WO2018214090A1 - 一种控制方法、装置及云台 - Google Patents

一种控制方法、装置及云台 Download PDF

Info

Publication number
WO2018214090A1
WO2018214090A1 PCT/CN2017/085855 CN2017085855W WO2018214090A1 WO 2018214090 A1 WO2018214090 A1 WO 2018214090A1 CN 2017085855 W CN2017085855 W CN 2017085855W WO 2018214090 A1 WO2018214090 A1 WO 2018214090A1
Authority
WO
WIPO (PCT)
Prior art keywords
feature point
target feature
drift
imaging device
drift angle
Prior art date
Application number
PCT/CN2017/085855
Other languages
English (en)
French (fr)
Inventor
张伟
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201780004686.3A priority Critical patent/CN108475075A/zh
Priority to PCT/CN2017/085855 priority patent/WO2018214090A1/zh
Publication of WO2018214090A1 publication Critical patent/WO2018214090A1/zh
Priority to US16/529,505 priority patent/US20190354115A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7864T.V. type tracking systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6811Motion detection based on the image signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/695Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to a control method, device, and pan/tilt.
  • the aircraft uses the imaging device to track and shoot the target object.
  • the tracking image is unstable due to the sway of the aircraft body, thereby making the tracking effect poor.
  • the embodiment of the invention discloses a control method, a device and a cloud platform, which can adaptively improve the stability of the tracking picture.
  • an embodiment of the present invention provides a control method, where the method includes:
  • the multi-frame image is an image continuously captured by the imaging device
  • Determining a drift angle of the imaging device by using a drift pixel of the at least one target feature point and an imaging parameter of the imaging device;
  • an embodiment of the present invention provides a control device, where the device includes:
  • An acquiring module configured to acquire, by the at least one target feature point, a drift pixel in the multi-frame image, where the multi-frame image is an image continuously captured by the imaging device;
  • a determining module configured to determine a drift angle of the imaging device by using a drift pixel of the at least one target feature point and an imaging parameter of the imaging device
  • an adjustment module configured to adjust a posture of the pan/tilt according to the drift angle.
  • an embodiment of the present invention provides a cloud platform, where the aircraft includes:
  • a processor and a memory the processor and the memory being connected by a bus, the memory storing executable program code, the processor for calling the executable program code, performing the first aspect of the embodiment of the present invention Control Method.
  • the embodiment of the present invention can determine the drift angle of the imaging device based on the drift pixels of the at least one target feature point in the multi-frame image and the imaging parameters of the imaging device, and adjust the posture of the pan-tilt based on the drift angle, and adaptively Improve the stability of the tracking image.
  • FIG. 1 is a schematic flow chart of a control method according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of still another control method disclosed in an embodiment of the present invention.
  • FIG. 3 is a schematic block diagram of a control apparatus according to an embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of a cloud platform disclosed in an embodiment of the present invention.
  • the tracking monitoring of the tracking object can be realized by an aircraft that mounts the imaging device.
  • the aircraft can be an Unmanned Aerial Vehicle (UAV), a flying robot, or the like.
  • UAV Unmanned Aerial Vehicle
  • the pan/tilt can be a three-axis pan/tilt that can rotate on three axes of yaw yaw, pitch pitch, and roll roll.
  • the angle of rotation of the gimbal By controlling the angle of rotation of the gimbal on one or more axes of rotation, it is better to ensure that the aircraft such as the drone moves to certain locations or azimuths.
  • the tracking object can be tracked.
  • the tracking object may be a certain area of a person or a ground, or an object such as a building or an animal, and the target feature point may also be a certain part of a person (such as a person's nose, eyes, etc.) or an object.
  • the area (such as the roof area of the building) is not limited in the embodiment of the present invention.
  • the image capturing device may be a normal camera or a high-power zoom camera, which is not limited in the embodiment of the present invention.
  • the more mainstream aircraft image stabilization technology is to sense the vibration or vibration of the aircraft's body through the sensor, thereby controlling the motor to perform reverse motion to offset these effects, but the small offset of the gimbal will change with the zoom factor of the camera. Large and enlarged, therefore, these slight shifts and jitters have a large influence on the stability of the image taken by the imaging apparatus.
  • a control method is proposed, which can adjust the attitude of the pan/tilt based on the drift angle of the imaging device to improve the stability of the tracking picture.
  • the aircraft acquires a drift pixel of the at least one target feature point in the multi-frame image, the multi-frame image is an image continuously captured by the imaging device; the drift pixel using the at least one target feature point and the imaging device
  • the imaging parameter determines a drift angle of the imaging device; and adjusts a posture of the pan/tilt according to the drift angle to improve stability of the tracking image.
  • the drift angle includes one or two of a drift distance in a horizontal direction or a vertical direction.
  • the imaging parameter may include one or more of a field of view angle in a horizontal direction, a field of view angle in a vertical direction, a focal length, and a light sensing parameter.
  • the drift pixel may refer to a moving distance of the at least one target feature point in every two frames of images, such as a moving distance in a horizontal direction and a moving distance in a vertical direction.
  • steps of the method embodiment of the present invention may be performed by an aircraft, or may be performed by a cloud platform installed on an aircraft, which is not limited by the embodiment of the present invention.
  • the embodiment of the invention discloses a control method, a device and a cloud platform for adjusting the attitude of the pan/tilt based on the drift angle of the imaging device, and can adaptively improve the stability of the tracking picture, which are respectively described in detail below.
  • FIG. 1 is a schematic flowchart diagram of a control method according to an embodiment of the present invention.
  • the control methods described in the examples include:
  • the aircraft acquires a drift pixel of the at least one target feature point in the multi-frame image, where the multi-frame image is an image continuously captured by the image capturing device.
  • the drift pixel may refer to a moving distance of the at least one target feature point in every two frames of images, such as a moving distance in a horizontal direction and a moving distance in a vertical direction.
  • the target feature point may be a certain part of a person (such as a person's nose, eyes, etc.) or a certain area of the object (such as a roof area of a building), which is not limited in the embodiment of the present invention.
  • the specific manner in which the aircraft calculates the drift pixel of the at least one target feature point in the multi-frame image may include: for each target feature point of the at least one target feature point, the aircraft may acquire the The target feature point is a plurality of sets of drift pixels in the drift pixels in the image of the plurality of frames in the multi-frame image, and the drift pixels of the target feature point are obtained from the plurality of sets of drift pixels.
  • the aircraft may acquire the drifting pixels in the image of the plurality of frames in the multi-frame image of the target feature point, and may also acquire the image of the target feature point in the first few frames (such as the first five frames of images).
  • the drift pixel can also obtain the drift pixel of the target feature point in the last few frames (such as the last 10 frames), and can also obtain the drift pixel of the target feature point in a random number of frames (such as the last 8 frames) And obtaining a plurality of sets of drift pixels of the target feature point, and further determining a drift pixel of the target feature point from the plurality of sets of drift pixels.
  • the specific embodiment of the aircraft acquiring the drift pixels of the at least one target feature point in the multi-frame image includes: for each target feature point of the at least one target feature point, according to the target feature A plurality of sets of drift pixels in the multi-frame image are respectively determined, and the drift pixels of the target feature points in the horizontal direction and the vertical direction are respectively determined.
  • the aircraft may point the target feature point in two of the multi-frame images (eg, the first frame image and the last frame image)
  • the drift pixel is the drift pixel of the target feature point.
  • each of the plurality of sets of drift pixels may include a drift pixel in a horizontal direction and a drift pixel in a vertical direction.
  • the specific manner in which the aircraft determines the drift pixel of the target point according to the plurality of sets of drift pixels may include: selecting one of the plurality of sets of drift pixels as the target The drift pixel of the feature point.
  • the aircraft may calculate that the target feature points are drifting pixels in the multi-frame image, and obtain a plurality of sets of drift pixels, which may be in the plurality of sets of drift pixels.
  • the largest set of drift pixels is used as the drift pixel of the target feature point, and a set of drift pixels can be randomly selected as the drift pixel of the target feature point, and a set of drifts of the average drift pixel closest to the plurality of sets of drift pixels can also be selected.
  • the pixel serves as a drift pixel of the target feature point.
  • the specific manner in which the aircraft determines the drift pixel of the target point according to the plurality of sets of drift pixels may further include: calculating an average drift pixel of the plurality of sets of drift pixels, and using the average drift pixel as the target feature The drift pixel of the point.
  • the aircraft may calculate the target feature point to drift pixels in the multi-frame image, and obtain a plurality of sets of drift pixels, according to the plurality of sets of drift pixels
  • the average drift pixels in the horizontal direction and the vertical direction are respectively calculated; the average drift pixels in the horizontal direction and the vertical direction are calculated as the drift pixels in the horizontal direction and the vertical direction of the target feature point, respectively.
  • the aircraft may further perform the following steps: before acquiring step 101, acquiring a plurality of feature points from a central region of the first frame image in the multi-frame image, according to the plurality of feature points in the multi-frame Position information in the image, filtering at least one target feature point from the plurality of feature points.
  • the aircraft acquires a plurality of feature points from a central region of the first frame image in the multi-frame image, and filters the plurality of feature points according to the location information of the plurality of feature points in the multi-frame image. At least one target feature point.
  • the specific manner in which the aircraft filters out the at least one target feature point from the plurality of feature points may include: for each of the plurality of feature points, according to the feature point, The position information in the multi-frame image determines the motion trajectory of the feature point, and compares the motion trajectory of the feature point with the preset motion model. If the motion trajectory of the feature point matches the preset motion model, the This feature point serves as a target feature point.
  • the aircraft may determine the motion trajectory of the feature point according to the position information of the feature point in the multi-frame image, and the motion trajectory includes a motion direction and a motion distance, if the motion direction of the feature point moves and If the motion direction of the preset motion model is the same, the feature point can be determined.
  • the motion direction of the motion trajectory matches the motion direction of the preset motion model, and further if the motion distance of the motion trajectory of the feature point matches the motion distance of the preset motion model, for example, the motion trajectory of the feature point
  • the absolute value of the difference between the distance and the motion distance of the preset motion model is less than the preset threshold, it may be determined that the motion distance of the motion trajectory of the feature point matches the motion distance of the preset motion model, that is, the feature point is determined.
  • the motion trajectory matches the preset motion model, and the feature point can be used as the target feature point.
  • the preset motion model may be established according to a motion trajectory of a preset number of feature points in the at least one target feature point, and the preset number may be set according to the total number of the at least one target feature point.
  • the motion model includes a moving direction, a moving distance, and the like
  • the moving track includes a moving direction, a moving distance, and the like.
  • the specific manner in which the aircraft filters out the at least one target feature point from the plurality of feature points may further include: for each of the plurality of feature points, according to the feature point, The position information in the multi-frame image determines a motion trajectory of the feature point, and compares the motion trajectory of the feature point with a motion model of the imaging device, and if the motion trajectory of the feature point matches the motion model of the imaging device, This feature point is taken as the target feature point.
  • the motion model of the imaging device may be set according to the motion track of the imaging device.
  • the aircraft may determine the moving direction and the moving distance of the motion track of the feature point according to the position information of the feature point in the multi-frame image, and the moving distance and the moving direction of the moving feature point respectively correspond to the imaging device.
  • the motion distance and the motion direction of the motion model are matched, it can be determined that the motion trajectory of the feature point matches the motion model of the imaging device, and the feature point can be used as the target feature point.
  • the specific manner in which the aircraft filters out the at least one target feature point from the plurality of feature points may further include: for each of the plurality of feature points, according to the feature point, The position information in the multi-frame image determines a motion trajectory of the feature point, and compares the motion trajectory of the feature point with a motion model of the imaging device and a preset motion model, if the motion trajectory of the feature point and the imaging device The motion model and the preset motion model match can be used as the target feature point.
  • the aircraft determines a drift angle of the imaging device by using the drift pixel of the at least one target feature point and the imaging parameter of the imaging device.
  • the aircraft may determine the drift angle of the imaging device by using the drift pixel of the at least one target feature point and the imaging parameter of the imaging device, so that The drift angle of the camera device adjusts the attitude of the gimbal.
  • the drift angle may include one or two of drift distances in the horizontal direction or in the vertical direction.
  • the imaging parameter may include one or more of a field of view angle in a horizontal direction, a field of view angle in a vertical direction, a focal length, and a light sensing parameter.
  • the specific embodiment of the aircraft determining the drift angle of the feature includes: for each target feature point of the at least one target feature point, according to the drift pixel of the target feature point and the imaging of the imaging device And determining a drift angle corresponding to the target feature point; determining a drift angle of the image capturing device by using a drift angle corresponding to each of the at least one target feature point.
  • the specific manner of determining the drift angle of the imaging device by using the drift angle corresponding to each target feature point of the at least one target feature point may include: calculating the at least one target feature point The average drift angle is used as the drift angle of the imaging device.
  • the specific manner of determining the drift angle of the imaging device by using the drift angle corresponding to each target feature point of the at least one target feature point may also include: the at least one target feature point may be The drift angle corresponding to any one of the target feature points is used as the drift angle of the imaging device, and the drift angle corresponding to the target feature point with the largest drift angle in the at least one target feature point is used as the drift angle of the imaging device.
  • the specific manner of determining the drift angle of the imaging device by using the drift angle corresponding to each target feature point of the at least one target feature point may further include: the at least one target feature may be The drift angle of the point is filtered, and the drift angle of the imaging device is obtained.
  • the aircraft may determine the target feature point according to the drift pixel of the target feature point and the field of view angle of the imaging device.
  • Kalman filter processing can be performed on the drift angle of the at least one target feature point, filtering the drift angle of the feature point affected by noise, thereby obtaining the drift angle of the imaging device, so as to improve the accuracy of the drift angle. Sex.
  • determining, by the aircraft, the drift angle corresponding to the target feature point according to the drift pixel of the target feature point and the imaging parameter of the imaging device includes: determining, according to the imaging parameter of the imaging device a field of view angle of the image capturing device; determining a drift angle corresponding to the target feature point by using a field of view angle of the image capturing device and a drift pixel of the target feature point.
  • an aircraft may determine a field of view angle of the camera device according to an imaging parameter of the camera device; and determine a drift angle corresponding to the target feature point by using a field of view angle of the camera device and a drift pixel of the target feature point So that the drift angle of the imaging device can be determined according to the drift angle of the target feature point.
  • the drift angle of the target feature point in the horizontal direction is proportional to the drift pixel of the target feature point in the horizontal direction and the field of view angle of the imaging device in the horizontal direction
  • the width of the multi-frame image is inversely proportional; the drift angle of the target feature point in the vertical direction is proportional to the drift pixel of the target feature point in the vertical direction and the field of view of the imaging device in the vertical direction.
  • the relationship is inversely proportional to the height of the multi-frame image.
  • the specific manner of determining the drift angle corresponding to the target feature point according to the drift pixel of the target feature point and the field of view angle of the image capturing device includes: calculating a field of view angle of the camera device in the horizontal direction and the plurality of a ratio between the widths of the frame images, and a product of the ratios and the drift pixels of the target feature points in the horizontal direction, obtaining a drift angle of the target feature points in the horizontal direction; calculating the imaging device in the vertical direction a ratio between a field of view angle in the direction and a height of the multi-frame image, and a product of the ratio and a drift pixel of the target feature point in a vertical direction, obtaining the target feature point in a vertical direction Drift angle.
  • the way to get the drift angle of the target feature point is as follows:
  • Theta_y FOV_Y* ⁇ y/height
  • ⁇ x and ⁇ y respectively represent the drift pixels in the horizontal direction and the vertical direction of the target feature point
  • FOV_X and FOV_Y respectively represent the angles of view of the imaging device in the horizontal direction and the vertical direction, respectively
  • width and height respectively represent The width and height of the multi-frame image
  • Theta_x and Theta_y respectively represent the drift angle of the target feature point in the horizontal direction and the vertical direction.
  • the attitude of the pan/tilt can be directly adjusted by the aircraft to improve the stability of the tracking picture.
  • a specific implementation manner of adjusting an attitude of the pan/tilt according to the drift angle may include: acquiring a zoom factor of the image capturing device; determining, according to the drift angle and the zoom factor The control parameter of the gimbal; the attitude of the gimbal is adjusted by using the control parameter.
  • the control parameter may be one or more of Proportion Integration Differentiation (PID) control parameters.
  • PID Proportion Integration Differentiation
  • the offset or jitter of the pan-tilt is related to the zoom factor of the imaging device, the slight offset or jitter of the pan-tilt is amplified as the zoom magnification of the imaging device becomes larger.
  • the camera is a high-power camera
  • the higher the zoom factor used for shooting the smaller the offset or jitter of the pan/tilt is also amplified, such as the camera device is 30x optical zoom, 6x digital zoom
  • the Z30 high-power camera, with the zoom factor used for shooting, the small drift and jitter of the gimbal are simultaneously magnified 20 times or more.
  • the aircraft can determine the control parameter of the pan/tilt according to the drift angle and the zoom factor, and adjust the posture of the pan/tilt by using the control parameter, and adaptively adjust the attitude of the pan/tilt according to the zoom magnification of the imaging device, and Improve the stability of the tracking picture.
  • the attitude of the gimbal can be controlled by the PID control algorithm.
  • the response speed and accuracy of the attitude control of the gimbal are related to the control parameters of the PID.
  • the PID control parameter can be dynamically optimized according to the zoom factor of the imaging device and the drift angle to improve the response speed and accuracy.
  • the adjustment step size is small, there may be that the adjustment has not ended yet, and the posture of the gimbal is shaken or drifted again. If the control parameters of this stage are used to adjust the attitude of the gimbal, the adjustment is made. The accuracy is low, so the PID control parameters can be dynamically optimized according to the zoom factor of the imaging device and the drift angle to improve the response speed and accuracy.
  • the drift angle is 3 degrees in the horizontal direction
  • the zoom factor is 10 times.
  • the aircraft can obtain the control parameters of the pan/tilt according to the drift angle and the zoom factor.
  • control parameters matching the drift angle and the zoom magnification are recorded in the table, and the table may be set according to the historical control parameter value.
  • the aircraft in power inspection, park safety patrol, and forest fire patrol, the aircraft generally flies at high altitude, but when it needs to observe local areas on the ground, the aircraft can use the local area as the target feature point and zoom in. a zoom factor of the camera device, so that the target feature point can be observed relatively clearly, and then the drift pixel of the target feature point in the captured image can be calculated, and the drift angle of the camera device is determined according to the drift pixel of the target feature point Then, the attitude of the pan/tilt can be adjusted according to the drift angle and the zoom magnification so that the stability of the tracking picture can be maintained.
  • a zoom factor of the camera device so that the target feature point can be observed relatively clearly
  • the drift pixel of the target feature point in the captured image can be calculated
  • the drift angle of the camera device is determined according to the drift pixel of the target feature point
  • the attitude of the pan/tilt can be adjusted according to the drift angle and the zoom magnification so that the stability of the tracking picture can be maintained.
  • the attitude adjustment of the gimbal can not only compensate the drift of the gimbal, but also intelligently maintain the region of interest (ie, at least one target feature point).
  • the region of interest ie, at least one target feature point.
  • the stability of the tracking picture can be easily improved and the tracking effect can be improved.
  • the aircraft may acquire a drift pixel of the at least one target feature point in the multi-frame image, the multi-frame image is an image continuously captured by the imaging device; using the drift pixel of the at least one target feature point and the imaging
  • the imaging parameter of the device determines the drift angle of the camera device; adjusting the attitude of the pan/tilt according to the drift angle can adaptively improve the stability of the tracking image.
  • FIG. 2 is a schematic flowchart of still another control method according to an embodiment of the present invention.
  • the control method described in this embodiment includes:
  • the aircraft acquires, by the at least one, a drift pixel of the target feature point in the multi-frame image, where the multi-frame image is an image continuously captured by the imaging device.
  • the aircraft determines, for each target feature point of the at least one target feature point, a drift angle corresponding to the target feature point according to the drift pixel of the target feature point and the imaging parameter of the imaging device.
  • the aircraft determines a drift angle of the imaging device by using a drift angle corresponding to each target feature point of the at least one target feature point.
  • the specific manner of determining the drift angle of the imaging device by using the drift angle corresponding to each target feature point of the at least one target feature point may include: calculating the at least one target feature point The average drift angle is used as the drift angle of the imaging device.
  • the specific manner of determining the drift angle of the imaging device by using the drift angle corresponding to each target feature point of the at least one target feature point may also include: the at least one target feature point may be The drift angle corresponding to any one of the target feature points is used as the drift angle of the imaging device, and the drift angle corresponding to the target feature point with the largest drift angle in the at least one target feature point is used as the drift angle of the imaging device.
  • the specific manner of determining the drift angle of the imaging device by using the drift angle corresponding to each target feature point of the at least one target feature point may further include: the at least one target feature may be The drift angle of the point is filtered, and the drift angle of the imaging device is obtained.
  • the aircraft may determine a drift angle corresponding to the target feature point according to the drift pixel of the target feature point and the field of view angle of the image capturing device, and may Kalman filtering processing is performed on the drift angle of the at least one target feature point, and the drift angle of the feature point affected by the noise is filtered out, thereby obtaining the drift angle of the imaging device, so as to improve the accuracy of the drift angle.
  • the aircraft acquires a zoom factor of the imaging device.
  • the aircraft acquires a zoom factor that can be obtained by viewing the shooting parameters of the imaging device.
  • the aircraft determines a control parameter of the pan/tilt according to the drift angle and the zoom factor.
  • the offset or jitter of the pan-tilt is related to the zoom factor of the imaging device
  • the slight offset or jitter of the pan-tilt is amplified as the zoom magnification of the imaging device becomes larger.
  • the camera is a high-power camera
  • the higher the zoom factor used for shooting the smaller the offset or jitter of the pan/tilt is also amplified, such as the camera device is 30x optical zoom, 6x digital zoom
  • the Z30 high-magnification camera with the magnification of the zoom factor used for shooting, the tiny drift of the gimbal Shift and jitter are also magnified 20 times or more at the same time. Therefore, the aircraft can determine the control parameters of the pan/tilt according to the drift angle and the zoom factor, so that the attitude of the pan/tilt can be adjusted by using the control parameter.
  • the aircraft adjusts the attitude of the gimbal by using the control parameter.
  • the aircraft can adjust the posture of the gimbal by using the control parameter.
  • the aircraft can acquire the drift angle of the imaging device, and determine the control parameters of the pan-tilt according to the drift angle and the zoom magnification of the imaging device, and adjust the posture of the pan-tilt using the control parameters of the pan-tilt, which can be applied.
  • the imaging device with different zoom magnifications can adaptively improve the stability of the tracking picture.
  • FIG. 3 is a schematic structural diagram of a control device according to an embodiment of the present invention.
  • the device can be applied to a cloud platform, and can also be applied to an aircraft.
  • the control device described in this embodiment includes:
  • the obtaining module 301 is configured to acquire a drift pixel of the at least one target feature point in the multi-frame image, where the multi-frame image is an image continuously captured by the imaging device.
  • the determining module 302 is configured to determine a drift angle of the imaging device by using a drift pixel of the at least one target feature point and an imaging parameter of the imaging device.
  • the adjusting module 303 is configured to adjust the posture of the pan/tilt according to the drift angle.
  • the acquiring module 301 is further configured to acquire multiple feature points from a central area of the first frame image in the multi-frame image.
  • the determining module 302 is further configured to filter, according to the location information of the multiple feature points in the multi-frame image, at least one target feature point from the plurality of feature points.
  • the determining module 302 is configured to determine, according to each of the at least one target feature point, the plurality of sets of drift pixels in the multi-frame image according to the target feature point.
  • the target feature points are drifting pixels in the horizontal and vertical directions.
  • the determining module 302 is configured to: for each target feature point of the at least one target feature point, according to the drift pixel of the target feature point and the imaging parameter of the imaging device, Determining a drift angle corresponding to the target feature point; determining a drift angle of the imaging device by using a drift angle corresponding to each of the at least one target feature point.
  • the determining module 302 is configured to determine a field of view angle of the camera device according to an imaging parameter of the camera device, and determine, by using a field of view of the camera device and a drift pixel of the target feature point. The drift angle corresponding to the target feature point.
  • the adjusting module 303 is specifically configured to acquire a zoom factor of the camera device, determine a control parameter of the pan/tilt according to the drift angle and the zoom factor, and perform a posture of the pan/tilt by using the control parameter. Make adjustments.
  • control parameter comprises one or more of proportional-integral-derivative (PID) control parameters.
  • PID proportional-integral-derivative
  • the drift angle includes a drift distance in a horizontal direction and a vertical direction.
  • the aircraft may acquire a drift pixel of the at least one target feature point in the multi-frame image, the multi-frame image is an image continuously captured by the imaging device; using the drift pixel of the at least one target feature point and the imaging
  • the imaging parameter of the device determines the drift angle of the camera device; adjusting the attitude of the pan/tilt according to the drift angle can adaptively improve the stability of the tracking image.
  • FIG. 4 is a schematic block diagram of a cloud platform according to an embodiment of the present invention.
  • the pan/tilt is used to carry the camera device.
  • a pan/tilt in this embodiment as shown may include: at least one processor 401, such as a CPU; at least one memory 402, a communication device 403, a controller 404, and the processor. 401.
  • the memory 402, the communication device 403, and the controller 404 are connected by a bus 405.
  • the communication device 403 is configured to send and receive messages, and the communication device 403 is specifically configured to exchange information with the imaging device.
  • the controller 404 is configured to control the posture of the gimbal.
  • the memory 402 is used to store instructions, and the processor 401 calls program code stored in the memory 402.
  • the processor 401 calls the program code stored in the memory 402 to perform the following operations:
  • the multi-frame image is an image continuously captured by the imaging device
  • Determining a drift angle of the imaging device by using a drift pixel of the at least one target feature point and an imaging parameter of the imaging device;
  • the processor 401 calls the program code stored in the memory 402, and can also perform the following operations:
  • the processor 401 calls the program code stored in the memory 402, and can also perform the following operations:
  • the processor 401 calls the program code stored in the memory 402, and can also perform the following operations:
  • the processor 401 calls the program code stored in the memory 402, and can also perform the following operations:
  • a drift angle corresponding to the target feature point is determined by using a field of view angle of the imaging device and a drift pixel of the target feature point.
  • the processor 401 calls the program code stored in the memory 402, and can also perform the following operations:
  • the attitude of the pan/tilt is adjusted using the control parameters.
  • control parameter comprises one or more of proportional-integral-derivative (PID) control parameters.
  • PID proportional-integral-derivative
  • the drift angle includes a drift distance in a horizontal direction and a vertical direction.
  • the aircraft may acquire a drift pixel of the at least one target feature point in the multi-frame image, the multi-frame image is an image continuously captured by the imaging device; using the drift pixel of the at least one target feature point and the imaging
  • the imaging parameter of the device determines the drift angle of the camera device; adjusting the attitude of the pan/tilt according to the drift angle can adaptively improve the stability of the tracking image.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: Flash disk, Read-Only Memory (ROM), Random Access Memory (RAM), disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Studio Devices (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Image Analysis (AREA)

Abstract

一种控制方法、装置及云台,所述云台用于承载摄像设备,其中,所述方法包括:获取至少一个目标特征点在多帧图像中的漂移像素,所述多帧图像为所述摄像设备持续拍摄的图像;利用所述至少一个目标特征点的漂移像素以及所述摄像设备的摄像参数,确定所述摄像设备的漂移角度;根据所述漂移角度对所述云台的姿态进行调整,可自适应地提高跟踪画面的稳定性。

Description

一种控制方法、装置及云台 技术领域
本发明涉及电子技术领域,尤其涉及一种控制方法、装置及云台。
背景技术
飞行器跟踪目标物的应用中,飞行器通过摄像设备对目标物进行跟踪拍摄,在跟踪拍摄的过程中,由于飞行器的机身晃动,使得跟踪画面不稳定,进而使得跟踪效果不佳。
目前,比较主流的飞行器图像增稳技术是通过传感器感知飞行器的机身晃动或者震动,从而控制电机进行反向运动抵消这些影响,但是,云台的微小偏移会随着摄像设备的变焦倍数变大而被放大,因此,这些微小的偏移、抖动对摄像设备拍摄画面的稳定性造成较大的影响。
发明内容
本发明实施例公开了一种控制方法、装置及云台,可自适应地提高跟踪画面的稳定性。
第一方面,本发明实施例提供了一种控制方法,该方法包括:
获取至少一个目标特征点在多帧图像中的漂移像素,所述多帧图像为所述摄像设备持续拍摄的图像;
利用所述至少一个目标特征点的漂移像素以及所述摄像设备的摄像参数,确定所述摄像设备的漂移角度;
根据所述漂移角度对所述云台的姿态进行调整。
第二方面,本发明实施例提供了一种控制装置,该装置包括:
获取模块,用于获取至少一个目标特征点在多帧图像中的漂移像素,所述多帧图像为所述摄像设备持续拍摄的图像;
确定模块,用于利用所述至少一个目标特征点的漂移像素以及所述摄像设备的摄像参数,确定所述摄像设备的漂移角度;
调整模块,用于根据所述漂移角度对所述云台的姿态进行调整。
第三方面,本发明实施例提供了一种云台,该飞行器包括:
处理器和存储器,所述处理器和所述存储器通过总线连接,所述存储器存储有可执行程序代码,所述处理器用于调用所述可执行程序代码,执行本发明实施例第一方面提供的控制方法。
通过本发明实施例可以基于至少一个目标特征点在多帧图像中的漂移像素及摄像设备的拍摄参数,确定摄像设备的漂移角度,并基于漂移角度对云台的姿态进行调整,可自适应地提高跟踪画面的稳定性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种控制方法的流程示意图;
图2是本发明实施例公开的又一种控制方法的流程示意图;
图3是本发明实施例公开的一种控制装置的示意性框图;
图4是本发明实施例公开的一种云台的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明实施例中,对跟踪对象的跟踪监视可以通过一个挂载摄像设备的飞行器来实现。该飞行器可为无人机(Unmanned Aerial Vehicle,UAV)、可飞行机器人等。这些飞行器可以通过设置云台来挂载摄像设备。为了更好实现在多个角度的跟踪拍摄,该云台可以是一个三轴云台,该云台能够在偏航yaw、俯仰pitch以及横滚roll三个转动轴上转动。通过控制云台在一个或者多个转动轴上的转动角度,可以较好地保证无人机等飞行器向某些地点或者方位移动的 过程中,能够跟踪拍摄到该跟踪对象。
本发明实施例中,跟踪对象可以是人、地面的某个区域,也可以建筑或动物等物体,目标特征点还可以是人的某个部位(如人的鼻子、眼睛等)或物体的某个区域(如建筑的楼顶区域),本发明实施例不做限定。
本发明实施例中,该摄像设备可以是普通相机,也可以是高倍变焦相机,本发明实施例不作限定。
目前,比较主流的飞行器图像增稳技术是通过传感器感知飞行器的机身晃动或者震动,从而控制电机进行反向运动抵消这些影响,但是,云台的微小偏移会随着摄像设备的变焦倍数变大而被放大,因此,这些微小的偏移、抖动对摄像设备拍摄画面的稳定性造成较大的影响。基于此本发明提出一种控制方法,可以基于摄像设备的漂移角度,对云台的姿态进行调整,以提高跟踪画面的稳定性。
本发明实施例中,飞行器获取至少一个目标特征点在多帧图像中的漂移像素,该多帧图像为所述摄像设备持续拍摄的图像;利用该至少一个目标特征点的漂移像素以及该摄像设备的摄像参数,确定所述摄像设备的漂移角度;根据该漂移角度对所述云台的姿态进行调整,以提高跟踪画面的稳定性。
本发明实施例中,该漂移角度包括水平方向上或者竖直方向上的漂移距离中的一种或两种。
本发明实施例中,该摄像参数可以包括水平方向的视场角度、竖直方向的视场角度、焦距、感光参数中的一种或多种。
本发明实施例中,漂移像素可以是指该至少一个目标特征点在每两帧图像中的移动距离,如,水平方向上的移动距离,竖直方向上的移动距离。
需要说明的是,本发明的方法实施例的步骤可以由飞行器来执行,也可以由安装于飞行器上的云台来执行,本发明实施例不作限定。
本发明实施例公开了一种控制方法、装置及云台,用于基于摄像设备的漂移角度对云台的姿态进行调整,可自适应地提高跟踪画面的稳定性,以下分别进行详细说明。
请参阅图1,图1为本发明实施例提供的一种控制方法的流程示意图,本实 施例中所描述的控制方法,包括:
101、飞行器获取至少一个目标特征点在多帧图像中的漂移像素,该多帧图像为该摄像设备持续拍摄的图像。
本发明实施例中,漂移像素可以是指该至少一个目标特征点在每两帧图像中的移动距离,如,水平方向上的移动距离,竖直方向上的移动距离。
本发明实施例中,目标特征点可以是人的某个部位(如人的鼻子、眼睛等)或物体的某个区域(如建筑的楼顶区域),本发明实施例不做限定。
作为一种可选的实施例,飞行器计算该至少一个目标特征点在多帧图像中的漂移像素的具体方式可以包括:针对该至少一个目标特征点中的每个目标特征点,飞行器可以获取该目标特征点在该多帧图像中的其中几帧图像中的漂移像素,得到多组漂移像素,进而从该多组漂移像素中获取该目标特征点的漂移像素。
举例来说,飞行器可以获取该目标特征点在该多帧图像中的其中几帧图像中的漂移像素可以包括:也可以获取该目标特征点在前几帧图像(如前5帧图像)中的漂移像素;也可以获取该目标特征点在后几帧图像(如后10帧图像)中的漂移像素,还可以获取该目标特征点在随机几帧图像(如后8帧图像)中的漂移像素,进而得到该目标特征点的多组组漂移像素,进而可以从该多组漂移像素中确定该目标特征点的漂移像素。
作为一种可选的实施例,飞行器获取至少一个目标特征点在该多帧图像中的漂移像素的具体实施方式包括:针对该至少一个目标特征点中的每个目标特征点,根据该目标特征点在该多帧图像中的多组漂移像素,分别确定该目标特征点在水平方向和竖直方向上的漂移像素。
需要说明的是,针对该至少一个目标特征点中的每个目标特征点,飞行器可以将该目标特征点在该多帧图像中的其中两帧图像中(如第一帧图像与最后一帧图像)的漂移像素作为该目标特征点的漂移像素。
需要说明的是,该多组漂移像素中的每组漂移像素可以包括水平方向上的漂移像素和竖直方向上的漂移像素。
作为一种可选的实施例,飞行器根据多组漂移像素确定该目标点的漂移像素的具体方式可以包括:从该多组漂移像素中选择其中一组漂移像素作为该目 标特征点的漂移像素。
举例来说,针对该至少一个目标特征点中的每个目标特征点,飞行器可以计算该目标特征点在该多帧图像中漂移像素,并得到多组漂移像素,可以将该多组漂移像素中最大的一组漂移像素作为该目标特征点的漂移像素,也可以随机选择一组漂移像素作为该目标特征点的漂移像素,还可以选择最接近该多组漂移像素的平均漂移像素的一组漂移像素作为该目标特征点的漂移像素。
作为一种可选的实施例,飞行器根据多组漂移像素确定该目标点的漂移像素的具体方式还可以包括:计算该多组漂移像素的平均漂移像素,并将该平均漂移像素作为该目标特征点的漂移像素。
进一步举例来说,针对该至少一个目标特征点中的每个目标特征点,飞行器可以计算该目标特征点在该多帧图像中漂移像素,并得到多组漂移像素,根据该多组漂移像素的分别计算水平方向上和竖直方向上的平均漂移像素;将计算得到水平方向上和竖直方向上的平均漂移像素分别作为该目标特征点的水平方向上和竖直方向上的漂移像素。
作为一种可选的实施方式,飞行器在执行步骤101之前还可以执行以下步骤:从该多帧图像中第一帧图像的中心区域获取多个特征点,根据该多个特征点在该多帧图像中的位置信息,从该多个特征点中过滤出至少一个目标特征点。
本发明实施例中,飞行器从该多帧图像中第一帧图像的中心区域获取多个特征点,根据该多个特征点在该多帧图像中的位置信息,从该多个特征点中过滤出至少一个目标特征点。
作为一种可选的实施例,飞行器从该多个特征点中过滤出至少一个目标特征点的具体方式可以包括:针对该多个特征点中的每个特征点,可以根据该特征点在该多帧图像中的位置信息,确定该特征点的运动轨迹,根据该特征点的运动轨迹与预设的运动模型进行比较,若该特征点的运动轨迹与预设的运动模型匹配,则可以将该特征点作为目标特征点。
需要说明的是,飞行器可以根据该特征点在该多帧图像中的位置信息,确定该特征点的运动轨迹,该运动轨迹包括运动方向及运动距离,若该特征点的运动轨迹的运动方向与预设的运动模型的运动方向一致,则可以确定该特征点 的运动轨迹的运动方向与预设的运动模型的运动方向匹配,进一步若该特征点的运动轨迹的运动距离与预设的运动模型的运动距离匹配时,如,该特征点的运动轨迹的运动距离与预设的运动模型的运动距离的差值的绝对值小于预设阈值时,可以确定该特征点的运动轨迹的运动距离与预设的运动模型的运动距离匹配,即确定该特征点的运动轨迹与预设的运动模型匹配,可以将该特征点作为目标特征点。
本发明实施例中,该预设的运动模型可以是根据该至少一个目标特征点中的预设数量的特征点的运动轨迹建立的,预设数量可以根据该至少一个目标特征点的总数量设置。
本发明实施例中,运动模型包括运动方向、运动的距离等,运动轨迹包括运动方向、运动的距离等。
作为一种可选的实施例,飞行器从该多个特征点中过滤出至少一个目标特征点的具体方式也可以包括:针对该多个特征点中的每个特征点,可以根据该特征点在该多帧图像中的位置信息,确定该特征点的运动轨迹,根据该特征点的运动轨迹与摄像设备的运动模型进行比较,若该特征点的运动轨迹与摄像设备的运动模型匹配,则可以将该特征点作为目标特征点。
本发明实施例中,该摄像设备的运动模型可以是根据摄像设备的运动轨迹设置的。
需要说明的是,飞行器可以根据该特征点在该多帧图像中的位置信息,确定该特征点的运动轨迹的运动方向及运动距离,在该运动特征点的运动距离、运动方向分别与摄像设备的运动模型的运动距离、运动方向匹配时,可以确定该特征点的运动轨迹与摄像设备的运动模型匹配,可以将该特征点作为目标特征点。
作为一种可选的实施例,飞行器从该多个特征点中过滤出至少一个目标特征点的具体方式还可以包括:针对该多个特征点中的每个特征点,可以根据该特征点在该多帧图像中的位置信息,确定该特征点的运动轨迹,根据该特征点的运动轨迹与摄像设备的运动模型、预设的运动模型进行比较,若该特征点的运动轨迹与摄像设备的运动模型、预设的运动模型匹配,则可以将该特征点作为目标特征点。
102、飞行器利用该至少一个目标特征点的漂移像素以及该摄像设备的摄像参数,确定该摄像设备的漂移角度。
本发明实施例中,在获取至少一个目标特征点的漂移像素之后,飞行器可以利用该至少一个目标特征点的漂移像素以及该摄像设备的摄像参数,确定该摄像设备的漂移角度,以便可以根据该摄像设备的漂移角度调整云台的姿态。
其中,该漂移角度可以包括水平方向上或者竖直方向上的漂移距离中的一种或两种。
其中,该摄像参数可以包括水平方向的视场角度、竖直方向的视场角度、焦距、感光参数中的一种或多种。
作为一种可选的实施方式,飞行器确定该特征的漂移角度的具体实施方式包括:针对该至少一个目标特征点中每个目标特征点,根据该目标特征点的漂移像素以及该摄像设备的摄像参数,确定该目标特征点对应的漂移角度;利用该至少一个目标特征点中每个目标特征点对应的漂移角度,确定该摄像设备的漂移角度。
作为一种可选的实施例,飞行器利用该至少一个目标特征点中每个目标特征点对应的漂移角度,确定该摄像设备的漂移角度的具体方式可以包括:可以计算该至少一个目标特征点的平均漂移角度,并将该平均漂移角度作为该摄像设备的漂移角度。
作为一种可选的实施例,飞行器利用该至少一个目标特征点中每个目标特征点对应的漂移角度,确定该摄像设备的漂移角度的具体方式也可以包括:可以将该至少一个目标特征点中任一个目标特征点对应的漂移角度作为该摄像设备的漂移角度,如该至少一个目标特征点中漂移角度最大的目标特征点对应的漂移角度作为该摄像设备的漂移角度。
作为一种可选的实施例,飞行器利用该至少一个目标特征点中每个目标特征点对应的漂移角度,确定该摄像设备的漂移角度的具体方式还可以包括:可以将对该至少一个目标特征点的漂移角度进行滤波处理,进而得到该摄像设备的漂移角度。
举例来说,针对所述至少一个目标特征点中每个目标特征点,飞行器可以根据该目标特征点的漂移像素以及该摄像设备的视场角度,确定该目标特征点 对应的漂移角度,可以将对该至少一个目标特征点的漂移角度进行卡尔曼滤波处理,滤除受噪声干扰的特征点的漂移角度,进而得到该摄像设备的漂移角度,以提高漂移角度的准确性。
作为一种可选的实施方式,飞行器根据该目标特征点的漂移像素以及该摄像设备的摄像参数,确定该目标特征点对应的漂移角度的具体实施方式包括:根据该摄像设备的摄像参数确定该摄像设备的视场角度;利用该摄像设备的视场角度和该目标特征点的漂移像素,确定该目标特征点对应的漂移角度。
本发明实施例中,飞行器可以根据该摄像设备的摄像参数确定该摄像设备的视场角度;利用该摄像设备的视场角度和该目标特征点的漂移像素,确定该目标特征点对应的漂移角度,以便可以根据目标特征点的漂移角度确定摄像设备的漂移角度。
作为一种可选的实施方式,由于该目标特征点在水平方向上的漂移角度与该目标特征点在水平方向上的漂移像素、该摄像设备在水平方向上的视场角度成正比关系,与该多帧图像的宽度成反比关系;该目标特征点在竖直方向上的漂移角度与该目标特征点在竖直方向上的漂移像素、该摄像设备在竖直方向上的视场角度成正比关系,与该多帧图像的高度成反比关系。因此,飞行器根据该目标特征点的漂移像素以及该摄像设备的视场角度,确定该目标特征点对应的漂移角度的具体方式包括:计算所述摄像设备在水平方向上的视场角度与该多帧图像的宽度之间的比值,以及该比值与该目标特征点在水平方向上的漂移像素之间的乘积,获得该目标特征点在水平方向上的漂移角度;计算所述摄像设备在竖直方向上的视场角度与该多帧图像的高度之间的比值,以及该比值与该目标特征点在竖直方向上的漂移像素之间的乘积,获得该目标特征点在竖直方向上的漂移角度。获取目标特征点的漂移角度的方式可用公式为:
Theta_x=FOV_X*Δx/width
Theta_y=FOV_Y*Δy/height
其中,Δx、Δy分别表示该目标特征点水平方向上和竖直方向上的漂移像素,FOV_X、FOV_Y分别表示该摄像设备在水平方向上和竖直方向上的视场角度,width、height分别表示该多帧图像的宽度和高度,Theta_x和Theta_y分别表示该目标特征点在水平方向上和竖直方向上的漂移角度。
103、根据该漂移角度对该云台的姿态进行调整。
本发明实施例中,飞行器可以直接采用该漂移角度对该云台的姿态进行调整,以提高跟踪画面的稳定性。
作为一种可选的实施方式,飞行器根据该漂移角度对该云台的姿态进行调整的具体实施方式可以包括:获取所述摄像设备的变焦倍数;根据该漂移角度和该变焦倍数,确定所述云台的控制参数;利用该控制参数对该云台的姿态进行调整。
其中,该控制参数可以为比例-积分-微分(Proportion Integration Differentiation,PID)控制参数的中一个或多个。
本发明实施例中,由于云台的偏移或者抖动与摄像设备的变焦倍数具有关联关系,即云台的微小偏移或者抖动会随着摄像设备的变焦倍数变大而被放大。特别的,若该摄像设备为高倍相机时,拍摄使用的变焦倍数越高,云台的微小偏移或者抖动也被放大的倍数也很高,如摄像设备是30倍光学变焦、6倍数码变焦的Z30高倍相机,随着拍摄使用的变焦倍数的放大,云台的微小漂移、抖动也同时被放大20倍甚至更多。因此飞行器可以根据该漂移角度和该变焦倍数,确定该云台的控制参数,并利用该控制参数对该云台的姿态进行调整,可以根据摄像设备的变焦倍数自适应调整云台的姿态,并可提高跟踪画面的稳定性。
云台的姿态可以采用PID的控制算法来控制,云台的姿态控制的响应速度以及精度与PID的控制参数有关。在本实施例中,可以根据该摄像设备的变焦倍数以及根据该漂移角度对PID的控制参数进行动态优化,以提高响应速度以及精度。
例如,在P参数一定的情况下,调整步长越大,云台的姿态控制的响应速度越快,即调整效率较高,但是调整的精度不高;调整步长越小,调整的精度较高,云台的姿态控制的响应速度越慢。特别的,在调整步长较小的情况下,可能存在本次调整还没结束,云台的姿态又出现抖动或漂移,如果继续采用本次的控制参数对云台的姿态进行调整,使得调整的精度较低,因此可以根据该摄像设备的变焦倍数以及根据该漂移角度对PID的控制参数进行动态优化,以提高响应速度以及精度。
举例来说,该漂移角度为水平方向上的漂移距离为3度,变焦倍数为10倍,飞行器可以根据该漂移角度和该变焦倍数,通过查表的方式获取该云台的控制参数,若该控制参数中包括控制参数P=4.5,调整步长为0.3度,则飞行器可以快速地对云台在平移轴(yaw)上的姿态进行调整。
其中,该表中记录了与漂移角度、变焦倍数匹配的控制参数,该表可以是根据历史控制参数值设置的。
举例来说,在电力巡检、园区安全巡逻、森林防火巡逻中,飞行器一般会在高空飞行,但是又需要对地面上局部地区进行观测时,飞行器可以将该局部地区作为目标特征点,并放大摄像设备的变焦倍数,以便可以比较清晰的观测到该目标特征点,然后可以计算该目标特征点在拍摄的图像中的漂移像素,根据该目标特征点的漂移像素,确定该摄像设备的漂移角度,接着可以根据该漂移角度及变焦倍数对云台的姿态进行调整,以便可以保持跟踪画面的稳定性。
其中,飞行器在对远距离的跟踪对象进行监控时,通过对云台的姿态调整,不仅可以对云台的漂移进行补偿,还能够智能的将感兴趣的区域(即至少一个目标特征点)保持在跟踪画面的中央区域,从而可以便捷的提高跟踪画面的稳定性,并提高跟踪效果。
本发明实施例中,飞行器可以获取至少一个目标特征点在多帧图像中的漂移像素,该多帧图像为所述摄像设备持续拍摄的图像;利用该至少一个目标特征点的漂移像素以及该摄像设备的摄像参数,确定该摄像设备的漂移角度;根据该漂移角度对该云台的姿态进行调整,可以自适应地提高跟踪画面的稳定性。
请参阅图2,图2为本发明实施例提供的又一种控制方法的流程示意图,本实施例中所描述的控制方法,包括:
201、飞行器获取至少一个目标特征点在多帧图像中的漂移像素,所述多帧图像为所述摄像设备持续拍摄的图像。
202、飞行器针对该至少一个目标特征点中每个目标特征点,根据该目标特征点的漂移像素以及该摄像设备的摄像参数,确定该目标特征点对应的漂移角度。
203、飞行器利用该至少一个目标特征点中每个目标特征点对应的漂移角度,确定该摄像设备的漂移角度。
作为一种可选的实施例,飞行器利用该至少一个目标特征点中每个目标特征点对应的漂移角度,确定该摄像设备的漂移角度的具体方式可以包括:可以计算该至少一个目标特征点的平均漂移角度,并将该平均漂移角度作为该摄像设备的漂移角度。
作为一种可选的实施例,飞行器利用该至少一个目标特征点中每个目标特征点对应的漂移角度,确定该摄像设备的漂移角度的具体方式也可以包括:可以将该至少一个目标特征点中任一个目标特征点对应的漂移角度作为该摄像设备的漂移角度,如该至少一个目标特征点中漂移角度最大的目标特征点对应的漂移角度作为该摄像设备的漂移角度。
作为一种可选的实施例,飞行器利用该至少一个目标特征点中每个目标特征点对应的漂移角度,确定该摄像设备的漂移角度的具体方式还可以包括:可以将对该至少一个目标特征点的漂移角度进行滤波处理,进而得到该摄像设备的漂移角度。
举例来说,针对所述至少一个目标特征点中每个目标特征点,飞行器可以根据该目标特征点的漂移像素以及该摄像设备的视场角度,确定该目标特征点对应的漂移角度,可以将对该至少一个目标特征点的漂移角度进行卡尔曼滤波处理,滤除受噪声干扰的特征点的漂移角度,进而得到该摄像设备的漂移角度,以提高漂移角度的准确性。
204、飞行器获取该摄像设备的变焦倍数。
本发明实施例中,飞行器获取可以通过查看该摄像设备的拍摄参数来获取的变焦倍数。
205、飞行器根据该漂移角度和所述变焦倍数,确定该云台的控制参数。
本发明实施实施例中,由于云台的偏移或者抖动与摄像设备的变焦倍数具有关联关系,即云台的微小偏移或者抖动会随着摄像设备的变焦倍数变大而被放大。特别的,若该摄像设备为高倍相机时,拍摄使用的变焦倍数越高,云台的微小偏移或者抖动也被放大的倍数也很高,如摄像设备是30倍光学变焦、6倍数码变焦的Z30高倍相机,随着拍摄使用的变焦倍数的放大,云台的微小漂 移、抖动也同时被放大20倍甚至更多。因此,飞行器可以根据该漂移角度和该变焦倍数,确定该云台的控制参数,以便可以采用该控制参数对云台的姿态进行调整。
206、飞行器利用该控制参数对该云台的姿态进行调整。
本发明实施例中,飞行器可以利用该控制参数对该云台的姿态进行调整。
需要说明的是,本发明实施例中的步骤的说明可以参考实施例一中对应步骤的说明,在此不再赘述。
本发明实施例中,飞行器可以获取到摄像设备的漂移角度,并根据漂移角度和摄像设备的变焦倍数,确定云台的控制参数,采用云台的控制参数对云台的姿态进行调整,可以适用于不同的变焦倍数的摄像设备,可以自适应的提高跟踪画面的稳定性。
请参阅图3,为本发明实施例提供的一种控制装置的结构示意图。该装置可应用于云台中,也可以应用于飞行器中,本实施例中所描述的控制装置,包括:
获取模块301,用于获取至少一个目标特征点在多帧图像中的漂移像素,所述多帧图像为所述摄像设备持续拍摄的图像。
确定模块302,用于利用所述至少一个目标特征点的漂移像素以及所述摄像设备的摄像参数,确定所述摄像设备的漂移角度。
调整模块303,用于根据所述漂移角度对所述云台的姿态进行调整。
可选的,所述获取模块301,还用于从所述多帧图像中第一帧图像的中心区域获取多个特征点。
可选的,所述确定模块302,还用于根据所述多个特征点在所述多帧图像中的位置信息,从所述多个特征点中过滤出至少一个目标特征点。
可选的,所述确定模块302,具体用于针对所述至少一个目标特征点中的每个目标特征点,根据该目标特征点在所述多帧图像中的多组漂移像素,分别确定该目标特征点在水平方向和竖直方向上的漂移像素。
可选的,所述确定模块302,具体用于针对所述至少一个目标特征点中每个目标特征点,根据该目标特征点的漂移像素以及所述摄像设备的摄像参数, 确定该目标特征点对应的漂移角度;利用所述至少一个目标特征点中每个目标特征点对应的漂移角度,确定所述摄像设备的漂移角度。
可选的,所述确定模块302,具体用于根据所述摄像设备的摄像参数确定所述摄像设备的视场角度;利用所述摄像设备的视场角度和该目标特征点的漂移像素,确定该目标特征点对应的漂移角度。
所述调整模块303,具体用于获取所述摄像设备的变焦倍数;根据所述漂移角度和所述变焦倍数,确定所述云台的控制参数;利用所述控制参数对所述云台的姿态进行调整。
其中,所述控制参数包括比例-积分-微分(PID)控制参数的中一个或多个。
其中,所述漂移角度包括在水平方向以及竖直方向上的漂移距离。
本发明实施例中,飞行器可以获取至少一个目标特征点在多帧图像中的漂移像素,该多帧图像为所述摄像设备持续拍摄的图像;利用该至少一个目标特征点的漂移像素以及该摄像设备的摄像参数,确定该摄像设备的漂移角度;根据该漂移角度对该云台的姿态进行调整,可以自适应地提高跟踪画面的稳定性。
请参见图4,图4是本发明实施例提供的一种云台的示意性框图。云台用于承载摄像设备,如图所示的本实施例中的一种云台可以包括:至少一个处理器401,例如CPU;至少一个存储器402,通信装置403,控制器404,上述处理器401、存储器402、和通信装置403、控制器404,通过总线405连接。
其中,通信装置403,用于收发消息,通信装置403,可以具体用于与摄像设备进行交互信息。
控制器404,用于控制云台的姿态。
存储器402用于存储指令,处理器401调用存储器402中存储的程序代码。
具体的,处理器401调用存储器402中存储的程序代码,执行以下操作:
获取至少一个目标特征点在多帧图像中的漂移像素,所述多帧图像为所述摄像设备持续拍摄的图像;
利用所述至少一个目标特征点的漂移像素以及所述摄像设备的摄像参数,确定所述摄像设备的漂移角度;
根据所述漂移角度对所述云台的姿态进行调整。
可选的,处理器401调用存储器402中存储的程序代码,还可以执行以下操作:
从所述多帧图像中第一帧图像的中心区域获取多个特征点;
根据所述多个特征点在所述多帧图像中的位置信息,从所述多个特征点中过滤出至少一个目标特征点。
可选的,处理器401调用存储器402中存储的程序代码,还可以执行以下操作:
针对所述至少一个目标特征点中的每个目标特征点,根据该目标特征点在所述多帧图像中的多组漂移像素,分别确定该目标特征点在水平方向和竖直方向上的漂移像素。
可选的,处理器401调用存储器402中存储的程序代码,还可以执行以下操作:
针对所述至少一个目标特征点中每个目标特征点,根据该目标特征点的漂移像素以及所述摄像设备的摄像参数,确定该目标特征点对应的漂移角度;
利用所述至少一个目标特征点中每个目标特征点对应的漂移角度,确定所述摄像设备的漂移角度。
可选的,处理器401调用存储器402中存储的程序代码,还可以执行以下操作:
根据所述摄像设备的摄像参数确定所述摄像设备的视场角度;
利用所述摄像设备的视场角度和该目标特征点的漂移像素,确定该目标特征点对应的漂移角度。
可选的,处理器401调用存储器402中存储的程序代码,还可以执行以下操作:
获取所述摄像设备的变焦倍数;
根据所述漂移角度和所述变焦倍数,确定所述云台的控制参数;
利用所述控制参数对所述云台的姿态进行调整。
其中,所述控制参数包括比例-积分-微分(PID)控制参数的中一个或多个。
其中,所述漂移角度包括在水平方向以及竖直方向上的漂移距离。
本发明实施例中,飞行器可以获取至少一个目标特征点在多帧图像中的漂移像素,该多帧图像为所述摄像设备持续拍摄的图像;利用该至少一个目标特征点的漂移像素以及该摄像设备的摄像参数,确定该摄像设备的漂移角度;根据该漂移角度对该云台的姿态进行调整,可以自适应地提高跟踪画面的稳定性。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (15)

  1. 一种控制方法,应用于云台上,所述云台用于承载摄像设备,其特征在于,包括:
    获取至少一个目标特征点在多帧图像中的漂移像素,所述多帧图像为所述摄像设备持续拍摄的图像;
    利用所述至少一个目标特征点的漂移像素以及所述摄像设备的摄像参数,确定所述摄像设备的漂移角度;
    根据所述漂移角度对所述云台的姿态进行调整。
  2. 根据权利要求1所述的方法,所述获取至少一个目标特征点在所述多帧图像中的平均漂移像素之前,所述方法还包括:
    从所述多帧图像中第一帧图像的中心区域获取多个特征点;
    根据所述多个特征点在所述多帧图像中的位置信息,从所述多个特征点中过滤出至少一个目标特征点。
  3. 根据权利要求1所述的方法,其特征在于,所述获取至少一个目标特征点在所述多帧图像中的漂移像素,包括:
    针对所述至少一个目标特征点中的每个目标特征点,根据该目标特征点在所述多帧图像中的多组漂移像素,分别确定该目标特征点在水平方向和竖直方向上的漂移像素。
  4. 根据权利要求3所述的方法,其特征在于,所述利用所述至少一个目标特征点的漂移像素以及所述摄像设备的摄像参数,确定所述摄像设备的漂移角度,包括:
    针对所述至少一个目标特征点中每个目标特征点,根据该目标特征点的漂移像素以及所述摄像设备的摄像参数,确定该目标特征点对应的漂移角度;
    利用所述至少一个目标特征点中每个目标特征点对应的漂移角度,确定所述摄像设备的漂移角度。
  5. 根据权利要求4所述的方法,其特征在于,所述根据该目标特征点的漂移像素以及所述摄像设备的摄像参数,确定该目标特征点对应的漂移角度,包括:
    根据所述摄像设备的摄像参数确定所述摄像设备的视场角度;
    利用所述摄像设备的视场角度和该目标特征点的漂移像素,确定该目标特征点对应的漂移角度。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述根据所述摄像设备的漂移角度对所述云台的姿态进行调整,包括:
    获取所述摄像设备的变焦倍数;
    根据所述漂移角度和所述变焦倍数,确定所述云台的控制参数;
    利用所述控制参数对所述云台的姿态进行调整。
  7. 根据权利要求6所述的方法,其特征在于,
    所述控制参数包括比例-积分-微分PID控制参数的中一个或多个;
    所述漂移角度包括在水平方向以及竖直方向上的漂移距离。
  8. 一种控制装置,应用于云台上,所述云台用于承载摄像设备,其特征在于,包括:
    获取模块,用于获取至少一个目标特征点在多帧图像中的漂移像素,所述多帧图像为所述摄像设备持续拍摄的图像;
    确定模块,用于利用所述至少一个目标特征点的漂移像素以及所述摄像设备的摄像参数,确定所述摄像设备的漂移角度;
    调整模块,用于根据所述漂移角度对所述云台的姿态进行调整。
  9. 根据权利要求8所述的装置,
    所述获取模块,还用于从所述多帧图像中第一帧图像的中心区域获取多个特征点;
    所述确定模块,还用于根据所述多个特征点在所述多帧图像中的位置信 息,从所述多个特征点中过滤出至少一个目标特征点。
  10. 根据权利要求8所述的装置,其特征在于,
    所述确定模块,具体用于针对所述至少一个目标特征点中的每个目标特征点,根据该目标特征点在所述多帧图像中的多组漂移像素,分别确定该目标特征点在水平方向和竖直方向上的漂移像素。
  11. 根据权利要求10所述的装置,其特征在于,
    所述确定模块,具体用于针对所述至少一个目标特征点中每个目标特征点,根据该目标特征点的漂移像素以及所述摄像设备的摄像参数,确定该目标特征点对应的漂移角度;利用所述至少一个目标特征点中每个目标特征点对应的漂移角度,确定所述摄像设备的漂移角度。
  12. 根据权利要求11所述的装置,其特征在于,
    所述确定模块,具体用于根据所述摄像设备的摄像参数确定所述摄像设备的视场角度;利用所述摄像设备的视场角度和该目标特征点的漂移像素,确定该目标特征点对应的漂移角度。
  13. 根据权利要求8至12任一项所述的装置,其特征在于,
    所述调整模块,具体用于获取所述摄像设备的变焦倍数;根据所述漂移角度和所述变焦倍数,确定所述云台的控制参数;利用所述控制参数对所述云台的姿态进行调整。
  14. 根据权利要求13所述的装置,其特征在于,
    所述控制参数包括PID控制参数的中一个或多个;
    所述漂移角度包括在水平方向以及竖直方向上的漂移距离。
  15. 一种云台,其特征在于,包括:处理器和存储器,所述处理器和所述存储器通过总线连接,所述存储器存储有可执行程序代码,所述处理器用于调用所述可执行程序代码,执行如权利要求1~7中任一项所述的控制方法。
PCT/CN2017/085855 2017-05-25 2017-05-25 一种控制方法、装置及云台 WO2018214090A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780004686.3A CN108475075A (zh) 2017-05-25 2017-05-25 一种控制方法、装置及云台
PCT/CN2017/085855 WO2018214090A1 (zh) 2017-05-25 2017-05-25 一种控制方法、装置及云台
US16/529,505 US20190354115A1 (en) 2017-05-25 2019-08-01 Control method, device, and gimbal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/085855 WO2018214090A1 (zh) 2017-05-25 2017-05-25 一种控制方法、装置及云台

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/529,505 Continuation US20190354115A1 (en) 2017-05-25 2019-08-01 Control method, device, and gimbal

Publications (1)

Publication Number Publication Date
WO2018214090A1 true WO2018214090A1 (zh) 2018-11-29

Family

ID=63265982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085855 WO2018214090A1 (zh) 2017-05-25 2017-05-25 一种控制方法、装置及云台

Country Status (3)

Country Link
US (1) US20190354115A1 (zh)
CN (1) CN108475075A (zh)
WO (1) WO2018214090A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7022559B2 (ja) * 2017-10-17 2022-02-18 株式会社トプコン 無人航空機の制御方法および無人航空機の制御用プログラム
CN110291780B (zh) * 2019-05-15 2021-10-15 深圳市大疆创新科技有限公司 图像增稳控制方法、拍摄设备和可移动平台
CN110083180A (zh) * 2019-05-22 2019-08-02 深圳市道通智能航空技术有限公司 云台控制方法、装置、控制终端及飞行器系统
CN110233968B (zh) * 2019-06-21 2021-04-06 上海摩象网络科技有限公司 图像拍摄控制方法及其装置、图像拍摄系统
CN111712857A (zh) * 2019-06-25 2020-09-25 深圳市大疆创新科技有限公司 图像处理方法、装置、云台和存储介质
WO2020258164A1 (zh) * 2019-06-27 2020-12-30 深圳市大疆创新科技有限公司 对目标进行跟踪的方法、装置及计算机存储介质
CN110855891A (zh) * 2019-11-26 2020-02-28 爱菲力斯(深圳)科技有限公司 基于人体姿态调整摄像角度的方法、装置和机器人
WO2021179217A1 (zh) * 2020-03-11 2021-09-16 深圳市大疆创新科技有限公司 图像处理系统、可移动平台及其图像处理方法、存储介质
CN111479063B (zh) * 2020-04-15 2021-04-06 上海摩象网络科技有限公司 云台驱动方法、设备及手持相机
WO2021232235A1 (zh) * 2020-05-19 2021-11-25 深圳市大疆创新科技有限公司 图像增稳方法、变焦相机、云台相机与无人机
WO2022141197A1 (zh) * 2020-12-30 2022-07-07 深圳市大疆创新科技有限公司 云台的控制方法、装置、可移动平台和存储介质
US20220329736A1 (en) * 2021-04-12 2022-10-13 Raytheon Company Payload yaw rotation for focal plane cross-track columnar scan sampling
CN113296546B (zh) * 2021-04-22 2023-01-06 杭州晟冠科技有限公司 一种轮船联动跟踪定位误差的补偿方法
CN114785955B (zh) * 2022-05-05 2023-08-15 广州新华学院 复杂场景下动态相机运动补偿方法、系统及存储介质
CN116030099B (zh) * 2023-03-31 2023-08-08 北京尚优力达科技有限公司 一种基于ptz相机的多目标跟踪方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105472252A (zh) * 2015-12-31 2016-04-06 零度智控(北京)智能科技有限公司 一种无人机获取图像的系统及方法
CN106257911A (zh) * 2016-05-20 2016-12-28 上海九鹰电子科技有限公司 用于视频图像的图像稳定方法和装置
JP2017034320A (ja) * 2015-07-29 2017-02-09 キヤノン株式会社 移動機構を持った撮像装置
CN106411994A (zh) * 2016-06-28 2017-02-15 杨珊珊 基于无人飞行器拍摄的图像提示系统及其图像拍摄方法
CN106525074A (zh) * 2016-10-13 2017-03-22 重庆零度智控智能科技有限公司 一种云台漂移的补偿方法、装置、云台和无人机
CN106586011A (zh) * 2016-12-12 2017-04-26 高域(北京)智能科技研究院有限公司 航拍无人飞行器的对准方法及其航拍无人飞行器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103841313A (zh) * 2012-11-27 2014-06-04 华为技术有限公司 云台摄像机控制方法、系统及设备
CN104361599B (zh) * 2014-11-25 2017-08-01 深圳市哈工大交通电子技术有限公司 云台摄像机的标定及拍摄方法
CN105513072A (zh) * 2015-12-05 2016-04-20 中国航空工业集团公司洛阳电光设备研究所 一种云台校正方法
CN106125744B (zh) * 2016-06-22 2019-01-22 山东鲁能智能技术有限公司 基于视觉伺服的变电站巡检机器人云台控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017034320A (ja) * 2015-07-29 2017-02-09 キヤノン株式会社 移動機構を持った撮像装置
CN105472252A (zh) * 2015-12-31 2016-04-06 零度智控(北京)智能科技有限公司 一种无人机获取图像的系统及方法
CN106257911A (zh) * 2016-05-20 2016-12-28 上海九鹰电子科技有限公司 用于视频图像的图像稳定方法和装置
CN106411994A (zh) * 2016-06-28 2017-02-15 杨珊珊 基于无人飞行器拍摄的图像提示系统及其图像拍摄方法
CN106525074A (zh) * 2016-10-13 2017-03-22 重庆零度智控智能科技有限公司 一种云台漂移的补偿方法、装置、云台和无人机
CN106586011A (zh) * 2016-12-12 2017-04-26 高域(北京)智能科技研究院有限公司 航拍无人飞行器的对准方法及其航拍无人飞行器

Also Published As

Publication number Publication date
CN108475075A (zh) 2018-08-31
US20190354115A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
WO2018214090A1 (zh) 一种控制方法、装置及云台
CN108259703B (zh) 一种云台的跟拍控制方法、装置及云台
US11073389B2 (en) Hover control
CN108323190B (zh) 一种避障方法、装置和无人机
EP2652948B1 (en) Zooming factor computation
WO2019104641A1 (zh) 无人机、其控制方法以及记录介质
US10353403B2 (en) Autonomous flying device, control method of autonomous flying device, and non-transitory recording medium
WO2021212445A1 (zh) 拍摄方法、可移动平台、控制设备和存储介质
CN110622091A (zh) 云台的控制方法、装置、系统、计算机存储介质及无人机
CN110291780B (zh) 图像增稳控制方法、拍摄设备和可移动平台
CN110337668B (zh) 图像增稳方法和装置
CN112639652A (zh) 目标跟踪方法和装置、可移动平台以及成像平台
WO2021081707A1 (zh) 数据处理方法、装置、可移动平台及计算机可读存储介质
CN110291777B (zh) 图像采集方法、设备及机器可读存储介质
WO2020014953A1 (zh) 一种图像处理方法及设备
CN110741626B (zh) 拍摄控制方法、可移动平台、控制设备及存储介质
WO2019205103A1 (zh) 云台姿态修正方法、云台姿态修正装置、云台、云台系统和无人机
EP3098683A1 (en) Method and system for dynamic point of interest shooting with uav
US11303810B2 (en) Image data processing method, device, platform, and storage medium
WO2021135824A1 (zh) 图像曝光方法及装置、无人机
CN112334853A (zh) 航线调整方法、地面端设备、无人机、系统和存储介质
WO2021232235A1 (zh) 图像增稳方法、变焦相机、云台相机与无人机
JP2020017924A (ja) 移動体、撮像制御方法、プログラム、及び記録媒体
JP2008224937A (ja) 撮像装置
CN113542718B (zh) 一种无人机立体摄影方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911378

Country of ref document: EP

Kind code of ref document: A1