로슬래그 20 내지 30중량부, CO 포집 탄산칼슘 5 내지 10중량부, 수산화나트륨 1 내지 5중량부를 포함하는 것을 특징으로 한다. 즉 본 발명은 시멘트 사용량을 줄임으로써 저분체에도 불구 강도저하 없이 고유동성이 확보되도록 하는 것이며, CO 포집물의 재활용이 가능하도록 하여 친환경적인 콘크리트 조성물을 제시하고 있는 것이다.
상기 고로슬래그는 그 분말도 2,500~9,000cm2/g인 것이 바람직 한 바, 이는 고로슬래그의 분말도가 2,500cm2/g 미만인 경우에는 반응성이 작아 강도발현에 불리하고, 분말도가 9,000cm2/g을 초과하는 경우에는 반응성이 커서 초기강도 발현에 유리할 수 있지만, 수화열의 발생을 제어할 수 없고, 시공성이 다소 저하되어 상기와 같이 한정하는 것이 바람직하다.
즉 분말도가 높은 고로슬래그를 사용함에 따라 접촉하는 표면적이 커지기 때문에 수화반응이 빨라지고, 조기강도가 높아지는 장점이 있으나, 수화열이 증가됨에 따라 유동성이 저하되는 단점 또한 발생할 수 있게 되는 것이다.
또한, 상기 고로슬래그는 물과 접한 직후 슬래그파우더에서 Ca2- 가 용출되고, 표면에 투과성이 나쁜 부정형의 ASH6의 피막이 형성되어 슬래그 입자 속으로 물의 침투 및 슬래그 입자로부터의 이온의 용출이 억제되기 때문에 자체만으로는 수화반응이 잘 진행되지 않는다. 따라서, 본 발명에서는 알카리활성화제로서 수산화나트륨이 첨가되도록 하여 상기 고로슬래그의 반응성을 활성화 시키는 것이다.
특히 본 발명은 발전 배출가스인 CO2를 CaO와 직접 반응을 통하여 포집된 CO2 포집물 즉 CO2 포집 탄산칼슘이 첨가되도록 하는 것으로 CO2 포집 탄산칼슘의 분말도가 4,000∼6,000cm2/g 인 것으로 한정하는 것이며 CO2 포집 탄산칼슘은 시멘트 배합량의 5 내지 10 중량%로 배합하도록 하는 것이 타당하다.
CO2 포집 탄산칼슘은 사용량에 따라 콘크리트의 유동성에는 큰 영향을 미치지 않으나, 응결시간이나 초기 강도 및 장기 강도 발현에 영향을 미치며, 상기 배합범위를 초과하는 경우 강도가 저하될 수 있어 상기와 같은 배합범위로 한정하는 것이 타당하다.
이렇게 CO2 포집 탄산칼슘이 첨가되도록 하여 일반적인 고유동 콘크리트 제조시 결합재 사용량에 비해 15 ∼20% 감소시킴에도 불구 보통강도 고유동성이 발현되도록 하는 것이다.
CO2 포집 탄산칼슘은 상기에서 언급한 배합범위에서 고로슬래그 함량에 따라 최대 및 최소 첨가량이 결정되도록 한다. 즉 하한은 고로슬래그의 첨가량이 최대 첨가량일 경우 상대적으로 강도발현 속도가 늦어지는 것을 방지하기 위한 것이며, 상한은 고로슬래그가 최소 첨가량일 경우 점성 확보를 위한 것이다.
한편 상기에서 언급한 바와 같이 고로슬래그 등의 첨가에 의한 온도균열, 건조수축균열 등의 문제가 발생할 수 있는 바, 이에 본 발명에서는 상기에서 언급한 조성외에도 시멘트 100중량부에 대해 수산화알루미늄 및 디노닐 나프틸 술폰산 암모늄염 혼합물 1 내지 3중량부가 더 포함되도록 할 수 있다.
수산화알루미늄 및 디노닐 나프틸 술폰산 암모늄염은 중량비로 60:40 내지 80:20으로 혼합되는 것이 타당하다.
상기 수산화알루미늄은 시멘트 수화반응 과정에서 발생되는 열을 흡수하여 삼산화알루미늄과 물로 분해가 되는 것이다. 즉 수화열을 저감시켜 온도균열을 제어하도록 하는 것이다.
수산화알루미늄의 첨가에 의해 온도균열을 제어토록 하는 것이다. 그런데 수산화알루미늄은 열을 흡수함과 동시에 삼산화알루미늄과 물로 분해되어 이렇게 생성된 물이 페이스트의 강도를 저하시킬 수 있는 문제가 있을 수 있다. 이에 본 발명에서는 수산화알루미늄에 더하여 디노닐 나프틸 술폰산 암모늄이 첨가되도록 하는 것이다.
특히 상기에서 언급한 바와 같이 상기 고로슬래그는 물과 접한 직후 슬래그에서 Ca2- 가 용출되고, 표면에 투과성이 나쁜 부정형의 ASH6의 피막이 형성되어 수화반응의 진행을 방해하게 되는데 상기 디노닐 나프틸 술폰산 암모늄은 용출된 이온(Ca2-)이 반응하는 것을 방지하며 동시에 디노닐 나프틸 술폰산 암모늄염에 의한 수분흡수를 통해 용출된 물 자체를 제거하도록 하는 것이다. 즉 수산화알루미늄 및 디노닐 나프틸 술폰산 암모늄염 혼합물의 첨가로 강도 및 내구성 저하없이 균열저항성을 향상시키도록 하는 것이다.
또한 본 발명에서는 상기 시멘트 100중량부에 대해 리튬실리케이트 1 내지 5중량부, 음이온계 계면활성제 1 내지 5중량부, 비이온계 계면활성제 1 내지 5중량부를 포함하도록 배합되는 예를 더 제시하고 있다.
상기 리튬실리케이트는 시멘트 수화반응시 생성되는 수산화칼슘과 반응을 통하여 규산칼슘수화물을 생성시키며, 생성된 규산칼슘수화물은 미세기공에 충진되어 결국 밀실한 페이스트를 제공함으로써 압축강도면에서 유리한 효과가 발현되도록 하는 것이다.
즉 상기에서 언급한 바와 같이 CO2 포집 탄산칼슘이 첨가되도록 함에 따라 고유동성이 확보되나 강도면에서 저분체로 인한 불리한 효과가 발현될 수 있는데 이를 보상하기 위해 상기 리튬실리케이트가 첨가되도록 하는 것이다.
상기에서 언급한 리튬실리케이트의 침투가 용이하도록 하기 위해 본 발명에서는 계면활성제가 배합됨이 타당하다. 즉 리튬실리케이트가 타 조성과 안정하게 혼합되도록 하기 위한 것으로 상기 계면활성제는 음이온계 계면활성제 및 비이온계 계면활성제는 1:1로 혼합하여 사용하는 것이 타당하다.
또한 본 발명에서는 상기 시멘트 100중량부에 대해 하이드록시에틸섬유소 1 내지 3중량부, 이산화바나듐 1 내지 3중량부가 더 배합되도록 하는 예를 제시한다.
상기 하이드록시에틸섬유소는 수용성 고분자로서 첨가되는 것으로 수성 성분의 폴리머 에멀젼을 통해 피막기능을 부여하게 되는 것이다. 즉 물에 상기 하이드록시에틸섬유소가 분산된 상태에서 도포 등이 되어 수분증발에 따라 폴리머 필름을 형성시킴으로써 시멘트 입자 표면으로부터의 수분 증발을 억제시킨다. 즉 이러한 하이드록시에틸섬유소에 의해 수분증발을 방지함으로써 모세관현상에 의한 균열 등을 제어하여 강도보상의 기능을 배가시키도록 하는 것이며 수분증발에 의한 유동성 저하의 문제를 해결토록 하는 것이다.
상기 이산화바나듐(VO2)은 특정 온도 이상에서 전기저항이 감소하여 투광성이 감소하는 광학적 물성 변화를 이용하여, 열변성 물질로서 사용한다. 상기 이산화바나듐은 상온에 비교적 근접한 온도인 70(상전이 온도)에서 반도체에서 도체로 전기적인 특성이 변화하는데, 반도체 영역에서는 온도 증가에 따라 부(negative)의 전기저항 특성을 나타내고 상전이 온도 이하까지 온도 증가에 따라 지수적으로 전기저항이 감소하게 된다.
이와 같이 이산화바나듐이 더 첨가됨에 의해 전기저항을 감소시켜 적외선차단 효율을 향상시키게 되는 것이다. 즉 타설후 양생과정에서 적외선에 노출되는 경우 성질변환 등에 의해 압축강도에 나쁜영향을 가져올 수 있는 바, 본 발명에서는 이산화바나듐(VO2)의 첨가로 이러한 문제점을 해결하는 것이다.
항목 종류 SiO2(%) Al2(%) Fe203(%) CaO(%) Na2O(%) K2O(%) MgO(%) SO3(%)(㎠/g) 비표면적(㎠/g)
CO2 포집물1.50 -1.50 - - 94.69 - - 1.76 - 6,000
W C CO2 포집 탄산칼슘 S
50 800 0 1960
50 760 40 1960
50 720 80 1960
50 680 120 1960
50 640 160 1960
W : 물, C : 시멘트, S : 잔골재
<모르타르실험>
발명의 효과를 확인하기 위하여 모르타르 배합 시험을 실시하였으며, 검증에 적용된 모르타르의 배합 비율은 하기 표 2와 같다.
상기 모르타르 시료에 대해 유동성실험을 한 결과가 도 1에 도시되고 있는 바, CO2 포집 탄산칼슘이 첨가되어도 그 첨가량에 상관없이 플로우가 160mm이상을 유지하는 것을 알 수 있다.
상기 모르타르 시료에 대해 압축강도실험을 한 결과 하기 표 3 및 도 2에서 보는 바와 같이 CO2 포집 탄산칼슘이 시멘트 중량대비 5중량% 및 10중량%인 시료에서는 CO2 포집 탄산칼슘이 첨가되지 않은 시료 대비 압축강도의 저하율이 없거나 미미한데 비해 이를 초과하는 15중량%, 20중량%에서는 압축강도의 저하율이 큰 것을 알 수 있다.
압축강도(MPa) 3d 7d 28d 강도발현률(%) 3d 7d 28d
0% 22.77 30.04 39.16 0% 100 100 100
5% 22.07 30.76 39.74 5% 97 102 101
10% 21.04 27.45 36.55 10% 92 91 93
15% 18.24 27.12 30.24 15% 80 90 77
20% 16.43 24.40 27.84 20% 72 81 71
즉 CO2 포집 탄산칼슘이 첨가되어 시멘트를 대체하는 경우 저분체인 경우에도 유동성이 확보되며 CO2 포집 탄산칼슘이 시멘트 중량대비 5중량% 내지 10중량%가 첨가되도록 하여야 강도저하를 방지할 수 있는 것을 알 수 있다.
이상 설명한 내용을 통해 당업자라면 본 발명의 기술사상을 일탈하지 아니하는 범위에서 다양한 변경 및 수정 가능함을 알 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정해져야만 할 것이다.

Claims (4)

  1. 시멘트 100중량부에 대해 고로슬래그 20 내지 30중량부, CO 포집 탄산칼슘 5 내지 10중량부, 수산화나트륨 1 내지 5중량부를 포함하는 것을 특징으로 하는 이산화탄소 포집 탄산칼슘이 포함된 저분체 고유동 콘크리트 조성물.
  2. 제 1항에 있어서,
    상기 CO 포집 탄산칼슘은 분말도는 4,000∼6,000cm2/g인 것을 특징으로 하는 이산화탄소 포집 탄산칼슘이 포함된 저분체 고유동 콘크리트 조성물.
  3. 제 1항에 있어서,
    상기 시멘트 100중량부에 대해 리튬실리케이트 1 내지 5중량부, 음이온계 계면활성제 1 내지 5중량부, 비이온계 계면활성제 1 내지 5중량부를 포함하도록 배합되는 것을 특징으로 하는 이산화탄소 포집 탄산칼슘이 포함된 저분체 고유동 콘크리트 조성물.
  4. 제 3항에 있어서,
    상기 시멘트 100중량부에 대해 하이드록시에틸섬유소 1 내지 3중량부, 이산화바나듐 1 내지 3중량부가 더 배합되는 것을 특징으로 하는 이산화탄소 포집 탄산칼슘이 포함된 저분체 고유동 콘크리트 조성물.
PCT/KR2017/005396 2017-05-24 2017-05-24 이산화탄소 포집 탄산칼슘이 포함된 저분체 고유동 콘크리트 조성물 WO2018216829A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/005396 WO2018216829A1 (ko) 2017-05-24 2017-05-24 이산화탄소 포집 탄산칼슘이 포함된 저분체 고유동 콘크리트 조성물

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/005396 WO2018216829A1 (ko) 2017-05-24 2017-05-24 이산화탄소 포집 탄산칼슘이 포함된 저분체 고유동 콘크리트 조성물

Publications (1)

Publication Number Publication Date
WO2018216829A1 true WO2018216829A1 (ko) 2018-11-29

Family

ID=64396579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005396 WO2018216829A1 (ko) 2017-05-24 2017-05-24 이산화탄소 포집 탄산칼슘이 포함된 저분체 고유동 콘크리트 조성물

Country Status (1)

Country Link
WO (1) WO2018216829A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115427369A (zh) * 2020-04-17 2022-12-02 电化株式会社 水泥外掺剂和水泥组合物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101292174B1 (ko) * 2011-08-30 2013-08-01 주식회사 삼표 콘크리트 표면강화 기능을 가진 피막양생제
KR101423131B1 (ko) * 2013-01-09 2014-07-28 경기대학교 산학협력단 순환 유동층 보일러에서 발생하는 비산재를 이용한 콘크리트 혼화재 및 그 제조방법
KR20150114771A (ko) * 2014-04-02 2015-10-13 주영에스티에스(주) 산업부산물을 활용한 연약지반용 고화재 조성물
KR101673262B1 (ko) * 2015-11-04 2016-11-07 주식회사 로드코리아 친환경 수밀포장 조성물 및 이를 이용한 방수포장 시공방법
KR101701996B1 (ko) * 2016-04-25 2017-02-02 (주)대우건설 이산화탄소 포집 부산물을 이용한 유동성 혼합조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101292174B1 (ko) * 2011-08-30 2013-08-01 주식회사 삼표 콘크리트 표면강화 기능을 가진 피막양생제
KR101423131B1 (ko) * 2013-01-09 2014-07-28 경기대학교 산학협력단 순환 유동층 보일러에서 발생하는 비산재를 이용한 콘크리트 혼화재 및 그 제조방법
KR20150114771A (ko) * 2014-04-02 2015-10-13 주영에스티에스(주) 산업부산물을 활용한 연약지반용 고화재 조성물
KR101673262B1 (ko) * 2015-11-04 2016-11-07 주식회사 로드코리아 친환경 수밀포장 조성물 및 이를 이용한 방수포장 시공방법
KR101701996B1 (ko) * 2016-04-25 2017-02-02 (주)대우건설 이산화탄소 포집 부산물을 이용한 유동성 혼합조성물

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115427369A (zh) * 2020-04-17 2022-12-02 电化株式会社 水泥外掺剂和水泥组合物
CN115427369B (zh) * 2020-04-17 2023-10-20 电化株式会社 水泥外掺剂和水泥组合物

Similar Documents

Publication Publication Date Title
Muraleedharan et al. Factors affecting the mechanical properties and microstructure of geopolymers from red mud and granite waste powder: A review
US9034097B2 (en) Fire protection mortar
KR101743042B1 (ko) 경량 및 친환경 폴리머 시멘트 단면복구 모르타르 조성물
WO2016072622A2 (ko) 무시멘트 촉진형 혼화제 및 이를 포함하는 무시멘트 조성물
CN104529330B (zh) 一种环保型防火内墙干粉砂浆
CN108558350B (zh) 一种粉煤灰注浆材料及其制备方法
KR102054434B1 (ko) 염해방지 및 중성화방지 기능을 갖는 단면보수용 모르타르 조성물 및 이를 이용한 시공방법
KR101373754B1 (ko) 염화리튬과 콜레마나이트를 이용한 뿜칠이 가능한 지오폴리머 보수 모르타르 조성물
KR102162695B1 (ko) 이산화탄소 포집 탄산칼슘이 포함된 온실가스 저장 pc침목용 콘크리트 조성물
CN102531476B (zh) 无碱型水泥基渗透结晶防水材料
KR20120036554A (ko) 내화 및 단열 성능이 우수한 친환경 내화재 조성물
CN114045052A (zh) 一种单组分石膏-碱矿渣防火涂料及其制备方法
KR101877317B1 (ko) 이산화탄소 포집 탄산칼슘이 포함된 저분체 고유동 콘크리트 조성물
US7097706B2 (en) Non-heating clay composites for building materials
CN114105673A (zh) 一种耐水型石膏碱矿渣防火涂料及其制备方法
WO2018216829A1 (ko) 이산화탄소 포집 탄산칼슘이 포함된 저분체 고유동 콘크리트 조성물
KR101736694B1 (ko) 모르타르용 방수 조성물 및 이를 이용한 모르타르 구조물의 시공 방법
CN106116439B (zh) 保温砂浆
KR101814122B1 (ko) 친환경 모르타르 조성물
CN113004055A (zh) 一种绿色高热阻的自保温砌块及其制备方法
KR101345203B1 (ko) 탄닌을 이용한 저알칼리 비시멘트 콘크리트 조성물 및 이를 포함하는 블록
KR101888359B1 (ko) 칼슘 플로라이트 제련부산물을 이용한 증기 양생용 고강도 혼합재 조성물
KR101111635B1 (ko) 탄닌을 이용한 저알칼리 콘크리트 조성물 및 이를 포함하는 블록
KR102335742B1 (ko) 콘크리트용 및 모르타르용 방수 조성물, 이를 이용한 콘크리트 구조물 및 모르타르 구조물의 시공 방법
CN104058669A (zh) 一种水泥基渗透结晶防水材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911070

Country of ref document: EP

Kind code of ref document: A1