WO2018214116A1 - 上行预编码方法、设备及系统 - Google Patents

上行预编码方法、设备及系统 Download PDF

Info

Publication number
WO2018214116A1
WO2018214116A1 PCT/CN2017/085981 CN2017085981W WO2018214116A1 WO 2018214116 A1 WO2018214116 A1 WO 2018214116A1 CN 2017085981 W CN2017085981 W CN 2017085981W WO 2018214116 A1 WO2018214116 A1 WO 2018214116A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs resource
precoding
uplink data
terminal device
srs
Prior art date
Application number
PCT/CN2017/085981
Other languages
English (en)
French (fr)
Inventor
陈文洪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201780090769.9A priority Critical patent/CN110622607B/zh
Priority to CN201911314055.9A priority patent/CN110868283B/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to KR1020197034974A priority patent/KR102305169B1/ko
Priority to PCT/CN2017/085981 priority patent/WO2018214116A1/zh
Priority to JP2019563761A priority patent/JP7142031B2/ja
Priority to CA3063782A priority patent/CA3063782C/en
Priority to ES17910662T priority patent/ES2879840T3/es
Priority to EP17910662.0A priority patent/EP3614773B1/en
Priority to EP21166011.3A priority patent/EP3866546A1/en
Priority to BR112019024251-1A priority patent/BR112019024251A2/pt
Priority to MX2019013992A priority patent/MX2019013992A/es
Priority to US16/616,377 priority patent/US11082180B2/en
Priority to RU2019141835A priority patent/RU2736872C1/ru
Priority to AU2017415185A priority patent/AU2017415185B2/en
Priority to TW107114991A priority patent/TWI771412B/zh
Publication of WO2018214116A1 publication Critical patent/WO2018214116A1/zh
Priority to IL270659A priority patent/IL270659B2/en
Priority to PH12019502570A priority patent/PH12019502570A1/en
Priority to ZA2019/08151A priority patent/ZA201908151B/en
Priority to US17/356,264 priority patent/US20210320770A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection

Definitions

  • the present invention relates to wireless network technologies, and in particular, to an uplink precoding method, device, and system.
  • the terminal device When transmitting the uplink data, the terminal device needs to perform precoding processing on the uplink data to obtain an uplink precoding gain.
  • the precoding process is generally divided into two parts: analog domain processing and digital domain processing.
  • the analog domain processing is for the analog signal, and the radio frequency signal is generally mapped to the physical antenna by beamforming.
  • the digital domain processing is for digital signals, generally performed at the baseband, precoding the digital signals with a precoding matrix, and mapping the data of the transport layer to the radio frequency port.
  • the terminal device sends SRS on multiple SRS (Sounding Reference Signal) resources, and the SRS on each SRS resource uses different beams, and the network side selects the best.
  • the SRS resource is used to obtain the channel state information (CSI), and the resource index is indicated to the terminal device by using an SRS resource indication (SRI), so that the terminal device uses the corresponding beam pair uplink data of the SRS resource.
  • SRI SRS resource indication
  • the network side indicates the RI (Rank indication) and the Precoding Matrix Indication (PMI) through the downlink control information (DCI, Downlink Control Information), and the terminal device determines the PMI from the codebook according to the RI and the PMI. Corresponding upstream precoding matrix.
  • the present invention provides an uplink precoding method, device, and system, which can reduce signaling overhead.
  • An uplink precoding method includes:
  • the terminal device transmits the SRS on the at least one SRS resource
  • the terminal device receives a DCI used by the network side to schedule uplink data transmission, where the DCI includes an RI and/or an SRI;
  • the terminal device performs precoding of the uplink data according to the precoding manner, and sends the precoded uplink data.
  • An uplink precoding method includes:
  • the network side device sends, to the terminal device, a DCI for scheduling uplink data transmission, where the DCI includes an RI and/or an SRI, so that the terminal device according to the at least one SRS resource and the RI and/or Determining, by the SRI, a precoding manner of the uplink data, and performing precoding of the uplink data according to the precoding manner;
  • the network side device receives the precoded uplink data sent by the terminal device.
  • a terminal device includes: an information processing unit, a precoding method determining unit, and an uplink data processing unit;
  • the information processing unit is configured to transmit an SRS on the at least one SRS resource, and receive a DCI used by the network side to schedule an uplink data transmission, where the DCI includes an RI and/or an SRI;
  • the precoding mode determining unit is configured to determine a precoding manner of the uplink data according to the RI and/or the SRI, and the at least one SRS resource;
  • the uplink data processing unit is configured to perform precoding of the uplink data according to the precoding manner, and send the precoded uplink data.
  • a network side device includes: a first processing unit and a second processing unit;
  • the first processing unit is configured to acquire an SRS transmitted by the terminal device on the at least one SRS resource, and send a DCI for scheduling uplink data transmission to the terminal device, where the DCI includes an RI and/or an SRI, so that the Determining, by the terminal device, a precoding manner of the uplink data according to the at least one SRS resource and the RI and/or the SRI, and performing precoding of the uplink data according to the precoding manner;
  • the second processing unit is configured to receive the pre-coded uplink data sent by the terminal device.
  • An uplink precoding system comprising: the terminal device as described above, and the network side device as described above.
  • the terminal device can be determined according to the RI and/or the SRI.
  • the precoding method of the uplink data is performed, and then the uplink data is precoded and transmitted, thereby reducing the signaling overhead in the DCI compared to the prior art.
  • FIG. 1 is a flowchart of an embodiment of an uplink precoding method according to the present invention.
  • FIG. 2 is a schematic structural diagram of a structure of an embodiment of a terminal device according to the present invention.
  • FIG. 3 is a schematic structural diagram of a structure of an embodiment of a network side device according to the present invention.
  • FIG. 1 is a flowchart of an embodiment of an uplink precoding method according to the present invention. As shown in FIG. 1, the following specific implementation manners are included.
  • the terminal device transmits the SRS on at least one SRS resource.
  • At least one SRS resource that is, the number of SRS resources may be one or greater than one.
  • Each SRS resource in the at least one SRS resource adopts a single antenna port.
  • each of the at least one SRS resource adopts N antenna ports.
  • At least one SRS resource is K SRS resources, and the kth SRS resource uses k antenna ports.
  • N is the number of ports for uplink data transmission, 1 ⁇ k ⁇ K, K ⁇ N.
  • one antenna port can be used for the first SRS resource, and two antenna ports can be used for the second SRS resource.
  • For the third SRS resource Three antenna ports can be used, and for the fourth SRS resource, four antenna ports can be used.
  • the terminal device may determine, according to downlink channel information obtained from the downlink signal, a beam used for transmitting the SRS. For example, the terminal device can determine the beam used for transmitting the SRS according to the receiving beam that receives the downlink signal.
  • the beam is a beam used for analog beamforming and is invisible to the network side.
  • the downlink signal can be indicated to the terminal device through the PMI indication field in the DCI.
  • the downlink signal may refer to a downlink reference signal or a downlink synchronization signal.
  • the terminal device receives a DCI used by the network side to schedule uplink data transmission, and the DCI includes an RI and/or an SRI.
  • the DCI does not contain information for indicating a precoding matrix for uplink data usage.
  • the information field indicated by the PMI may not be included in the DCI, or the information field indicated by the PMI is included in the DCI, but is not used to indicate the precoding matrix, but is used to indicate other information, such as an antenna port.
  • the DCI includes RI and/or SRI, that is, the DCI can include only RI or SRI, and can also include RI and SRI, and specifically what can be configured by the network side.
  • the terminal device determines a precoding manner of the uplink data according to the RI and/or the SRI and the at least one SRS resource.
  • the precoding method includes a beam used for analog domain beamforming and/or a precoding matrix used for digital domain precoding.
  • the terminal device can also combine analog beamforming and digital precoding to obtain a joint precoding matrix as a precoding method for uplink data.
  • the terminal device may determine the target SRS resource in the at least one SRS resource according to the RI and the SRI, and determine the precoding manner of the uplink data according to the precoding manner used by the target SRS resource.
  • the terminal device may first determine the number of target SRS resources according to the RI, and then The target SRS resource can be determined according to the number of target SRS resources and the SRI.
  • the correspondence between the SRI and the SRS resources may be as shown in Table 1, and the Rank value is equal to the number of the target SRS resources.
  • each SRS resource in at least one SRS resource uses a single antenna port.
  • Each target SRS resource corresponds to one uplink transmission layer.
  • the beam and the precoding matrix used by each target SRS resource can be used as a beam and a precoding matrix used in transmission layer transmission.
  • the terminal device may determine the number of transmission layers according to the RI, determine a precoding matrix of the uplink data according to the number of transmission layers and the uplink channel information, determine a target SRS resource in the at least one SRS resource according to the SRI, and determine the uplink data usage according to the beam used by the target SRS resource.
  • the beam is precoded according to the determined precoding matrix and beam to obtain uplink data.
  • the process of determining the beam and determining the precoding matrix has no fixed sequence.
  • the terminal device can obtain the uplink channel information according to the downlink channel information obtained based on the downlink signal.
  • the downlink signal can be indicated to the terminal device through the PMI indication field in the DCI.
  • the downlink signal may refer to a downlink reference signal or a downlink synchronization signal.
  • the precoding matrix of the uplink data may be determined by combining the number of transmission layers and the uplink channel information, for example, the uplink R correlation matrix or the first R of the covariance matrix in the uplink channel information may be used.
  • the feature vector is used as a precoding matrix for uplink data, and R is the number of transmission layers.
  • each of the at least one SRS resource uses N antenna ports, and N is the number of ports for uplink data transmission.
  • the number of the target SRS resources is usually one, and the SRI can carry the index of the target SRS resource.
  • the beam used by the target SRS resource can be determined as the beam used for the uplink data.
  • the precoding matrix of the uplink data is determined by the RI and the uplink channel information, and the beam used for the uplink data is determined by the SRI, thereby obtaining the precoding method of the uplink data.
  • the terminal device may determine the number of transmission layers according to the RI, determine a precoding matrix of the uplink data according to the number of transmission layers and the uplink channel information, and determine a beam used for the uplink data according to the beam used by the at least one SRS resource, according to the determined precoding matrix and The beam obtains a precoding method of the uplink data.
  • the DCI where the RI is located does not include the SRS resource indication information, specifically,
  • the SRI information field may not be included in the DCI, or the SRI information field may be included in the DCI, but is not used to indicate the SRS resource, but is used to indicate other information, such as an antenna port.
  • the terminal device can obtain the uplink channel information according to the downlink channel information obtained based on the downlink signal.
  • the downlink signal can be indicated to the terminal device through the PMI indication field in the DCI.
  • the downlink signal may refer to a downlink reference signal or a downlink synchronization signal.
  • the precoding matrix of the uplink data may be determined by combining the number of transmission layers and the uplink channel information, for example, the uplink R correlation matrix or the first R of the covariance matrix in the uplink channel information may be used.
  • the feature vector is used as a precoding matrix for uplink data, and R is the number of transmission layers.
  • each of the at least one SRS resource uses N antenna ports, and N is the number of ports for uplink data transmission.
  • At least one SRS is an SRS resource
  • a beam used for transmitting the SRS on the SRS resource may be determined according to downlink channel information obtained from a downlink signal, for example, a receiving beam that the terminal device may use according to receiving the downlink signal.
  • the transmit beam used to transmit the SRS is determined.
  • the beam used by the at least one SRS resource may be used as a beam used for the uplink data
  • the precoding matrix determined according to the RI and the uplink channel information may be used as a precoding matrix of the uplink data.
  • the terminal device may determine the target SRS resource in the at least one SRS resource according to the SRI, and determine a precoding manner of the uplink data according to a precoding manner used by the target SRS resource.
  • the DCI in which the SRI is located does not include the transmission layer number indication information, specifically,
  • the RI information field may not be included in the DCI, or the RI information field may be included in the DCI, but is not used to indicate the number of transmission layers, but is used to indicate other information, such as an antenna port.
  • the terminal device may determine the number of transmission layers according to the number of ports of the target SRS resource or the number of target SRS resources. If the SRS resource of each of the at least one SRS resource uses a single antenna port, the terminal device may determine the number of transmission layers according to the number of the target SRS resources, if at least one SRS resource is K SRS resources, and the kth The SRS resources adopt k antenna ports, and the terminal device can determine the number of transmission layers according to the number of ports of the target SRS resources.
  • each SRS resource in at least one SRS resource adopts a single antenna port
  • the SRI may indicate a target SRS resource from at least one SRS resource in a bitmap manner
  • the number of target SRS resources is a transmission layer number
  • each target SRS The resources respectively correspond to one uplink transport layer
  • the beam and precoding matrix used by each target SRS resource can be used as a beam and a precoding matrix used in one transport layer respectively.
  • At least one SRS resource is K SRS resources, and the kth SRS resource uses k antenna ports, N is the number of ports for uplink data transmission, 1 ⁇ k ⁇ K, K ⁇ N, and SRI can be from K
  • An SRS resource indicates an index of the SRS resource as the target SRS resource, and the number of the port of the target SRS resource is the number of the transmission layer.
  • the network side indicates the number of the transmission layer and the precoding mode in the process of indicating the SRS resource.
  • Each target SRS resource corresponds to one uplink transmission layer, and the terminal device uses the beam and precoding matrix used on the k ports of the target SRS resource as the beam and precoding matrix used in the k transmission layer transmission, respectively.
  • the SRI resource indication information is not included in the DCI where the RI is located.
  • the SRI information field may not be included in the DCI, or the SRI information field may be included in the DCI, but is not used to indicate the SRS resource, but is used to indicate Other information, such as antenna ports.
  • At least one SRS resource is K SRS resources, and the kth SRS resource uses k antenna ports, where N is the number of ports for uplink data transmission, 1 ⁇ k ⁇ K, K ⁇ N.
  • the number of target SRS resources is one, and the number of ports of the target SRS resource is the number of transmission layers.
  • the RI is used to indicate the number of transmission layers and the target SRS resources.
  • the kth SRS resource has k ports, RI. Indicates that the number of transmission layers is k, that is, the kth SRS resource is indicated as the target SRS resource, each target SRS resource corresponds to one uplink transmission layer, and the terminal device uses the beam and precoding used on the k ports of the target SRS resource.
  • the matrix is used as the beam and precoding matrix used in the transmission of the k transport layers, respectively.
  • the terminal device may determine the manner adopted according to the precoding method indication information acquired from the network side or the number of ports used by at least one SRS resource.
  • the network side may send precoding mode indication information by using high layer signaling or the like. Accordingly, the terminal device may determine the precoding mode of the uplink data according to the indicated manner.
  • the method may be determined according to the number of ports used by the at least one SRS resource.
  • each SRS resource in the at least one SRS resource uses a single antenna port, and the DCI includes the RI and the SRI, and the terminal device is used.
  • the first method can be used to determine the precoding method of the uplink data.
  • the terminal device performs precoding of the uplink data according to the determined precoding manner, and transmits the precoded uplink data.
  • the terminal device may perform precoding of the uplink data according to the prior art, and send the precoded uplink data.
  • the solution of the present invention is mainly described from the terminal device side.
  • the network side device may acquire the SRS transmitted by the terminal device on the at least one SRS resource, and The terminal device sends a DCI for scheduling uplink data transmission, where the DCI includes an RI and/or an SRI, so that the terminal device determines a precoding manner of the uplink data according to the at least one SRS resource and the RI and/or the SRI, and according to the determined precoding.
  • the method performs precoding of the uplink data, and correspondingly, the network side device receives the precoded uplink data sent by the terminal device.
  • the precoding method includes: a beam used for analog domain beamforming and/or a precoding matrix used for digital domain precoding.
  • the terminal device can also combine analog beamforming and digital precoding to obtain a joint precoding matrix as a precoding method for uplink data.
  • the DCI sent by the network side device does not include information for indicating the precoding matrix used for the uplink data, and the terminal device may determine the uplink data according to the RI and/or the SRI in the DCI, the at least one SRS resource, and the channel reciprocity. Precoding method.
  • Each SRS resource in the at least one SRS resource adopts a single antenna port.
  • each of the at least one SRS resource adopts N antenna ports.
  • At least one SRS resource is K SRS resources, and the kth SRS resource uses k antenna ports.
  • N is the number of ports for uplink data transmission, 1 ⁇ k ⁇ K, K ⁇ N.
  • the beam used for transmitting the SRS may be a downlink channel obtained by the terminal device according to the downlink signal. Information is determined.
  • FIG. 2 is a schematic structural diagram of a terminal device according to an embodiment of the present invention. As shown in FIG. 2, the information processing unit 201, the precoding method determining unit 202, and the uplink data processing unit 203 are included.
  • the information processing unit 201 is configured to transmit the SRS on the at least one SRS resource, and receive the DCI used by the network side to schedule the uplink data transmission, where the DCI includes the RI and/or the SRI.
  • the precoding mode determining unit 202 is configured to determine a precoding manner of the uplink data according to the RI and/or the SRI, and the at least one SRS resource.
  • the uplink data processing unit 203 is configured to perform precoding of the uplink data according to the precoding method, and send the precoded uplink data.
  • the precoding method includes: a beam used for analog domain beamforming and/or a precoding matrix used for digital domain precoding.
  • the terminal device can also combine analog beamforming and digital precoding to obtain a joint precoding matrix as a precoding method for uplink data.
  • the DCI does not include information for indicating the precoding matrix used for the uplink data.
  • the information field indicated by the PMI may not be included in the DCI, or the information field indicated by the PMI is included in the DCI, but is not used to indicate the precoding matrix. It is used to indicate other information, such as antenna ports.
  • the DCI includes RI and/or SRI, that is, the DCI can include only RI or SRI, and can also include RI and SRI, and specifically what can be configured by the network side.
  • Each SRS resource in the at least one SRS resource adopts a single antenna port.
  • each of the at least one SRS resource adopts N antenna ports.
  • At least one SRS resource is K SRS resources, and the kth SRS resource uses k antenna ports.
  • N is the number of ports for uplink data transmission, 1 ⁇ k ⁇ K, K ⁇ N.
  • the information processing unit 201 can determine the beam used for transmitting the SRS according to the downlink channel information obtained from the downlink signal.
  • the precoding method determining unit 202 determines the precoding mode of the uplink data. Specifically, the following five methods may be employed.
  • the precoding manner determining unit 202 may determine the target SRS resource in the at least one SRS resource according to the RI and the SRI, and determine the precoding manner of the uplink data according to the precoding manner used by the target SRS resource.
  • the precoding mode determining unit 202 may determine the number of target SRS resources according to the RI, and further determine the target SRS resource according to the number of target SRS resources and the SRI.
  • SRI Assuming that at least one SRS resource is 4 SRS resources, corresponding to different Rank values indicated by RI (2 bits), the correspondence between SRI and SRS resources can be as shown in Table 1.
  • each SRS resource in at least one SRS resource uses a single antenna port.
  • Each target SRS resource corresponds to one uplink transport layer, and when the precoding mode determining unit 202 determines the precoding mode of the uplink data, the beam and precoding used by each target SRS resource
  • the matrix can be used as a beam and precoding matrix for transmission in a transport layer.
  • the precoding manner determining unit 202 may determine the number of transmission layers according to the RI, determine a precoding matrix of the uplink data according to the number of transmission layers and the uplink channel information, determine a target SRS resource in the at least one SRS resource according to the SRI, and use a beam according to the target SRS resource. Determining the beam used by the uplink data, and obtaining a precoding manner of the uplink data according to the determined precoding matrix and the beam.
  • the precoding mode determining unit 202 can obtain the uplink channel information according to the downlink channel information obtained based on the downlink signal.
  • the downlink signal can be indicated to the terminal device through the PMI indication field in the DCI.
  • the downlink signal may refer to a downlink reference signal or a downlink synchronization signal.
  • the precoding matrix of the uplink data may be determined by combining the number of transmission layers and the uplink channel information, for example, an uplink channel correlation matrix or a covariance matrix in the uplink channel information may be used.
  • the first R feature vectors are used as precoding matrices for uplink data, and R is the number of transport layers.
  • each of the at least one SRS resource uses N antenna ports, and N is the number of ports for uplink data transmission.
  • the precoding manner determining unit 202 may determine the number of transmission layers according to the RI, determine a precoding matrix of the uplink data according to the number of transmission layers and the uplink channel information, and determine a beam used for the uplink data according to the beam used by the at least one SRS resource, according to the determined pre
  • the coding matrix and the beam obtain the precoding method of the uplink data.
  • the DCI where the RI is located does not include the SRS resource indication information.
  • the precoding mode determining unit 202 can obtain the uplink channel information according to the downlink channel information obtained based on the downlink signal.
  • the downlink signal can be indicated to the terminal device through the PMI indication field in the DCI.
  • the downlink signal may refer to a downlink reference signal or a downlink synchronization signal.
  • each of the at least one SRS resource uses N antenna ports, and N is the number of ports for uplink data transmission.
  • At least one SRS resource is an SRS resource.
  • the beam used by the at least one SRS resource may be used as the beam used for the uplink data
  • the precoding matrix determined according to the RI and the uplink channel information may be used as the precoding of the uplink data. matrix.
  • the precoding manner determining unit 202 may determine the target SRS resource in the at least one SRS resource according to the SRI, and determine the precoding manner of the uplink data according to the precoding manner used by the target SRS resource.
  • the number of transmission layer indication information is not included in the DCI where the SRI is located.
  • the precoding manner determining unit 202 may determine the number of transport layers according to the number of ports of the target SRS resource or the number of target SRS resources.
  • the SRI may indicate the target SRS resource from the at least one SRS resource by using a bitmap, and the number of the target SRS resources is the number of transmission layers, and each The target SRS resources respectively correspond to one uplink transmission layer, and the beam and precoding matrix used by each target SRS resource can be used as a beam and a precoding matrix used in one transmission layer respectively.
  • the SRI can indicate the index of one SRS resource from the K SRS resources as the target SRS resource, and the target SRS resource
  • the number of ports is the number of transmission layers.
  • the network side indicates the number of transmission layers and the precoding mode in the process of indicating the SRS resources. For this mode, each target SRS resource corresponds to an uplink transmission layer, and the target SRS resource can be used.
  • the beams and precoding matrices used on the k ports are used as the beam and precoding matrix used in the transmission of the k transport layers, respectively.
  • the precoding manner determining unit 202 may determine the target SRS resource in the at least one SRS resource according to the RI, and determine the precoding manner of the uplink data according to the precoding manner used by the target SRS resource.
  • the SRS resource indication information is not included in the DCI where the RI is located.
  • the at least one SRS resource is K SRS resources, and the kth SRS resource uses k antenna ports; wherein N is the number of ports for uplink data transmission, 1 ⁇ k ⁇ K, K ⁇ N.
  • the number of target SRS resources is one, and the number of ports of the target SRS resource is the number of transmission layers.
  • the RI is used to indicate the number of transmission layers and the target SRS resources, and each target SRS resource corresponds to an uplink transmission layer.
  • the beam and precoding matrix used on the k ports of the target SRS resource are respectively used as the beam and precoding matrix used in the transmission of the k transport layers.
  • the precoding manner determining unit 202 may determine, according to the precoding method indication information acquired from the network side or the number of ports used by the at least one SRS resource, a manner of determining a precoding manner of the uplink data.
  • FIG. 3 is a schematic structural diagram of a network side device according to an embodiment of the present invention, as shown in FIG. 3, The first processing unit 301 and the second processing unit 302 are included.
  • the first processing unit 301 is configured to acquire an SRS that is transmitted by the terminal device on the at least one SRS resource, and send a DCI for scheduling uplink data transmission to the terminal device, where the DCI includes an RI and/or an SRI, so that the terminal device according to the at least one
  • the SRS resource and the RI and/or SRI determine the precoding method of the uplink data, and perform precoding of the uplink data according to the precoding method.
  • the second processing unit 302 is configured to receive pre-coded uplink data sent by the terminal device.
  • the precoding method includes: a beam used for analog domain beamforming and/or a precoding matrix used for digital domain precoding.
  • the terminal device can also combine analog beamforming and digital precoding to obtain a joint precoding matrix as a precoding method for uplink data.
  • the DCI does not include information for indicating the precoding matrix used for the uplink data, and the terminal device may determine the precoding manner of the uplink data according to the RI and/or the SRI in the DCI, the at least one SRS resource, and the channel reciprocity.
  • Each SRS resource in the at least one SRS resource adopts a single antenna port.
  • each of the at least one SRS resource adopts N antenna ports.
  • At least one SRS resource is K SRS resources, and the kth SRS resource uses k antenna ports.
  • N is the number of ports for uplink data transmission, 1 ⁇ k ⁇ K, K ⁇ N.
  • the beam used for transmitting the SRS may be determined by the terminal device according to the downlink channel information obtained from the downlink signal.
  • An uplink precoding system is disclosed in the present invention, including a terminal device as shown in FIG. 2 and a network side device as shown in FIG. 3.
  • the terminal device may determine the precoding mode of the uplink data based on the RI and/or SRI information, the at least one SRS resource, and the channel reciprocity of the network side, thereby reducing the letter in the DCI.
  • the overhead can increase the uplink precoding gain.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present invention. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本发明公开了上行预编码方法、设备及系统,终端设备在至少一个SRS资源上传输SRS,并接收网络侧用于调度上行数据传输的DCI,DCI中包含RI和/或SRI,进而根据RI和/或SRI,以及至少一个SRS资源,确定上行数据的预编码方式,并根据预编码方式进行上行数据的预编码,发送预编码后的上行数据。应用本发明所述方案,能够减少信令开销等。

Description

上行预编码方法、设备及系统 技术领域
本发明涉及无线网络技术,特别涉及上行预编码方法、设备及系统。
背景技术
终端设备在发送上行数据时,需要对上行数据进行预编码处理,以获得上行预编码增益。
预编码处理一般分为两个部分:模拟域处理和数字域处理。模拟域处理针对模拟信号,一般采用波束赋形的方式将射频信号映射到物理天线上。数字域处理针对数字信号,一般在基带进行,采用预编码矩阵对数字信号进行预编码,将传输层的数据映射到射频端口上。
由于终端设备的射频通道数量有限,一般都要同时采用两种处理方式,即对数字信号进行预编码,对模拟信号采用波束进行赋形。
在上行基于码本的预编码方式中,终端设备会在多个探测参考信号(SRS,Sounding Reference Signal)资源上发送SRS,每个SRS资源上的SRS采用不同的波束,网络侧从中选择最好的SRS资源用于获得上行信道状态信息(CSI,Channel State Information),并将资源索引通过SRS资源指示(SRI,SRS Resource Indication)指示给终端设备,以便终端设备采用SRS资源相应的波束对上行数据进行模拟波束赋形。同时,网络侧会通过下行控制信息(DCI,Downlink Control Information)指示秩指示(RI,Rank indication)和预编码矩阵指示(PMI,Precoding Matrix Indication),终端设备根据RI和PMI从码本中确定PMI对应的上行的预编码矩阵。
可以看出,按照现有处理方式,DCI中需要包含RI、PMI和SRI等各种信息,从而需要较大的信令开销。
发明内容
有鉴于此,本发明提供了上行预编码方法、设备及系统,能够减少信令开销。
具体技术方案如下:
一种上行预编码方法,包括:
终端设备在至少一个SRS资源上传输SRS;
所述终端设备接收网络侧用于调度上行数据传输的DCI,所述DCI中包含RI和/或SRI;
所述终端设备根据所述RI和/或所述SRI,以及所述至少一个SRS资源,确定所述上行数据的预编码方式;
所述终端设备根据所述预编码方式进行所述上行数据的预编码,并发送预编码后的所述上行数据。
一种上行预编码方法,包括:
网络侧设备获取终端设备在至少一个SRS资源上传输的SRS;
所述网络侧设备向所述终端设备发送用于调度上行数据传输的DCI,所述DCI中包含RI和/或SRI,以便所述终端设备根据所述至少一个SRS资源以及所述RI和/或所述SRI确定上行数据的预编码方式,并根据所述预编码方式进行所述上行数据的预编码;
所述网络侧设备接收所述终端设备发送的预编码后的所述上行数据。
一种终端设备,包括:信息处理单元、预编码方式确定单元以及上行数据处理单元;
所述信息处理单元,用于在至少一个SRS资源上传输SRS,并接收网络侧用于调度上行数据传输的DCI,所述DCI中包含RI和/或SRI;
所述预编码方式确定单元,用于根据所述RI和/或所述SRI,以及所述至少一个SRS资源,确定所述上行数据的预编码方式;
所述上行数据处理单元,用于根据所述预编码方式进行所述上行数据的预编码,并发送预编码后的所述上行数据。
一种网络侧设备,包括:第一处理单元和第二处理单元;
所述第一处理单元,用于获取终端设备在至少一个SRS资源上传输的SRS,并向终端设备发送用于调度上行数据传输的DCI,所述DCI中包含RI和/或SRI,以便所述终端设备根据所述至少一个SRS资源以及所述RI和/或所述SRI确定上行数据的预编码方式,并根据所述预编码方式进行所述上行数据的预编码;
所述第二处理单元,用于接收所述终端设备发送的预编码后的所述上行数据。
一种上行预编码系统,包括:如以上所述的终端设备,以及,如以上所述的网络侧设备。
基于上述介绍可以看出,采用本发明所述方案,只需在网络侧发送给终端设备的DCI中包含RI和SRI中的一种或两种,终端设备即可根据RI和/或SRI等确定出上行数据的预编码方式,进而进行上行数据的预编码并发送,从而相比于现有技术减少了DCI中的信令开销。
附图说明
图1为本发明所述上行预编码方法实施例的流程图。
图2为本发明所述终端设备实施例的组成结构示意图。
图3为本发明所述网络侧设备实施例的组成结构示意图。
具体实施方式
为了使本发明的技术方案更加清楚、明白,以下参照附图并举实施例,对本发明所述方案进行进一步说明。
显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
图1为本发明所述上行预编码方法实施例的流程图,如图1所示,包括以下具体实现方式。
在100中,终端设备在至少一个SRS资源上传输SRS。
至少一个SRS资源,即指SRS资源数可以为一,也可以大于一。
其中,至少一个SRS资源中的每个SRS资源均采用单个天线端口。
或者,至少一个SRS资源中的每个SRS资源均采用N个天线端口。
或者,至少一个SRS资源为K个SRS资源,且,第k个SRS资源采用k个天线端口。
N为上行数据传输的端口数,1≤k≤K,K≤N。
假设K的取值为4,那么对于第1个SRS资源来说,可采用1个天线端口,对于第2个SRS资源来说,可采用2个天线端口,对于第3个SRS资源来说,可采用3个天线端口,对于第4个SRS资源来说,则可采用4个天线端口。
在实际应用中,终端设备可根据从下行信号获得的下行信道信息确定传输SRS采用的波束。比如,终端设备可以根据接收下行信号的接收波束,确定传输SRS采用的波束。
所述波束为模拟波束赋形所采用的波束,对网络侧是不可见的。
下行信号可通过DCI中的PMI指示域指示给终端设备。
另外,下行信号可以是指下行参考信号或下行同步信号。
在101中,终端设备接收网络侧用于调度上行数据传输的DCI,DCI中包含RI和/或SRI。
DCI中不包含用于指示上行数据使用的预编码矩阵的信息。
具体地,DCI中可以不包含PMI指示的信息域,或者,DCI中包含PMI指示的信息域,但不用于指示预编码矩阵,而是用于指示其它信息,比如天线端口等。
DCI中包含RI和/或SRI,即指DCI中可以只包含RI或SRI,也可以同时包含RI和SRI,具体包含哪些内容可以由网络侧配置。
在102中,终端设备根据RI和/或SRI,以及至少一个SRS资源,确定上行数据的预编码方式。
预编码方式包括模拟域波束赋形所用的波束和/或数字域预编码所用的预编码矩阵。终端设备也可以结合模拟波束赋形和数字预编码来得到一个联合的预编码矩阵作为上行数据的预编码方式。
本实施例中,对于终端设备如何确定上行数据的预编码方式,提供了5种较佳的实现方式,以下分别进行介绍。
1)方式一
终端设备可根据RI和SRI确定至少一个SRS资源中的目标SRS资源,进而根据目标SRS资源使用的预编码方式确定上行数据的预编码方式。
其中,终端设备可首先根据RI确定出目标SRS资源的数目,之后 可根据目标SRS资源的数目以及SRI确定出目标SRS资源。
当目标SRS资源的数目不同时,SRI和目标SRS资源的对应关系也会不同。
假设至少一个SRS资源为4个SRS资源,那么对应于RI(2比特)指示的不同Rank值,SRI和SRS资源的对应关系可如表一所示,Rank值等于目标SRS资源的数目。
Figure PCTCN2017085981-appb-000001
表一  SRI和SRS资源的对应关系
该方式中,至少一个SRS资源中的每个SRS资源均采用单个天线端口。
每个目标SRS资源对应一个上行传输层,终端设备确定上行数据的预编码方式时,每个目标SRS资源使用的波束和预编码矩阵可以作为一个传输层传输时所使用的波束和预编码矩阵。
2)方式二
终端设备可根据RI确定传输层数,根据传输层数以及上行信道信息确定上行数据的预编码矩阵,根据SRI确定至少一个SRS资源中的目标SRS资源,根据目标SRS资源使用的波束确定上行数据使用的波束,根据确定出的预编码矩阵和波束得到上行数据的预编码方式。
该方式中,确定波束和确定预编码矩阵的过程没有固定的先后顺序。
终端设备可根据基于下行信号获得的下行信道信息得到上行信道信息。
下行信号可通过DCI中的PMI指示域指示给终端设备。
另外,下行信号可以是指下行参考信号或下行同步信号。
终端设备根据RI确定出传输层数之后,可结合传输层数以及上行信道信息确定出上行数据的预编码矩阵,比如,可将上行信道信息中的上行信道相关矩阵或协方差矩阵的前R个特征向量作为上行数据的预编码矩阵,R表示传输层数。
该方式中,至少一个SRS资源中的每个SRS资源均采用N个天线端口,N为上行数据传输的端口数。
另外,该方式中,目标SRS资源的个数通常为一个,SRI中可携带目标SRS资源的索引,在确定出目标SRS资源之后,可将目标SRS资源使用的波束确定为上行数据使用的波束。
可见,该方式中,通过RI和上行信道信息确定出了上行数据的预编码矩阵,通过SRI确定出了上行数据使用的波束,从而得到了上行数据的预编码方式。
3)方式三
终端设备可根据RI确定传输层数,根据传输层数以及上行信道信息确定上行数据的预编码矩阵,并根据至少一个SRS资源使用的波束确定上行数据使用的波束,根据确定出的预编码矩阵和波束得到上行数据的预编码方式。
该方式中,RI所在的DCI中不包含SRS资源指示信息,具体地, DCI中可以不包含SRI信息域,或者,DCI中可以包含SRI信息域,但不用于指示SRS资源,而是用于指示其它信息,比如天线端口等。
终端设备可根据基于下行信号获得的下行信道信息得到上行信道信息。
下行信号可通过DCI中的PMI指示域指示给终端设备。
另外,下行信号可以是指下行参考信号或下行同步信号。
终端设备根据RI确定出传输层数之后,可结合传输层数以及上行信道信息确定出上行数据的预编码矩阵,比如,可将上行信道信息中的上行信道相关矩阵或协方差矩阵的前R个特征向量作为上行数据的预编码矩阵,R表示传输层数。
该方式中,至少一个SRS资源中的每个SRS资源均采用N个天线端口,N为上行数据传输的端口数。
另外,该方式中,至少一个SRS为一个SRS资源,该SRS资源上传输SRS所采用的波束可根据从下行信号获得的下行信道信息确定,比如,终端设备可根据接收下行信号所采用的接收波束确定出传输SRS所采用的发送波束。
终端设备确定上行数据的预编码方式时,可将至少一个SRS资源采用的波束作为上行数据使用的波束,将根据RI以及上行信道信息确定出的预编码矩阵作为上行数据的预编码矩阵。
4)方式四
终端设备可根据SRI确定至少一个SRS资源中的目标SRS资源,并根据目标SRS资源使用的预编码方式确定上行数据的预编码方式。
该方式中,SRI所在的DCI中不包含传输层数指示信息,具体地, DCI中可以不包含RI信息域,或者,DCI中也可以包含RI信息域,但不用于指示传输层数,而是用于指示其它信息,比如天线端口等。
终端设备可根据目标SRS资源的端口数或目标SRS资源的数量确定传输层数。其中,如果至少一个SRS资源中的每个SRS资源均采用单个天线端口,那么终端设备可根据目标SRS资源的数量来确定传输层数,如果至少一个SRS资源为K个SRS资源,且,第k个SRS资源采用k个天线端口,那么终端设备可根据目标SRS资源的端口数来确定传输层数。
比如,至少一个SRS资源中的每个SRS资源均采用单个天线端口,SRI可以采用bitmap的方式从至少一个SRS资源中指示目标SRS资源,目标SRS资源的数目即为传输层数,每个目标SRS资源分别对应一个上行传输层,每个目标SRS资源使用的波束和预编码矩阵可以分别作为一个传输层传输时所使用的波束和预编码矩阵。
再比如,至少一个SRS资源为K个SRS资源,且,第k个SRS资源采用k个天线端口,N为上行数据传输的端口数,1≤k≤K,K≤N,SRI可以从K个SRS资源中指示一个SRS资源的索引作为目标SRS资源,目标SRS资源的端口数即为传输层数,网络侧在指示SRS资源的过程中同时指示了传输层数和预编码方式,对于该方式,每个目标SRS资源对应一个上行传输层数,终端设备采用目标SRS资源的k个端口上使用的波束和预编码矩阵分别作为k个传输层传输时所使用的波束和预编码矩阵。
5)方式五
终端设备根据RI确定至少一个SRS资源中的目标SRS资源,根据 目标SRS资源使用的预编码方式确定上行数据的预编码方式。
该方式中,RI所在的DCI中不包含SRS资源指示信息,具体地,DCI中可以不包含SRI信息域,或者,DCI中可以包含SRI信息域,但不用于指示SRS资源,而是用于指示其它信息,比如天线端口等。
另外,该方式中,至少一个SRS资源为K个SRS资源,且,第k个SRS资源采用k个天线端口,其中,N为上行数据传输的端口数,1≤k≤K,K≤N。
该方式中,目标SRS资源的数目为一个,目标SRS资源的端口数即为传输层数,RI同时用于指示传输层数和目标SRS资源,比如,第k个SRS资源有k个端口,RI指示了传输层数为k即同时指示了第k个SRS资源为目标SRS资源,每个目标SRS资源对应一个上行传输层数,终端设备采用目标SRS资源的k个端口上使用的波束和预编码矩阵分别作为k个传输层传输时所使用的波束和预编码矩阵。
上面介绍了五种确定上行数据的预编码方式的方式,在实际应用中,可根据实际情况来选择使用哪种方式。
比如,终端设备可根据获取自网络侧的预编码方式指示信息或至少一个SRS资源采用的端口数确定所采用的方式。
网络侧可通过高层信令等发送预编码方式指示信息,相应地,终端设备可按照所指示的方式来确定上行数据的预编码方式。
或者,也可以根据至少一个SRS资源采用的端口数来确定采用何种方式,比如,至少一个SRS资源中的每个SRS资源均采用单个天线端口,且DCI中包含RI和SRI,那么终端设备则可采用方式一来确定上行数据的预编码方式。
在103中,终端设备根据确定出的预编码方式进行上行数据的预编码,并发送预编码后的上行数据。
在确定出预编码方式之后,终端设备即可按照现有技术进行上行数据的预编码,并发送预编码后的上行数据。
图1所示方法实施例中,主要从终端设备一侧来对本发明所述方案进行说明,对于网络侧设备来说,网络侧设备可获取终端设备在至少一个SRS资源上传输的SRS,并向终端设备发送用于调度上行数据传输的DCI,DCI中包含RI和/或SRI,以便终端设备根据至少一个SRS资源以及RI和/或SRI确定上行数据的预编码方式,并根据确定出的预编码方式进行上行数据的预编码,相应地,网络侧设备接收终端设备发送的预编码后的上行数据。
其中,预编码方式包括:模拟域波束赋形所用的波束和/或数字域预编码所用的预编码矩阵。终端设备也可以结合模拟波束赋形和数字预编码来得到一个联合的预编码矩阵作为上行数据的预编码方式。
网络侧设备发送的DCI中不包含用于指示上行数据所用的预编码矩阵的信息,终端设备可根据DCI中的RI和/或SRI、至少一个SRS资源以及信道互易性等,确定出上行数据的预编码方式。
其中,至少一个SRS资源中的每个SRS资源均采用单个天线端口。
或者,至少一个SRS资源中的每个SRS资源均采用N个天线端口。
或者,至少一个SRS资源为K个SRS资源,且,第k个SRS资源采用k个天线端口。
N为上行数据传输的端口数,1≤k≤K,K≤N。
传输SRS采用的波束可为终端设备根据从下行信号获得的下行信道 信息确定的。
网络侧设备的具体工作方式可参照图1所示实施例中的相应说明,不再赘述。
以上是关于方法实施例的介绍,以下通过装置实施例,对本发明所述方案进行进一步说明。
图2为本发明所述终端设备实施例的组成结构示意图,如图2所示,包括:信息处理单元201、预编码方式确定单元202以及上行数据处理单元203。
信息处理单元201,用于在至少一个SRS资源上传输SRS,并接收网络侧用于调度上行数据传输的DCI,DCI中包含RI和/或SRI。
预编码方式确定单元202,用于根据RI和/或SRI,以及所述至少一个SRS资源,确定上行数据的预编码方式。
上行数据处理单元203,用于根据预编码方式进行上行数据的预编码,并发送预编码后的上行数据。
预编码方式包括:模拟域波束赋形所用的波束和/或数字域预编码所用的预编码矩阵。终端设备也可以结合模拟波束赋形和数字预编码来得到一个联合的预编码矩阵作为上行数据的预编码方式。
DCI中不包含用于指示上行数据所用的预编码矩阵的信息,具体地,DCI中可以不包含PMI指示的信息域,或者,DCI中包含PMI指示的信息域,但不用于指示预编码矩阵,而是用于指示其它信息,比如天线端口等。
DCI中包含RI和/或SRI,即指DCI中可以只包含RI或SRI,也可以同时包含RI和SRI,具体包含哪些内容可以由网络侧配置。
其中,至少一个SRS资源中的每个SRS资源均采用单个天线端口。
或者,至少一个SRS资源中的每个SRS资源均采用N个天线端口。
或者,至少一个SRS资源为K个SRS资源,且,第k个SRS资源采用k个天线端口。
N为上行数据传输的端口数,1≤k≤K,K≤N。
另外,信息处理单元201可根据从下行信号获得的下行信道信息确定传输SRS采用的波束。
预编码方式确定单元202确定上行数据的预编码方式,具体来说,可采用以下五种方式。
1)方式一
预编码方式确定单元202可根据RI和SRI确定至少一个SRS资源中的目标SRS资源,根据目标SRS资源使用的预编码方式确定上行数据的预编码方式。
其中,预编码方式确定单元202可根据RI确定目标SRS资源的数目,进而根据目标SRS资源的数目以及SRI确定目标SRS资源。
当目标SRS资源的数目不同时,SRI和目标SRS资源的对应关系也会不同。
假设至少一个SRS资源为4个SRS资源,那么对应于RI(2比特)指示的不同Rank值,SRI和SRS资源的对应关系可如表一所示。
该方式中,至少一个SRS资源中的每个SRS资源均采用单个天线端口。
每个目标SRS资源对应一个上行传输层,预编码方式确定单元202确定上行数据的预编码方式时,每个目标SRS资源使用的波束和预编码 矩阵可以作为一个传输层传输时所使用的波束和预编码矩阵。
2)方式二
预编码方式确定单元202可根据RI确定传输层数,根据传输层数以及上行信道信息确定上行数据的预编码矩阵,根据SRI确定至少一个SRS资源中的目标SRS资源,根据目标SRS资源使用的波束确定上行数据使用的波束,根据确定出的预编码矩阵和波束得到上行数据的预编码方式。
预编码方式确定单元202可根据基于下行信号获得的下行信道信息得到上行信道信息。
下行信号可通过DCI中的PMI指示域指示给终端设备。
另外,下行信号可以是指下行参考信号或下行同步信号。
预编码方式确定单元202根据RI确定出传输层数之后,可结合传输层数以及上行信道信息确定出上行数据的预编码矩阵,比如,可将上行信道信息中的上行信道相关矩阵或协方差矩阵的前R个特征向量作为上行数据的预编码矩阵,R表示传输层数。
该方式中,至少一个SRS资源中的每个SRS资源均采用N个天线端口,N为上行数据传输的端口数。
3)方式三
预编码方式确定单元202可根据RI确定传输层数,根据传输层数以及上行信道信息确定上行数据的预编码矩阵,根据至少一个SRS资源使用的波束确定上行数据使用的波束,根据确定出的预编码矩阵和波束得到上行数据的预编码方式。
该方式中,RI所在的DCI中不包含SRS资源指示信息
预编码方式确定单元202可根据基于下行信号获得的下行信道信息得到上行信道信息。
下行信号可通过DCI中的PMI指示域指示给终端设备。
另外,下行信号可以是指下行参考信号或下行同步信号。
另外,该方式中,至少一个SRS资源中的每个SRS资源均采用N个天线端口,N为上行数据传输的端口数。
至少一个SRS资源为一个SRS资源。
预编码方式确定单元202确定上行数据的预编码方式时,可将至少一个SRS资源采用的波束作为上行数据使用的波束,将根据RI以及上行信道信息确定出的预编码矩阵作为上行数据的预编码矩阵。
4)方式四
预编码方式确定单元202可根据SRI确定至少一个SRS资源中的目标SRS资源,根据目标SRS资源使用的预编码方式确定上行数据的预编码方式。
该方式中,SRI所在的DCI中不包含传输层数指示信息。
预编码方式确定单元202可根据目标SRS资源的端口数或者目标SRS资源的数量确定传输层数。
比如,如果至少一个SRS资源中的每个SRS资源均采用单个天线端口,那么SRI可以采用bitmap的方式从至少一个SRS资源中指示目标SRS资源,目标SRS资源的数目即为传输层数,每个目标SRS资源分别对应一个上行传输层,每个目标SRS资源使用的波束和预编码矩阵可以分别作为一个传输层传输时所使用的波束和预编码矩阵。
再比如,如果至少一个SRS资源为K个SRS资源,且,第k个SRS 资源采用k个天线端口,N为上行数据传输的端口数,1≤k≤K,K≤N,那么SRI可以从K个SRS资源中指示一个SRS资源的索引作为目标SRS资源,目标SRS资源的端口数即为传输层数,网络侧在指示SRS资源的过程中同时指示了传输层数和预编码方式,对于该方式,每个目标SRS资源对应一个上行传输层数,可采用目标SRS资源的k个端口上使用的波束和预编码矩阵分别作为k个传输层传输时所使用的波束和预编码矩阵。
5)方式五
预编码方式确定单元202可根据RI确定至少一个SRS资源中的目标SRS资源,根据目标SRS资源使用的预编码方式确定上行数据的预编码方式。
该方式中,RI所在的DCI中不包含SRS资源指示信息。
至少一个SRS资源为K个SRS资源,且,第k个SRS资源采用k个天线端口;其中,N为上行数据传输的端口数,1≤k≤K,K≤N。
该方式中,目标SRS资源的数目为一个,目标SRS资源的端口数即为传输层数,RI同时用于指示传输层数和目标SRS资源,每个目标SRS资源对应一个上行传输层数,可采用目标SRS资源的k个端口上使用的波束和预编码矩阵分别作为k个传输层传输时所使用的波束和预编码矩阵。
预编码方式确定单元202可根据获取自网络侧的预编码方式指示信息或至少一个SRS资源采用的端口数确定出确定上行数据的预编码方式所采用的方式。
图3为本发明网络侧设备实施例的组成结构示意图,如图3所示, 包括:第一处理单元301和第二处理单元302。
第一处理单元301,用于获取终端设备在至少一个SRS资源上传输的SRS,并向终端设备发送用于调度上行数据传输的DCI,DCI中包含RI和/或SRI,以便终端设备根据至少一个SRS资源以及RI和/或SRI确定上行数据的预编码方式,并根据预编码方式进行上行数据的预编码。
第二处理单元302,用于接收终端设备发送的预编码后的上行数据。
预编码方式包括:模拟域波束赋形所用的波束和/或数字域预编码所用的预编码矩阵。终端设备也可以结合模拟波束赋形和数字预编码来得到一个联合的预编码矩阵作为上行数据的预编码方式。
DCI中不包含用于指示上行数据所用的预编码矩阵的信息,终端设备可根据DCI中的RI和/或SRI、至少一个SRS资源以及信道互易性等,确定出上行数据的预编码方式。
其中,至少一个SRS资源中的每个SRS资源均采用单个天线端口。
或者,至少一个SRS资源中的每个SRS资源均采用N个天线端口。
或者,至少一个SRS资源为K个SRS资源,且,第k个SRS资源采用k个天线端口。
N为上行数据传输的端口数,1≤k≤K,K≤N。
另外,传输SRS采用的波束可为终端设备根据从下行信号获得的下行信道信息确定的。
本发明中同时公开了一种上行预编码系统,包括如图2所示的终端设备以及如图3所示的网络侧设备。
在上述各实施例中,对各实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例中的相关描述。
总之,采用上述各实施例所述方案,终端设备可基于网络侧的RI和/或SRI信息、至少一个SRS资源以及信道互易性等确定上行数据的预编码方式,既减少了DCI中的信令开销,又可以提高上行的预编码增益。
在本发明所提供的几个实施例中,应该理解到,所揭露的设备和方法等,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (61)

  1. 一种上行预编码方法,其特征在于,包括:
    终端设备在至少一个探测参考信号SRS资源上传输SRS;
    所述终端设备接收网络侧用于调度上行数据传输的下行控制信息DCI,所述DCI中包含秩指示RI和/或探测参考信号资源指示SRI;
    所述终端设备根据所述RI和/或所述SRI,以及所述至少一个SRS资源,确定所述上行数据的预编码方式;
    所述终端设备根据所述预编码方式进行所述上行数据的预编码,并发送预编码后的所述上行数据。
  2. 根据权利要求1所述的方法,其特征在于,
    所述预编码方式包括:模拟域波束赋形所用的波束和/或数字域预编码所用的预编码矩阵。
  3. 根据权利要求1所述的方法,其特征在于,
    所述DCI中不包含用于指示所述上行数据所用的预编码矩阵的信息。
  4. 根据权利要求1所述的方法,其特征在于,
    所述至少一个SRS资源中的每个SRS资源均采用单个天线端口;
    或者,所述至少一个SRS资源中的每个SRS资源均采用N个天线端口;
    或者,所述至少一个SRS资源为K个SRS资源,且,第k个SRS资源采用k个天线端口;
    其中,N为上行数据传输的端口数,1≤k≤K,K≤N。
  5. 根据权利要求1所述的方法,其特征在于,
    所述终端设备根据从下行信号获得的下行信道信息确定传输所述SRS采用的波束。
  6. 根据权利要求1所述的方法,其特征在于,
    所述终端设备根据所述RI和/或所述SRI,以及所述至少一个SRS资源,确定所述上行数据的预编码方式包括:
    根据所述RI和所述SRI确定所述至少一个SRS资源中的目标SRS资源;
    根据所述目标SRS资源使用的预编码方式确定所述上行数据的预编码方式。
  7. 根据权利要求6所述的方法,其特征在于,
    所述根据所述RI和所述SRI确定所述至少一个SRS资源中的目标SRS资源包括:
    根据所述RI确定所述目标SRS资源的数目;
    根据所述目标SRS资源的数目以及所述SRI确定所述目标SRS资源。
  8. 根据权利要求6所述的方法,其特征在于,
    所述至少一个SRS资源中的每个SRS资源均采用单个天线端口。
  9. 根据权利要求1所述的方法,其特征在于,
    所述终端设备根据所述RI和/或所述SRI,以及所述至少一个SRS资源,确定所述上行数据的预编码方式包括:
    根据所述RI确定传输层数,根据所述传输层数以及上行信道信息确定所述上行数据的预编码矩阵;
    根据所述SRI确定所述至少一个SRS资源中的目标SRS资源,根据所述目标SRS资源使用的波束确定所述上行数据使用的波束;
    根据确定出的预编码矩阵和波束得到所述上行数据的预编码方式。
  10. 根据权利要求9述的方法,其特征在于,
    所述至少一个SRS资源中的每个SRS资源均采用N个天线端口,N为上行数据传输的端口数。
  11. 根据权利要求1所述的方法,其特征在于,
    所述终端设备根据所述RI和/或所述SRI,以及所述至少一个SRS资源,确定所述上行数据的预编码方式包括:
    根据所述RI确定传输层数,根据所述传输层数以及上行信道信息确定所述上行数据的预编码矩阵;
    根据所述至少一个SRS资源使用的波束确定所述上行数据使用的波束;
    根据确定出的预编码矩阵和波束得到所述上行数据的预编码方式。
  12. 根据权利要求11所述的方法,其特征在于,
    所述RI所在的DCI中不包含SRS资源指示信息。
  13. 根据权利要求11所述的方法,其特征在于,
    所述至少一个SRS资源中的每个SRS资源均采用N个天线端口,N为上行数据传输的端口数。
  14. 根据权利要求11所述的方法,其特征在于,
    所述至少一个SRS资源为一个SRS资源。
  15. 根据权利要求9或11所述的方法,其特征在于,
    该方法进一步包括:
    所述终端设备根据基于下行信号获得的下行信道信息得到所述上行信道信息。
  16. 根据权利要求15所述的方法,其特征在于,
    所述下行信号通过DCI中的预编码矩阵指示PMI指示域指示给所述终端设备。
  17. 根据权利要求15所述的方法,其特征在于,
    所述下行信号包括:下行参考信号或下行同步信号。
  18. 根据权利要求1所述的方法,其特征在于,
    所述终端设备根据所述RI和/或所述SRI,以及所述至少一个SRS资源,确定所述上行数据的预编码方式包括:
    根据所述SRI确定所述至少一个SRS资源中的目标SRS资源;
    根据所述目标SRS资源使用的预编码方式确定所述上行数据的预编码方式。
  19. 根据权利要求18所述的方法,其特征在于,
    所述SRI所在的DCI中不包含传输层数指示信息。
  20. 根据权利要求18所述的方法,其特征在于,
    所述终端设备根据所述目标SRS资源的端口数或者所述目标SRS资源的数量确定传输层数。
  21. 根据权利要求1所述的方法,其特征在于,
    所述终端设备根据所述RI和/或所述SRI,以及所述至少一个SRS资源,确定所述上行数据的预编码方式包括:
    根据所述RI确定所述至少一个SRS资源中的目标SRS资源;
    根据所述目标SRS资源使用的预编码方式确定所述上行数据的预编码方式。
  22. 根据权利要求21所述的方法,其特征在于,
    所述RI所在的DCI中不包含SRS资源指示信息。
  23. 根据权利要求21所述的方法,其特征在于,
    所述至少一个SRS资源为K个SRS资源,且,第k个SRS资源采用k个天线端口;
    其中,N为上行数据传输的端口数,1≤k≤K,K≤N。
  24. 根据权利要求1所述的方法,其特征在于,
    该方法进一步包括:
    所述终端设备根据获取自网络侧的预编码方式指示信息或所述至少一个SRS资源采用的端口数确定出确定所述上行数据的预编码方式所采用的方式。
  25. 根据权利要求1所述的方法,其特征在于,
    该方法进一步包括:
    所述预编码方式基于从下行信号获得的下行信道信息确定。
  26. 一种上行预编码方法,其特征在于,包括:
    网络侧设备获取终端设备在至少一个探测参考信号SRS资源上传输的SRS;
    所述网络侧设备向所述终端设备发送用于调度上行数据传输的下行控制信息DCI,所述DCI中包含秩指示RI和/或探测参考信号资源指示 SRI,以便所述终端设备根据所述至少一个SRS资源以及所述RI和/或所述SRI确定上行数据的预编码方式,并根据所述预编码方式进行所述上行数据的预编码;
    所述网络侧设备接收所述终端设备发送的预编码后的所述上行数据。
  27. 根据权利要求26所述的方法,其特征在于,
    所述预编码方式包括:模拟域波束赋形所用的波束和/或数字域预编码所用的预编码矩阵。
  28. 根据权利要求26所述的方法,其特征在于,
    所述DCI中不包含用于指示所述上行数据所用的预编码矩阵的信息。
  29. 根据权利要求26所述的方法,其特征在于,
    所述至少一个SRS资源中的每个SRS资源均采用单个天线端口;
    或者,所述至少一个SRS资源中的每个SRS资源均采用N个天线端口;
    或者,所述至少一个SRS资源为K个SRS资源,且,第k个SRS资源采用k个天线端口;
    其中,N为上行数据传输的端口数,1≤k≤K,K≤N。
  30. 根据权利要求26所述的方法,其特征在于,
    传输所述SRS采用的波束为所述终端设备根据从下行信号获得的下行信道信息确定的。
  31. 一种终端设备,其特征在于,包括:信息处理单元、预编码方式确定单元以及上行数据处理单元;
    所述信息处理单元,用于在至少一个探测参考信号SRS资源上传输 SRS,并接收网络侧用于调度上行数据传输的下行控制信息DCI,所述DCI中包含秩指示RI和/或探测参考信号资源指示SRI;
    所述预编码方式确定单元,用于根据所述RI和/或所述SRI,以及所述至少一个SRS资源,确定所述上行数据的预编码方式;
    所述上行数据处理单元,用于根据所述预编码方式进行所述上行数据的预编码,并发送预编码后的所述上行数据。
  32. 根据权利要求31所述的终端设备,其特征在于,
    所述预编码方式包括:模拟域波束赋形所用的波束和/或数字域预编码所用的预编码矩阵。
  33. 根据权利要求31所述的终端设备,其特征在于,
    所述DCI中不包含用于指示所述上行数据所用的预编码矩阵的信息。
  34. 根据权利要求31所述的终端设备,其特征在于,
    所述至少一个SRS资源中的每个SRS资源均采用单个天线端口;
    或者,所述至少一个SRS资源中的每个SRS资源均采用N个天线端口;
    或者,所述至少一个SRS资源为K个SRS资源,且,第k个SRS资源采用k个天线端口;
    其中,N为上行数据传输的端口数,1≤k≤K,K≤N。
  35. 根据权利要求31所述的终端设备,其特征在于,
    所述信息处理单元根据从下行信号获得的下行信道信息确定传输所述SRS采用的波束。
  36. 根据权利要求31所述的终端设备,其特征在于,
    所述预编码方式确定单元根据所述RI和所述SRI确定所述至少一个SRS资源中的目标SRS资源,根据所述目标SRS资源使用的预编码方式确定所述上行数据的预编码方式。
  37. 根据权利要求36所述的终端设备,其特征在于,
    所述预编码方式确定单元根据所述RI确定所述目标SRS资源的数目,根据所述目标SRS资源的数目以及所述SRI确定所述目标SRS资源。
  38. 根据权利要求36所述的终端设备,其特征在于,
    所述至少一个SRS资源中的每个SRS资源均采用单个天线端口。
  39. 根据权利要求31所述的终端设备,其特征在于,
    所述预编码方式确定单元根据所述RI确定传输层数,根据所述传输层数以及上行信道信息确定所述上行数据的预编码矩阵,根据所述SRI确定所述至少一个SRS资源中的目标SRS资源,根据所述目标SRS资源使用的波束确定所述上行数据使用的波束,根据确定出的预编码矩阵和波束得到所述上行数据的预编码方式。
  40. 根据权利要求39所述的终端设备,其特征在于,
    所述至少一个SRS资源中的每个SRS资源均采用N个天线端口,N为上行数据传输的端口数。
  41. 根据权利要求31所述的终端设备,其特征在于,
    所述预编码方式确定单元根据所述RI确定传输层数,根据所述传输层数以及上行信道信息确定所述上行数据的预编码矩阵,根据所述至少一个SRS资源使用的波束确定所述上行数据使用的波束,根据确定出的 预编码矩阵和波束得到所述上行数据的预编码方式。
  42. 根据权利要求41所述的终端设备,其特征在于,
    所述RI所在的DCI中不包含SRS资源指示信息。
  43. 根据权利要求41所述的终端设备,其特征在于,
    所述至少一个SRS资源中的每个SRS资源均采用N个天线端口,N为上行数据传输的端口数。
  44. 根据权利要求41所述的终端设备,其特征在于,
    所述至少一个SRS资源为一个SRS资源。
  45. 根据权利要求39或41所述的终端设备,其特征在于,
    所述预编码方式确定单元根据基于下行信号获得的下行信道信息得到所述上行信道信息。
  46. 根据权利要求45所述的终端设备,其特征在于,
    所述下行信号通过DCI中的预编码矩阵指示PMI指示域指示给所述终端设备。
  47. 根据权利要求45所述的终端设备,其特征在于,
    所述下行信号包括:下行参考信号或下行同步信号。
  48. 根据权利要求31所述的终端设备,其特征在于,
    所述预编码方式确定单元根据所述SRI确定所述至少一个SRS资源中的目标SRS资源,根据所述目标SRS资源使用的预编码方式确定所述上行数据的预编码方式。
  49. 根据权利要求48所述的终端设备,其特征在于,
    所述SRI所在的DCI中不包含传输层数指示信息。
  50. 根据权利要求48所述的终端设备,其特征在于,
    所述预编码方式确定单元根据所述目标SRS资源的端口数或者所述目标SRS资源的数量确定传输层数。
  51. 根据权利要求31所述的终端设备,其特征在于,
    所述预编码方式确定单元根据所述RI确定所述至少一个SRS资源中的目标SRS资源,根据所述目标SRS资源使用的预编码方式确定所述上行数据的预编码方式。
  52. 根据权利要求51所述的终端设备,其特征在于,
    所述RI所在的DCI中不包含SRS资源指示信息。
  53. 根据权利要求51所述的终端设备,其特征在于,
    所述至少一个SRS资源为K个SRS资源,且,第k个SRS资源采用k个天线端口;
    其中,N为上行数据传输的端口数,1≤k≤K,K≤N。
  54. 根据权利要求31所述的终端设备,其特征在于,
    所述预编码方式确定单元进一步用于,根据获取自网络侧的预编码方式指示信息或所述至少一个SRS资源采用的端口数确定出确定所述上行数据的预编码方式所采用的方式。
  55. 根据权利要求31所述的终端设备,其特征在于,
    所述预编码方式基于从下行信号获得的下行信道信息确定。
  56. 一种网络侧设备,其特征在于,包括:第一处理单元和第二处 理单元;
    所述第一处理单元,用于获取终端设备在至少一个探测参考信号SRS资源上传输的SRS,并向终端设备发送用于调度上行数据传输的下行控制信息DCI,所述DCI中包含秩指示RI和/或探测参考信号资源指示SRI,以便所述终端设备根据所述至少一个SRS资源以及所述RI和/或所述SRI确定上行数据的预编码方式,并根据所述预编码方式进行所述上行数据的预编码;
    所述第二处理单元,用于接收所述终端设备发送的预编码后的所述上行数据。
  57. 根据权利要求56所述的网络侧设备,其特征在于,
    所述预编码方式包括:模拟域波束赋形所用的波束和/或数字域预编码所用的预编码矩阵。
  58. 根据权利要求56所述的网络侧设备,其特征在于,
    所述DCI中不包含用于指示所述上行数据所用的预编码矩阵的信息。
  59. 根据权利要求56所述的网络侧设备,其特征在于,
    所述至少一个SRS资源中的每个SRS资源均采用单个天线端口;
    或者,所述至少一个SRS资源中的每个SRS资源均采用N个天线端口;
    或者,所述至少一个SRS资源为K个SRS资源,且,第k个SRS资源采用k个天线端口;
    其中,N为上行数据传输的端口数,1≤k≤K,K≤N。
  60. 根据权利要求56所述的网络侧设备,其特征在于,
    传输所述SRS采用的波束为所述终端设备根据从下行信号获得的下行信道信息确定的。
  61. 一种上行预编码系统,其特征在于,包括:
    如权利要求31~55中任一项所述的终端设备,以及,如权利要求56~60中任一项所述的网络侧设备。
PCT/CN2017/085981 2017-05-25 2017-05-25 上行预编码方法、设备及系统 WO2018214116A1 (zh)

Priority Applications (19)

Application Number Priority Date Filing Date Title
MX2019013992A MX2019013992A (es) 2017-05-25 2017-05-25 Metodo, dispositivo y sistema de precodificacion de enlace ascendente.
BR112019024251-1A BR112019024251A2 (pt) 2017-05-25 2017-05-25 Método de pré-codificação de enlace ascendente e dispositivo terminal
US16/616,377 US11082180B2 (en) 2017-05-25 2017-05-25 Uplink precoding method, device and system
CN201911314055.9A CN110868283B (zh) 2017-05-25 2017-05-25 上行预编码方法、设备及系统
JP2019563761A JP7142031B2 (ja) 2017-05-25 2017-05-25 アップリンクプリコーディング方法、装置及びシステム
CA3063782A CA3063782C (en) 2017-05-25 2017-05-25 Uplink precoding method, device and system
ES17910662T ES2879840T3 (es) 2017-05-25 2017-05-25 Método y dispositivo de precodificación de enlace ascendente
EP17910662.0A EP3614773B1 (en) 2017-05-25 2017-05-25 Uplink precoding method and device
EP21166011.3A EP3866546A1 (en) 2017-05-25 2017-05-25 Uplink precoding method, device and system
CN201780090769.9A CN110622607B (zh) 2017-05-25 2017-05-25 上行预编码方法、设备及系统
PCT/CN2017/085981 WO2018214116A1 (zh) 2017-05-25 2017-05-25 上行预编码方法、设备及系统
KR1020197034974A KR102305169B1 (ko) 2017-05-25 2017-05-25 업링크 프리코딩 방법, 기기 및 시스템
RU2019141835A RU2736872C1 (ru) 2017-05-25 2017-05-25 Способ предварительного кодирования восходящего канала, устройство и система
AU2017415185A AU2017415185B2 (en) 2017-05-25 2017-05-25 Uplink precoding method, device and system
TW107114991A TWI771412B (zh) 2017-05-25 2018-05-03 上行預編碼方法、設備及系統
IL270659A IL270659B2 (en) 2017-05-25 2019-11-14 Meter coding method for satellite, device and system
PH12019502570A PH12019502570A1 (en) 2017-05-25 2019-11-18 Uplink precoding method, device and system
ZA2019/08151A ZA201908151B (en) 2017-05-25 2019-12-09 Uplink precoding method, device and system
US17/356,264 US20210320770A1 (en) 2017-05-25 2021-06-23 Uplink precoding method, device and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/085981 WO2018214116A1 (zh) 2017-05-25 2017-05-25 上行预编码方法、设备及系统

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/616,377 A-371-Of-International US11082180B2 (en) 2017-05-25 2017-05-25 Uplink precoding method, device and system
US17/356,264 Continuation US20210320770A1 (en) 2017-05-25 2021-06-23 Uplink precoding method, device and system

Publications (1)

Publication Number Publication Date
WO2018214116A1 true WO2018214116A1 (zh) 2018-11-29

Family

ID=64395141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085981 WO2018214116A1 (zh) 2017-05-25 2017-05-25 上行预编码方法、设备及系统

Country Status (16)

Country Link
US (2) US11082180B2 (zh)
EP (2) EP3614773B1 (zh)
JP (1) JP7142031B2 (zh)
KR (1) KR102305169B1 (zh)
CN (2) CN110868283B (zh)
AU (1) AU2017415185B2 (zh)
BR (1) BR112019024251A2 (zh)
CA (1) CA3063782C (zh)
ES (1) ES2879840T3 (zh)
IL (1) IL270659B2 (zh)
MX (1) MX2019013992A (zh)
PH (1) PH12019502570A1 (zh)
RU (1) RU2736872C1 (zh)
TW (1) TWI771412B (zh)
WO (1) WO2018214116A1 (zh)
ZA (1) ZA201908151B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021097375A1 (en) * 2019-11-15 2021-05-20 Qualcomm Incorporated Techniques for pusch scheduling in a wireless communication system
WO2023124943A1 (zh) * 2021-12-31 2023-07-06 华为技术有限公司 一种预编码指示方式的确定方法和装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109150439B (zh) * 2017-06-16 2021-02-05 电信科学技术研究院 一种数据传输方法、装置、网络侧设备和用户设备
WO2019028834A1 (en) * 2017-08-11 2019-02-14 Qualcomm Incorporated SIGNALING OF TRANSMISSION RANK AND PRECODER IN NON-UPLINK CODE TRANSMISSION
US10374768B2 (en) * 2017-10-02 2019-08-06 Telefonaktiebolaget Lm Ericsson (Publ) Efficient SRS resource indication methods
CN110035534B (zh) * 2018-01-11 2021-02-19 维沃移动通信有限公司 无线通信方法及装置
WO2019140671A1 (en) * 2018-01-20 2019-07-25 Qualcomm Incorporated Reference resource indication techniques in wireless communications
US10958326B2 (en) * 2018-02-16 2021-03-23 Samsung Electronics Co., Ltd. Method and apparatus for resource-based CSI acquisition in advanced wireless communication systems
US11611953B2 (en) * 2019-08-14 2023-03-21 Intel Corporation NR DCI configuration for uplink power transmission
WO2022077484A1 (zh) * 2020-10-16 2022-04-21 华为技术有限公司 一种信息指示方法及装置
US20230113242A1 (en) * 2021-09-28 2023-04-13 Samsung Electronics Co., Ltd. Method and apparatus for ul transmission

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101938336A (zh) * 2010-08-13 2011-01-05 中兴通讯股份有限公司 一种上行传输方式的指示、确定方法和系统
CN102083223A (zh) * 2010-03-05 2011-06-01 大唐移动通信设备有限公司 一种发送dci和上行传输的方法、系统及装置
CN107113040A (zh) * 2014-11-17 2017-08-29 三星电子株式会社 用于预编码信道状态信息参考信号的方法和装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110110455A1 (en) 2009-04-23 2011-05-12 Qualcomm Incorporated Rank and precoding indication for mimo operation
US20110255483A1 (en) * 2010-04-16 2011-10-20 Research In Motion Limited Signaling of Precoding Granularity for LTE and LTE-A
CN102263620B (zh) * 2010-05-28 2014-11-05 华为技术有限公司 一种对多载波应答信息的反馈方法、装置和系统
US8971261B2 (en) 2010-06-02 2015-03-03 Samsung Electronics Co., Ltd. Method and system for transmitting channel state information in wireless communication systems
CN108811141B (zh) * 2011-03-31 2023-10-24 华为技术有限公司 时分双工系统中子帧配置的方法、基站及用户设备
CN103580820A (zh) 2012-08-03 2014-02-12 上海贝尔股份有限公司 控制ri报告的方法及装置
CN104469947B (zh) 2013-09-17 2018-08-03 普天信息技术有限公司 一种上行和下行联合资源分配方法
CN106209195B (zh) * 2015-03-06 2020-02-11 电信科学技术研究院 信道状态信息获取方法、信道状态信息反馈方法及装置
US11006429B2 (en) * 2016-05-04 2021-05-11 Apple Inc. Antenna panel switching and beam indication
JP6840841B2 (ja) 2016-09-26 2021-03-10 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるアップリンクの送受信方法、及びこのための装置
WO2018128504A1 (ko) * 2017-01-08 2018-07-12 엘지전자(주) 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
US20180227035A1 (en) * 2017-02-09 2018-08-09 Yu-Hsin Cheng Method and apparatus for robust beam acquisition
SG11201906429TA (en) * 2017-03-31 2019-08-27 Lg Electronics Inc Method for transmitting uplink data in wireless communication system and apparatus therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102083223A (zh) * 2010-03-05 2011-06-01 大唐移动通信设备有限公司 一种发送dci和上行传输的方法、系统及装置
CN101938336A (zh) * 2010-08-13 2011-01-05 中兴通讯股份有限公司 一种上行传输方式的指示、确定方法和系统
CN107113040A (zh) * 2014-11-17 2017-08-29 三星电子株式会社 用于预编码信道状态信息参考信号的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3614773A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021097375A1 (en) * 2019-11-15 2021-05-20 Qualcomm Incorporated Techniques for pusch scheduling in a wireless communication system
US11595985B2 (en) 2019-11-15 2023-02-28 Qualcomm Incorporated Techniques for PUSCH scheduling in a wireless communication system
US11843936B2 (en) 2019-11-15 2023-12-12 Qualcomm Incorporated Techniques for PUSCH scheduling in a wireless communication system
WO2023124943A1 (zh) * 2021-12-31 2023-07-06 华为技术有限公司 一种预编码指示方式的确定方法和装置

Also Published As

Publication number Publication date
US20200083998A1 (en) 2020-03-12
PH12019502570A1 (en) 2020-07-20
BR112019024251A2 (pt) 2020-06-02
ES2879840T3 (es) 2021-11-23
IL270659B2 (en) 2023-07-01
EP3614773A4 (en) 2020-04-22
TW201902261A (zh) 2019-01-01
IL270659B1 (en) 2023-03-01
KR102305169B1 (ko) 2021-09-27
IL270659A (zh) 2019-12-31
JP2020521381A (ja) 2020-07-16
TWI771412B (zh) 2022-07-21
CN110868283A (zh) 2020-03-06
CA3063782C (en) 2021-10-12
US20210320770A1 (en) 2021-10-14
EP3614773A1 (en) 2020-02-26
AU2017415185B2 (en) 2022-09-22
MX2019013992A (es) 2020-02-05
CN110868283B (zh) 2021-03-05
AU2017415185A1 (en) 2019-12-12
CA3063782A1 (en) 2018-11-29
JP7142031B2 (ja) 2022-09-26
KR20200012868A (ko) 2020-02-05
RU2736872C1 (ru) 2020-11-23
ZA201908151B (en) 2020-09-30
US11082180B2 (en) 2021-08-03
CN110622607A (zh) 2019-12-27
EP3866546A1 (en) 2021-08-18
EP3614773B1 (en) 2021-06-02
CN110622607B (zh) 2024-06-07

Similar Documents

Publication Publication Date Title
WO2018214116A1 (zh) 上行预编码方法、设备及系统
CN107148790B (zh) 用于波束成形信道状态参考信号的系统和方法
WO2021120755A1 (zh) 上行数据传输方法、用户设备及可读存储介质
WO2016141778A1 (zh) 信道状态信息获取方法、信道状态信息反馈方法及装置
WO2016161963A1 (zh) 一种csi反馈方法、装置和相关设备
WO2016026350A1 (zh) 一种三维信道状态信息确定方法及装置
US20230299821A1 (en) Transmission method and apparatus, device, and readable storage medium
CN112119617B (zh) 基于特征值的信道硬化和显式反馈
WO2022083412A1 (zh) 一种csi-rs增强传输方法及装置
WO2017186064A1 (zh) 一种信道状态信息反馈和接收方法、装置
WO2016066036A1 (zh) 一种信道状态信息的反馈、获取方法及装置
WO2017166200A1 (zh) 一种数据传输方法和装置
WO2023151592A1 (zh) 预编码的确定方法、装置、设备及可读存储介质
WO2023151593A1 (zh) 预编码指示方法、装置、通信设备、系统及存储介质
WO2022236541A1 (en) Channel measurement and channel state information enhancement
WO2023213239A1 (zh) 参考信号的配置方法、状态信息的上报方法及相关设备
WO2018090876A1 (zh) 一种预编码信息指示方法、用户设备及接入网实体
WO2016161962A1 (zh) 一种信道信息反馈方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910662

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3063782

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019563761

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197034974

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019024251

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017910662

Country of ref document: EP

Effective date: 20191121

ENP Entry into the national phase

Ref document number: 2017415185

Country of ref document: AU

Date of ref document: 20170525

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019024251

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191118