WO2018216232A1 - 隙間センサおよび隙間測定方法 - Google Patents

隙間センサおよび隙間測定方法 Download PDF

Info

Publication number
WO2018216232A1
WO2018216232A1 PCT/JP2017/026528 JP2017026528W WO2018216232A1 WO 2018216232 A1 WO2018216232 A1 WO 2018216232A1 JP 2017026528 W JP2017026528 W JP 2017026528W WO 2018216232 A1 WO2018216232 A1 WO 2018216232A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
clamp
gap
guard
voltage
Prior art date
Application number
PCT/JP2017/026528
Other languages
English (en)
French (fr)
Inventor
義照 京岡
正人 阿部
Original Assignee
株式会社京岡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社京岡 filed Critical 株式会社京岡
Priority to BR112017028006-0A priority Critical patent/BR112017028006B1/pt
Priority to CA2989869A priority patent/CA2989869C/en
Priority to EP17811429.4A priority patent/EP3431917B1/en
Priority to US15/738,299 priority patent/US10514245B2/en
Priority to CN201780002161.6A priority patent/CN109313007B/zh
Publication of WO2018216232A1 publication Critical patent/WO2018216232A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/023Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring distance between sensor and object
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/10Manufacturing or assembling aircraft, e.g. jigs therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10151Sensor

Definitions

  • the present invention relates to a gap sensor for detecting a gap between opposing member surfaces, more specifically, a gap distributed in a planar shape, and a measurement method thereof.
  • the main wing of an aircraft has a box structure that includes a skeleton composed of girders and ribs, and a base end portion of the main wing has a frame structure for coupling to the fuselage.
  • the fuselage is formed with a fixing portion (bracket) having a substantially cylindrical structure for receiving the base end portion of the main wing, and the base end portion of the main wing is inserted into the fixing portion and coupled with a structure such as a brown tube.
  • the fixing portion of the fuselage is configured so that the plate member constituting the base end portion of the main wing is sandwiched between two plate members, and both surfaces of the base end plate member have a gap of about several millimeters from the plate member of the fixing portion. Are facing each other.
  • Each plate member is a conductive material such as an aluminum alloy or carbon fiber.
  • a spacer matching the shape of the gap space is inserted and fastened.
  • the body is formed by dividing the body into a front body, a middle body, and a rear body and then combining the body parts.
  • Related techniques are exemplified in Japanese Patent Publication No. 483512 and Japanese Patent Application Laid-Open No. 2015-79979.
  • Gap sensors are used to measure the gap at the joint position defined by the plate member of the main wing board after alignment and the plate member of the fuselage fixing part, and 3D data of the shape of the gap space is obtained. By acquiring, the shape of the spacer is specified.
  • An electronic gap sensor using a capacitance sensor usually has a long probe part, and a planar detection electrode is arranged on the tip side.
  • a planar detection electrode is arranged on the tip side.
  • three-dimensional measurement of a gap is required even when adjusting the gap (clearance) between a die and a punch in press die processing of a plate material of a ship, an aircraft, an automobile, etc., and a measurement of a smaller gap is required. .
  • a predetermined signal such as a rectangular wave is applied to an electrode, and an electrode voltage is actively guarded through a buffer.
  • the probe includes a detection electrode De 'to which a probe signal is applied, and guard patterns G1 and G2 in which the periphery and back of the electrode have the same potential as the electrode.
  • a probe signal is applied to the electrode patterns E1 and E2 including the electrode De ', and a current corresponding to the electric capacity to be measured is detected.
  • the detected potential of the electrode De ' is actively guarded with the electrode potentials of the guard patterns G1 and G2 through a buffer so that the periphery of the electrode has the same potential.
  • the active guard can suppress the electric field other than the electric field generated between the electrode and the measurement target, and can increase the accuracy of capacitance measurement.
  • the potential of the electrode De 'being measured is set to the guard potential of the guard pattern G1 or G2, it is not possible to simultaneously measure a plurality of electrodes surrounded by the same guard pattern. This is because each electrode signal is different and the corresponding guard signal is different for each electrode.
  • the present invention has been made paying attention to such a problem, and according to the present invention, it is possible to provide an electronic gap sensor and a gap measurement method that acquire gap data with a small measurement error and high reproducibility.
  • a gap sensor that detects a gap between a surface of a first member having conductivity and a surface of a second member having conductivity by using a capacitance measuring method, A probe extending along the main axis direction and a main body, the probe having a base end connected to the main body and provided with a plurality of electrodes on a distal end side, the probe including a first conductive layer, a second conductive layer, A multilayer substrate structure in which a third conductive layer is laminated; the first conductive layer defines a first surface of the probe; the first electrode group is formed in an array; and is electrically connected to the first electrode group A non-connected first guard layer is formed, the third conductive layer defines a second surface of the probe, and a second electrode group is formed at a position corresponding to the first electrode group, A second guard layer electrically disconnected from the second electrode group is formed, and the second conductive layer is formed in front A guard electrode is formed between the first conductive layer and the third conductive layer
  • the signal line pattern is electrically connected to each electrode of the first electrode group and the second electrode group. Further, the control unit of the main body applies an exploration signal to the first guard layer, the guard electrode, and the second guard layer, and passes each electrode of the first electrode group and the second electrode group through the signal line pattern. Then, a voltage clamp is performed with the search signal, and a gap at each electrode position is measured by detecting a clamp current by the voltage clamp.
  • a gap measurement is performed by detecting a gap between a surface of a first member having conductivity and a surface of a second member having conductivity by using a capacitance measuring method.
  • the method includes forming a plurality of electrode pairs and guard layers at corresponding positions on both sides of the probe, generating a probe signal, applying the probe signal to the guard layer, and each of the plurality of electrode pairs. Voltage-clamping each electrode independently to the search signal; detecting a capacitance at each electrode position by measuring a clamp current of each electrode; and each electrode position based on the capacitance And measuring a gap in the case.
  • (A) is a conceptual diagram of the conductive layer of the electrode part concerning a related technique
  • (b) is a conceptual diagram of the conductive layer of the electrode part concerning this invention.
  • the top view which shows the clearance gap sensor of this embodiment.
  • the conceptual diagram showing the cross-section of the probe electrode part of this embodiment.
  • the conceptual diagram which shows the principle of the clearance measurement by a clearance sensor.
  • the bottom view of the sensor main body concerning other embodiments.
  • FIG. 2 shows a top view of the gap sensor according to the present embodiment.
  • the gap sensor 1 includes a probe 2 on which electrodes for detecting the gap are arranged, and a main body 21 connected to the probe 2 via a connector 20 as a probe support portion.
  • the main body 21 includes a control unit 10 that applies a voltage to the detection electrode of the probe 2 and measures a displacement current.
  • the probe 2 has a long shape extending in the principal axis direction (Xc) in the XY plane, and is inserted into a gap space G formed between the surfaces S1 and S2 of the conductive member such as an opposing work, and the gap Measure.
  • the probe 2 includes a flexible printed circuit board 5 provided with an electrode portion 3 including an electrode pair array 4.
  • the flexible printed circuit board (FPB) 5 has a long and three-layer structure extending in the principal axis X direction in FIG. 1, and is formed between the ellipse electrode 4 and the surfaces S1 and S2 of the conductive material to be measured.
  • a response current is measured by applying a predetermined potential, and a gap at the electrode position is acquired based on the acquired electric capacity.
  • a filler film for attracting with a magnet is formed on the surface of the probe 2 including the electrode part 3.
  • the flexible printed circuit board (FPC) 5 includes a guard pattern G1 (first conductive layer C1) that defines the front surface (first surface) P1, and a guard pattern G2 (third conductive layer C3) that defines the back surface (second surface) P2. It has a signal pattern Es (second conductive layer C2) sandwiched between two guard patterns.
  • the signal pattern Es is an aggregate of each electrode signal pattern Esi electrically connected to each electrode Ei independently.
  • An insulating layer (not shown) is disposed between the conductive layers.
  • the electrode Ei is circular for convenience, but may be any shape such as an ellipse or an ellipse.
  • an electrode pattern E1 is formed in the first conductive layer C1, and a ring-shaped gap gp1 is formed as an insulator between the electrode pattern E1 and the guard pattern G1 formed so as to surround the periphery. Is not electrically connected.
  • An electrode pattern E2 is formed on the third conductive layer C3, and a ring-shaped gap gp2 is formed between the third conductive layer C3 and the guard pattern G2 formed so as to surround the periphery, and is not electrically connected.
  • the electrode pattern E1 and the electrode pattern E2 are formed at the same position in the XY plane and constitute one electrode pair.
  • a guard pattern Ge is formed at a position corresponding to the electrode pair, and is electrically connected to the guard patterns G1, G2 via the via holes Gb1, Gb2.
  • the electrode pattern E1 is connected to the corresponding signal pattern Es1 of the second conductive layer C2 via the via hole Eb1
  • the electrode pattern E2 is connected to the corresponding signal pattern Es2 via the via hole Eb2.
  • a gap is formed between the via holes Eb1 and Eb2 and the guard pattern Ge.
  • a plurality of electrode pairs are formed in the electrode part 3, and each electrode Ei is connected to a corresponding voltage clamp amplifier VCAi via a signal pattern Esi.
  • FIG. 4 is a conceptual diagram of the control circuit of the control unit 10.
  • the control of the guard potential and the electrode in the present invention employs a unique equipotential driving method.
  • the search signal generator SG generates a sine wave as the reference search signal Sp, and its amplitude is controlled by the microcontroller MC.
  • the search signal Sp is applied as a guard signal Vp to the guard patterns G1, Ge, G2 via the driver AMP.
  • Voltage clamp amplifiers (voltage clamp circuits) VCA1 to VCA16 are independently connected to 16-pole electrodes E1 to E16 via signal patterns Es1 to Es16.
  • Each voltage clamp amplifier VCAi receives the output Vp of the driver AMP as an exploration voltage, and clamps the electrode Ei to the voltage Vp. Since the search voltage Vp is a sine wave, the voltage clamp amplifier VCAi is a variable voltage source.
  • the voltage clamp amplifier VCAi has a differential amplifier (op-amp) as the main clamp amplifier OPia, and when the search voltage Vp is input to the non-inverting input terminal (+), the clamp output voltage Vfia connected to the inverting input terminal ( ⁇ ). Is negatively feedback controlled so as to be always equal to the exploration voltage Vp. Also, a resistor (clamp current detection resistor) Rsia for detecting the clamp current Isi is connected between the output terminal and the inverting input terminal of the main clamp amplifier OPia, and the electrode Ei is voltage clamped from the voltage across the resistor Rsia. The clamp current (displacement current) can be detected.
  • the differential amplifier that constitutes the main clamp amplifier OPia has a slight input capacitance, a bias current, etc., has temperature characteristics, and has variations in characteristics. Since the capacitance to be searched is generally about pF or less, variations in the characteristics of the differential amplifier can cause a large measurement error. Therefore, a differential amplifier with uniform characteristics is employed as the reference clamp amplifier OPib to compensate for error elements other than the search current.
  • the voltage clamp amplifier VCAi has a reference clamp amplifier OPib together with the make clamp amplifier OPia.
  • the reference clamp amplifier OPib has the same external circuit as the make clamp amplifier OPia, and the clamp output voltage Vf1b connected to the non-inverting input terminal (+) and connected to the inverting input terminal ( ⁇ ) is always equal to Vp. Negative feedback control is performed so that The only difference from the main clamp amplifier OPia is that the clamp output voltage Vfib is not connected to the electrode Ei and has no load.
  • a resistor (reference current detection resistor) Rsib for detecting a clamp current Iri at no load is connected between the output terminal and the inverting input terminal of the reference clamp amplifier OPib, and a voltage clamp is performed without load from the voltage across the resistor Rsib.
  • the reference clamp current Iri can be detected.
  • the reference clamp current Iri reflects a current component other than the current flowing through the electrode as a load.
  • the clamp output voltages Vfia and Vfib of the two operational amplifiers are substantially equal to the search voltage Vp at the time of voltage clamping.
  • the exploration voltage Voia detected by the main clamp amplifier OPia is obtained by adding the bias current Iri derived from the differential amplifier to the net clamp current Isi flowing through the electrode Ei. Therefore, the net clamp current Iei can be obtained by performing a differential operation of the output voltages Voia and Voib of the main clamp amplifier OPia and the reference clamp amplifier OPib.
  • the two differential amplifiers OPia and OPib constituting the voltage clamp amplifier VCAi are preferably dual type operational amplifiers in which operational amplifiers with uniform characteristics are contained in one package. Further, in order to protect the input of the differential amplifier, a resistor may be inserted between each non-inverting input terminal and the clamp output terminals Vfia and Vfib.
  • the electrodes Ei to be measured are sequentially selected by the changeover switches (analog switches) SW1 and SW2 under the control of the microcontroller MC, and the difference between the output voltages Voia and Voib by the differential amplifier (instrumentation amplifier) INA.
  • the clamp current is detected with high accuracy by performing dynamic calculation (current detection circuit).
  • the present invention employs a unique equipotential driving method in which each electric element is independently driven at the same potential, in principle, clamp currents at a plurality of electrodes can be measured simultaneously.
  • the capacitance of each electrode is measured in a time-sharing manner by combining the dynamic amplifier INA and the changeover switch.
  • the electrodes 2 of the probe 2 are 6 pairs and 12 electrodes, but further multipolarization is possible.
  • the electrode Ei is a planar electrode and a virtual capacitor (capacitance C) is formed between the opposing measured surfaces, the distance d between the electrode plates can be obtained by measuring the capacitance as will be described later. .
  • the clamp current with respect to the application of the search signal has a smaller amplitude and a lower detection accuracy as the electric capacitance C to be measured is smaller. Therefore, in the present embodiment, the microcontroller MC adapts the amplitude A of the search signal so that the magnitude of the clamp current is maintained in the vicinity of a predetermined value, thereby increasing the measurement accuracy. Making the current magnitude constant corresponds to making the accumulated charge (integrated value of displacement current) constant even if the capacitance of the capacitor changes. Specifically, the microcontroller increases the amplitude of the search signal Vp as a common potential for equipotential drive when the amplitude of the clamp current decreases, and decreases the amplitude of the search signal Vp when the amplitude of the clamp current increases. MC controls.
  • the capacitance can be obtained from the amplitude A of the adaptive search signal Vp by feedback-controlling the search signal voltage Vp so that the amplitude of the clamp current proportional to the amplitude coefficient A of the voltage is constant.
  • This is a feedback control of the magnitude of the exploration signal Vp required to charge a virtual capacitor calibrated with the object to be measured and the electrode, and is based on the voltage clamp control and equipotential drive control of the electrode.
  • This is a charge clamping method unique to the present invention.
  • the search signal Vp is a sine wave, but the present invention is not limited to this, and an arbitrary waveform can be used. Also in this case, the electrostatic capacity can be obtained from the magnitude of the search signal voltage Vp when the electrostatic capacity C is charged with a predetermined charge.
  • the guard electrode and all the electrodes are always driven with the same voltage as the search signal Vp by the configuration of the electrode part, voltage clamp control, equipotential drive control and charge clamp control in the probe according to the present invention.
  • the potential of the electrode that detects the clamp current is fixed in the search signal, so that highly stable and highly accurate gap measurement is possible. It is also possible to simultaneously acquire clamp currents of a plurality of electrodes by installing a plurality of differential amplifiers INA.
  • Each electrode pair Ei constituting the electrode pair array 4 in the probe 2 is disposed at the same position on the front surface P1 and the back surface P2 of the substrate 5, and is connected to the control unit 10 incorporated in the main body 21 independently via the signal line Es.
  • the probe 2 is inserted into the gap G, and the capacitance at each position is detected by each electrode pair, and the capacitance between the upper electrode E1 and the surface S1 is reduced. To be acquired. Subsequently, the capacitance between the lower electrode E2 and the surface S2 at the same position as the upper electrode E1 is acquired. If the distance d1 between the upper electrode E1 and the surface S1 and the distance d2 between the lower electrode E2 and the surface S2 can be obtained from these capacitance data, the gap d between the facing surfaces S1 and S2 is obtained. Can be requested. By sequentially performing the same measurement for all electrode pairs, a two-dimensional distribution of the gap d around the electrode portion can be acquired. The gap data acquired by the gap sensor 1 is transmitted to the controller 30 such as a tablet PC via the communication means 31 and processed.
  • the controller 30 such as a tablet PC via the communication means 31 and processed.
  • the electrode pairs 4 are discretely arranged on the probe 2 but have a plurality of electrode pairs, so that data at arbitrary positions between neighboring electrode pairs can be calculated based on the positions of the electrode pairs and the gap data.
  • the gap data at an arbitrary position in the region surrounded by the electrode group can be calculated by complementing the gap data of the three adjacent electrode pairs 4. Therefore, the gap sensor is downsized according to the present embodiment, and a wide gap space can be continuously measured and displayed in 3D. Since the probe 2 is provided with the scale 28 in the main axis Xc direction, the position (depth) r of the measurement electrode Ei can be easily confirmed.
  • the member to be measured for gap measurement is made of a conductive material such as aluminum alloy or carbon fiber.
  • the conductive material is coated on or near the surface.
  • the gap can be measured as long as it is covered.
  • the electrode surface is preferably parallel to the measurement surfaces S1 and S2, and the probe 2 may be attached to the measurement surface S1 using a magnet 25 as shown in FIG. Since the magnetic filler film is formed on the surface of the probe 2, more stable clearance measurement can be performed by installing the magnet 25 so that the probe 2 is attracted to the measurement surface S1 side.
  • the gap can be measured accurately and reproducibly by adopting an original electrode structure and using the equipotential driving method and the charge clamp control for the capacitance measurement.
  • the equipotential driving method according to the present invention is a method in which the search signals are set to a common potential, a plurality of electrodes and a plurality of guard patterns are driven even if the three-layer substrate structure is not used as in this embodiment. Similar effects can be obtained.
  • ⁇ Gap sensor 1 is calibrated for gap measurement.
  • a reference sample made of an aluminum flat plate and having a predetermined gap d0 is used.
  • the gap is, for example, 0.5 mm, 1 mm, 2 mm, or 3 mm.
  • the metal flat plate is grounded in common with the gap sensor 1.
  • the probe 2 is inserted into the gap G of the reference sample, and the gap d0 is measured and calibrated.
  • the reference amplitude A0 is corrected.
  • ⁇ Other embodiments> 7 and 8 show another embodiment of the probe 2.
  • the structure of the electrode portion is the same as that of the probe 2 in the embodiment of FIG. 2, but the electrode pairs 4a to 4e are arranged in two rows in a staggered manner along the main axis Xc of the probe 2 and are provided with 16-pole circular electrodes.
  • the probe 2 is fixed to the main body 21 via a probe support portion (including a connector) 20 having a rotation shaft that can rotate about the Y-axis direction.
  • the member such as the upper workpiece is a plate member
  • the main body 21 is installed on the upper surface of the plate member, and the probe 2 is inserted into the gap G in a state where the probe 2 is folded to the bottom surface 21B.
  • the probe support portion 20 can move up and down according to the thickness of the plate member. Further, as shown in FIG. 6B, since the magnet 25 is built in the bottom of the main body 21, the probe 2 can be adsorbed on the surface S1 using the magnetism of the filler film of the probe 2.
  • the gap measurement employs the charge clamp control for measuring the electrostatic capacitances at the upper and lower electrodes of the electrode pair 4 while making the guard potential and the potentials of all the electrodes the same based on the search signal Vp. Acquire gap d data. The gap measurement is sequentially performed on all the electrode pairs 4.
  • a rotary encoder 23 as a position detection sensor for measuring a movement distance (relative position) in the Y direction and a reference position detection sensor 24 for confirming the reference position in the Y direction are arranged on the main body bottom surface 21B.
  • Bar-code markers detected by the reference position sensor 24 are arranged at equal intervals in the Y direction on the upper surface of the plate member, and the reference position detection sensor 24 reads the reflected light from the marker to detect the reference position.
  • the probe 2 is rotated so as to be parallel to the bottom surface 21B of the main body 21, but the probe 2 is rotated so as to be parallel to the Z-axis direction with respect to a gap extending in the YZ plane direction, for example. If this is done, the gap can be measured.
  • the probe according to the present invention has a three-layer structure, and the guard of each electrode is made common, so that the probe can be made thin, and a narrower gap can be measured.
  • the guard potential is shared, the number of wirings can be reduced, and many electrodes can be arranged on the probe.
  • equipotential drive control is applied, all the electrodes and the guard potential are driven to the equipotential, so that stable and highly reproducible measurement is possible.
  • the capacitance can be measured from the magnitude of the search signal by adopting the charge clamp method.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

プローブ(2)は三層基板で両面の対応する位置に電極対(E1,E2)が形成され、周辺にガードパターン(Ge)が形成される。ガードパターンおよびすべての電極は共通の探査信号(Vp)に基づいて等電位に駆動されるため電極のガードが共有化される。各電極のクランプ電流に基づいて静電容量が求められ、隙間データを取得する。

Description

隙間センサおよび隙間測定方法
 本発明は、対向する部材面の間隙、より具体的には面状に分布する間隙を検出する隙間センサおよびその測定方法に関するものである。
 船舶、航空機等の組立技術において、外部パネルと内部の部品の組み付けをする場合に相対位置のアライメントが必要になる。たとえば、航空機の主翼は桁とリブからなる骨組みを含んで構成されたボックス構造を有し、その基端部は胴体と結合するための枠構造を有する。胴体には主翼の基端部を受け入れる略筒構造の固定部(ブラケット)が形成され、主翼の基端部が固定部に挿入されて茶筒のごとき構造で結合される。胴体の固定部は2枚の板部材で主翼の基端部を構成する板部材を挟むように構成され、基端部の板部材の両面はそれぞれ固定部の板部材と数mm程度の間隙を介して対向している。なお、各板部材はアルミ合金、カーボンファイバー等の導電性材料である。結合作業においては胴体と主翼が所定の位置関係となるようにアライメント調整したのちに、隙間空間の形状に合わせたスペーサーを挿入して締結する。また、胴体を前胴、中胴、後胴に分割して製造したのちに各胴部分を結合して胴体を構成する場合も同様である。関連技術は日本国特許公報特許4832512号および特開2015-79979号に例示される。
 アライメント後の主翼基板部の板部材と胴体固定部の板部材とで規定される結合位置における隙間を隙間センサ(feeler gauge,thickness gauge)で多点測定し、隙間空間の形状の3次元データを取得することによりスペーサーの形状が特定される。
 静電容量センサを用いた電子式隙間センサは通常プローブ部分が長形に構成されその先端側に平面状の検知電極が配置される。プローブの両面に電極が配置される場合には、各電極層の両側をガードパターンで挟む必要があるため全体として6層の導電層が必要となりプローブを薄くすることには限界があった。近年、船舶、航空機、自動車等の板材のプレス金型加工において、ダイとパンチの間隙(クリアランス)を調整する場合等でも隙間の3次元測定が必要となり、より小さい隙間の測定が求められている。
 また、主翼と胴体が結合された状態となって車輪の取付が可能となるため、車輪による移動を可能とするためには隙間測定を迅速かつ正確に実施する必要があった。また、船舶、航空機、自動車等の板材のプレス金型加工において、ダイとパンチの間隙(クリアランス)を調整する場合等でも隙間空間の3次元測定が必要となるため、同様の課題があった。
 静電容量センサを用いた電子式隙間センサにおいては、一般的に電極に矩形波等の所定の信号を印加し、電極電圧をバッファーを介してガードパターンをアクティブガードする。すなわち、プローブは図1(a)に例示するように、プローブ信号が印加される検知電極De’と電極の周辺および背面を電極と同電位とするガードパターンG1,G2を備える。電極De’を含む電極パターンE1,E2にはプローブ信号が印加され測定対象の電気容量に応じた電流が検出される。また、検出された電極De’の電位はバッファーを介してガードパターンG1,G2を電極電位でアクティブガードし電極周辺を同一電位とする。アクティブガードは電極と測定対象との間に生じる電界以外の電界を抑制して電気容量測定の精度を上げることができる。
 しかしながら、測定中の電極De’の電位をガードパターンG1またはG2のガード電位とするため、同じガードパターンに囲まれた複数の電極について同時に測定することはできない。これは、各電極信号が異なるため対応するガード信号は電極ごとに異なるからである。
 本発明はこのような課題に着目してなされたものであり、本発明によれば測定誤差が小さく再現性の高い隙間データを取得する電子式隙間センサおよび隙間測定方法を提供することができる。
 本発明の技術的側面によれば、相互に対向する導電性を有する第1の部材の表面と導電性を有する第2の部材の表面の隙間を静電容量測定法により検出する隙間センサは、主軸方向に沿って延在するプローブおよび本体を具備し、前記プローブは基端部が前記本体に接続され先端側に複数の電極が設けられ、前記プローブは第1導電層、第2導電層、第3導電層が積層された多層基板構造を有し、前記第1導電層は前記プローブの第1の面を規定し、第1電極群が配列して形成され、第1電極群と電気的に非接続な第1ガード層が形成され、前記第3導電層は前記プローブの第2の面を規定し、前記第1電極群に相応する位置に第2電極群が配列して形成され、第2電極群と電気的に非接続な第2ガード層が形成され、前記第2導電層は前記第1導電層と第3導電層の間に配置され、前記第1電極群および第2電極群に相応する位置にガード電極が形成され、ガード電極と電気的に非接続な信号ラインパターンが形成され、信号ラインパターンは前記第1電極群および第2電極群の各電極と電気的に接続される。さらに、前記本体の制御部は、前記第1ガード層、ガード電極、および第2ガード層に探査信号を印加し、前記第1電極群および第2電極群の各電極を前記信号ラインパターンを介して前記探査信号で電圧クランプし、電圧クランプによるクランプ電流を検出することにより各電極位置における隙間を測定することを特徴とする。
 本発明の他の技術的側面によれば、相互に対向する導電性を有する第1の部材の表面と導電性を有する第2の部材の表面の隙間を静電容量測定法により検出する隙間測定方法は、プローブの両面の対応する位置に複数の電極対とガード層が形成され、探査信号を発生することと、前記ガード層に前記探査信号を印加することと、前記複数の電極対の各電極をそれぞれ独立に前記探査信号に電圧クランプすることと、前記各電極のクランプ電流を測定することにより各電極位置における静電容量を検出することと、前記静電容量に基づいて前記各電極位置における隙間を測定することとを特徴とする。
(a)は関連技術にかかる電極部の導電層の概念図、(b)は本発明にかかる電極部の導電層の概念図。 本実施形態の隙間センサを示す上面図。 本実施形態のプローブ電極部の断面構造を表す概念図。 制御部コントロール回路の概念図。 隙間センサによる隙間測定の原理を示す概念図。 隙間センサによる隙間測定の概念図。 他の実施形態にかかるプローブ電極を示す概念図。 他の実施形態にかかるセンサ本体の底面図。
 本発明の好適な実施形態を示す図面を参照して説明する。
 図2に本実施形態にかかる隙間センサの上面図を示す。隙間センサ1は隙間を検知する電極が配置されたプローブ2と、プローブ2とプローブ支持部としてのコネクタ20を介して接続される本体21を備える。本体21はプローブ2の検知電極に電圧を印加したり変位電流を測定する制御部10を含む。プローブ2はXY面内で主軸方向(Xc)に延在する長形を成し、対向するワーク等の電導性部材の表面S1,S2の間等に形成された隙間空間Gに挿入して隙間を測定する。また、プローブ2は電極対アレイ4を含む電極部3が設けられたフレキシブルプリント基板5を備える。フレキシブルプリント基板(FPB)5は図1において主軸X方向に延在する長形で三層構造を有し、長円状の電極4と測定対象となる導電材料の表面S1,S2との間に所定の電位を印加して応答電流を測定し、取得された電気容量に基づいて電極位置における隙間が取得される。なお、電極部3を含むプローブ2の表面には磁石で吸引するためのフィラー膜が形成される。
 <プローブ電極>
 プローブ2の電極部3における導電面の構成の概念図を図1(b)および図3に示す。フレキシブルプリント基板(FPC)5は表面(第1面)P1を規定するガードパターンG1(第1導電層C1)と裏面(第2面)P2を規定するガードパターンG2(第3導電層C3)と2つのガードパターンに挟まれた信号パターンEs(第2導電層C2)を有する。信号パターンEsは各電極Eiに電気的に独立に接続された各電極信号パターンEsiの集合体である。また、導電層間には図示しない絶縁層が配置される。図1(b)においては便宜上電極Eiを円形としているが、楕円、長円等任意の形状でよい。
 図3を参照すると、電極部3においては第1導電層C1に電極パターンE1が形成され、周辺を取り囲むように形成されたガードパターンG1との間には絶縁体としてリング状のギャップgp1が形成されているため電気的に接続されていない。第3導電層C3には電極パターンE2が形成され、周辺を取り囲むように形成されたガードパターンG2との間にはリング状のギャップgp2が形成されており電気的に接続されていない。電極パターンE1と電極パターンE2とはXY面内の同じ位置に形成され1つの電極対を構成する。
 第2導電層C2には電極対に対応する位置にガードパターンGeが形成され、ビアホールGb1、Gb2を介してガードパターンG1,G2に電気的に接続される。一方、電極パターンE1はビアホールEb1を介して第2導電層C2の対応する信号パターンEs1に接続され、電極パターンE2はビアホールEb2を介して対応する信号パターンEs2に接続される。第2導電層C2においてビアホールEb1,Eb2とガードパターンGeとの間にはギャップが形成されている。電極対は電極部3に複数形成され各電極Eiは信号パターンEsiを介して対応する電圧クランプアンプVCAiに接続される。
 なお、ガードパターンG1,Ge,G2はすべての電極{Ei:i=1,2・・・n}(nは電極4の極数)に共通のパターンである。したがって、すべての電極Eiは後述するように同一の探査信号Vpに独立に電圧クランプされ、ガードパターンG1,Ge,G2も同時に探査信号Vpで駆動されるため、電極全体が常に同一の電位となっている。すべての電極Eiおよびガードパターンは電気的に独立であるため仮想的な短絡状態となっており現実に短絡しているわけではない。そのため3層構造でも高精度で静電容量の計測が可能となる。さらに、各電極Eiは独立に電圧クランプされるため、各クランプ電流を同時に計測して同時に電気容量を取得することも可能である。なお、図2の実施形態では8対の電極対、すなわち電極数n=16として説明する。
 <等電位駆動制御>
 図4に制御部10のコントロール回路の概念図を示す。本発明におけるガード電位および電極の制御は独自の等電位駆動法を採用する。探査信号発生器SGは基準探査信号Spとして正弦波を発生し、その振幅はマイクロコントローラMCにより制御される。探査信号SpはドライバAMPを介してガード信号VpとしてガードパターンG1,Ge,G2に印加される。
 電圧クランプアンプ(電圧クランプ回路)VCA1~VCA16は信号パターンEs1~Es16を介して16極の電極E1~E16に独立に接続される。各電圧クランプアンプVCAiはドライバAMPの出力Vpを探査電圧として入力し、電極Eiを電圧Vpに電圧クランプする。探査電圧Vpは正弦波であるため電圧クランプアンプVCAiは可変電圧源である。
 電圧クランプアンプVCAiはメインクランプアンプOPiaとしての差動増幅器(オペアンプ)を有し非反転入力端子(+)に探査電圧Vpが入力されると反転入力端子(-)に接続されたクランプ出力電圧Vfiaが探査電圧Vpと常に等しくなるように負帰還制御する。また、メインクランプアンプOPiaの出力端子と反転入力端子の間にはクランプ電流Isiを検出する抵抗器(クランプ電流検出抵抗)Rsiaが接続され、抵抗器Rsiaの両端電圧から電極Eiが電圧クランプされているときのクランプ電流(変位電流)を検出することができる。
 抵抗器Rsiaの両端電圧ΔVは切り換えスイッチSW1およびSW2を介して差動増幅器INAで増幅され、クランプ電流Iei=ΔV/Rsiaを検出することができる。
 メインクランプアンプOPiaを構成する差動増幅器はわずかな入力容量、バイアス電流等をもち温度特性をもつ上に特性のばらつきもある。探査対象の静電容量は一般にpF程度以下であるため差動増幅器の特性のばらつきは大きな測定誤差となりうる。そのため特性のそろった差動増幅器を参照クランプアンプOPibとして採用し探査電流以外の誤差要素を補償する構成としている。
 より詳細には、電圧クランプアンプVCAiはメイククランプアンプOPiaとともに参照クランプアンプOPibを有する。参照クランプアンプOPibはメイククランプアンプOPiaと同じ外部回路を有し、非反転入力端子(+)に探査電圧Vpが入力され反転入力端子(-)に接続されたクランプ出力電圧Vf1bは常にVpと等しくなるように負帰還制御する。クランプ出力電圧Vfibが電極Eiに接続されずに無負荷であることだけがメインクランプアンプOPiaと異なる。
 参照クランプアンプOPibの出力端子と反転入力端子の間には無負荷時のクランプ電流Iriを検出する抵抗器(参照電流検出抵抗)Rsibが接続され、抵抗器Rsibの両端電圧から無負荷で電圧クランプされているときの参照クランプ電流Iriを検出することができる。参照クランプ電流Iriは負荷としての電極に流れる電流以外の電流成分を反映している。一方、2つの演算増幅器のクランプ出力電圧Vfia、Vfibは電圧クランプ時には実質的に探査電圧Vpに等しい。したがって、メインクランプアンプOPiaで検出された探査電圧Voiaには電極Eiに流れる正味のクランプ電流Isiに差動増幅器に由来するバイアス電流Iriが付加されたものと解釈することができる。そこでメインクランプアンプOPiaと参照クランプアンプOPibの出力電圧Voia、Voibの差動演算をすることにより正味のクランプ電流Ieiを取得することができる。
 なお、電圧クランプアンプVCAiを構成する2つの差動増幅器OPia、OPibは特性のそろったオペアンプが1パッケージに収められたデュアルタイプのオペアンプであることが好ましい。さらに、差動増幅器の入力を保護するために、各非反転入力端子とクランプ出力端子Vfia、Vfibの間に抵抗器を挿入してもよい。
 図4の実施形態では、マイクロコントローラMCの制御により切り換えスイッチ(アナログスイッチ)SW1およびSW2で測定対象の電極Eiを順次選択し、差動増幅器(計装アンプ)INAにより出力電圧Voia、Voibの差動演算を行うことで高精度にクランプ電流を検出する(電流検出回路)。
 本発明は各電気要素を独立に同電位で駆動する独自の等電位駆動法を採用するため原理的には複数の電極におけるクランプ電流を同時に測定することができるが、本実施形態では1つの差動増幅器INAと切り換えスイッチを組み合わせて時分割で各電極の静電容量を測定する。全ての電極に共通の1つの処理系を使用することにより安定した処理が期待されさらに本体21をコンパクトに構成することができる。また、本実施形態ではプローブ2の電極4は6対、12極としたがさらなる多極化も可能である。
 <適応探査信号のフィードバック制御と電荷クランプ法>
 電極Eiは平面電極であり対向する被測定面との間に仮想コンデンサ(容量C)を形成するため、後述するように静電容量を測定することで極板間の距離dを求めることができる。
 電極Eiと導電性表面S1,S2との間に電位差vが生じるとそれに応じて電荷q=±Cvがそれぞれの表面に生じる。電位差として交流を印加した場合には電極には変位電流i=Cδv/δtが流れる。電導性表面には電極と同じ領域に反対の極性の電荷が現れるので電極と導電性表面との距離をdとすればC=εS/dの関係がある(εは間隙空間の誘電率)。したがって、変位電流の測定から仮想コンデンサの静電容量が求まれば距離d=εS/Cを取得することができる。なお、本実施形態では電位差vは上述したように電圧クランプを用いて探査信号Vpに正確に一致するように制御され、探査信号はVp(t)=Asin(2πft)の形で表現される。
 探査信号の印加に対するクランプ電流は測定対象の電気容量Cが小さいほど振幅が小さくなり検出の精度が下がる。そこで、本実施形態ではクランプ電流の大きさが所定の値の近傍を維持するようにマイクロコントローラMCが探査信号の振幅Aを適応させて測定精度を高める。電流の大きさを一定にするのはコンデンサの静電容量が変化しても蓄積される電荷(変位電流の積分値)を一定にすることに対応する。具体的には、クランプ電流の振幅が小さくなれば等電位駆動の共通電位としての探査信号Vpの振幅を増加し、クランプ電流の振幅が大きくなれば探査信号Vpの振幅を減少させるようにマイクロコントローラMCが制御する。
 さらに好ましくは、電圧の振幅係数Aに比例するクランプ電流の振幅を一定とするように探査信号電圧Vpをフィードバック制御することにより、適応探査信号Vpの振幅Aから静電容量を求めることができる。これは測定対象と電極で較正される仮想コンデンサに所定の電荷を充電するために必要な探査信号Vpの大きさをフィードバック制御するもので、電極の電圧クランプ制御および等電位駆動制御を前提とする本発明独自の電荷クランプ法である。
 電荷クランプ法においては、既知の較正された基準静電容量C0に対する探査信号電圧Vpの振幅をA0としたときに、任意の静電容量Cに対する適応探査信号電圧Vpの振幅がAであるとき、C/C0=A/A0の関係が成立する。振幅Aの情報は探査信号Vpを整流、平滑(積分)して直接取得することができる。したがって、フィードバック制御による適応探査信号電圧Vpの振幅Aを測定するだけで静電容量Cを取得することができる。
 本実施形態では探査信号Vpを正弦波としたがこれに限定されるものではなく任意の波形を用いることができる。この場合にも静電容量Cに所定の電荷を充電するときの探査信号電圧Vpの大きさから静電容量を求めることができる。
 本発明によるプローブにおける電極部の構成、電圧クランプ制御、等電位駆動制御および電荷クランプ制御により、ガード電極およびすべての電極は常に探査信号Vpと同一電圧で駆動されている。電圧クランプ動作中において、クランプ電流を検出している電極の電位が探査信号にいわば固定されているため、高安定で高精度の隙間測定が可能である。また、差動増幅器INAを複数設置することで複数の電極のクランプ電流を同時に取得することも可能である。
 <隙間測定>
 以下に本発明の隙間センサを用いた隙間測定方法について説明する。
 プローブ2における電極対アレイ4を構成する各電極対Eiは基板5の表面P1と裏面P2の同じ位置に配置され信号線Esを介してそれぞれ独立に本体21に内蔵された制御部10に接続される。
 図5(a)に示すようにすきまGにプローブ2を挿入して各電極対により各位置での静電容量の検出が行われ、上側の電極E1と表面S1との間の静電容量が取得される。引き続き上側の電極E1と同じ位置の下側の電極E2と表面S2との間の静電容量が取得される。これらの静電容量データから、上側の電極E1と表面S1との間の距離d1と下側の電極E2と表面S2との間の距離d2が取得できれば対向する面S1、S2の間の隙間dを求めることができる。全ての電極対について順次同様の測定を行なうことで電極部周辺における隙間dの2次元分布を取得することができる。隙間センサ1で取得された隙間データは通信手段31を介してタブレットPC等のコントローラ30に送信されデータ処理される。
 電極対4はプローブ2に離散的に配置されるが複数の電極対を備えるため、電極対の位置および隙間データに基づいて近隣の電極対間の任意の位置におけるデータを算出することができる。すわなち、隣接する3つの電極対4の隙間データを補完することにより当該電極群に囲まれた領域の任意の位置における隙間データを算出することができる。したがって、本実施形態により隙間センサが小型化され、広い隙間空間を連続的に測定して3D表示することもできる。なお、プローブ2には主軸Xc方向にスケール28が設けられているため測定電極Eiの位置(奥行)rを容易に確認することができる。
 隙間測定の測定対象となる部材はアルミ合金、カーボンファイバー等の導電性材料からなることを想定するが、非導電性材料であったとしても表面かその近傍に導電性材料が表面に沿ってコーティングまたは被覆されているものであれば隙間測定が可能である。
 隙間測定においては電極面が測定面S1,S2と平行であることが好ましく、図6(a)に示すように磁石25を用いてプローブ2を測定面S1に付着させてもよい。プローブ2の表面には磁性フィラー膜が形成されているため、測定面S1側にプローブ2が吸着されるように磁石25を設置することでより安定した隙間測定を行うことができる。
 本発明により独自の電極構造を採用し静電容量測定に等電位駆動法および電荷クランプ制御を用いることで隙間を正確かつ再現性よく測定することができる。なお、本発明にかかる等電位駆動法は探査信号を共通の電位とする方法であるため、本実施例のような3層基板構造でなくても複数の電極と複数のガードパターンを駆動して同様の効果を得ることができる。
 隙間測定を行うにあたって隙間センサ1の較正を行う。較正にはアルミ平板で構成され所定の隙間d0を有する基準サンプルを用いる。隙間はたとえば0.5mm、1mm、2mm、3mmである。金属平板は隙間センサ1と共通の接地が施される。基準サンプルの隙間Gにプローブ2を挿入して隙間d0を測定して較正する。較正においては上記基準振幅A0の修正等を行う。
 <他の実施形態>
 図7および図8はプローブ2の別の実施形態を示すものである。電極部の構造は図2の実施形態のプローブ2と同じであるが、電極対4a~4eはプローブ2の主軸Xcに沿って2列の千鳥配置とされ、16極の円形の電極を備える。プローブ2はY軸方向のまわりに回動可能な回動軸を有するプローブ支持部(コネクタを含む)20を介して本体21に固定される。上側のワーク等の部材が板部材である場合には、本体21を板部材の上面に設置してプローブ2を底面21Bに折りたたむような状態で隙間Gに挿入する。プローブ支持部20は板部材の厚さに応じて上下動自在である。また、図6(b)に示すように、本体21の底部には磁石25が内蔵されているため、プローブ2のフィラー膜の磁性を利用してプローブ2を表面S1に吸着させることができる。
 隙間測定はすでに説明したように、探査信号Vpに基づいてガード電位およびすべての電極の電位を同一とした上で電極対4の上下の電極における静電容量を測定する電荷クランプ制御を採用し、隙間dデータを取得する。隙間測定は全ての電極対4に対して順次実施される。
 本体底面21BにはY方向の移動距離(相対位置)を計測する位置検出センサとしてのロータリエンコーダ23と、Y方向の基準位置を確認するための基準位置検出センサ24が配置されている。板部材の上面には基準位置センサ24が検出するバーコード状のマーカーがY方向に等間隔に配置され、基準位置検出センサ24がマーカ-からの反射光を読み取って基準位置を検出する。なお、本実施形態ではプローブ2は本体21の底面21Bに平行になるほどに回動したが、たとえばYZ面方向に延在する隙間に対してプローブ2をZ軸方向に平行になるように回動すれば隙間計測が可能である。
 本発明にかかるプローブを三層構造として各電極のガードを共通化したことにより薄く構成することができ、より狭い隙間の測定を行うことができる。またガード電位を共通化したことで配線の数を減らすことができ多くの電極をプローブに配置することができる。さらに等電位駆動制御を適用したことですべての電極およびガード電位が等電位に駆動されるので、安定かつ再現性の高い測定が可能となる。さらに、電荷クランプ法を採用することで探査信号の大きさから静電容量を測定することができる。
 (米国指定)
 本国際特許出願は米国指定に関し、2017年5月26日に出願された日本国特許出願第2017-104083号について米国特許法第119条(a)に基づく優先権の利益を援用し、当該開示内容を引用する。

Claims (10)

  1.  相互に対向する導電性を有する第1の部材の表面と導電性を有する第2の部材の表面の隙間を静電容量測定法により検出する隙間センサであって、
     主軸方向に沿って延在するプローブおよび本体を具備し、
     前記プローブは基端部が前記本体に接続され先端側に複数の電極が設けられ、
     前記プローブは第1導電層、第2導電層、第3導電層が積層された多層基板構造を有し、
      前記第1導電層は前記プローブの第1の面を規定し、第1電極群が配列して形成され、第1電極群と電気的に非接続な第1ガード層が形成され、
      前記第3導電層は前記プローブの第2の面を規定し、前記第1電極群に相応する位置に第2電極群が配列して形成され、第2電極群と電気的に非接続な第2ガード層が形成され、
      前記第2導電層は前記第1導電層と第3導電層の間に配置され、前記第1電極群および第2電極群に相応する位置にガード電極が形成され、ガード電極と電気的に非接続な信号パターンが形成され、信号パターンは前記第1電極群および第2電極群の各電極と電気的に接続され、
     前記本体の制御部は、
      前記第1ガード層、ガード電極、および第2ガード層に探査信号を印加し、
      前記第1電極群および第2電極群の各電極を前記信号パターンを介して前記探査信号で電圧クランプし、
      電圧クランプによるクランプ電流を検出することにより各電極位置における隙間を測定することを特徴とする隙間センサ。
  2. 前記制御部は、
     探査信号発生器と、
     前記第1ガード層、ガード電極、および第2ガード層に探査信号の電圧を印加する駆動回路と、
     前記第1電極群および第2電極群の各電極を独立に駆動して前記探査信号の電圧にクランプする電圧クランプ回路と、
     前記各電極のクランプ電流を検出する電流検出回路とを備え、
     前記検出された電流から電気容量を算出して隙間を測定することを特徴とする請求項1記載の隙間センサ。
  3.  電圧クランプ回路は、前記探査信号と各電極の電圧の誤差をフィードバックしてクランプ制御し、
     前記電圧クランプ回路の駆動出力と各電極との間に接続されたクランプ電流検出抵抗を介して供給される電流がクランプ電流として検出されることを特徴とする請求項1記載の隙間センサ。
  4.  前記電圧クランプ回路は、
      前記探査信号に基づいて電圧クランプ制御するクランプアンプの駆動出力と負帰還入力との間にクランプ電流検出抵抗が接続されクランプ電流検出抵抗の負帰還入力側の一端が各電極に接続され、
      前記各電極に接続されずに前記探査信号に基づいて電圧クランプ制御する参照クランプアンプの駆動出力と負帰還入力との間に参照電流検出抵抗が接続され、
     前記電流検出回路は、前記クランプアンプの駆動出力と参照クランプアンプの駆動出力との差を演算する差動増幅器を備えることと
    を特徴とする請求項2記載の隙間センサ。
  5.  前記検出されたクランプ電流の大きさを一定とするように前記探査信号の大きさをフィードバック制御し、前記探査信号の大きさから静電容量を算出することを特徴とする請求項1~4のいずれか1項記載の隙間センサ。
  6.  前記第1電極群および第2電極群の各電極に関連する前記クランプアンプおよび参照クランプアンプは1つのパッケージに収納されることを特徴とする請求項4記載の隙間センサ。
  7.  相互に対向する導電性を有する第1の部材の表面と導電性を有する第2の部材の表面の隙間を静電容量測定法により検出する隙間測定方法であって、プローブ両面の対応する位置に複数の電極対とガード層が形成され、
     探査信号を発生することと、
     前記ガード層に前記探査信号を印加することと、
     前記複数の電極対の各電極をそれぞれ独立に前記探査信号に電圧クランプすることと、
     前記各電極のクランプ電流を測定することにより各電極位置における静電容量を検出することと、
     前記静電容量に基づいて前記各電極位置における隙間を測定することと
    を特徴とする隙間測定方法。
  8.  前記探査信号は正弦波であり、前記クランプ電流の大きさに相応して正弦波の振幅を可変することを特徴とする請求項7記載の隙間測定方法。
  9.  前記クランプ電流の大きさを一定とするように前記探査信号の振幅をフィードバック制御し、フィードバック制御されているときの前記探査信号の振幅から静電容量を求めることを特徴とする請求項7記載の隙間測定方法。
  10.  隣接する電極対における隙間距離と電極間距離に基づいて電極間における任意の位置の隙間を補完することを特徴とする請求項8または9記載の隙間測定方法。
PCT/JP2017/026528 2017-05-26 2017-07-21 隙間センサおよび隙間測定方法 WO2018216232A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112017028006-0A BR112017028006B1 (pt) 2017-05-26 2017-07-21 Sensor de folga e método de medição de folga
CA2989869A CA2989869C (en) 2017-05-26 2017-07-21 Gap sensor and gap measuring method
EP17811429.4A EP3431917B1 (en) 2017-05-26 2017-07-21 Clearance sensor and clearance measuring method
US15/738,299 US10514245B2 (en) 2017-05-26 2017-07-21 Gap sensor and gap measuring method using a capacitance measuring technique detecting or measuring gaps between conductive member surfaces
CN201780002161.6A CN109313007B (zh) 2017-05-26 2017-07-21 间隙传感器以及间隙测量方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-104083 2017-05-26
JP2017104083A JP6718622B2 (ja) 2017-05-26 2017-05-26 隙間センサおよび隙間測定方法

Publications (1)

Publication Number Publication Date
WO2018216232A1 true WO2018216232A1 (ja) 2018-11-29

Family

ID=63840575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026528 WO2018216232A1 (ja) 2017-05-26 2017-07-21 隙間センサおよび隙間測定方法

Country Status (7)

Country Link
US (1) US10514245B2 (ja)
EP (1) EP3431917B1 (ja)
JP (1) JP6718622B2 (ja)
CN (1) CN109313007B (ja)
BR (1) BR112017028006B1 (ja)
CA (1) CA2989869C (ja)
WO (1) WO2018216232A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6961180B2 (ja) * 2017-08-21 2021-11-05 ユニパルス株式会社 隙間測定装置、測定子
CN113048871B (zh) * 2021-03-11 2022-04-05 中国人民解放军国防科技大学 一种基于谐波分量的电容位移检测非线性实时校准方法
CN117813476A (zh) * 2021-08-16 2024-04-02 朗姆研究公司 利用差动电容传感器衬底的喷头至基座间隙测量
CN115856396B (zh) * 2022-12-09 2023-08-29 珠海多创科技有限公司 传感探头模组、非接触式电压测量电路、方法及电子设备
CN116088631B (zh) * 2023-04-11 2023-06-30 长鑫存储技术有限公司 一种电源电路和存储器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832512B1 (ja) 1967-09-16 1973-10-06
JP2007225443A (ja) * 2006-02-23 2007-09-06 Aisin Seiki Co Ltd 誘電体検出装置及び乗員判定装置
JP2009069035A (ja) * 2007-09-14 2009-04-02 Oki Electric Ind Co Ltd 非接触センサ
WO2011080308A1 (en) * 2009-12-31 2011-07-07 Mapper Lithography Ip B.V. Capacitive sensing system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5070302A (en) * 1989-09-05 1991-12-03 Eastman Kodak Company Capacitance probe for measuring a width of a clearance between parts
GB9002701D0 (en) * 1990-02-07 1990-04-04 Atomic Energy Authority Uk A gauging system
GB9009005D0 (en) 1990-04-21 1990-06-20 Coopers Payen Limited Measuring apparatus
US6828806B1 (en) 1999-07-22 2004-12-07 Sumitomo Metal Industries, Ltd. Electrostatic capacitance sensor, electrostatic capacitance sensor component, object mounting body and object mounting apparatus
JP3815771B2 (ja) * 2000-11-27 2006-08-30 株式会社ミツトヨ 静電容量式ギャップセンサ、及びその信号検出方法
US6989679B2 (en) * 2004-06-03 2006-01-24 General Electric Company Non-contact capacitive sensor and cable with dual layer active shield
DE102005038875A1 (de) 2005-05-25 2006-11-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kapazitätsmessschaltung
CN101493310B (zh) 2009-01-21 2010-11-10 哈尔滨工业大学 具有对径双窗口极板结构的圆柱型双向电容位移传感器
DE102012224122A1 (de) 2012-12-21 2014-06-26 Voith Patent Gmbh Vorrichtung zum Erfassen von Messwerten in einem Walzenspalt
US20150145535A1 (en) * 2013-11-26 2015-05-28 Semtech Corporation Capacitive sensing interface for proximity detection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832512B1 (ja) 1967-09-16 1973-10-06
JP2007225443A (ja) * 2006-02-23 2007-09-06 Aisin Seiki Co Ltd 誘電体検出装置及び乗員判定装置
JP2009069035A (ja) * 2007-09-14 2009-04-02 Oki Electric Ind Co Ltd 非接触センサ
WO2011080308A1 (en) * 2009-12-31 2011-07-07 Mapper Lithography Ip B.V. Capacitive sensing system
JP2015079979A (ja) 2009-12-31 2015-04-23 マッパー・リソグラフィー・アイピー・ビー.ブイ. 静電容量感知システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3431917A4

Also Published As

Publication number Publication date
EP3431917A4 (en) 2019-03-27
JP6718622B2 (ja) 2020-07-08
US20180340766A1 (en) 2018-11-29
EP3431917A1 (en) 2019-01-23
BR112017028006B1 (pt) 2022-12-20
CN109313007B (zh) 2020-12-01
JP2018200196A (ja) 2018-12-20
CA2989869A1 (en) 2018-11-26
CA2989869C (en) 2019-06-25
CN109313007A (zh) 2019-02-05
BR112017028006A2 (pt) 2018-12-26
US10514245B2 (en) 2019-12-24
EP3431917B1 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
WO2018216232A1 (ja) 隙間センサおよび隙間測定方法
JP5917665B2 (ja) 静電容量感知システム
US5764066A (en) Object locating system
US8115367B2 (en) Piezoelectric actuator provided with a displacement meter, piezoelectric element, and positioning device
WO2006020108A1 (en) System and method for measurement of small-angle or small-displacement
US8058780B2 (en) Circular cylinder type piezoelectric actuator and piezoelectric element and scanning probe microscope using those
JP2007278820A (ja) 電界プローブ及び電界測定システム
KR101790262B1 (ko) 자기장 센서 및 자기장 측정 장치
NL2004055C2 (en) Method for measuring target surface topology and lithography system.
WO2013040634A1 (en) Capacitive sensors and associated methods
NL2004052C2 (en) Capacitive sensing system.
NL2004054C2 (en) Lithography system with capacitive sensing system.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15738299

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017028006

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017028006

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171222

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17811429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE