WO2018214554A1 - 天线 - Google Patents

天线 Download PDF

Info

Publication number
WO2018214554A1
WO2018214554A1 PCT/CN2018/072959 CN2018072959W WO2018214554A1 WO 2018214554 A1 WO2018214554 A1 WO 2018214554A1 CN 2018072959 W CN2018072959 W CN 2018072959W WO 2018214554 A1 WO2018214554 A1 WO 2018214554A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
microstrip
belt
band
radiating
Prior art date
Application number
PCT/CN2018/072959
Other languages
English (en)
French (fr)
Inventor
李翰钊
Original Assignee
谢广鹏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 谢广鹏 filed Critical 谢广鹏
Publication of WO2018214554A1 publication Critical patent/WO2018214554A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path

Definitions

  • the present invention relates to an antenna.
  • An antenna is a device that converts a high-frequency current into a radio wave and emits it into a space, while collecting radio waves and generating a high-frequency current.
  • the antenna can be regarded as a tuned circuit composed of a capacitor and an inductor; at some frequency points, the capacitive and inductive properties of the tuned circuit cancel each other out, and the circuit exhibits pure resistivity, which is called resonance, and the resonance phenomenon corresponds to
  • the working frequency is the resonant frequency point, and the energy at the antenna resonant frequency point has the strongest radiation characteristics.
  • An antenna structure having a resonance characteristic is referred to as an antenna element, and an antenna structure in which a high-frequency current is directly excited is referred to as an active oscillator, and vice versa as a passive oscillator; in the existing oscillator, the antenna is subjected to an actual use
  • the input impedance of the antenna needs to be adjusted.
  • the adjusted vibrator and the ordinary vibrator still cannot meet the requirements of the current communication standard.
  • the communication standard is getting higher and higher.
  • the requirements of the vibrator are also getting higher and higher.
  • the gain, directionality and front-to-front ratio of the current vibrator need to be broken.
  • An antenna includes a reflector, and a plurality of matrix-arranged microstrip oscillators are disposed on the reflector, the microstrip oscillator includes a dielectric plate, and the first a microstrip radiation unit and a second microstrip radiation unit; the first microstrip radiation unit and the second microstrip radiation unit are identical in shape and symmetrically disposed on the front side of the dielectric plate; the first microstrip radiation unit and the second microstrip radiation unit are both
  • the method includes: two symmetrical radiation bands with the same shape and the same shape; each conjugate radiation band includes a trapezoidal scattering band, and the short bottom edge of the scattering band extends upwardly with a rectangular first radiation band, a scattering band The left and right oblique sides respectively extend a rectangular second radiation band and a third radiation band along the vertical corresponding oblique direction;
  • the first coupling belt has a circular arc shape, and the first coupling belt
  • the notch also extends outwardly with three finger spaces, the middle finger hole length is greater than the two sides of the allegation, the length of the accusations on both sides is the same.
  • the number of circular spaces on the scattering band is eight, and two rows are upper and lower, four in each row.
  • two semi-circular parasitic oscillator arms are respectively disposed on the two long sides of the front side of the dielectric plate.
  • first radiation strip, the second radiation strip, and the third radiation strip are the same size.
  • the antenna has a good standing wave ratio in the frequency range of 2 GHz to 20 GHz, and realizes ultra-wideband performance of the antenna.
  • FIG. 2 is a structural view of a first microstrip radiation unit
  • FIG. 3 is a plan view of a microstrip vibrator of the present invention.
  • FIG. 4 is a bottom view of the microstrip vibrator of the present invention.
  • FIG. 5 is a VSWR test chart in the frequency band of the microstrip oscillator of the present invention.
  • FIG. 6 is an in-band gain test diagram of a microstrip oscillator
  • FIGS. 1 to 6 illustrate:
  • an antenna according to this embodiment includes a reflector a1, and a plurality of matrix-arranged microstrip oscillators are disposed on the reflector, and the microstrip oscillator includes a medium.
  • first microstrip radiation unit and a second microstrip radiation unit are identical in shape and symmetrically disposed on the front side of the dielectric plate 1; the first microstrip radiation unit and the first
  • the two microstrip radiation units each include: two coupled radiation strips that are vertically symmetric and have the same shape; each of the coupled radiation strips includes a trapezoidal scattering strip 2, and the short bottom edge of the scattering strip 2 extends upwardly with a rectangle a first radiating strip 31, the left and right oblique sides of the scattering strip 2 respectively extending a rectangular second radiating strip 32 and a third radiating strip 33 in a direction corresponding to a vertical corresponding oblique direction; further comprising a first coupling having a circular arc shape
  • the belt 41, the first coupling belt 41 passes through the first radiation belt 31, and the two ends are respectively connected with the second radiation belt 32 and the third radiation belt 33; and further includes a circular arc shape and a radius of the first coupling
  • a triangular folding arm 51 is disposed on the end, and a triangular recess 52 is disposed in the triangular folding arm 51; the second radiation of each of the upper and lower combined radiating bands of the first microstrip radiating unit and the second microstrip radiating unit
  • a diamond-shaped auxiliary arm 6 is disposed between the belts 32.
  • the two sides of the diamond-shaped auxiliary arm 6 are respectively connected with the two second radiation belts 32 through the first connecting arm 21; the diamond-shaped auxiliary arm 6 is provided with the first a notch 61 having the same direction of the radiation band 31; in the first microstrip radiation unit and the second microstrip radiation unit, A feeding strip 24 comprising a parallelogram, the third radiating strip 33 of the feeding strip 24 parallel to its long side is connected by the second connecting arm 22; and further comprising two circular dielectric discs 12 disposed on the back of the dielectric panel 1.
  • the diameter of each of the dielectric disks 12 is the same as the outer diameter of the first coupling strip 41.
  • Each of the dielectric disks 12 is provided with a plurality of decoupling grid holes 13 arranged equidistantly.
  • a plurality of round spaces 23, and round spaces 23 are arranged in a matrix.
  • the designed communication antenna is designed and modified by no less than 1000 adjustments.
  • the specific test results are as follows: The simulation of the local oscillator is basically consistent with the physical test. Specifically, the standing wave diagram of the antenna is shown in FIG. 5 . . It can be seen from Fig. 5 that the antenna has a good standing wave ratio in the frequency range of 2 GHz to 20 GHz, and realizes the ultra-wideband performance of the antenna. It can be seen that the standing wave ratio is about 1.35 on average, standing wave Very good performance. The antenna has good over-width performance to meet the requirements of the antenna; meanwhile, the antenna also has good radiation performance.
  • the gain average gain in the band is 8.5dBi, and there is a high roll-off at the passband edge, and the out-of-band rejection is over 20dBi in a wide stopband, in the range of 2 ⁇ 20GHz. It has better filtering effect, so it can be obtained with strong anti-electromagnetic field capability; the in-band efficiency of the embodiment of the invention is as high as 95%.
  • the above-mentioned antenna is a non-size-required antenna, and the above experimental results can be achieved as long as the above requirements are met in the manner of the hole and the hole provided in the bending direction.
  • the size of the antenna can be optimized as follows: With reference to Figure 2, the dielectric plate 1 is not sized, the thickness of the dielectric plate 1 is maintained above 3.5 mm; the scattering band 2 is an isosceles trapezoid, the scattering band 2
  • the long base and the short bottom are: 34mm and 24mm, respectively, and the two oblique sides are: 10mm; the first radiation belt 31 to the third radiation belt 33 are the same size, their bandwidth is 10mm, and the length is: 25mm;
  • the linear widths of a coupling strip 41 and the second coupling strip 42 are: 3 mm; the inner diameters of the first coupling strip 41 and the second coupling strip 42 are respectively: 40 mm and 30 mm; the triangular folding arms 51 are equilateral triangles, and the sides are long.
  • the triangle vacancy 52 is also an equilateral triangle, and coincides with the center of the triangular folding arm 51, and the three sides are arranged in parallel.
  • the side length of the triangular vacancy 52 is: 7 mm; the side length of the diamond auxiliary arm 6 is 13.6 mm;
  • the connection length and line width of the connection of the connecting arm 21 and the second connecting arm 22 are not required.
  • the line width of the notch 61 is: 3 mm, the distance between the arc centers of the two ends is 8 mm, and the radius of the arc is lmm.
  • the long side of the feeding strip 24 has a short side of: 25 mm, 8 mm; the width and height of the decoupling grid hole 13 are: 1 mm, 30 mm adjacent decoupling grid holes 13 distance: 5 mm.
  • the radius of the circle 23 is lmm.
  • the radius of the semicircular parasitic arm 14 is 8 mm.
  • the notch 61 further extends outwardly with three finger spaces 62, and the length of the finger holes in the middle is greater than two.
  • the allegations on the side, the length of the charges on both sides are the same. Increase the gain and effectively reduce the standing wave ratio.
  • the number of decoupling grid holes 13 on each of the dielectric disks 12 is eight. Can effectively improve the isolation.
  • the number of the circular spaces 23 on the scattering strip 2 is eight, and two rows are upper and lower, four in each row.
  • two semicircular parasitic oscillator arms 14 are respectively disposed on the two long sides of the front side of the dielectric plate 1. Can increase the gain by about 5%.
  • the first radiation strip 31, the second radiation strip 32, and the third radiation strip 33 are the same size.

Landscapes

  • Waveguide Aerials (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本发明公开了一种天线,包括有反射板,反射板上设有多个矩阵排列的微带振子,所述微带振子包括有介质板、第一微带辐射单元以及第二微带辐射单元;第一微带辐射单元和第二微带辐射单元形状相同且左右对称设置在介质板正面;第一微带辐射单元和第二微带辐射单元均包括有:两个上下对称、且形状相同的开合辐射带;每个开合辐射带包括有一个梯形的散射带,散射带的短底边向上延伸出有矩形的第一辐射带,散射带的左右两个斜边分别沿垂直对应斜边方向延伸出有矩形的第二辐射带和第三辐射带;该天线在2GHz 至20GHz 频率范围内都有良好的驻波比,实现了天线的超宽带性能。

Description

发明名称:天线
技术领域
[0001] 本发明涉及一种天线。
背景技术
[0002] 天线是一种把高频电流转化成无线电波发射到空间, 同吋可以收集空间无线电 波并产生高频电流的装置。 天线可看作由电容和电感组成的调谐电路; 该调谐 电路在某些频率点, 其容性和感性将相互抵消, 电路表现出纯阻性, 该现象称 之为谐振, 而谐振现象对应的工作频点即为谐振频率点, 处于天线谐振频率点 的能量, 其辐射特性最强。 并将具有谐振特性的天线结构称作天线振子, 并将 高频电流直接激励的天线结构称作有源振子, 反之称作无源振子; 现有振子中 , 在根据实际使用的需要对天线进行设计吋, 为了使得天线的谐振频率点满足 设定要求, 需要对天线的输入阻抗进行调整, 通过调整后的振子以及普通振子 依然不能满足目前通信标准的要求, 目前通信标准越来越高, 对振子的要求也 越来越高, 目前的振子的增益、 方向性、 前后比均需要获得突破。
技术问题
问题的解决方案
技术解决方案
[0003] 本发明的目的在于克服以上所述的缺点, 提供一种天线。
[0004] 为实现上述目的, 本发明的具体方案如下: 一种天线, 包括有反射板, 反射板 上设有多个矩阵排列的微带振子, 所述微带振子包括有介质板、 第一微带辐射 单元以及第二微带辐射单元; 第一微带辐射单元和第二微带辐射单元形状相同 且左右对称设置在介质板正面; 第一微带辐射单元和第二微带辐射单元均包括 有: 两个上下对称、 且形状相同的幵合辐射带; 每个幵合辐射带包括有一个梯 形的散射带, 散射带的短底边向上延伸出有矩形的第一辐射带, 散射带的左右 两个斜边分别沿垂直对应斜边方向延伸出有矩形的第二辐射带和第三辐射带; 还包括有圆弧形的第一耦合带, 第一耦合带, 其中间穿过第一辐射带, 两端分 别与第二辐射带和第三辐射带连接; 还包括有圆弧形、 比第一耦合带半径小的 第二耦合带, 第二耦合带, 其中间穿过第一辐射带, 两端分别与第二辐射带和 第三辐射带连接; 所述第一辐射带、 第二辐射带和第三辐射带, 三者自由端均 延伸出有三角形收合臂, 三角形收合臂内设有三角形空缺; 第一微带辐射单元 和第二微带辐射单元中的上下两个幵合辐射带各自的第二辐射带之间设有菱形 辅助臂, 菱形辅助臂的两个边分别与两个第二辐射带之间通过第一连接臂连接 ; 所述菱形辅助臂内设有与第一辐射带方向相同的槽口; 第一微带辐射单元和 第二微带辐射单元中, 均包含一个平行四边形的馈电带, 馈电带与其长边平行 的第三辐射带通过第二连接臂相连; 还包括有设于介质板背面的两个圆形介电 盘, 每个介电盘的直径与第一耦合带的的外径相同, 每个介电盘上设有多个等 距排列设置的去耦栅格孔; 散射带上设有多个圆空, 圆空们以矩阵式排列。
[0005] 其中, 所述槽口还向外延伸出有三个指空, 中间的指孔长度大于两边的指控, 两边的指控的长度相同。
[0006] 其中, 每个介电盘上的去耦栅格孔的数量为 8个。
[0007] 其中, 散射带上的圆空数量为 8个, 且上下两行, 每行四个。
[0008] 其中, 所述介质板正面两个长边上还分别设有两个半圆形寄生振子臂。
[0009] 其中, 所述第一辐射带、 第二辐射带和第三辐射带大小相同。
发明的有益效果
有益效果
[0010] 该天线在 2GHz至 20GHz频率范围内都有良好的驻波比, 实现了天线的超宽带 性能。
对附图的简要说明
附图说明
[0011] 图 1是本发明的俯视图;
[0012] 图 2是第一微带辐射单元的结构图;
[0013] 图 3是本发明的微带振子的俯视图;
[0014] 图 4是本发明的微带振子的仰视图; [0015] 图 5是本发明的微带振子的频带内的驻波比测试图;
[0016] 图 6是微带振子的频带内增益测试图;
[0017] 图 1至图 6中的附图标记说明:
[0018] al-反射板;
[0019] 1-介质板; 12-介电盘; 13-去耦栅格孔; 14-寄生振子臂;
[0020] 2-散射带; 21-第一连接臂; 22-第二连接臂; 23-圆空; 24-馈电带; 31-第一辐 射带; 32-第二辐射带; 33-第三辐射带; 41-第一耦合带; 42-第二耦合带; 51-三 角形收合臂; 52-三角形空缺; 6-菱形辅助臂; 61-槽口; 62-指空。
本发明的实施方式
[0021] 下面结合附图和具体实施例对本发明作进一步详细的说明, 并不是把本发明的 实施范围局限于此。
[0022] 如图 1至图 6所示, 本实施例所述的一种天线, 包括有反射板 al, 反射板上设有 多个矩阵排列的微带振子, 所述微带振子包括有介质板 1、 第一微带辐射单元以 及第二微带辐射单元; 第一微带辐射单元和第二微带辐射单元形状相同且左右 对称设置在介质板 1正面; 第一微带辐射单元和第二微带辐射单元均包括有: 两 个上下对称、 且形状相同的幵合辐射带; 每个幵合辐射带包括有一个梯形的散 射带 2, 散射带 2的短底边向上延伸出有矩形的第一辐射带 31, 散射带 2的左右两 个斜边分别沿垂直对应斜边方向延伸出有矩形的第二辐射带 32和第三辐射带 33 ; 还包括有圆弧形的第一耦合带 41, 第一耦合带 41, 其中间穿过第一辐射带 31 , 两端分别与第二辐射带 32和第三辐射带 33连接; 还包括有圆弧形、 比第一耦 合带 41半径小的第二耦合带 42, 第二耦合带 42, 其中间穿过第一辐射带 31, 两 端分别与第二辐射带 32和第三辐射带 33连接; 所述第一辐射带 31、 第二辐射带 3 2和第三辐射带 33, 三者自由端均延伸出有三角形收合臂 51, 三角形收合臂 51内 设有三角形空缺 52; 第一微带辐射单元和第二微带辐射单元中的上下两个幵合 辐射带各自的第二辐射带 32之间设有菱形辅助臂 6, 菱形辅助臂 6的两个边分别 与两个第二辐射带 32之间通过第一连接臂 21连接; 所述菱形辅助臂 6内设有与第 一辐射带 31方向相同的槽口 61 ; 第一微带辐射单元和第二微带辐射单元中, 均 包含一个平行四边形的馈电带 24, 馈电带 24与其长边平行的第三辐射带 33通过 第二连接臂 22相连; 还包括有设于介质板 1背面的两个圆形介电盘 12, 每个介电 盘 12的直径与第一耦合带 41的的外径相同, 每个介电盘 12上设有多个等距排列 设置的去耦栅格孔 13 ; 散射带 2上设有多个圆空 23, 圆空 23们以矩阵式排列。 满 足远距离通信的辐射要求,
[0023] 设计的通信天线经过不下 1000次的调整和修改设计出该天线, 具体的测试结果 如下: 本振子的仿真与实体测试基本保持一致, 具体, 得到天线的驻波图如图 5 所示。 由图 5能够看出, 经测定, 该天线在 2GHz至 20GHz频率范围内都有良好 的驻波比, 实现了天线的超宽带性能, 可以看到, 其驻波比平均为 1.35左右, 驻 波性能非常优异。 使天线具有良好超宽度性能, 满足对天线的要求; 同吋, 该 天线还具有良好的辐射性能。 不仅如此, 如图 6所示, 其在频带内增益平均增益 8.5dBi,并且在通带边沿有很高的滚降度, 在很宽的阻带内带外抑制超过 20dBi, 2 〜20GHz范围内有较好的滤波效果, 因此可以得到其具备较强的抗电磁场能力; 本发明实施例的带内效率高达 95%。 上述天线为非尺寸要求天线, 只要在弯折 方向上、 设置的孔、 洞的方式上达到上述要求, 均可达到上述实验结果。 如需 获得上述稳定性能, 本天线的尺寸具体可以优化为: 以图 2为参考, 介质板 1大 小不计, 介质板 1厚度保持在 3.5mm以上; 散射带 2为等腰梯形, 散射带 2的长底 边和短底边分别为: 34mm和 24mm, 两个斜边为: 10mm; 第一辐射带 31至第三 辐射带 33大小相同, 他们的带宽均为 10mm, 长度均为: 25mm; 第一耦合带 41 和第二耦合带 42线宽均为: 3mm; 第一耦合带 41和第二耦合带 42的内径的半径 分别为: 40mm以及 30mm; 三角形收合臂 51为正三角形, 边长为: 10mm; 三角 形空缺 52也为正三角形, 且与三角形收合臂 51中心重合, 三边平行设置, 三角 形空缺 52的边长为: 7mm; 菱形辅助臂 6的边长为 13.6mm; 第一连接臂 21连接和 第二连接臂 22连接长度和线宽不做要求。 槽口 61的线宽为: 3mm, 两端圆弧中 心距离为 8mm, 圆弧半径为 lmm。 馈电带 24的长边为短边为: 25mm, 8mm; 去耦栅格孔 13的宽和高分别为: 1mm, 30mm相邻去耦栅格孔 13距离为 :5mm。 圆 空 23的半径为 lmm。 半圆形寄生振子臂 14的半径为 8mm。
[0024] 本实施例中, 所述槽口 61还向外延伸出有三个指空 62, 中间的指孔长度大于两 边的指控, 两边的指控的长度相同。 提高增益, 有效降低驻波比。
[0025] 本实施例中, 每个介电盘 12上的去耦栅格孔 13的数量为 8个。 能够有效的提高 隔离度。 本实施例中, 散射带 2上的圆空 23数量为 8个, 且上下两行, 每行四个
[0026] 本实施例中, 所述介质板 1正面两个长边上还分别设有两个半圆形寄生振子臂 1 4。 能提高增益 5%左右。 本实施例中, 所述第一辐射带 31、 第二辐射带 32和第三 辐射带 33大小相同。
[0027] 以上所述仅是本发明的一个较佳实施例, 故凡依本发明专利申请范围所述的构 造、 特征及原理所做的等效变化或修饰, 包含在本发明专利申请的保护范围内

Claims

权利要求书
[权利要求 1] 一种天线, 其特征在于: 包括有反射板 (al) , 反射板上设有多个矩 阵排列的微带振子, 所述微带振子包括有介质板 (1) 、 第一微带辐 射单元以及第二微带辐射单元; 第一微带辐射单元和第二微带辐射单 元形状相同且左右对称设置在介质板 (1) 正面; 第一微带辐射单元 和第二微带辐射单元均包括有: 两个上下对称、 且形状相同的幵合辐 射带; 每个幵合辐射带包括有一个梯形的散射带 (2) , 散射带 (2) 的短底边向上延伸出有矩形的第一辐射带 (31) , 散射带 (2) 的左 右两个斜边分别沿垂直对应斜边方向延伸出有矩形的第二辐射带 (32 ) 和第三辐射带 (33) ; 还包括有圆弧形的第一耦合带 (41) , 第一 耦合带 (41) , 其中间穿过第一辐射带 (31) , 两端分别与第二辐射 带 (32) 和第三辐射带 (33) 连接; 还包括有圆弧形、 比第一耦合带 (41) 半径小的第二耦合带 (42) , 第二耦合带 (42) , 其中间穿过 第一辐射带 (31) , 两端分别与第二辐射带 (32) 和第三辐射带 (33 ) 连接; 所述第一辐射带 (31) 、 第二辐射带 (32) 和第三辐射带 ( 33) , 三者自由端均延伸出有三角形收合臂 (51) , 三角形收合臂 ( 51) 内设有三角形空缺 (52) ; 第一微带辐射单元和第二微带辐射单 元中的上下两个幵合辐射带各自的第二辐射带 (32) 之间设有菱形辅 助臂 (6) , 菱形辅助臂 (6) 的两个边分别与两个第二辐射带 (32) 之间通过第一连接臂 (21) 连接; 所述菱形辅助臂 (6) 内设有与第 一辐射带 (31) 方向相同的槽口 (61) ; 第一微带辐射单元和第二微 带辐射单元中, 均包含一个平行四边形的馈电带 (24) , 馈电带 (24 ) 与其长边平行的第三辐射带 (33) 通过第二连接臂 (22) 相连; 还 包括有设于介质板 (1) 背面的两个圆形介电盘 (12) , 每个介电盘 (12) 的直径与第一耦合带 (41) 的的外径相同, 每个介电盘 (12) 上设有多个等距排列设置的去耦栅格孔 (13) ; 散射带 (2) 上设有 多个圆空 (23) , 圆空 (23) 们以矩阵式排列。
[权利要求 2] 根据权利要求 1所述的一种天线, 其特征在于: 所述槽口 (61) 还向 外延伸出有三个指空 (62) , 中间的指孔长度大于两边的指控, 两边 的指控的长度相同。
[权利要求 3] 根据权利要求 1所述的一种天线, 其特征在于: 每个介电盘 (12) 上 的去耦栅格孔 (13) 的数量为 8个。
[权利要求 4] 根据权利要求 1所述的一种天线, 其特征在于: 散射带 (2) 上的圆空
(23) 数量为 8个, 且上下两行, 每行四个。
[权利要求 5] 根据权利要求 1所述的一种天线, 其特征在于: 所述介质板 (1) 正面 两个长边上还分别设有两个半圆形寄生振子臂 (14) 。
[权利要求 6] 根据权利要求 1所述的一种天线, 其特征在于: 所述第一辐射带 (31
) 、 第二辐射带 (32) 和第三辐射带 (33) 大小相同。
PCT/CN2018/072959 2017-05-25 2018-01-17 天线 WO2018214554A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2017103766567 2017-05-25
CN201710376656.7A CN107134646A (zh) 2017-05-25 2017-05-25 天线

Publications (1)

Publication Number Publication Date
WO2018214554A1 true WO2018214554A1 (zh) 2018-11-29

Family

ID=59733316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072959 WO2018214554A1 (zh) 2017-05-25 2018-01-17 天线

Country Status (2)

Country Link
CN (1) CN107134646A (zh)
WO (1) WO2018214554A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107134646A (zh) * 2017-05-25 2017-09-05 东莞质研工业设计服务有限公司 天线
WO2020251064A1 (ko) * 2019-06-10 2020-12-17 주식회사 에이티코디 패치 안테나 및 이를 포함하는 배열 안테나

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130187822A1 (en) * 2010-09-25 2013-07-25 Tongyu Communication Inc. Wideband dual-polarized radiation element and antenna of same
CN204558646U (zh) * 2015-03-24 2015-08-12 付晓东 设有微带隔离直线的天线
CN106684534A (zh) * 2017-02-28 2017-05-17 吴少洁 一种单极化振子
CN107134646A (zh) * 2017-05-25 2017-09-05 东莞质研工业设计服务有限公司 天线
CN107196046A (zh) * 2017-05-25 2017-09-22 东莞质研工业设计服务有限公司 一种微带振子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105652167A (zh) * 2016-03-22 2016-06-08 黄旭 可通信变电站局部放电信号检测系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130187822A1 (en) * 2010-09-25 2013-07-25 Tongyu Communication Inc. Wideband dual-polarized radiation element and antenna of same
CN204558646U (zh) * 2015-03-24 2015-08-12 付晓东 设有微带隔离直线的天线
CN106684534A (zh) * 2017-02-28 2017-05-17 吴少洁 一种单极化振子
CN107134646A (zh) * 2017-05-25 2017-09-05 东莞质研工业设计服务有限公司 天线
CN107196046A (zh) * 2017-05-25 2017-09-22 东莞质研工业设计服务有限公司 一种微带振子

Also Published As

Publication number Publication date
CN107134646A (zh) 2017-09-05

Similar Documents

Publication Publication Date Title
WO2017035726A1 (zh) 一种用于多频天线双极化的天线振子
WO2018010450A1 (zh) 一种双层天线
CN108615976A (zh) 基于雷达罩的双通带/宽阻带可重构频率选择表面
CN106207425B (zh) 一种微带双层天线
JP2008271496A (ja) 多重共振広帯域アンテナ
WO2018010454A1 (zh) 一种设有 t 形寄生振子臂的双层天线
WO2018010613A1 (zh) 一种寄生双层天线
WO2018214554A1 (zh) 天线
WO2024125087A1 (zh) 低频滤波辐射单元及天线阵列
JP7090329B2 (ja) アンテナ装置
WO2018010453A1 (zh) 双层天线
CN113285226A (zh) 一种低频辐射单元及天线
US7633451B2 (en) Wideband antenna systems and methods
US9768505B2 (en) MIMO antenna with no phase change
WO2018010451A1 (zh) 带有隔离微带臂的双层天线
WO2012139370A1 (zh) 一种人造微结构及其应用的磁谐振超材料
CN217934192U (zh) 低频散射抑制辐射单元与多频共用天线
CN107196046A (zh) 一种微带振子
CN212033252U (zh) 宽带吸波超材料、天线罩及天线系统
CN203521620U (zh) 具有阻带特性的微带天线
RU189383U1 (ru) Многодиапазонная вибраторная коллинеарная антенна
WO2018076192A1 (zh) 一种天线和无线路由器
CN108649333A (zh) 天线
CN108598681A (zh) 一种设有寄生振子的微带振子
CN215497086U (zh) 一种低频辐射单元及天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18805456

Country of ref document: EP

Kind code of ref document: A1