WO2018216771A1 - アルミニウム合金ブレージングシートのろう付方法、及び、熱交換器の製造方法 - Google Patents

アルミニウム合金ブレージングシートのろう付方法、及び、熱交換器の製造方法 Download PDF

Info

Publication number
WO2018216771A1
WO2018216771A1 PCT/JP2018/020021 JP2018020021W WO2018216771A1 WO 2018216771 A1 WO2018216771 A1 WO 2018216771A1 JP 2018020021 W JP2018020021 W JP 2018020021W WO 2018216771 A1 WO2018216771 A1 WO 2018216771A1
Authority
WO
WIPO (PCT)
Prior art keywords
brazing
mass
less
content
aluminum alloy
Prior art date
Application number
PCT/JP2018/020021
Other languages
English (en)
French (fr)
Inventor
孝裕 泉
鶴野 招弘
申平 木村
雄二 渋谷
貴弘 篠田
詔悟 山田
慎吾 大野
Original Assignee
株式会社神戸製鋼所
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所, 株式会社デンソー filed Critical 株式会社神戸製鋼所
Priority to US16/616,308 priority Critical patent/US20200086430A1/en
Priority to CN201880034076.2A priority patent/CN110662626A/zh
Priority to EP18806867.0A priority patent/EP3636380B1/en
Publication of WO2018216771A1 publication Critical patent/WO2018216771A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • B23K35/0238Sheets, foils layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0012Brazing heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing

Definitions

  • the present invention relates to a method of brazing an aluminum alloy brazing sheet and a method of manufacturing a heat exchanger, and in particular, a flux-free brazing method, a so-called fluxless brazing method, and a fluxless brazing method
  • the present invention relates to a method of manufacturing a heat exchanger.
  • brazing members such as aluminum alloy heat exchangers
  • vacuum brazing in which brazing is performed without using flux in a vacuum.
  • This vacuum brazing has various merits such as the necessity of the process of applying the flux and the avoidance of the problem caused by the inappropriate application amount of the flux as compared with the flux brazing using the flux.
  • vacuum brazing requires an expensive vacuum furnace to heat the furnace in a vacuumed state at the time of brazing, which increases the operation cost and makes it difficult to control the vacuumed furnace. This makes the work more difficult.
  • an aluminum clad material in which an Al—Si-based brazing material containing 0.1 to 5.0% of Mg and 3 to 13% of Si by mass% is located on the outermost surface.
  • a method of brazing a heat exchanger having narrow channel inner fins wherein the Si particles contained in the Al-Si-based brazing material have a circle equivalent diameter of those having a diameter of 0.8 ⁇ m or more.
  • the Al-Si-based brazing material is brought into close contact with the brazing target member in a non-oxidizing atmosphere with a pressure of 25% or more and a diameter of 75 ⁇ m or more at a heating temperature of 559 to 620 ° C.
  • a fluxless brazing method of a heat exchanger having narrow channel inner fins characterized in that the aluminum clad material and the brazing target member are joined.
  • the technique according to Patent Document 1 relates to fluxless brazing in an inert gas atmosphere that is not a vacuum, and is examining a predetermined effect.
  • the technology according to Patent Document 1 can not exhibit sufficient brazeability.
  • the brazing material contains 0.1 to 3% by mass of Mg, and this Mg is in the temperature rising process at the time of the brazing addition heat. And promote the formation of MgO on the surface of the brazing material.
  • MgO on the surface of the brazing material may become an obstacle at the time of brazing and melting, and the brazing property may be reduced.
  • this invention makes it a subject to provide the brazing method of the aluminum alloy brazing sheet which can exhibit the outstanding brazing property, and the manufacturing method of a heat exchanger.
  • the core material of the aluminum alloy brazing sheet used and the content of the components of the brazing material for example, the Mg content of the core and brazing material and the brazing material Since the relationship with the content of Bi, etc. is specified, the formation of MgO on the surface of the brazing material is suppressed by the reaction (trap) of Mg of the core material and the brazing material with Bi of the brazing material. .
  • Mg which has reacted with Bi dissolves in the matrix (brazing material) during brazing and melting when brazing is applied heat, so evaporation of Mg is promoted, and the oxide film formed on the brazing material surface is evaporated during Mg evaporation.
  • the brazing material is Mn: 2.0 mass% or less, Ti: 0.3 mass% or less, Cr: 0.3 mass% or less, Zr: You may further contain 1 or more types in 0.3 mass% or less. In the brazing method of the aluminum alloy brazing sheet according to the present invention, the brazing material may further contain Zn: 5.0% by mass or less.
  • the brazing material may further contain rare earth element: 1.0% by mass or less.
  • the brazing method of the aluminum alloy brazing sheet according to the present invention is excellent in brazeability even if the brazing material contains Mn, Ti, Cr, Zr, Zn, Sr, Na, Sb, and a rare earth element. Can be demonstrated.
  • the brazing material may further contain 0.3 mass% or less of Li.
  • the brazing method of the aluminum alloy brazing sheet according to the present invention can further improve the brazing property because the brazing material contains Li.
  • the core material may further contain Mn: 2.5% by mass or less.
  • the core material may further contain Si: 1.2% by mass or less.
  • the core material may further contain Cu: 3.0 mass% or less.
  • the core material may further contain Fe: 1.5% by mass or less.
  • the core material is at least one of Ti: 0.5% by mass or less, Cr: 0.5% by mass or less, and Zr: 0.5% by mass or less May further be contained.
  • the brazing method for an aluminum alloy brazing sheet according to the present invention can exhibit excellent brazing properties even if the core material contains Mn, Si, Cu, Fe, Ti, Cr, or Zr. .
  • the core material may further contain 0.3 mass% or less of Li.
  • the brazing method of the aluminum alloy brazing sheet according to the present invention can further improve the brazing property because the core material contains Li.
  • the thickness of the brazing material may be 50 ⁇ m or more.
  • the brazing method of the aluminum alloy brazing sheet according to the present invention can more reliably exhibit excellent brazing property because the thickness of the brazing material is a predetermined value or more.
  • a method of manufacturing a heat exchanger according to the present invention includes a brazing step of performing the above-described brazing method.
  • the manufacturing method of the heat exchanger which concerns on this invention can manufacture a heat exchanger, exhibiting excellent brazability by including the brazing process which implements a predetermined
  • the brazing method of the aluminum alloy brazing sheet according to the present invention can exhibit excellent brazing properties by specifying the contents of the respective components of the core material and the brazing material of the aluminum alloy brazing sheet to be used.
  • the manufacturing method of the heat exchanger according to the present invention manufactures a heat exchanger while exhibiting excellent brazing property because the content of each component of the core material and brazing material of the aluminum alloy brazing sheet to be used is specified. can do.
  • an aluminum alloy brazing sheet (hereinafter, appropriately referred to as a “brazing sheet”) used for a method of brazing an aluminum alloy brazing sheet according to the present embodiment (hereinafter, appropriately referred to as “brazing method”) will be described.
  • the configuration of the brazing sheet according to the present embodiment includes, for example, as shown in FIG. 1, a core material 2 and a brazing material 3 provided on one surface of the core material 2. And as for the brazing sheet 1 which concerns on this embodiment, content of each component of the core material 2 and the brazing material 3 is specified suitably.
  • the reasons for numerical limitation of each component of the core and brazing material of the brazing sheet according to the present embodiment will be described in detail.
  • the core material of the brazing sheet according to the present embodiment is made of an aluminum alloy (including pure aluminum), and more specifically, an aluminum alloy having Mg of 2.0% by mass or less (including 0% by mass).
  • an aluminum alloy an Al-Cu alloy of JIS 2000 series, an Al-Mn alloy of JIS 3000 series, an Al-Mg alloy of JIS 5000 series, an Al-Mg-Si alloy of JIS 6000 series, etc. Can be used.
  • the core material of the brazing sheet according to the present embodiment may further contain Mn, Si, Cu, Fe, Ti, Cr, Zr, and Li as appropriate.
  • Mg in core 2.0 mass% or less
  • Heartwood Mg improves strength.
  • Mg of the core material diffuses to the brazing material during the heating process at the time of heat addition to the brazing material, evaporates into the atmosphere at the brazing melting temperature, and reacts with oxygen in the atmosphere.
  • the oxide film formed on the surface of the brazing material is suitably destroyed at the time of evaporation of Mg, and the oxygen concentration in the atmosphere is lowered to suppress reoxidation of molten brazing (getter action).
  • Mg of the brazing material also exerts a getter action, when the content of Mg of the brazing material is large, the content of Mg of the core material may be small, or may be 0 mass%.
  • the content of Mg in the core material is 2.0% by mass or less (including 0% by mass).
  • Mn of core material 2.5 mass% or less
  • the core material Mn improves the strength. However, when the content of Mn exceeds 2.5% by mass, the amount of the Al—Mn-based compound increases, and there is a possibility that a crack may occur during the material manufacturing process. Therefore, when the core material contains Mn, the content of Mn is 2.5% by mass or less.
  • Si of core less than 1.2% by mass
  • the core material Si improves the strength. However, if the content of Si exceeds 1.2% by mass, the solidus temperature of the core material is lowered, so that the erosion resistance is lowered and the solderability is lowered, so that the brazing property is lowered. Accordingly, when the core material contains Si, the content of Si is 1.2% by mass or less.
  • the core material Cu makes the potential of the core material noble and improves the corrosion resistance. However, if the content of Cu exceeds 3.0% by mass, the solidus temperature of the core material is lowered, so that the erosion resistance is lowered and the solderability is lowered, so that the brazing property is lowered. Therefore, when making a core material contain Cu, content of Cu is 3.0 mass% or less.
  • the core material Fe improves strength by solid solution strengthening action. However, when the content of Fe exceeds 1.5% by mass, there is a possibility that the formability is reduced due to the formation of a coarse intermetallic compound. Therefore, when the core material contains Fe, the content of Fe is 1.5% by mass or less.
  • Ti 0.5 mass% or less of core material
  • the core material Ti nobles the potential of the core material and improves the corrosion resistance.
  • content of Ti exceeds 0.5% by mass, there is a possibility that the formability is reduced due to the formation of a coarse intermetallic compound. Therefore, when making a core material contain Ti, content of Ti is 0.5 mass% or less.
  • the core material Cr forms dispersed particles of Al-Cr system to improve the strength of the core material.
  • content of Cr exceeds 0.5% by mass, there is a possibility that the formability is reduced due to the formation of a coarse intermetallic compound. Therefore, when making a core material contain Cr, content of Cr is 0.5 mass% or less.
  • the core material Zr forms dispersed particles of Al-Zr system to improve the strength of the core material.
  • the content of Zr exceeds 0.5% by mass, there is a possibility that the formability is reduced due to the formation of a coarse intermetallic compound. Therefore, when the core material contains Zr, the content of Zr is 0.5% by mass or less.
  • the core material Ti, Cr, and Zr if not exceeding the upper limit described above, not only when the core material contains one or more types, that is, when one type is included, but two or more types are included in the present invention Do not disturb the effect.
  • Li of core material 0.3 mass% or less
  • Heartwood Li further improves the brazeability.
  • the gettering action of Mg is achieved by the destruction of the oxide film formed on the surface of the brazing material during the brazing heat when the brazing heat is applied. It is speculated that it should be made more effective.
  • the content of Li exceeds 0.3% by mass, Li diffuses into the surface layer of the brazing material in the temperature rising process during brazing heating to promote the growth of the oxide film, and the brazing property decreases. Therefore, when the core material contains Li, the content of Li is 0.3% by mass or less.
  • the content of Li in the core material is preferably 0.05% by mass or less.
  • the balance of the core material is preferably Al and unavoidable impurities.
  • V, Ni, Ca, Na, Sr, etc. may be mentioned, and these elements may be contained in the range which does not disturb the effect of the present invention. Specifically, V: 0.05% by mass or less, Ni: 0.05% by mass or less, Ca: 0.05% by mass or less, Na: 0.05% by mass or less, Sr: 0.05% by mass or less, and the like
  • the element of: may be contained in a range of less than 0.01% by mass.
  • the brazing material of the brazing sheet according to the present embodiment is made of an aluminum alloy, and more specifically, made of an aluminum alloy containing Si, Bi, and Mg.
  • aluminum alloys JIS-4000 Al-Si alloys (Al-Si-Mg-Bi alloys), Al-Si-Zn alloys (Al-Si-Zn-Mg-Bi alloys), etc. Can be used.
  • the brazing material of the brazing sheet according to the present embodiment may further contain Mn, Ti, Cr, Zr, Zn, Sr, Na, Sb, a rare earth element, and Li as appropriate.
  • the brazing material Si improves the liquid phase rate at the brazing heat addition temperature and enhances the fluidity of the brazing material.
  • the content of Si is 3% by mass or more, the fluidity of the braze is enhanced, and the effect of improving the brazeability can be obtained.
  • the content of Si exceeds 13% by mass, coarse Si particles are formed, and excessive flow solder is generated, which may cause brazing failure such as melting of the core material. Therefore, the content of Si in the brazing material is 3% by mass or more and 13% by mass or less.
  • the content of Si in the brazing material is C Si mass%, 3 ⁇ C Si ⁇ 13.
  • the brazing material Bi reacts with the core material and the brazing material Mg to form a Mg—Bi-based compound (eg, Bi 2 Mg 3 ) which hardly dissolves below the brazing material melting temperature.
  • a Mg—Bi-based compound eg, Bi 2 Mg 3
  • the diffusion of Mg to the brazing filler metal surface layer is suppressed, and the formation and growth of MgO on the brazing filler metal surface are suppressed ( Mg trapping effect), improve the brazeability.
  • the content of Bi in the brazing material needs to be very precisely specified in relation to the content of Mg in the core material and the brazing material.
  • the content of Mg in the brazing material is CMg-b mass%
  • the content of Mg in the core material is CMg-c mass%
  • CMg CMg-b + CMg-c / 2
  • the content of Bi in the brazing material is less than 0.13 C Mg -0.3 , Mg can not be trapped sufficiently and, as a result, free Mg is increased in the brazing material, so that MgO is generated on the surface of the brazing material.
  • the content of Bi in the brazing material 0.13C Mg -0.3 or more, 0.58C Mg 0.45 or less. Then, when the content of Bi in the brazing material and C Bi mass%, 0.13C Mg -0.3 ⁇ C Bi ⁇ 0.58C Mg 0.45.
  • the brazing material Mg evaporates into the atmosphere at the brazing material melting temperature at the time of heat addition, and reacts with oxygen in the atmosphere.
  • the oxide film formed on the surface of the brazing material is suitably destroyed at the time of evaporation of Mg, and the oxygen concentration in the atmosphere is lowered to suppress reoxidation of molten brazing (getter action).
  • Mg of the core material also exerts a getter action, when the content of Mg of the core material is large, the content of Mg of the brazing material may be small.
  • the content of Mg in the brazing material is 0.1% by mass or more.
  • Mg of brazing material and Mg of core material 0.2 ⁇ C Mg ⁇ 1.1
  • Mg of the brazing material and Mg of the core material both improve the brazeability by exerting a getter function.
  • the contribution to the gettering action differs between Mg of the brazing material and Mg of the core material, so in order to properly exhibit the effect of improving the brazeability based on the gettering action, the Mg of the brazing material and the core material It is necessary to precisely specify the content of Mg and Mg.
  • C Mg is preferably 0.3 or more.
  • C Mg is preferably 0.9 or less.
  • Mn of brazing material 2.0% by mass or less
  • the brazing material Mn improves the corrosion resistance.
  • Al-Mn-Si compounds are formed, and Mn and Si-depleted layers around the compound become potential dark areas, and corrosion progresses preferentially Therefore, it is presumed that the corrosion is dispersed and the corrosion resistance is improved.
  • Si is consumed for the formation of an Al-Mn-Si-based compound, so that the Si concentration is lowered and the brazing property is lowered. Therefore, when the brazing material contains Mn, the content of Mn in the brazing material is 2.0% by mass or less.
  • the content of Mn of a brazing filler material is preferably 1.2% by mass or less.
  • the brazing material Ti improves the corrosion resistance. Although the detailed mechanism by which Ti improves the corrosion resistance has not been elucidated, Al-Ti based compounds are formed, and the Ti-depleted layer around the compound becomes a shallow part of the potential, and the corrosion progresses preferentially, so the corrosion It is estimated that it is dispersed and the corrosion resistance is improved. However, if the content of Ti exceeds 0.3% by mass, coarse compounds are generated during melting and casting, and cracking tends to occur during material production, making production difficult. Therefore, when the brazing material contains Ti, the content of Ti in the brazing material is 0.3% by mass or less.
  • the content of Ti in the brazing material is preferably 0.2% by mass or less.
  • the brazing filler metal Cr improves the corrosion resistance. Although the detailed mechanism by which Cr improves the corrosion resistance has not been elucidated, Al-Cr and Al-Cr-Si compounds are formed, and the Cr and Si-depleted layer around the compound becomes a subtle part of the potential, which is preferred. It is assumed that the corrosion progresses and the corrosion is dispersed and the corrosion resistance is improved. However, if the content of Cr exceeds 0.3% by mass, coarse compounds are generated during melting and casting, and cracking tends to occur during material production, making production difficult. Therefore, when the brazing material contains Cr, the content of Cr in the brazing material is 0.3% by mass or less.
  • the content of Cr in the brazing material is preferably 0.2% by mass or less.
  • the brazing material Zr improves the corrosion resistance. Although the detailed mechanism by which Zr improves the corrosion resistance has not been elucidated, Al-Zr based compounds are formed, and the Zr-depleted layer around the compound becomes a subtle part of the potential, and the corrosion progresses preferentially, so the corrosion is It is estimated that it is dispersed and the corrosion resistance is improved. However, if the content of Zr exceeds 0.3% by mass, coarse compounds are generated during melting and casting, and cracking tends to occur during material production, making production difficult. Therefore, when the brazing material contains Zr, the content of Zr in the brazing material is 0.3% by mass or less.
  • the content of Zr of a brazing material is preferably 0.2% by mass or less.
  • Mn, Ti, Cr, and Zr of the above-mentioned brazing material are not limited to the case where the brazing material contains one or more kinds, that is, one or two kinds. , Does not interfere with the effects of the present invention.
  • Zn of brazing material 5.0% by mass or less
  • Zn of the brazing material can make the potential of the brazing material more strong, and by forming a potential difference with the core material, the corrosion resistance is improved by the sacrificial anticorrosion effect.
  • the content of Zn exceeds 5.0% by mass, premature fillet corrosion may occur. Therefore, when the brazing material contains Zn, the content of Zn in the brazing material is 5.0% by mass or less.
  • the content of Zn of a brazing material is preferably 4.0 mass% or less.
  • the brazing material Sr suppresses crystallization of coarse Si particles which causes melting of the core material at the time of heat addition to a brazing material by refining eutectic Si. However, if the content of Sr exceeds 0.10% by mass, the flowability of the wax may be reduced, and the formation of fillets may be insufficient at the time of heat addition to the wax. Therefore, when the brazing material contains Sr, the content of Sr is 0.10 mass% or less.
  • content of Sr of a brazing material has preferable 0.001 mass% or more.
  • the brazing material Na suppresses crystallization of coarse Si particles that causes melting of the core material at the time of heat addition to the brazing material.
  • the content of Na exceeds 0.050% by mass, the flowability of the wax may be reduced, and the formation of fillets may be insufficient at the time of heat addition to the wax. Therefore, when the brazing material contains Na, the content of Na is 0.050% by mass or less.
  • the brazing material Sb suppresses the crystallization of coarse Si particles, which causes melting of the core material at the time of heat addition, by refining eutectic Si. However, if the content of Sb exceeds 0.5% by mass, the fluidity of the wax may be reduced, and the formation of fillets may be insufficient at the time of heat addition to the wax. Therefore, when the brazing material contains Sb, the content of Sb is 0.5% by mass or less.
  • the brazing material is not limited to one or more kinds, that is, one or two kinds. It does not disturb the effect of the invention.
  • the rare earth element is a generic term of 17 elements of the 3rd group of the periodic table obtained by adding a lanthanoid (15 elements) to Sc and Y, and examples thereof include Sc, Y, La, Ce, Nd and Dy. And when making a brazing material contain a rare earth element, even if it contains 1 type, 2 or more types may be contained.
  • the method of containing the rare earth element in the brazing material is not particularly limited, two or more kinds of the rare earth elements can be simultaneously contained by, for example, addition of an Al-rare earth intermediate alloy or addition of misch metal.
  • the rare earth element of the brazing material reacts with the surface oxide film (Al 2 O 3 ) of the brazing material and the rare earth element or the oxide containing the rare earth element during heat addition of the brazing material to cause volume contraction of the surface oxide film of the brazing material. Improves the solderability because it destroys the oxide film. However, if the content of the rare earth elements (total amount when two or more are contained) exceeds 1.0% by mass, an oxide film containing the rare earth elements is excessively generated, and the effect of the oxide film destruction is reduced. Brazeability is reduced. Therefore, when the brazing material contains a rare earth element, the content of the rare earth element in the brazing material is 1.0% by mass or less.
  • the content of the rare earth element of the brazing material is preferably 0.001% by mass or more in order to further ensure the effect of the oxide film destruction obtained by containing the rare earth element.
  • the brazing material Li like the core material Li, further improves the brazeability.
  • the gettering action of Mg is achieved by the destruction of the oxide film formed on the surface of the brazing material during the brazing heat when the brazing heat is applied. It is speculated that it should be made more effective.
  • the content of Li exceeds 0.3% by mass, Li promotes the growth of the oxide film, and the brazing property is reduced. Therefore, when the brazing material contains Li, the content of Li is 0.3% by mass or less.
  • the content of Li in the brazing material is preferably 0.05% by mass or less.
  • the balance of the brazing material is preferably Al and unavoidable impurities.
  • Fe, Ca, Be, etc. may be contained in the range which does not disturb the effect of the present invention.
  • other elements: less than 0.01% by mass may be contained.
  • Ru if it does not exceed the above-mentioned predetermined content, not only when it is contained as an unavoidable impurity but also when it is added positively, it is acceptable without disturbing the effect of the present invention Ru.
  • Mn, Ti, Cr, Zr, Zn, Sr, Na, Sb, rare earth elements, and Li may be added actively, you may contain as an unavoidable impurity.
  • the thickness of the brazing sheet according to the present embodiment is not particularly limited, but when used for a tube material, it is preferably 0.5 mm or less, more preferably 0.4 mm or less, and 0.05 mm or more. Is preferred. And when using for a side support material, a header material, and a tank material, as for the thickness of the brazing sheet which concerns on this embodiment, 2.0 mm or less is preferable, 1.5 mm or less is more preferable, and 0.5 mm or more Is preferred. Moreover, when using for a fin material, the thickness of the brazing sheet according to the present embodiment is preferably 0.2 mm or less, more preferably 0.15 mm or less, and 0.01 mm or more. Is preferred. In addition, the thickness of the brazing sheet according to the present embodiment is particularly preferably 0.5 mm or more based on the viewpoint of securing an appropriate thickness of the brazing material without impairing basic characteristics such as strength after brazing.
  • the thickness of the brazing material of the brazing sheet according to the present embodiment is not particularly limited when applied to any plate material, 2 ⁇ m or more is preferable, and 50 ⁇ m or more is more preferable. By setting the thickness of the brazing material to a predetermined value or more, the absolute amount of Mg contained in the brazing material increases, and the getter effect can be more reliably exhibited.
  • the thickness of the brazing material is preferably 250 ⁇ m or less.
  • the clad ratio of the brazing material of the brazing sheet according to the present embodiment is not particularly limited when applied to any plate material, 40% or less is preferable, and 30% or less is more preferable. By making the cladding ratio of the brazing material equal to or less than a predetermined value, it is possible to avoid or suppress deterioration of basic characteristics such as strength after brazing and productivity.
  • the brazing sheet according to the present embodiment has been described by exemplifying the configuration of the two-layer structure shown in FIG. 1, the other configurations are not excluded.
  • the configuration of the brazing sheet according to the present embodiment is a sacrificial material (sacrificial material) on the other side of the core 2 shown in FIG. 1 (the side opposite to the side on which the brazing material 3 is provided) according to the user's request.
  • An anticorrosive material, a sacrificial material) or an intermediate material may be provided.
  • a brazing material may be further provided on the other side of the core material 2.
  • the brazing sheet according to the present embodiment is provided with brazing materials on both sides of the core material, if any one of the brazing materials satisfies the invention specific matters of the present invention, the other brazing material of the present invention It may be a brazing material which does not satisfy the invention specific matters (for example, an Al-Si alloy such as JIS 4045, 4047, 4343, an Al-Si-Zn alloy, an Al-Si-Mg alloy, etc.).
  • flux may be applied to the surface of the brazing material and brazing may be performed.
  • Any sacrificial material may be used as long as it has a known component composition capable of exhibiting the sacrificial corrosion preventing ability, and, for example, JIS 1000 pure aluminum and JIS 7000 Al-Zn alloy can be used. Moreover, various aluminum alloys can be used as an intermediate material according to the required characteristics. In addition, the alloy number shown to this specification is based on JIS H 4000: 2014 and JIS Z 3263: 2002.
  • the brazing sheet according to the present embodiment is excellent in corrosion resistance because the components and contents of the core material and the brazing material are specified. Therefore, according to the brazing sheet according to the present embodiment, the structure after brazing can correspond to various usage environments and atmospheres.
  • the manufacturing method of the brazing sheet which concerns on this embodiment is not specifically limited, For example, it manufactures by the manufacturing method of a well-known clad material. An example will be described below. First, melt and cast an aluminum alloy of each composition of core material and brazing material, and if necessary, carry out facing (surface smoothing treatment of ingot) and homogenization treatment, and then give each ingot obtain. Then, the ingot of the brazing material is hot-rolled to a predetermined thickness, combined with the ingot of the core material, and made into a clad material by hot-rolling according to a conventional method.
  • the clad material is subjected to cold rolling, intermediate annealing if necessary, and final cold rolling, and final annealing if necessary.
  • the homogenization treatment is preferably performed at 400 to 600 ° C. for 1 to 20 hours, and the intermediate annealing is preferably performed at 300 to 450 ° C. for 1 to 20 hours.
  • final annealing is preferably performed at 150 to 450 ° C. for 1 to 20 hours.
  • the tempering may be any of H1 n, H2 n, H3 n and O (JIS H 0001: 1998).
  • the manufacturing method of the aluminum alloy brazing sheet according to the present embodiment is as described above, but in each of the steps, the conventionally known conditions may be used for the conditions that are not specified, and the treatment in each of the steps is described. It is needless to say that the conditions can be appropriately changed as long as the effects obtained by
  • the brazing method of the aluminum alloy brazing sheet according to the present embodiment is so-called fluxless brazing which does not use a flux, and is a method of heating under a predetermined heating condition in an inert gas atmosphere.
  • Heating condition Heating rate
  • the temperature rising rate from 350 ° C. to 560 ° C. is preferably 1 ° C./min or more and 500 ° C./min or less.
  • the temperature rising rate from 350 ° C. to 560 ° C. is preferably 10 ° C./min or more.
  • the temperature rising rate from 350 ° C. to 560 ° C. is preferably 300 ° C./min or less.
  • the temperature lowering rate from 560 ° C. is not particularly limited, and may be, for example, 5 ° C./min or more and 1000 ° C./min or less.
  • the heating rate from 560 ° C. to the actual heating temperature is not particularly limited, the heating rate within the same range as the heating rate from 350 ° C. to 560 ° C. do it.
  • the temperature decrease rate from the actual heating temperature to 560 ° C. is not particularly limited, it may be a rate within the same range as the temperature decrease rate from 560 ° C.
  • the heating temperature (brazing melting temperature) when heating the brazing sheet according to the present embodiment is 560 ° C. or more and 620 ° C. or less at which the brazing material is appropriately melted, and is preferably 580 ° C. or more and 620 ° C. or less. And if the holding time in this temperature range is less than 10 seconds, the time required for the occurrence of brazing phenomenon (destruction of oxide film, reduction of oxygen concentration in the atmosphere, flow of molten solder to the joint) is insufficient there's a possibility that. Therefore, the holding time in a temperature range of 560 ° C. to 620 ° C. (preferably a temperature range of 580 ° C. to 620 ° C.) is preferably 10 seconds or more.
  • the holding time in a temperature range of 560 ° C. or more and 620 ° C. is preferably 30 seconds or more and 60 seconds or more. More preferable.
  • the upper limit of the holding time is not particularly limited, it may be 1500 seconds or less.
  • the atmosphere at the time of heating (brazing) the brazing sheet according to the present embodiment is an inert gas atmosphere, for example, a nitrogen gas atmosphere, an argon gas atmosphere, a helium gas atmosphere, or a mixed gas atmosphere in which a plurality of these gases are mixed. It is.
  • the inert gas atmosphere is preferably an atmosphere having as low an oxygen concentration as possible. Specifically, the oxygen concentration is preferably 50 ppm or less, more preferably 10 ppm or less.
  • the brazing method of the aluminum alloy brazing sheet which concerns on this embodiment does not need to evacuate an atmosphere, and can be performed by a normal pressure (atmospheric pressure).
  • the member to be joined is assembled so as to be in contact with the brazing material of the brazing sheet (assembly step) .
  • the brazing sheet may be formed into a desired shape and structure before the assembling step (forming step).
  • the brazing method of the brazing sheet according to the present embodiment (in other words, the method of manufacturing a structure in which the member to be joined is brazed to the brazing sheet) is as described above. Needless to say, conventionally known conditions may be used, and the conditions can be appropriately changed as long as the effects obtained by the treatment can be obtained.
  • the brazing method of the brazing sheet according to the present embodiment exhibits excellent corrosion resistance because the components and the contents of the core material and brazing material of the brazing sheet to be used are specified. Therefore, according to the brazing method of the brazing sheet according to the present embodiment, the structure after brazing can correspond to various usage environments and atmospheres.
  • the method of manufacturing a heat exchanger according to the present embodiment is a method including a brazing step of performing the above-described brazing method.
  • each process other than the brazing process for example, the forming process and the assembling process described above may be performed by a conventionally known method.
  • Example material preparation The core material of the composition shown in Table 1 was casted, subjected to homogenization treatment at 500 ° C. for 10 hours, and chamfered on both sides to a predetermined thickness. Further, a brazing material having a composition shown in Table 2 was cast, homogenized at 500 ° C. for 10 hours, subjected to hot rolling to a predetermined thickness, and a hot-rolled sheet was produced. Then, the core material and the brazing material were combined and subjected to hot rolling to obtain a clad material. Thereafter, cold rolling is performed to obtain a thickness of 0.4 mm (the clad ratio of the brazing material is 10%), final annealing at 400 ° C.
  • test material A65 and A66 it was set as the thickness different from the thickness mentioned above (The thickness of test material A65 is 0.6 mm, the clad ratio of brazing material is 10%, the thickness of test material A66 is The clad ratio of the brazing material was 0.8%, and the other preparation conditions were the same.
  • brazing equivalent heating The brazing equivalent heating was performed in a nitrogen atmosphere with an oxygen concentration of 10 ppm under the conditions of a temperature rising rate of 30 ° C./min from 350 to 560 ° C. and a holding time of 180 s in the 580 to 620 ° C. range.
  • the test materials shown in Table 4 carried out brazing equivalent heating under the conditions described in the table.
  • the temperature rising rate from 560 ° C. to the highest achieved temperature was the same as the temperature rising rate from 350 ° C. to 560 ° C., and the temperature lowering rate was 100 ° C./min.
  • a fixed clearance was set by sandwiching the stainless steel spacer 12 of ⁇ 2 mm between the upper plate 11 (the test piece (vertical width 25 mm ⁇ horizontal width 55 mm)) disposed.
  • the upper plate 11 was fixed by the wire 13.
  • symbol 14 in FIG. 2B is a "fillet.” And it joined by brazing on the conditions of the above-mentioned brazing equivalent heating. After brazing and bonding, the brazeability was quantified by measuring a length L (gap filling length) in which the gap between the lower and upper plates was filled.
  • this brazing property is the gap filling property, and is caused by the occurrence of thermal deformation of the brazing sheet and the members to be joined at the time of brazing, which are generated when the members are assembled. It is brazability which considered the crevice between member joint surfaces which arises.
  • those with a gap filling length of 45 mm or more are “ ⁇ ”
  • those with 35 mm or more and less than 45 mm are “ ⁇ ”
  • those with 25 mm or more and less than 35 mm are “O”
  • those with 15 mm or more and less than 25 mm ⁇ ” were evaluated as "x”
  • " ⁇ ", " ⁇ ", " ⁇ ", and “ ⁇ ” were evaluated as pass and "x" was evaluated as failure.
  • this immersion test heats OY water from room temperature to 88 ° C. in 1 hour and holds it at this 88 ° C. for 7 hours, then cools to room temperature in 1 hour and holds it at this room temperature for 15 hours A series of flow was made one cycle a day, and it was to be performed for 20 days. After the immersion test, even in the test surface, the area where corrosion is most prominent was observed with an optical microscope to determine the corrosion form and the corrosion depth.
  • Table 1 shows the composition of the core material
  • Table 2 shows the composition of the brazing material
  • Table 3 shows the composition of the test material
  • the evaluation result shows the composition of the test material, brazing The conditions and the evaluation results are shown.
  • the core material of Table 1 and the remaining part of the brazing material of Table 2 are Al and unavoidable impurities, and "-" in the table indicates that it does not contain (is below the detection limit).
  • the values of “0.13 C Mg ⁇ 0.3 ” and “0.58 C Mg 0.45 ” shown in Table 3 are values rounded to the third decimal place.
  • test materials A1 to A66 and B1 to B8 satisfied the requirements defined by the present invention. Therefore, the test materials A1 to A66 and B1 to B8 resulted in "Brazing property” to pass, and the test materials A1 to A66 resulted in "Corrosion resistance” also to pass.
  • C Bi 0.13C Mg -0.3 in Fig 3
  • test materials A100 to A114 did not satisfy the requirements defined by the present invention, and as a result, the result was that the brazing property failed or that edge cracking occurred during hot rolling.
  • the details are as follows.
  • the test material A100 has a large value of C 2 Mg , and the generation of MgO on the surface of the brazing material is promoted, and as a result, the brazing property becomes “x”.
  • the test material A101 has a large value of C 2 Bi , and that the oxide film based on the Bi simplex compound has suppressed the gettering action, and further, the value of C 2 Mg is small and the gettering action is insufficient As a result, the brazability became "x”.
  • the test material A102 has a small value of C 2 Bi and can not sufficiently trap Mg, thereby promoting the formation of MgO on the surface of the brazing material. As a result, the brazing property is “ It became "x”.
  • the test material A103 has a small value of C 2 Bi and can not sufficiently trap Mg, thereby promoting the formation of MgO on the surface of the brazing material.
  • the brazing property is “ It became "x”.
  • the test material A104 has a small value of C 2 Bi and can not trap Mg sufficiently, thereby promoting the formation of MgO on the surface of the brazing material, and as a result, the brazing property is “ It became "x”.
  • the test material A105 has a large value of C 2 Bi , and the oxide film based on the Bi simplex compound has suppressed the getter action, and as a result, the brazing property becomes “x”.
  • test material A106 has a large value of C 2 Bi , and the oxide film based on the Bi simplex compound has suppressed the getter action, and as a result, the brazing property becomes “x”.
  • test material A107 has a large value of C 2 Bi , and the oxide film based on the Bi simplex compound has suppressed the getter action, and as a result, the brazing property becomes “x”.
  • sample material A108 has a small value of C 2 Bi and can not sufficiently trap Mg, thereby promoting the formation of MgO on the surface of the brazing material. As a result, the brazing property is “ ⁇ It became ".
  • sample material A109 has a small value of C 2 Bi and can not trap Mg sufficiently and that the generation of MgO on the surface of the brazing material is promoted, and further, the value of C 2 Mg is small It was assumed that the gettering action was insufficient, and as a result, the brazeability was "x". It is assumed that the test material A110 has a small value of C Bi and can not sufficiently trap Mg, and the generation of MgO on the surface of the brazing material is promoted, and as a result, the brazing property is “ It became "x”.
  • the sample material A111 had a large value of C 2 Mg , and was assumed to promote the formation of MgO on the surface of the brazing material, and as a result, the brazing property became “x”.
  • the sample material A112 is assumed to have a small value of C 2 Bi and to be unable to trap Mg sufficiently and to promote the formation of MgO on the surface of the brazing material. Furthermore, the value of C 2 Mg is large. It was assumed that the formation of MgO on the surface of the brazing material was promoted, and as a result, the brazing property became “x”.
  • test material A113 has a large value of C 2 Bi
  • oxide film based on the Bi simplex compound has suppressed the gettering action, and further, the value of C 2 Mg is small and the gettering action is insufficient As a result, the brazability became "x".
  • the sample material A114 has a small value of CMg-b , and it is assumed that the Bi simplex compound melts during hot rolling and induces hot rolling cracking (ear crack).
  • the method of the present invention it is possible to improve the brazeability of fluxless brazing in an inert gas atmosphere which is not a vacuum, and is particularly useful for the production of a heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Laminated Bodies (AREA)

Abstract

心材とろう材とを備えるアルミニウム合金ブレージングシートのろう付方法であって、ろう材のSiの含有量をCSi、ろう材のBiの含有量をCBi、ろう材のMgの含有量をCMg-b、心材のMgの含有量をCMg-c、CMg=CMg-b+CMg-c/2とした場合に、3≦CSi≦13、0.13CMg -0.3≦CBi≦0.58CMg 0.45、CMg-b≧0.1、0.2≦CMg≦1.1、を満たすアルミニウム合金ブレージングシートを不活性ガス雰囲気においてフラックスを用いずに560~620℃の加熱温度によってろう付する。

Description

アルミニウム合金ブレージングシートのろう付方法、及び、熱交換器の製造方法
 本発明は、アルミニウム合金ブレージングシートのろう付方法、及び、熱交換器の製造方法に関し、特に、フラックスを使用しないろう付方法、いわゆるフラックスレスろう付方法、及び、フラックスレスろう付方法を用いた熱交換器の製造方法に関する。
 アルミニウム合金製の熱交換器等の部材をろう付するにあたり、真空中において、フラックスを使用せずにろう付を行う真空ろう付という方法が存在する。
 この真空ろう付は、フラックスを使用するフラックスろう付と比較すると、フラックスを塗布する処理が不要、フラックスの塗布量が適切でないことに伴った問題発生の回避等、様々なメリットがある。
 しかしながら、真空ろう付は、ろう付時の炉内を真空にした状態で加熱を施す高価な真空炉が必要となるため、作業コストが高くなってしまうとともに、真空にした炉内の制御が難しいことから、作業の困難性も高まってしまう。
 このような問題を解決するため、真空中ではない雰囲気下において、フラックスを使用しないフラックスレスろう付に関して研究が進められ、以下のような技術が提案されている。
 具体的には、特許文献1において、質量%で、Mgを0.1~5.0%、Siを3~13%含有するAl-Si系ろう材が最表面に位置するアルミニウムクラッド材を用いる細流路インナーフィンを有する熱交換器のろう付け方法であって、前記Al-Si系ろう材に含まれるSi粒子は、円相当径で0.8μm以上の径をもつものの数の内、1.75μm以上の径のものの数が25%以上であり、減圧を伴わない非酸化性雰囲気で、前記Al-Si系ろう材とろう付け対象部材とを接触密着させ、加熱温度559~620℃において、前記アルミニウムクラッド材と前記ろう付け対象部材とを接合することを特徴とする細流路インナーフィンを有する熱交換器のフラックスレスろう付け方法が開示されている。
日本国特許第5619538号公報
 特許文献1に係る技術は、真空ではない不活性ガス雰囲気におけるフラックスレスろう付に関する技術であり、所定の効果について検討している。
 しかしながら、特許文献1に係る技術では、十分なろう付性を発揮できない。詳細には、特許文献1の実施例1~23、29~58によると、ろう材に0.1~3質量%のMgを含有させており、このMgがろう付加熱時の昇温過程において、ろう材表面でのMgOの生成を促進させてしまう。その結果、特許文献1の実施例1~23、29~58によると、ろう材表面のMgOがろう溶融時に障害となって、ろう付性を低下させてしまうおそれがある。
 なお、特許文献1の実施例24~28ではろう材にBiを含有させているが、実施例24~26はろう材のBiの含有量が少なく、実施例27、28はBiの含有量が多いため、いずれの場合もろう付性を十分には発揮できない。
 そこで、本発明は、優れたろう付性を発揮することができるアルミニウム合金ブレージングシートのろう付方法、及び、熱交換器の製造方法を提供することを課題とする。
 すなわち、本発明に係るアルミニウム合金ブレージングシートのろう付方法は、心材と、前記心材の一方の面に設けられるろう材と、を備えるアルミニウム合金ブレージングシートのろう付方法であって、前記心材は、Mg:2.0質量%以下(0質量%を含む)であるアルミニウム合金からなり、前記ろう材は、Si、Bi、Mgを含有するアルミニウム合金からなり、前記ろう材のSiの含有量をCSi質量%とし、前記ろう材のBiの含有量をCBi質量%とし、前記ろう材のMgの含有量をCMg-b質量%とし、前記心材のMgの含有量をCMg-c質量%とし、CMg=CMg-b+CMg-c/2とした場合に、3≦CSi≦13、0.13CMg -0.3≦CBi≦0.58CMg 0.45、CMg-b≧0.1、0.2≦CMg≦1.1、を満たし、前記アルミニウム合金ブレージングシートを不活性ガス雰囲気においてフラックスを用いずに560~620℃の加熱温度によってろう付する。
 このように、本発明に係るアルミニウム合金ブレージングシートのろう付方法は、使用するアルミニウム合金ブレージングシートの心材及びろう材の成分の含有量、例えば、心材及びろう材のMgの含有量とろう材のBiの含有量との関係等が特定されていることから、心材及びろう材のMgがろう材のBiと反応する(トラップされる)ことで、ろう材表面でのMgOの生成が抑制される。さらに、ろう付加熱時のろう溶融時において、Biと反応したMgは母相(ろう材)に溶解するため、Mgの蒸発が促進され、ろう材表面に形成された酸化膜がMgの蒸発時に好適に破壊されるとともに、このMgが雰囲気中の酸素と反応することで雰囲気の酸素濃度が低下し溶融ろうの再酸化が抑制される。また、母相に溶解したBiがろうの流動性を高める。その結果、本発明に係るアルミニウム合金ブレージングシートのろう付方法は、優れたろう付性を発揮する。
 また、本発明に係るアルミニウム合金ブレージングシートのろう付方法は、前記ろう材が、Mn:2.0質量%以下、Ti:0.3質量%以下、Cr:0.3質量%以下、Zr:0.3質量%以下のうちの1種以上をさらに含有していてもよい。また、本発明に係るアルミニウム合金ブレージングシートのろう付方法は、前記ろう材が、Zn:5.0質量%以下をさらに含有していてもよい。また、本発明に係るアルミニウム合金ブレージングシートのろう付方法は、前記ろう材が、Sr:0.10質量%以下、Na:0.050質量%以下、Sb:0.5質量%以下、のうちの1種以上をさらに含有していてもよい。また、本発明に係るアルミニウム合金ブレージングシートのろう付方法は、前記ろう材が、希土類元素:1.0質量%以下をさらに含有していてもよい。
 このように、本発明に係るアルミニウム合金ブレージングシートのろう付方法は、ろう材がMn、Ti、Cr、Zr、Zn、Sr、Na、Sb、希土類元素を含有していても、優れたろう付性を発揮することができる。
 また、本発明に係るアルミニウム合金ブレージングシートのろう付方法は、前記ろう材が、Li:0.3質量%以下をさらに含有していてもよい。
 このように、本発明に係るアルミニウム合金ブレージングシートのろう付方法は、前記ろう材がLiを含有することにより、ろう付性をさらに向上させることができる。
 また、本発明に係るアルミニウム合金ブレージングシートのろう付方法は、前記心材が、Mn:2.5質量%以下をさらに含有していてもよい。また、本発明に係るアルミニウム合金ブレージングシートのろう付方法は、前記心材が、Si:1.2質量%以下をさらに含有していてもよい。また、本発明に係るアルミニウム合金ブレージングシートのろう付方法は、前記心材が、Cu:3.0質量%以下をさらに含有していてもよい。また、本発明に係るアルミニウム合金ブレージングシートのろう付方法は、前記心材が、Fe:1.5質量%以下をさらに含有していてもよい。また、本発明に係るアルミニウム合金ブレージングシートのろう付方法は、前記心材が、Ti:0.5質量%以下、Cr:0.5質量%以下、Zr:0.5質量%以下の1種以上をさらに含有していてもよい。
 このように、本発明に係るアルミニウム合金ブレージングシートのろう付方法は、心材がMn、Si、Cu、Fe、Ti、Cr、Zrを含有していても、優れたろう付性を発揮することができる。
 また、本発明に係るアルミニウム合金ブレージングシートのろう付方法は、前記心材が、Li:0.3質量%以下をさらに含有していてもよい。
 このように、本発明に係るアルミニウム合金ブレージングシートのろう付方法は、前記心材がLiを含有することにより、ろう付性をさらに向上させることができる。
 また、本発明に係るアルミニウム合金ブレージングシートのろう付方法は、前記ろう材の厚さが50μm以上であってもよい。
 このように、本発明に係るアルミニウム合金ブレージングシートのろう付方法は、ろう材の厚さが所定値以上であることにより、優れたろう付性をより確実に発揮することができる。
 本発明に係る熱交換器の製造方法は、前記したろう付方法を実施するろう付工程を含む。
 このように、本発明に係る熱交換器の製造方法は、所定のろう付方法を実施するろう付工程を含むことにより、優れたろう付性を発揮させつつ熱交換器を製造することができる。
 本発明に係るアルミニウム合金ブレージングシートのろう付方法は、使用するアルミニウム合金ブレージングシートの心材及びろう材の各成分の含有量が特定されていることによって、優れたろう付性を発揮することができる。
 本発明に係る熱交換器の製造方法は、使用するアルミニウム合金ブレージングシートの心材及びろう材の各成分の含有量が特定されていることによって、優れたろう付性を発揮させつつ熱交換器を製造することができる。
本実施形態に係るアルミニウム合金ブレージングシートの断面図である。 ろう付性評価の試験方法を説明するための図であり、下材と上材とを組み合わせた状態の斜視図である。 ろう付性評価の試験方法を説明するための図であり、下材と上材とを組み合わせた状態の側面図である。 一部の実施例について、ろう材のBiの含有量とろう材及び心材のMgの含有量との関係を示すグラフである。 一部の実施例について、ろう材のMgの含有量と心材のMgの含有量との関係を示すグラフである。
 以下、適宜図面を参照して、本発明に係るアルミニウム合金ブレージングシートのろう付方法、及び、熱交換器の製造方法を実施するための形態(実施形態)について説明する。
 まずは、本実施形態に係るアルミニウム合金ブレージングシートのろう付方法(以下、適宜「ろう付方法」という)に使用するアルミニウム合金ブレージングシート(以下、適宜「ブレージングシート」という)について説明する。
[アルミニウム合金ブレージングシート]
 本実施形態に係るブレージングシートの構成は、例えば、図1に示すように、心材2と、心材2の一方の面に設けられるろう材3と、を備える。
 そして、本実施形態に係るブレージングシート1は、心材2、ろう材3の各成分の含有量が適宜特定されている。
 以下、本実施形態に係るブレージングシートの心材及びろう材の各成分について数値限定した理由を詳細に説明する。
[心材]
 本実施形態に係るブレージングシートの心材は、アルミニウム合金(純アルミニウムも含む)からなり、詳細には、Mg:2.0質量%以下(0質量%を含む)であるアルミニウム合金からなる。このようなアルミニウム合金としては、JIS 2000系のAl-Cu系合金、JIS 3000系のAl-Mn系合金、JIS 5000系のAl-Mg系合金、JIS 6000系のAl-Mg-Si系合金等を用いることができる。
 また、本実施形態に係るブレージングシートの心材は、Mn、Si、Cu、Fe、Ti、Cr、Zr、Liをさらに適宜含有していてもよい。
(心材のMg:2.0質量%以下)
 心材のMgは、強度を向上させる。また、心材のMgは、ろう付加熱時の昇温過程にろう材へ拡散し、ろう溶融温度で雰囲気中に蒸発し、雰囲気中の酸素と反応する。その結果、ろう材表面に形成された酸化膜がMgの蒸発時に好適に破壊されるとともに、雰囲気中の酸素濃度が低下し溶融ろうの再酸化が抑制される(ゲッター作用)ことによって、ろう付性を向上させる。なお、ろう材のMgもゲッター作用を奏することから、ろう材のMgの含有量が多い場合は、心材のMgの含有量は少なくてもよく、0質量%であってもよい。
 一方、Mgの含有量が2.0質量%を超えると、ろう材のBiによってMgをトラップしきれず、ろう材表面でのMgOの生成が促進されてしまい、ろう付性が低下する。
 したがって、心材のMgの含有量は、2.0質量%以下(0質量%を含む)である。
(心材のMn:2.5質量%以下)
 心材のMnは、強度を向上させる。ただし、Mnの含有量が2.5質量%を超えると、Al-Mn系化合物が多くなり、材料製造工程中に割れが生じるおそれがある。
 したがって、心材にMnを含有させる場合、Mnの含有量は、2.5質量%以下である。
 なお、Mnを含有させることによって得られる強度の向上という効果をより確実なものとするため、心材のMnの含有量は、0.5質量%以上が好ましい。
(心材のSi:1.2質量%以下)
 心材のSiは、強度を向上させる。ただし、Siの含有量が1.2質量%を超えると、心材の固相線温度が低下するため、耐エロージョン性が低下するとともに、ろう流動性が低下するため、ろう付性が低下する。
 したがって、心材にSiを含有させる場合、Siの含有量は1.2質量%以下である。
 なお、Siを含有させることによって得られる強度の向上という効果をより確実なものとするため、心材のSiの含有量は、0.05質量%以上が好ましい。
(心材のCu:3.0質量%以下)
 心材のCuは、心材の電位を貴化させ耐食性を向上させる。ただし、Cuの含有量が3.0質量%を超えると、心材の固相線温度が低下するため、耐エロージョン性が低下するとともに、ろう流動性が低下するため、ろう付性が低下する。
 したがって、心材にCuを含有させる場合、Cuの含有量は3.0質量%以下である。
 なお、Cuを含有させることによって得られる耐食性の向上という効果をより確実なものとするため、心材のCuの含有量は、0.05質量%以上が好ましい。
(心材のFe:1.5質量%以下)
 心材のFeは、固溶強化作用により強度を向上させる。ただし、Feの含有量が1.5質量%を超えると、粗大な金属間化合物が形成されることによって、成形性を低下させるおそれがある。
 したがって、心材にFeを含有させる場合、Feの含有量は、1.5質量%以下である。
 なお、Feを含有させることによって得られる強度の向上という効果をより確実なものとするため、心材のFeの含有量は、0.05質量%以上が好ましい。
(心材のTi:0.5質量%以下)
 心材のTiは、心材の電位を貴化させ耐食性を向上させる。ただし、Tiの含有量が0.5質量%を超えると、粗大な金属間化合物が形成されることによって、成形性を低下させるおそれがある。
 したがって、心材にTiを含有させる場合、Tiの含有量は、0.5質量%以下である。
 なお、Tiを含有させることによって得られる耐食性の向上という効果をより確実なものとするため、心材のTiの含有量は、0.01質量%以上が好ましい。
(心材のCr:0.5質量%以下)
 心材のCrは、Al-Cr系の分散粒子を形成し、心材の強度を向上させる。ただし、Crの含有量が0.5質量%を超えると、粗大な金属間化合物が形成されることによって、成形性を低下させるおそれがある。
 したがって、心材にCrを含有させる場合、Crの含有量は、0.5質量%以下である。
 なお、Crを含有させることによって得られる強度の向上という効果をより確実なものとするため、心材のCrの含有量は、0.01質量%以上が好ましい。
(心材のZr:0.5質量%以下)
 心材のZrは、Al-Zr系の分散粒子を形成し、心材の強度を向上させる。ただし、Zrの含有量が0.5質量%を超えると、粗大な金属間化合物が形成されることによって、成形性を低下させるおそれがある。
 したがって、心材にZrを含有させる場合、Zrの含有量は、0.5質量%以下である。
 なお、Zrを含有させることによって得られる強度の向上という効果をより確実なものとするため、心材のZrの含有量は、0.01質量%以上が好ましい。
 前記した心材のTi、Cr、Zrは、前記した上限値を超えなければ、心材に1種以上、つまり1種が含まれる場合だけでなく、2種以上が含まれていても、本発明の効果を妨げない。
(心材のLi:0.3質量%以下)
 心材のLiは、ろう付性をさらに向上させる。Liがろう付性を向上させる詳細なメカニズムは解明できていないものの、ろう付加熱時のろう溶融時において、Liがろう材表面に形成された酸化膜を破壊することにより、Mgのゲッター作用をさらに好適に発揮させるのではないかと推測する。ただし、Liの含有量が0.3質量%を超えると、ろう付け加熱時の昇温過程において、ろう材表層部へLiが拡散し酸化膜の成長を促進するためろう付性が低下する。
 したがって、心材にLiを含有させる場合、Liの含有量は、0.3質量%以下である。
 なお、酸化膜の成長を抑制するという観点から、心材のLiの含有量は0.05質量%以下が好ましい。
(心材の残部:Al及び不可避的不純物)
 心材の残部はAl及び不可避的不純物であるのが好ましい。そして、心材の不可避的不純物としては、V、Ni、Ca、Na、Sr等が挙げられ、これらの元素は本発明の効果を妨げない範囲で含有されていてもよい。詳細には、V:0.05質量%以下、Ni:0.05質量%以下、Ca:0.05質量%以下、Na:0.05質量%以下、Sr:0.05質量%以下、その他の元素:0.01質量%未満の範囲で含有されていてもよい。そして、これらについては、前記した所定の含有量を超えなければ、不可避的不純物として含有される場合だけではなく、積極的に添加される場合であっても、本発明の効果を妨げず許容される。
 また、前記したMg、Mn、Si、Cu、Fe、Ti、Cr、Zr、Liについては、積極的に添加してもよいが、不可避的不純物として含まれていてもよい。
[ろう材]
 本実施形態に係るブレージングシートのろう材は、アルミニウム合金からなり、詳細には、Si、Bi、Mgを含有するアルミニウム合金からなる。このようなアルミニウム合金としては、JIS 4000系のAl-Si系合金(Al-Si-Mg-Bi系合金)やAl-Si-Zn系合金(Al-Si-Zn-Mg-Bi系合金)等を用いることができる。
 また、本実施形態に係るブレージングシートのろう材は、Mn、Ti、Cr、Zr、Zn、Sr、Na、Sb、希土類元素、Liをさらに適宜含有してもよい。
(ろう材のSi:3質量%以上13質量%以下、3≦CSi≦13)
 ろう材のSiは、ろう材の固相線温度を低下させることによって、ろう付加熱温度での液相率を向上させてろうの流動性を高める。Siの含有量が3質量%以上であれば、ろうの流動性が高まり、ろう付性の向上という効果が得られる。一方、Siの含有量が13質量%を超えると、粗大Si粒が形成するとともに、流動ろうが過剰に生成することにより、心材の溶融などのろう付不良が発生するおそれがある。
 したがって、ろう材のSiの含有量は、3質量%以上13質量%以下である。そして、ろう材のSiの含有量をCSi質量%とした場合、3≦CSi≦13である。
(ろう材のBi:0.13CMg -0.3≦CBi≦0.58CMg 0.45
 ろう材のBiは、心材及びろう材のMgと反応し、ろう溶融温度以下ではほとんど溶解しないMg-Bi系化合物(例えば、BiMg)を生成する。その結果、材料製造工程、及び、ろう付加熱時のろう溶融開始温度までの昇温過程において、Mgのろう材表層部への拡散を抑え、ろう材表面におけるMgOの生成・成長を抑制し(Mgのトラップ作用)、ろう付性を向上させる。また、ろう付加熱時のろう溶融温度では、Mg-Bi系化合物は母相(ろう材)に溶解するため、Mgの蒸発が促進される。そして、ろう材表面に形成された酸化膜がMgの蒸発時に好適に破壊されるとともに、このMgが雰囲気中の酸素と反応することで雰囲気の酸素濃度が低下し溶融ろうの再酸化を抑制する作用(ゲッター作用)が向上し、その結果、ろう付性を向上させる。さらに、Biは、ろうの流動性を高め、ろう付性を向上させる。
 前記した効果を適切に発揮させるためには、ろう材のBiの含有量は、心材及びろう材のMgの含有量と関係において、非常に精緻に特定する必要がある。
 詳細には、ろう材のMgの含有量をCMg-b質量%、心材のMgの含有量をCMg-c質量%、CMg=CMg-b+CMg-c/2とした場合、ろう材のBiの含有量が、0.13CMg -0.3未満であると、Mgを十分にトラップできないとともに、ろう材中にフリーなMgが多くなる結果、ろう材表面でMgOが生成されてしまう。加えて、ろう材のBiの含有量が、0.13CMg -0.3未満であると、ろう流動性が低下し、ろう付性が低下する。
 一方、ろう材のBiの含有量が、0.58CMg 0.45を超えても、ろう付性が低下する。この点について、詳細なメカニズムは解明できていないものの、Mgの含有量に対してBiの含有量が多くなると、低融点のBi単体化合物が増え、この化合物がろう付加熱時の低温域から溶融し始め濡れ拡がることで、酸化膜を形成・成長させ、この酸化膜がゲッター作用を抑制してしまうのではないかと推測する。
 したがって、ろう材のBiの含有量は、0.13CMg -0.3以上、0.58CMg 0.45以下である。そして、ろう材のBiの含有量をCBi質量%とした場合、0.13CMg -0.3≦CBi≦0.58CMg 0.45である。
 「0.13CMg -0.3≦CBi≦0.58CMg 0.45」の係数については、前記のとおり、効果を奏する範囲を特定するためのものであり、多くの実験の結果から導いたものである。
(ろう材のMg:0.1質量%以上、CMg-b≧0.1)
 ろう材のMgは、心材のMgと同様、ろう付加熱時のろう溶融温度で雰囲気中に蒸発し、雰囲気中の酸素と反応する。その結果、ろう材表面に形成された酸化膜がMgの蒸発時に好適に破壊されるとともに、雰囲気中の酸素濃度が低下し溶融ろうの再酸化が抑制される(ゲッター作用)ことによって、ろう付性を向上させる。なお、心材のMgもゲッター作用を奏することから、心材のMgの含有量が多い場合は、ろう材のMgの含有量は少なくてもよい。
 しかしながら、Mgの含有量が0.1質量%未満であると、熱間圧延時に耳割れが生じやすくなり、ブレージングシートの歩留まりが悪くなってしまう。この点について、詳細なメカニズムは解明できていないものの、ろう材のMgの含有量が少ないと、低融点のBi単体化合物が増え、この化合物が熱間圧延時に溶融することで、熱間圧延割れを誘発させるのではないかと推測する。なお、Mgの含有量が0.1質量%以上であると、MgがBiと反応し、熱間圧延時にも溶融し難い高融点のBiMgが生成されることにより、熱間圧延割れの発生を回避することができる。
 したがって、ろう材のMgの含有量は、0.1質量%以上である。そして、ろう材のMgの含有量をCMg-b質量%とした場合、CMg-b≧0.1である。
(ろう材のMgと心材のMg:0.2≦CMg≦1.1)
 ろう材のMgと心材のMgは、前記したとおり、いずれもゲッター作用を発揮することによって、ろう付性を向上させる。
 ただ、ろう材のMgと心材のMgとでは、ゲッター作用への寄与度等が異なるため、ゲッター作用に基づくろう付性の向上という効果を適切に発揮させるためには、ろう材のMgと心材のMgとの含有量を精緻に特定する必要がある。
 ろう材のMgの含有量をCMg-b質量%、心材のMgの含有量をCMg-c質量%、CMg=CMg-b+CMg-c/2とした場合、CMgが0.2未満であると、Mgによるゲッター作用が不十分となり、ろう付性が低下するおそれがある。一方、CMgが1.1を超えると、ろう材のBiによってMgをトラップしきれず、ろう材表面でのMgOの生成が促進されてしまい、ろう付性が低下するおそれがある。
 したがって、0.2≦CMg≦1.1である。
 なお、Mgを含有させることによって得られるゲッター作用をより確実なものとするため、CMgは、0.3以上が好ましい。また、ろう付性の低下を抑制する観点から、CMgは、0.9以下が好ましい。
 「CMg=CMg-b+CMg-c/2」の係数については、ろう材のMgと心材のMgとのゲッター作用への寄与度等を考慮したものであるとともに、前記のとおり、効果を奏する範囲を特定するためのものであり、多くの実験の結果から導いたものである。
(ろう材のMn:2.0質量%以下)
 ろう材のMnは、耐食性を向上させる。Mnが耐食性を向上させる詳細なメカニズムは解明できていないものの、Al-Mn-Si系化合物が生成され、化合物周囲のMn、Si欠乏層が電位の卑な部分となり、優先的に腐食が進行するため、腐食が分散され、耐食性が向上すると推測する。ただし、Mnの含有量が2.0質量%を超えると、Al-Mn-Si系化合物の生成にSiが費やされるため、Si濃度が低下し、ろう付性が低下する。
 したがって、ろう材にMnを含有させる場合、ろう材のMnの含有量は、2.0質量%以下である。
 なお、Mnを含有させることによって得られる耐食性の向上という効果をより確実なものとするため、ろう材のMnの含有量は、0.05質量%以上が好ましい。また、Si濃度の低下に伴うろう付性の低下を抑制するという観点から、ろう材のMnの含有量は、1.2質量%以下が好ましい。
(ろう材のTi:0.3質量%以下)
 ろう材のTiは、耐食性を向上させる。Tiが耐食性を向上させる詳細なメカニズムは解明できていないものの、Al-Ti系化合物が生成され、化合物周囲のTi欠乏層が電位の卑な部分となり、優先的に腐食が進行するため、腐食が分散され、耐食性が向上すると推測する。ただし、Tiの含有量が0.3質量%を超えると、溶解、鋳造時に粗大な化合物が生成され、材料製造時に割れが生じやすくなり、製造が困難となる。
 したがって、ろう材にTiを含有させる場合、ろう材のTiの含有量は、0.3質量%以下である。
 なお、Tiを含有させることによって得られる耐食性の向上という効果をより確実なものとするため、ろう材のTiの含有量は、0.05質量%以上が好ましい。また、材料製造時の割れの発生を抑制するという観点から、ろう材のTiの含有量は、0.2質量%以下が好ましい。
(ろう材のCr:0.3質量%以下)
 ろう材のCrは、耐食性を向上させる。Crが耐食性を向上させる詳細なメカニズムは解明できていないものの、Al-Cr系やAl-Cr-Si系化合物が生成され、化合物周囲のCr、Si欠乏層が電位の卑な部分となり、優先的に腐食が進行するため、腐食が分散され、耐食性が向上すると推測する。ただし、Crの含有量が0.3質量%を超えると、溶解、鋳造時に粗大な化合物が生成され、材料製造時に割れが生じやすくなり、製造が困難となる。
 したがって、ろう材にCrを含有させる場合、ろう材のCrの含有量は、0.3質量%以下である。
 なお、Crを含有させることによって得られる耐食性の向上という効果をより確実なものとするため、ろう材のCrの含有量は、0.05質量%以上が好ましい。また、材料製造時の割れの発生を抑制するという観点から、ろう材のCrの含有量は、0.2質量%以下が好ましい。
(ろう材のZr:0.3質量%以下)
 ろう材のZrは、耐食性を向上させる。Zrが耐食性を向上させる詳細なメカニズムは解明できていないものの、Al-Zr系化合物が生成され、化合物周囲のZr欠乏層が電位の卑な部分となり、優先的に腐食が進行するため、腐食が分散され、耐食性が向上すると推測する。ただし、Zrの含有量が0.3質量%を超えると、溶解、鋳造時に粗大な化合物が生成され、材料製造時に割れが生じやすくなり、製造が困難となる。
 したがって、ろう材にZrを含有させる場合、ろう材のZrの含有量は、0.3質量%以下である。
 なお、Zrを含有させることによって得られる耐食性の向上という効果をより確実なものとするため、ろう材のZrの含有量は、0.05質量%以上が好ましい。また、材料製造時の割れの発生を抑制するという観点から、ろう材のZrの含有量は、0.2質量%以下が好ましい。
 前記したろう材のMn、Ti、Cr、Zrは、前記した上限値を超えなければ、ろう材に1種以上、つまり1種が含まれる場合だけでなく、2種以上が含まれていても、本発明の効果を妨げない。
(ろう材のZn:5.0質量%以下)
 ろう材のZnは、ろう材の電位を卑にすることができ、心材との電位差を形成することで犠牲防食効果により耐食性を向上させる。ただし、Znの含有量が5.0質量%を超えると、フィレットの早期腐食を引き起こすおそれがある。
 したがって、ろう材にZnを含有させる場合、ろう材のZnの含有量は、5.0質量%以下である。
 なお、Znを含有させることによって得られる耐食性の向上という効果をより確実なものとするために、ろう材のZnの含有量は、0.1質量%以上が好ましい。また、フィレットの早期腐食の発生を抑制するという観点から、ろう材のZnの含有量は、4.0質量%以下が好ましい。
(ろう材のSr:0.10質量%以下)
 ろう材のSrは、共晶Siを微細化させることにより、ろう付加熱時における心材の溶融の原因となる粗大なSi粒の晶出を抑制する。ただし、Srの含有量が0.10質量%を超えると、ろうの流動性が低下し、ろう付加熱時にフィレットの形成が不十分となるおそれがある。
 したがって、ろう材にSrを含有させる場合、Srの含有量は、0.10質量%以下である。
 なお、Srを含有させることによって得られる共晶Siの微細化という効果をより確実なものとするため、ろう材のSrの含有量は、0.001質量%以上が好ましい。
(ろう材のNa:0.050質量%以下)
 ろう材のNaは、共晶Siを微細化させることにより、ろう付加熱時における心材の溶融の原因となる粗大なSi粒の晶出を抑制する。ただし、Naの含有量が0.050質量%を超えると、ろうの流動性が低下し、ろう付加熱時にフィレットの形成が不十分となるおそれがある。
 したがって、ろう材にNaを含有させる場合、Naの含有量は、0.050質量%以下である。
 なお、Naを含有させることによって得られる共晶Siの微細化という効果をより確実なものとするため、ろう材のNaの含有量は、0.0001質量%以上が好ましい。
(ろう材のSb:0.5質量%以下)
 ろう材のSbは、共晶Siを微細化させることにより、ろう付加熱時における心材の溶融の原因となる粗大なSi粒の晶出を抑制する。ただし、Sbの含有量が0.5質量%を超えると、ろうの流動性が低下し、ろう付加熱時にフィレットの形成が不十分となるおそれがある。
 したがって、ろう材にSbを含有させる場合、Sbの含有量は、0.5質量%以下である。
 なお、Sbを含有させることによって得られる共晶Siの微細化という効果をより確実なものとするため、ろう材のSbの含有量は、0.001質量%以上が好ましい。
 前記したろう材のSr、Na、Sbは、前記した上限値を超えなければ、ろう材に1種以上、つまり1種が含まれる場合だけでなく、2種以上が含まれていても、本発明の効果を妨げない。
(ろう材の希土類元素:1.0質量%以下)
 希土類元素とは、周期表3族のうちScとYにランタノイド(15元素)を加えた17元素の総称であり、例えば、Sc、Y、La、Ce、Nd、Dyなどが挙げられる。そして、ろう材に希土類元素を含有させる場合、1種が含まれていても、2種以上が含まれていてもよい。なお、ろう材への希土類元素の含有方法は、特に限定されないものの、例えば、Al-希土類系の中間合金の添加、あるいはミッシュメタルの添加によって2種類以上の希土類元素を同時に含有させることができる。
 ろう材の希土類元素は、ろう付加熱時に、ろう材の表面酸化膜(Al)と希土類元素あるいは希土類元素を含む酸化物が反応し、ろう材の表面酸化膜の体積収縮を生じさせて酸化膜を破壊するため、ろう付性を向上させる。ただし、希土類元素の含有量(2種以上が含まれる場合は総量)が1.0質量%を超えると、希土類元素を含む酸化膜が過剰に生成され、酸化膜破壊の効果が低減するため、ろう付性が低下する。
 したがって、ろう材に希土類元素を含有させる場合、ろう材の希土類元素の含有量は、1.0質量%以下である。
 なお、希土類元素を含有させることによって得られる酸化膜破壊という効果をより確実なものとするため、ろう材の希土類元素の含有量は、0.001質量%以上が好ましい。
(ろう材のLi:0.3質量%以下)
 ろう材のLiは、心材のLiと同様、ろう付性をさらに向上させる。Liがろう付性を向上させる詳細なメカニズムは解明できていないものの、ろう付加熱時のろう溶融時において、Liがろう材表面に形成された酸化膜を破壊することにより、Mgのゲッター作用をさらに好適に発揮させるのではないかと推測する。ただし、Liの含有量が0.3質量%を超えると、Liが酸化膜の成長を促進させてしまうためろう付性が低下する。
 したがって、ろう材にLiを含有させる場合、Liの含有量は、0.3質量%以下である。
 なお、酸化膜の成長を抑制するという観点から、ろう材のLiの含有量は0.05質量%以下が好ましい。
(ろう材の残部:Al及び不可避的不純物)
 ろう材の残部はAl及び不可避的不純物であるのが好ましい。そして、ろう材の不可避的不純物としては、Fe、Ca、Be等が本発明の効果を妨げない範囲で含有されていてもよい。詳細には、Fe:0.35質量%以下、Ca:0.05質量%以下、Be:0.01質量%以下、その他の元素:0.01質量%未満の範囲で含有されていてもよい。
 そして、これらについては、前記した所定の含有量を超えなければ、不可避的不純物として含有される場合だけではなく、積極的に添加される場合であっても、本発明の効果を妨げず許容される。
 また、前記したMn、Ti、Cr、Zr、Zn、Sr、Na、Sb、希土類元素、Liについては、積極的に添加してもよいが、不可避的不純物として含まれていてもよい。
[アルミニウム合金ブレージングシートの厚さ]
 本実施形態に係るブレージングシートの厚さは、特に限定されないが、チューブ材に用いる場合、0.5mm以下であるのが好ましく、0.4mm以下であるのがより好ましく、また、0.05mm以上であるのが好ましい。
 そして、本実施形態に係るブレージングシートの厚さは、サイドサポート材、ヘッダー材、タンク材に用いる場合、2.0mm以下が好ましく、1.5mm以下がより好ましく、また、0.5mm以上であるのが好ましい。
 また、本実施形態に係るブレージングシートの厚さは、フィン材に用いる場合、0.2mm以下であるのが好ましく、0.15mm以下であるのがより好ましく、また、0.01mm以上であるのが好ましい。
 なお、本実施形態に係るブレージングシートの厚さは、ろう付後強度等の基本特性を損なうことなく適正なろう材の厚さを確保するという観点に基づくと、0.5mm以上が特に好ましい。
 本実施形態に係るブレージングシートのろう材の厚さは、いずれの板材に適用する場合においても特に限定されないが、2μm以上が好ましく、50μm以上がより好ましい。
 ろう材の厚さを所定値以上とすることによって、ろう材に含有するMgの絶対量が多くなりゲッター作用をより確実に発揮させることができる。なお、ろう材の厚さは、250μm以下が好ましい。
 本実施形態に係るブレージングシートのろう材のクラッド率は、いずれの板材に適用する場合においても特に限定されないが、40%以下が好ましく、30%以下がより好ましい。ろう材のクラッド率を所定値以下とすることによって、ろう付後強度等の基本特性や生産性等の低下を回避・抑制することができる。
[アルミニウム合金ブレージングシートのその他の構成]
 本実施形態に係るブレージングシートについて、図1に示す2層構造の構成を例示して説明したが、その他の構成を除外するものではない。
 例えば、本実施形態に係るブレージングシートの構成は、使用者の要求に応じて、図1に示す心材2の他方側(ろう材3が設けられている側とは逆側)に犠牲材(犠牲防食材、犠材)や中間材を設けてもよい。また、心材2の他方側にろう材をさらに設けてもよい。
 また、心材2の他方側に犠牲材や中間材を設けるとともに、その外側に、ろう材をさらに設けてもよい。
 なお、本実施形態に係るブレージングシートの構成がろう材を心材の両側に備える構成の場合、いずれか一方のろう材が、本発明の発明特定事項を満たせば、他方のろう材は本発明の発明特定事項を満たさないろう材(例えば、JIS 4045、4047、4343等のAl-Si系合金、Al-Si-Zn系合金、Al-Si-Mg系合金等)であってもよい。また、本発明の発明特定事項を満たさないろう材に対しては、当該ろう材表面にフラックスを塗布してろう付してもよい。
 犠牲材としては、犠牲防食能を発揮できる公知の成分組成のものであればよく、例えば、JIS 1000系の純アルミニウム、JIS 7000系のAl-Zn系合金を用いることができる。また、中間材としては、要求特性によって、種々なアルミニウム合金を用いることができる。
 なお、本明細書に示す合金番号は、JIS H 4000:2014、JIS Z 3263:2002に基づくものである。
 なお、本実施形態に係るブレージングシートは、心材及びろう材の成分と含有量とが特定されていることから、耐食性にも優れる。よって、本実施形態に係るブレージングシートによると、ろう付後の構造体が様々な使用環境・使用雰囲気にも対応することができる。
 次に、本実施形態に係るアルミニウム合金ブレージングシートの製造方法について説明する。
[アルミニウム合金ブレージングシートの製造方法]
 本実施形態に係るブレージングシートの製造方法は特に限定されず、例えば公知のクラッド材の製造方法により製造される。以下にその一例を説明する。
 まず、心材、ろう材のそれぞれの成分組成のアルミニウム合金を、溶解、鋳造し、さらに必要に応じて面削(鋳塊の表面平滑化処理)、均質化処理を施して、それぞれの鋳塊を得る。そして、ろう材の鋳塊については、所定厚さまで熱間圧延を施し、心材の鋳塊と組み合わせて、常法にしたがって、熱間圧延によりクラッド材とする。その後、このクラッド材に対して、冷間圧延、必要に応じて中間焼鈍、さらに、最終冷間圧延を施し、必要に応じて最終焼鈍を施す。
 なお、均質化処理は400~600℃で1~20時間、中間焼鈍は300~450℃で1~20時間実施するのが好ましい。また、最終焼鈍は150~450℃で1~20時間実施するのが好ましい。そして、最終焼鈍を実施する場合、中間焼鈍を省略することが可能である。また、調質は、H1n、H2n、H3n、O(JIS H 0001:1998)のいずれでもよい。
 本実施形態に係るアルミニウム合金ブレージングシートの製造方法は、以上説明したとおりであるが、前記各工程において、明示していない条件については、従来公知の条件を用いればよく、前記各工程での処理によって得られる効果を奏する限りにおいて、その条件を適宜変更できることは言うまでもない。
 次に、本実施形態に係るアルミニウム合金ブレージングシートのろう付方法について説明する。
[アルミニウム合金ブレージングシートのろう付方法]
 本実施形態に係るアルミニウム合金ブレージングシートのろう付方法は、フラックスを使用しない、いわゆるフラックスレスろう付であって、不活性ガス雰囲気において所定の加熱条件で加熱するという方法である。
(加熱条件:昇温速度)
 本実施形態に係るブレージングシートを加熱(ろう付)する際、350℃から560℃までの昇温速度が1℃/min未満であると、この昇温過程において心材及びろう材のMgがろう材表層部に過剰に拡散し、ろう材表面においてMgOが生成される可能性が高くなり、ろう付性が低下するおそれがある。一方、350℃から560℃までの昇温速度が500℃/minを超えると、この昇温過程において心材及びろう材のMgがろう材表層部に適切に拡散せず、ゲッター作用が不十分となる可能性が高くなり、ろう付性が低下するおそれがある。
 したがって、350℃から560℃までの昇温速度は、1℃/min以上500℃/min以下が好ましい。
 なお、ろう材表面におけるMgOが生成される可能性をより低くするため、350℃から560℃までの昇温速度は、10℃/min以上が好ましい。また、ゲッター作用をより確実に発揮させるため、350℃から560℃までの昇温速度は、300℃/min以下が好ましい。
 一方、560℃からの降温速度については特に限定されず、例えば、5℃/min以上1000℃/min以下であればよい。
 560℃から実際の加熱温度(後記する加熱温度の範囲内の所定の最高到達温度)までの昇温速度は特に限定されないものの、350℃から560℃までの昇温速度と同じ範囲内の速度とすればよい。また、実際の加熱温度から560℃までの降温速度についても特に限定されないものの、560℃からの降温速度と同じ範囲内の速度とすればよい。
(加熱条件:加熱温度、保持時間)
 本実施形態に係るブレージングシートを加熱する際の加熱温度(ろう溶融温度)は、ろう材が適切に溶融する560℃以上620℃以下であり、580℃以上620℃以下が好ましい。そして、この温度域における保持時間が10秒未満であると、ろう付現象(酸化膜の破壊、雰囲気の酸素濃度の低下、接合部への溶融ろうの流動)が生じるのに必要な時間が不足する可能性がある。
 したがって、560℃以上620℃以下の温度域(好ましくは580℃以上620℃以下の温度域)における保持時間は、10秒以上が好ましい。
 なお、ろう付現象をより確実に発生させるため、560℃以上620℃以下の温度域(好ましくは580℃以上620℃以下の温度域)における保持時間は、30秒以上が好ましく、60秒以上がより好ましい。一方、保持時間の上限については特に限定されないものの、1500秒以下であればよい。
(不活性ガス雰囲気)
 本実施形態に係るブレージングシートを加熱(ろう付)する際の雰囲気は、不活性ガス雰囲気であり、例えば、窒素ガス雰囲気、アルゴンガス雰囲気、ヘリウムガス雰囲気、これら複数のガスを混合した混合ガス雰囲気である。また、不活性ガス雰囲気は、酸素濃度が出来る限り低い雰囲気が好ましく、具体的には、酸素濃度は50ppm以下であるのが好ましく、10ppm以下であるのがより好ましい。
 そして、本実施形態に係るアルミニウム合金ブレージングシートのろう付方法は、雰囲気を真空にする必要はなく、常圧(大気圧)で行うことができる。
 なお、通常、本実施形態に係るブレージングシートに対して前記の加熱を施す前(ろう付工程の前)に、被接合部材をブレージングシートのろう材に接するように組み付けることとなる(組み付け工程)。また、組み付け工程の前に、ブレージングシートを所望の形状・構造に成形してもよい(成形工程)。
 本実施形態に係るブレージングシートのろう付方法(言い換えると、ブレージングシートに被接合部材がろう付された構造体の製造方法)は、以上説明したとおりであるが、明示していない条件については、従来公知の条件を用いればよく、前記処理によって得られる効果を奏する限りにおいて、その条件を適宜変更できることは言うまでもない。
 なお、本実施形態に係るブレージングシートのろう付方法は、使用するブレージングシートの心材及びろう材の成分と含有量とが特定されていることから、優れた耐食性も発揮する。よって、本実施形態に係るブレージングシートのろう付方法によると、ろう付後の構造体が様々な使用環境・使用雰囲気にも対応することができる。
 次に、本実施形態に係る熱交換器の製造方法について説明する。
[熱交換器の製造方法]
 本実施形態に係る熱交換器の製造方法は、前記したろう付方法を実施するろう付工程を含む方法である。
 なお、本実施形態に係る熱交換器の製造方法は、ろう付工程以外の各工程、例えば、前記した成形工程や組み付け工程等は、従来公知の方法で行えばよい。
 次に、本発明に係るアルミニウム合金ブレージングシートのろう付方法について、本発明の要件を満たす実施例と本発明の要件を満たさない比較例とを比較して具体的に説明する。
[供試材作製]
 表1に示す組成の心材を鋳造し、500℃×10時間の均質化処理を施し、所定の厚さまで両面を面削した。また、表2に示す組成のろう材を鋳造し、500℃×10時間の均質化処理を施し、所定の厚さまで熱間圧延を施し、熱間圧延板を作製した。そして、心材とろう材とを組み合わせて熱間圧延を施し、クラッド材を得た。その後、冷間圧延を施し、0.4mmの厚さ(ろう材のクラッド率は10%)とし、400℃×5時間の最終焼鈍を施し、2層構造のブレージングシート(O調質材)を作製し、供試材とした。
 なお、供試材A65、A66については、前記した厚さと異なる厚さとしたが(供試材A65の厚さは0.6mm、ろう材のクラッド率は10%、供試材A66の厚さは0.8mmであり、ろう材のクラッド率は10%)、その他の作製条件は同じであった。
 次に、ろう付相当加熱の条件、並びに、ろう付性評価、耐食性評価の評価方法及び評価基準を示す。
[ろう付相当加熱]
 ろう付相当加熱は、酸素濃度10ppmの窒素雰囲気において、350~560℃までの昇温速度30℃/min、580~620℃範囲での保持時間180s、という条件で実施した。ただし、表4に示す供試材は表中に記載した条件でろう付相当加熱を実施した。
 なお、560℃から最高到達温度までの昇温速度は、350~560℃までの昇温速度と同じであり、降温速度はいずれも100℃/minであった。
[ろう付性評価]
 ろう付性は、竹本正ら著、「アルミニウムブレージングハンドブック(改訂版)」(軽金属溶接構造協会、2003年3月発行)の132~136頁に記載されている評価方法により評価した。
 詳細には、ろう付相当加熱前の供試材から面寸法が25mm×55mmの試験片を切り出した。そして、図2A、Bに示すように、水平に置いた下板10(3003Al合金板(厚さ1.0mm×縦幅25mm×横幅60mm))と、この下板10に対して垂直に立てて配置した上板11(試験片(縦幅25mm×横幅55mm))との間に、φ2mmのステンレス製スペーサ12を挟んで、一定のクリアランスを設定した。また、上板11をワイヤ13で固定した。尚、図2Bにおける符号14は「フィレット」である。
 そして、前記したろう付相当加熱の条件でろう付接合した。ろう付接合後、下板と上板の間隙が充填された長さL(間隙充填長さ)を測定してろう付性を数値化した。
 なお、このろう付性は、厳密には間隙充填性のことであり、各部材を組み付けたときに生じる部材接合面間の隙間、ろう付時におけるブレージングシートや被接合部材の熱変形の発生により生じる部材接合面間の隙間、を考慮したろう付性である。
 ろう付性評価として、間隙充填長さが45mm以上のものを「☆」、35mm以上45mm未満のものを「◎」、25mm以上35mm未満のものを「○」、15mm以上25mm未満のものを「△」、15mm未満のものを「×」と評価し、「☆」、「◎」、「○」、「△」を合格、「×」を不合格と評価した。
 表4に示す供試材については、前記したろう付性評価のみ実施したが、表3に示す供試材については、前記したろう付性評価に加えて、以下に示す耐食性評価についても実施した。
[耐食性評価]
 ろう付相当加熱後の供試材から面寸法が50mm×50mmの試験片を切り出した。この試験片について、ろう材側が試験面(40mm×40mm)となるように、心材面全体と端面全体およびろう材表面の外縁5mm幅の領域を、シールテープを用いてシールした。そして、シールした試験片をOY水(Cl:195質量ppm、SO 2-:60質量ppm、Cu2+:1質量ppm、Fe3+:30質量ppm、pH:3.0)に浸漬し、20日間、浸漬試験を実施した。詳細には、この浸漬試験は、OY水を、室温から1時間で88℃まで加熱し、この88℃で7時間保持した後、室温まで1時間で冷却し、この室温にて15時間保持するという一連の流れを1日1サイクルとし、20日間行うというものであった。
 浸漬試験後、試験面の中でも腐食が最も顕著な領域を光学顕微鏡により断面観察し、腐食形態と腐食深さを求めた。
 耐食性評価として、腐食深さが25μm以下のものを「☆」、25μmを超え50μm以下のものを「◎」、50μmを超え75μm以下のものを「〇」、75μmを超え100μm以下のものを「△」、100μmを超えたものを「×」と評価し、「☆」、「◎」、「○」、「△」を合格、「×」を不合格と評価した。
 なお、ろう付性評価が「×」のものについては、耐食性評価を行わなかった。
 以下、表1には、心材の組成、表2には、ろう材の組成、表3には、供試材の構成、及び、評価結果、表4には、供試材の構成、ろう付条件、及び、評価結果を示す。そして、表1の心材、表2のろう材の残部は、Al及び不可避的不純物であり、表中の「-」は、含有していない(検出限界以下である)ことを示す。また、表3に示す「0.13CMg ―0.3」、「0.58CMg 0.45」の値は、小数第3位を四捨五入した値である。
 なお、表3の一部の供試材について、「CBi」と「CMg」との関係を図3のグラフに示した。また、表3の一部の供試材について、「CMg-b」と「CMg-c」との関係を図4のグラフに示した。この図3、4中の「○」、「△」については、本発明の規定する要件を満たすものであり、特に「○」は、本発明の規定する好ましい要件を満たすものであり、「×」は本発明の規定する要件を満たさないものである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
[結果の検討]
 供試材A1~A66、B1~B8については、本発明の規定する要件を満たしていた。よって、供試材A1~A66、B1~B8は「ろう付性」が合格という結果となるとともに、供試材A1~A66は「耐食性」も合格という結果となった。
 そして、本発明の規定する要件を満たすことで「ろう付性」及び「耐食性」が合格であるものは、図3のCBi=0.13CMg -0.3、CBi=0.58CMg 0.45、CMg=0.2、CMg=1.1で囲まれる範囲に位置することがわかった。
 また、本発明の規定する要件を満たすことで「ろう付性」及び「耐食性」が合格であるものは、図4のCMg-c=-2CMg-b+0.4とCMg-c=-2CMg-b+2.2との間に位置することもわかった。
 一方、供試材A100~A114については、本発明の規定する要件を満足しないことから、ろう付性が不合格、又は、熱間圧延時に耳割れが発生してしまうという結果となった。詳細には、以下のとおりである。
 供試材A100は、CMgの値が大きく、ろう材表面でのMgOの生成が促進されてしまったと想定され、その結果、ろう付性が「×」となった。
 供試材A101は、CBiの値が大きく、Bi単体化合物に基づく酸化膜がゲッター作用を抑制してしまったと想定され、さらに、CMgの値が小さく、ゲッター作用が不十分であったと想定され、その結果、ろう付性が「×」となった。
 供試材A102は、CBiの値が小さく、Mgを十分にトラップすることができずに、ろう材表面でのMgOの生成が促進されてしまったと想定され、その結果、ろう付性が「×」となった。
 供試材A103は、CBiの値が小さく、Mgを十分にトラップすることができずに、ろう材表面でのMgOの生成が促進されてしまったと想定され、その結果、ろう付性が「×」となった。
 供試材A104は、CBiの値が小さく、Mgを十分にトラップすることができずに、ろう材表面でのMgOの生成が促進されてしまったと想定され、その結果、ろう付性が「×」となった。
 供試材A105は、CBiの値が大きく、Bi単体化合物に基づく酸化膜がゲッター作用を抑制してしまったと想定され、その結果、ろう付性が「×」となった。
 供試材A106は、CBiの値が大きく、Bi単体化合物に基づく酸化膜がゲッター作用を抑制してしまったと想定され、その結果、ろう付性が「×」となった。
 供試材A107は、CBiの値が大きく、Bi単体化合物に基づく酸化膜がゲッター作用を抑制してしまったと想定され、その結果、ろう付性が「×」となった。
 供試材A108は、CBiの値が小さく、Mgを十分にトラップすることができずにろう材表面でのMgOの生成が促進されてしまったと想定され、その結果、ろう付性が「×」となった。
 供試材A109は、CBiの値が小さく、Mgを十分にトラップすることができずに、ろう材表面でのMgOの生成が促進されてしまったと想定され、さらに、CMgの値が小さく、ゲッター作用が不十分であったと想定され、その結果、ろう付性が「×」となった。
 供試材A110は、CBiの値が小さく、Mgを十分にトラップすることができずに、ろう材表面でのMgOの生成が促進されてしまったと想定され、その結果、ろう付性が「×」となった。
 供試材A111は、CMgの値が大きく、ろう材表面でのMgOの生成が促進されてしまったと想定され、その結果、ろう付性が「×」となった。
 供試材A112は、CBiの値が小さく、Mgを十分にトラップすることができずに、ろう材表面でのMgOの生成が促進されてしまったと想定され、さらに、CMgの値が大きく、ろう材表面でのMgOの生成が促進されてしまったと想定され、その結果、ろう付性が「×」となった。
 供試材A113は、CBiの値が大きく、Bi単体化合物に基づく酸化膜がゲッター作用を抑制してしまったと想定され、さらに、CMgの値が小さく、ゲッター作用が不十分であったと想定され、その結果、ろう付性が「×」となった。
 供試材A114は、CMg-bの値が小さく、Bi単体化合物が熱間圧延時に溶融し、熱間圧延割れ(耳割れ)を誘発したと想定される。
 以上の結果より、本発明に係るアルミニウム合金ブレージングシートのろう付方法は、
優れたろう付性、及び、耐食性を発揮できることが確認できた。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2017年5月24日出願の日本特許出願(特願2017-103073)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明方法によれば、真空ではない不活性ガス雰囲気でのフラックスレスろう付けのろう付性を向上させることができ、特に熱交換器の製造に有用である。
1 アルミニウム合金ブレージングシート(ブレージングシート)
2 心材
3 ろう材

Claims (9)

  1.  心材と、前記心材の少なくとも一方の面に設けられるろう材と、を備えるアルミニウム合金ブレージングシートのろう付方法であって、
     前記心材は、Mg:2.0質量%以下(0質量%を含む)であるアルミニウム合金からなり、前記ろう材は、Si、Bi、Mgを含有するアルミニウム合金からなり、
     前記ろう材のSiの含有量をCSi質量%とし、前記ろう材のBiの含有量をCBi質量%とし、前記ろう材のMgの含有量をCMg-b質量%とし、前記心材のMgの含有量をCMg-c質量%とし、CMg=CMg-b+CMg-c/2とした場合に、
     3≦CSi≦13、
     0.13CMg -0.3≦CBi≦0.58CMg 0.45
     CMg-b≧0.1、
     0.2≦CMg≦1.1、を満たし、
     前記アルミニウム合金ブレージングシートを不活性ガス雰囲気においてフラックスを用いずに560~620℃の加熱温度によってろう付することを特徴とするアルミニウム合金ブレージングシートのろう付方法。
  2.  前記ろう材は、更に下記(a)~(e)から選ばれる少なくとも一つを含有することを特徴とする請求項1に記載のアルミニウム合金ブレージングシートのろう付方法。
    (a)Mn:2.0質量%以下、Ti:0.3質量%以下、Cr:0.3質量%以下、Zr:0.3質量%以下のうちの1種以上
    (b)Zn:5.0質量%以下
    (c)Sr:0.10質量%以下、Na:0.050質量%以下、Sb:0.5質量%以下、のうちの1種以上
    (d)希土類元素:1.0質量%以下
    (e)Li:0.3質量%以下
  3.  前記心材は、更に下記(f)~(k)から選ばれる少なくとも一つを含有することを特徴とする請求項1に記載のアルミニウム合金ブレージングシートのろう付方法。
    (f)Mn:2.5質量%以下
    (g)Si:1.2質量%以下
    (h)Cu:3.0質量%以下
    (i)Fe:1.5質量%以下
    (j)Ti:0.5質量%以下、Cr:0.5質量%以下、Zr:0.5質量%以下の1種以上
    (k)Li:0.3質量%以下
  4.  前記心材は、更に下記(f)~(k)から選ばれる少なくとも一つを含有することを特徴とする請求項2に記載のアルミニウム合金ブレージングシートのろう付方法。
    (f)Mn:2.5質量%以下
    (g)Si:1.2質量%以下
    (h)Cu:3.0質量%以下
    (i)Fe:1.5質量%以下
    (j)Ti:0.5質量%以下、Cr:0.5質量%以下、Zr:0.5質量%以下の1種以上
    (k)Li:0.3質量%以下
  5.  前記ろう材は、厚さが50μm以上であることを特徴とする請求項1に記載のアルミニウム合金ブレージングシートのろう付方法。
  6.  前記ろう材は、厚さが50μm以上であることを特徴とする請求項2に記載のアルミニウム合金ブレージングシートのろう付方法。
  7.  前記ろう材は、厚さが50μm以上であることを特徴とする請求項3に記載のアルミニウム合金ブレージングシートのろう付方法。
  8.  前記ろう材は、厚さが50μm以上であることを特徴とする請求項4に記載のアルミニウム合金ブレージングシートのろう付方法。
  9.  請求項1から請求項8のいずれか1項に記載のアルミニウム合金ブレージングシートのろう付方法を実施するろう付工程を含むことを特徴とする熱交換器の製造方法。
PCT/JP2018/020021 2017-05-24 2018-05-24 アルミニウム合金ブレージングシートのろう付方法、及び、熱交換器の製造方法 WO2018216771A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/616,308 US20200086430A1 (en) 2017-05-24 2018-05-24 Brazing method for aluminum alloy brazing sheet and method for producing heat exchanger
CN201880034076.2A CN110662626A (zh) 2017-05-24 2018-05-24 铝合金硬钎焊板的钎焊方法、以及热交换器的制造方法
EP18806867.0A EP3636380B1 (en) 2017-05-24 2018-05-24 Brazing method for aluminum alloy brazing sheet and use of the aluminum alloy brazing sheet obtained by said method for producing a heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-103073 2017-05-24
JP2017103073A JP6990528B2 (ja) 2017-05-24 2017-05-24 アルミニウム合金ブレージングシートのろう付方法、及び、熱交換器の製造方法

Publications (1)

Publication Number Publication Date
WO2018216771A1 true WO2018216771A1 (ja) 2018-11-29

Family

ID=64395569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020021 WO2018216771A1 (ja) 2017-05-24 2018-05-24 アルミニウム合金ブレージングシートのろう付方法、及び、熱交換器の製造方法

Country Status (5)

Country Link
US (1) US20200086430A1 (ja)
EP (1) EP3636380B1 (ja)
JP (1) JP6990528B2 (ja)
CN (1) CN110662626A (ja)
WO (1) WO2018216771A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112176230A (zh) * 2019-07-03 2021-01-05 三菱铝株式会社 铝合金包覆材
JP2021159950A (ja) * 2020-03-31 2021-10-11 株式会社神戸製鋼所 アルミニウム合金ブレージングシート、及び、アルミニウム合金ブレージングシートのろう付方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7426882B2 (ja) * 2020-04-02 2024-02-02 株式会社Uacj アルミニウム製組み付け体及びろう付体の製造方法
CN111809084A (zh) * 2020-07-09 2020-10-23 大力神铝业股份有限公司 一种高强高延展性复合板材料及其加工工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619538B2 (ja) 1976-12-10 1981-05-08
JP2010247209A (ja) * 2009-04-17 2010-11-04 Mitsubishi Alum Co Ltd アルミニウム材のフラックスレスろう付け方法およびフラックスレスろう付け用アルミニウムクラッド材
JP2014050861A (ja) * 2012-09-07 2014-03-20 Uacj Corp アルミニウム合金製ブレージングシート
JP2014155955A (ja) * 2013-02-18 2014-08-28 Uacj Corp 無フラックスろう付け用ブレージングシート
JP2014177708A (ja) * 2014-05-07 2014-09-25 Uacj Corp 熱交換器用アルミニウムクラッド材
JP5619538B2 (ja) * 2010-09-06 2014-11-05 株式会社ティラド 細流路インナーフィンを有する熱交換器のフラックスレスろう付け方法およびそれに用いるアルミニウムクラッド材
JP2016165744A (ja) * 2015-03-10 2016-09-15 株式会社Uacj 中空構造体のろう付方法
JP2017103073A (ja) 2015-12-01 2017-06-08 株式会社オートネットワーク技術研究所 端子付電線及び端子付電線の製造方法
JP2018099726A (ja) * 2016-12-16 2018-06-28 株式会社神戸製鋼所 アルミニウム合金ブレージングシートのろう付方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2489750B1 (en) * 2009-09-21 2018-04-11 Denso Corporation Highly corrosion-resistant aluminum alloy brazing sheet, process for production of the brazing sheet, and highly corrosion-resistant heat exchanger equipped with the brazing sheet
JP6649889B2 (ja) * 2014-07-30 2020-02-19 株式会社Uacj アルミニウム合金ブレージングシート

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619538B2 (ja) 1976-12-10 1981-05-08
JP2010247209A (ja) * 2009-04-17 2010-11-04 Mitsubishi Alum Co Ltd アルミニウム材のフラックスレスろう付け方法およびフラックスレスろう付け用アルミニウムクラッド材
JP5619538B2 (ja) * 2010-09-06 2014-11-05 株式会社ティラド 細流路インナーフィンを有する熱交換器のフラックスレスろう付け方法およびそれに用いるアルミニウムクラッド材
JP2014050861A (ja) * 2012-09-07 2014-03-20 Uacj Corp アルミニウム合金製ブレージングシート
JP2014155955A (ja) * 2013-02-18 2014-08-28 Uacj Corp 無フラックスろう付け用ブレージングシート
JP2014177708A (ja) * 2014-05-07 2014-09-25 Uacj Corp 熱交換器用アルミニウムクラッド材
JP2016165744A (ja) * 2015-03-10 2016-09-15 株式会社Uacj 中空構造体のろう付方法
JP2017103073A (ja) 2015-12-01 2017-06-08 株式会社オートネットワーク技術研究所 端子付電線及び端子付電線の製造方法
JP2018099726A (ja) * 2016-12-16 2018-06-28 株式会社神戸製鋼所 アルミニウム合金ブレージングシートのろう付方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3636380A4
TAKEMOTO TADASHI ET AL.: "Aluminum Brazing Handbook (revised edition", 3 March 2003, JAPAN LIGHT METAL WELDING ASSOCIATION, pages: 132 - 136

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112176230A (zh) * 2019-07-03 2021-01-05 三菱铝株式会社 铝合金包覆材
JP2021159950A (ja) * 2020-03-31 2021-10-11 株式会社神戸製鋼所 アルミニウム合金ブレージングシート、及び、アルミニウム合金ブレージングシートのろう付方法
US20230098425A1 (en) * 2020-03-31 2023-03-30 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy brazing sheet and brazing method for aluminum alloy brazing sheet
JP7364522B2 (ja) 2020-03-31 2023-10-18 株式会社神戸製鋼所 アルミニウム合金ブレージングシート、及び、アルミニウム合金ブレージングシートのろう付方法

Also Published As

Publication number Publication date
EP3636380A4 (en) 2020-04-29
JP2018196895A (ja) 2018-12-13
EP3636380A1 (en) 2020-04-15
JP6990528B2 (ja) 2022-01-12
US20200086430A1 (en) 2020-03-19
CN110662626A (zh) 2020-01-07
EP3636380B1 (en) 2022-11-23

Similar Documents

Publication Publication Date Title
WO2018216773A1 (ja) アルミニウム合金ブレージングシート
WO2018216771A1 (ja) アルミニウム合金ブレージングシートのろう付方法、及び、熱交換器の製造方法
JP4547032B1 (ja) アルミニウム材のフラックスレスろう付け方法およびフラックスレスろう付け用アルミニウムクラッド材
US20180169798A1 (en) Brazing method for aluminum alloy brazing sheet
JP2018099726A (ja) アルミニウム合金ブレージングシートのろう付方法
JP4993440B2 (ja) ろう付け性に優れた熱交換器用高強度アルミニウム合金クラッド材
US20180169797A1 (en) Aluminum alloy brazing sheet
WO2016080433A1 (ja) 熱交換器用アルミニウム合金クラッド材
JP3910506B2 (ja) アルミニウム合金クラッド材およびその製造方法
JP2011068933A (ja) 熱交換器用アルミニウム合金クラッド材
JP4993439B2 (ja) ろう付け性に優れた熱交換器用高強度アルミニウム合金クラッド材
JP4030006B2 (ja) アルミニウム合金クラッド材およびその製造方法
JP2005232507A (ja) 熱交換器用アルミニウム合金クラッド材
JP2004017116A (ja) ろう付造管チューブ用アルミニウム合金ブレージングシートおよびその製造方法
JP7364522B2 (ja) アルミニウム合金ブレージングシート、及び、アルミニウム合金ブレージングシートのろう付方法
JP2018099725A (ja) アルミニウム合金ブレージングシート
JP2013086103A (ja) アルミニウム合金ブレージングシート
JP5687849B2 (ja) アルミニウム合金製ブレージングシート
JP6178483B1 (ja) アルミニウム合金ブレージングシート
JP7328194B2 (ja) アルミニウム合金ブレージングシート
JP7164498B2 (ja) アルミニウム合金材、フラックスレスろう付構造体、および、フラックスレスろう付方法
JP5576662B2 (ja) アルミニウム合金ブレージングシート及びアルミニウム合金ブレージングシートの製造方法
JP7290605B2 (ja) アルミニウム合金ブレージングシート、及び、アルミニウム合金ろう付体
JP2013094837A (ja) アルミニウム合金ブレージングシート
WO2023063065A1 (ja) 熱交換器用アルミニウム合金クラッド材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018806867

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018806867

Country of ref document: EP

Effective date: 20200102