WO2018214916A1 - 电池结构 - Google Patents

电池结构 Download PDF

Info

Publication number
WO2018214916A1
WO2018214916A1 PCT/CN2018/088058 CN2018088058W WO2018214916A1 WO 2018214916 A1 WO2018214916 A1 WO 2018214916A1 CN 2018088058 W CN2018088058 W CN 2018088058W WO 2018214916 A1 WO2018214916 A1 WO 2018214916A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
colloid
collector
active material
collector layer
Prior art date
Application number
PCT/CN2018/088058
Other languages
English (en)
French (fr)
Inventor
杨思枬
Original Assignee
辉能科技股份有限公司
辉能控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 辉能科技股份有限公司, 辉能控股股份有限公司 filed Critical 辉能科技股份有限公司
Priority to AU2018272338A priority Critical patent/AU2018272338A1/en
Priority to JP2020600040U priority patent/JP3226764U/ja
Priority to DE212018000209.6U priority patent/DE212018000209U1/de
Publication of WO2018214916A1 publication Critical patent/WO2018214916A1/zh
Priority to AU2020100217A priority patent/AU2020100217A4/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/197Sealing members characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of electrochemical technology, and more particularly to a battery structure that avoids external short circuits.
  • FIG. 1 is a cross-sectional view showing the structure of a current flexible solid state lithium battery.
  • the flexible solid state lithium battery 40 mainly includes a first collector layer 42 , a second collector layer 44 , and a first collector layer 42 and a second collector layer 44 .
  • the plastic frame 46 is formed to form a surrounding area, and a first active material layer 50, a separating layer 52 and a second active material layer 54 are sequentially disposed in the surrounding area, and the first active material layer 50 is isolated.
  • the layer 52 and the second active material layer 54 constitute the electrochemical system layer 56, and the first active material layer 50 is in contact with the first collector layer 42, and the second active material layer 54 is in contact with the second collector layer 44.
  • the flexible solid state lithium battery 40 is characterized in that it is dynamically bendable as a whole, but an external short circuit occurs due to the contact of the first collector layer 42 with the second collector layer 44 during the bending process.
  • the present invention is directed to the above-described shortcomings of the prior art, and proposes a battery structure to effectively overcome the above problems.
  • a main object of the present invention is to provide a battery structure in which an insulating layer is disposed on a periphery of at least one of the first collector layer and/or the second collector layer to prevent the first collector layer from being bent when the battery is bent.
  • the second collector layer is externally short-circuited due to contact.
  • Another object of the present invention is to provide a battery structure in which an insulating layer is disposed on a periphery of at least one of the first collector layer and/or the second collector layer to adhere the first collector layer and the second episode
  • the plastic frame between the electric layers is further covered with an insulating layer to prevent the first collector layer and the second collector layer from being externally short-circuited due to contact when the battery is bent.
  • the plastic frame between the collector layers is composed of a plurality of colloid layers, and at least one of the plurality of colloid layers is coated with an insulating layer to prevent the first collector layer and the second collector layer from being contacted when the battery is bent. External short circuit.
  • Another object of the present invention is to provide a battery structure.
  • the plastic frame sandwiched between the first collector layer and the second collector layer is composed of one or more colloid layers, and an outer wall of the colloid layer is provided with an extension.
  • the first collector layer and the second collector layer are externally short-circuited due to contact.
  • the present invention provides a battery structure, which mainly includes a first collector layer, a second collector layer, a glue frame for bonding the first collector layer and the second collector layer, A collector layer, a second collector layer and a plastic frame form a surrounding area, wherein the sealing area is provided with an electrochemical system layer, comprising a first active material layer, a second active material layer and a layer disposed on a separation layer between the first active material layer and the second active material layer, the first active material layer is in contact with the first collector layer, the second active material layer is in contact with the second collector layer, and the first active material layer is disposed on the first current collection layer
  • the insulating layer of the layer and/or the periphery of the second collector layer is covered by the plastic frame to avoid external short circuit caused by the contact between the first collector layer and the second collector layer after the bending.
  • the present invention further provides another battery structure, which mainly includes a first collector layer; a second collector layer; and a plastic frame interposed between the first collector layer and the second collector layer to form a surrounding area, the plastic frame includes a first colloid layer and a second colloid layer, the first colloid layer is adhered to the first collector layer, and the second colloid layer is bonded to the second collector layer; an electrochemical system a layer disposed in the enclosing area, the electrochemical system layer comprising a first active material layer, a second active material layer and an isolation layer disposed between the first active material layer and the second active material layer, first The active material layer is in contact with the first collector layer, the second active material layer is in contact with the second collector layer, and at least one insulating layer is disposed on the periphery of the first collector layer and/or the second collector layer.
  • the present invention further provides another battery structure, which mainly includes a first collector layer, a second collector layer, and a plastic frame sandwiched between the first collector layer and the second collector layer. Forming a surrounding area; and an electrochemical system layer disposed in the enclosed area, the electrochemical system layer comprising a first active material layer, a second active material layer and a first active material layer and An isolation layer between the two active material layers, the first active material layer is in contact with the first collector layer, and the second active material layer is in contact with the second collector layer; the outer sidewall surface of the plastic frame is provided with an insulating layer, and the insulating layer is extended To the periphery of the first collector layer and/or the second collector layer.
  • the battery structure is a flexible battery or a soft battery.
  • the plastic frame further includes a third colloid layer sandwiched between the first colloid layer and the second colloid layer.
  • the first colloid layer and the second colloid layer are different in material from the third colloid layer, and the adhesion is better.
  • the electrochemical system layer is located within the first collector layer and the second collector layer in a right projection direction.
  • the orthographic projection area of the first active material layer is smaller than the orthographic projection area of the first collector layer.
  • the orthographic projection area of the second active material layer is smaller than the orthographic projection area of the second collector layer.
  • the circumference includes a side surface and/or a surface extending upward and/or downward from the side surface.
  • the outer surface of the first collector layer and/or the second collector layer is provided with a protective layer.
  • the beneficial effects of the present invention are: when the battery is bent, the first collector layer and the second collector layer are externally short-circuited due to contact.
  • FIG. 1 is a cross-sectional view showing the structure of a current flexible solid state lithium battery
  • FIGS. 2a to 2d are schematic structural views of an embodiment of the present invention.
  • 3a to 3c are schematic structural views of another embodiment of the present invention.
  • 5a to 5c are schematic structural views of another embodiment of the present invention.
  • 6a to 6e are schematic structural views of an embodiment of the present invention.
  • FIG. 7a to 7g are schematic structural views of an embodiment of the present invention.
  • FIG. 9a to 9d are schematic structural views of an embodiment of the present invention.
  • 10a to 10l are schematic structural views of an embodiment of the present invention.
  • FIG. 11a to 11b are schematic views showing the structure of an embodiment of the present invention.
  • FIG. 13a to 13b are schematic views showing the structure of an embodiment of the present invention.
  • FIG. 14a to 14b are schematic views showing the structure of an embodiment of the present invention.
  • 15a to 15d are schematic structural views of an embodiment of the present invention.
  • 16a to 16r are schematic structural views of an embodiment of the present invention.
  • 17a to 17b are schematic views showing the structure of an embodiment of the present invention.
  • 18a to 18c are schematic views showing the structure of an embodiment of the present invention.
  • 19a to 19c are schematic structural views of an embodiment of the present invention.
  • 20a to 20c are schematic views showing the structure of an embodiment of the present invention.
  • Figure 21 is a schematic view showing the structure of an embodiment of the present invention.
  • the invention provides various solutions for the problem that the first collector layer and the second collector layer of the flexible solid-state lithium battery are externally short-circuited due to mutual contact after bending.
  • the peripheral edge defined below is a surface that includes side surfaces and/or extends upward and/or downward from the side surfaces.
  • the present invention is directed to a method for solving an external short circuit caused by mutual contact between a first collector layer and a second collector layer of a flexible solid-state lithium battery, and thus is mainly applicable to a flexible solid-state lithium battery.
  • the component structure is based on the contents shown in FIG. 1 and its description. In the following description, only the partial schematic diagram is used to explain the related technical features, which will be described first.
  • Method 1 The plastic frame is covered with an insulating layer
  • the flexible solid state lithium battery 10 capable of avoiding the external short circuit problem mainly includes a first collector layer 12, a second collector layer 14, and a first collector layer 12.
  • the plastic frame 16 of the second collector layer 14 and the first collector layer 12 and the second collector layer 14 form a surrounding area with the plastic frame 16.
  • An electrochemical system layer 26 is disposed in the enclosing area, and the electrochemical system layer 26 includes a first active material layer 20, a second active material layer 24, and a first active material layer 20 and a second active material layer.
  • the first active material layer 20 is in contact with the first collector layer 12, and the second active material layer 24 is in contact with the second collector layer 14.
  • At least one insulating layer 28 is disposed on the periphery of the first collector layer 12 and/or the second collector layer 14, and the plastic frame 16 covers the insulating layer 28.
  • the presence of the insulating layer 28 can avoid the problem that the first collector layer 12 and the second collector layer 14 are externally short-circuited due to contact.
  • the term "adhesion” as used herein refers to bonding and fixing the position between the first collector layer 12 and the second collector layer 14 and the frame 16.
  • the plastic frame 16 completely encloses the insulating layer 28, but may also be the plastic frame 16 covering the insulating layer 28, and the two are flush at the edges, for example, flush at the side b or the bottom surface a, Each state is as shown in Fig. 2b or Fig. 2c.
  • the insulating layer 28 may also extend from the periphery of the first collector layer 12 and/or the second collector layer 14 to the surface for use as a protective layer, as shown in Figure 2d.
  • the above-mentioned plastic frame 16 forms a surrounding area with the first collector layer 12 and the second collector layer 14 to accommodate the electrochemical system layer 26, so that it is completely filled in the orthographic projection direction.
  • the electrochemical system layer 26 disposed in the enclosed region will be completely located in the region of the first collector layer 12 and/or the second collector layer 14, in other words, the orthographic projection area of the first active material layer 20 is smaller than the first episode.
  • the orthographic projection area of the electrical layer 12, the orthographic projection area of the second active material layer 24 is smaller than the orthographic projection area of the second collector layer 14.
  • the plastic frame 16 may be partially located in the front projection area of the first collector layer 12 and the second collector layer 14, for example, the plastic frame 16 may be protruded from When the first collector layer 12 and the second collector layer 14 have the same projection area, that is, when the first collector layer 12 and the second collector layer 14 have the same length in cross section, the frame 16 can protrude from the A collector layer 12 and a second collector layer 14 are external to each other (not shown).
  • the plastic frame shown in FIG. 3a to FIG. 3c may include a first colloid layer 161 and a second colloid layer 162.
  • the first colloid layer 161 is adhered to the first collector layer 12, and the second colloid layer 162 is
  • the second collector layer 161 and the second colloid layer 162 may have different or substantially the same material composition, and the first colloid layer 161 and/or the second colloid layer 162 may cover the insulating layer. 28.
  • the first colloid layer 161 completely encapsulates the insulating layer 28. It is also possible that the first colloid layer 161 is flush with the edge of the insulating layer 28, as shown in Fig. 3b or Fig. 3c.
  • the second colloid layer 162 may completely cover the insulating layer 28 as shown in FIG. 4a, but the second colloid layer 162 may be partially flush with the edge of the insulating layer 28, as shown in FIG. 4b or FIG. The state shown in 4c.
  • first colloid layer 161 and the second colloid layer 162 are simultaneously coated with the insulating layer.
  • first colloid layer 161 and the second colloid layer 162 may be completely covered with the insulating layer 28 or the same.
  • a colloid layer 161 and a second colloid layer 162 are simultaneously partially flush with the insulating layer 28, as shown in Figures 5a, 5b and 5c, respectively.
  • the second colloid layer 162 is flushed on the different margins with respect to the first colloid layer 161, as shown in FIG. 6a and FIG. 6b. .
  • the first colloid layer 161 is covered with the insulating layer 28, which may also be referred to as incomplete cladding, that is, as shown, a portion of the edge of the insulating layer 28 is exposed outside the first colloid layer 161, and the second colloid layer 162 is completely covered.
  • the first colloid layer 161 extends to the edge of the insulating layer 28 exposed at the first colloid layer 161, as shown in Figures 6c and 6d.
  • the first colloid layer 161 and the second colloid layer 162 are partially flush with each other, as shown in FIG. 6e.
  • the plastic frame 16 shown in FIG. 7a to FIG. 7g may further include a third colloid layer 163 sandwiched between the first colloid layer 161 and the second colloid layer 161.
  • the three layers of the colloid layers 161, 162, and 163 can be formed in a plurality of different cladding structures with respect to the insulating layer 28 to avoid contact between the first collector layer 12 and the second collector layer 14.
  • the first colloid layer 161 and the second colloid layer 162 can be adjusted according to the material of the first collector layer 12 and the second collector layer 14 respectively.
  • the first colloid layer 161 and the second colloid layer 162 are different in material from the third colloid layer 163, and the adhesion is better.
  • first colloid layer 161, the second colloid layer 162, and the third colloid layer 163 completely covers the insulating layer 28, as shown in FIGS. 7a through 7g.
  • first colloid layer 161, the second colloid layer 162 or the third colloid layer 163 and the insulating layer 28 are flush at the margin of any portion, as shown in Figures 8a-8f.
  • Figure 8a the first colloid layer 161 and the insulating layer 28 are flush with the sides.
  • Figure 8b the first colloid layer 161 and the insulating layer 28 are flush with the bottom margin.
  • the second colloid layer 162 and/or the third colloid layer 163 coats the first colloid layer 161 and is flush with the first colloid layer 161 at a partial margin.
  • the first colloid layer 161 is covered with the insulating layer 28 in a manner that is flush with a portion of the edge of the insulating layer 28, while the second colloid layer 162 or the third colloid layer 163 completely covers the first colloid layer 161.
  • the extended insulating layer 28 is exposed on the sidewall of the first colloid layer 161, or the first colloid layer 161 is covered in a partially flush manner, as shown in FIGS. 10a to 10l.
  • FIGS. 10a to 10c the first colloid layer 161 and the insulating layer 28 are flush with the side edges, and the third colloid layer 163 completely covers the first colloid layer 161 and the extended clad insulating layer 28 is exposed.
  • the sidewall outside the first colloid layer 161 is as shown in Figure 10a.
  • the first colloid layer 161 is coated with the side edges of the third colloid layer 163 flush with the side edges of the first colloid layer 161, as shown in FIG. 10b.
  • the first colloid layer 161 is coated with the bottom margin of the portion of the third colloid layer 163 flush with the bottom margin of the first colloid layer 161, as shown in FIG. 10c.
  • the first colloid layer 161 and the insulating layer 28 are flush with the bottom margin, and the assembly position of the third colloid layer 163 with respect to the first colloid layer 161 is as previously described, and will not be performed here.
  • Related statements. 10g to 10l are changed to the relative arrangement between the first colloid layer 161, the second colloid layer 162 and the insulating layer 28. Since the foregoing approximation is omitted, no further details are provided herein.
  • the third colloid layer 163 completely covers the insulating layer 28, while the second colloid layer 162 covers the third colloid layer 163 and is flush with the third colloid layer 163 portion, as shown in FIG. 11a to FIG. 11b. The state shown.
  • the third colloid layer 163 is covered with the insulating layer 28 in a manner that is flush with a portion of the edge of the insulating layer 28, while the second colloid layer 162 completely covers the third colloid layer 163, or To cover the insulating layer 28, as shown in FIG. 12a or 12e, or the second colloid layer 162 is partially flush with the third colloid layer 163 to cover the third colloid layer 163, as shown in FIG. 12b to FIG. 12d. The state shown in Fig. 12f.
  • first colloid layer 161 and the third colloid layer 163 completely cover the insulating layer 28, that is, the first colloid layer 161 completely covers the insulating layer 28, and the third colloid layer 163 is completely covered by the first layer.
  • the outer periphery of a colloid layer 161, thereby completely covering the insulating layer 28, and the second colloid layer 162 is partially flushed to cover the third colloid layer 163, as shown in Figs. 13a to 13b.
  • first colloid layer 161 and the second colloid layer 162 completely cover the insulating layer 28 in sequence, that is, the first colloid layer 161 completely covers the insulating layer 28, and the third colloid layer 163 is partially flushed.
  • the first colloid layer 161 is covered, and the second colloid layer 162 completely covers the outer periphery of the first colloid layer 161 and the third colloid layer 163, thereby completely covering the insulating layer 28, as shown in FIGS. 14a to 14b. .
  • the first colloid layer 161 completely covers the insulating layer 28, the third colloid layer 163 partially covers the first colloid layer 161, and the second colloid layer 162 is combined with the first colloid layer 161. Or the third colloid layer 163 is partially flushed to cover the third colloid layer 163 or the first colloid layer 161, as shown in FIGS. 15a to 15d.
  • the first colloid layer 161 covers the insulating layer 28 in a partially flush manner
  • the third colloid layer 163 completely covers the first colloid layer or partially coated while the second colloid layer 162 is as previously described.
  • the third colloid layer 163 may be completely covered and further extended to the side edge of the clad insulating layer 28, or the second colloid layer 162 may partially cover the third colloid layer 163, as shown in FIGS. 16a to 16r.
  • Method 2 The periphery of the collector layer is provided with an insulating layer
  • the flexible solid state lithium battery 10 capable of avoiding the external short circuit problem mainly includes a first collector layer 12, a second collector layer 14, and a first collector layer 12.
  • the plastic frame 16 between the second collector layer 14 and the second collector layer 14 is formed to form a surrounding area.
  • the plastic frame 16 includes a first colloid layer 161 and a second colloid layer 162.
  • the first colloid layer 161 and the first collector layer 12 are formed.
  • the second colloid layer 162 is bonded to the second collector layer 14 .
  • An electrochemical system layer 26 is disposed in the enclosing area, and the electrochemical system layer 26 includes a first active material layer 20, a second active material layer 24, and a first active material layer 20 and a second active material layer.
  • the first active material layer 20 is in contact with the first collector layer 12, and the second active material layer 24 is in contact with the second collector layer 14.
  • At least one insulating layer 28 is disposed on the periphery of the first collector layer 12 and/or the second collector layer 14. Under such a design, when the flexible solid-state lithium battery 10 is bent, the problem that the first collector layer 12 and the second collector layer 14 are externally short-circuited due to contact can be avoided.
  • the first collector layer 12 and the second collector layer 14 may have different or substantially the same material composition.
  • the plastic frame 16 may further include a third colloid layer 163 sandwiched between the first colloid layer 161 and the second colloid layer 162.
  • the electrochemical system layer 26 completely accommodated in the enclosing area in the orthographic projection direction will be completely located in the first collector layer 12 and/or the second collector layer.
  • the orthographic projection area of the first active material layer 20 is smaller than the orthographic projection area of the first collector layer 12
  • the orthographic projection area of the second active material layer 24 is smaller than the orthographic projection area of the second collector layer 14.
  • Method 3 The insulating layer is disposed on the outer sidewall of the plastic frame and extends to the periphery of the first collector layer and/or the second collector layer
  • the flexible solid state lithium battery 10 capable of avoiding the external short circuit problem mainly includes a first collector layer 12, a second collector layer 14, and a clip.
  • the plastic frame 16 between the first collector layer 12 and the second collector layer 14 forms a surrounding area.
  • An electrochemical system layer 26 is disposed in the enclosing area, and the electrochemical system layer 26 includes a first active material layer 20, a second active material layer 24, and a first active material layer 20 and a second active material layer.
  • the first active material layer 20 is in contact with the first collector layer 12, and the second active material layer 24 is in contact with the second collector layer 14.
  • At least one insulating layer 28 is disposed on the outer sidewall of the bezel 16 and extends to the periphery of the first collector layer 12 and/or the second collector layer 14. Under such a design, the problem that the first collector layer 12 and the second collector layer 14 are externally short-circuited due to contact when the flexible solid-state lithium battery 10 is bent is avoided.
  • FIG. 18a is a schematic diagram of an embodiment of the third method.
  • the insulating layer 28 is disposed on the outer sidewall of the plastic frame 16 and extends to the bottom surface a of the first collector layer 12.
  • the insulating layer 28 is a side surface b or a top surface c that further extends to the second collector layer 14.
  • the plastic frame 16 may further include a first colloid layer 161 and a second colloid layer 162.
  • the first colloid layer 161 is bonded to the first collector layer 12, and the second colloid layer 162 and the second collector layer are bonded. 14 is bonded, and the first colloid layer 161 and the second colloid layer 162 may have differences in material composition or are substantially the same.
  • the above embodiment may have the state of Figs. 19a to 19c. For example, in FIG.
  • the insulating layer 28 is mainly disposed on the outer sidewall of the first colloid layer 161, and one end extends to the bottom surface a of the first collector layer 12, and the other end extends to the second colloid layer 162.
  • the insulating layer 28 is a side surface b or a top surface c that further extends to the second collector layer 14.
  • the plastic frame 16 may further include a third colloid layer 163 sandwiched between the first colloid layer 161 and the second colloid layer 162.
  • a third colloid layer 163 sandwiched between the first colloid layer 161 and the second colloid layer 162.
  • the above embodiment will be formed in the state of FIGS. 20a to 20c.
  • the embodiment insulating layer 28 depicted in FIG. 20a is disposed on the outer sidewall of the first colloid layer 161 and extends to the third colloid layer 163 at one end, it will be apparent to those skilled in the art that the second colloid layer 162 can also be extended.
  • a positive electrode or a negative electrode is formed by coating an active material layer on a collector layer and then performing a cutting and drying process, so that the active material layer of the positive electrode or the negative electrode has the same size as the collector layer, and is safe.
  • the positive active material layer must be smaller than the negative active material layer design, that is, the positive electrode must be smaller than the negative electrode.
  • the so-called safety factor is because when lithium ions are embedded in the negative electrode, if the space of the negative electrode is insufficient, the lithium crystal branches will be generated in a large amount. Further, the lithium crystal chip penetrates the separator and causes a short circuit problem of internal positive and negative electrode contact.
  • the first collector layer 12 may be a positive collector layer or a cathode collector layer
  • the second collector layer 14 is corresponding to a cathode collector layer or a cathode collector layer.
  • the first collector layer 12 is a negative collector layer
  • the second collector layer 14 is a cathode collector layer, and there is no problem of the size of the collector layer required for safety reasons.
  • This embodiment is quite different from the existing general lithium battery architecture.
  • a protective layer 30 may be formed or disposed on the outer surface of the first collector layer 12 and/or the second collector layer 14 of the flexible solid state lithium battery 10 to protect or The first collector layer 12 and/or the second collector layer 14 are supported, as shown in FIG. The state in which the protective layer 30 is disposed on the outer surface of the second collector layer 14 is not shown in the drawing.
  • the present invention achieves flexibility by providing an insulating layer on at least one circumference of the first collector layer and the second collector layer, and deriving various shapes with changes in the frame structure. After the solid lithium battery is bent, the first collector layer and the second collector layer can be protected from contact, thereby avoiding the external short circuit problem caused by the first collector layer and the second collector layer being touched.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本发明公开一种电池结构,其主要包括一第一集电层、一第二集电层、一黏固第一集电层与第二集电层的胶框,第一集电层、第二集电层与胶框形成一封围区域,此封围区域内容设一电化学系统层,此电化学系统层包括一第一活性材料层、一第二活性材料层与一设置于第一活性材料层与第二活性材料层间的隔离层,第一活性材料层与第一集电层接触,第二活性材料层与第二集电层接触,胶框的外侧壁表面设置有一绝缘层,该绝缘层延伸至第一集电层与/或该第二集电层的周缘,以避免弯折后第一集电层与第二集电层因接触导致外部短路。

Description

电池结构 技术领域
本发明涉及电化学技术领域,尤其是指一种可避免外部短路的电池结构。
背景技术
为因应人性科技需求,各种穿戴式电子装置相应而生,为使各种穿戴式电子装置更符合轻薄的趋势,电子装置内的空间分配成为一重要课题,而可设置在非平面的可挠曲式电池为此课题的解决策略之一。请参阅图1,其是目前可挠曲式固态锂电池的结构剖视图。如图所示,此种可挠曲式固态锂电池40主要包括一第一集电层42、一第二集电层44、一夹设于第一集电层42与第二集电层44间的胶框46,以形成一封围区域,此封围区域内依序容设有一第一活性材料层50、隔离层52与一第二活性材料层54,第一活性材料层50、隔离层52与第二活性材料层54构成电化学系统层56,且第一活性材料层50与第一集电层42接触,第二活性材料层54与第二集电层44接触。此可挠曲式固态锂电池40的特性在于整体可动态弯曲,但在弯曲过程中,却因为第一集电层42与第二集电层44的接触而发生外部短路。
有鉴于上述,本发明即针对上述现有技术的缺点,提出一种电池结构,以有效克服上述的这些问题。
发明内容
本发明的主要目的在于提供一种电池结构,其在第一集电层与/或第二集电层中的至少一个的周缘设置有一绝缘层,以避免电池弯折时,第一集电层、第二集电层因接触而产生外部短路。
本发明的另一目的在于提供一种电池结构,其在第一集电层与/或第二集电层中的至少一个的周缘设置有一绝缘层,黏固第一集电层与第二集电层间的胶框还进一步包覆绝缘层,以避免电池弯折时,第一集电层、第二集电层因接触而产生外部短路。
本发明的又一目的在于提供一种电池结构,其在第一集电层与/或第二集电层中的至少一个的周缘设置有一绝缘层,夹设于第一集电层与第二集电层间的胶框是由多个胶体层组成,多个胶体层中的至少一个包覆绝缘层,以避免电池弯折时,第一集电层、第二集电层因接触而产生外部短路。
本发明的又一目的在于提供一种电池结构,夹设于第一集电层与第二集电层间的胶框是由一个或多个胶体层组成,此胶体层的外侧壁设置有一延伸至集电层的绝缘层,以避免电池弯折时,第一集电层、第二集电层因接触而产生外部短路。
为达上述的目的,本发明提供一种电池结构,其主要包括一第一集电层、一第二集电层、一黏固第一集电层与第二集电层的胶框,第一集电层、第二集电层与胶框形成一封围区域,此封围 区域内容设一电化学系统层,其包括一第一活性材料层、一第二活性材料层与一设置于第一活性材料层与第二活性材料层间的隔离层,第一活性材料层与第一集电层接触,第二活性材料层与第二集电层接触,以及一设置于第一集电层与/或第二集电层的周缘的绝缘层,胶框包覆此绝缘层,以避免弯折后,第一集电层与第二集电层因接触产生外部短路。
本发明还提供另一种电池结构,其主要包括一第一集电层;一第二集电层;一胶框,其夹设于第一集电层与第二集电层间,以形成一封围区域,胶框包括一第一胶体层与一第二胶体层,第一胶体层与第一集电层黏接,第二胶体层与第二集电层黏接;一电化学系统层,其设置于封围区域内,电化学系统层包括一第一活性材料层、一第二活性材料层与设置于第一活性材料层与第二活性材料层之间的隔离层,第一活性材料层与第一集电层接触,第二活性材料层与第二集电层接触;以及至少一绝缘层,其设置于第一集电层与/或第二集电层的周缘。
本发明再提供另一种电池结构,其主要包括一第一集电层;一第二集电层;一胶框,其夹设于第一集电层与第二集电层之间,以形成一封围区域;以及一电化学系统层,其设置于封围区域内,此电化学系统层包括一第一活性材料层、一第二活性材料层与设置于第一活性材料层与第二活性材料层之间的隔离层,第一活性材料层与第一集电层接触,第二活性材料层与第二集电层接触;胶框的外侧壁表面设置有一绝缘层,绝缘层延伸至第一集电层与/或该第二集电层的周缘。
在本发明的一实施例中,上述的电池结构为可挠电池或软包电池。
其中,该胶框还包括一第三胶体层,该第三胶体层夹设于该第一胶体层与该第二胶体层之间。
其中,该第一胶体层与该第二胶体层相较于该第三胶体层的材质不同,接着性较佳。
其中,该电化学系统层在正投影方向上位于该第一集电层与该第二集电层之内。
其中,该第一活性材料层的正投影面积小于该第一集电层的正投影面积。
其中,该第二活性材料层的正投影面积小于该第二集电层的正投影面积。
其中,该周缘包括一侧表面及/或自该侧表面向上方及/或下方延伸的表面。
其中,该第一集电层与/或该第二集电层的外表面设有一保护层。
本发明的有益效果为:以避免电池弯折时,第一集电层、第二集电层因接触而产生外部短路。
附图说明
图1为目前可挠曲式固态锂电池的结构剖视图;
图2a至图2d为本发明的一实施例的结构示意图;
图3a至图3c为本发明的另一种实施例的结构示意图;
图4a至图4c为本发明的又一种实施例的结构示意图;
图5a至图5c为本发明的另一种实施例的结构示意图;
图6a至图6e为本发明的一实施例的结构示意图;
图7a至图7g为本发明的一实施例的结构示意图;
图8a至图8f为本发明的一实施例的结构示意图;
图9a至图9d为本发明的一实施例的结构示意图;
图10a至图10l为本发明的一实施例的结构示意图;
图11a至图11b为本发明的一实施例的结构示意图;
图12a至图12f为本发明的一实施例的结构示意图;
图13a至图13b为本发明的一实施例的结构示意图;
图14a至图14b为本发明的一实施例的结构示意图;
图15a至图15d为本发明的一实施例的结构示意图;
图16a至图16r为本发明的一实施例的结构示意图;
图17a至图17b为本发明的一实施例的结构示意图;
图18a至图18c为本发明的一实施例的结构示意图;
图19a至图19c为本发明的一实施例的结构示意图;
图20a至图20c为本发明的一实施例的结构示意图;
图21为本发明的一实施例的结构示意图。
图号对照说明:
40  可挠曲式固态锂电池
42  第一集电层
44  第二集电层
46  胶框
50  第一活性材料层
52  隔离层
54  第二活性材料层
56  电化学系统层
(本发明)
10  可挠曲式固态锂电池
12  第一集电层
14  第二集电层
16  胶框
161  第一胶体层
162  第二胶体层
163  第三胶体层
20  第一活性材料层
22  隔离层
24  第二活性材料层
26  电化学系统层
28  绝缘层
30  保护层
a  底面
b  侧面
c  顶面
具体实施方式
为了使本发明的结构特征及所达成的功效有更进一步的了解与认识,特用实施例及配合详细的说明,说明如下:
本发明针对可挠曲式固态锂电池在弯折后第一集电层、第二集电层因为相互接触而产生外部短路的问题提出各种解决方法。下面说明所定义的周缘是包括侧表面及/或自侧表面向上方及/或下方延伸的表面。并且,本发明是针对可挠曲式固态锂电池的第一集电层、第二集电层因相互接触而产生外部短路的问题出提出解决的方法,因此可挠曲式固态锂电池的主要组件结构是承袭图1所示的内容与其说明,在下列的说明附图中仅以局部示意图进行相关技术特征解释,先在此说明。
方法一:胶框包覆绝缘层
如图2a所示,这种可避免外部短路问题的可挠曲式固态锂电池10主要包括一第一集电层12、一第二集电层14、一黏固第一集电层12与第二集电层14的胶框16,第一集电层12、第二集电层14与胶框16形成一封围区域。一电化学系统层26设置于封围区域内,电化学系统层26包括一第一活性材料层20、一第二活性材料层24与一设置于第一活性材料层20与第二活性材料层24间的隔离层22,第一活性材料层20与第一集电层12接触,第二活性材料层24与第二集电层14接触。至少一绝缘层28设置于第一集电层12与/或第二集电层14的周缘,并且,胶框16包覆绝缘层28。在这样的设计下,当此可挠曲式固态锂电池10弯曲时,绝缘层28的存在能避免第一集电层12与第二集电层14因接触产生外部短路的问题。上述的黏固一词意指黏接并使第一集电层12与第二集电层14以及胶框16三者间的位置固定。
在图2a中,胶框16将绝缘层28完全包覆于内,但也可以是胶框16包覆绝缘层28,并且两者在边际齐平,例如在侧面b或者底面a齐平,其各如图2b或图2c所示的状态。此外,绝缘层28还可自第一集电层12与/或第二集电层14的周缘延伸至表面,作为保护层使用,如图2d所示。
上述的胶框16(如图2a所示)与第一集电层12以及第二集电层14形成一封围区域,以容设电化学系统层26,因此在正投影方向上,完全容设于封围区域内的电化学系统层26将完全位 于第一集电层12及/或第二集电层14的区域内,换言之,第一活性材料层20的正投影面积小于第一集电层12的正投影面积,第二活性材料层24的正投影面积小于第二集电层14的正投影面积。
另外,在其他的实施例中,所述的胶框16可以是局部地位于第一集电层12与第二集电层14的正投影区域内,举例来说,胶框16可以是突出于第一集电层12与第二集电层14的正投影区域,亦即,第一集电层12与第二集电层14在截面上具有相同长度时,则胶框16可突出于第一集电层12与第二集电层14之外(图未显示)。
请接续参阅图3a至图3c所示的胶框可以包括一第一胶体层161与一第二胶体层162,第一胶体层161与第一集电层12黏接,第二胶体层162与第二集电层14黏接,第一胶体层161与第二胶体层162在材料组成上可具有差异或者实质上相同,第一胶体层161与/或第二胶体层162包覆该绝缘层28。
举例来说,如图3a所示,第一胶体层161将绝缘层28完全包覆。也可以是第一胶体层161部分与绝缘层28的边际齐平,如图3b或图3c所示的结构。
并且,也可以是第二胶体层162将绝缘层28完全包覆于内,如图4a所示,但也可以是第二胶体层162部分与绝缘层28的边际齐平,如图4b或图4c所示的状态。
或者,第一胶体层161与第二胶体层162同时包覆绝缘层,此时,如先前状态一样,可区分为第一胶体层161与第二胶体层162同时完全包覆绝缘层28或第一胶体层161与第二胶体层162同时部分边际与绝缘层28齐平,各别如图5a、图5b与图5c所示状态。
此外,也可以在第一胶体层161完全包覆绝缘层28的前提下,第二胶体层162相对于第一胶体层161在不同的边际上采用齐平设计,如图6a与图6b所示。或者是第一胶体层161包覆绝缘层28,也可称为是非完全包覆,就是如图所示绝缘层28的部分边际显露于第一胶体层161外,第二胶体层162完全包覆第一胶体层161并延伸至绝缘层28显露于第一胶体层161的边际,如图6c与图6d所示。或者是第一胶体层161与第二胶体层162两者间部分边际齐平,如图6e所示。
请接续参阅图7a至图7g所示的胶框16可以还包括一第三胶体层163,第三胶体层163夹设于第一胶体层161与第二胶体层161之间。在这种情况下,可由此三层胶体层161、162、163相对于绝缘层28形成多种不同包覆结构形态,来避免第一集电层12与第二集电层14接触的情况。在这种情况下时,第一胶体层161与第二胶体层162相较于第三胶体层163是可依据各自接着的第一集电层12、第二集电层14进行材质上的调整,使第一胶体层161与第二胶体层162相较于第三胶体层163的材质不同,接着性较佳。
举例来说,第一胶体层161、第二胶体层162与第三胶体层163中的至少其中一个完全包覆绝缘层28,如图7a至图7g所示的结构。或者是第一胶体层161、第二胶体层162或第三胶体层163与绝缘层28在任一部分边际齐平,如图8a-图8f。举例来说,在图8a中,第一胶体层161 与绝缘层28在侧边边际齐平。在图8b中,第一胶体层161与绝缘层28在底部边际齐平。
在第一胶体层161完全包覆绝缘层28的情况下,第二胶体层162及/或第三胶体层163包覆第一胶体层161,并与第一胶体层161在部分边际齐平,如图9a至图9d所示状态。
在另一实施例中,第一胶体层161采用与绝缘层28的部分边际齐平的方式包覆绝缘层28,同时第二胶体层162或第三胶体层163完全包覆第一胶体层161,或者还延伸包覆绝缘层28显露于第一胶体层161外的侧壁,更或者采用部分齐平的方式包覆第一胶体层161,如图10a至图10l所示状态。举例来说,在图10a至图10c中,第一胶体层161与绝缘层28在侧边边际齐平,第三胶体层163完全包覆第一胶体层161并延伸包覆绝缘层28显露于第一胶体层161外的侧壁,如图10a所示。或者采用部分第三胶体层163的侧边边际与第一胶体层161的侧边边际齐平的方式包覆第一胶体层161,如图10b所示。又或者采用部分第三胶体层163的底部边际与第一胶体层161的底部边际齐平的方式包覆第一胶体层161,如图10c所示。在图10d至图10f中,第一胶体层161与绝缘层28在底部边际齐平,而第三胶体层163相对于第一胶体层161的组件位置如同先前所述,在此将不再进行相关赘述。在图10g至图10l则是改为第一胶体层161、第二胶体层162与绝缘层28间的相对结构设置,因与前述近似,在此不再进行相关赘述。
另一实施例中,第三胶体层163完全包覆绝缘层28,同时第二胶体层162包覆第三胶体层163,并与第三胶体层163部分边际齐平,如图11a至图11b所示状态。
又一实施例中,第三胶体层163采用与绝缘层28的部分边际齐平的方式包覆绝缘层28,同时第二胶体层162完全包覆第三胶体层163,更或者采用一并延伸至包覆绝缘层28的方式,如图12a或图12e所示,或者第二胶体层162采用部分齐平于第三胶体层163的方式包覆第三胶体层163,如图12b至图12d、图12f所示状态。
又一实施例中,第一胶体层161与第三胶体层163依序完全包覆绝缘层28,也就是第一胶体层161完全包覆绝缘层28,第三胶体层163完全包覆于第一胶体层161的外周缘,借此完全包覆绝缘层28,而第二胶体层162采用部分齐平的方式包覆第三胶体层163,如图13a至图13b所示状态。
又一实施例中,第一胶体层161与第二胶体层162依序完全包覆绝缘层28,也就是第一胶体层161完全包覆绝缘层28,第三胶体层163采用部分齐平的方式包覆第一胶体层161,第二胶体层162完全包覆第一胶体层161与第三胶体层163的外周缘,借此完全包覆绝缘层28,如图14a至图14b所示状态。
又一实施例中,第一胶体层161完全包覆绝缘层28,第三胶体层163采用部分齐平的方式来包覆第一胶体层161,第二胶体层162采用与第一胶体层161或第三胶体层163部分齐平的方式来包覆第三胶体层163或第一胶体层161,如图15a至图15d所示状态。
另一实施例中,第一胶体层161采用部分齐平的方式包覆绝缘层28,第三胶体层163完全包覆第一胶体层或部分包覆,同时第二胶体层162如同先前所述可完全包覆第三胶体层163并进 一步延伸至包覆绝缘层28侧边边际,或者第二胶体层162部分包覆第三胶体层163,如图16a至图16r所示状态。
方法二:集电层的周缘设置有绝缘层
如图17a所示,这种可避免外部短路问题的可挠曲式固态锂电池10主要包括一第一集电层12、一第二集电层14、一夹设于第一集电层12与第二集电层14间的胶框16,以形成一封围区域,此胶框16包括一第一胶体层161与第二胶体层162,第一胶体层161与第一集电层12黏接,第二胶体层162与第二集电层14黏接。一电化学系统层26设置于封围区域内,电化学系统层26包括一第一活性材料层20、一第二活性材料层24与一设置于第一活性材料层20与第二活性材料层24间的隔离层22,第一活性材料层20与第一集电层12接触,第二活性材料层24与第二集电层14接触。至少一绝缘层28设置于第一集电层12与/或第二集电层14的周缘。在这样的设计下,当此可挠曲式固态锂电池10弯曲时,能避免第一集电层12与第二集电层14因接触产生外部短路的问题。第一集电层12与第二集电层14在材料组成上可具有差异或实质上相同。
如图17b所示,上述的胶框16可以还包括一第三胶体层163,第三胶体层163夹设于第一胶体层161与第二胶体层162之间。以上所述的可挠曲式固态锂电池10,在正投影方向上,完全容设于封围区域内的电化学系统层26将完全位于第一集电层12及/或第二集电层14的区域内,换言之,第一活性材料层20的正投影面积小于第一集电层12的正投影面积,第二活性材料层24的正投影面积小于第二集电层14的正投影面积。
方法三:绝缘层设置于胶框的外侧壁且延伸至第一集电层与/或第二集电层周缘
如图18a至图18c所示的实施例,这种可避免外部短路问题的可挠曲式固态锂电池10主要包括一第一集电层12、一第二集电层14、一夹设于第一集电层12与第二集电层14间的胶框16,以形成一封围区域。一电化学系统层26设置于封围区域内,电化学系统层26包括一第一活性材料层20、一第二活性材料层24与一设置于第一活性材料层20与第二活性材料层24间的隔离层22,第一活性材料层20与第一集电层12接触,第二活性材料层24与第二集电层14接触。至少一绝缘层28设置于胶框16的外侧壁且延伸至第一集电层12与/或第二集电层14周缘。在这样的设计下,来避免可挠曲式固态锂电池10弯曲时第一集电层12与第二集电层14因接触产生外部短路的问题。
请参阅图18a,其为方法三的一实施例示意图。在此实施例中,绝缘层28是设置于胶框16的外侧壁且延伸至第一集电层12底面a。在图18b至图18c中,绝缘层28是还进一步延伸至第二集电层14的侧面b或者顶面c。
并且,上述的胶框16可以还包括一第一胶体层161与一第二胶体层162,第一胶体层161与第一集电层12黏接,第二胶体层162与第二集电层14黏接,第一胶体层161与第二胶体层162在材料组成上可具有差异或本质上相同。在胶框16是由第一胶体层161与第二胶体层162 组构而成时,上述的实施例将可有图19a至图19c的状态。举例来说,在图19a中绝缘层28是主要设置于第一胶体层161的外侧壁,并且一端延伸至第一集电层12底面a,另一端延伸至第二胶体层162。在图19b至图19c中,绝缘层28是还进一步延伸至第二集电层14的侧面b或者顶面c。
上述的胶框16可以还包括一第三胶体层163,第三胶体层163夹设于第一胶体层161与第二胶体层162之间。在胶框16是由第一胶体层161/第三胶体层163/第二胶体层162依序组构而成时,上述的实施例将形成如图20a至图20c的状态。虽然在图20a中所绘制的实施例绝缘层28设置于第一胶体层161的外侧壁,并且一端延伸至第三胶体层163,但本领域技术人员当知也可以延伸至第二胶体层162。
在一般锂电池中,正极或负极由活性材料层涂布于集电层上后再经过切割、干燥工艺后制成,因此正极或负极的活性材料层的大小与集电层相同,而在安全因素的考虑下,正极活性材料层必须小于负极活性材料层的设计,也就是正极必须小于负极,所谓安全因素是由于锂离子嵌入至负极时,若负极的空间不足将导致锂晶枝大量地生成,进而导致锂晶枝穿刺隔离层而发生内部正、负极接触的短路问题。然而在本发明的上述所有实施例中,第一集电层12可以是正极集电层或者负极集电层,第二集电层14则相对应为负极集电层或正极集电层。换而言之,当第一集电层12为负极集电层时,第二集电层14为正极集电层,并无因为安全考虑下所需的集电层大小配置问题存在。此实施例是与现有的一般锂电池架构截然不同的。
并且,在上述所有的实施例中,可挠曲式固态锂电池10的第一集电层12与/或第二集电层14的外表面上可形成或设置有一保护层30,以保护或支撑第一集电层12与/或第二集电层14,如图21所示的结构。其中,保护层30设置于第二集电层14外表面的状态,并未显示于图中。
综上所述,本发明借由在第一集电层与第二集电层的至少一周缘设置有绝缘层,并搭配胶框结构的变化衍生出各种形态,来达到使可挠曲式固态锂电池在弯折后第一集电层、第二集电层能免于接触,进而避免第一集电层、第二集电层因碰触所产生的外部短路问题。
上文仅为本发明的较佳实施例而已,并非用来限定本发明实施的范围,凡依本发明权利要求范围所述的形状、构造、特征及精神所为的均等变化与修饰,均应包括于本发明的权利要求范围内。

Claims (32)

  1. 一种电池结构,其特征在于,包括:
    一第一集电层;
    一第二集电层;
    一胶框,其黏固该第一集电层与该第二集电层,该胶框、该第一集电层与该第二集电层形成一封围区域;
    一电化学系统层,其设置于该封围区域内,该电化学系统层包括一第一活性材料层、一第二活性材料层与设置于该第一活性材料层与该第二活性材料层之间的隔离层,该第一活性材料层与该第一集电层接触,该第二活性材料层与该第二集电层接触;以及
    至少一绝缘层,其设置于该第一集电层与/或该第二集电层的周缘;
    该胶框包覆该绝缘层。
  2. 如权利要求1所述的电池结构,其特征在于,该胶框包括一第一胶体层与一第二胶体层,该第一胶体层与该第一集电层黏接,该第二胶体层与该第二集电层黏接,该第一胶体层与/或该第二胶体层包覆该绝缘层。
  3. 如权利要求2所述的电池结构,其特征在于,该胶框还包括一第三胶体层,该第三胶体层夹设于该第一胶体层与该第二胶体层之间。
  4. 如权利要求3所述的电池结构,其特征在于,该第一胶体层与该第二胶体层相较于该第三胶体层的材质不同。
  5. 如权利要求3所述的电池结构,其特征在于,该第一胶体层、该第二胶体层与该第三胶体层中的至少其中一个包覆该绝缘层。
  6. 如权利要求1所述的电池结构,其特征在于,该电化学系统层在正投影方向上位于该第一集电层与该第二集电层之内。
  7. 如权利要求6所述的电池结构,其特征在于,该第一活性材料层的正投影面积小于该第一集电层的正投影面积。
  8. 如权利要求6所述的电池结构,其特征在于,该第二活性材料层的正投影面积小于该第二集电层的正投影面积。
  9. 如权利要求1所述的电池结构,其特征在于,该周缘包括一侧表面及/或自该侧表面向上方及/或下方延伸的表面。
  10. 如权利要求1所述的电池结构,其特征在于,该电池结构为可挠电池或软包电池。
  11. 如权利要求1所述的电池结构,其特征在于,该第一集电层与/或该第二集电层的外表面设有一保护层。
  12. 一种电池结构,其特征在于,包括:
    一第一集电层;
    一第二集电层;
    一胶框,其夹设于该第一集电层与该第二集电层间,以形成一封围区域,该胶框包括一第一胶体层与一第二胶体层,该第一胶体层与该第一集电层黏接,该第二胶体层与该第二集电层黏接;
    一电化学系统层,其设置于该封围区域内,该电化学系统层包括一第一活性材料层、一第二活性材料层与设置于该第一活性材料层与该第二活性材料层之间的隔离层,该第一活性材料层与该第一集电层接触,该第二活性材料层与该第二集电层接触;以及
    至少一绝缘层,其设置于该第一集电层与/或该第二集电层的周缘。
  13. 如权利要求12所述的电池结构,其特征在于,该第一胶体层与/或该第二胶体层包覆该绝缘层。
  14. 如权利要求12所述的电池结构,其特征在于,该胶框还包括一第三胶体层,该第三胶体层夹设于该第一胶体层与该第二胶体层之间。
  15. 如权利要求14所述的电池结构,其特征在于,该第一胶体层与该第二胶体层相较于该第三胶体层的材质不同。
  16. 如权利要求14所述的电池结构,其特征在于,该第一胶体层、该第二胶体层与该第三胶体层中的至少其中一个包覆该绝缘层。
  17. 如权利要求12所述的电池结构,其特征在于,该电化学系统层在正投影方向上位于该第一集电层与该第二集电层之内。
  18. 如权利要求17所述的电池结构,其特征在于,该第一活性材料层的正投影面积小于该第一集电层的正投影面积。
  19. 如权利要求17所述的电池结构,其特征在于,该第二活性材料层的正投影面积小于该第二集电层的正投影面积。
  20. 如权利要求12所述的电池结构,其特征在于,该周缘包括一侧表面及/或自该侧表面向上方及/或下方延伸的表面。
  21. 如权利要求12所述的电池结构,其特征在于,该电池结构为可挠电池或软包电池。
  22. 如权利要求12所述的电池结构,其特征在于,该第一集电层与/或该第二集电层的外表面设有一保护层。
  23. 一种电池结构,其特征在于,包括:
    一第一集电层;
    一第二集电层;
    一胶框,其夹设于该第一集电层与该第二集电层间,以形成一封围区域;以及
    一电化学系统层,其设置于该封围区域内,该电化学系统层包括一第一活性材料层、一第二 活性材料层与设置于该第一活性材料层与该第二活性材料层间的一隔离层,该第一活性材料与第一集电层接触,该第二活性材料层与该第二集电层接触;
    该胶框的外侧壁表面设置有一绝缘层,该绝缘层延伸至第一集电层与/或该第二集电层的周缘。
  24. 如权利要求23所述的电池结构,其特征在于,该电化学系统层在正投影方向上位于该第一集电层与该第二集电层之内。
  25. 如权利要求24所述的电池结构,其特征在于,该第一活性材料层的正投影面积小于该第一集电层的正投影面积。
  26. 如权利要求24所述的电池结构,其特征在于,该第二活性材料层的正投影面积小于该第二集电层的正投影面积。
  27. 如权利要求23所述的电池结构,其特征在于,该周缘包括一侧表面及/或自该侧表面向上方及/或下方延伸的表面。
  28. 如权利要求23所述的电池结构,其特征在于,该胶框包括一第一胶体层与一第二胶体层,该第一胶体层与该第一集电层黏接,该第二胶体层与该第二集电层黏接。
  29. 如权利要求28所述的电池结构,其特征在于,还包括一第三胶体层,该第三胶体层该第三胶体层夹设于该第一胶体层与该第二胶体层之间。
  30. 如权利要求23所述的电池结构,其特征在于,该第一胶体层与该第二胶体层相较于该第三胶体层的材质不同。
  31. 如权利要求23所述的电池结构,其特征在于,该电池结构为可挠电池或软包电池。
  32. 如权利要求23所述的电池结构,其特征在于,该第一集电层与/或该第二集电层的外表面设有一保护层。
PCT/CN2018/088058 2017-05-23 2018-05-23 电池结构 WO2018214916A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2018272338A AU2018272338A1 (en) 2017-05-23 2018-05-23 Battery structure
JP2020600040U JP3226764U (ja) 2017-05-23 2018-05-23 電池構造体
DE212018000209.6U DE212018000209U1 (de) 2017-05-23 2018-05-23 Batteriestruktur
AU2020100217A AU2020100217A4 (en) 2017-05-23 2020-02-14 Battery structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710367529.0 2017-05-23
CN201710367529.0A CN108933226B (zh) 2017-05-23 2017-05-23 可挠曲式电池结构

Publications (1)

Publication Number Publication Date
WO2018214916A1 true WO2018214916A1 (zh) 2018-11-29

Family

ID=64396238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088058 WO2018214916A1 (zh) 2017-05-23 2018-05-23 电池结构

Country Status (5)

Country Link
JP (1) JP3226764U (zh)
CN (1) CN108933226B (zh)
AU (2) AU2018272338A1 (zh)
DE (1) DE212018000209U1 (zh)
WO (1) WO2018214916A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111941943A (zh) * 2019-05-15 2020-11-17 辉能科技股份有限公司 化学系统的封装结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103443994A (zh) * 2011-03-17 2013-12-11 丰田自动车株式会社 固体电池和固体电池的制造方法
CN103548196A (zh) * 2011-05-27 2014-01-29 丰田自动车株式会社 双极全固体电池
WO2016208271A1 (ja) * 2015-06-23 2016-12-29 日立造船株式会社 全固体二次電池およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103443994A (zh) * 2011-03-17 2013-12-11 丰田自动车株式会社 固体电池和固体电池的制造方法
CN103548196A (zh) * 2011-05-27 2014-01-29 丰田自动车株式会社 双极全固体电池
WO2016208271A1 (ja) * 2015-06-23 2016-12-29 日立造船株式会社 全固体二次電池およびその製造方法

Also Published As

Publication number Publication date
CN108933226B (zh) 2020-06-16
AU2020100217A4 (en) 2020-03-19
JP3226764U (ja) 2020-07-16
AU2018272338A1 (en) 2020-01-16
CN108933226A (zh) 2018-12-04
DE212018000209U1 (de) 2019-12-09

Similar Documents

Publication Publication Date Title
US10831298B2 (en) Touch display module, display device and transparent optical adhesive layer structure
JP2021192117A (ja) 表示装置
WO2013056629A1 (zh) 封装结构、方法、及电子设备
JP2010206158A (ja) デバイス
WO2018214916A1 (zh) 电池结构
US11145923B2 (en) Battery structure
CN112534606A (zh) 电极组件和电池
WO2018214919A1 (zh) 电池结构
TWI643386B (zh) 電池結構
EP3309857B1 (en) Battery structure
JP2010074042A (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
TWI611624B (zh) 電池結構
WO2021109670A1 (zh) 封装结构及应用所述封装结构的电芯
EP3686709A1 (en) Structural assembly, electronic device, and method for assembling fingerprint module
KR20150031399A (ko) 지지 기판을 이용한 플렉서블 소자 패키징 방법 및 이에 의하여 제조된 플렉서블 소자
CN107946635B (zh) 具有避免外部短路的电池结构
TWI643393B (zh) 電池結構
CN107946650B (zh) 电池结构
US11264579B2 (en) Flexible display panel and preparation method thereof
TWI612710B (zh) 電池結構
JP3226660U6 (ja) 電池構造
US20240153708A1 (en) Wound capacitor package structure
WO2024124577A1 (zh) 一种显示基板、显示面板及显示装置
KR101306414B1 (ko) 박형 텔레비전 백 플레이트 제조방법과 이것이 사용된 박형 텔레비전
US20160343895A1 (en) Solar cell module and solar cell module manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806676

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020600040

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018272338

Country of ref document: AU

Date of ref document: 20180523

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.02.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18806676

Country of ref document: EP

Kind code of ref document: A1