WO2018216770A1 - Glass fiber-reinforced polyamide resin composition - Google Patents

Glass fiber-reinforced polyamide resin composition Download PDF

Info

Publication number
WO2018216770A1
WO2018216770A1 PCT/JP2018/020014 JP2018020014W WO2018216770A1 WO 2018216770 A1 WO2018216770 A1 WO 2018216770A1 JP 2018020014 W JP2018020014 W JP 2018020014W WO 2018216770 A1 WO2018216770 A1 WO 2018216770A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
glass fiber
resin composition
mass
fiber reinforced
Prior art date
Application number
PCT/JP2018/020014
Other languages
French (fr)
Japanese (ja)
Inventor
藤井 泰人
信宏 吉村
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2018546052A priority Critical patent/JPWO2018216770A1/en
Publication of WO2018216770A1 publication Critical patent/WO2018216770A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material

Abstract

A glass fiber-reinforced polyamide resin composition that has excellent weatherability, hardly causes fading of the black color and shows no lifting of glass fibers, etc., even when used in an environment exposed to rainfall. The glass fiber-reinforced polyamide resin composition comprises a crystalline aliphatic polyamide resin (A), an amorphous polyamide resin (B), an acrylic resin (C), mica (D), glass fibers (E), carbon black (F), a hindered amine photostabilizer (G), and a ultraviolet light absorber (H) at mass ratios of (10-40):(2-20):(1-10):(2-25):(20-50):(0.1-5):(0.05-1.0):(0-1.0) respectively, and further contains a copper compound (I) in an amount of 0.005-1.0 part by mass per 100 parts by mass of the sum of the aforesaid components (A) to (H).

Description

ガラス繊維強化ポリアミド樹脂組成物Glass fiber reinforced polyamide resin composition
 本発明は、成形品外観に優れ、屋外、特に降雨に曝される使用条件下でも、黒色の退色が少なく、ガラス繊維などの充填剤の浮きがない、耐候性に優れたガラス繊維強化ポリアミド樹脂組成物に関する。 The present invention is a glass fiber reinforced polyamide resin having excellent weather resistance and excellent appearance of a molded article, little black fading, and no floating of fillers such as glass fiber even under outdoor use conditions, particularly under exposure to rainfall. Relates to the composition.
 ポリアミド樹脂は、機械的特性、熱的性質並びに耐薬品性に優れているため、自動車や電気・電子製品等の部品に広く用いられている。また、ポリアミド樹脂にガラス繊維を配合した強化ポリアミド樹脂組成物は、機械的特性、耐熱性、耐薬品性等が大きく向上するため、軽量化および工程の合理化等の観点から、金属代替材料として強化ポリアミド樹脂組成物を用いる検討が盛んになっている。 Polyamide resins are widely used in parts such as automobiles and electrical / electronic products because of their excellent mechanical properties, thermal properties, and chemical resistance. In addition, reinforced polyamide resin composition containing glass fiber in polyamide resin greatly enhances mechanical properties, heat resistance, chemical resistance, etc., so it is reinforced as a metal substitute material from the viewpoint of weight reduction and process rationalization. Studies using polyamide resin compositions have become active.
 ガラス繊維、ワラストナイトなどを高濃度に配合した強化ポリアミド樹脂組成物は、高い剛性を有する成形品を容易に提供できるが、耐候性に劣る欠点があり、屋外用に使用するためには改善が必要である。かかる耐候性を改善する方法として、例えば特許文献1~3が提案されている。 Reinforced polyamide resin composition containing glass fiber, wollastonite, etc. at a high concentration can easily provide molded products with high rigidity, but has the disadvantage of poor weather resistance, and improved for use outdoors. is required. For example, Patent Documents 1 to 3 have been proposed as methods for improving such weather resistance.
 特許文献1には、ポリメタキシリレンアジパミドにアクリル系樹脂とエポキシ基含有化合物とを配合することが提案されている。しかしながら、この方法では、エポキシ基含有化合物が必須であるため、成形時に滞留があると、ゲル状物が発生したり溶融流動性が低下するなどして成形品の外観が損なわれる欠点があるとともに耐候性も不充分であった。特許文献2は、結晶性の半芳香族ポリアミドを主体とし、ガラス繊維とワラストナイトとカーボンブラックと銅化合物を含有させることを提案する。かかる樹脂組成物は、半芳香族ポリアミドを主体とするため、成形樹脂温度を高くする必要があること、またワラストナイトを配合するため、スクリュー磨耗の問題が避けられないなど製造上の欠点があるとともに、ワラストナイトに代えてマイカを配合すると、耐候暴露後の黒色の退色、耐候性の改善効果が不充分であり、改善の余地があった。特許文献3は、結晶性の半芳香族ポリアミドを主体とし、ガラス繊維とワラストナイトと特定のカーボンブラックと銅化合物を含有させることを提案する。かかる樹脂組成物も、特許文献2と同様な欠点があるとともに、特定のカーボンブラックを用いる必要があり、脂肪族ポリアミドを主体とすると、耐候暴露後の黒色の退色、耐候性の改善効果が不充分であり、改善の余地があった。 Patent Document 1 proposes blending an acrylic resin and an epoxy group-containing compound with polymetaxylylene adipamide. However, in this method, since an epoxy group-containing compound is essential, if there is a retention during molding, there is a drawback that the appearance of the molded product is impaired due to generation of a gel-like material or a decrease in melt fluidity. The weather resistance was also insufficient. Patent Document 2 proposes to mainly contain crystalline semi-aromatic polyamide and to contain glass fiber, wollastonite, carbon black, and copper compound. Since such a resin composition is mainly composed of semi-aromatic polyamide, it is necessary to increase the molding resin temperature, and since wollastonite is blended, there is a manufacturing defect such as the problem of screw wear being unavoidable. In addition, when mica was added instead of wollastonite, the effect of improving black fading and weather resistance after exposure to weathering was insufficient, and there was room for improvement. Patent Document 3 proposes to mainly contain crystalline semi-aromatic polyamide and to contain glass fiber, wollastonite, specific carbon black, and copper compound. Such a resin composition has the same disadvantages as in Patent Document 2, and it is necessary to use a specific carbon black. If aliphatic polyamide is mainly used, the fading of black after weathering exposure and the effect of improving weather resistance are not effective. It was enough and there was room for improvement.
特許第3442502号公報Japanese Patent No. 3442502 特開2000-273299号公報JP 2000-273299 A 特開2002-284990号公報JP 2002-284990 A
 本発明は、上記の従来技術の現状に鑑み創案されたものであり、その目的は、成形品外観に優れ、屋外、特に降雨に曝される使用条件下でも、黒色の退色が少なく、ガラス繊維などの充填剤の浮きがない、耐候性に優れたガラス繊維強化ポリアミド樹脂組成物を提供することにある。 The present invention was devised in view of the current state of the prior art described above, and its purpose is excellent in the appearance of a molded product, and less black fading even under outdoor, particularly under use conditions exposed to rainfall. It is an object of the present invention to provide a glass fiber reinforced polyamide resin composition having no weathering of fillers and having excellent weather resistance.
 本発明者は、かかる目的を達成するために鋭意検討した結果、結晶性脂肪族ポリアミド樹脂と、非晶性ポリアミド樹脂と、アクリル系樹脂と、マイカと、ガラス繊維と、カーボンブラックと、ヒンダードアミン光安定剤と、紫外線吸収剤と、銅化合物とを特定の割合で配合することにより、耐候性に優れたガラス繊維強化ポリアミド樹脂組成物を提供できることを見出し、本発明の完成に至った。 As a result of intensive studies to achieve the above object, the present inventor has found that a crystalline aliphatic polyamide resin, an amorphous polyamide resin, an acrylic resin, mica, glass fiber, carbon black, hindered amine light. The inventors have found that a glass fiber reinforced polyamide resin composition having excellent weather resistance can be provided by blending a stabilizer, an ultraviolet absorber, and a copper compound in specific ratios, and the present invention has been completed.
 すなわち、本発明は、以下の構成を採用するものである。
(1) 結晶性脂肪族ポリアミド樹脂(A)、非晶性ポリアミド樹脂(B)、アクリル系樹脂(C)、マイカ(D)、ガラス繊維(E)、カーボンブラック(F)、ヒンダードアミン光安定剤(G)、及び紫外線吸収剤(H)をそれぞれ(10~40):(2~20):(1~10):(2~25):(20~50):(0.1~5):(0.05~1.0):(0~1.0)の質量比で含有し、さらに前記(A)~(H)成分の合計含有量を100質量部とした場合に銅化合物(I)を0.005~1.0質量部の割合で含有することを特徴とするガラス繊維強化ポリアミド樹脂組成物。
(2) 非晶性ポリアミド樹脂(B)が、半芳香族ポリアミドであることを特徴とする(1)に記載のガラス繊維強化ポリアミド樹脂組成物。
(3) 前記ガラス繊維強化ポリアミド樹脂組成物から射出成形により得られた平板の、JIS-K-7350-2に準拠した耐候試験前後の色差△Eが、8.0以下であることを特徴とする(1)又は(2)に記載のガラス繊維強化ポリアミド樹脂組成物。
(4) (1)~(3)のいずれかに記載のガラス繊維強化ポリアミド樹脂組成物を用いて成形されていることを特徴とする車両内装用又は車両外装用成形品。
(5) アウターハンドル、アウタードアハンドル、ホイールキャップ、ルーフレール、ドアミラーベース、ルームミラーアーム、サンルーフデフレクター、ラジエーターファン、ラジエーターグリル、ベアリングリテーナー、コンソールボックス、サンバイザーアーム、スポイラー、及びスライドドアレールカバーからなる群から選ばれることを特徴とする(4)に記載の車両内装用又は車両外装用成形品。
That is, the present invention employs the following configuration.
(1) Crystalline aliphatic polyamide resin (A), amorphous polyamide resin (B), acrylic resin (C), mica (D), glass fiber (E), carbon black (F), hindered amine light stabilizer (G) and ultraviolet absorber (H) are respectively (10 to 40): (2 to 20): (1 to 10): (2 to 25): (20 to 50): (0.1 to 5) : (0.05 to 1.0): (0 to 1.0) in a mass ratio, and when the total content of the components (A) to (H) is 100 parts by mass, A glass fiber reinforced polyamide resin composition comprising I) in a proportion of 0.005 to 1.0 parts by mass.
(2) The glass fiber-reinforced polyamide resin composition according to (1), wherein the amorphous polyamide resin (B) is a semi-aromatic polyamide.
(3) The flat plate obtained by injection molding from the glass fiber reinforced polyamide resin composition has a color difference ΔE before and after a weather resistance test according to JIS-K-7350-2 of 8.0 or less. The glass fiber reinforced polyamide resin composition according to (1) or (2).
(4) A molded product for vehicle interior or vehicle exterior, which is molded using the glass fiber reinforced polyamide resin composition according to any one of (1) to (3).
(5) Group consisting of outer handle, outer door handle, wheel cap, roof rail, door mirror base, rear mirror arm, sunroof deflector, radiator fan, radiator grill, bearing retainer, console box, sun visor arm, spoiler, and sliding door rail cover (4) The molded article for vehicle interior or vehicle exterior according to (4),
 本発明のガラス繊維強化ポリアミド樹脂組成物は、降雨に曝される使用条件下でも、黒色の退色が少なく、ガラス繊維などの充填剤の浮きがない、耐候性に優れた成形品を提供することができる。 The glass fiber reinforced polyamide resin composition of the present invention provides a molded article excellent in weather resistance with little black fading and no floating of filler such as glass fiber even under use conditions exposed to rain. Can do.
 本発明のガラス繊維強化ポリアミド樹脂組成物は、結晶性脂肪族ポリアミド樹脂(A)、非晶性ポリアミド樹脂(B)、アクリル系樹脂(C)、マイカ(D)、ガラス繊維(E)、カーボンブラック(F)、ヒンダードアミン光安定剤(G)、及び紫外線吸収剤(H)をそれぞれ(10~40):(2~20):(1~10):(2~25):(20~50):(0.1~5):(0.05~1.0):(0~1.0)の質量比で含有し、さらに前記(A)~(H)成分の合計含有量を100質量部とした場合に銅化合物(I)を0.005~1.0質量部の割合で含有する。 The glass fiber reinforced polyamide resin composition of the present invention comprises a crystalline aliphatic polyamide resin (A), an amorphous polyamide resin (B), an acrylic resin (C), mica (D), glass fiber (E), carbon Black (F), hindered amine light stabilizer (G), and ultraviolet absorber (H) are (10 to 40): (2 to 20): (1 to 10): (2 to 25): (20 to 50), respectively. ): (0.1 to 5): (0.05 to 1.0): (0 to 1.0), and the total content of the components (A) to (H) is 100. The copper compound (I) is contained in an amount of 0.005 to 1.0 part by mass when the parts are by mass.
 結晶性脂肪族ポリアミド樹脂(A)としては、ラクタムやω-アミノカルボン酸、ジカルボン酸及びジアミンなどを原料とし、これらの重縮合によって得られるポリアミド樹脂、又はこれらの共重合体やブレンド物が挙げられる。ラクタムやω-アミノカルボン酸としては、例えば、ε-カプロラクタム、6-アミノカプロン酸、ω-エナントラクタム、7-アミノヘプタン酸、11-アミノウンデカン酸、9-アミノノナン酸、α-ピロリドン、α-ピペリジンなどが挙げられる。ジカルボン酸としては、グルタール酸、アジピン酸、アゼライン酸、セバシン酸、スベリン酸などが挙げられ、ジアミンとしては、テトラメチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミンなどが挙げられる。結晶性脂肪族ポリアミド樹脂(A)の具体例としては、ポリアミド6、ポリアミド12、ポリアミド66、ポリアミド46、ポリアミド610、ポリアミド612、ポリアミド1010が好ましい。 Examples of the crystalline aliphatic polyamide resin (A) include lactam, ω-aminocarboxylic acid, dicarboxylic acid, diamine, and the like, and polyamide resins obtained by polycondensation thereof, or copolymers and blends thereof. It is done. Examples of the lactam and ω-aminocarboxylic acid include ε-caprolactam, 6-aminocaproic acid, ω-enantolactam, 7-aminoheptanoic acid, 11-aminoundecanoic acid, 9-aminononanoic acid, α-pyrrolidone and α-piperidine. Etc. Examples of the dicarboxylic acid include glutaric acid, adipic acid, azelaic acid, sebacic acid, and suberic acid. Examples of the diamine include tetramethylene diamine, hexamethylene diamine, octamethylene diamine, undecamethylene diamine, and dodecamethylene diamine. Can be mentioned. As specific examples of the crystalline aliphatic polyamide resin (A), polyamide 6, polyamide 12, polyamide 66, polyamide 46, polyamide 610, polyamide 612, and polyamide 1010 are preferable.
 結晶性脂肪族ポリアミド樹脂(A)の配合割合は、本発明のガラス繊維強化ポリアミド樹脂組成物中の(A)成分と後述する(B)~(H)成分の合計含有量を100質量部とした場合に、10~40質量部、好ましくは20~30質量部である。結晶性脂肪族ポリアミド樹脂(A)の配合割合が上記範囲未満であると、組成物の溶融押出が困難となり、一方、上記範囲を越えると、機械的特性、熱的特性などが劣るようになる傾向がある。 The blending ratio of the crystalline aliphatic polyamide resin (A) is such that the total content of the component (A) and the components (B) to (H) described later in the glass fiber reinforced polyamide resin composition of the present invention is 100 parts by mass. In this case, it is 10 to 40 parts by mass, preferably 20 to 30 parts by mass. When the blending ratio of the crystalline aliphatic polyamide resin (A) is less than the above range, it becomes difficult to melt and extrude the composition. On the other hand, when it exceeds the above range, the mechanical properties, thermal properties, etc. become inferior. Tend.
 非晶性ポリアミド樹脂(B)としては、昇温速度20℃/分で測定した、DSC測定時のサーモグラムに、結晶の融解ピークが認められないポリアミド樹脂であり、構成成分のジカルボン酸としては、テレフタル酸、イソフタル酸、アジピン酸、セバシン酸などが挙げられ、ジアミンとしては、テトラメチレンジアミン、ヘキサメチレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2-メチルペンタメチレンジアミン、トリメチルヘキサメチレンジアミン、アミノエチルピペラジン、ビスアミノメチルシクロヘキサンなどが挙げられる。これらの中で、高い曲げ弾性率と高い耐衝撃性を同時に満たすためには、半芳香族ポリアミドが好ましい。半芳香族ポリアミドとしては、テレフタル酸とイソフタル酸とヘキサメチレンジアミンを原料とするポリアミド6T/6I、テレフタル酸とアジピン酸とヘキサメチレンジアミンを原料とするポリアミド6T/66などが好ましい。 The amorphous polyamide resin (B) is a polyamide resin in which a melting peak of crystals is not observed in the thermogram at the time of DSC measurement measured at a temperature rising rate of 20 ° C./min. As a constituent dicarboxylic acid, Terephthalic acid, isophthalic acid, adipic acid, sebacic acid, and the like. Tetramethylenediamine, hexamethylenediamine, metaxylylenediamine, paraxylylenediamine, undecamethylenediamine, dodecamethylenediamine, 2- Examples thereof include methylpentamethylenediamine, trimethylhexamethylenediamine, aminoethylpiperazine, bisaminomethylcyclohexane and the like. Among these, semi-aromatic polyamide is preferable in order to satisfy a high flexural modulus and a high impact resistance at the same time. As the semi-aromatic polyamide, polyamide 6T / 6I using terephthalic acid, isophthalic acid and hexamethylenediamine as raw materials, and polyamide 6T / 66 using terephthalic acid, adipic acid and hexamethylenediamine as raw materials are preferable.
 非晶性ポリアミド樹脂(B)の配合割合は、本発明のガラス繊維強化ポリアミド樹脂組成物中の(A)、(B)成分と後述する(C)~(H)成分の合計含有量を100質量部とした場合に、2~20質量部、好ましくは、10~15質量部である。非晶性ポリアミド樹脂(B)の配合割合が上記範囲未満であると、成形品の外観が悪くなり、一方、上記範囲を越えると、金型からの離型不良や成形品の外観が悪くなる不具合が起きる傾向がある。 The blending ratio of the amorphous polyamide resin (B) is the total content of the components (A) and (B) and the components (C) to (H) described later in the glass fiber reinforced polyamide resin composition of the present invention. In terms of parts by mass, it is 2 to 20 parts by mass, preferably 10 to 15 parts by mass. When the blending ratio of the amorphous polyamide resin (B) is less than the above range, the appearance of the molded product is deteriorated. On the other hand, when it exceeds the above range, the mold release failure from the mold or the appearance of the molded product is deteriorated. There is a tendency to malfunction.
 結晶性脂肪族ポリアミド樹脂(A)と非晶性ポリアミド樹脂(B)との配合割合は、高い弾性率を発現させ、固化の速度を調整し生産時のストランド性や射出成形時の金型転写性を改善する観点から、(A):(B)=55:45~95:5の質量比が好ましく、(A):(B)=60:40~95:5の質量比がより好ましく、(A):(B)=60:40~90:10の質量比がさらに好ましい。 The compounding ratio of the crystalline aliphatic polyamide resin (A) and the amorphous polyamide resin (B) expresses a high elastic modulus, adjusts the speed of solidification, and produces a strand property during production and mold transfer during injection molding. From the viewpoint of improving the properties, a mass ratio of (A) :( B) = 55: 45 to 95: 5 is preferable, and a mass ratio of (A) :( B) = 60: 40 to 95: 5 is more preferable. A mass ratio of (A) :( B) = 60: 40 to 90:10 is more preferable.
 上記のように、結晶性脂肪族ポリアミド樹脂(A)に非晶性ポリアミド樹脂(B)を配合することにより、耐候性向上効果が大きくなる。この理由は、アクリル系樹脂(C)の分散性、相溶性が変化するためであると推察される。 As described above, the effect of improving weather resistance is increased by blending the amorphous polyamide resin (B) with the crystalline aliphatic polyamide resin (A). This reason is presumed to be because the dispersibility and compatibility of the acrylic resin (C) change.
 アクリル系樹脂(C)としては、メタアクリル酸エステルの単独重合体あるいは共重合体が挙げられる。共重合体としては、メタクリル酸エステルを50質量%以上、さらには70質量%以上含むものが好ましい。メタアクリル酸エステル単量体としては、具体的には、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル等のメタクリル酸アルキルエステル、β-ヒドロキシエチルメタクリレート、N,N-ジメチルアミノエチルメタクリレート等のようにアルキル基の水素が水酸基、アミノ基等で置換されたメタクリル酸アルキルエステル誘導体が挙げられる。また、これらメタクリル酸エステル単量体と共重合する単量体としては、アクリル酸メチル、スチレン、α-メチルスチレン、アクリロニトル等のビニル単量体が挙げられる。これらのアクリル系樹脂(C)の中で、特に好ましいのは、ポリメタクリル酸メチルまたはポリメタクリル酸エチルである。 Examples of the acrylic resin (C) include homopolymers or copolymers of methacrylic acid esters. As a copolymer, what contains 50 mass% or more of methacrylic acid ester, and also 70 mass% or more is preferable. Specific examples of the methacrylic acid ester monomer include methyl methacrylate alkyl ester such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, β-hydroxyethyl methacrylate, N, N-dimethylaminoethyl. Examples thereof include methacrylic acid alkyl ester derivatives in which an alkyl group hydrogen is substituted with a hydroxyl group, an amino group, or the like, such as methacrylate. Examples of monomers copolymerized with these methacrylic acid ester monomers include vinyl monomers such as methyl acrylate, styrene, α-methylstyrene, and acrylonitrile. Of these acrylic resins (C), polymethyl methacrylate or polyethyl methacrylate is particularly preferred.
 アクリル系樹脂(C)の溶融流動性に関して、230℃、37.3N条件下におけるメルトフローレイト(MFR)は、5以上が好ましく、15以上がさらに好ましい。 Regarding the melt fluidity of the acrylic resin (C), the melt flow rate (MFR) under conditions of 230 ° C. and 37.3N is preferably 5 or more, and more preferably 15 or more.
 アクリル系樹脂(C)の配合割合は、本発明のガラス繊維強化ポリアミド樹脂組成物中の(A)~(C)成分と後述する(D)~(H)成分の合計含有量を100質量部とした場合に、1~10質量部、好ましくは1~7質量部、より好ましくは2~7質量部、さらに好ましくは3~7質量部である。アクリル系樹脂(C)の配合割合が上記範囲未満であると、耐候性のスペックを満たすことができず、一方、上記範囲を越えると、離型不良や流動性不足による外観不良、成形品の強度スペックを満たすことができない。 The mixing ratio of the acrylic resin (C) is 100 parts by mass of the total content of the components (A) to (C) and the components (D) to (H) described later in the glass fiber reinforced polyamide resin composition of the present invention. 1 to 10 parts by mass, preferably 1 to 7 parts by mass, more preferably 2 to 7 parts by mass, and further preferably 3 to 7 parts by mass. If the blending ratio of the acrylic resin (C) is less than the above range, the weather resistance specification cannot be satisfied. On the other hand, if it exceeds the above range, the appearance is poor due to mold release or insufficient fluidity. The strength specifications cannot be met.
 本発明のガラス繊維強化ポリアミド樹脂組成物中において、アクリル系樹脂(C)の配合割合は、ポリアミド樹脂(A)と(B)の合計100質量部に対して、2~30質量部が好ましい。アクリル系樹脂(C)の配合割合が上記範囲未満であると、耐候性向上効果が小さくなり、一方、上記範囲を越えると、強度、剛性、耐溶剤性、耐熱性の低下が大きくなる傾向がある。 In the glass fiber reinforced polyamide resin composition of the present invention, the blending ratio of the acrylic resin (C) is preferably 2 to 30 parts by mass with respect to 100 parts by mass in total of the polyamide resins (A) and (B). When the blending ratio of the acrylic resin (C) is less than the above range, the effect of improving weather resistance is reduced. On the other hand, when it exceeds the above range, the strength, rigidity, solvent resistance, and heat resistance tend to increase. is there.
 マイカ(D)としては、白雲母、金雲母、黒雲母、人造雲母などが挙げられ、いずれを使用してもよい。マイカの形状を楕円に近似し、長径と短径の平均を粒子径とした場合、マイカの粒子径は、外観と剛性のバランスから1~30μm程度が好ましい。 Examples of mica (D) include muscovite, phlogopite, biotite, and artificial mica, and any of them may be used. When the shape of the mica is approximated to an ellipse and the average of the major axis and the minor axis is taken as the particle diameter, the particle diameter of the mica is preferably about 1 to 30 μm from the balance of appearance and rigidity.
 マイカ(D)の配合割合は、本発明のガラス繊維強化ポリアミド樹脂組成物中の(A)~(D)成分と後述する(E)~(H)成分の合計含有量を100質量部とした場合に、2~25質量部、好ましくは15~22質量部である。マイカ(D)の配合割合が上記範囲未満であると、成形品の外観向上効果が小さくなり、一方、上記範囲を越えると、流動性や機械的強度が劣る傾向がある。 The mixing ratio of mica (D) was set such that the total content of components (A) to (D) and components (E) to (H) described later in the glass fiber reinforced polyamide resin composition of the present invention was 100 parts by mass. In this case, it is 2 to 25 parts by mass, preferably 15 to 22 parts by mass. When the mixing ratio of mica (D) is less than the above range, the effect of improving the appearance of the molded product is reduced. On the other hand, when it exceeds the above range, fluidity and mechanical strength tend to be inferior.
 ガラス繊維(E)の断面は、円形、扁平のいずれでもよい。扁平断面ガラス繊維としては、繊維の長さ方向に対して垂直な断面において略楕円形、略長円形、略繭形であるものを含み、扁平度が1.5~8、さらには2~5であることが好ましい。ここで扁平度とは、ガラス繊維の長手方向に対して垂直な断面に外接する最小面積の長方形を想定し、この長方形の長辺の長さを長径とし、短辺の長さを短径とした場合の、長径/短径の比である。扁平度が上記範囲未満では、円形断面のガラス繊維と形状に大きな差がないため、成形物の耐衝撃性があまり向上しない場合がある。一方、扁平度が上記範囲を越えると、ポリアミド樹脂中における嵩密度が高くなるので、ポリアミド樹脂中に均一に分散できず、成形物の耐衝撃性があまり向上しない場合がある。本発明において、略長円形の断面を有し、扁平度が2~5のガラス繊維を用いると、より高い機械的物性を発現させることができる。 The cross section of the glass fiber (E) may be either circular or flat. The flat cross-section glass fibers include those having a substantially elliptical shape, a substantially oval shape, or a substantially bowl shape in a cross section perpendicular to the length direction of the fiber, and a flatness of 1.5 to 8, or 2 to 5 It is preferable that Here, the flatness is assumed to be a rectangle with the smallest area circumscribing a cross section perpendicular to the longitudinal direction of the glass fiber, the length of the long side of the rectangle is the major axis, and the length of the short side is the minor axis. In this case, the ratio of major axis / minor axis. If the flatness is less than the above range, the impact resistance of the molded product may not be improved so much because there is no significant difference between the shape and the glass fiber having a circular cross section. On the other hand, if the flatness exceeds the above range, the bulk density in the polyamide resin becomes high, so that it cannot be uniformly dispersed in the polyamide resin, and the impact resistance of the molded product may not be improved so much. In the present invention, when glass fibers having a substantially oval cross section and a flatness of 2 to 5 are used, higher mechanical properties can be expressed.
 ガラス繊維(E)の配合割合は、本発明のガラス繊維強化ポリアミド樹脂組成物中の(A)、(B)、(C)、(D)、(E)成分と後述する(F)、(G)、(H)成分の合計含有量を100質量部とした場合に、20~50質量部、好ましくは25~45質量部である。ガラス繊維(E)の配合割合が上記範囲未満であると、成形品の剛性が不足し、一方、上記範囲を越えると、配合量に見合う補強効果が発現されなくなる傾向がある。 The compounding ratio of the glass fiber (E) is the components (A), (B), (C), (D), and (E) in the glass fiber reinforced polyamide resin composition of the present invention and (F) and ( When the total content of components G) and (H) is 100 parts by mass, it is 20 to 50 parts by mass, preferably 25 to 45 parts by mass. When the blending ratio of the glass fiber (E) is less than the above range, the rigidity of the molded product is insufficient. On the other hand, when it exceeds the above range, the reinforcing effect corresponding to the blending amount tends not to be expressed.
 本発明のガラス繊維強化ポリアミド樹脂組成物を製造するにあたっては、特に扁平断面ガラス繊維を使用する場合、ポリアミド反応性シランカップリング剤をガラス繊維(E)の0.1~1.0質量%の割合で添加することが好ましい。ポリアミド用チョップドストランドの集束剤にはマトリクス樹脂との接着性の向上のために、予めシランカップリング剤が繊維束に少量含まれている。しかし、予め繊維束に付着させることのできるアミノシランカップリング剤の量は、繊維束が押出時に解繊不良を起こさないように上限があるため、不足分を追加添加することが好ましい。 In producing the glass fiber reinforced polyamide resin composition of the present invention, particularly when a flat cross-section glass fiber is used, the polyamide-reactive silane coupling agent is 0.1 to 1.0% by mass of the glass fiber (E). It is preferable to add at a ratio. In order to improve the adhesion to the matrix resin, a small amount of a silane coupling agent is previously contained in the fiber bundle in the sizing agent for polyamide chopped strands. However, the amount of the aminosilane coupling agent that can be attached to the fiber bundle in advance has an upper limit so that the fiber bundle does not cause poor defibration at the time of extrusion.
 カーボンブラック(F)としては、特に限定されるものではないが、例えばサーマルブラック、チャンネルブラック、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどが挙げられる。平均粒子径が10~40μmの範囲、BET吸着法による比表面積が50~300m/gの範囲、ジブチルフタレートを用いた吸油量の測定値が50cc/100g~150cc/100gの範囲のものが好適である。 The carbon black (F) is not particularly limited, and examples thereof include thermal black, channel black, acetylene black, ketjen black, and furnace black. Preferred are those having an average particle size in the range of 10 to 40 μm, a specific surface area by the BET adsorption method in the range of 50 to 300 m 2 / g, and a measured value of oil absorption using dibutyl phthalate in the range of 50 cc / 100 g to 150 cc / 100 g. It is.
 カーボンブラック(F)は、ポリエチレン系樹脂やポリスチレン系樹脂をベース樹脂としたマスターバッチとして配合することが作業性の点で好ましい。ベース樹脂としては、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、超高分子量ポリエチレン(UHMWPE)などに代表される各種ポリエチレンのほか、エチレン-プロピレンのランダム共重合体およびブロック共重合体、エチレン-ブテンのランダム共重合体およびブロック共重合体などのエチレンとα-オレフィンとの共重合体、エチレン-メタクリレート、エチレン-ブチルアクリレートなどのエチレンと不飽和カルボン酸エステルとの共重合体、エチレン-酢酸ビニルなどのエチレンと脂肪族ビニルとの共重合体などポリエチレン系樹脂やポリスチレン、ポリ(α-メチルスチレン)、ポリ(p-メチルスチレン)などの単独重合体、スチレン-アクリロニトリル共重合体(AS樹脂)、スチレン単量体とマレイミド、N-フェニルマレイミドなどのマレイミド系単量体、またはアクリルアミドなどのアクリルアミド系単量体との共重合体などが挙げられる。 Carbon black (F) is preferably blended as a master batch using a polyethylene resin or a polystyrene resin as a base resin in terms of workability. Base resins include low-density polyethylene (LDPE), high-density polyethylene (HDPE), various polyethylenes represented by ultra-high molecular weight polyethylene (UHMWPE), ethylene-propylene random copolymers and block copolymers, Copolymers of ethylene and α-olefins such as ethylene-butene random copolymers and block copolymers, copolymers of ethylene and unsaturated carboxylic esters such as ethylene-methacrylate and ethylene-butyl acrylate, ethylene -Polyethylene resins such as ethylene and aliphatic vinyl copolymers such as vinyl acetate, homopolymers such as polystyrene, poly (α-methylstyrene), poly (p-methylstyrene), styrene-acrylonitrile copolymers ( AS resin), styrene monomer and polymer Examples thereof include maleimide monomers such as reimide and N-phenylmaleimide, and copolymers with acrylamide monomers such as acrylamide.
 カーボンブラック(F)の配合割合は、本発明のガラス繊維強化ポリアミド樹脂組成物中の(A)~(H)成分の合計含有量を100質量部とした場合に、0.1~5質量部、好ましくは0.2~4.5質量部、より好ましくは0.2~3.5質量部、更に好ましくは0.2~3質量部である。カーボンブラック(F)の配合割合が上記範囲未満であると、耐候性への寄与が少なくなり、一方、上記範囲を越えると、機械的強度、剛性を損なう傾向がある。 The blending ratio of carbon black (F) is 0.1 to 5 parts by mass when the total content of components (A) to (H) in the glass fiber reinforced polyamide resin composition of the present invention is 100 parts by mass. It is preferably 0.2 to 4.5 parts by mass, more preferably 0.2 to 3.5 parts by mass, and still more preferably 0.2 to 3 parts by mass. If the blending ratio of the carbon black (F) is less than the above range, the contribution to weather resistance is reduced. On the other hand, if it exceeds the above range, mechanical strength and rigidity tend to be impaired.
 ヒンダードアミン光安定剤(G)としては、2,2,6,6-テトラメチルピペリジン構造を有する化合物(HALS)を指す。HALSは、以下の一般式の化合物およびその組み合わせである。 The hindered amine light stabilizer (G) refers to a compound having a 2,2,6,6-tetramethylpiperidine structure (HALS). HALS is a compound of the following general formula and combinations thereof.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 これらの式中、R~Rは、独立した置換基である。適切な置換基の例は、水素、エーテル基、エステル基、アミン基、アミド基、アルキル基、アルケニル基、アルキニル基、アラルキル基、シクロアルキル基およびアリール基であり、次にその置換基は官能基を含有し得る。ヒンダードアミン光安定剤(G)は、ポリマーまたはオリゴマーの一部も形成し得る。 In these formulas, R 1 to R 5 are independent substituents. Examples of suitable substituents are hydrogen, ether groups, ester groups, amine groups, amide groups, alkyl groups, alkenyl groups, alkynyl groups, aralkyl groups, cycloalkyl groups and aryl groups, which in turn are functional groups. May contain groups. The hindered amine light stabilizer (G) may also form part of a polymer or oligomer.
 かかる化合物の例は:2,2,6,6-テトラメチル-4-ピペリドン;2,2,6,6-テトラメチル-4-ピペリジノール;ビス-(1,2,2,6,6-ペンタメチルピペリジル)-(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)ブチルマロネート;ジ-(2,2,6,6-テトラメチル-4-ピペリジル)セバケート(Tinuvin(登録商標)770,MW481);N-(2-ヒドロキシエチル)-2,2,6,6-テトラメチル-4-ピペリジノールとコハク酸のオリゴマー(Tinuvin(登録商標)622);シアヌル酸とN,N-ジ(2,2,6,6-テトラメチル-4-ピペリジル)-ヘキサメチレンジアミンのオリゴマー;ビス-(2,2,6,6-テトラメチル-4-ピペリジニル)スクシネート;ビス-(1-オクチルオキシ-2,2,6,6-テトラメチル-4-ピペリジニル)セバケート(Tinuvin(登録商標)123);ビス-(1,2,2,6,6-ペンタメチル-4-ピペリジニル)セバケート(Tinuvin(登録商標)765);Tinuvin(登録商標)144;Tinuvin(登録商標)XT850;テトラキス-(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート;N,N’-ビス-(2,2,6,6-テトラメチル-4-ピペリジル)-ヘキサン-1,6-ジアミン(Chimasorb(登録商標)T5);N-ブチル-2,2,6,6-テトラメチル-4-ピペリジンアミン;2,2’-[(2,2,6,6-テトラメチル-ピペリジニル)-イミノ]-ビス-[エタノール];ポリ((6-モルホリン-トリアジン-2,4-ジイル)(2,2,6,6-テトラメチル-4-ピペリジニル)-イミノヘキサメチレン-(2,2,6,6-テトラメチル-4-ピペリジニル)-イミノ)(Cyasorb(登録商標)UV3346);5-(2,2,6,6-テトラメチル-4-ピペリジニル)-2-シクロ-ウンデシル-オキサゾール)(Hostavin(登録商標)N20);1,1’-(1,2-エタン-ジ-イル)-ビス-(3,3’,5,5’-テトラメチル-ピペラジノン);8-アセチル-3-ドデシル-7,7,9,9-テトラメチル-1,3,8-トリアザスピロ(4,5)デカン-2,4-ジオン;ポリメチルプロピル-3-オキシ-[4(2,2,6,6-テトラメチル)-ピペリジニル]シロキサン(Uvasil(登録商標)299);1,2,3,4-ブタン-テトラカルボン酸-1,2,3-トリス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)-4-トリデシルエステル;α-メチルスチレン-N-(2,2,6,6-テトラメチル-4-ピペリジニル)マレイミドとN-ステアリルマレイミドのコポリマー;1,2,3,4-ブタンテトラカルボン酸、β,β,β’,β’-テトラメチル-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン-3,9-ジエタノール、1,2,2,6,6-ペンタメチル-4-ピペリジニルエステルとのポリマー(Mark(登録商標)LA63);2,4,8,10-テトラオキサスピロ[5.5]ウンデカン-3,9-ジエタノール、1,2,3,4-ブタンテトラカルボン酸、2,2,6,6-テトラメチル-4-ピペリジニルエステルとのβ,β,β’,β’-テトラメチル-ポリマー(Mark(登録商標)LA68);D-グルシトール、1,3:2,4-ビス-O-(2,2,6,6-テトラメチル-4-ピペリジニルイデン)-(HALS7);7-オキサ-3,20-ジアザジスピロ[5.1.11.2]-ヘンエイコサン-21-オン-2,2,4,4-テトラメチル-20-(オキシラニルメチル)のオリゴマー(Hostavin登録商標)N30);プロパン二酸、[(4-メトキシフェニル)メチレン]-,ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)エステル(Sanduvor(登録商標)PR31);ホルムアミド、N,N’-1,6-ヘキサンジイルビス[N-(2,2,6,6-テトラメチル-4-ピペリジニル(Uvinul(登録商標)4050H);1,3,5-トリアジン-2,4,6-トリアミン、N,N’’’-[1,2-エタンジイルビス[[[4,6-ビス[ブチル(1,2,2,6,6-ペンタメチル-4-ピペリジニル)アミノ]-1,3,5-トリアジン-2-イル]イミノ]-3,1-プロパンジイル]]-ビス[N’,N’’-ジブチル-N’,N’’-ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)(Chimassorb(登録商標)119 MW2286);ポリ[[6-[(1,1,3,3-テトラメチルブチル)アミノ]-1,3,5-トリアジン-2,4-ジイル][(2,2,6,6-テトラメチル-4-ピペリジニル)-イミノ]-1,6-ヘキサンジイル[(2,2,6,6-テトラメチル-4-ピペリジニル)イミノ]](Chimassorb(登録商標)944 MW2000~3000);1,5-ジオキサスピロ(5,5)ウンデカン3,3-ジカルボン酸、ビス(2,2,6,6-テトラメチル-4-ペリジニル)エステル(Cyasorb(登録商標)UV-500);1,5-ジオキサスピロ(5,5)ウンデカン3,3-ジカルボン酸、ビス(1,2,2,6,6-ペンタメチル-4-ペリジニル)エステル(Cyasorb(登録商標)UV-516);N-2,2,6,6-テトラメチル-4-ピペリジニル-N-アミノ-オキサミド;4-アクリロイルオキシ-1,2,2,6,6-ペンタメチル-4-ピペリジン;1,5,8,12-テトラキス[2’,4’-ビス(1’’,2’’,2’’,6’’,6’’-ペンタメチル-4’’-ピペリジニル(ブチル)アミノ)-1’,3’,5’-トリアジン-6’-イル]-1,5,8,12-テトラアザドデカン;HALS PB-41(Clariant Huningue S. A.);Nylostab(登録商標)S-EED(Clariant Huningue S.A.);3-ドデシル-1-(2,2,6,6-テトラメチル-4-ピペリジル)-ピロリジン-2,5-ジオン;Uvasorb(登録商標)HA88;1,1’-(1,2-エタン-ジ-イル)-ビス-(3,3’,5,5’-テトラ-メチル-ピペラジノン)(Good-rite(登録商標)3034);1,1’1’’-(1,3,5-トリアジン-2,4,6-トリイルトリス((シクロヘキシルイミノ)-2,1-エタンジイル)トリス(3,3,5,5-テトラメチルピペラジノン)(Good-rite(登録商標)3150)および;1,1’,1’’-(1,3,5-トリアジン-2,4,6-トリイルトリス((シクロヘキシルイミノ)-2,1-エタンジイル)トリス(3,3,4,5,5-テトラメチルピペラジノン)(Good-rite(登録商標)3159);である。 Examples of such compounds are: 2,2,6,6-tetramethyl-4-piperidone; 2,2,6,6-tetramethyl-4-piperidinol; bis- (1,2,2,6,6-penta Methylpiperidyl)-(3 ′, 5′-di-t-butyl-4′-hydroxybenzyl) butyl malonate; di- (2,2,6,6-tetramethyl-4-piperidyl) sebacate (Tinuvin®) 770, MW 481); oligomers of N- (2-hydroxyethyl) -2,2,6,6-tetramethyl-4-piperidinol and succinic acid (Tinuvin® 622); cyanuric acid and N, N -Di (2,2,6,6-tetramethyl-4-piperidyl) -hexamethylenediamine oligomer; bis- (2,2,6,6-tetramethyl-4-piperidinyl) succi Bis- (1-octyloxy-2,2,6,6-tetramethyl-4-piperidinyl) sebacate (Tinvin® 123); Bis- (1,2,2,6,6-pentamethyl) -4-piperidinyl) sebacate (Tinvin® 765); Tinuvin® 144; Tinuvin® XT850; Tetrakis- (2,2,6,6-tetramethyl-4-piperidyl) -1, 2,3,4-butanetetracarboxylate; N, N′-bis- (2,2,6,6-tetramethyl-4-piperidyl) -hexane-1,6-diamine (Chimasorb® T5) N-butyl-2,2,6,6-tetramethyl-4-piperidineamine; 2,2 ′-[(2,2,6,6-tetramethyl-piperi Nyl) -imino] -bis- [ethanol]; poly ((6-morpholine-triazine-2,4-diyl) (2,2,6,6-tetramethyl-4-piperidinyl) -iminohexamethylene- (2 , 2,6,6-tetramethyl-4-piperidinyl) -imino) (Cyasorb® UV3346); 5- (2,2,6,6-tetramethyl-4-piperidinyl) -2-cyclo-undecyl -Oxazole) (Hostavin® N20); 1,1 ′-(1,2-ethane-di-yl) -bis- (3,3 ′, 5,5′-tetramethyl-piperazinone); 8- Acetyl-3-dodecyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro (4,5) decane-2,4-dione; polymethylpropyl-3-oxy- [4 (2, 2, 6,6-tetramethyl) -piperidinyl] siloxane (Uvasil® 299); 1,2,3,4-butane-tetracarboxylic acid-1,2,3-tris (1,2,2,6, 6-pentamethyl-4-piperidinyl) -4-tridecyl ester; copolymer of α-methylstyrene-N- (2,2,6,6-tetramethyl-4-piperidinyl) maleimide and N-stearylmaleimide; , 3,4-butanetetracarboxylic acid, β, β, β ′, β′-tetramethyl-2,4,8,10-tetraoxaspiro [5.5] undecane-3,9-diethanol, 1,2 , 2,6,6-Pentamethyl-4-piperidinyl ester polymer (Mark® LA 63); 2,4,8,10-tetraoxaspiro [5.5] undecane-3,9 Β, β, β ′, β′-tetramethyl-polymer with diethanol, 1,2,3,4-butanetetracarboxylic acid, 2,2,6,6-tetramethyl-4-piperidinyl ester (Mark (Registered trademark) LA68); D-glucitol, 1,3: 2,4-bis-O- (2,2,6,6-tetramethyl-4-piperidinylidene)-(HALS7); 7-oxa -3,20-diazadispiro [5.1.1.12] -heneicosan-21-one-2,2,4,4-tetramethyl-20- (oxiranylmethyl) oligomer (Hostavin® N30) Propanedioic acid, [(4-methoxyphenyl) methylene]-, bis (1,2,2,6,6-pentamethyl-4-piperidinyl) ester (Sanduvor® PR31); Amide, N, N′-1,6-hexanediylbis [N- (2,2,6,6-tetramethyl-4-piperidinyl (Uvinul® 4050H); 1,3,5-triazine-2 , 4,6-triamine, N, N ′ ″-[1,2-ethanediylbis [[[4,6-bis [butyl (1,2,2,6,6-pentamethyl-4-piperidinyl) amino]- 1,3,5-triazin-2-yl] imino] -3,1-propanediyl]]-bis [N ′, N ″ -dibutyl-N ′, N ″ -bis (1,2,2, 6,6-pentamethyl-4-piperidinyl) (Chimassorb® 119 MW 2286); poly [[6-[(1,1,3,3-tetramethylbutyl) amino] -1,3,5-triazine- 2,4-diyl] [(2,2,6, 6-tetramethyl-4-piperidinyl) -imino] -1,6-hexanediyl [(2,2,6,6-tetramethyl-4-piperidinyl) imino]] (Chimassorb® 944 MW 2000-3000) 1,5-dioxaspiro (5,5) undecane 3,3-dicarboxylic acid, bis (2,2,6,6-tetramethyl-4-peridinyl) ester (Cyasorb® UV-500); 5-dioxaspiro (5,5) undecane 3,3-dicarboxylic acid, bis (1,2,2,6,6-pentamethyl-4-peridinyl) ester (Cyasorb® UV-516); N-2, 2,6,6-tetramethyl-4-piperidinyl-N-amino-oxamide; 4-acryloyloxy-1,2,2,6,6-penta Til-4-piperidine; 1,5,8,12-tetrakis [2 ′, 4′-bis (1 ″, 2 ″, 2 ″, 6 ″, 6 ″ -pentamethyl-4 ″-) Piperidinyl (butyl) amino) -1 ′, 3 ′, 5′-triazin-6′-yl] -1,5,8,12-tetraazadodecane; HALS PB-41 (Clariant Huningue S. A. Nylostab® S-EED (Clariant Huningue SA); 3-dodecyl-1- (2,2,6,6-tetramethyl-4-piperidyl) -pyrrolidine-2,5-dione; Uvasorb® HA88; 1,1 ′-(1,2-ethane-di-yl) -bis- (3,3 ′, 5,5′-tetra-methyl-piperazinone) (Good-rite®) 3034); 1,1′1 ″-(1,3,5-triazine-2,4,6-triyltris ((cyclohexylimino) -2,1-ethanediyl) tris (3,3,5,5- Tetramethylpiperazinone) (Good-rite® 3150) and; 1,1 ′, 1 ″-(1,3,5-triazine-2,4,6-triyltris ((cyclohe Shiruimino) 2,1-ethanediyl) tris (3,3,4,5,5- tetramethyl piperazinone) (Good-rite (R) 3159) which is a.
 ヒンダードアミン光安定剤(G)の配合割合は、本発明のガラス繊維強化ポリアミド樹脂組成物中の(A)~(H)成分の合計含有量を100質量部とした場合に、0.05~1.0質量部、好ましくは0.1~1質量部である。本発明のガラス繊維強化ポリアミド樹脂組成物にヒンダードアミン光安定剤(G)を上記の範囲で配合することで、耐候性がさらに向上する。配合割合が上記範囲未満であると、耐候性への寄与が少なくなり、一方、上記範囲を越えると、成形時にガスが多くなり外観を損なう傾向がある。 The blending ratio of the hindered amine light stabilizer (G) is 0.05 to 1 when the total content of the components (A) to (H) in the glass fiber reinforced polyamide resin composition of the present invention is 100 parts by mass. 0.0 part by mass, preferably 0.1 to 1 part by mass. By blending the hindered amine light stabilizer (G) in the glass fiber reinforced polyamide resin composition of the present invention in the above range, the weather resistance is further improved. If the blending ratio is less than the above range, the contribution to weather resistance is reduced. On the other hand, if it exceeds the above range, the gas tends to increase during molding and the appearance tends to be impaired.
 本発明で配合できる紫外線吸収剤(H)としては、公知の紫外線吸収剤を使用することができる。具体的には、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、p-t-ブチルフェニルサリシレート、2,4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-アミル-フェニル)ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’、5’-ビス(α,α-ジメチルベンジル)フェニル〕ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)-5-クロロベンアゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)-5-クロロベンゾチリアゾール、2,5-ビス-〔5’-t-ブチルベンゾキサゾリル-(2)〕-チオフェン、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル燐酸モノエチルエステル)ニッケル塩、2-エトキシ-5-t-ブチル-2’-エチルオキサリックアシッド-ビス-アニリド85~90%と2-エトキシ-5-t-ブチル-2’-エチル-4’-t-ブチルオキサリックアシッド-ビス-アニリド10~15%の混合物、2-〔2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル〕-2H-ベンゾトリアゾール、2-エトキシ-2’-エチルオキサザリックアシッドビスアニリド、2-〔2’-ヒドロオキシ-5’-メチル-3’-(3’’,4’’,5’’,6’’-テトラヒドロフタルイミド-メチル)フェニル〕ベンゾトリアゾール、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2-ヒドロキシ-4-i-オクトキシベンゾフェノン、2-ヒドロキシ-4-ドデシルオキシベンゾフェノン、2-ヒドロキシ-4-オクタデシルオキシベンゾフェノン、サリチル酸フェニル等の紫外線吸収剤を挙げることができる。これらの中では、ベンゾフェノン系、ベンゾトリアゾール系、トリアゾール系、ニッケル系、サリチル系光安定剤が好ましく、ベンゾトリアゾール系、トリアゾール系がより好ましい。 As the ultraviolet absorber (H) that can be blended in the present invention, known ultraviolet absorbers can be used. Specifically, 2,2′-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, pt-butylphenyl salicylate, 2,4-di-tert-butylphenyl-3, 5-di-t-butyl-4-hydroxybenzoate, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-amyl- Phenyl) benzotriazole, 2- [2′-hydroxy-3 ′, 5′-bis (α, α-dimethylbenzyl) phenyl] benzotriazole, 2- (2′-hydroxy-3′-t-butyl-5 ′) -Methylphenyl) -5-chlorobenzazotriazole, 2- (2'-hydroxy-3 ', 5'-di-t-butylphenyl) -5-chlorobenzothiazole 2,5-bis- [5′-t-butylbenzoxazolyl- (2)]-thiophene, bis (3,5-di-t-butyl-4-hydroxybenzyl phosphate monoethyl ester) nickel salt, 2-Ethoxy-5-t-butyl-2'-ethyl oxalic acid-bis-anilide 85-90% and 2-ethoxy-5-t-butyl-2'-ethyl-4'-t-butyl oxalic acid A mixture of 10-15% of bis-anilide, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, 2-ethoxy-2′-ethyloxazalic Acid Bisanilide, 2- [2′-Hydroxy-5′-methyl-3 ′-(3 ″, 4 ″, 5 ″, 6 ″ -tetrahydrophthalimido-methyl) phenyl] benzotri Azole, bis (5-benzoyl-4-hydroxy-2-methoxyphenyl) methane, 2- (2′-hydroxy-5′-t-octylphenyl) benzotriazole, 2-hydroxy-4-i-octoxybenzophenone, Examples include ultraviolet absorbers such as 2-hydroxy-4-dodecyloxybenzophenone, 2-hydroxy-4-octadecyloxybenzophenone, and phenyl salicylate. Among these, benzophenone-based, benzotriazole-based, triazole-based, nickel-based, and salicyl-based light stabilizers are preferable, and benzotriazole-based and triazole-based are more preferable.
 紫外線吸収剤(H)の配合割合は、本発明のガラス繊維強化ポリアミド樹脂組成物中の(A)~(H)成分の合計含有量を100質量部とした場合に、0~1.0質量部であり、好ましくは0.1~0.8質量部である。本発明のガラス繊維強化ポリアミド樹脂組成物において、紫外線吸収剤(H)は必須成分ではないが、ヒンダードアミン光安定剤(G)と併用して、上記の範囲で配合することで、耐候性がいっそう向上する。 The blending ratio of the ultraviolet absorber (H) is 0 to 1.0 mass when the total content of the components (A) to (H) in the glass fiber reinforced polyamide resin composition of the present invention is 100 mass parts. Part, preferably 0.1 to 0.8 part by weight. In the glass fiber reinforced polyamide resin composition of the present invention, the ultraviolet absorber (H) is not an essential component, but when used in combination with the hindered amine light stabilizer (G) and blended in the above range, the weather resistance is further improved. improves.
 銅化合物(I)としては、塩化銅、臭化銅、沃化銅、酢酸銅、銅アセチルアセトナート、炭酸銅、ホウフッ化銅、クエン酸銅、水酸化銅、硝酸銅、硫酸銅、蓚酸銅などが挙げられる。本発明のガラス繊維強化ポリアミド樹脂組成物において、銅化合物(I)の含有割合は、本発明のガラス繊維強化ポリアミド樹脂組成物中の(A)~(H)の成分の合計含有量を100質量部とした場合に、0.005~1.0質量部、好ましくは0.01~0.5質量部である。銅化合物(I)の含有割合が上記範囲未満であると、耐熱老化性が劣る傾向があり、一方、上記範囲を越えても、それ以上の耐熱老化性の向上は見られず、物性が低下する傾向がある。 Copper compounds (I) include copper chloride, copper bromide, copper iodide, copper acetate, copper acetylacetonate, copper carbonate, copper borofluoride, copper citrate, copper hydroxide, copper nitrate, copper sulfate, copper oxalate Etc. In the glass fiber reinforced polyamide resin composition of the present invention, the content ratio of the copper compound (I) is 100 masses of the total content of the components (A) to (H) in the glass fiber reinforced polyamide resin composition of the present invention. Part to 0.005 to 1.0 part by mass, preferably 0.01 to 0.5 part by mass. When the content ratio of the copper compound (I) is less than the above range, the heat aging resistance tends to be inferior. On the other hand, even if the content exceeds the above range, no further improvement in the heat aging resistance is observed, and the physical properties deteriorate. Tend to.
 銅化合物(I)は、本発明では銅化合物と併用する形で安定剤としてハロゲン化アルカリ化合物を配合することも可能である。このハロゲン化アルカリ化合物としては、臭化リチウム、ヨウ化リチウム、臭化カリウム、ヨウ化カリウム、臭化ナトリウムおよびヨウ化ナトリウムを挙げることができ、特に好ましくはヨウ化カリウムである。 In the present invention, the copper compound (I) can be blended with a copper compound in the form of an alkaline halide compound as a stabilizer. Examples of the alkali halide compound include lithium bromide, lithium iodide, potassium bromide, potassium iodide, sodium bromide and sodium iodide, and potassium iodide is particularly preferred.
 また、本発明のガラス繊維強化ポリアミド樹脂組成物には、本発明の特性を阻害しない範囲で、上記(A)~(I)の必須成分以外に、繊維状強化材、無機充填材、光または熱安定剤としてフェノール系酸化防止剤やリン系酸化防止剤、離型剤、結晶核剤、滑剤、難燃剤、帯電防止剤、顔料、染料等の任意成分を配合することができる。本発明のガラス繊維強化ポリアミド樹脂組成物において、(A)~(I)の必須成分以外の任意成分の合計含有量は、最大10質量%であることが好ましい。また、耐候性の観点から、本発明のガラス繊維強化ポリアミド樹脂組成物の(A)~(H)の成分の合計含有量を100質量部とした場合に、ワラストナイトは5質量部以下であることが好ましく、含有しないことがより好ましい。 In addition, the glass fiber reinforced polyamide resin composition of the present invention includes, in addition to the essential components (A) to (I) described above, a fibrous reinforcing material, an inorganic filler, light or light, as long as the properties of the present invention are not impaired. Arbitrary components, such as a phenolic antioxidant, a phosphorus antioxidant, a mold release agent, a crystal nucleating agent, a lubricant, a flame retardant, an antistatic agent, a pigment, and a dye, can be blended as a heat stabilizer. In the glass fiber reinforced polyamide resin composition of the present invention, the total content of optional components other than the essential components (A) to (I) is preferably 10% by mass at the maximum. From the viewpoint of weather resistance, when the total content of the components (A) to (H) of the glass fiber reinforced polyamide resin composition of the present invention is 100 parts by mass, wollastonite is 5 parts by mass or less. It is preferable that it is present, and more preferably not contained.
 本発明のガラス繊維強化ポリアミド樹脂組成物の製造方法としては、特に制限は無く、各成分を公知の混練方法により溶融混練して得ることができる。具体的な混練装置にも制限はなく、例えば単軸または二軸の押出機、混練機、ニーダーなどが挙げられるが、特に二軸押出機が生産性の面で好ましい。スクリューアレンジにも特に制限は無いが、各成分をより均一に分散させるためにニーディングゾーンを設けることが好ましい。具体的な方法としては、ポリアミド樹脂(A)、(B)、及びアクリル系樹脂(C)の混合物に、ヒンダードアミン光安定剤(G)、紫外線吸収剤(H)、銅化合物(I)、その他成分をブレンダーでプリブレンドし、ホッパーから単軸や二軸の押出機に投入した後、ポリアミド樹脂(A)、(B)及びアクリル系樹脂(C)の少なくとも一部が溶融した状態で、溶融混合物中にマイカ(D)、ガラス繊維(E)をフィーダーで単軸や二軸の押出機に投入し、溶融混練後ストランド状に吐出し、冷却、カットすることで得られる。 The method for producing the glass fiber reinforced polyamide resin composition of the present invention is not particularly limited, and each component can be obtained by melt kneading by a known kneading method. The specific kneading apparatus is not limited, and examples thereof include a single-screw or twin-screw extruder, a kneader, and a kneader. A twin-screw extruder is particularly preferable in terms of productivity. Although there is no restriction | limiting in particular also in screw arrangement, It is preferable to provide a kneading zone in order to disperse | distribute each component more uniformly. As a specific method, a mixture of a polyamide resin (A), (B), and an acrylic resin (C), a hindered amine light stabilizer (G), an ultraviolet absorber (H), a copper compound (I), and others The components are pre-blended with a blender and charged into a single-screw or twin-screw extruder from a hopper, and then melted with at least a part of the polyamide resins (A), (B) and acrylic resin (C) melted. Mica (D) and glass fiber (E) are fed into a monoaxial or biaxial extruder with a feeder into the mixture, melt-kneaded, discharged into a strand, cooled, and cut.
 本発明のガラス繊維強化ポリアミド樹脂組成物は、上述のような組成で作製されているので、以下に示す優れた耐候性を有することを特徴とする。
 すなわち、キセノンウェザーメーターを用いた耐候試験(JIS K-7350-2に準拠)後の色差△Eが8.0以下、好ましくは7.5以下、より好ましくは7.0以下である。耐候試験の詳細は、後記する実施例に記載の手順によるが、試験サンプルは耐候性評価条件の影響を受けやすい、鏡面を有する成形品(平板)を用いている。色差△Eが上記値以下であることにより、降雨に曝される屋外での使用に耐えることができる。
Since the glass fiber reinforced polyamide resin composition of the present invention is produced with the composition as described above, it has the following excellent weather resistance.
That is, the color difference ΔE after a weather resistance test using a xenon weather meter (based on JIS K-7350-2) is 8.0 or less, preferably 7.5 or less, more preferably 7.0 or less. Although the details of the weather resistance test are according to the procedure described in the examples described later, the test sample is a molded article (flat plate) having a mirror surface that is easily affected by the weather resistance evaluation conditions. When the color difference ΔE is equal to or less than the above value, it can be used outdoors when exposed to rain.
 本発明の効果を以下の実施例により具体的に示すが、本発明の技術思想を逸脱しない限り、以下の実施例に限定されるものではない。なお、実施例における特性値の評価は以下の方法に従った。 The effects of the present invention are specifically shown by the following examples, but are not limited to the following examples without departing from the technical idea of the present invention. In addition, evaluation of the characteristic value in an Example followed the following method.
(1)ポリアミド樹脂の相対粘度:ポリアミド樹脂0.25gを96%の硫酸25mlに溶解し、この溶液10mlをオストワルド粘度管に入れ、20℃で測定し、以下の式により算出した。
  RV=T/T0
 RV:相対粘度、T:サンプル溶液の落下時間、T0:溶媒の落下時間
(1) Relative viscosity of polyamide resin: 0.25 g of polyamide resin was dissolved in 25 ml of 96% sulfuric acid, 10 ml of this solution was placed in an Ostwald viscosity tube, measured at 20 ° C., and calculated by the following formula.
RV = T / T0
RV: relative viscosity, T: sample solution drop time, T0: solvent drop time
(3)曲げ強度、曲げ弾性率:ISO-178に準じて測定した。 (3) Flexural strength and flexural modulus: measured according to ISO-178.
(4)耐候性の評価
 色差ΔE:射出成形機(東芝機械株式会社製、IS80)でシリンダー温度280℃、金型温度90℃にて成形した鏡面平板(100mm×100mm×2mm)について、JIS K-7350-2に準拠し、キセノンウェザーメーター(スガ試験機株式会社製XL75)を用い、耐候試験(ブラックパネル温度:63±2℃、相対湿度:50±5%、照射方法:120分中18分降雨(水噴射)、照射時間:1250時間、照射度:波長300nm~400nm 60W/m・S、光学フィルター:(内)石英、(外)ボロシリケイト♯275)を行った。耐候試験前後の鏡面平板について、東京電色社製分光測色計TC-1500SXを用いてL、a、b値を測定し、色差ΔEを算出した。
 耐候試験後の成形品表面外観(強化材露出の有無):
 ○;強化材の露出が認められない、または、成形品表面の一部に強化材の露出が認められる程度。
 ×;成形品表面全体に強化材の露出が認められる。
(4) Evaluation of weather resistance Color difference ΔE: JIS K with respect to a mirror plate (100 mm × 100 mm × 2 mm) molded with an injection molding machine (Toshiba Machine Co., Ltd., IS80) at a cylinder temperature of 280 ° C. and a mold temperature of 90 ° C. -7350-2, using xenon weather meter (XL75 manufactured by Suga Test Instruments Co., Ltd.), weather resistance test (black panel temperature: 63 ± 2 ° C., relative humidity: 50 ± 5%, irradiation method: 18 in 120 minutes) Minor rain (water jet), irradiation time: 1250 hours, irradiation degree: wavelength 300 nm to 400 nm 60 W / m 2 · S, optical filter: (inner) quartz, (outer) borosilicate # 275). The specular color plate before and after the weathering test was measured for L, a, and b values using a spectrocolorimeter TC-1500SX manufactured by Tokyo Denshoku Co., Ltd., and the color difference ΔE was calculated.
Molded product surface appearance after weathering test (with or without reinforcement exposed):
○: Excess of the reinforcing material is not recognized, or the reinforcing material is exposed on a part of the molded product surface.
X: Reinforcement exposure is observed on the entire surface of the molded product.
・ポリアミド樹脂(A)
 (A1)相対粘度RV=2.0のポリアミド6、MEIDA社製「M2000」
 (A2)相対粘度RV=2.4のポリアミド66、ローディア社製「スタバミド23AE」
・非晶性ポリアミド樹脂(B)
 (B1)相対粘度RV=2.0のポリアミド6T6I、エムス社製「グリボリーG21」、
 (B2)相対粘度RV=1.8のポリアミド6T6I、エムス社製「グリボリーG16」
・ Polyamide resin (A)
(A1) Polyamide 6 having a relative viscosity RV = 2.0, “M2000” manufactured by MEIDA
(A2) Polyamide 66 with relative viscosity RV = 2.4, “STABAMID 23AE” manufactured by Rhodia
・ Amorphous polyamide resin (B)
(B1) Polyamide 6T6I with relative viscosity RV = 2.0, “Grivory G21” manufactured by EMS,
(B2) Polyamide 6T6I with relative viscosity RV = 1.8, “Grivory G16” manufactured by MMS
・アクリル系樹脂(C)
 ポリメタクリル酸メチル、クラレ社製「パラペットGF」
・マイカ(D)
 Repco社製「S-325」
・ガラス繊維(E)
 日本電気硝子社製「T-275H」(円形断面ガラス繊維チョップドストランド:直径11μm)
・カーボンブラック(F)
 マスターバッチ:住化カラー社製「EPC-840」:ベース樹脂 LDPE樹脂、カーボンブラック含有量43質量%
・ Acrylic resin (C)
Polymethyl methacrylate, “Parapet GF” manufactured by Kuraray
・ Mica (D)
"S-325" manufactured by Repco
・ Glass fiber (E)
“T-275H” manufactured by Nippon Electric Glass Co., Ltd. (circular cross-section glass fiber chopped strand: diameter 11 μm)
・ Carbon black (F)
Master batch: “EPC-840” manufactured by Sumika Color Co., Ltd .: Base resin LDPE resin, carbon black content 43% by mass
・ヒンダードアミン光安定剤(G)
 クラリアント社製「Nylostab S-EED」(N,N’-ビス-(2,2,6,6-テトラメチル-4-ピペリジル)-イソフタルアミド)
・紫外線吸収剤(H)
 BASF社製「チヌビン234」(2-〔2’-ヒドロキシ-3’、5’-ビス(α,α-ジメチルベンジル)フェニル〕ベンゾトリアゾール)
・銅化合物(I)
 臭化第二銅:和光純薬社製 純度99.9%
・ Hindered amine light stabilizer (G)
“Nylostab S-EED” (N, N′-bis- (2,2,6,6-tetramethyl-4-piperidyl) -isophthalamide) manufactured by Clariant
・ Ultraviolet absorber (H)
“TINUVIN 234” (2- [2′-hydroxy-3 ′, 5′-bis (α, α-dimethylbenzyl) phenyl] benzotriazole) manufactured by BASF
・ Copper compound (I)
Cupric bromide: 99.9% purity by Wako Pure Chemical Industries
・使用した他の成分
 ワラストナイト:NYCO MINERAL社製「NYGLOS8」(繊維径8μm、繊維長136μm)
Other components used: Wollastonite: “NYGLOS8” (fiber diameter 8 μm, fiber length 136 μm) manufactured by NYCO MINETAL
<実施例1~11、比較例1~8>
 表1及び表2に示す配合割合で、マイカ(D)、ガラス繊維(E)、ワラストナイト以外の成分をドライブレンドし、コペリオン社製ベント式2軸押出機「STS35mm」(バレル12ブロック構成)を用いてシリンダー温度280℃、スクリュウ回転数250rpmの押出条件で溶融混合し、次いでマイカ(D)、ガラス繊維(E)、ワラストナイトをサイドフィード方式で供給し溶融混練を行った。押出機から押出されたストランドを急冷してストランドカッターでペレット化した。得られたペレットを100℃で12時間乾燥した後、射出成形機(東芝機械株式会社製、IS80)でシリンダー温度280℃、金型温度90℃にて鏡面平板を成形して評価に供した。評価結果も表1及び表2に記した。なお、表中のカーボンブラックマスターバッチ(F)の配合量は、マスターバッチとしての量である。
<Examples 1 to 11 and Comparative Examples 1 to 8>
Components other than mica (D), glass fiber (E), and wollastonite are dry blended at the blending ratios shown in Tables 1 and 2, and a bent type twin-screw extruder “STS 35 mm” manufactured by Coperion (barrel 12 block configuration). ) Was melt-mixed under the extrusion conditions of a cylinder temperature of 280 ° C. and a screw rotation speed of 250 rpm, and then mica (D), glass fiber (E), and wollastonite were supplied by a side feed method and melt-kneaded. The strand extruded from the extruder was quenched and pelletized with a strand cutter. The obtained pellets were dried at 100 ° C. for 12 hours, and then a mirror plate was molded by an injection molding machine (Toshiba Machine Co., Ltd., IS80) at a cylinder temperature of 280 ° C. and a mold temperature of 90 ° C. for evaluation. The evaluation results are also shown in Tables 1 and 2. In addition, the compounding quantity of the carbon black masterbatch (F) in a table | surface is the quantity as a masterbatch.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1から、実施例1~11の試験片は、耐候試験前後の色差ΔEが小さく、黒色の退色が抑制されていることがわかる。また、ガラス繊維の露出が抑制され、表面状態も良好である。一方、表2から、ヒンダードアミン光安定剤(G)を含まない比較例1の試験片は、耐候試験前後の色差ΔEが実施例に比べてやや大きくなり、耐候性がやや劣ることがわかる。比較例2~8の試験片は、耐候試験前後の色差ΔEが大きく、黒色の退色が大きく、外観が損なわれることがわかる。比較例6、8の試験片は、曲げ強度・曲げ弾性率にも劣ることがわかる。 From Table 1, it can be seen that the test pieces of Examples 1 to 11 have a small color difference ΔE before and after the weather resistance test and suppress black fading. Moreover, exposure of glass fiber is suppressed and the surface state is also good. On the other hand, it can be seen from Table 2 that the test piece of Comparative Example 1 that does not contain the hindered amine light stabilizer (G) has a slightly larger color difference ΔE before and after the weather resistance test than the Examples, and is slightly inferior in weather resistance. It can be seen that the test pieces of Comparative Examples 2 to 8 have a large color difference ΔE before and after the weather resistance test, a large black fading, and the appearance is impaired. It can be seen that the test pieces of Comparative Examples 6 and 8 are inferior in bending strength and bending elastic modulus.
 本発明のガラス繊維強化ポリアミド樹脂組成物は、アウターハンドル、アウタードアハンドル、ホイールキャップ、ルーフレール、ドアミラーベース、ルームミラーアーム、サンルーフデフレクター、ラジエーターファン、ラジエーターグリル、ベアリングリテーナー、コンソールボックス、サンバイザーアーム、スポイラー、スライドドアレールカバーなどの車両用の内装、外装部品用に好適に使用できる。 The glass fiber reinforced polyamide resin composition of the present invention includes an outer handle, an outer door handle, a wheel cap, a roof rail, a door mirror base, a rear mirror arm, a sunroof deflector, a radiator fan, a radiator grill, a bearing retainer, a console box, a sun visor arm, It can be suitably used for interior and exterior parts for vehicles such as spoilers and sliding door rail covers.

Claims (5)

  1.  結晶性脂肪族ポリアミド樹脂(A)、非晶性ポリアミド樹脂(B)、アクリル系樹脂(C)、マイカ(D)、ガラス繊維(E)、カーボンブラック(F)、ヒンダードアミン光安定剤(G)、及び紫外線吸収剤(H)をそれぞれ(10~40):(2~20):(1~10):(2~25):(20~50):(0.1~5):(0.05~1.0):(0~1.0)の質量比で含有し、さらに前記(A)~(H)成分の合計含有量を100質量部とした場合に銅化合物(I)を0.005~1.0質量部の割合で含有することを特徴とするガラス繊維強化ポリアミド樹脂組成物。 Crystalline aliphatic polyamide resin (A), amorphous polyamide resin (B), acrylic resin (C), mica (D), glass fiber (E), carbon black (F), hindered amine light stabilizer (G) , And ultraviolet absorber (H) (10 to 40): (2 to 20): (1 to 10): (2 to 25): (20 to 50): (0.1 to 5): (0 0.05 to 1.0): (0 to 1.0) in a mass ratio, and when the total content of the components (A) to (H) is 100 parts by mass, the copper compound (I) is added. A glass fiber reinforced polyamide resin composition characterized by containing 0.005 to 1.0 parts by mass.
  2.  非晶性ポリアミド樹脂(B)が、半芳香族ポリアミドであることを特徴とする請求項1に記載のガラス繊維強化ポリアミド樹脂組成物。 The glass fiber reinforced polyamide resin composition according to claim 1, wherein the amorphous polyamide resin (B) is a semi-aromatic polyamide.
  3.  前記ガラス繊維強化ポリアミド樹脂組成物から射出成形により得られた平板の、JIS-K-7350-2に準拠した耐候試験前後の色差△Eが、8.0以下であることを特徴とする請求項1又は2に記載のガラス繊維強化ポリアミド樹脂組成物。 A color difference ΔE before and after a weather resistance test in accordance with JIS-K-7350-2 of a flat plate obtained by injection molding from the glass fiber reinforced polyamide resin composition is 8.0 or less. 3. The glass fiber reinforced polyamide resin composition according to 1 or 2.
  4.  請求項1~3のいずれかに記載のガラス繊維強化ポリアミド樹脂組成物を用いて成形されていることを特徴とする車両内装用又は車両外装用成形品。 A molded product for vehicle interior or vehicle exterior, which is molded using the glass fiber reinforced polyamide resin composition according to any one of claims 1 to 3.
  5.  アウターハンドル、アウタードアハンドル、ホイールキャップ、ルーフレール、ドアミラーベース、ルームミラーアーム、サンルーフデフレクター、ラジエーターファン、ラジエーターグリル、ベアリングリテーナー、コンソールボックス、サンバイザーアーム、スポイラー、及びスライドドアレールカバーからなる群から選ばれることを特徴とする請求項4に記載の車両内装用又は車両外装用成形品。
     
    Outer handle, outer door handle, wheel cap, roof rail, door mirror base, rear mirror arm, sunroof deflector, radiator fan, radiator grill, bearing retainer, console box, sun visor arm, spoiler, and sliding door rail cover The molded product for vehicle interior or vehicle exterior according to claim 4.
PCT/JP2018/020014 2017-05-25 2018-05-24 Glass fiber-reinforced polyamide resin composition WO2018216770A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018546052A JPWO2018216770A1 (en) 2017-05-25 2018-05-24 Glass fiber reinforced polyamide resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017103570 2017-05-25
JP2017-103570 2017-05-25

Publications (1)

Publication Number Publication Date
WO2018216770A1 true WO2018216770A1 (en) 2018-11-29

Family

ID=64396545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020014 WO2018216770A1 (en) 2017-05-25 2018-05-24 Glass fiber-reinforced polyamide resin composition

Country Status (2)

Country Link
JP (1) JPWO2018216770A1 (en)
WO (1) WO2018216770A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170959A1 (en) * 2019-02-22 2020-08-27 東洋紡株式会社 Production method for glass fiber-reinforced polyamide resin composition
WO2020170909A1 (en) * 2019-02-18 2020-08-27 東洋紡株式会社 Glass fiber-reinforced polyamide resin composition, and molded article for vehicle interior or vehicle exterior comprising same
JP2020164660A (en) * 2019-03-29 2020-10-08 三井化学株式会社 Glass fiber-reinforced polyamide resin composition and molded body
WO2021235277A1 (en) * 2020-05-20 2021-11-25 ユニチカ株式会社 Thermally conductive resin composition and molded body comprising same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892465A (en) * 1994-09-26 1996-04-09 Mitsubishi Eng Plast Kk Weatherable polyamide resin composition
WO2000032693A1 (en) * 1998-11-27 2000-06-08 Unitika Ltd. Polyamide resin composition and vehicular mirror-supporting part comprising the same
JP2001098149A (en) * 1999-09-29 2001-04-10 Toyobo Co Ltd Polyamide resin composition
JP2013501094A (en) * 2009-07-30 2013-01-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Heat aging resistant polyamide composition comprising polyhydroxy polymer
JP5555432B2 (en) * 2009-02-16 2014-07-23 三菱エンジニアリングプラスチックス株式会社 Polyamide resin composition
JP2015196834A (en) * 2014-03-31 2015-11-09 エーエムエス−パテント アクチェンゲゼルシャフト Polyamide molding composition, production process of the same and use of polyamide molding composition
WO2017094696A1 (en) * 2015-12-02 2017-06-08 東洋紡株式会社 Glass-fiber-reinforced polyamide resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892465A (en) * 1994-09-26 1996-04-09 Mitsubishi Eng Plast Kk Weatherable polyamide resin composition
WO2000032693A1 (en) * 1998-11-27 2000-06-08 Unitika Ltd. Polyamide resin composition and vehicular mirror-supporting part comprising the same
JP2001098149A (en) * 1999-09-29 2001-04-10 Toyobo Co Ltd Polyamide resin composition
JP5555432B2 (en) * 2009-02-16 2014-07-23 三菱エンジニアリングプラスチックス株式会社 Polyamide resin composition
JP2013501094A (en) * 2009-07-30 2013-01-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Heat aging resistant polyamide composition comprising polyhydroxy polymer
JP2015196834A (en) * 2014-03-31 2015-11-09 エーエムエス−パテント アクチェンゲゼルシャフト Polyamide molding composition, production process of the same and use of polyamide molding composition
WO2017094696A1 (en) * 2015-12-02 2017-06-08 東洋紡株式会社 Glass-fiber-reinforced polyamide resin composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170909A1 (en) * 2019-02-18 2020-08-27 東洋紡株式会社 Glass fiber-reinforced polyamide resin composition, and molded article for vehicle interior or vehicle exterior comprising same
EP3929238A4 (en) * 2019-02-18 2023-04-12 Toyobo Co., Ltd. Glass fiber-reinforced polyamide resin composition, and molded article for vehicle interior or vehicle exterior comprising same
JP7444158B2 (en) 2019-02-18 2024-03-06 東洋紡エムシー株式会社 Glass fiber-reinforced polyamide resin composition and molded products for vehicle interiors or vehicle exteriors made from the same
WO2020170959A1 (en) * 2019-02-22 2020-08-27 東洋紡株式会社 Production method for glass fiber-reinforced polyamide resin composition
JP2020164660A (en) * 2019-03-29 2020-10-08 三井化学株式会社 Glass fiber-reinforced polyamide resin composition and molded body
WO2021235277A1 (en) * 2020-05-20 2021-11-25 ユニチカ株式会社 Thermally conductive resin composition and molded body comprising same
JP2021181541A (en) * 2020-05-20 2021-11-25 ユニチカ株式会社 Heat-conductive resin composition, and compact comprising the same
CN115551951A (en) * 2020-05-20 2022-12-30 尤尼吉可株式会社 Thermally conductive resin composition and molded body made of same

Also Published As

Publication number Publication date
JPWO2018216770A1 (en) 2020-03-26

Similar Documents

Publication Publication Date Title
JP6172415B1 (en) Glass fiber reinforced polyamide resin composition
WO2018216770A1 (en) Glass fiber-reinforced polyamide resin composition
JP5761632B2 (en) Glass fiber reinforced polyamide resin composition
JP5555432B2 (en) Polyamide resin composition
JP5451970B2 (en) Polyamide resin composition pellet blend, molded article, and method for producing pellet blend
JP5004201B2 (en) Black colored polyamide resin composition and molded product thereof
JP7145416B2 (en) Polyamide resin composition with excellent weather resistance
JP2008088377A (en) Polyamide resin composition for breaker box body and breaker box body
JP2011057977A (en) Polyamide resin composition excellent in weatherability and method for producing the same
JP4606719B2 (en) Black-based colored fiber reinforced resin composition
JP2001131408A (en) Black-colored reinforced polyamide resin composition
JP2004107536A (en) Polyamide resin composition excellent in weather resistance
JP3967819B2 (en) Molding material and molding method
JP2006137815A (en) Polyamide resin composition and molding consisting of the same
US20060241221A1 (en) Polyolefin resin composition and processes for the production thereof
JP7444158B2 (en) Glass fiber-reinforced polyamide resin composition and molded products for vehicle interiors or vehicle exteriors made from the same
TWI834815B (en) Glass fiber reinforced polyamide resin compositions, and molded articles for vehicle interiors or vehicle exteriors composed of the compositions
JP4836302B2 (en) Black colored reinforced polyamide resin composition
JPWO2020170959A1 (en) Method for manufacturing glass fiber reinforced polyamide resin composition
JP2002047381A (en) Fiber-reinforced polyolefin resin composition
WO2019172354A1 (en) Polyamide resin composition
JP2013100412A (en) Polyamide resin composition and molding

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018546052

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18805464

Country of ref document: EP

Kind code of ref document: A1