WO2018214005A1 - 农业无人飞行器的控制方法、飞行控制器及农业无人机 - Google Patents

农业无人飞行器的控制方法、飞行控制器及农业无人机 Download PDF

Info

Publication number
WO2018214005A1
WO2018214005A1 PCT/CN2017/085395 CN2017085395W WO2018214005A1 WO 2018214005 A1 WO2018214005 A1 WO 2018214005A1 CN 2017085395 W CN2017085395 W CN 2017085395W WO 2018214005 A1 WO2018214005 A1 WO 2018214005A1
Authority
WO
WIPO (PCT)
Prior art keywords
unmanned aerial
aerial vehicle
agricultural unmanned
agricultural
deceleration distance
Prior art date
Application number
PCT/CN2017/085395
Other languages
English (en)
French (fr)
Inventor
吴旭民
闫光
冯壮
敖继渊
周乐
孙久之
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201780004969.8A priority Critical patent/CN108475069B/zh
Priority to PCT/CN2017/085395 priority patent/WO2018214005A1/zh
Publication of WO2018214005A1 publication Critical patent/WO2018214005A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0816Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/40UAVs specially adapted for particular uses or applications for agriculture or forestry operations

Definitions

  • Embodiments of the present invention relate to the field of drones, and in particular, to a method for controlling an agricultural unmanned aerial vehicle, a flight controller, and an agricultural drone.
  • Agricultural unmanned aerial vehicles need to complete the protection of agricultural and forestry plants, so the requirements for agricultural unmanned aerial vehicles are higher, such as controlling the spraying flow of pesticides, controlling the flight of agricultural unmanned aerial vehicles along the route, and controlling the direction of spraying pesticides on the nozzles.
  • Embodiments of the present invention provide a control method for an agricultural unmanned aerial vehicle, a flight controller, and an agricultural drone to improve stability of an agricultural unmanned aerial vehicle during flight.
  • An aspect of an embodiment of the present invention provides a method for controlling an agricultural unmanned aerial vehicle, including:
  • the agricultural unmanned aerial vehicle is controlled to fly according to the flight parameters.
  • Another aspect of an embodiment of the present invention is to provide a flight controller comprising: one or more processors operating separately or in cooperation, the processor for:
  • the agricultural unmanned aerial vehicle is controlled to fly according to the flight parameters.
  • a power system mounted to the fuselage for providing flight power
  • the control method, the flight controller and the agricultural drone of the agricultural unmanned aerial vehicle provided by the embodiment provide the quality of the agricultural unmanned aerial vehicle, adjust the flight parameters according to the quality of the agricultural unmanned aerial vehicle, and control according to the flight parameters thereof.
  • the flight of agricultural unmanned aerial vehicles due to the real-time change of the mass of agricultural unmanned aerial vehicles, makes the quality of agricultural unmanned aerial vehicles change in real time, so that the flight parameters can be adjusted in real time according to the changing quality of agricultural unmanned aerial vehicles, and the agriculture is controlled in real time.
  • the human aircraft flies to ensure that it can fly smoothly, so that it can evenly spray pesticides, seeds or water.
  • FIG. 1 is a flowchart of a method for controlling an agricultural unmanned aerial vehicle according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the force of an agricultural unmanned aerial vehicle according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of another agricultural unmanned aerial vehicle according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a flight path of an agricultural unmanned aerial vehicle according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for controlling an agricultural unmanned aerial vehicle according to another embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for controlling an agricultural unmanned aerial vehicle according to another embodiment of the present invention.
  • FIG. 7 is a structural diagram of a flight controller according to an embodiment of the present invention.
  • FIG. 8 is a structural diagram of an unmanned aerial vehicle according to an embodiment of the present invention.
  • a component when referred to as being "fixed” to another component, it can be directly on the other component or the component can be present. When a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
  • FIG. 1 is a flowchart of a method for controlling an agricultural unmanned aerial vehicle according to an embodiment of the present invention. As shown in FIG. 1, the method in this embodiment may include:
  • Step S101 Acquiring the quality of the agricultural unmanned aerial vehicle, the quality of the agricultural unmanned aerial vehicle including the mass of the agricultural unmanned aerial vehicle body and the quality of the load.
  • the execution body of this embodiment may be a flight controller of an unmanned aerial vehicle, or may be other general-purpose or dedicated processors.
  • a flight controller is schematically illustrated.
  • the pesticides, seeds, water, etc. which are loaded with the operation time, are continuously reduced, that is, the load quality of the agricultural unmanned aerial vehicle is constantly changing, and the quality of the agricultural unmanned aerial vehicle is constantly changing.
  • the agricultural unmanned aerial vehicle The quality includes the quality of the agricultural unmanned aircraft fuselage and the quality of the load.
  • 20 denotes the fuselage of the agricultural unmanned aerial vehicle
  • 21 denotes the propeller of the agricultural unmanned aerial vehicle
  • the motor of the agricultural unmanned aerial vehicle drives the propeller to rotate, and the propeller generates the pulling force F when rotating, and as the propeller speed is continuously increased,
  • the pulling force F generated by the propeller is continuously increased, and when the pulling force F generated by the propeller and the gravity G of the agricultural unmanned aerial vehicle are balanced, the agricultural unmanned aerial vehicle is suspended in the air.
  • the gravity G of the agricultural unmanned aerial vehicle is equal to the product of the mass m of the agricultural unmanned aerial vehicle and the gravitational acceleration g, when the agricultural unmanned aerial vehicle is in a suspended state, according to the pulling force F generated by the propeller and the gravity G of the agricultural unmanned aerial vehicle, Calculate the mass m of the agricultural unmanned aerial vehicle.
  • agricultural unmanned aerial vehicles are moving, such as moving forward, turning to the right, turning to the left, etc., so that the attitude angle of the agricultural unmanned aerial vehicle changes, and the following can be used to determine the agricultural
  • the quality of the human aircraft is achieved by acquiring the pulling force generated by the propeller of the agricultural unmanned aerial vehicle and the attitude angle of the agricultural unmanned aerial vehicle; the pulling force generated by the propeller of the agricultural unmanned aerial vehicle and the agricultural unmanned aerial vehicle
  • the attitude angle determines the quality of the agricultural unmanned aerial vehicle.
  • the flight controller includes an Inertial Measurement Unit (IMU), and the inertial measurement unit generally includes a gyroscope and an accelerometer.
  • the inertial measurement unit is configured to detect a pitch angle, a roll angle, a yaw angle, an acceleration, and the like of the agricultural unmanned aerial vehicle.
  • Determining the mass of the agricultural unmanned aerial vehicle according to the pulling force generated by the propeller of the agricultural unmanned aerial vehicle and the attitude angle of the agricultural unmanned aerial vehicle, according to the pulling force and inertia generated by the propeller of the agricultural unmanned aerial vehicle Determining a current component angle of the agricultural unmanned aerial vehicle detected by the measuring unit IMU, determining a component force of the tensile force in a vertical direction; determining the agricultural unmanned aerial vehicle according to a component force of the tensile force in a vertical direction and a gravity acceleration Current quality.
  • the direction indicated by the arrow 22 is the positive direction of the X-axis of the body coordinate system of the agricultural unmanned aerial vehicle, that is, the direction from the center of the agricultural unmanned aerial vehicle to the head, and the coordinate system of the body
  • the angle between the X-axis and the horizontal direction is the pitch angle ⁇ of the agricultural unmanned aerial vehicle
  • F is the tensile force generated when the propeller rotates
  • the component force of F in the vertical direction is F1
  • the component force in the horizontal direction is F2, F1.
  • Equal to F multiplied by the cosine of the angle ⁇ , F2 is equal to the sine of F multiplied by the angle ⁇ .
  • determining the current quality of the agricultural unmanned aerial vehicle includes the following possible situations:
  • the agricultural unmanned aerial vehicle has no acceleration in the vertical direction.
  • the agricultural unmanned aerial vehicle has no vertical upward acceleration in the vertical direction, and there is no vertical downward acceleration.
  • the pulling force F generated by the propeller is The component F1 in the vertical direction is balanced with the gravity G of the agricultural unmanned aerial vehicle, where G is equal to the product of the current mass m of the agricultural unmanned aerial vehicle and the current gravitational acceleration g.
  • G is equal to the product of the current mass m of the agricultural unmanned aerial vehicle and the current gravitational acceleration g.
  • F1 and G Determine the current mass m of the agricultural unmanned aerial vehicle.
  • the agricultural unmanned aerial vehicle has a vertical upward acceleration, or the agricultural unmanned aerial vehicle has a vertical downward acceleration.
  • the IMU contains three single-axis accelerometers and three single-axis gyroscopes, Three single-axis accelerometers can detect at least the acceleration of the agricultural unmanned aerial vehicle in the vertical direction, such as vertical upward acceleration or vertical downward acceleration.
  • the F is vertical.
  • the component force F1 in the direction is greater than the gravity G of the agricultural unmanned aerial vehicle.
  • F1 offsets the remaining part of G to make the agricultural unmanned aerial vehicle generate vertical upward acceleration.
  • F1 agricultural unmanned flight in vertical upward acceleration It is also possible to calculate the current mass m of the agricultural unmanned aerial vehicle.
  • the current mass m of the agricultural unmanned aerial vehicle can also be calculated.
  • Step S102 Adjust flight parameters of the agricultural unmanned aerial vehicle according to the quality of the agricultural unmanned aerial vehicle.
  • the flight parameters of the agricultural unmanned aerial vehicle At least one of the following: an attitude angle, an acceleration distance, a deceleration distance, an acceleration in a horizontal direction, and an acceleration in a vertical direction of the agricultural unmanned aerial vehicle.
  • an attitude angle an acceleration angle
  • a deceleration distance an acceleration in a horizontal direction
  • an acceleration in a vertical direction of the agricultural unmanned aerial vehicle Let's take the deceleration distance as an example: if it is not based on agricultural unmanned aerial vehicles Quality, to adjust the phenomenon of the deceleration distance of agricultural unmanned aerial vehicles.
  • the agricultural unmanned aerial vehicle is flying according to the preset route 41.
  • the agricultural unmanned aerial vehicle flies from point A to point B, from point B to point C, and then from point C. Fly to point D, and so on.
  • point A is the starting point for the operation of the agricultural unmanned aerial vehicle, that is, the agricultural unmanned aerial vehicle is fully loaded at point A, and the pesticides, seeds or water loaded during the flight are continuously reduced with the operation time, thus making the agricultural unmanned The quality of the aircraft is constantly decreasing.
  • the agricultural unmanned aerial vehicle needs to adjust its flight direction at the corner position of the preset route, such as point B, point C, point D, etc.
  • the agricultural unmanned aerial vehicle should be decelerated before reaching the corner position, for example, the agricultural unmanned aerial vehicle from point E Start deceleration and reach point B.
  • the distance from point E to point B is the deceleration distance. It is assumed that the deceleration distance of the agricultural unmanned aerial vehicle is 2 meters under full load. The deceleration distance of the agricultural unmanned aerial vehicle will decrease with the decrease of its mass.
  • the agricultural unmanned aerial vehicle will fly according to the deceleration distance at full load, for example, 2 meters, causing the agricultural unmanned aerial vehicle to decelerate from the E point and may not reach the point B. Stopped. At this time, the agricultural unmanned aerial vehicle determines that it has not reached point B according to the preset route and the current position of the fuselage, and then continues to fly to point B from the position stopped midway, resulting in the agricultural unmanned aerial vehicle not being able to compare. Smooth flight, the pesticides, seeds or water loaded on it cannot be sprayed evenly.
  • the present embodiment provides a feasible implementation manner: according to the current mass and attitude angle of the agricultural unmanned aerial vehicle Calculating a current deceleration distance of the agricultural unmanned aerial vehicle; comparing the current deceleration distance and an initial deceleration distance, wherein the initial deceleration distance is a preset deceleration distance when the agricultural unmanned aerial vehicle is fully loaded; if the current deceleration The distance is not equal to the initial deceleration distance, and the attitude angle of the agricultural unmanned aerial vehicle is adjusted such that the current deceleration distance and the initial deceleration distance are equal.
  • the force component of the propeller's pulling force in the horizontal direction is calculated according to the pulling force of the propeller and the pitch angle of the agricultural unmanned aerial vehicle, and the force component in the horizontal direction according to the pulling force of the propeller and the current state of the agricultural unmanned aerial vehicle.
  • the mass calculates the acceleration of the agricultural unmanned aerial vehicle in the horizontal direction, and calculates the current deceleration distance S' of the agricultural unmanned aerial vehicle according to the acceleration of the agricultural unmanned aerial vehicle in the horizontal direction.
  • the preset deceleration distance is recorded as the initial Starting deceleration distance S, if S' and S are not equal, it means that the agricultural unmanned aerial vehicle starts to decelerate from point E and has not reached point B, and may stop midway.
  • the current deceleration distance is equal to the initial deceleration distance, specifically, adjusting the attitude angle of the agricultural unmanned aerial vehicle; and calculating the agricultural unmanned aerial vehicle in the horizontal direction according to the adjusted attitude angle of the agricultural unmanned aerial vehicle Acceleration; calculating the current deceleration distance according to the acceleration of the agricultural unmanned aerial vehicle in the horizontal direction; if the current deceleration distance and the initial deceleration distance are not equal, continuing to adjust the attitude angle of the agricultural unmanned aerial vehicle, So that the current deceleration distance and the initial deceleration distance are equal.
  • adjusting the pitch angle of the agricultural unmanned aerial vehicle at point E as shown in FIG. 4, and calculating the acceleration of the agricultural unmanned aerial vehicle in the horizontal direction according to the adjusted pitch angle of the agricultural unmanned aerial vehicle, according to the The acceleration of the agricultural unmanned aerial vehicle in the horizontal direction is used to calculate the current deceleration distance of the agricultural unmanned aerial vehicle again. If the calculated current deceleration distance is not equal to the initial deceleration distance S, the pitch angle of the agricultural unmanned aerial vehicle is continuously adjusted. Until the current deceleration distance of the agricultural unmanned aerial vehicle is equal to the initial deceleration distance S.
  • the propeller when calculating the acceleration of the agricultural unmanned aerial vehicle in the horizontal direction, the propeller may be determined according to the adjusted attitude angle of the agricultural unmanned aerial vehicle.
  • the component of the tensile force in the horizontal direction; and the acceleration of the agricultural unmanned aerial vehicle in the horizontal direction is calculated according to the component of the tensile force in the horizontal direction and the current mass of the agricultural unmanned aerial vehicle.
  • the quality of the agricultural unmanned aerial vehicle is changing in real time.
  • the deceleration distance of the agricultural unmanned aerial vehicle may be different from the initial deceleration distance at each moment. Therefore, it is necessary to adjust the attitude angle of the agricultural unmanned aerial vehicle in real time.
  • the pitch angle that is to say, as shown in Fig. 4, the agricultural unmanned aerial vehicle decelerates from point E to point B, and its pitch angle changes in real time, so as to ensure a smooth transition of the agricultural unmanned aerial vehicle from point E to Point B, and there will be no pauses in the middle.
  • the embodiment is not limited to adjusting the deceleration distance of the agricultural unmanned aerial vehicle, the attitude angle of the agricultural unmanned aerial vehicle, and the acceleration in the horizontal direction according to the quality of the agricultural unmanned aerial vehicle, and may also be based on the agricultural unmanned The quality of the aircraft, adjusting other flight parameters of the agricultural unmanned aerial vehicle, such as acceleration distance, acceleration in the vertical direction, the specific process will not be described here.
  • Step S103 Control the flight of the agricultural unmanned aerial vehicle according to the flight parameter.
  • the flight speed of the agricultural unmanned aerial vehicle is controlled according to the acceleration of the agricultural unmanned aerial vehicle in the horizontal direction.
  • the agricultural unmanned aerial vehicle starts to decelerate, and its attitude angle, such as the pitch angle, changes in real time. Therefore, the acceleration of the agricultural unmanned aerial vehicle in the horizontal direction is also constantly changing. Therefore, the flight controller needs to be based on agriculture.
  • the acceleration of the aircraft in the horizontal direction controls the flight speed of the agricultural unmanned aerial vehicle in real time to ensure the smooth flight of the agricultural unmanned aerial vehicle.
  • the agricultural unmanned aerial vehicle load quality changes in real time, so that the agriculture
  • the quality of the unmanned aerial vehicle changes in real time so that the flight parameters can be adjusted in real time according to the changing quality of the agricultural unmanned aerial vehicle, and the agricultural unmanned aerial vehicle can be controlled in real time to ensure that it can fly smoothly and make it load pesticides, seeds or water. Can be evenly sprayed.
  • Embodiments of the present invention provide a method for controlling an agricultural unmanned aerial vehicle.
  • FIG. 5 is a flowchart of a method for controlling an agricultural unmanned aerial vehicle according to another embodiment of the present invention.
  • the method for obtaining the tension generated by the propeller of the agricultural unmanned aerial vehicle includes:
  • Step S501 Acquire a rotational speed and an output power of a motor of the agricultural unmanned aerial vehicle.
  • the flight controller acquires electrical parameters of the motor such as the rotational speed and output power of the motor through an electronic governor.
  • Step S502 Calculate a tensile force generated by the propeller of the agricultural unmanned aerial vehicle according to the rotational speed of the motor of the agricultural unmanned aerial vehicle, the output power, and the height of the agricultural unmanned aerial vehicle detected by the barometer from the sea level.
  • the flight controller determines the propeller according to the rotational speed and output power of the motor in step S501. Speed.
  • the agricultural unmanned aerial vehicle is also provided with a barometer, which can detect the height of the agricultural unmanned aerial vehicle from the sea level; according to the height of the agricultural unmanned aerial vehicle from the sea level, the current agricultural unmanned aerial vehicle can also be calculated.
  • the air density at the location; the atmospheric pressure at the location of the agricultural UAV can be calculated based on the height of the agricultural unmanned aerial vehicle from the sea level and the air density at which the agricultural UAV is currently located.
  • the pulling force generated by the propeller of the agricultural unmanned aerial vehicle can be calculated.
  • the pulling force generated by the propeller is equal to The product of the diameter, pitch, width of the propeller, square of the propeller speed, atmospheric pressure, and coefficient.
  • Embodiments of the present invention provide a method for controlling an agricultural unmanned aerial vehicle.
  • FIG. 6 is a flowchart of a method for controlling an agricultural unmanned aerial vehicle according to another embodiment of the present invention. As shown in FIG. 6, the method in this embodiment may include:
  • Step S601 Acquiring the quality of the agricultural unmanned aerial vehicle, the quality of the agricultural unmanned aerial vehicle including the mass of the agricultural unmanned aerial vehicle body and the quality of the load.
  • the quality of the agricultural unmanned aerial vehicle is determined according to a tensile force generated by a propeller of the agricultural unmanned aerial vehicle and an attitude angle of the agricultural unmanned aerial vehicle.
  • Determining the mass of the agricultural unmanned aerial vehicle according to the pulling force generated by the propeller of the agricultural unmanned aerial vehicle and the attitude angle of the agricultural unmanned aerial vehicle, according to the pulling force and inertia generated by the propeller of the agricultural unmanned aerial vehicle Determining a current component angle of the agricultural unmanned aerial vehicle detected by the measuring unit IMU, determining a component force of the tensile force in a vertical direction; determining the agricultural unmanned aerial vehicle according to a component force of the tensile force in a vertical direction and a gravity acceleration Current quality.
  • the current mass m of the agricultural unmanned aerial vehicle is calculated according to the method shown in FIG. 2 or 3. The specific process will not be described here.
  • Step S602 Adjust flight parameters of the agricultural unmanned aerial vehicle according to the quality of the agricultural unmanned aerial vehicle.
  • Step S602 is consistent with step S102, and details are not described herein again.
  • Step S603 controlling the flight of the agricultural unmanned aerial vehicle according to the flight parameter.
  • Step S603 is consistent with step S103, and details are not described herein again.
  • Step S604 according to the quality of the agricultural unmanned aerial vehicle and the quality of the airframe, Calculating the mass of the load of the agricultural unmanned aerial vehicle.
  • the load of the agricultural unmanned aerial vehicle may be further calculated according to the quality of the agricultural unmanned aerial vehicle and the mass of the airframe. quality.
  • the mass of the fuselage is fixed at M
  • the current mass of the agricultural unmanned aerial vehicle is m
  • the current mass m minus the mass M of the fuselage can obtain the current load mass, so that the real-time load quality can be obtained.
  • the quality of the agricultural unmanned aerial vehicle is determined by the pulling force generated by the propeller of the agricultural unmanned aerial vehicle and the attitude angle of the agricultural unmanned aerial vehicle, and the quality of the agricultural unmanned aerial vehicle includes the quality of the agricultural unmanned aerial vehicle body and the quality of the load.
  • the quality of the load of the agricultural unmanned aerial vehicle can be calculated, and the prior art uses the liquid level gauge, the strain gauge sensor, the spring scaler, etc. to measure the quality of the load, if agriculture Unstable aircraft flying during the flight will cause the height of the liquid measured by the level gauge to be incorrect.
  • the measurement results of the strain gauge sensor and the spring scale will be affected by the acceleration of the agricultural unmanned aerial vehicle during the movement. Therefore, Compared with the prior art, the measurement method of the load quality provided by the embodiment is relatively accurate.
  • FIG. 7 is a structural diagram of a flight controller according to an embodiment of the present invention.
  • the flight controller 70 includes one or more processors 71, and one or more processors work independently or in cooperation, and the processor 71 uses Obtaining the quality of the agricultural unmanned aerial vehicle, the quality of the agricultural unmanned aerial vehicle including the mass of the agricultural unmanned aerial vehicle fuselage and the quality of the load; adjusting the agricultural unmanned aerial vehicle according to the quality of the agricultural unmanned aerial vehicle Flight parameters; controlling the agricultural unmanned aerial vehicle flight based on the flight parameters.
  • the processor 71 acquires the mass of the agricultural unmanned aerial vehicle, specifically: acquiring the pulling force generated by the propeller of the agricultural unmanned aerial vehicle and the attitude angle of the agricultural unmanned aerial vehicle; according to the propeller of the agricultural unmanned aerial vehicle The generated pulling force and the attitude angle of the agricultural unmanned aerial vehicle determine the quality of the agricultural unmanned aerial vehicle.
  • the flight controller 70 further includes an inertial measurement unit IMU 72, the inertial measurement unit IMU 72 and the processor 71 are communicatively coupled for detecting the current attitude angle of the agricultural unmanned aerial vehicle; the processor 71 is according to the agricultural unmanned aerial vehicle
  • the pulling force generated by the propeller and the attitude angle of the agricultural unmanned aerial vehicle, when determining the quality of the agricultural unmanned aerial vehicle specifically for: The tension generated by the propeller of the agricultural unmanned aerial vehicle and the current attitude angle of the agricultural unmanned aerial vehicle detected by the inertial measurement unit IMU 72, determining the component force of the tensile force in the vertical direction; according to the tensile force in the vertical direction
  • the component force and the acceleration of gravity determine the current quality of the agricultural unmanned aerial vehicle.
  • the flight parameters of the agricultural unmanned aerial vehicle include at least one of: an attitude angle, a deceleration distance, an acceleration in a horizontal direction, and an acceleration in a vertical direction of the agricultural unmanned aerial vehicle.
  • the processor 71 is configured to: when the flight parameters of the agricultural unmanned aerial vehicle are adjusted according to the quality of the agricultural unmanned aerial vehicle, specifically: calculating the agricultural unmanned aerial vehicle according to the current mass and attitude angle of the agricultural unmanned aerial vehicle The current deceleration distance; comparing the current deceleration distance and the initial deceleration distance, the initial deceleration distance is a deceleration distance carrying a load before the agricultural unmanned aerial vehicle operation; if the current deceleration distance and the initial deceleration distance are not Equally, the attitude angle of the agricultural unmanned aerial vehicle is adjusted such that the current deceleration distance and the initial deceleration distance are equal.
  • the processor 71 adjusts the attitude angle of the agricultural unmanned aerial vehicle to make the current deceleration distance and the initial deceleration distance equal, specifically for: adjusting an attitude angle of the agricultural unmanned aerial vehicle; according to the adjusted Calculating the acceleration angle of the agricultural unmanned aerial vehicle in the horizontal direction; calculating the current deceleration distance according to the acceleration of the agricultural unmanned aerial vehicle in the horizontal direction; if the current deceleration distance and the If the initial deceleration distances are not equal, the attitude angle of the agricultural unmanned aerial vehicle is continuously adjusted to make the current deceleration distance and the initial deceleration distance equal.
  • the processor 71 calculates the acceleration of the agricultural unmanned aerial vehicle in the horizontal direction according to the adjusted attitude angle of the agricultural unmanned aerial vehicle, and is specifically configured to: determine according to the adjusted attitude angle of the agricultural unmanned aerial vehicle The component of the pulling force in the horizontal direction; calculating the acceleration of the agricultural unmanned aerial vehicle in the horizontal direction according to the component of the pulling force in the horizontal direction and the current mass of the agricultural unmanned aerial vehicle.
  • the processor 71 controls the flight of the agricultural unmanned aerial vehicle according to the flight parameter, specifically for: controlling the flight speed of the agricultural unmanned aerial vehicle according to the acceleration of the agricultural unmanned aerial vehicle in the horizontal direction.
  • the present embodiment obtains the quality of the agricultural unmanned aerial vehicle according to the agricultural unmanned aerial vehicle
  • the quality adjusts its flight parameters and controls the flight of the agricultural unmanned aerial vehicle according to its flight parameters. Due to the real-time change of the mass of the agricultural unmanned aerial vehicle load, the quality of the agricultural unmanned aerial vehicle changes in real time, which can be changed according to the agricultural unmanned aerial vehicle.
  • the quality adjusts its flight parameters in real time, and controls the flight of the agricultural unmanned aerial vehicle in real time to ensure that it can fly smoothly, so that the pesticide, seed or water loaded can be evenly sprayed.
  • Embodiments of the present invention provide a flight controller.
  • the processor 71 acquires the pulling force generated by the propeller of the agricultural unmanned aerial vehicle
  • the processor 71 is specifically configured to: acquire the rotational speed and output power of the motor of the agricultural unmanned aerial vehicle. And calculating a tensile force generated by the propeller of the agricultural unmanned aerial vehicle according to the rotational speed of the motor of the agricultural unmanned aerial vehicle, the output power, and the height of the agricultural unmanned aerial vehicle detected by the barometer from the sea level.
  • the processor 71 calculates the tensile force generated by the propeller of the agricultural unmanned aerial vehicle according to the rotational speed of the motor of the agricultural unmanned aerial vehicle, the output power, and the height of the agricultural unmanned aerial vehicle detected by the barometer from the sea level. Determining: determining, according to the rotational speed and output power of the motor of the agricultural unmanned aerial vehicle, the rotational speed of the propeller of the agricultural unmanned aerial vehicle; and calculating the agricultural unmanned aerial vehicle according to the height of the agricultural unmanned aerial vehicle from the sea level The atmospheric pressure at the location; calculating the tensile force generated by the propeller of the agricultural unmanned aerial vehicle based on the physical parameters of the propeller of the agricultural unmanned aerial vehicle, the rotational speed of the propeller, and the atmospheric pressure.
  • the processor 71 is further configured to calculate the quality of the load of the agricultural unmanned aerial vehicle based on the mass of the agricultural unmanned aerial vehicle and the mass of the airframe.
  • the quality of the agricultural unmanned aerial vehicle is determined by the pulling force generated by the propeller of the agricultural unmanned aerial vehicle and the attitude angle of the agricultural unmanned aerial vehicle, and the quality of the agricultural unmanned aerial vehicle includes the quality of the agricultural unmanned aerial vehicle body and the quality of the load.
  • the quality of the load of the agricultural unmanned aerial vehicle can be calculated, and the prior art uses the liquid level gauge, the strain gauge sensor, the spring scaler, etc. to measure the quality of the load, if agriculture Unstable aircraft flying during the flight will cause the height of the liquid measured by the level gauge to be incorrect.
  • the measurement results of the strain gauge sensor and the spring scale will be carried by the agricultural unmanned aerial vehicle.
  • the influence of the acceleration in motion therefore, the measurement method of the load quality provided by the present embodiment is more accurate than the prior art.
  • FIG. 8 is a structural diagram of an unmanned aerial vehicle according to an embodiment of the present invention.
  • the unmanned aerial vehicle 100 includes: a fuselage, a power system, and a flight controller 118, and the power system includes at least one of the following: a motor 107, a propeller 106 and an electronic governor 117, a power system is mounted on the airframe for providing flight power; a flight controller 118 is communicatively coupled to the power system for controlling the flight of the unmanned aerial vehicle;
  • the flight controller 118 includes an inertial measurement unit that includes a gyroscope and an accelerometer. The inertial measurement unit is configured to detect an acceleration, a pitch angle, a roll angle, a yaw angle, and the like of the drone.
  • the unmanned aerial vehicle 100 further includes: a sensing system 108, a communication system 110, a supporting device 102, and a photographing device 104.
  • the supporting device 102 may specifically be a pan/tilt
  • the communication system 110 may specifically include receiving
  • the receiver is configured to receive a wireless signal transmitted by the antenna 114 of the ground station 112, and 116 represents an electromagnetic wave generated during communication between the receiver and the antenna 114.
  • the agricultural unmanned aerial vehicle load quality changes in real time, so that the agriculture
  • the quality of the unmanned aerial vehicle changes in real time so that the flight parameters can be adjusted in real time according to the changing quality of the agricultural unmanned aerial vehicle, and the agricultural unmanned aerial vehicle can be controlled in real time to ensure that it can fly smoothly and make it load pesticides, seeds or water. Can be evenly sprayed.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces.
  • the indirect coupling or communication connection of the unit or unit may be electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present invention. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Catching Or Destruction (AREA)

Abstract

本发明实施例提供一种农业无人飞行器的控制方法、飞行控制器及农业无人机,该方法包括:获取农业无人飞行器的质量,农业无人飞行器的质量包括农业无人飞行器机身的质量和载荷的质量;根据农业无人飞行器的质量,调整农业无人飞行器的飞行参数;根据飞行参数,控制农业无人飞行器飞行。本发明实施例通过获取农业无人飞行器的质量,根据农业无人飞行器的质量调整其飞行参数,并根据其飞行参数来控制农业无人飞行器飞行,由于农业无人飞行器载荷的质量实时变化,使得农业无人飞行器的质量实时变化,从而可以根据农业无人飞行器不断变化的质量来实时调整其飞行参数,保证其能够平稳飞行,使其装载的农药、种子或水等能够均匀喷洒。

Description

农业无人飞行器的控制方法、飞行控制器及农业无人机 技术领域
本发明实施例涉及无人机领域,尤其涉及一种农业无人飞行器的控制方法、飞行控制器及农业无人机。
背景技术
农业无人飞行器需要完成农林植物保护作业,因此对农业无人飞行器的要求更高,例如控制农药的喷洒流量、控制农业无人飞行器沿着航线飞行、控制喷头喷洒农药的方向等。
在农业无人飞行器作业过程中,其装载的农药、种子或水等随作业时间不断减少,即农业无人飞行器的载荷质量不断变化,但是目前对于农业无人飞行器的控制方式还是按照载荷固定的控制策略进行控制,导致农业无人飞行器在作业过程中的飞行稳定性较差。
发明内容
本发明实施例提供一种农业无人飞行器的控制方法、飞行控制器及农业无人机,以提高农业无人飞行器在飞行时的稳定性。
本发明实施例的一个方面是提供一种农业无人飞行器的控制方法,包括:
获取农业无人飞行器的质量,所述农业无人飞行器的质量包括所述农业无人飞行器机身的质量和载荷的质量;
根据所述农业无人飞行器的质量,调整所述农业无人飞行器的飞行参数;
根据所述飞行参数,控制所述农业无人飞行器飞行。
本发明实施例的另一个方面是提供一种飞行控制器,包括:一个或多个处理器,单独或协同工作,所述处理器用于:
获取农业无人飞行器的质量,所述农业无人飞行器的质量包括所述农业无人飞行器机身的质量和载荷的质量;
根据所述农业无人飞行器的质量,调整所述农业无人飞行器的飞行参数;
根据所述飞行参数,控制所述农业无人飞行器飞行。
本发明实施例的另一个方面是提供一种农业无人飞行器,包括:
机身;
动力系统,安装在所述机身,用于提供飞行动力;
以及所述的飞行控制器。
本实施例提供的农业无人飞行器的控制方法、飞行控制器及农业无人机,通过获取农业无人飞行器的质量,根据农业无人飞行器的质量调整其飞行参数,并根据其飞行参数来控制农业无人飞行器飞行,由于农业无人飞行器载荷的质量实时变化,使得农业无人飞行器的质量实时变化,从而可以根据农业无人飞行器不断变化的质量来实时调整其飞行参数,并实时控制农业无人飞行器飞行,保证其能够平稳飞行,使其装载的农药、种子或水等能够均匀喷洒。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的农业无人飞行器的控制方法的流程图;
图2为本发明实施例提供的农业无人飞行器受力的示意图;
图3为本发明实施例提供的另一种农业无人飞行器受力的示意图;
图4为本发明实施例提供的农业无人飞行器飞行航线的示意图;
图5为本发明另一实施例提供的农业无人飞行器的控制方法的流程图;
图6为本发明另一实施例提供的农业无人飞行器的控制方法的流程图;
图7为本发明实施例提供的飞行控制器的结构图;
图8为本发明实施例提供的无人飞行器的结构图。
附图标记:
20-农业无人飞行器的机身  21-螺旋桨
22-机体坐标系X轴的正方向  41-航线  100-无人飞行器
107-电机  106-螺旋桨  117-电子调速器
118-飞行控制器  108-传感系统  110-通信系统
102-支撑设备  104-拍摄设备  112-地面站
114-天线  116-电磁波
70-飞行控制器  71-处理器  72-惯性测量单元IMU
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明实施例提供一种农业无人飞行器的控制方法。图1为本发明实施例提供的农业无人飞行器的控制方法的流程图。如图1所示,本实施例中的方法,可以包括:
步骤S101、获取农业无人飞行器的质量,所述农业无人飞行器的质量包括所述农业无人飞行器机身的质量和载荷的质量。
本实施例的执行主体可以是无人飞行器的飞行控制器,也可以是其他通用或者专用的处理器,在本实施例中以飞行控制器来作示意性说明。在农业无人飞行器作业过程中,其装载的农药、种子、水等随作业时间不断减少,即农业无人飞行器的载荷质量不断变化,使得农业无人飞行器的质量不断变化,该农业无人飞行器的质量包括农业无人飞行器机身的质量和载荷的质量。
如图2所示,20表示农业无人飞行器的机身,21表示农业无人飞行器的螺旋桨,农业无人飞行器的电机带动螺旋桨转动,螺旋桨在转动时产生拉力F,随着螺旋桨转速不断加快,螺旋桨产生的拉力F不断增大,当螺旋桨产生的拉力F和农业无人飞行器的重力G平衡时,农业无人飞行器悬浮在空中。由于农业无人飞行器的重力G等于农业无人飞行器的质量m和重力加速度g的乘积,所以当农业无人飞行器在悬浮状态下,根据螺旋桨产生的拉力F和农业无人飞行器的重力G,可以计算出农业无人飞行器的质量m。
但是,通常情况下,农业无人飞行器是运动的,例如向前运动、向右转、向左转等,从而使得农业无人飞行器的姿态角发生变化,下面介绍另一种可以确定出农业无人飞行器的质量的实现方式:获取所述农业无人飞行器的螺旋桨产生的拉力和所述农业无人飞行器的姿态角;根据所述农业无人飞行器的螺旋桨产生的拉力和所述农业无人飞行器的姿态角,确定所述农业无人飞行器的质量。
飞行控制器包括惯性测量单元(Inertial Measurement Unit,简称IMU),惯性测量单元一般包括陀螺仪和加速度计。所述惯性测量单元用于检测所述农业无人飞行器的俯仰角、横滚角、偏航角和加速度等。根据所述农业无人飞行器的螺旋桨产生的拉力和所述农业无人飞行器的姿态角,确定所述农业无人飞行器的质量时,可具体根据所述农业无人飞行器的螺旋桨产生的拉力和惯性测量单元IMU检测的所述农业无人飞行器的当前姿态角,确定所述拉力在垂直方向上的分力;根据所述拉力在垂直方向上的分力以及重力加速度,确定所述农业无人飞行器的当前质量。
如图3所示,箭头22指向的方向是农业无人飞行器的机体坐标系X轴的正方向,即从农业无人飞行器的中心指向机头的方向,机体坐标系的 X轴与水平方向的夹角为农业无人飞行器的俯仰角θ,F为螺旋桨在转动时产生的拉力,F在垂直方向上的分力是F1,在水平方向上的分力是F2,F1等于F乘以θ角的余弦,F2等于F乘以θ角的正弦。根据F在垂直方向上的分力F1和重力加速度,确定所述农业无人飞行器的当前质量包括如下几种可能的情况:
一种可能的情况是:农业无人飞行器在垂直方向上没有加速度,例如农业无人飞行器在垂直方向上没有垂直向上的加速度,也没有垂直向下的加速度,此时,螺旋桨产生的拉力F在垂直方向上的分力F1与农业无人飞行器的重力G相平衡,其中,G等于农业无人飞行器的当前质量m和当前的重力加速度g的乘积,此时,根据F1和G大小相等即可确定出农业无人飞行器的当前质量m。
另一种可能的情况是:农业无人飞行器存在垂直向上的加速度,或者农业无人飞行器存在垂直向下的加速度,由于IMU包含有三个单轴的加速度计和三个单轴的陀螺仪,通过三个单轴的加速度计可以至少检测出农业无人飞行器在垂直方向上的加速度,例如垂直向上的加速度或垂直向下的加速度,当农业无人飞行器存在垂直向上的加速度时,说明F在垂直方向上的分力F1大于农业无人飞行器的重力G,F1抵消掉G剩余的部分使得农业无人飞行器产生垂直向上的加速度,此时,根据F1、G、农业无人飞行在垂直向上的加速度,也可以计算出农业无人飞行器的当前质量m。当农业无人飞行器存在垂直向下的加速度时,说明F在垂直方向上的分力F1小于农业无人飞行器的重力G,G抵消掉F1剩余的部分使得农业无人飞行器产生垂直向下的加速度,此时,根据F1、G、农业无人飞行在垂直向下的加速度,也可以计算出农业无人飞行器的当前质量m。
步骤S102、根据所述农业无人飞行器的质量,调整所述农业无人飞行器的飞行参数。
由于农业无人飞行器的质量是随时变化的,为了保证农业无人飞行器能够平稳飞行,需要根据农业无人飞行器的质量,来调整农业无人飞行器的飞行参数,所述农业无人飞行器的飞行参数包括如下至少一种:所述农业无人飞行器的姿态角、加速距离、减速距离、水平方向的加速度、垂直方向的加速度。下面以减速距离为例介绍:如果不根据农业无人飞行器的 质量,来调整农业无人飞行器的减速距离会产生的现象。
如图4所示,通常情况下,农业无人飞行器是按照预设的航线41飞行的,例如,农业无人飞行器从A点飞行到B点,从B点飞行到C点,再从C点飞行到D点,以此类推。假设A点是农业无人飞行器开始作业的起始点,即农业无人飞行器在A点处于满载状态,在飞行过程中其装载的农药、种子或水等随作业时间不断减少,从而使得农业无人飞行器的质量不断减少。由于在预设航线的拐角位置如B点、C点、D点等,农业无人飞行器需要调整其飞行方向,所以农业无人飞行器在到达拐角位置之前要减速,例如农业无人飞行器从E点开始减速到达B点,从E点到B点的距离为减速距离,假设农业无人飞行器满载状态下的减速距离为2米,由于农业无人飞行器的减速距离会随着其质量的减少而减小,如果不调整农业无人飞行器的减速距离,则农业无人飞行器将按照满载状态下的减速距离例如2米来飞行,导致农业无人飞行器从E点开始减速还没到达B点就可能中途停止了,此时,农业无人飞行器根据预设的航线和机身当前的位置确定其还未到达B点,然后从中途停下的位置继续向B点飞行,从而导致农业无人飞行器不能较为平稳的飞行,其装载的农药、种子或水等不能均匀的喷洒。
因此,需要根据农业无人飞行器的质量,来调整农业无人飞行器的减速距离,具体如何调整,本实施例提供了一种可行的实现方式:根据所述农业无人飞行器的当前质量和姿态角,计算所述农业无人飞行器的当前减速距离;比较所述当前减速距离和初始减速距离,所述初始减速距离是所述农业无人飞行器满载状态下预设的减速距离;若所述当前减速距离和所述初始减速距离不相等,则调整所述农业无人飞行器的姿态角,以使所述当前减速距离和所述初始减速距离相等。
例如,在E点,根据螺旋桨的拉力和农业无人飞行器的俯仰角计算出螺旋桨的拉力在水平方向上的分力,进一步根据螺旋桨的拉力在水平方向上的分力和农业无人飞行器的当前质量计算出农业无人飞行器在水平方向上的加速度,从而根据农业无人飞行器在水平方向上的加速度,计算农业无人飞行器的当前减速距离S'。比较当前减速距离S'和农业无人飞行器满载状态下预设的减速距离,在本实施例中,将该预设的减速距离记为初 始减速距离S,如果S'和S不相等,表示农业无人飞行器从E点开始减速还没到达B点就可能中途停止了,此时,调整农业无人飞行器的姿态角,以使所述当前减速距离和所述初始减速距离相等,具体的,调整所述农业无人飞行器的姿态角;根据调整后的所述农业无人飞行器的姿态角,计算所述农业无人飞行器在水平方向的加速度;根据所述农业无人飞行器在水平方向的加速度,计算所述当前减速距离;若所述当前减速距离和所述初始减速距离不相等,则继续调整所述农业无人飞行器的姿态角,以使所述当前减速距离和所述初始减速距离相等。
例如,在如图4所示的E点调整农业无人飞行器的俯仰角,根据调整后的所述农业无人飞行器的俯仰角,计算所述农业无人飞行器在水平方向的加速度,根据所述农业无人飞行器在水平方向的加速度,再次计算农业无人飞行器的当前减速距离,如果再次计算出的当前减速距离与初始减速距离S还是不相等,则继续调整所述农业无人飞行器的俯仰角,直到农业无人飞行器的当前减速距离和初始减速距离S相等。其中,根据调整后的所述农业无人飞行器的俯仰角,计算所述农业无人飞行器在水平方向的加速度时,具体可以先根据调整后的所述农业无人飞行器的姿态角,确定螺旋桨的拉力在水平方向上的分力;再根据该拉力在水平方向上的分力和所述农业无人飞行器的当前质量,计算所述农业无人飞行器在水平方向的加速度。
另外,需要说明的是:农业无人飞行器的质量是实时在变化的,每一时刻农业无人飞行器的减速距离都可能和初始减速距离不同,因此,需要实时的调整农业无人飞行器的姿态角例如俯仰角,也就是说如图4所示,农业无人飞行器从E点开始减速到B点的过程中,其俯仰角是实时变化的,这样可以保证农业无人飞行器从E点平滑过渡到B点,而不会出现中途停顿。
此外,本实施例不局限于根据所述农业无人飞行器的质量,调整所述农业无人飞行器的减速距离、农业无人飞行器的姿态角、水平方向的加速度,还可以根据所述农业无人飞行器的质量,调整所述农业无人飞行器的其他飞行参数,例如加速距离、垂直方向的加速度,具体过程此处不再赘述。
步骤S103、根据所述飞行参数,控制所述农业无人飞行器飞行。
具体的,根据所述农业无人飞行器在水平方向的加速度,控制所述农业无人飞行器的飞行速度。
根据上述步骤可知,农业无人飞行器从开始减速,其姿态角例如俯仰角是实时变化的,因此,农业无人飞行器在水平方向的加速度也是不断变化的,因此,飞行控制器需要根据农业无人飞行器在水平方向的加速度,实时控制农业无人飞行器的飞行速度,保证农业无人飞行器平稳飞行。
本实施例通过获取农业无人飞行器的质量,根据农业无人飞行器的质量调整其飞行参数,并根据其飞行参数来控制农业无人飞行器飞行,由于农业无人飞行器载荷的质量实时变化,使得农业无人飞行器的质量实时变化,从而可以根据农业无人飞行器不断变化的质量来实时调整其飞行参数,并实时控制农业无人飞行器飞行,保证其能够平稳飞行,使其装载的农药、种子或水等能够均匀喷洒。
本发明实施例提供一种农业无人飞行器的控制方法。图5为本发明另一实施例提供的农业无人飞行器的控制方法的流程图。在上述实施例的基础上,获取所述农业无人飞行器的螺旋桨产生的拉力的方法具体包括:
步骤S501、获取所述农业无人飞行器的电机的转速和输出功率。
例如,飞行控制器通过电子调速器获取电机的电参数例如电机的转速和输出功率等。
步骤S502、根据所述农业无人飞行器的电机的转速、输出功率以及气压计检测的所述农业无人飞行器距离海平面的高度,计算所述农业无人飞行器的螺旋桨产生的拉力。
具体的,根据所述农业无人飞行器的电机的转速和输出功率,确定所述农业无人飞行器的螺旋桨的转速;根据所述农业无人飞行器距离海平面的高度,计算所述农业无人飞行器所处位置的大气压力;根据所述农业无人飞行器的螺旋桨的物理参数、所述螺旋桨的转速和所述大气压力,计算所述农业无人飞行器的螺旋桨产生的拉力。
飞行控制器根据步骤S501中的电机的转速和输出功率确定出螺旋桨 的转速。此外,农业无人飞行器上还设置有气压计,该气压计可以检测出农业无人飞行器距离海平面的高度;根据农业无人飞行器距离海平面的高度,还可以计算出农业无人飞行器当前所处位置的空气密度;根据农业无人飞行器距离海平面的高度和农业无人飞行器当前所处位置的空气密度可计算出农业无人飞行器所处位置的大气压力。进一步根据农业无人飞行器的螺旋桨的物理参数例如直径、螺距、浆宽度等,以及螺旋桨的转速和大气压力,即可计算出农业无人飞行器的螺旋桨产生的拉力,具体的,螺旋桨产生的拉力等于螺旋桨的直径、螺距、浆宽度、螺旋桨的转速平方、大气压力、系数的乘积。
本发明实施例提供一种农业无人飞行器的控制方法。图6为本发明另一实施例提供的农业无人飞行器的控制方法的流程图。如图6所示,本实施例中的方法,可以包括:
步骤S601、获取农业无人飞行器的质量,所述农业无人飞行器的质量包括所述农业无人飞行器机身的质量和载荷的质量。
具体的,根据所述农业无人飞行器的螺旋桨产生的拉力和所述农业无人飞行器的姿态角,确定所述农业无人飞行器的质量。
根据所述农业无人飞行器的螺旋桨产生的拉力和所述农业无人飞行器的姿态角,确定所述农业无人飞行器的质量时,可具体根据所述农业无人飞行器的螺旋桨产生的拉力和惯性测量单元IMU检测的所述农业无人飞行器的当前姿态角,确定所述拉力在垂直方向上的分力;根据所述拉力在垂直方向上的分力以及重力加速度,确定所述农业无人飞行器的当前质量。例如按照如图2或3所示的方法计算农业无人飞行器的当前质量m,具体过程此处不再赘述。
步骤S602、根据所述农业无人飞行器的质量,调整所述农业无人飞行器的飞行参数。
步骤S602与步骤S102一致,具体过程此处不再赘述。
步骤S603、根据所述飞行参数,控制所述农业无人飞行器飞行。
步骤S603与步骤S103一致,具体过程此处不再赘述。
步骤S604、根据所述农业无人飞行器的质量以及所述机身的质量, 计算所述农业无人飞行器的载荷的质量。
根据步骤S101提供的几种方法计算出农业无人飞行器的质量后,在本实施例中还可以进一步的根据农业无人飞行器的质量以及机身的质量,计算所述农业无人飞行器的载荷的质量。例如,机身的质量固定为M,农业无人飞行器的当前质量为m,当前质量m减去机身的质量M即可得到当前的载荷质量,从而可以得出实时的载荷质量。
本实施例通过农业无人飞行器的螺旋桨产生的拉力和农业无人飞行器的姿态角,确定农业无人飞行器的质量,农业无人飞行器的质量包括农业无人飞行器机身的质量和载荷的质量,进一步根据农业无人飞行器的质量以及机身的质量,可以计算农业无人飞行器的载荷的质量,而现有技术利用液位计、应变片传感器、弹簧称重器等测量载荷的质量,若农业无人飞行器飞行时不稳,则会导致液位计测量到的液体的高度有误,应变片传感器和弹簧称重器的测量结果会受到农业无人飞行器在运动中的加速度的影响,因此,相比于现有技术,本实施例提供的载荷质量的测量方法较为精确。
本发明实施例提供一种飞行控制器。图7为本发明实施例提供的飞行控制器的结构图,如图7所示,飞行控制器70包括一个或多个处理器71,一个或多个处理器独或协同工作,处理器71用于获取农业无人飞行器的质量,所述农业无人飞行器的质量包括所述农业无人飞行器机身的质量和载荷的质量;根据所述农业无人飞行器的质量,调整所述农业无人飞行器的飞行参数;根据所述飞行参数,控制所述农业无人飞行器飞行。
其中,处理器71获取农业无人飞行器的质量时,具体用于:获取所述农业无人飞行器的螺旋桨产生的拉力和所述农业无人飞行器的姿态角;根据所述农业无人飞行器的螺旋桨产生的拉力和所述农业无人飞行器的姿态角,确定所述农业无人飞行器的质量。
另外,飞行控制器70还包括惯性测量单元IMU 72,惯性测量单元IMU72和处理器71通讯连接,用于检测所述农业无人飞行器的当前姿态角;处理器71根据所述农业无人飞行器的螺旋桨产生的拉力和所述农业无人飞行器的姿态角,确定所述农业无人飞行器的质量时,具体用于:根据所 述农业无人飞行器的螺旋桨产生的拉力和惯性测量单元IMU 72检测的所述农业无人飞行器的当前姿态角,确定所述拉力在垂直方向上的分力;根据所述拉力在垂直方向上的分力以及重力加速度,确定所述农业无人飞行器的当前质量。
可选的,所述农业无人飞行器的飞行参数包括如下至少一种:所述农业无人飞行器的姿态角、减速距离、水平方向的加速度、垂直方向的加速度。
处理器71根据所述农业无人飞行器的质量,调整所述农业无人飞行器的飞行参数时,具体用于:根据所述农业无人飞行器的当前质量和姿态角,计算所述农业无人飞行器的当前减速距离;比较所述当前减速距离和初始减速距离,所述初始减速距离是所述农业无人飞行器作业之前承载有载荷的减速距离;若所述当前减速距离和所述初始减速距离不相等,则调整所述农业无人飞行器的姿态角,以使所述当前减速距离和所述初始减速距离相等。处理器71调整所述农业无人飞行器的姿态角,以使所述当前减速距离和所述初始减速距离相等时,具体用于:调整所述农业无人飞行器的姿态角;根据调整后的所述农业无人飞行器的姿态角,计算所述农业无人飞行器在水平方向的加速度;根据所述农业无人飞行器在水平方向的加速度,计算所述当前减速距离;若所述当前减速距离和所述初始减速距离不相等,则继续调整所述农业无人飞行器的姿态角,以使所述当前减速距离和所述初始减速距离相等。处理器71根据调整后的所述农业无人飞行器的姿态角,计算所述农业无人飞行器在水平方向的加速度时,具体用于:根据调整后的所述农业无人飞行器的姿态角,确定所述拉力在水平方向上的分力;根据所述拉力在水平方向上的分力和所述农业无人飞行器的当前质量,计算所述农业无人飞行器在水平方向的加速度。
处理器71根据所述飞行参数,控制所述农业无人飞行器飞行时,具体用于:根据所述农业无人飞行器在水平方向的加速度,控制所述农业无人飞行器的飞行速度。
本发明实施例提供的飞行控制器的具体原理和实现方式均与图1所示实施例类似,此处不再赘述。
本实施例通过获取农业无人飞行器的质量,根据农业无人飞行器的 质量调整其飞行参数,并根据其飞行参数来控制农业无人飞行器飞行,由于农业无人飞行器载荷的质量实时变化,使得农业无人飞行器的质量实时变化,从而可以根据农业无人飞行器不断变化的质量来实时调整其飞行参数,并实时控制农业无人飞行器飞行,保证其能够平稳飞行,使其装载的农药、种子或水等能够均匀喷洒。
本发明实施例提供一种飞行控制器。在图7所示实施例提供的技术方案的基础上,处理器71获取所述农业无人飞行器的螺旋桨产生的拉力时,具体用于:获取所述农业无人飞行器的电机的转速和输出功率;根据所述农业无人飞行器的电机的转速、输出功率以及气压计检测的所述农业无人飞行器距离海平面的高度,计算所述农业无人飞行器的螺旋桨产生的拉力。
处理器71根据所述农业无人飞行器的电机的转速、输出功率以及气压计检测的所述农业无人飞行器距离海平面的高度,计算所述农业无人飞行器的螺旋桨产生的拉力时,具体用于:根据所述农业无人飞行器的电机的转速和输出功率,确定所述农业无人飞行器的螺旋桨的转速;根据所述农业无人飞行器距离海平面的高度,计算所述农业无人飞行器所处位置的大气压力;根据所述农业无人飞行器的螺旋桨的物理参数、所述螺旋桨的转速和所述大气压力,计算所述农业无人飞行器的螺旋桨产生的拉力。
此外,处理器71还用于:根据所述农业无人飞行器的质量以及所述机身的质量,计算所述农业无人飞行器的载荷的质量。
本发明实施例提供的飞行控制器的具体原理和实现方式均与图5或图6所示实施例类似,此处不再赘述。
本实施例通过农业无人飞行器的螺旋桨产生的拉力和农业无人飞行器的姿态角,确定农业无人飞行器的质量,农业无人飞行器的质量包括农业无人飞行器机身的质量和载荷的质量,进一步根据农业无人飞行器的质量以及机身的质量,可以计算农业无人飞行器的载荷的质量,而现有技术利用液位计、应变片传感器、弹簧称重器等测量载荷的质量,若农业无人飞行器飞行时不稳,则会导致液位计测量到的液体的高度有误,应变片传感器和弹簧称重器的测量结果会受到农业无人飞行器在运 动中的加速度的影响,因此,相比于现有技术,本实施例提供的载荷质量的测量方法较为精确。
本发明实施例提供一种农业无人飞行器。图8为本发明实施例提供的无人飞行器的结构图,如图8所示,无人飞行器100包括:机身、动力系统和飞行控制器118,所述动力系统包括如下至少一种:电机107、螺旋桨106和电子调速器117,动力系统安装在所述机身,用于提供飞行动力;飞行控制器118与所述动力系统通讯连接,用于控制所述无人飞行器飞行;其中,飞行控制器118包括惯性测量单元,惯性测量单元包括陀螺仪和加速度计。所述惯性测量单元用于检测所述无人机的加速度、俯仰角、横滚角及偏航角等。
另外,如图8所示,无人飞行器100还包括:传感系统108、通信系统110、支撑设备102、拍摄设备104,其中,支撑设备102具体可以是云台,通信系统110具体可以包括接收机,接收机用于接收地面站112的天线114发送的无线信号,116表示接收机和天线114通信过程中产生的电磁波。
本发明实施例提供的飞行控制器118的具体原理和实现方式均与上述实施例类似,此处不再赘述。
本实施例通过获取农业无人飞行器的质量,根据农业无人飞行器的质量调整其飞行参数,并根据其飞行参数来控制农业无人飞行器飞行,由于农业无人飞行器载荷的质量实时变化,使得农业无人飞行器的质量实时变化,从而可以根据农业无人飞行器不断变化的质量来实时调整其飞行参数,并实时控制农业无人飞行器飞行,保证其能够平稳飞行,使其装载的农药、种子或水等能够均匀喷洒。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装 置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (23)

  1. 一种农业无人飞行器的控制方法,其特征在于,包括:
    获取农业无人飞行器的质量,所述农业无人飞行器的质量包括所述农业无人飞行器机身的质量和载荷的质量;
    根据所述农业无人飞行器的质量,调整所述农业无人飞行器的飞行参数;
    根据所述飞行参数,控制所述农业无人飞行器飞行。
  2. 根据权利要求1所述的方法,其特征在于,所述获取农业无人飞行器的质量,包括:
    获取所述农业无人飞行器的螺旋桨产生的拉力和所述农业无人飞行器的姿态角;
    根据所述农业无人飞行器的螺旋桨产生的拉力和所述农业无人飞行器的姿态角,确定所述农业无人飞行器的质量。
  3. 根据权利要求2所述的方法,其特征在于,所述获取所述农业无人飞行器的螺旋桨产生的拉力,包括:
    获取所述农业无人飞行器的电机的转速和输出功率;
    根据所述农业无人飞行器的电机的转速、输出功率以及气压计检测的所述农业无人飞行器距离海平面的高度,计算所述农业无人飞行器的螺旋桨产生的拉力。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述农业无人飞行器的电机的转速、输出功率以及气压计检测的所述农业无人飞行器距离海平面的高度,计算所述农业无人飞行器的螺旋桨产生的拉力,包括:
    根据所述农业无人飞行器的电机的转速和输出功率,确定所述农业无人飞行器的螺旋桨的转速;
    根据所述农业无人飞行器距离海平面的高度,计算所述农业无人飞行器所处位置的大气压力;
    根据所述农业无人飞行器的螺旋桨的物理参数、所述螺旋桨的转速和所述大气压力,计算所述农业无人飞行器的螺旋桨产生的拉力。
  5. 根据权利要求2-4任一项所述的方法,其特征在于,所述根据所述农业无人飞行器的螺旋桨产生的拉力和所述农业无人飞行器的姿态角,确 定所述农业无人飞行器的质量,包括:
    根据所述农业无人飞行器的螺旋桨产生的拉力和惯性测量单元IMU检测的所述农业无人飞行器的当前姿态角,确定所述拉力在垂直方向上的分力;
    根据所述拉力在垂直方向上的分力以及重力加速度,确定所述农业无人飞行器的当前质量。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述农业无人飞行器的飞行参数包括如下至少一种:
    所述农业无人飞行器的姿态角、加速距离、减速距离、水平方向的加速度、垂直方向的加速度。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述农业无人飞行器的质量,调整所述农业无人飞行器的飞行参数,包括:
    根据所述农业无人飞行器的当前质量和姿态角,计算所述农业无人飞行器的当前减速距离;
    比较所述当前减速距离和初始减速距离,所述初始减速距离是所述农业无人飞行器满载状态下预设的减速距离;
    若所述当前减速距离和所述初始减速距离不相等,则调整所述农业无人飞行器的姿态角,以使所述当前减速距离和所述初始减速距离相等。
  8. 根据权利要求7所述的方法,其特征在于,所述调整所述农业无人飞行器的姿态角,以使所述当前减速距离和所述初始减速距离相等,包括:
    调整所述农业无人飞行器的姿态角;
    根据调整后的所述农业无人飞行器的姿态角,计算所述农业无人飞行器在水平方向的加速度;
    根据所述农业无人飞行器在水平方向的加速度,计算所述当前减速距离;
    若所述当前减速距离和所述初始减速距离不相等,则继续调整所述农业无人飞行器的姿态角,以使所述当前减速距离和所述初始减速距离相等。
  9. 根据权利要求8所述的方法,其特征在于,所述根据调整后的所 述农业无人飞行器的姿态角,计算所述农业无人飞行器在水平方向的加速度,包括:
    根据调整后的所述农业无人飞行器的姿态角,确定所述拉力在水平方向上的分力;
    根据所述拉力在水平方向上的分力和所述农业无人飞行器的当前质量,计算所述农业无人飞行器在水平方向的加速度。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述根据所述飞行参数,控制所述农业无人飞行器飞行,包括:
    根据所述农业无人飞行器在水平方向的加速度,控制所述农业无人飞行器的飞行速度。
  11. 根据权利要求1-5任一项所述的方法,其特征在于,还包括:
    根据所述农业无人飞行器的质量以及所述机身的质量,计算所述农业无人飞行器的载荷的质量。
  12. 一种飞行控制器,其特征在于,包括一个或多个处理器,单独或协同工作,所述处理器用于:
    获取农业无人飞行器的质量,所述农业无人飞行器的质量包括所述农业无人飞行器机身的质量和载荷的质量;
    根据所述农业无人飞行器的质量,调整所述农业无人飞行器的飞行参数;
    根据所述飞行参数,控制所述农业无人飞行器飞行。
  13. 根据权利要求12所述的飞行控制器,其特征在于,所述处理器获取农业无人飞行器的质量时,具体用于:
    获取所述农业无人飞行器的螺旋桨产生的拉力和所述农业无人飞行器的姿态角;
    根据所述农业无人飞行器的螺旋桨产生的拉力和所述农业无人飞行器的姿态角,确定所述农业无人飞行器的质量。
  14. 根据权利要求13所述的飞行控制器,其特征在于,所述处理器获取所述农业无人飞行器的螺旋桨产生的拉力时,具体用于:
    获取所述农业无人飞行器的电机的转速和输出功率;
    根据所述农业无人飞行器的电机的转速、输出功率以及气压计检测的 所述农业无人飞行器距离海平面的高度,计算所述农业无人飞行器的螺旋桨产生的拉力。
  15. 根据权利要求14所述的飞行控制器,其特征在于,所述处理器根据所述农业无人飞行器的电机的转速、输出功率以及气压计检测的所述农业无人飞行器距离海平面的高度,计算所述农业无人飞行器的螺旋桨产生的拉力时,具体用于:
    根据所述农业无人飞行器的电机的转速和输出功率,确定所述农业无人飞行器的螺旋桨的转速;
    根据所述农业无人飞行器距离海平面的高度,计算所述农业无人飞行器所处位置的大气压力;
    根据所述农业无人飞行器的螺旋桨的物理参数、所述螺旋桨的转速和所述大气压力,计算所述农业无人飞行器的螺旋桨产生的拉力。
  16. 根据权利要求13-15任一项所述的飞行控制器,其特征在于,还包括:惯性测量单元IMU,与所述处理器通讯连接,用于检测所述农业无人飞行器的当前姿态角;
    所述处理器根据所述农业无人飞行器的螺旋桨产生的拉力和所述农业无人飞行器的姿态角,确定所述农业无人飞行器的质量时,具体用于:
    根据所述农业无人飞行器的螺旋桨产生的拉力和惯性测量单元IMU检测的所述农业无人飞行器的当前姿态角,确定所述拉力在垂直方向上的分力;
    根据所述拉力在垂直方向上的分力以及重力加速度,确定所述农业无人飞行器的当前质量。
  17. 根据权利要求12-16任一项所述的飞行控制器,其特征在于,所述农业无人飞行器的飞行参数包括如下至少一种:
    所述农业无人飞行器的姿态角、减速距离、水平方向的加速度、垂直方向的加速度。
  18. 根据权利要求17所述的飞行控制器,其特征在于,所述处理器根据所述农业无人飞行器的质量,调整所述农业无人飞行器的飞行参数时,具体用于:
    根据所述农业无人飞行器的当前质量和姿态角,计算所述农业无人飞 行器的当前减速距离;
    比较所述当前减速距离和初始减速距离,所述初始减速距离是所述农业无人飞行器作业之前承载有载荷的减速距离;
    若所述当前减速距离和所述初始减速距离不相等,则调整所述农业无人飞行器的姿态角,以使所述当前减速距离和所述初始减速距离相等。
  19. 根据权利要求18所述的飞行控制器,其特征在于,所述处理器调整所述农业无人飞行器的姿态角,以使所述当前减速距离和所述初始减速距离相等时,具体用于:
    调整所述农业无人飞行器的姿态角;
    根据调整后的所述农业无人飞行器的姿态角,计算所述农业无人飞行器在水平方向的加速度;
    根据所述农业无人飞行器在水平方向的加速度,计算所述当前减速距离;
    若所述当前减速距离和所述初始减速距离不相等,则继续调整所述农业无人飞行器的姿态角,以使所述当前减速距离和所述初始减速距离相等。
  20. 根据权利要求19所述的飞行控制器,其特征在于,所述处理器根据调整后的所述农业无人飞行器的姿态角,计算所述农业无人飞行器在水平方向的加速度时,具体用于:
    根据调整后的所述农业无人飞行器的姿态角,确定所述拉力在水平方向上的分力;
    根据所述拉力在水平方向上的分力和所述农业无人飞行器的当前质量,计算所述农业无人飞行器在水平方向的加速度。
  21. 根据权利要求20所述的飞行控制器,其特征在于,所述处理器根据所述飞行参数,控制所述农业无人飞行器飞行时,具体用于:
    根据所述农业无人飞行器在水平方向的加速度,控制所述农业无人飞行器的飞行速度。
  22. 根据权利要求12-16任一项所述的飞行控制器,其特征在于,所述处理器还用于:
    根据所述农业无人飞行器的质量以及所述机身的质量,计算所述农业 无人飞行器的载荷的质量。
  23. 一种农业无人飞行器,其特征在于,包括:
    机身;
    动力系统,安装在所述机身,用于提供飞行动力;
    以及如权利要求12-22任一项所述的飞行控制器。
PCT/CN2017/085395 2017-05-22 2017-05-22 农业无人飞行器的控制方法、飞行控制器及农业无人机 WO2018214005A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780004969.8A CN108475069B (zh) 2017-05-22 2017-05-22 农业无人飞行器的控制方法、飞行控制器及农业无人机
PCT/CN2017/085395 WO2018214005A1 (zh) 2017-05-22 2017-05-22 农业无人飞行器的控制方法、飞行控制器及农业无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/085395 WO2018214005A1 (zh) 2017-05-22 2017-05-22 农业无人飞行器的控制方法、飞行控制器及农业无人机

Publications (1)

Publication Number Publication Date
WO2018214005A1 true WO2018214005A1 (zh) 2018-11-29

Family

ID=63266583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085395 WO2018214005A1 (zh) 2017-05-22 2017-05-22 农业无人飞行器的控制方法、飞行控制器及农业无人机

Country Status (2)

Country Link
CN (1) CN108475069B (zh)
WO (1) WO2018214005A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110053779A (zh) * 2019-04-19 2019-07-26 江苏荣耀天翃航空科技有限公司 根据动力参数自动调整速度的飞行器控制方法和飞行器
WO2020220195A1 (zh) * 2019-04-29 2020-11-05 深圳市大疆创新科技有限公司 无人机的控制方法、设备、喷洒系统、无人机及存储介质
CN112327895A (zh) * 2020-10-27 2021-02-05 北京三快在线科技有限公司 配送无人机控制方法、装置、电子设备
WO2022095058A1 (zh) * 2020-11-09 2022-05-12 深圳市大疆创新科技有限公司 检测方法、检测装置、运动系统及可读存储介质
CN113741542A (zh) * 2021-09-28 2021-12-03 拓攻(南京)机器人有限公司 应急处置场景下的无人机控制方法、装置、无人机及介质
CN117677913A (zh) * 2021-11-15 2024-03-08 深圳市大疆创新科技有限公司 无人飞行器的控制方法、无人飞行器及存储介质
CN116167529B (zh) * 2023-04-25 2023-08-18 深圳市好盈科技股份有限公司 一种目标无人机重量的预测方法、装置和存储介质
CN116804883B (zh) * 2023-08-25 2023-12-01 北京科技大学 无人机避障方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9205922B1 (en) * 2013-07-17 2015-12-08 The Boeing Company Systems and methods for implementing a payload distribution system
CN205168909U (zh) * 2014-12-03 2016-04-20 珠海银通农业科技有限公司 具有自适应感度的多轴植保飞机
US20160159472A1 (en) * 2014-12-04 2016-06-09 Elwha Llc Reconfigurable unmanned aircraft system
CN105974935A (zh) * 2016-07-14 2016-09-28 安徽科技学院 一种四旋翼农用遥控飞行器及其控制方法
CN106043702A (zh) * 2016-06-24 2016-10-26 中国农业大学 农用植保无人机

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102592007A (zh) * 2011-12-30 2012-07-18 成都飞机工业(集团)有限责任公司 用于飞行控制律设计调参的无人机对象模型建模方法
US20140103158A1 (en) * 2012-10-12 2014-04-17 Benjamin Lawrence Berry AirShip Endurance VTOL UAV and Solar Turbine Clean Tech Propulsion
CN103487211B (zh) * 2013-10-14 2016-02-03 北京航空航天大学 一种测量小型飞行器转动惯量与惯性积的方法
CN203753412U (zh) * 2014-03-03 2014-08-06 浙江大学 一种旋翼式无人机失控坠落保护装置
CN104765272A (zh) * 2014-03-05 2015-07-08 北京航空航天大学 一种基于pid神经元网络控制(pidnn)的四旋翼飞行器控制方法
JP6174258B2 (ja) * 2014-09-30 2017-08-02 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 飛行指示方法、飛行指示装置及び航空機
CN105197243B (zh) * 2015-09-22 2017-05-17 北京农业信息技术研究中心 一种农用无人机机载变量施药系统及方法
CN105488295A (zh) * 2015-12-15 2016-04-13 中国电子科技集团公司信息科学研究院 一种考虑风场扰动的无人机建模系统
CN106444844B (zh) * 2016-08-31 2019-10-11 南京航空航天大学 一种用于多旋翼飞行器的图像程控采集方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9205922B1 (en) * 2013-07-17 2015-12-08 The Boeing Company Systems and methods for implementing a payload distribution system
CN205168909U (zh) * 2014-12-03 2016-04-20 珠海银通农业科技有限公司 具有自适应感度的多轴植保飞机
US20160159472A1 (en) * 2014-12-04 2016-06-09 Elwha Llc Reconfigurable unmanned aircraft system
CN106043702A (zh) * 2016-06-24 2016-10-26 中国农业大学 农用植保无人机
CN105974935A (zh) * 2016-07-14 2016-09-28 安徽科技学院 一种四旋翼农用遥控飞行器及其控制方法

Also Published As

Publication number Publication date
CN108475069A (zh) 2018-08-31
CN108475069B (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
WO2018214005A1 (zh) 农业无人飞行器的控制方法、飞行控制器及农业无人机
US11771076B2 (en) Flight control method, information processing device, program and recording medium
US10604245B2 (en) Rotor units having asymmetric rotor blades
CN110347171B (zh) 一种飞行器控制方法及飞行器
CN107438805B (zh) 无人机控制方法及装置
WO2019080924A1 (zh) 导航图配置方法、避障方法以及装置、终端、无人飞行器
WO2018058288A1 (zh) 用于检测飞行高度的方法、装置及无人机
US11447371B2 (en) Perforated capsule hook for stable high speed retract
US11060658B2 (en) Gimbal stabilization system and method
JP2017504881A (ja) 航空機姿勢制御方法
CN110998266B (zh) 数据处理设备、驱动控制设备、数据处理方法和存储介质
JP2017178301A (ja) ドローン用の高度推定器
JP7176785B2 (ja) ドローン、ドローンの制御方法、および、ドローン制御プログラム
KR102118157B1 (ko) 기상관측용 무인비행체의 센서탑재장치, 기상관측용 무인비행체 및 기상관측용 무인비행체를 이용한 기상관측 방법
US20210276704A1 (en) Rotor Units Having Asymmetric Rotor Blades
KR20120081500A (ko) 복수개의 회전익을 가진 비행장치 및 그 제어방법
CN110832418A (zh) 无人飞行器控制方法、控制装置及无人飞行器
AU2024203331A1 (en) Systems and methods for autonomous airworthiness pre-flight checks for UAVs
AU2024203336A1 (en) Systems and methods for battery capacity management in a fleet of UAVs
WO2021217329A1 (zh) 高度检测方法、补偿量的确定方法、装置和无人机
JP2022520118A (ja) 無人航空機の高度から風向および風速度の測定値を決定するためのシステムおよび方法
US20230122535A1 (en) Processes for Generating and Updating Flyable Airspace for Unmanned Aerial Vehicles
CN105912004A (zh) 无人机自主高速着舰辅助系统及方法
WO2018103192A1 (zh) 一种无人机姿态保持方法及装置
US20240019876A1 (en) Tether-Based Wind Estimation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910931

Country of ref document: EP

Kind code of ref document: A1