WO2018215687A1 - Capas poliméricas conductoras transparentes y método de obtención de las mismas - Google Patents

Capas poliméricas conductoras transparentes y método de obtención de las mismas Download PDF

Info

Publication number
WO2018215687A1
WO2018215687A1 PCT/ES2018/070383 ES2018070383W WO2018215687A1 WO 2018215687 A1 WO2018215687 A1 WO 2018215687A1 ES 2018070383 W ES2018070383 W ES 2018070383W WO 2018215687 A1 WO2018215687 A1 WO 2018215687A1
Authority
WO
WIPO (PCT)
Prior art keywords
poly
methacrylate
styrene
transparent conductive
methyl
Prior art date
Application number
PCT/ES2018/070383
Other languages
English (en)
French (fr)
Inventor
Pedro Javier RODRIGUEZ CANTÓ
Rafael ABARGUES LÓPEZ
Juan Pascual Martinez Pastor
Fernando FERNANDEZ LAZARO
Enrique FONT SANCHIS
Nathalie ZINK LORRE
Angela SASTRE SANTOS
Original Assignee
Intenanomat S.L.
Universitat De València
Universidad Miguel Hernández
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intenanomat S.L., Universitat De València, Universidad Miguel Hernández filed Critical Intenanomat S.L.
Publication of WO2018215687A1 publication Critical patent/WO2018215687A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/36Oligomers, i.e. comprising up to 10 repeat units
    • C08G2261/364Oligomers, i.e. comprising up to 10 repeat units containing hetero atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/43Chemical oxidative coupling reactions, e.g. with FeCl3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes

Definitions

  • the present invention belongs to the field of conductive and highly transparent polymeric materials based on thiophene and its derivatives.
  • the present invention relates to thin layers of said materials, processes for obtaining them, as well as their uses (i) in electronic devices (touch screens, solar cells, photodetectors, inorganic or organic light emitting diodes (LEDs) , OLEDs), etc.); (ii) as antistatic coating on electronic circuits, windows, papers, photographic films, building materials, etc .; (iii) in polymeric capacitors; (iv) in the form of inks for printed organic electronics; (v) as a gas sensor; or (vi) in miniaturization of devices by electron beam lithography and photolithography.
  • transparent conductive polymer layers and the possibility of structuring them are fundamental aspects in the manufacture of semiconductor devices.
  • these transparent conductive polymers are based on poly (3,4-ethylenedioxythiophene) (PEDOT) since the electronic configuration of the thiophene substituents (ethylenedioxy group) makes the PEDOT in the oxidized or doped state (and therefore conductive) not practically absorbs light in the visible for layers with thicknesses less than 200 nm.
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • PEDOT electro-polymerization
  • VPP vapor phase polymerization
  • chemical polymerization There are three types of techniques for the in situ synthesis of PEDOT: electro-polymerization, vapor phase polymerization (Vapor Phase Polymerization VPP) and chemical polymerization.
  • EDOT 3,4-ethylenedioxythiophene
  • VPP can give homogeneous thin layers with high conductivity, but it requires multiple processing steps including oxidant deposition, solvent removal and careful control over the deposition rates of water and monomer in one atmosphere of controlled humidity and temperature (Chen et al. J. Polym. Sci., Par ⁇ A: Polym. Chem. 2008, 46, 1662).
  • Chemical polymerization consists in that a mixture containing monomer (EDOT) and oxidant (usually iron (III) salts, such as iron (III) tosylate) is deposited directly on a substrate and then thermal polymerization is initiated (Pettersson, et al. Thin Solid Films 1998, 313, 356).
  • oxidant usually iron (III) salts, such as iron (III) tosylate
  • this method poses serious problems in the control of the thickness of the layer, especially for thin thicknesses below 200 nm, which has a strong impact on the transparency of the layer.
  • Another problem is that this type of technique generates layers with poor morphology, with a tendency to be fragile and brittle.
  • US5300575 refers to dispersions of polythiophenes in the presence of polyanions, the production of said dispersions and their use for the antistatic treatment of plastic moldings. Specifically, US5300575 describes the formation of transparent conductive thin layers from aqueous dispersions of EDOT, poly (styrene sulfonate) (PSS) and an oxidant.
  • CA1337950 describes thiophene-based polymers that allow obtaining transparent conductive polymeric films by oxidative polymerization, for example from solutions comprising EDOT, an oxidizing salt and one or more organic solvents. CA1337950 also describes the use of said polymers to impart antistatic properties on substrates with low or no conductivity or as an electrode material for rechargeable batteries.
  • the present invention provides a simple and reproducible method for obtaining thin conductive layers (also called films or films) that allows to obtain layer thicknesses from a few nanometers (nm) to several microns.
  • the present invention allows to overcome the limitations of current methods and consists of a simple and reproducible way of in situ formation of thin conductive layers of thiophene or its derivatives.
  • the synthesis of the conductive polymer occurs within another polymer, as shown in Figure 1.
  • Said polymer is transparent and has excellent properties for forming layers on all types of surfaces.
  • the present method allows absolute control of the layer thickness of up to tens of nanometers.
  • the thin conductive and transparent layers of the present invention have greater transparency than similar layers obtained with PEDOT: PSS, especially in the visible spectrum from 550 nm, but especially in the infrared. This allows the application of these materials in devices that operate in the infrared, such as photodetectors or solar cells based on quantum dots.
  • compositions of the present invention ultrafine layers up to 20 nm thick can be obtained with total control and conductivities up to 400 or even 600 S / cm.
  • the present invention relates to a method for obtaining transparent conductive layers comprising the following steps: a. Prepare a solution comprising 3,4-ethylenedioxythiophene (EDOT) oligomers, at least one oxidant and a transparent polymer selected from poly (methyl methacrylate) (PMMA), poly (lauryl methacrylate) (PLMA), poly (methacrylate butyl) (PBMA), poly (methyl methacrylate-co-methacrylic acid), poly (methyl methacrylate-ethyl co-acrylate), poly (methyl methacrylate-butyl methacrylate), poly (methyl methacrylate) ethylene co-dimethacrylate), poly (a-methylstyrene), poly (benzyl methacrylate), poly (terebutyl methacrylate), poly (cyclohexyl methacrylate), poly (ethyl methacrylate), poly (hexadecyl methacrylate) ), poly (hex
  • the layers obtained with the present method are thin layers.
  • thin layer means a layer with a thickness between 1 nm and 20 microns, preferably between 5 nm and 10 microns, more preferably between 10 nm and 250 nm.
  • transparent is understood as having a transmittance of more than 70% in wavelengths between 400 and 1550 nm.
  • step (c) it can be seen when the EDOT oligomers have polymerized because electrical conductivity is observed.
  • step (c) is carried out on a heating plate, oven, or by heating by hot air flow, for example using a dryer.
  • organic solvent means organic solvents essentially free of water.
  • the organic solvent does not therefore include mixtures of alcohols such as methanol, ethanol, isopropanol, etc. with water.
  • the oligomers of the solution of step (a) are dimers, trimers, tetramers or mixtures thereof.
  • the solution of step (a) comprises EDOT dimers (biEDOT or 2EDOT).
  • the solution of step (a) comprises between 0.5 and 10 mg / ml, more preferably between 0.5 and 8 mg / ml, even more preferably between 0.5 and 5 mg / ml of oligomer EDOT with respect to the total volume of the solution.
  • the solution of step (a) comprises between 0.5 and 5 mg / ml of EDOT dimer with respect to the total volume of the solution.
  • the solution of step (a) comprises approximately 1.2 mg / ml of EDOT oligomer with respect to the total volume of the solution. In a preferred embodiment, the solution of step (a) comprises approximately 1.2 mg / ml of EDOT dimer with respect to the total volume of the solution. In another preferred embodiment, the solution of step (a) comprises about 5 mg / ml of EDOT dimer and about 0.5 mg / ml of EDOT trimer with respect to the total volume of the solution. In another preferred embodiment, the solution of step (a) comprises approximately 1.2 mg / ml of EDOT dimer and approximately 0.12 mg / ml of EDOT trimer with respect to the total volume of the solution.
  • the solution of step (a) comprises about 5 mg / ml of EDOT dimer and about 0.25 mg / ml of EDOT tetramer with respect to the total volume of the solution. In another preferred embodiment, the solution of step (a) comprises approximately 1.2 mg / ml of EDOT dimer and approximately 0.06 mg / ml of EDOT tetramer with respect to the total volume of the solution.
  • the solution of step (a) further comprises thiophene monomers and / or oligomers or thiophene derivatives with formula I, II, III or IV:
  • R 2 are independently selected from H, methyl, ethyl, phenyl, hydroxyl, thiol, carboxyl, F, Cl, Br, I, Si (R 5 ) 3 , OR 3 , SR 3 , NHR 3 , NR 3 R 3 , COOR 3 , CONH 2 , CONHR 3 and CONR 3 R 3 , R 3 -0-R 4 , amino, R 3 (CO) -0-R 4 , R 3 (CO) -NH-R 4 , R 3 (CO) -NR 4 R 4 , R 3 (CO) -0-NH-R 4 , or C1-2 0 alkyl unsubstituted or substituted by methyl, ethyl, hydroxyl, amino, thiol, carboxyl, amido, trifluoromethyl, trichloromethyl, or tribromomethyl; where R 3 and R 4 are independently selected from C1-2 0 alkyl, phenyl, biphenyl; where R 3 and
  • the solution of step (a) consists of a solution of dimers, trimers, EDOT tetramers or mixtures thereof, at least one oxidant and a transparent polymer selected from poly (methacrylate) methyl) (PMMA), poly (lauryl methacrylate) (PLMA), poly (butyl methacrylate) (PBMA), poly (methyl methacrylate -co-methacrylic acid, poly (methyl methacrylate - ethyl co-acrylate) , poly (methyl methacrylate-butyl methacrylate), poly (methyl methacrylate-ethylene co-dimethacrylate), poly (a-methylstyrene), poly (benzyl methacrylate), poly (terebutyl methacrylate), poly (cyclohexyl methacrylate), poly (ethyl methacrylate), poly (hexadecyl methacrylate), poly (hexyl methacrylate), poly
  • a transparent polymer selected from poly (me
  • the oxidant is an oxidizing salt.
  • oxidants that can be used in the method of the present invention are inorganic salts of Cu (II) such as Cu (CI0 4 ) 2 , gold salts (III) such as HAuCI 4 , iron salts (III) such as Fe (CH 3 C 6 H 4 S0 3 ) 3, silver salts (I) as AgCI0 4 , compounds of cerium (II) and (IV) as Ce (S0 4 ) 2 , of chromium (VI) as Cr0 3 , salts of permanganates as KMn0 4 , salt composed of molybdenum as M0O 3 , of osmium as Os0 4 , salts of platinum (IV) such as H 2 PtCI 6 , salts of palladium (II) as Na 2 PdCI 4 , salts of ruthenium as RuCI 3 , of iridium as H 2 lrCI 6
  • the oxidant is selected from Cu (CI0 4 ) 2 , copper (II) tosylate, copper (II) acetate, FeCI 3 , iron (III) tosylate, HAuCI 4 3 x H 2 0 and mixtures thereof.
  • the oxidant is Cu (CI0 4 ) 2 .
  • the solution of step (a) comprises between 0.1 and 25 mg / ml of oxidant with respect to the total volume of the solution.
  • the solution of step (a) comprises an oxidizing ratio: oligomer of between 0.3 and 3.
  • the transparent polymer is selected from PMMA, PLMA, PBMA, PS-co-MMA, PC, PS-co-AN, PS-co-AA, PAM, P4VP-co-MMA .
  • the transparent polymer is PMMA.
  • the solution of step (a) comprises between 1.0 and 70 mg / ml of transparent polymer with respect to the total volume of the solution.
  • the transparent polymer is soluble in the organic solvent (s).
  • the organic solvent is selected from among methoxypropyl acetate (MPA), glycol ether, dipropylene glycol methyl ether, dipropylene glycol methyl ether acetate, ethyl lactate, diethyl carbonate, propylene carbonate , ethyl acetate, cyclohexanone, cyclopentanone, gamma-butyrolactone, hexanol, tetrahydrofuran, methanol, acetonitrile and mixtures thereof.
  • the organic solvent is MPA, glycol ether, dipropylene glycol methyl ether, dipropylene glycol methyl ether acetate or a mixture thereof.
  • the solvent is MPA.
  • step (b) is carried out by spin coating, doctor blade, dip coating, drop casting, Layer-by-Layer, spraying ( spray coating) injection printing, screen printing, flexography, or plotter.
  • step (b) is carried out by spin coating or doctor blade.
  • step (c) is carried out at a temperature between 25 ° C and 220 ° C and for a time between 0.5 and 120 minutes.
  • step (c) is carried out at a temperature of between 80 ° C and 140 ° C and for a time of between 1 and 10 minutes.
  • the substrate is selected from: rigid substrates selected from indium and tin oxide (ITO), fluorine doped tin oxide (FTO), silicon, silicon oxide, glass, quartz , graphene, metals selected from gold, silver, nickel, aluminum; carbon nanotubes, perovskites, gallium nitride, titanium oxide, zinc oxide, nickel oxide; Flexible substrates selected from poly (ethylene terephthalate) (PET), poly (ethylene naphthalate) (PEN), poly (dimethylsiloxane) (PDMS), polycarbonate, poly (methyl methacrylate), polystyrene, polyethylene, cellulose, polychloride vinyl (PVC); and textile fibers selected from polyamide, polyester, acrylic, cotton and carbon fiber.
  • the substrate is selected from ITO, FTO, glass, perovskites, PET, PEN, cellulose and graphene.
  • the composition of step (a) further comprises at least one stabilizing agent selected from imidazole, acetylacetonate, monoethanolamine, diethanolamine, triethanolamine, ethylene diaminetetraacetic acid (EDTA), ethylene diamine, ethylene glycol and polyethylene glycol.
  • the solution of step (a) comprises between 0.02 and 5 mg / ml of stabilizers, based on the total volume of the solution.
  • the solution of step (a) further comprises between 0.02 and 5 mg / ml of at least one stabilizing agent selected from trifluoroacetic acid, methanesulfonic acid, dimethyl sulfoxide (DMSO), ethylene glycol, polyethylene glycol, H 3 P0 4 , H 2 S0 4 , glycerol, sorbitol and ethanol, with respect to the total volume of the solution.
  • at least one stabilizing agent selected from trifluoroacetic acid, methanesulfonic acid, dimethyl sulfoxide (DMSO), ethylene glycol, polyethylene glycol, H 3 P0 4 , H 2 S0 4 , glycerol, sorbitol and ethanol, with respect to the total volume of the solution.
  • said method further comprises step (d) washing the layer obtained in step (c).
  • step (d) washing the layer obtained in step (c).
  • the washing of step (d) is done with water, isopropanol or MPA.
  • said method further comprises step (e) treating the layer obtained in step (c) or in step (d) with at least one strong acid or solvent.
  • step (e) consists of a washing or immersion of several minutes, between 3 and 5 minutes, preferably, in a strong acid or a solvent.
  • a solution of the strong acid in water with a concentration of between 50 and 99% is used.
  • step (e) examples of the strong acids and solvents that can be used in step (e) are iodhydric acid (55%), trifluoroacetic acid (99%), methanesulfonic acid (8 M in water), DMSO (99.9%), ethylene glycol (99.9% ), H 3 P0 4 (85%), H 2 S0 4 (98%), glycerol (> 99%), sorbitol (97%), methanol (99.9%) and ethanol (99.8%).
  • iodhydric acid 55%
  • trifluoroacetic acid 99%
  • methanesulfonic acid 8 M in water
  • DMSO 99.9%
  • ethylene glycol 99.9%
  • H 3 P0 4 85%
  • H 2 S0 4 98%
  • glycerol > 99%
  • sorbitol 97%
  • methanol 99.9%
  • ethanol 99.8%
  • the present invention relates to the thin transparent conductive layer obtained by the process according to any of the preceding claims.
  • the thickness of the transparent conductive thin layer is between 10 nm and 10 microns. More preferably, the thickness is between 20 and 250 nm.
  • the present invention relates to a composition
  • a composition comprising EDOT oligomers, at least one oxidant and a transparent polymer selected from PMMA, PLMA, PBMA, poly (methyl methacrylate-co-methacrylic acid), poly ( methyl methacrylate-ethyl co-acrylate), poly (methyl methacrylate-butyl methacrylate), poly (methyl methacrylate-ethylene co-dimethacrylate) ,, poly (a-methylstyrene), poly (benzyl methacrylate), poly (terebutyl methacrylate), poly (cyclohexyl methacrylate), poly (ethyl methacrylate) , poly (hexadecyl methacrylate), poly (hexyl methacrylate), poly (isobutyl methacrylate), poly (tetrahydrofurfuryl methacrylate), poly (tetrahydrofurfuryl-co-methacrylate methacrylate), poly
  • the composition comprises dimers, trimers, EDOT tetramers or mixtures thereof, at least one oxidant selected from Cu (CI0 4 ) 2 , copper (II) tosylate, acetate copper (II), FeCI 3 , iron (III) tosylate, HAuCI 4 3 x H 2 0 and mixtures thereof and a transparent polymer selected from PMMA, PLMA, PBMA, PS-co-MMA, PC, PS- co-AN, PS-co-AA, PAM, P4VP-co-MMA in at least one organic solvent selected from MPA, glycol ether, dipropylene glycol methyl ether, glycol ether, dipropylene glycol methyl acetate or a mixture thereof.
  • oxidant selected from Cu (CI0 4 ) 2 , copper (II) tosylate, acetate copper (II), FeCI 3 , iron (III) tosylate, HAuCI 4 3 x H 2 0 and mixtures thereof and a transparent
  • the composition comprises dimers of EDOT, Cu (CI0 4 ) 2 and PMMA in MPA.
  • the composition consists essentially of dimers of EDOT, Cu (CI0 4 ) 2 and PMMA in MPA. More preferably, the composition consists of dimers of EDOT, Cu (CI0 4 ) 2 and PMMA in MPA.
  • the composition comprises between 0.5 and 10 mg / ml of EDOT oligomers, between 0.1 and 25 mg / ml of at least one oxidant and between 1.0 and 70 mg / ml of the transparent polymer in at least one organic solvent, with respect to the total volume of the composition.
  • the composition comprises between 0.5 and 5 mg / ml of EDOT dimers, between 0.1 and 25 mg / ml of Cu (CI0 4 ) 2 and between 1.0 and 70 mg / ml of PMMA in MPA, with respect to the total volume of the composition.
  • the composition further comprises thiophene monomers and / or oligomers or thiophene derivatives with formula I, II, III or IV:
  • R 2 are independently selected from H, methyl, ethyl, phenyl, hydroxyl, thiol, carboxyl, F, Cl, Br, I, Si (R 5 ) 3 , OR 3 , SR 3 , NHR 3 , NR 3 R 3 , COOR 3 , CONH 2 , CONHR 3 and CONR 3 R 3 , R 3 -0-R 4 , amino, R 3 (CO) -0-R 4 , R 3 (CO) -NH-R 4 , R 3 (CO) -NR 4 R 4 , R 3 (CO) -0-NH-R 4 , or Ci_2o alkyl unsubstituted or substituted by methyl, ethyl, hydroxyl, amino, thiol, carboxyl, amido, trifluoromethyl, trichloromethyl, or tribromomethyl; where R 3 and R 4 are independently selected from C1-20 alkyl, phenyl, biphenyl; where R 5
  • the composition further comprises between 0.02 and 5 mg / ml of at least one stabilizing agent selected from imidazole, acetylacetonate, monoethanolamine, diethanolamine, triethanolamine, EDTA, ethylene diamine, ethylene glycol and polyethylene glycol. .
  • at least one stabilizing agent selected from imidazole, acetylacetonate, monoethanolamine, diethanolamine, triethanolamine, EDTA, ethylene diamine, ethylene glycol and polyethylene glycol.
  • the composition further comprises between 0.02 and 5 mg / ml of at least one stabilizing agent selected from trifluoroacetic acid, methanesulfonic acid, DMSO, ethylene glycol, polyethylene glycol, H 3 P0 4 , H 2 S0 4 , glycerol, sorbitol and ethanol, with respect to the total volume of the solution.
  • the present invention relates to a thin transparent conductive layer comprising PEDOT forming an interpenetrated network with a transparent polymer selected from PMMA, PBMA, PLMA, PS-co-AN, PS-co-AA, PAM, PS-co-MMA and P4VP-co-MMA.
  • the thickness of the layer is between 10 nm and 500 microns or between 20 and 250 nm.
  • the present invention relates to the use of the first aspect method for lithography drawing, for direct printing, for nanoprinting lithography, UV photolithography, electron beam lithography, soft lithography, screen printing, jet printing of ink, plotter, flexography, offset or gravure printing.
  • the composition is used as ink.
  • the composition comprises a solvent or mixture of solvents with a surface tension and viscosity suitable for use as ink. The composition of an ink is determined by the printing method to which it is intended and vice versa.
  • the inks presented in this invention are highly stable and allow their formulation with different organic solvents and different concentrations of their components. This makes them potentially suitable for them to be applied in rigid or flexible electronic circuits and devices.
  • Printed electronics is one of the keys to the production of large-scale and low-cost next-generation electronic devices, and the compositions of the present invention allow, unlike other prior art compositions, to formulate these materials as inks for its application with direct printing techniques (inkjet printing, screen printing, gravure printing, etc.).
  • the present invention relates to the use of the method of the first aspect or the thin layer of the fourth aspect in the manufacture of touch screens, solar cells, photodetectors, inorganic or organic light emitting diodes (LEDs, OLEDs), capacitors polymeric, gas sensors, or as an antistatic surface coating or in miniaturization of devices by electron beam lithography and photolithography.
  • the antistatic coating is used in electronic circuits, windows, papers, photographic films or building materials. Description of the figures
  • FIG. 1 This figure illustrates the method of the invention and its various steps: (a) the composition comprising the EDOT oligomers (hollow circles) and the transparent polymer (solid circle network) is prepared; (b) the composition is deposited on the substrate; and (c) is heated to carry out the polymerization and give rise to the PEDOT (network of hollow circles) forming an interpenetrated network (IPN) with the transparent polymer.
  • the composition comprising the EDOT oligomers (hollow circles) and the transparent polymer (solid circle network) is prepared
  • the composition is deposited on the substrate; and (c) is heated to carry out the polymerization and give rise to the PEDOT (network of hollow circles) forming an interpenetrated network (IPN) with the transparent polymer.
  • PEDOT network of hollow circles
  • Figure 2 The conductive layers of the present invention are more transparent than those of PEDOT: PSS, especially at wavelengths above 550 nm.
  • Figure 3. Conductivity of the thin layers of the invention depending on either the amount of oligomer in% by weight in layer (A) or the oxidant / oligomer molar ratio (B).
  • Figure 4 A) Scanning electron microscopy (SEM) image of the surface of a thin layer of the present invention. B) Cross section of a 20 nm thin layer of the present invention, deposited on ITO (indium tin oxide) / glass.
  • SEM Scanning electron microscopy
  • FIG. 5 Atomic force microscopy (AFM) images of surfaces of layers deposited on PMMA glass, 2EDOT-PMMA (according to the invention) and PEDOT: commercial PSS.
  • AFM Atomic force microscopy
  • Figure 6 Determination of the working function of a conductive thin layer of the invention based on 2EDOT, Cu (CI0 4 ) 2 and PMMA, by X-ray photoemission spectroscopy.
  • Figure 8 SEM image of different conductive thin layer structures with conductivities around 10 S / cm. The bar indicates 10 micrometers.
  • Figure 9 A) Scheme of the printing process of inks based on thin conductive layers by microdispensing (Microplotter). B, C) Images of different patterns generated on Si0 2 .
  • FIG. 10 A) Schottky structure that replaces the PEDOT: PSS with a thin conductive layer based on 2EDOT and PMMA. B) 450 nm PbS quantum dot layer manufactured by Dr. Blade on a thin layer / ITO substrate. C) Series of photodiodes manufactured on this layer.
  • compositions were prepared with EDOT dimers (biEDOT or 2EDOT, commercially purchased from abcr GmbH), Cu (CI0 4 ) 2 in MPA with different transparent polymers.
  • EDOT dimers biEDOT or 2EDOT, commercially purchased from abcr GmbH
  • Cu CI0 4
  • the conductivities of these layers are reflected in the following table: Polymer Molecular Weight (KDa) Conductivity (S / cm)
  • composition comprises 1.2 mg / ml of 2EDOT, 3.1 mg / ml of oxidant and 7.1 mg / ml of polymer.
  • Example 2 Transparent conductive thin layers From the compositions of Example 1, transparent conductive thin layers on glass were prepared by spin coating. These layers were heat treated on a heating plate at 160 ° C for 5 min. Ultrafine 100 nm layers were obtained, the thickness being reduced to 20 nm with total control and conductivities of up to 100 S / cm. The transparency of the conductive thin layers was analyzed and their transmittance was compared with PEDOT: PSS layers of 100 nm layer thickness and conductivity 0.1 S / cm. As Figure 2 shows, the thin layers of the present invention showed greater transparency in the visible spectrum and much greater infrared transparency (around 13-18%).
  • PEDOT PSS 98.9 93.5 86.9 78.6 64.6 58, 1 biEDOT-IPN 98.3 94.3 88.2 81, 0 77.7 75.6
  • the conductivity of the layers was analyzed for different concentrations of oligomer (from 2 to 40% by weight in layer) and different oxidant / oligomer molar ratios (from 0.4 to 3), the conductivity being normally between 0.001 and 200 S / cm (see figure 3A), and reaching conductivities of up to 600 S / cm with percentages by weight of oligomer of 50% or more.
  • FIG. 4 shows scanning electron microscopy (SEM) images of the surface of a layer based on 2EDOT, Cu (CI0 4 ) 2 and PMMA, deposited by spin coating on indium and tin oxide (ITO) and heated to 160 0 C for 5 min. These images show how the surface of the material does not present roughness or morphological defects and also perfectly planarizes the rough surface of the ITO layer.
  • SEM scanning electron microscopy
  • these thin conductive layers as a hollow conveyor layer it is necessary to determine their work function, which coincides with the position of the HOMO energy level, and whose value must be close to the value of the work function of the metal used as the anode ( typically ITO, 4.8 eV).
  • PEDOT: PSS is used as a hollow conveyor layer in most of these devices thanks to its work function of approx. 5, 1 eV.
  • the acid character of the interfaces with the ITO and active layer due to the superficial migration of the PSS and its aqueous nature induce degradation and low stability of the device.
  • compositions of the present invention have a high "wettability" of the material on the substrate through a low contact angle and low surface tension.
  • the following table indicates the contact angle of a drop of the composition of the invention and a drop of PEDOT: commercial PSS on different substrates:
  • Figure 7 shows images of the drops and the contact angles are indicated.
  • the contact angle of the composition of the invention is significantly lower than in the case of PEDOT: PSS because the latter is formulated with water, which has a higher surface tension than organic solvents. like the MPA.
  • the use of organic solvents with respect to water is advantageous for application as coatings, since the rheological properties result in high adhesion and "wettability" of the composition to the substrate, allowing smaller amounts to be used in each deposition.
  • the number of steps necessary for deposition is significantly reduced. This in turn implies that it is not necessary a strict cleaning of the substrate, nor are necessary equipment for the activation of the surface of the substrate that entail additional costs.
  • compositions for use as thin transparent conductive layers are that they can be deposited on both rigid and flexible substrates.
  • the latter are of great importance since the development of new generation devices depends largely on the possibility of manufacturing them on flexible substrates such as PET or PEN. Due to the excellent layer formation properties and low contact angle of the composition of the invention, it is possible to easily deposit it on PET and PEN substrates, obtaining very homogeneous and transparent layers.
  • compositions of the invention are possible thanks to its ability to be structured by electron beam lithographic techniques or even UV lithography or to formulate them as inks for direct printing technologies .
  • the lithographic process has been carried out after depositing a layer of 2EDOT, Cu (CI0 4 ) 2 and PMMA in methoxypropyl acetate by spin coating.
  • the resulting layer has been heated at 40 ° C for 2 minutes in order to remove the solvent.
  • This layer has been exposed to an electron beam, applying a voltage of 40 keV and a dose of 300 C / cm 2 .
  • the development of the structures has been carried out with a mixture of methyl ethyl ketone and isopropanol 1: 1.
  • the structures have been heat treated at 140 ° C for 10 minutes in order to carry out the polymerization of 2EDOT and consequent formation of the transparent conductive thin layer.
  • Figure 9 shows an SEM image of 500-200 nm structures of the conductive thin layer with conductivities around 10 S / cm.
  • the printing process has been carried out by means of a microdispenser (SonoPlot GIX Microploter II) that allows the direct deposition of the composition (dissolution).
  • This dispenser is composed of a micropipette coupled to a piece of piezoelectric material and is located on the surface of the substrate thanks to a high precision positioning system. Applying the appropriate voltage, the piezoelectric causes the micropipette to vibrate on the vertical axis, and an ultrasonic field causes the solution to flow through the tip and deposit, without any contact between the micropipette and the surface.
  • FIG. 9 shows a scheme of the printing process performed and images of the structures generated by this technique from an ink formulated with 2EDOT, Cu (CI0 4 ) 2 , PMMA in methoxypropyl acetate (MPA).
  • Example 7.3 Device manufacturing
  • the efficiency of the material of the present invention as a hollow conveyor layer has been demonstrated through its integration into the manufacture of a photodetector based on PbS quantum dot layers. Recently, a work based on a schottky structure based on layers of quantum PbS points manufactured by Dr. Blade for photodetection of light at 1550 nm has been published (Maulu et al., RSC Adv., 2016, 6, 80201). This structure was manufactured using PEDOT: commercial PSS as a hollow conveyor layer, obtaining a device efficiency similar to that of other reported works manufactured by spin coating and / or using other architectures and technology.
  • Figure 10A shows a layer of 450 nm PbS quantum dots manufactured by Dr. Blade on a conductive thin layer / ITO substrate and on the other hand a series of photodiodes manufactured on this layer. Each square is the gold (or silver) electrode of each photodiode.
  • PEDOT PSS biEDOT-PMMA

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

La presente invención se refiere a un método para la obtención de capas poliméricas conductoras transparentes mediante la preparación de una composición de oligómeros de tiofeno o sus derivados, o mezclas de los mismos, al menos un oxidante, y un polímero o copolímero transparente en al menos un disolvente orgánico, la deposición de dicha composición sobre el sustrato y el calentamiento de dicho sustrato hasta la polimerización del polímero conductor. Así mismo, la presente invención se refiere a las capas poliméricas conductoras transparentes obtenidas por dicho método y a sus distintos usos.

Description

CAPAS POLIMÉRICAS CONDUCTORAS TRANSPARENTES Y MÉTODO DE OBTENCIÓN
DE LAS MISMAS
Campo de la invención
La presente invención pertenece al campo de los materiales poliméricos conductores y altamente transparentes basados en tiofeno y sus derivados. En particular, la presente invención se refiere a capas finas de dichos materiales, a procesos para su obtención, así como a sus usos (i) en dispositivos electrónicos (pantallas táctiles, células solares, fotodetectores, diodos inorgánicos u orgánicos emisores de luz (LEDs, OLEDs), etc.); (ii) como recubrimiento antiestático en circuitos electrónicos, ventanas, papeles, películas fotográficas, materiales de construcción, etc.; (iii) en capacitores poliméricos; (iv) en forma de tintas para electrónica orgánica impresa; (v) como sensor de gas; o (vi) en miniaturización de dispositivos mediante litografía por haz de electrones y fotolitografía.
Antecedentes
La formación de capas de polímeros conductores transparentes y la posibilidad de estructurarlas son aspectos fundamentales en la fabricación de dispositivos semiconductores. Básicamente, estos polímeros conductores transparentes están basados en poli(3,4-etilendioxitiofeno) (PEDOT) ya que la configuración electrónica de los sustituyentes del tiofeno (grupo etilendioxi) hace que el PEDOT en estado oxidado o dopado (y por tanto conductor) no absorba prácticamente luz en el visible para capas con espesores inferiores a 200 nm.
Existen tres tipos de técnicas para la síntesis in situ de PEDOT: electro-polimerización, polimerización en fase vapor (Vapor Phase Polymerization VPP) y polimerización química.
La electro-polimerización del 3,4-etilendioxitiofeno (EDOT) es relativamente sencilla de llevar a término, ya que simplemente requiere colocar dos electrodos en una solución que contiene el monómero y electrolito, y aplicar un potencial para polimerizar el monómero sobre la superficie del electrodo (Groenendaal et al. Synthetic Metals (2001), 1 18 (1-3), 105-109). Sin embargo este método requiere indefectiblemente el uso de substratos conductores, lo cual limita mucho su aplicación. Además, la uniformidad de la película y el control del espesor puede ser a menudo un problema sobre áreas grandes del electrodo debido a campos eléctricos no homogéneos.
La VPP puede dar capas finas homogéneas con alta conductividad, pero requiere múltiples etapas de procesamiento incluyendo la deposición de oxidante, la eliminación del disolvente y un control cuidadoso sobre las velocidades de deposición de agua y monómero en una atmósfera de humedad y temperatura controladas (Chen et al. J. Polym. Sci., Parí A: Polym. Chem. 2008, 46, 1662).
La polimerización química consiste en que una mezcla que contiene monómero (EDOT) y oxidante (normalmente sales de hierro (III), como tosilato de hierro (III)) se deposita directamente sobre un sustrato y seguidamente se inicia la polimerización térmicamente (Pettersson, et al. Thin Solid Films 1998, 313, 356). Aunque este método permite la deposición sobre sustratos tanto conductores como no conductores, su principal limitación es que se necesita una gran habilidad para obtener capas finas homogéneas de forma reproducible. Este método ha tratado de mejorarse, por ejemplo usando ácido fosfomolíbdico como oxidante. Sin embargo, este proceso sigue siendo a día de hoy industrialmente poco viable por sus problemas de reproducibilidad. Además, este método plantea serios problemas en el control del espesor de la capa, especialmente para espesores finos por debajo de 200 nm, lo cual tiene un fuerte impacto en la transparencia de la capa. Otro de los problemas es que este tipo de técnica genera capas con mala morfología, con tendencia a ser frágiles y quebradizas.
US5300575 se refiere a dispersiones de politiofenos en presencia de polianiones, a la producción de dichas dispersiones y a su uso para el tratamiento antiestático de molduras de plástico. En concreto, US5300575 describe la formación de capas finas conductoras transparentes a partir de dispersiones acuosas de EDOT, poli(estirensulfonato) (PSS) y un oxidante.
CA1337950 describe polímeros basados en el tiofeno que permiten la obtención de películas poliméricas conductoras transparentes por polimerización oxidativa, por ejemplo a partir de soluciones que comprenden EDOT, una sal oxidante y uno o varios disolventes orgánicos. CA1337950 describe también el uso de dichos polímeros para impartir propiedades antiestáticas en sustratos con baja o nula conductividad o como material de electrodo para pilas recargables.
Cabe reseñar que ninguno de los métodos descritos anteriormente satisface los requerimientos en cuanto al control de los parámetros para obtener espesores deseados en el rango de decenas o centenas de nanometros. Esto es especialmente crítico ya que en la fabricación de dispositivos se necesitan capas transportadoras de huecos con espesores delgados en torno a los 100 nm de espesor para que tenga una alta transparencia. La transmitancia de la capa (medida en % de luz transmitida y que es una medida de la transparencia de la capa) disminuye linealmente con el espesor. Actualmente existe la necesidad de formar capas finas conductoras altamente transparentes, homogéneas y uniformes, directamente sobre sustratos flexibles o rígidos, tanto conductores como no conductores, de una forma sencilla y reproducible.
Descripción de la invención La presente invención proporciona un método sencillo y reproducible para la obtención de capas finas (también llamadas películas o films) conductoras transparentes que permite obtener grosores de capa desde pocos nanómetros (nm) a varias mieras. La presente invención permite superar las limitaciones de los métodos actuales y consiste en una manera sencilla y reproducible de formación in situ de capas finas conductoras de tiofeno o sus derivados. En el presente método, la síntesis del polímero conductor se produce en el interior de otro polímero, como muestra la figura 1. Dicho polímero es transparente y tiene excelentes propiedades para la formación de capas en todo tipo de superficies. Además, el presente método permite un absoluto control del espesor de la capa de hasta decenas de nanómetros. Las capas finas conductoras y transparentes de la presente invención presentan una mayor transparencia que las capas similares obtenidas con PEDOT:PSS, especialmente en el espectro visible a partir de los 550 nm, pero muy especialmente en el infrarrojo. Esto permite la aplicación de estos materiales en dispositivos que operen en el infrarrojo, como fotodetectores o células solares basados en puntos cuánticos. Con las composiciones de la presente invención se pueden obtener capas ultrafinas de hasta 20 nm de espesor con total control y conductividades de hasta 400 o incluso 600 S/cm.
En un primer aspecto, la presente invención se refiere a un método para la obtención de capas conductoras transparentes que comprende las siguientes etapas: a. Preparar una solución que comprende oligómeros de 3,4-etilendioxitiofeno (EDOT), al menos un oxidante y un polímero transparente seleccionado de entre poli(metacrilato de metilo) (PMMA), poli(metacrilato de laurilo) (PLMA), poli(metacrilato de butilo) (PBMA), poli(metacrilato de metilo-co-ácido metacrílico), poli(metacrilato de metilo-co-acrilato de etilo), poli(metacrilato de metilo-co-metacrilato de butilo), poli(metacrilato de metilo-co- dimetacrilato de etileno), poli(a-metilestireno), poli(metacrilato de bencilo), poli(metacrilato de tere- butilo), poli(metacrilato de ciclohexilo), poli(metacrilato de etilo), poli(metacrilato de hexadecilo), poli(metacrilato de hexilo), poli(metacrilato de isobutilo), poli(metacrilato de tetrahidrofurfurilo), poli(metacrilato de tetrahidrofurfurilo-co-metacrilato de etilo), poli(acrilonitrilo-co-acrilato de metilo), poliacrilonitrilo, policarbonato (PC), poli(estireno-co- acrilonitrilo), poli(estireno-co-alcohol alilico), poli(estireno-co-clorometilestireno), poli(estireno-co-4- clorometilestireno-co-4-metoximetilestireno), poli(estireno-co-ácido maleico), poli(estireno-co-a-metilestireno), poliacenaftileno, poli(4-bromoestireno), poli(4- cloroestireno), poli(4-terc-butilestireno), poli(4-vinilbifenilo), poli(vinilciclohexano), poli(4- vinilfenol), poli(viniltolueno-co-a-metilestireno), poliestireno-co-acrilonitrilo (PS-co-AN), poli(estireno-co-alcohol alílico) (PS-co-AA), poli(estireno-co-metacrilato de metilo) (PS-co- MMA), poliacrilamida (PAM), poli(4-vinilfenol-co-metacrilato de metilo) (P4VP-co-MMA), polietilenimina y poli(cinamato de vinilo), en al menos un disolvente orgánico. b. Depositar la composición preparada en la etapa (a) sobre un sustrato, c. Calentar el sustrato obtenido en la etapa (b) hasta que polimericen los oligómeros de EDOT .
Las capas obtenidas con el presente método son capas finas. En la presente descripción, se entiende por "capa fina" una capa con un grosor de entre 1 nm y 20 mieras, preferiblemente de entre 5 nm y 10 mieras, más preferiblemente de entre 10 nm y 250 nm. En la presente descripción, se entiende por "transparente" como que presenta una transmitancia de más del 70 % en longitudes de onda de entre 400 y 1550 nm.
En la presente descripción, se entiende por "conductora" el que es capaz de conducir la electricidad. En la etapa (c) se puede apreciar cuándo han polimerizado los oligómeros de EDOT porque se observa conductividad eléctrica. Preferiblemente, la etapa (c) se lleva a cabo en placa calefactora, horno, o mediante calentamiento por flujo de aire caliente, por ejemplo empleando un secador.
En la presente descripción, por disolvente orgánico se entiende disolventes orgánicos esencialmente libres de agua. El disolvente orgánico no incluye por tanto mezclas de alcoholes como metanol, etanol, isopropanol, etc. con agua.
En una realización preferida del método del primer aspecto, los oligómeros de la solución de la etapa (a) son dímeros, trímeros, tetrámeros o mezclas de los mismos. En una realización preferida, la solución de la etapa (a) comprende dímeros de EDOT (biEDOT o 2EDOT). En una realización preferida, la solución de la etapa (a) comprende entre 0,5 y 10 mg/ml, más preferiblemente entre 0,5 y 8 mg/ml, aún más preferiblemente entre 0,5 y 5 mg/ml de oligómero de EDOT con respecto al volumen total de la solución. En una realización preferida, la solución de la etapa (a) comprende entre 0,5 y 5 mg/ml de dimero de EDOT con respecto al volumen total de la solución. En una realización preferida, la solución de la etapa (a) comprende aproximadamente 1 ,2 mg/ml de oligómero de EDOT con respecto al volumen total de la solución. En una realización preferida, la solución de la etapa (a) comprende aproximadamente 1 ,2 mg/ml de dimero de EDOT con respecto al volumen total de la solución. En otra realización preferida, la solución de la etapa (a) comprende aproximadamente 5 mg/ml de dimero de EDOT y aproximadamente 0,5 mg/ml de trímero de EDOT con respecto al volumen total de la solución. En otra realización preferida, la solución de la etapa (a) comprende aproximadamente 1 ,2 mg/ml de dimero de EDOT y aproximadamente 0, 12 mg/ml de trímero de EDOT con respecto al volumen total de la solución. En otra realización preferida, la solución de la etapa (a) comprende aproximadamente 5 mg/ml de dimero de EDOT y aproximadamente 0,25 mg/ml de tetrámero de EDOT con respecto al volumen total de la solución. En otra realización preferida, la solución de la etapa (a) comprende aproximadamente 1 ,2 mg/ml de dimero de EDOT y aproximadamente 0,06 mg/ml de tetrámero de EDOT con respecto al volumen total de la solución.
En una realización preferida del método del primer aspecto, la solución de la etapa (a) además comprende monómeros y/u oligómeros de tiofeno o derivados del tiofeno con fórmula I, II, III o IV:
Figure imgf000006_0001
IV donde y R2 se seleccionan independientemente de entre H, metilo, etilo, fenilo, hidroxilo, tiol, carboxilo, F, Cl, Br, I, Si(R5)3, OR3, SR3, NHR3, NR3R3, COOR3, CONH2, CONHR3 y CONR3R3, R3-0-R4, amino, R3(CO)-0-R4, R3(CO)-NH-R4, R3(CO)-NR4R4, R3(CO)-0-NH-R4, o C1-20 alquilo no sustituido o sustituido por metilo, etilo, hidroxilo, amino, tiol, carboxilo, amido, trifluorometilo, triclorometilo, o tribromometilo; donde R3 y R4 se seleccionan independientemente de entre C1-20 alquilo, fenilo, bifenilo; donde R5 es Ci_20 alquilo; donde R6 y R7 se seleccionan independientemente de entre H, metilo y C2-20 alquilo; y donde n se selecciona de entre 1 a 4.
En una realización preferida del método del primer aspecto, la solución de la etapa (a) consiste en una solución de dímeros, trímeros, tetrámeros de EDOT o mezclas de los mismos, al menos un oxidante y un polímero transparente seleccionado de entre poli(metacrilato de metilo) (PMMA), poli(metacrilato de laurilo) (PLMA), poli(metacrilato de butilo) (PBMA), poli(metacrilato de metilo -co-ácido metacrílico, poli(metacrilato de metilo - co- acrilato de etilo), poli(metacrilato de metilo -co- metacrilato de butilo), poli(metacrilato de metilo -co- dimetacrilato de etileno), poli(a-metilestireno), poli(metacrilato de bencilo), poli(metacrilato de tere- butilo), poli(metacrilato de ciclohexilo), poli(metacrilato de etilo), poli(metacrilato de hexadecilo), poli(metacrilato de hexilo), poli(metacrilato de isobutilo), poli(metacrilato de tetra h i drofurfu rilo), poli(metacrilato de tetra h i drofurfu rilo -co-metacrilato de etilo), poli(acrilonitrilo-co-acrilato de metilo), poliacrilonitrilo, policarbonato (PC), poli(estireno- co-acrilonitrilo), poli(estireno-co-alcohol alílico), poli(estireno-co-clorometilestireno), poli(estireno-co-4- clorometilestireno -co-4-metoximetilestireno), poli(estireno-co-ácido maleico), poli(estireno-co-a-metilestireno), poliacenaftileno, poli(4-bromoestireno), poli(4- cloroestireno), poli(4-terc-butilestireno), poli(4-vinilbifenilo), poli(vinilciclohexano), poli(4- vinilfenol), poli(viniltolueno-co-a-metilestireno), poli(estireno-co-acilonitrilo) (PS-co-AN), poli(estireno-co-alcohol alílico) (PS-co-AA), poli(estireno-co-metacrilato de metilo) (PS-co- MMA), poliacrilamida (PAM), poli(4-vinilfenol-co-metacrilato de metilo) (P4VP-co-MMA), polietilenimina y poli(cinamato de vinilo), en al menos un disolvente orgánico.
En una realización del método del primer aspecto, el oxidante es una sal oxidante. Ejemplos de oxidantes que pueden emplearse en el método de la presente invención son sales inorgánicas de Cu (II) como Cu(CI04)2, sales de oro (III) como HAuCI4, sales de hierro (III) como Fe(CH3C6H4S03)3, sales de plata (I) como AgCI04, compuestos de cerio (II) y (IV) como Ce(S04)2, de cromo (VI) como Cr03, sales de permanganatos como KMn04, sal compuestos de molibdeno como M0O3, de osmio como Os04, sales de platino (IV) como H2PtCI6, sales de paladio (II) como Na2PdCI4, sales de rutenio como RuCI3, de iridio como H2lrCI6; oxidantes orgánicos como la diazonaftoquinona (DNQ), 2,3-dicloro-5,6- dicianobenzoquinona (DDQ) y 7,7,8,8-tetracianoquinodimetano (TCNQ), peróxidos como el persulfatos peroxodisulfato de amonio y el peroxodisulfato de potasio, y fotoácidos (compuestos que bajo el efecto de la luz se convierten en un ácido) como el triflato de trifenilsulfonio y el nonaflato de trifenilsulfonio, o mezclas de los mismos En un a realización preferida, el oxidante se selecciona de entre Cu(CI04)2, CuCI2, tosilato de cobre (II), Cu(N03)2, Cu(S04)2, acetato de cobre (II), FeCI3, tosilato de hierro (III), Fe2(S04)3, Fe(N03)3, Ce(S04)2, (NH4)2Ce(N03)6 nitrato de amonio cerio (IV), trióxido de cromo, Na2Cr04, K2Cr04, HAuCI4 3 x H20, KAuCI4, AgCI04, AgMn04, neodecanoato de plata, trifluoruroacetato de plata, AgN03, AgBF4, KMn04, NaMn04, Ca(Mn04)2, NH4Mn04, dióxido de manganeso, MoCI5, Mo03(H20)3, Mo03, .tetróxido de osmio, tetraoxoosmiato (VI) de potasio, K20s04 2H20, H2PtCI6, RuCI3, Na2PdCI4, trifluoroacetato de paladio (II), H2lrCI6, hipoclorito de sodio, Br2, iodo, metiltrioxorenio (MTO), AsF5, azobisisobutironitrilo (AIBN), NOBF4, FeCI3 combinado con peróxido de hidrógeno, acetilacetonato de vanadilo (VO(acac)2), V205, 2,3- dicloro-5,6-dicianobenzoquinona (DDQ), 1 ,4-benzoquinona, benzaldehido, 7,7,8,8- tetracianoquinodimetano (TCNQ), 2,3,5,6-tetrafluoro-7,7,8,8-tetracianoquinodimetano (F4TCNQ), azodicarboxilato de dietilo (DEAD), /V-bromosuccinimida, /V-clorosuccinimida, peroxodisulfato de amonio, peroxodisulfato de potasio (K2S208), persulfato de sodio, peróxido de hidrógeno, hidroperóxido de tere-butilo, ácido 3-cloroperoxibenzoico, peróxido de di-terc-butilo (DPQ), monoperoxiftalato de magnesio hexahidrato, peróxido de benzoilo, nitrato de difenilyodonio, p-toluensulfonato de difenilyodonio, triflato de difenilyodonio, triflato de (4-metiltiofenil) metil fenil sulfonio, triflato de (4-feniltiofenil) difenilsulfonio, triflato de trifenilsulfonio, nonaflato de trifenilsulfonio, dicromato de potasio (K2Cr207), dicromato de sodio (Na2Cr207), las si uientes moléculas numeradas del 1 al 6:
Figure imgf000008_0001
o mezclas de los mismos.
En una realización preferida del método del primer aspecto, el oxidante se selecciona de entre Cu(CI04)2, tosilato de cobre (II), acetato de cobre (II), FeCI3, tosilato de hierro (III), HAuCI4 3 x H20 y mezclas de los mismos. Preferiblemente, el oxidante es Cu(CI04)2. En una realización preferida, la solución de la etapa (a) comprende entre 0, 1 y 25 mg/ml de oxidante con respecto al volumen total de la solución. En una realización preferida del método del primer aspecto, la solución de la etapa (a) comprende un a ratio oxidante: oligómero de entre 0.3 y 3.
En una realización preferida del método del primer aspecto, el polímero transparente se selecciona de entre PMMA, PLMA, PBMA, PS-co-MMA, PC, PS-co-AN, PS-co-AA, PAM, P4VP-co-MMA. Preferiblemente, el polímero transparente es PMMA. En una realización preferida, la solución de la etapa (a) comprende entre 1 ,0 y 70 mg/ml de polímero transparente con respecto al volumen total de la solución. El polímero transparente es soluble en el/los disolvente/s orgánico/s.
En una realización preferida del método del primer aspecto, el disolvente orgánico se selecciona de entre acetato de metoxipropilo (MPA), éter glicólico, éter metílico de dipropilenglicol, acetato de éter metílico de dipropilenglicol, lactato de etilo, carbonato de dietilo, carbonato de propileno, acetato de etilo, ciclohexanona, ciclopentanona, gamma- butirolactona, hexanol, tetrahidrofurano, metanol, acetonitrilo y mezclas de los mismos. Preferiblemente, el disolvente orgánico es MPA, éter glicólico, éter metílico de dipropilenglicol, acetato de éter metílico de dipropilenglicol o una mezcla de los mismos. En otra realización preferida, el disolvente es MPA.
En una realización preferida del método del primer aspecto, la etapa (b) se lleva a cabo mediante recubrimiento por rotación (spin coating), doctor blade, recubrimiento por inmersión (dip coating), drop casting, Layer-by-Layer, pulverización (spray coating) impresión de inyección, serigrafía, flexografía, o plóter. Preferiblemente, la etapa (b) se lleva a cabo mediante recubrimiento por rotación (spin coating) o doctor blade.
En una realización preferida del método del primer aspecto, la etapa (c) se lleva a cabo a una temperatura de entre 25 °C y 220 °C y durante un tiempo de entre 0,5 y 120 minutos. Preferiblemente, la etapa (c) se lleva a cabo a una temperatura de entre 80 °C y 140 °C y durante un tiempo de entre 1 y 10 minutos.
En una realización preferida del método del primer aspecto, el sustrato se selecciona de entre: sustratos rígidos seleccionados de entre óxido de indio y estaño (ITO), óxido de estaño dopado con flúor (FTO), silicio, óxido de silicio, vidrio, cuarzo, grafeno, metales seleccionados de entre oro, plata, níquel, aluminio; nanotubos de carbono, perovskitas, nitruro de galio, óxido de titanio, óxido de zinc, óxido de níquel; sustratos flexibles seleccionados de entre poli(tereftalato de etileno) (PET), poli(naftalato de etileno) (PEN), poli(dimetilsiloxano) (PDMS), policarbonato, poli(metacrilato de metilo), poliestireno, polietileno, celulosa, policloruro de vinilo (PVC); y fibras textiles seleccionadas de entre poliamida, poliéster, acrílica, algodón y fibra de carbono. Preferiblemente, el sustrato se selecciona de entre ITO, FTO, vidrio, perovskitas, PET, PEN, celulosa y grafeno.
En una realización preferida del método del primer aspecto, la composición de la etapa (a) además comprende al menos un agente estabilizante seleccionado de entre imidazol, acetilacetonato, monoetanolamina, dietanolamina, trietanolamina, ácido etilendiaminotetraacético (EDTA), etilendiamina, etilenglicol y polietileneglicol. En una realización preferida, la solución de la etapa (a) comprende entre 0,02 y 5 mg/ml de estabilizantes, con respecto al volumen total de la solución.
En una realización preferida del método del primer aspecto, la solución de la etapa (a) además comprende entre 0,02 y 5 mg/ml de al menos un agente estabilizante seleccionado de entre ácido trifluoroacético, ácido metanosulfónico, dimetil sulfóxido (DMSO), etilenglicol, polietileneglicol, H3P04, H2S04, glicerol, sorbitol y etanol, con respecto al volumen total de la solución.
En una realización preferida del método del primer aspecto, dicho método además comprende la etapa (d) lavar la capa obtenida en la etapa (c). Preferiblemente, el lavado de la etapa (d) se hace con agua, isopropanol o MPA.
En una realización preferida del método del primer aspecto, dicho método además comprende la etapa (e) tratar la capa obtenida en la etapa (c) o en la etapa (d) con al menos un ácido fuerte o un disolvente. En una realización preferida, la etapa (e) consiste en un lavado o una inmersión de varios minutos, entre 3 y 5 minutos, preferiblemente, en un ácido fuerte o un disolvente. Preferiblemente, se emplea una solución del ácido fuerte en agua con una concentración de entre 50 y 99 %. Ejemplos de los ácidos fuertes y disolventes que pueden emplearse en la etapa (e) son ácido yodhídrico (55 %), ácido trifluoroacético (99 %), ácido metanosulfónico (8 M en agua), DMSO (99.9 %), etilenglicol (99.9 %), H3P04 (85 %), H2S04 (98 %), glicerol ( > 99 %), sorbitol (97 %), metanol (99.9 %) y etanol (99.8 %).
En un segundo aspecto, la presente invención se refiere a la capa fina conductora transparente obtenida mediante el proceso según cualquiera de las reivindicaciones anteriores. Preferiblemente, el espesor de la capa fina conductora transparente es de entre 10 nm y 10 mieras. Más preferiblemente, el espesor es de entre 20 y 250 nm. En un tercer aspecto, la presente invención se refiere a una composición que comprende oligómeros de EDOT, al menos un oxidante y un polímero transparente seleccionado de entre PMMA, PLMA, PBMA, poli(metacrilato de metilo-co-ácido metacrílico), poli(metacrilato de metilo-co-acrilato de etilo), poli(metacrilato de metilo-co-metacrilato de butilo), poli(metacrilato de metilo-co-dimetacrilato de etileno),, poli(a-metilestireno), poli(metacrilato de bencilo), poli(metacrilato de tere- butilo), poli(metacrilato de ciclohexilo), poli(metacrilato de etilo), poli(metacrilato de hexadecilo), poli(metacrilato de hexilo), poli(metacrilato de isobutilo), poli(metacrilato de tetrahidrofurfurilo), poli(metacrilato de tetrahidrofurfurilo-co- metacrilato de etilo), poli(acrilonitrilo-co-acrilato de metilo), poliacrilonitrilo, PC, poli(estireno- co-acrilonitrilo), poli(estireno-co-alcohol alilico), poli(estireno-co-clorometilestireno), poli(estireno-co-4- clorometilestireno-co-4-metoximetilestireno), poli(estireno-co-ácido maleico), poli(estireno-co-a-metilestireno), poliacenaftileno, poli(4-bromoestireno), poli(4- cloroestireno), poli(4-terc-butilestireno), poli(4-vinilbifenilo), poli(vinilciclohexano), poli(4- vinilfenol), poli(viniltolueno-co-a-metilestireno), PS-co-AN, PS-co-AA, PS-co-MMA, PAM, P4VP-co-MMA, polietilenimina y poli(cinamato de vinilo), en al menos un disolvente orgánico.
En una realización preferida de la composición del tercer aspecto, la composición comprende dímeros, trímeros, tetrámeros de EDOT o mezclas de los mismos, al menos un oxidante seleccionado de entre Cu(CI04)2, tosilato de cobre (II), acetato de cobre (II), FeCI3, tosilato de hierro (III), HAuCI4 3 x H20 y mezclas de los mismos y un polímero transparente seleccionado de entre PMMA, PLMA, PBMA, PS-co-MMA, PC, PS-co-AN, PS-co-AA, PAM, P4VP-co-MMA en al menos un disolvente orgánico seleccionado de entre MPA, éter glicólico, éter metílico de dipropilenglicol, éster de éter glicólico, acetato de éter metílico de dipropilenglicol o una mezcla de los mismos. En una realización preferida de la composición del tercer aspecto, la composición comprende dímeros de EDOT, Cu(CI04)2 y PMMA en MPA. En una realización preferida, la composición consiste esencialmente en dímeros de EDOT, Cu(CI04)2 y PMMA en MPA. Más preferiblemente, la composición consiste en dímeros de EDOT, Cu(CI04)2 y PMMA en MPA. En una realización preferida de la composición del tercer aspecto, la composición comprende entre 0,5 y 10 mg/ml de oligómeros de EDOT, entre 0,1 y 25 mg/ml de al menos un oxidante y entre 1 ,0 y 70 mg/ml del polímero transparente en al menos un disolvente orgánico, con respecto al volumen total de la composición. En otra realización preferida de la composición del tercer aspecto, la composición comprende entre 0,5 y 5 mg/ml de dímeros de EDOT, entre 0, 1 y 25 mg/ml de Cu(CI04)2 y entre 1 ,0 y 70 mg/ml de PMMA en MPA, con respecto al volumen total de la composición.
En una realización preferida de la composición del tercer aspecto, la composición además comprende monómeros y/u oligómeros de tiofeno o derivados del tiofeno con fórmula I, II, III o IV:
Figure imgf000012_0001
IV donde y R2 se seleccionan independientemente de entre H, metilo, etilo, fenilo, hidroxilo, tiol, carboxilo, F, Cl, Br, I, Si(R5)3, OR3, SR3, NHR3, NR3R3, COOR3, CONH2, CONHR3 y CONR3R3, R3-0-R4, amino, R3(CO)-0-R4, R3(CO)-NH-R4, R3(CO)-NR4R4, R3(CO)-0-NH-R4, o Ci_2o alquilo no sustituido o sustituido por metilo, etilo, hidroxilo, amino, tiol, carboxilo, amido, trifluorometilo, triclorometilo, o tribromometilo; donde R3 y R4 se seleccionan independientemente de entre C1-20 alquilo, fenilo, bifenilo; donde R5 es C1-20 alquilo; donde R6 y R7 se seleccionan independientemente de entre H, metilo y C2-20 alquilo; y donde n se selecciona de entre 1 a 4.
En una realización preferida de la composición del tercer aspecto, la composición además comprende entre 0,02 y 5 mg/ml de al menos un agente estabilizante seleccionado de entre imidazol, acetilacetonato, monoetanolamina, dietanolamina, trietanolamina, EDTA, etilendiamina, etilenglicol y polietileneglicol.
En una realización preferida de la composición del tercer aspecto, la composición además comprende entre 0,02 y 5 mg/ml de al menos un agente estabilizante seleccionado de entre ácido trifluoroacético, ácido metanosulfónico, DMSO, etilenglicol, polietileneglicol, H3P04, H2S04, glicerol, sorbitol y etanol, con respecto al volumen total de la solución. En un cuarto aspecto, la presente invención se refiere a una capa fina conductora transparente que comprende PEDOT formando una red interpenetrada con un polímero transparente seleccionado de entre PMMA, PBMA, PLMA, PS-co-AN, PS-co-AA, PAM, PS- co-MMA y P4VP-co-MMA. Preferiblemente, el espesor de la capa es de entre 10 nm y 500 mieras o de entre 20 y 250 nm. En un quinto aspecto, la presente invención se refiere al uso del método del primer aspecto para el dibujo por litografía, para la impresión directa, para litografía por nanoimpresión, fotolitografía UV, litografía por haz de electrones, litografía suave, serigrafía, impresión por chorro de tinta, plóter, flexografía, ófset o impresión huecograbado. Cuando el método se emplea para impresión directa, la composición se emplea como tinta. En una realización preferida de la composición del tercer aspecto, la composición comprende un disolvente o mezcla de disolventes con una tensión superficial y viscosidad adecuadas para su uso como tinta. La composición de una tinta viene determinada por el método de impresión al que va destinada y viceversa. Las tintas presentadas en esta invención son altamente estables y permiten su formulación con diferentes disolventes orgánicos y diferentes concentraciones de sus componentes. Esto las hace potencialmente idóneas para que puedan ser aplicadas en circuitos y dispositivos electrónicos rígidos o flexibles. La electrónica impresa es una de las claves para la producción de dispositivos electrónicos de próxima generación a gran escala y bajo coste, y las composiciones de la presente invención permiten, a diferencia de otras composiciones del estado de la técnica, formular estos materiales como tintas para su aplicación con técnicas de impresión directa (inkjet printing, screen printing, impresión por huecograbado, etc.).
En otro aspecto, la presente invención se refiere al uso del método del primer aspecto o de la capa fina del cuarto aspecto en la fabricación de pantallas táctiles, células solares, fotodetectores, diodos inorgánicos u orgánicos emisores de luz (LEDs, OLEDs), capacitores poliméricos, sensores de gas, o como recubrimiento antiestático de superficies o en miniaturización de dispositivos mediante litografía por haz de electrones y fotolitografía. Preferiblemente, el recubrimiento antiestático se emplea en circuitos electrónicos, ventanas, papeles, películas fotográficas o materiales de construcción. Descripción de las figuras
Figura 1. Esta figura ilustra el método de la invención y sus distintas etapas: (a) se prepara la composición que comprende los oligómeros de EDOT (círculos huecos) y el polímero transparente (red de círculos sólidos); (b) se deposita la composición sobre el sustrato; y (c) se calienta para llevar a cabo la polimerización y dar lugar al PEDOT (red de círculos huecos) formando una red interpenetrada (IPN) con el polímero transparente.
Figura 2. Las capas conductoras de la presente invención son más transparentes que las de PEDOT: PSS, especialmente en longitudes de onda por encima de 550 nm. Figura 3. Conductividad de las capas finas de la invención en función bien de la cantidad de oligómero en % en peso en capa (A) o bien de la ratio molar oxidante/oligómero (B).
Figura 4. A) imagen de microscopía electrónica de barrido (SEM) de la superficie de una capa fina de la presente invención. B) Sección transversal de una capa fina de 20 nm de la presente invención, depositada sobre ITO (óxido de indio y estaño)/vidrio.
Figura 5: Imágenes de microscopía de fuerza atómica (AFM) de superficies de capas depositadas sobre vidrio de PMMA, 2EDOT-PMMA (según la invención) y PEDOT:PSS comercial.
Figura 6: Determinación de la función de trabajo de una capa fina conductora de la invención basada en 2EDOT, Cu(CI04)2 y PMMA, mediante espectroscopia de fotoemisión de Rayos X.
Figura 7. Gotas formadas sobre los distintos sustratos de la composición de la invención y del material comercial PEDOT:PSS, indicando los ángulos de contacto.
Figura 8. Imagen SEM de diferentes estructuras de capa fina conductora con conductividades en torno a 10 S/cm. La barra indica 10 micrómetros.
Figura 9. A) Esquema del proceso de impresión de las tintas basadas en capas finas conductoras mediante microdispensación (Microplotter). B, C) Imágenes de diferentes patrones generados sobre Si02.
Figura 10. A) Estructura Schottky que sustituye el PEDOT:PSS por una capa fina conductora basada en 2EDOT y PMMA. B) capa de puntos cuánticos de PbS de 450 nm fabricada por Dr. Blade sobre un sustrato de capa fina/ITO. C) Serie de fotodiodos fabricados sobre esta capa.
Ejemplos
Los siguientes ejemplos ilustran la presente invención y demuestran las propiedades ventajosas de las capas finas conductoras de la presente invención, así como del método de la presente invención, con respecto a otras capas del estado de la técnica.
Ejemplo 1. Composiciones
Se prepararon composiciones con dímeros de EDOT (biEDOT o 2EDOT, adquiridos comercialmente de abcr GmbH), Cu(CI04)2 en MPA con distintos polímeros transparentes. Las conductividades de dichas capas se reflejan en la tabla siguiente: Polímero Peso molecular (KDa) Conductividad (S/cm)
PMMA 960 13,6
PMMA 350 20
PLMA 570 28
PS-co-MMA 100-150 58
P4VP-CO-MMA 8-12 20
PS-co-AN 165 12
PS-co-AA 83 4,5
En todos los casos la composición comprende 1 ,2 mg/ml de 2EDOT, 3,1 mg/ml de oxidante y 7,1 mg/ml de polímero.
Ejemplo 2. Capas finas conductoras transparentes A partir de las composiciones del ejemplo 1 , se prepararon capas finas conductoras transparentes sobre vidrio mediante spin coating. Estas capas se trataron térmicamente en una placa calefactora a 160 °C durante 5 min. Se obtuvieron capas ultrafinas de 100 nm, pudiéndose reducir el espesor hasta 20 nm con total control y conductividades de hasta 100 S/cm. Se analizó la transparencia de las capas finas conductoras y se comparó su transmitancia con capas de PEDOT:PSS de 100 nm de espesor de capa y conductividad 0, 1 S/cm. Como muestra la figura 2, las capas finas de la presente invención presentaron mayor transparencia en el espectro visible y mucha mayor transparencia en el infrarrojo (en torno al 13 - 18 %). Transmitancia (%) a distintas longitudes de onda de una capa de 100 nm de espesor de PEDOT:PSS y de una capa de 100 nm obtenida por el método de la presente invención como red interpenetrada partiendo de un dímero de EDOT y PMMA: 400 nm 550 nm 700 nm 900 nm 1300 nm 1550 nm
PEDOT:PSS 98,9 93,5 86,9 78,6 64,6 58, 1 biEDOT-IPN 98,3 94,3 88,2 81 ,0 77,7 75,6
Ejemplo 3. Conductividad
Se analizó la conductividad de las capas para diferentes concentraciones de oligómero (desde 2 hasta 40 % en peso en capa) y diferentes ratios molares oxidante/oligómero (desde 0,4 hasta 3), estando la conductividad normalmente entre 0,001 y 200 S/cm (ver figura 3A), y llegando a alcanzar conductividades de hasta 600 S/cm con porcentajes en peso de oligómero del 50 % o más.
Ejemplo 4. Rugosidad
El uso de composiciones con cantidades bajas de oligómero tiene numerosas ventajas, como que las dispersiones son mejores y la cantidad de oxidante es menor. Esto a su vez conlleva la obtención de superficies más lisas, con menos defectos morfológicos. En la Figura 4 se muestran imágenes de microscopía electrónica de barrido (SEM) de la superficie de una capa basada en 2EDOT, Cu(CI04)2 y PMMA, depositada por spin coating sobre óxido de indio y estaño (ITO) y calentada a 160 0 C durante 5 min. En estas imágenes se observa como la superficie del material no presenta rugosidad ni defectos morfológicos y además planariza perfectamente la superficie rugosa de la capa de ITO.
Cuando se compara mediante microscopía de fuerza atómica (AFM) la superficie de la capa fina de la presente invención basada en 2EDOT y PMMA con una capa fina de PEDOT:PSS, depositadas por spin coating sobre vidirio siguiendo el mismo método, se comprueba que las capas de la presente invención son más lisas (RRMs = 0,9 nm) que las que se obtienen con el PEDOT:PSS comercial (RRMS = 2, 1 nm) (Fig. 5).
Ejemplo 5. Función de trabajo de las capas finas conductoras transparentes
Para la aplicación de estas capas finas conductoras como capa transportadora de huecos es necesario determinar su función de trabajo, que coincide con la posición del nivel energético HOMO, y cuyo valor debe estar próximo al valor de la función de trabajo del metal usado como ánodo (típicamente ITO, 4,8 eV). Generalmente, se usa PEDOT:PSS como capa transportadora de huecos en la mayoría de estos dispositivos gracias a su función de trabajo de aprox. 5, 1 eV. No obstante, el carácter ácido de las interfaces con el ITO y capa activa debido a la migración superficial del PSS y su naturaleza acuosa inducen la degradación y una baja estabilidad del dispositivo.
Estos problemas se ven solucionados con el material de la presente invención, el cual, además de las ventajas ya presentadas anteriormente, presenta una función de trabajo de 5,01 eV, como se observa en la Figura 6.
Ejemplo 6. Uso tanto en sustratos rígidos como flexibles
Para la deposición de las composiciones en disolución sobre sustratos flexibles y rígidos es necesaria la caracterización de las propiedades reológicas de dichas composiciones en disolución. Las composiciones de la presente invención presentan una gran "mojabilidad" del material sobre el sustrato a través de un bajo ángulo de contacto y baja tensión superficial. La siguiente tabla indica el ángulo de contacto de una gota de la composición de la invención y de una gota de PEDOT:PSS comercial sobre diferentes sustratos:
Figure imgf000017_0001
En la figura 7 se muestran imágenes de las gotas y se indican los ángulos de contacto. Como se puede observar, en todos los casos el ángulo de contacto de la composición de la invención es significativamente menor que en el caso del PEDOT:PSS debido a que este último está formulado con agua, que posee una tensión superficial mayor que los disolventes orgánicos como el MPA. El uso de disolventes orgánicos respecto al agua es ventajoso para su aplicación como recubrimientos, ya que las propiedades reológicas resultan en una gran adhesión y "mojabilidad" de la composición al sustrato, permitiendo emplear menores cantidades en cada deposición. Así, el número de pasos necesarios para la deposición se ve reducido significativamente. Esto a su vez implica que no es necesaria una limpieza estricta del sustrato, ni son necesarios tampoco equipos para la activación de la superficie del sustrato que supongan costes adicionales.
Uno de los requisitos más importantes de las composiciones para su uso como capas finas transparentes conductoras es que puedan ser depositadas tanto en sustratos rígidos como flexibles. Estos últimos son de gran importancia ya que el desarrollo de los dispositivos de nueva generación depende en gran parte de la posibilidad de fabricarlos sobre sustratos flexibles como PET o PEN. Debido a las excelentes propiedades de formación de capa y bajo ángulo de contacto de la composición de la invención, es posible depositarla de manera sencilla sobre sustratos también de PET y PEN, obteniendo capas muy homogéneas y transparentes.
Ejemplo 7. Generación de patrones y miniaturización
La generación de patrones a escala macro, micro, y nano a partir de las composiciones de la invención es posible gracias a su capacidad de ser estructurados mediante técnicas litográficas por haz de electrones o incluso litografía UV o de formularlas como tintas para tecnologías de impresión directa.
Ejemplo 7.1. Litografía
El proceso litográfico se ha llevado a cabo tras depositar por spin coating una capa de 2EDOT, Cu(CI04)2 y PMMA en acetato de metoxipropilo. La capa resultante se ha calentado a 40 °C durante 2 minutos para así eliminar el disolvente. Esta capa se ha expuesto a un haz de electrones, aplicando un voltaje de 40 keV y una dosis de 300 C/cm2. El revelado de las estructuras ha sido realizado con una mezcla de metiletilcetona e isopropanol 1 :1. Finalmente las estructuras han sido tratadas térmicamente a 140 °C durante 10 minutos para así llevar a cabo la polimerización del 2EDOT y consecuente formación de la capa fina conductora transparente. La figura 9 muestra una imagen SEM de estructuras de 500-200 nm de la capa fina conductora con conductividades en torno a 10 S/cm.
Ejemplo 7.2. Electrónica orgánica impresa
El proceso de impresión se ha llevado a cabo mediante un microdispensador (SonoPlot GIX Microploter II) que permite la deposición directa de la composición (disolución). Este dispensador está compuesto por una micropipeta acoplada a una pieza de material piezoeléctrico y se ubica sobre la superficie del sustrato gracias a un sistema de posicionamiento de alta precisión. Aplicando el voltaje adecuado, el piezoeléctrico provoca que la micropipeta vibre en el eje vertical, y un campo de ultrasonidos hace que la disolución fluya a través de la punta y se deposite, sin que haya contacto entre la micropipeta y la superficie. Las dimensiones de la estructura impresa por este sistema pueden ser controladas aumentando o disminuyendo la amplitud del voltaje aplicado y ajusfando la composición de la tinta en términos viscosidad, tensión superficial y ángulo de contacto con el sustrato. La figura 9 muestra un esquema del proceso de impresión realizado e imágenes de las estructuras generadas mediante esta técnica a partir de una tinta formulada con 2EDOT, Cu(CI04)2, PMMA en acetato de metoxipropilo (MPA).
Ejemplo 7.3. Fabricación de dispositivos
La eficiencia del material de la presente invención como capa transportadora de huecos ha sido demostrada a través de su integración en la fabricación de un fotodetector basado en capas de puntos cuánticos de PbS. Recientemente, se ha publicado un trabajo basado en una estructura tipo schottky basada en capas de puntos cuánticos de PbS fabricados mediante Dr. Blade para fotodetección de luz a 1550 nm (Maulu et al., RSC Adv., 2016, 6, 80201). Esta estructura se fabricó utilizado PEDOT:PSS comercial como capa transportadora de huecos, obteniéndose una eficiencia del dispositivo similar a la de otros trabajos reportados fabricados por spin coating y/o utilizando otras arquitecturas y tecnología. Así, para la demostración y validación del material de la presente invención se ha fabricado el mismo dispositivo sustituyendo el PEDOT:PSS por una capa fina conductora basada en 2EDOT y PMMA (Figura 10A). En las figuras 10B y 10C se muestran por un lado una capa de puntos cuánticos de PbS de 450 nm fabricada por Dr. Blade sobre un sustrato de capa fina conductora/ITO y por otro lado una serie de fotodiodos fabricados sobre esta capa. Cada cuadrado es el electrodo de oro (o plata) de cada fotodiodo.
La eficiencia del dispositivo fabricado en términos de responsividad y eficacia cuántica externa es similar a la de Maulu et al. (R = 0.26 A/W, EQE > 30 % @ 1550 nm), demostrando así su aplicabilidad.
Ejemplo 8. Comparativa
A continuación, se muestra una comparativa general de las propiedades del material presentado en esta invención respecto al producto comercial Clevios™ (PEDOT:PSS).
Comparación de las propiedades del producto comercial PEDOT:PSS con el material de la invención, σ = conductividad; T = transparencia; WF = función de trabajo; FT = espesor de capa. PEDOT:PSS biEDOT-PMMA
Gmax (S/cm) 1000 400
% T@550 nm < 95 < 95
WF (eV) 5,01 4,8 - 5,4
%T@1300 nm < 80 < 90
Estabilidad de la solución alta alta
Propiedades formadoras de capa pobres buenas
Recubrimiento lento barato y rápido
Seguridad del manejo sí sí
σ ajustable sí sí
FT ajustable limitado sí

Claims

REIVINDICACIONES
1. Un método para la obtención de capas conductoras transparentes que comprende las siguientes etapas: a. Preparar una solución que comprende oligomeros de 3,4-etilendioxitiofeno (EDOT), al menos un oxidante y un polímero transparente seleccionado de entre poli(metacrilato de metilo) (PMMA), poli(metacrilato de laurilo) (PLMA), poli(metacrilato de butilo) (PBMA), poli(metacrilato de metilo-co-ácido metacrílico), poli(metacrilato de metilo-co-acrilato de etilo), poli(metacrilato de metilo-co-metacrilato de butilo), poli(metacrilato de metilo-co- dimetacrilato de etileno), poli( a -metilestireno), poli(metacrilato de bencilo), poli(metacrilato de tere- butilo), poli(metacrilato de ciclohexilo), poli(metacrilato de etilo), poli(metacrilato de hexadecilo), poli(metacrilato de hexilo), poli(metacrilato de isobutilo), poli(metacrilato de tetra h i drofurfu rilo), poli(metacrilato de tetrahidrofurfurilo-co-metacrilato de etilo), poli(acrilonitrilo-co-acrilato de metilo), poliacrilonitrilo, policarbonato (PC), poli(estireno-co- acrilonitrilo), poli(estireno-co-alcohol alílico), poli(estireno-co-clorometilestireno), poli(estireno-co-4-clorometilestireno-co-4-metoximetilestireno), poli(estireno-co-ácido maleico), poli(estireno-co- a -metilestireno), poliacenaftileno, poli(4-bromoestireno), poli(4- cloroestireno), poli(4-terc-butilestireno), poli(4-vinilbifenilo), poli(vinilciclohexano), poli(4- vinilfenol), poli(viniltolueno-co- -metilestireno), poli(estireno-co-acrilonitrilo) (PS-co-AN), poli(estireno-co-alcohol alílico) (PS-co-AA), poli(estireno-co-metacrilato de metilo) (PS-co- MMA), poliacrilamida (PAM), poli(4-vinilfenol-co-metacrilato de metilo) (P4VP-co-MMA), polietilenimina y poli(cinamato de vinilo), en al menos un disolvente orgánico. b. Depositar la composición preparada en la etapa (a) sobre un sustrato, c. Calentar el sustrato obtenido en la etapa (b) hasta que polimericen los oligomeros de EDOT.
2. El método para la obtención de capas conductoras transparentes según la reivindicación anterior, donde los oligomeros son dímeros, trímeros, tetrámeros o mezclas de los mismos.
3. El método para la obtención de capas conductoras transparentes según cualquiera de las reivindicaciones anteriores, donde la solución de la etapa (a) además comprende monómeros y/u oligomeros de tiofeno o derivados del tiofeno con fórmula I, II, III o IV:
Figure imgf000022_0001
II III IV donde y R2 se seleccionan independientemente de entre H, metilo, etilo, fenilo, hidroxilo, tiol, carboxilo, F, Cl, Br, I, Si(R5)3, OR3, SR3, NHR3, NR3R3, COOR3, CONH2, CONHR3 y CONR3R3, R3-0-R4, amino, R3(CO)-0-R4, R3(CO)-NH-R4, R3(CO)-NR4R4, R3(CO)-0-NH-R4, o Ci_2o alquilo no sustituido o sustituido por metilo, etilo, hidroxilo, amino, tiol, carboxilo, amido, trifluorometilo, triclorometilo, o tribromometilo; donde R3 y R4 se seleccionan independientemente de entre C1-20 alquilo, fenilo, bifenilo; donde R5 es C1-20 alquilo; donde R6 y R7 se seleccionan independientemente de entre H, metilo y C2-20 alquilo; y donde n se selecciona de entre 1 a 4.
4. El método para la obtención de capas conductoras transparentes según cualquiera de las reivindicaciones anteriores, donde la solución de la etapa (a) comprende dímeros de EDOT.
5. El método para la obtención de capas conductoras transparentes según cualquiera de las reivindicaciones anteriores, donde la solución de la etapa (a) consiste en una solución de dímeros, trímeros, tetrámeros de EDOT o mezclas de los mismos, al menos un oxidante y un polímero transparente seleccionado de entre poli(metacrilato de metilo) (PMMA), poli(metacrilato de laurilo) (PLMA), poli(metacrilato de butilo) (PBMA), poli(metacrilato de metilo -co-ácido metacrílico, poli(metacrilato de metilo -co- acrilato de etilo), poli(metacrilato de metilo -co-metacrilato de butilo), poli(metacrilato de metilo -co- dimetacrilato de etileno), poli(a-metilestireno), poli(metacrilato de bencilo), poli(metacrilato de tere- butilo), poli(metacrilato de ciclohexilo), poli(metacrilato de etilo), poli(metacrilato de hexadecilo), poli(metacrilato de hexilo), poli(metacrilato de isobutilo), poli(metacrilato de tetra h i drofurfu rilo), poli(metacrilato de tetrahidrofurfurilo-co-metacrilato de etilo), poli(acrilonitrilo-co-acrilato de metilo), poliacrilonitrilo, policarbonato (PC), poli(estireno-co- acrilonitrilo), poli(estireno-co- alcohol alílico), poli(estireno-co-clorometilestireno), poli(estireno-co-4- clorometilestireno -co-4-metoximetilestireno), poli(estireno-co-ácido maleico), poli(estireno-co-a-metilestireno), poliacenaftileno, poli(4-bromoestireno), poli(4- cloroestireno), poli(4-terc-butilestireno), poli(4-vinilbifenilo), poli(vinilciclohexano), poli(4- vinilfenol), poli(viniltolueno-co-a-metilestireno), poli(estireno-co-acrilonitrilo) (PS-co-AN), poli(estireno-co-alcohol alílico) (PS-co-AA), poli(estireno-co-metacrilato de metilo) (PS-co- MMA), poliacrilamida (PAM), poli(4-vinilfenol-co- metacrilato de metilo) (P4VP-co-MMA), polietilenimina y poli(cinamato de vinilo), en al menos un disolvente orgánico.
6. El método para la obtención de capas conductoras transparentes según cualquiera de las reivindicaciones anteriores, donde el oxidante se selecciona de entre Cu(CI04)2, tosilato de cobre (II), acetato de cobre (II), FeCI3, tosilato de hierro (III), HAuCI4 3 x H20 y mezclas de los mismos.
7. El método para la obtención de capas conductoras transparentes según cualquiera de las reivindicaciones anteriores, donde el oxidante es Cu(CI04)2.
8. El método para la obtención de capas conductoras transparentes según cualquiera de las reivindicaciones anteriores, donde el polímero transparente se selecciona de entre PMMA,
PLMA, PBMA, PS-co-MMA, PC, PS-co-AN, PS-co-AA, PAM, P4VP-co-MMA.
9. El método para la obtención de capas conductoras transparentes según cualquiera de las reivindicaciones anteriores, donde el polímero transparente es PMMA.
10. El método para la obtención de capas conductoras transparentes según cualquiera de las reivindicaciones anteriores, donde el disolvente orgánico se selecciona de entre acetato de metoxipropilo (MPA), éter glicólico, éter metílico de dipropilenglicol, acetato de éter metílico de dipropilenglicol, lactato de etilo, carbonato de dietilo, carbonato de propileno, acetato de etilo, ciclohexanona, ciclopentanona, gamma-butirolactona, hexanol, tetrahidrofurano, metanol, acetonitrilo y mezclas de los mismos.
1 1. El método para la obtención de capas conductoras transparentes según cualquiera de las reivindicaciones anteriores, donde el disolvente orgánico es MPA, éter glicólico, éter metílico de dipropilenglicol, acetato de éter metílico de dipropilenglicol o una mezcla de los mismos.
12. El método para la obtención de capas conductoras transparentes según cualquiera de las reivindicaciones anteriores, donde la etapa (b) se lleva a cabo mediante recubrimiento por rotación (spin coating), doctor blade, recubrimiento por inmersión (dip-coating), drop- casting, Layer-by-Layer, pulverización (spray coating) impresión de inyección, serigrafía, flexografía, o plóter.
13. El método para la obtención de capas conductoras transparentes según cualquiera de las reivindicaciones anteriores, donde la etapa (b) se lleva a cabo mediante recubrimiento por rotación (spin coating) o doctor blade.
14. El método para la obtención de capas conductoras transparentes según cualquiera de las reivindicaciones anteriores, donde la etapa (c) se lleva a cabo a una temperatura de entre 25 °C y 220 °C y durante un tiempo de entre 0,5 y 120 minutos.
15. El método para la obtención de capas conductoras transparentes según cualquiera de las reivindicaciones anteriores, donde la etapa (c) se lleva a cabo a una temperatura de entre 80 °C y 140 °C y durante un tiempo de entre 1 y 10 minutos.
16. El método para la obtención de capas conductoras transparentes según cualquiera de las reivindicaciones anteriores, donde el sustrato se selecciona de entre: sustratos rígidos seleccionados de entre óxido de indio y estaño (ITO), óxido de estaño dopado con flúor (FTO), silicio, óxido de silicio, vidrio, cuarzo, grafeno, metales seleccionados de entre oro, plata, níquel, aluminio; nanotubos de carbono, perovskitas, nitruro de galio, óxido de titanio, óxido de zinc, óxido de níquel; sustratos flexibles seleccionados de entre poli(tereftalato de etileno) (PET), poli(naftalato de etileno) (PEN), poli(dimetilsiloxano) (PDMS), policarbonato, poli(metacrilato de metilo), poliestireno, polietileno, celulosa, policloruro de vinilo (PVC); y fibras textiles seleccionadas de entre poliamida, poliéster, acrílica, algodón y fibra de carbono.
17. El método para la obtención de capas conductoras transparentes según cualquiera de las reivindicaciones anteriores, donde el sustrato se selecciona de entre ITO, FTO, vidrio, perovskitas, PET, PEN, celulosa y grafeno.
18. El método para la obtención de capas conductoras transparentes según cualquiera de las reivindicaciones anteriores, donde la composición de la etapa (a) además comprende al menos un agente estabilizante seleccionado de entre imidazol, acetilacetonato, monoetanolamina, dietanolamina, trietanolamina, ácido etilendiaminotetraacético (EDTA), etilendiamina, etilenglicol y polietileneglicol.
19. El método para la obtención de capas conductoras transparentes según cualquiera de las reivindicaciones anteriores, donde la solución de la etapa (a) además comprende entre 0,02 y 5 mg/ml de al menos un agente estabilizante seleccionado de entre ácido trifluoroacético, ácido metanosulfónico, dimetil sulfóxido (DMSO), etilenglicol, polietileneglicol, H3P04, H2S04, glicerol, sorbitol y etanol, con respecto al volumen total de la solución.
20. El método para la obtención de capas conductoras transparentes según cualquiera de las reivindicaciones anteriores, donde dicho método además comprende la etapa (d) lavar la capa obtenida en la etapa (c).
21. El método para la obtención de capas finas conductoras transparentes según la reivindicación anterior, donde el lavado de la etapa (d) se hace con agua, isopropanol o
MPA.
22. El método para la obtención de capas conductoras transparentes según cualquiera de las reivindicaciones anteriores, donde dicho método además comprende la etapa (e) tratar la capa obtenida en la etapa (c) o en la etapa (d) con al menos un ácido fuerte o un disolvente.
23. La capa conductora altamente transparente obtenida mediante el proceso según cualquiera de las reivindicaciones anteriores.
24. La capa conductora transparente según la reivindicación anterior, donde el espesor es de entre 10 nm y 10 mieras.
25. La capa conductora transparente según cualquiera de las dos reivindicaciones anteriores, donde el espesor es de entre 20 y 250 nm.
26. Una composición que comprende oligómeros de EDOT, al menos un oxidante y un polímero transparente seleccionado de entre PMMA, PLMA, PBMA, poli(metacrilato de metilo-co-ácido metacrílico), poli(metacrilato de metilo-co-acrilato de etilo), poli(metacrilato de metilo-co-metacrilato de butilo), poli(metacrilato de metilo-co-dimetacrilato de etileno), poli(a-metilestireno), poli(metacrilato de bencilo), poli(metacrilato de tere-butilo), poli(metacrilato de ciclohexilo), poli(metacrilato de etilo), poli(metacrilato de hexadecilo), poli(metacrilato de hexilo), poli(metacrilato de isobutilo), poli(metacrilato de tetrahidrofurfurilo), poli(metacrilato de tetrahidrofurfurilo-co-metacrilato de etilo), poli(acrilonitrilo-co-acrilato de metilo), poliacrilonitrilo, PC, poli(estireno-co-acrilonitrilo), poli(estireno-co-alcohol alílico), poli(estireno-co-clorometilestireno), poli(estireno-co-4- clorometilestireno-co-4-metoximetilestireno), poli(estireno-co-ácido maleico), poli(estireno- co-a-metilestireno), poliacenaftileno, poli(4-bromoestireno), poli(4-cloroestireno), poli(4-terc- butilestireno), poli(4-vinilbifenilo), poli(vinilciclohexano), poli(4-vinilfenol), poli(viniltolueno-co- α-metilestireno), PS-co-AN, PS-co-AA, PS-co-MMA, PAM, P4VP-co-MMA, polietilenimina y poli(cinamato de vinilo) en al menos un disolvente orgánico.
27. La composición según la reivindicación anterior, que comprende dímeros, trímeros, tetrámeros de EDOT o mezclas de los mismos, al menos un oxidante seleccionado de entre Cu(CI04)2, tosilato de cobre (II), acetato de cobre (II), FeCI3, tosilato de hierro (III), HAuCI4 3 x H20 y mezclas de los mismos y un polímero transparente seleccionado de entre PMMA, PLMA, PBMA, PS-co-MMA, PC, PS-co-AN, PS-co-AA, PAM, P4VP-co-MMA en al menos un disolvente orgánico seleccionado de entre MPA, éter glicólico, éter metílico de dipropilenglicol, acetato de éter metílico de dipropilenglicol o una mezcla de los mismos.
28. La composición según cualquiera de las dos reivindicaciones anteriores, que comprende dimeros de EDOT, Cu(CI04)2 y PMMA en MPA.
29. La composición según cualquiera de las tres reivindicaciones anteriores, que comprende entre 0,5 y 10 mg/ml de oligómeros de EDOT, entre 0,1 y 25 mg/ml de al menos un oxidante y entre 1 ,0 y 70 mg/ml del polímero transparente en al menos un disolvente orgánico, con respecto al volumen total de la composición.
30. La composición según cualquiera de las cuatro reivindicaciones anteriores, que comprende entre 0,5 y 5 mg/ml de dimeros de EDOT, entre 0,1 y 25 mg/ml de Cu(CI04)2 y entre 1 ,0 y 70 mg/ml de PMMA en MPA, con respecto al volumen total de la composición.
31. La composición según cualquiera de las cinco reivindicaciones anteriores, que además comprende monómeros y/u oligómeros de tiofeno o derivados del tiofeno con fórmula I, II, III o IV:
Figure imgf000026_0001
II III IV donde y R2 se seleccionan independientemente de entre H, metilo, etilo, fenilo, hidroxilo, tiol, carboxilo, F, Cl, Br, I, Si(R5)3, OR3, SR3, NHR3, NR3R3, COOR3, CONH2, CONHR3 y CONR3R3, R3-0-R4, amino, R3(CO)-0-R4, R3(CO)-NH-R4, R3(CO)-NR4R4, R3(CO)-0-NH-R4, o Ci_20 alquilo no sustituido o sustituido por metilo, etilo, hidroxilo, amino, tiol, carboxilo, amido, trifluorometilo, triclorometilo, o tribromometilo; donde R3 y R4 se seleccionan independientemente de entre Ci_20 alquilo, fenilo, bifenilo; donde R5 es Ci_20 alquilo; donde R6 y R7 se seleccionan independientemente de entre H, metilo y C2-20 alquilo; y donde n se selecciona de entre 1 a 4.
32. La composición según cualquiera de las seis reivindicaciones anteriores, que además comprende entre 0,02 y 5 mg/ml de al menos un agente estabilizante seleccionado de entre imidazol, acetilacetonato, monoetanolamina, dietanolamina, trietanolamina, EDTA, etilendiamina, etilenglicol y polietileneglicol.
33. La composición según cualquiera de las siete reivindicaciones anteriores, que además comprende entre 0,02 y 5 mg/ml de al menos un agente estabilizante seleccionado de entre ácido trifluoroacético, ácido metanosulfónico, DMSO, etilenglicol, polietileneglicol, H3P04, H2S04, glicerol, sorbitol y etanol, con respecto al volumen total de la solución.
34. Una capa conductora transparente que comprende PEDOT formando una red interpenetrada con un polímero transparente seleccionado de entre PMMA, PBMA, PLMA, PS-co-AN, PS-co-AA, PAM, PS-co-MMA y P4VP-CO-MMA.
35. La capa conductora transparente según la reivindicación anterior, donde el espesor de la capa es de entre 10 nm y 500 mieras o de entre 20 y 250 nm.
36. Uso del método según cualquiera de las reivindicaciones 1 a 22 o de la capa conductora transparente según cualquiera de las reivindicaciones 23 a 25, 34 o 35 en la fabricación de pantallas táctiles, células solares, fotodetectores, diodos inorgánicos u orgánicos emisores de luz (LEDs, OLEDs), capacitores poliméricos, sensores de gas, o como recubrimiento antiestático de superficies o en miniaturización de dispositivos mediante litografía por haz de electrones y fotolitografía.
37. El uso según la reivindicación anterior, donde el recubrimiento antiestático se emplea en circuitos electrónicos, ventanas, papeles, películas fotográficas o materiales de construcción.
38. Uso del método según cualquiera de las reivindicaciones 1 a 22 para el dibujo por litografía, para la impresión directa, para litografía por nanoimpresión, fotolitografía UV, litografía por haz de electrones, litografía suave, serigrafía, impresión por chorro de tinta, plóter, flexografía, ófset o impresión huecograbado.
PCT/ES2018/070383 2017-05-26 2018-05-28 Capas poliméricas conductoras transparentes y método de obtención de las mismas WO2018215687A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201730735A ES2691311B2 (es) 2017-05-26 2017-05-26 Capas polimericas conductoras transparentes y metodo de obtencion de las mismas
ESP201730735 2017-05-26

Publications (1)

Publication Number Publication Date
WO2018215687A1 true WO2018215687A1 (es) 2018-11-29

Family

ID=63452674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070383 WO2018215687A1 (es) 2017-05-26 2018-05-28 Capas poliméricas conductoras transparentes y método de obtención de las mismas

Country Status (2)

Country Link
ES (1) ES2691311B2 (es)
WO (1) WO2018215687A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110358150A (zh) * 2019-06-10 2019-10-22 浙江金昌特种纸股份有限公司 一种纳米纤维素/石墨烯复合制备柔性电子显示屏方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300575A (en) 1990-02-08 1994-04-05 Bayer Aktiengesellschaft Polythiophene dispersions, their production and their use
CA1337950C (en) 1988-04-22 1996-01-16 Friedrich Jonas Polythiophenes, process for their preparation and their use
US20050029496A1 (en) * 2001-06-26 2005-02-10 Schwark Dwight W. Coating composition containing polythiophene, film-forming binder, and solvent mixture
EP2562199A1 (en) * 2007-07-09 2013-02-27 Imperial Innovations Limited Highly conductive and stable transparent conducting polymer films
WO2014186802A1 (en) * 2013-05-17 2014-11-20 Biotectix, LLC Impregnation of a non-conductive material with an intrinsically conductive polymer
WO2015031265A1 (en) * 2013-08-25 2015-03-05 Surmodics, Inc. Conductive polymeric coatings, medical devices, coating solutions and methods
DK2358817T3 (da) * 2008-11-20 2016-06-13 Université de Cergy-Pontoise Interpenetrerende polymernetværk med indstillelig emissivitet
WO2017059845A1 (de) * 2015-10-08 2017-04-13 Aslan Silas Mehmet Verfahren zur herstellung von polythiophenhaltigen fluiden

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1337950C (en) 1988-04-22 1996-01-16 Friedrich Jonas Polythiophenes, process for their preparation and their use
US5300575A (en) 1990-02-08 1994-04-05 Bayer Aktiengesellschaft Polythiophene dispersions, their production and their use
US20050029496A1 (en) * 2001-06-26 2005-02-10 Schwark Dwight W. Coating composition containing polythiophene, film-forming binder, and solvent mixture
EP2562199A1 (en) * 2007-07-09 2013-02-27 Imperial Innovations Limited Highly conductive and stable transparent conducting polymer films
DK2358817T3 (da) * 2008-11-20 2016-06-13 Université de Cergy-Pontoise Interpenetrerende polymernetværk med indstillelig emissivitet
ES2576754T3 (es) * 2008-11-20 2016-07-11 Université de Cergy-Pontoise Redes interpenetradas de polímeros con emisividad ajustable
WO2014186802A1 (en) * 2013-05-17 2014-11-20 Biotectix, LLC Impregnation of a non-conductive material with an intrinsically conductive polymer
WO2015031265A1 (en) * 2013-08-25 2015-03-05 Surmodics, Inc. Conductive polymeric coatings, medical devices, coating solutions and methods
WO2017059845A1 (de) * 2015-10-08 2017-04-13 Aslan Silas Mehmet Verfahren zur herstellung von polythiophenhaltigen fluiden

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN ET AL., J. POLYM. SCI., PARTA: POLYM. CHEM., vol. 46, 2008, pages 1662
GROENENDAAL ET AL., SYNTHETIC METALS, vol. 118, no. 1-3, 2001, pages 105 - 109
LU JIN ET AL: "Dual signal glucose reporter based on inverse opal conducting hydrogel films", SOFT MATTER, vol. 8, no. 18, 30 January 2012 (2012-01-30), pages 4911, XP055510131, ISSN: 1744-683X, DOI: 10.1039/c2sm06954g *
MAULU ET AL., RSC ADV., vol. 6, 2016, pages 80201
PETTERSSON ET AL., THIN SOLID FILMS, vol. 313, 1998, pages 356

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110358150A (zh) * 2019-06-10 2019-10-22 浙江金昌特种纸股份有限公司 一种纳米纤维素/石墨烯复合制备柔性电子显示屏方法

Also Published As

Publication number Publication date
ES2691311A1 (es) 2018-11-26
ES2691311B2 (es) 2020-04-21

Similar Documents

Publication Publication Date Title
Teo et al. Direct patterning of highly conductive PEDOT: PSS/ionic liquid hydrogel via microreactive inkjet printing
Brooke et al. Recent advances in the synthesis of conducting polymers from the vapour phase
CN101024483B (zh) 金属有序结构表面增强基底的构筑方法
Winther-Jensen et al. Vapor phase polymerization of pyrrole and thiophene using iron (III) sulfonates as oxidizing agents
JP6333368B2 (ja) ポリアニリン/還元型酸化グラフェン複合体の調製法
Mukherjee et al. Solution-processed poly (3, 4-ethylenedioxythiophene) thin films as transparent conductors: effect of p-toluenesulfonic acid in dimethyl sulfoxide
Sun et al. Fabricating high-resolution metal pattern with inkjet printed water-soluble sacrificial layer
JP2008031430A (ja) 導電性ポリマー及び導電性ポリマーの製法
Tai et al. Flexible, transparent, thickness-controllable SWCNT/PEDOT: PSS hybrid films based on coffee-ring lithography for functional noncontact sensing device
Kim et al. Stretchable photodetectors based on electrospun polymer/perovskite composite nanofibers
Duraisamy et al. Characterization of poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) thin film deposited through electrohydrodynamic atomization technique
JP2006523262A (ja) 本質的に導電性のポリマー又は本質的に導電性のポリマー前駆体の架橋方法、及び当該方法により得られる物品
Meier et al. Influence of film thickness on the phase separation mechanism in ultrathin conducting polymer blend films
TW201226456A (en) Method for producing layer structures by treatment with organic etchants and layer structures obtainable therefrom
Kim et al. Polymerizable supramolecular approach to highly conductive PEDOT: PSS patterns
CN108569719A (zh) 多孔性金属卤化物膜、其制备方法及利用其的钙钛矿结构的有机金属卤化物的制备方法
Kuila et al. A synergistic coassembly of block copolymer and fluorescent probe in thin film for fine-tuning the block copolymer morphology and luminescence property of the probe molecules
Godeau et al. Azidomethyl-EDOT as a platform for tunable surfaces with nanostructures and superhydrophobic properties
Hou et al. Highly conductive inkjet-printed PEDOT: PSS film under cyclic stretching
WO2018215687A1 (es) Capas poliméricas conductoras transparentes y método de obtención de las mismas
He et al. Continuous and patterned conducting polymer coatings on diverse substrates: rapid fabrication by oxidant-intermediated surface polymerization and application in flexible devices
Pflug et al. Spatial conductivity distribution in thin PEDOT: PSS films after laser microannealing
AU2011235617B2 (en) Dye-sensitised solar cell with nickel cathode
EP4015560A1 (en) Method of synthesizing conductive polymer and method of fabricating conductive polymer thin film
WO2023012365A1 (en) Photoresponsive asymmetric nonfullerene acceptors of the a-d-a&#39;-d-a type for use in optoelectronic devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18762898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18762898

Country of ref document: EP

Kind code of ref document: A1