WO2018212324A1 - 自動変速機の制御装置 - Google Patents

自動変速機の制御装置 Download PDF

Info

Publication number
WO2018212324A1
WO2018212324A1 PCT/JP2018/019295 JP2018019295W WO2018212324A1 WO 2018212324 A1 WO2018212324 A1 WO 2018212324A1 JP 2018019295 W JP2018019295 W JP 2018019295W WO 2018212324 A1 WO2018212324 A1 WO 2018212324A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
shift
gear
torque
speed
Prior art date
Application number
PCT/JP2018/019295
Other languages
English (en)
French (fr)
Inventor
智啓 下沢
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201880030138.2A priority Critical patent/CN110799781B/zh
Publication of WO2018212324A1 publication Critical patent/WO2018212324A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/688Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with two inputs, e.g. selection of one of two torque-flow paths by clutches

Definitions

  • This disclosure relates to a control device for an automatic transmission.
  • various automatic transmissions that change gears by changing over a plurality of frictional engagement elements are known.
  • a first clutch (friction engagement element) provided between the engine and the odd-numbered gear train
  • a second clutch (friction engagement element) provided between the engine and the even-numbered gear train
  • DCT dual clutch transmission
  • a clutch (friction engagement element) that stops relative rotation of elements constituting the planetary gear
  • a brake (friction engagement element) that stops rotation of the element are provided, and driving force from the engine is transmitted via the planetary gear.
  • An automatic transmission (AT) that transmits to the output side is known.
  • Patent Document 1 discloses an invention relating to a shift control method for a DCT vehicle.
  • the method includes: “a shift command confirming step for confirming whether or not an upshift command is generated during start control of a DCT vehicle; and a result of performing the shift command confirming step, when an upshift command is generated during start control, A slip determination step of determining whether the rotational speed difference between the rotational speed of the input shaft to be synchronized and the engine rotational speed is within a predetermined reference rotational speed order; and the result of execution of the slip determination step, the rotation of the input shaft If the difference between the engine speed and the engine speed is within the above-mentioned reference speed order, a control change stage for ending the start control and switching to gear shift control (claim 1) is included.
  • An object of the present disclosure is to provide a control device for an automatic transmission that can prevent excessive heat generation of the frictional engagement element when the frictional engagement element is replaced.
  • the control apparatus for an automatic transmission determines whether or not a shift execution condition for reducing the output torque of the automatic transmission is satisfied prior to gripping a plurality of friction engagement elements. And an execution unit that executes the shift when the determination unit determines that the execution condition of the shift is satisfied.
  • FIG. 1 is a schematic configuration diagram illustrating a vehicle to which an automatic transmission control device according to the present disclosure is applied.
  • FIG. 2 is a functional block diagram of the control device for the automatic transmission according to the present disclosure.
  • FIG. 3 is a flowchart showing a flow of control by the automatic transmission control device according to the present disclosure.
  • FIG. 4 is a time chart when the upshift is performed by the normal shift.
  • FIG. 5 is a time chart when the upshift is performed by the protective shift.
  • FIG. 6 is a time chart when the downshift is performed by the normal shift.
  • FIG. 7 is a time chart when the downshift is performed by the protective shift.
  • the vehicle 1 includes an engine 10, a DCT 2 (automatic transmission) including a first clutch 20, a second clutch 30, a transmission unit 40, and a hydraulic circuit 90, and a control device 50.
  • the drive wheels are connected to the output side of the DCT 2 through a propeller shaft and a differential gear (not shown) so that power can be transmitted.
  • the engine 10 is, for example, a diesel engine.
  • the output speed of the engine 10 (hereinafter referred to as “engine speed”) and the output torque are controlled based on the accelerator opening Acc of the accelerator pedal detected by the accelerator opening sensor 101.
  • the engine output shaft 11 is provided with an engine speed sensor 102 that detects the engine speed.
  • the first clutch 20 is a hydraulically operated wet multi-plate clutch having a plurality of first input side clutch plates 21 and a plurality of first output side clutch plates 22.
  • the first input side clutch plate 21 rotates integrally with the engine output shaft 11 that is rotated by the engine 10.
  • the first output side clutch plate 22 rotates integrally with the first input shaft 41 of the transmission unit 40.
  • the first clutch 20 is urged in the disconnecting direction by a return spring (not shown), and the first piston 23 is moved by the clutch operating hydraulic pressure supplied from the hydraulic circuit 90, and the first input side clutch plate 21 and the first clutch 20 are moved.
  • the 1 output side clutch plate 22 is brought into contact by pressure contact.
  • the first clutch 20 is engaged, the power of the engine 10 is transmitted to the first input shaft 41.
  • the connection / disconnection of the first clutch 20 is controlled by the control device 50.
  • the first clutch 20 may be a dry single plate clutch.
  • the second clutch 30 is a hydraulically operated wet multi-plate clutch having a plurality of second input side clutch plates 31 and a plurality of second output side clutch plates 32.
  • the second input side clutch plate 31 rotates integrally with the engine output shaft 11.
  • the second output side clutch plate 32 rotates integrally with the second input shaft 42 of the transmission unit 40.
  • the second clutch 30 is urged in the disconnection direction by a return spring (not shown), and the second piston 33 is moved by the clutch operating hydraulic pressure supplied from the hydraulic circuit 90, and the second input side clutch plate 31 and the second clutch 30 are moved.
  • the two output side clutch plates 32 are brought into contact with each other by pressure contact.
  • the connection / disconnection of the second clutch 30 is controlled by the control device 50.
  • the second clutch 30 may be a dry single plate clutch.
  • the first input side clutch plate 21, the second input side clutch plate 31, the first output side clutch plate 22, and the second output side clutch plate 32 are simply referred to as “clutch plates” as necessary.
  • the second clutch 30 is provided on the outer peripheral side of the first clutch 20.
  • the first input shaft 41 is provided with an unillustrated lubricating oil passage including an axial oil passage and one or a plurality of radial oil passages, and the lubricating oil is injected radially from the first input shaft 41.
  • each clutch plate of the first clutch 20 is cooled, and further, each clutch plate of the second clutch 30 is cooled.
  • the lubricating oil that has cooled each clutch plate of the second clutch 30 flows out from the outer diameter side of the second clutch 30 and returns to an oil pan (not shown) provided in the hydraulic circuit 90.
  • the second clutch 30 is provided on the outer peripheral side of the first clutch 20 as an example.
  • the arrangement relationship between the first clutch 20 and the second clutch 30 is described here. It is not limited. Specifically, for example, the second clutch 30 may be disposed on the rear side of the first clutch 20.
  • the transmission unit 40 includes a first input shaft 41 connected to the output side of the first clutch 20 and a second input shaft 42 connected to the output side of the second clutch 30.
  • the transmission unit 40 includes a sub shaft 43 disposed in parallel with the first input shaft 41 and the second input shaft 42, and an output shaft 44 disposed coaxially with the first input shaft 41 and the second input shaft 42.
  • a vehicle speed sensor 103 that detects a vehicle speed V that is the speed of the vehicle 1 is provided on the rear end side of the output shaft 44.
  • the transmission unit 40 includes a first transmission unit 60, a second transmission unit 70, and a forward / reverse switching unit 80.
  • the first transmission unit 60 includes a first high speed gear train 61, a first low speed gear train 62, and a first coupling mechanism 63.
  • the first high-speed gear train 61 is provided so as to mesh with the first input gear 61 a provided so as to be rotatable relative to the first input shaft 41 and the first input gear 61 a and to rotate integrally with the auxiliary shaft 43. And the first auxiliary gear 61b.
  • the first low-speed gear train 62 is provided so as to mesh with the second input gear 62 a provided so as to be rotatable relative to the first input shaft 41 and the second input gear 62 a and to rotate integrally with the auxiliary shaft 43. And a second auxiliary gear 62b.
  • the first coupling mechanism 63 selectively moves the first input gear 61a and the second input gear 62a by moving the first sleeve 63a in the axial direction (left-right direction in FIG. 1) by a gear shift actuator (not shown). 1 Rotate integrally with the input shaft 41.
  • the second transmission unit 70 includes a second high speed gear train 71, a second low speed gear train 72, and a second connection mechanism 73.
  • the second high-speed gear train 71 is provided so as to mesh with the third input gear 71 a and the third input gear 71 a provided so as to be rotatable relative to the second input shaft 42 and to rotate integrally with the auxiliary shaft 43.
  • a third auxiliary gear 71b is provided so as to mesh with the third input gear 71 a and the third input gear 71 a provided so as to be rotatable relative to the second input shaft 42 and to rotate integrally with the auxiliary shaft 43.
  • the second low-speed gear train 72 is provided so as to mesh with the fourth input gear 72 a and the fourth input gear 72 a provided so as to be rotatable relative to the second input shaft 42 and to rotate integrally with the auxiliary shaft 43. And a fourth auxiliary gear 72b.
  • the second coupling mechanism 73 rotates the second sleeve 73a in the axial direction by a gear shift actuator (not shown), thereby rotating the third input gear 71a and the fourth input gear 72a alternatively with the second input shaft 42.
  • the forward / reverse switching unit 80 includes a forward gear train 81, a reverse gear train 82, and a third coupling mechanism 83.
  • the forward gear train 81 meshes with the first output gear 81a provided so as to be rotatable relative to the output shaft 44 and the first output gear 81a, and the fifth sub gear provided so as to rotate integrally with the auxiliary shaft 43. And a gear 81b.
  • the reverse gear train 82 meshes with the second output gear 82a provided so as to be rotatable relative to the output shaft 44, the second output gear 82a and the idler gear 82c, and is provided so as to rotate integrally with the auxiliary shaft 43. And the sixth sub gear 82b.
  • the third connecting mechanism 83 selectively rotates the first output gear 81a and the second output gear 82a integrally with the output shaft 44 by moving the third sleeve 83a in the axial direction by a gear shift actuator (not shown).
  • the first connecting mechanism 63 connects the second input gear 62a and the first input shaft 41
  • the third connecting mechanism 83 connects the first output gear 81a and the output shaft 44
  • the first clutch It is established by touching 20. Thereby, the power of the engine 10 is transmitted from the first clutch 20 in the order of the first input shaft 41, the first low speed gear train 62, the countershaft 43, the forward gear train 81, and the output shaft 44.
  • the second input mechanism 72 connects the fourth input gear 72a and the second input shaft 42
  • the third connection mechanism 83 connects the first output gear 81a and the output shaft 44
  • the second clutch It is established by touching 30. Thereby, the power of the engine 10 is transmitted from the second clutch 30 in the order of the second input shaft 42, the second low speed gear train 72, the auxiliary shaft 43, the forward gear train 81, and the output shaft 44.
  • the first connection mechanism 63 connects the first input gear 61a and the first input shaft 41
  • the third connection mechanism 83 connects the first output gear 81a and the output shaft 44
  • the first clutch It is established by touching 20. Thereby, the power of the engine 10 is transmitted from the first clutch 20 in the order of the first input shaft 41, the first high speed gear train 61, the counter shaft 43, the forward gear train 81, and the output shaft 44.
  • the third input gear 71a and the second input shaft 42 are connected by the second connecting mechanism 73, the first output gear 81a and the output shaft 44 are connected by the third connecting mechanism 83, and the second clutch It is established by touching 30.
  • the power of the engine 10 is transmitted from the second clutch 30 in the order of the second input shaft 42, the second high speed gear train 71, the countershaft 43, the forward gear train 81, and the output shaft 44.
  • the control device 50 includes a CPU 51, a memory 52, and an interface (not shown) that is connected to various sensors and devices to exchange signals.
  • the CPU 51 controls the engine 10 by executing a program stored in the memory 52 and also controls the DCT 2 through the control of the hydraulic circuit 90. Specifically, the CPU 51 executes a program stored in the memory 52, thereby, as shown in FIG. 2, a shift condition establishment determination unit 53 and a protective shift execution determination unit 54 (an example of a “determination unit”). And functions as the execution unit 55.
  • the shift condition establishment determination unit 53 determines whether an upshift or downshift transmission condition is established based on the accelerator opening Acc, the vehicle speed V, the shift map stored in the memory 52, and the like.
  • the protection shift execution determination unit 54 determines whether or not a shift execution condition for reducing the output torque of the DCT 2 is satisfied prior to the first clutch 20 and the second clutch 30 (a plurality of frictional engagement elements) being replaced. To do.
  • a shift is referred to as a “protective shift” as necessary.
  • the execution unit 55 executes the protective shift when the protective shift execution determining unit 54 determines that the execution condition of the protective shift is satisfied.
  • the execution unit 55 determines that the shift condition is determined by the shift condition establishment determination unit 53, but the protection shift execution determination unit 54 determines that the protection shift execution condition is not satisfied.
  • a shift different from the protective shift is executed.
  • the shift performed at this time is a shift in which the output torque of the DCT 2 is not reduced prior to the first clutch 20 and the second clutch 30 being gripped.
  • a shift is referred to as a “normal shift” as necessary.
  • the execution unit 55 performs connection / disconnection of the first clutch 20, connection / disconnection of the second clutch 30, and movement of the first sleeve 63a, the second sleeve 73a, and the third sleeve 83a via the hydraulic circuit 90, An upshift or a downshift is executed in either the protective shift or the normal shift.
  • control device 50 any one or more of the functional units described above are other control devices different from the control device 50. It may be realized by.
  • the control device 50 may be configured to function as the protection shift execution determination unit 54 and the execution unit 55.
  • any one of the functional units described above may be configured to also function as another functional unit.
  • the protected shift execution determination unit 54 determines whether or not the execution condition of the protective shift is satisfied (S2).
  • the execution condition of the protective shift is, for example, the temperature at the start of shifting of the clutch that is fastened by gripping among the first clutch 20 and the second clutch 30, or the estimated temperature at the completion of shifting of the clutch. It can be set to be equal to or greater than a predetermined threshold.
  • the execution unit 55 executes an upshift or downshift protection shift (S3).
  • the execution unit 55 executes an upshift or a downshift normal shift (S4).
  • the execution unit 55 reduces the torque capacity (transmittable torque) of the first clutch 20 to the engine torque. At this time, the engine torque matches the driver request engine torque.
  • the execution unit 55 gradually increases the torque capacity of the second clutch 30 while gradually decreasing the torque capacity of the first clutch 20. That is, the clutch is changed.
  • the first clutch system output torque which is the torque transmitted to the output shaft 44 via the first clutch 20 and the first transmission 60
  • the second clutch system output torque which is the torque transmitted to the output shaft 44 via the second clutch 30 and the second transmission unit 70
  • the transmission output torque (output torque of DCT2), which is the torque output from the output shaft 44, is the sum of the first clutch system output torque and the second clutch system output torque.
  • the execution unit 55 controls the torque capacity of each clutch so that the transmission output torque matches the driver requested output torque before and after gripping.
  • the execution unit 55 performs control as follows. In other words, as shown in the middle chart, the execution unit 55 maintains the torque capacity of the second clutch 30 at the same value as the engine torque when the clutch has been changed for a predetermined time. Reduce the torque by a predetermined amount. As a result, as shown in the upper chart, the engine speed changes from the speed of the first input shaft 41 to the speed of the second input shaft 42. When the engine rotational speed matches the rotational speed of the second input shaft 42, no slip occurs in any of the clutches.
  • the execution unit 55 increases the torque capacity of the second clutch 30 by a predetermined amount so that slip does not occur, as shown in the middle chart. Thereby, the fourth speed is achieved and the normal shift is completed.
  • the transmission output torque matches the driver request output torque during normal gear shifting. Therefore, it is unlikely that the driver will feel uncomfortable during the shift.
  • the energy absorbed by each clutch at the time of grip change also becomes relatively large, so the temperature of each clutch tends to increase.
  • FIG. 5 showing a time chart of the protective shift.
  • an upshift from the third speed to the fourth speed is performed.
  • the execution unit 55 reduces the transmission output torque from the driver requested output torque to a predetermined output torque. Specifically, as shown in the middle chart, the execution unit 55 reduces the engine torque to a predetermined value and reduces the torque capacity of the first clutch 20 that is the engaged clutch to the predetermined value. .
  • the predetermined output torque is determined in advance based on the experimental results, how the vehicle 1 is used, the vehicle type, and the like. Further, it can be determined based on the difference between the temperature at the start of shifting of the clutch engaged by re-squeezing or the estimated temperature at the completion of shifting of the clutch and a predetermined threshold.
  • the predetermined output torque is preferably zero acceleration output torque, which is a torque capable of maintaining the vehicle speed when starting the protective shift, or a torque larger than that.
  • the execution unit 55 reduces the transmission output torque, the vehicle 1 can travel without decelerating. For example, the vehicle 1 can continue traveling without stalling even when a protective shift is performed while traveling on an uphill road.
  • the zero acceleration output torque can be obtained from the following formula 1.
  • Equation 1 T 0acc0 is the zero acceleration output torque, r w is the tire radius, if is the final gear ratio, F aero with the symbol ⁇ is the estimated air resistance, F roll with the symbol ⁇ is the estimated rolling resistance, and g is the gravity Acceleration, symbol “m” is the vehicle weight, and symbol “ ⁇ ” is the gradient estimated value.
  • Equation 1 Each parameter in the right side of Equation 1 is determined in advance or can be obtained by a method known at the time of filing this application. Therefore, detailed description is omitted.
  • the transmission output torque from the driver requested output torque is reduced to the predetermined output torque so as not to give the driver a sense of incongruity. That is, the reduction of the transmission output torque prior to the change of the two clutches is performed at such a changing speed that the jerk of the vehicle 1 during the reduction does not become a value that makes the driver feel uncomfortable. Is preferred.
  • the execution unit 55 reduces the transmission output torque so as to satisfy Equation 2 below.
  • the jerk referred to here is a front jerk that is a jerk in the traveling direction of the vehicle 1.
  • Equation 2 the symbol “ ⁇ ” means first-order time differentiation, and the symbol “ ⁇ ” means second-order time differentiation.
  • T oi is a transmission output torque. Therefore, the first-order time differential value of Toi means the changing speed of the transmission output torque. Further, v x is the forward speed of the vehicle 1. Therefore, the second-order time differential value means the forward jerk of the vehicle 1.
  • Other symbols are the same as those in Equation 1.
  • the execution unit 55 gradually increases the torque capacity of the second clutch 30 while gradually decreasing the torque capacity of the first clutch 20. That is, the clutch is changed.
  • the first clutch system output torque which is the torque transmitted to the output shaft 44 via the first clutch 20 and the first transmission 60
  • the second clutch system output torque which is the torque transmitted to the output shaft 44 via the second clutch 30 and the second transmission unit 70
  • the transmission output torque which is the torque output from the output shaft 44
  • the execution unit 55 controls the torque capacity of each clutch while maintaining a state in which the transmission output torque is less than the driver request output torque and greater than or equal to the zero acceleration output torque, before and after the grip change. .
  • the execution unit 55 controls the torque capacity of the second clutch 30 as follows. In other words, as shown in the middle chart, the execution unit 55 maintains the torque capacity of the second clutch 30 at the engine torque when the clutch has been re-engaged for a predetermined period of time and applies the engine torque. Reduce quantitatively. As a result, as shown in the upper chart, the engine speed changes from the speed of the first input shaft 41 to the speed of the second input shaft 42. When the engine rotational speed matches the rotational speed of the second input shaft 42, no slip occurs in any of the clutches.
  • the execution unit 55 sets the torque capacity of the second clutch 30 to the torque capacity of the first clutch 20 before the start of shifting, as shown in the middle chart. Increase to be equal to. Further, the engine torque is recovered to the driver request engine torque. Thereby, the fourth speed is achieved and the protective shift is completed.
  • the first clutch 20 and the second clutch 30 are slipping in the grip changing process of the first clutch 20 and the second clutch 30. Further, the second clutch 30 is slipping during the engine speed transition process.
  • the torque capacity of each clutch is reduced through these steps as compared with the case of executing the normal shift. Therefore, the energy absorbed by each clutch is reduced, and the amount of heat generated in each clutch is smaller than that during normal shift execution. That is, excessive heat generation in each clutch can be prevented by performing the protective shift.
  • the clutch gripping process and the engine speed transition process are performed while the transmission output torque, which is the output torque of the DCT 2, is reduced, the amount of heat generated in each clutch can be reduced more reliably.
  • FIG. 6 is a time chart when the downshift from the third speed to the second speed is executed by the normal shift.
  • FIG. 7 is a time chart when the downshift from the third speed to the second speed is executed by the protective shift.
  • the automatic transmission may be a DCT that has a larger number of gear trains and can shift gears in multiple stages, a clutch that stops the relative rotation of the elements constituting the planetary gear, and the rotation of the elements.
  • An automatic transmission including a brake to be operated may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

摩擦締結要素の掴み換えを行う際の、摩擦締結要素の過度な発熱を防止することが可能な変速機の制御装置を提供する。自動変速機の制御装置は、複数の摩擦締結要素の掴み換えに先だって変速機の出力トルクの低減が行われる変速の実行条件が成立したか否かを判断する判断部と、前記判断部によって前記変速の実行条件が成立したと判断された場合に、前記変速を実行する実行部と、を備える。

Description

自動変速機の制御装置
 本開示は、自動変速機の制御装置に関する。
 従来、複数の摩擦締結要素の掴み換えを伴って変速する自動変速機が種々知られている。例えば、エンジンと奇数段ギヤ列との間に設けられた第1クラッチ(摩擦締結要素)と、エンジンと偶数段ギヤ列との間に設けられた第2クラッチ(摩擦締結要素)とを備え、エンジンからの駆動力を第1クラッチ又は第2クラッチを介して出力側に伝達するデュアルクラッチトランスミッション(DCT)が知られている。また、遊星歯車を構成する要素同士の相対回転を停止させるクラッチ(摩擦締結要素)と、当該要素の回転を停止させるブレーキ(摩擦締結要素)とを備え、エンジンからの駆動力を遊星歯車を介して出力側に伝達する自動変速機(AT)が知られている。
 これらの自動変速機における複数の摩擦締結要素の掴み換え、すなわち、互いに並行して行われる一方の摩擦締結要素の解放と他方の摩擦締結要素の締結は、各摩擦締結要素において摩擦熱を発生させる。過度な摩擦熱の発生は摩擦締結要素を損傷させる。よって何らかの熱対策が必要である。一方、変速時にドライバが予測しない加減速感をドライバに与えることはドライバビリティを低下させるので望ましくない。
 そこで、摩擦締結要素の掴み換え時における摩擦締結要素の損傷の防止とドライバビリティの両立を図った発明がこれまでに提案されている。
 例えば、特許文献1には、DCT車両の変速制御方法に係る発明が開示されている。当該方法は、「DCT車両の発進制御中にシフトアップ変速指令の発生有無を確認する変速指令確認段階と;上記変速指令確認段階の遂行結果、発進制御中にシフトアップ変速指令発生時には、エンジンと同期しようとする入力軸の回転数とエンジン回転数の間の回転数差が所定の基準回転数次以内であるか判断するスリップ判断段階と;上記スリップ判断段階の遂行結果、上記入力軸の回転数とエンジン回転数の差が上記基準回転数次以内の場合、上記発進制御を終了し変速制御に転換する制御転換段階」(請求項1)を含んでいる。
日本国特開2014-55666号公報
 特許文献1に記載の方法によれば、特許文献1の図3に示されるように、掴み換えの前後を通して、解放されるクラッチにおける変速機の入力軸の回転数は上昇し続ける。すなわち、変速中も変速前と変わらず車両は加速し続ける。これは、掴み換え時においても摩擦締結要素は比較的高いトルク容量を有していることを意味している。したがって、変速時、摩擦締結要素の温度は過度に上昇するおそれがある。
 本開示の目的は、摩擦締結要素の掴み換えを行う際の、摩擦締結要素の過度な発熱を防止することが可能な自動変速機の制御装置を提供することである。
 本開示の一態様に係る自動変速機の制御装置は、複数の摩擦締結要素の掴み換えに先だって自動変速機の出力トルクの低減が行われる変速の実行条件が成立したか否かを判断する判断部と、前記判断部によって前記変速の実行条件が成立したと判断された場合に、前記変速を実行する実行部と、を備える。
 本開示によれば、摩擦締結要素の掴み換えを行う際の、摩擦締結要素の過度な発熱を防止することが可能な自動変速機の制御装置を提供することができる。
図1は、本開示に係る自動変速機の制御装置が適用された車両を示す概略構成図である。 図2は、本開示に係る自動変速機の制御装置の機能ブロック図である。 図3は、本開示に係る自動変速機の制御装置による制御の流れを示すフローチャートである。 図4は、通常変速によってアップシフトが行われるときのタイムチャートである。 図5は、保護変速によってアップシフトが行われるときのタイムチャートである。 図6は、通常変速によってダウンシフトが行われるときのタイムチャートである。 図7は、保護変速によってダウンシフトが行われるときのタイムチャートである。
 以下、本開示の実施形態について、図面を参照して詳細に説明する。なお、以下に説明する実施形態は一例であり、本開示はこの実施形態により限定されるものではない。
 まず、図1を参照して、車両の全体構成について説明する。図1に示すように、車両1は、エンジン10と、第1クラッチ20、第2クラッチ30、変速部40及び油圧回路90からなるDCT2(自動変速機)と、制御装置50とを備えている。そして、DCT2の出力側に、不図示のプロペラシャフトおよびデファレンシャルギヤを介して、駆動輪が動力伝達可能に連結されている。
 エンジン10は、例えばディーゼルエンジンである。エンジン10の出力回転数(以下、「エンジン回転数」と記載する。)および出力トルクは、アクセル開度センサ101によって検出されるアクセルペダルのアクセル開度Accに基づいて制御される。また、エンジン出力軸11には、エンジン回転数を検出するエンジン回転数センサ102が設けられている。
 第1クラッチ20は、複数の第1入力側クラッチ板21および複数の第1出力側クラッチ板22を有する油圧作動式の湿式多板クラッチである。第1入力側クラッチ板21は、エンジン10によって回転させられるエンジン出力軸11と一体回転する。第1出力側クラッチ板22は、変速部40の第1入力軸41と一体回転する。
 第1クラッチ20は、不図示のリターンスプリングによって断方向に付勢されており、油圧回路90から供給されるクラッチ作動油圧によって第1ピストン23が移動して、第1入力側クラッチ板21および第1出力側クラッチ板22を圧接することで接とされる。第1クラッチ20が接とされることで、エンジン10の動力が第1入力軸41に伝達される。第1クラッチ20の断接は、制御装置50によって制御される。なお、第1クラッチ20は乾式単板クラッチであってもよい。
 第2クラッチ30は、複数の第2入力側クラッチ板31および複数の第2出力側クラッチ板32を有する油圧作動式の湿式多板クラッチである。第2入力側クラッチ板31は、エンジン出力軸11と一体回転する。第2出力側クラッチ板32は、変速部40の第2入力軸42と一体回転する。
 第2クラッチ30は、不図示のリターンスプリングによって断方向に付勢されており、油圧回路90から供給されるクラッチ作動油圧によって第2ピストン33が移動して、第2入力側クラッチ板31および第2出力側クラッチ板32を圧接することで接とされる。第2クラッチ30が接とされることで、エンジン10の動力が第2入力軸42に伝達される。第2クラッチ30の断接は、制御装置50によって制御される。なお、第2クラッチ30は乾式単板クラッチであってもよい。以下、必要に応じ、第1入力側クラッチ板21、第2入力側クラッチ板31、第1出力側クラッチ板22及び第2出力側クラッチ板32を単に「クラッチ板」と記載する。
 第2クラッチ30は、第1クラッチ20の外周側に設けられている。また、第1入力軸41には、軸方向油路および1つまたは複数の径方向油路からなる不図示の潤滑油路が設けられており、第1入力軸41から潤滑油が放射状に噴射されることで、第1クラッチ20の各クラッチ板が冷却され、さらに、第2クラッチ30の各クラッチ板が冷却される。第2クラッチ30の各クラッチ板を冷却した潤滑油は、第2クラッチ30の外径側等から流出し、油圧回路90が備える不図示のオイルパンに戻る。なお、本実施形態では、第2クラッチ30が第1クラッチ20の外周側に設けられているものを例に挙げて説明を行うが、第1クラッチ20および第2クラッチ30の配置関係はこれに限定されない。具体的には、例えば、第2クラッチ30を、第1クラッチ20の後側に配置するようにしてもよい。
 変速部40は、第1クラッチ20の出力側に接続された第1入力軸41と、第2クラッチ30の出力側に接続された第2入力軸42とを備えている。また、変速部40は、第1入力軸41および第2入力軸42と平行に配置された副軸43と、第1入力軸41および第2入力軸42と同軸上に配置された出力軸44と、を備えている。また、出力軸44の後端側には、車両1の速度である車速Vを検出する車速センサ103が設けられている。
 変速部40は、第1変速部60と、第2変速部70と、前後進切替部80と、を備えている。第1変速部60は、第1高速ギヤ列61と、第1低速ギヤ列62と、第1連結機構63とを備えている。
 第1高速ギヤ列61は、第1入力軸41に対して相対回転可能に設けられた第1入力ギヤ61aと、第1入力ギヤ61aと噛合し、副軸43と一体回転するように設けられた第1副ギヤ61bとからなる。
 第1低速ギヤ列62は、第1入力軸41に対して相対回転可能に設けられた第2入力ギヤ62aと、第2入力ギヤ62aと噛合し、副軸43と一体回転するように設けられた第2副ギヤ62bとからなる。
 第1連結機構63は、不図示のギヤシフトアクチュエータによって第1スリーブ63aを軸方向(図1の左右方向)に移動させることによって、第1入力ギヤ61aおよび第2入力ギヤ62aを択一的に第1入力軸41と一体回転させる。
 第2変速部70は、第2高速ギヤ列71と、第2低速ギヤ列72と、第2連結機構73とを備えている。第2高速ギヤ列71は、第2入力軸42に対して相対回転可能に設けられた第3入力ギヤ71aと、第3入力ギヤ71aと噛合し、副軸43と一体回転するように設けられた第3副ギヤ71bとからなる。
 第2低速ギヤ列72は、第2入力軸42に対して相対回転可能に設けられた第4入力ギヤ72aと、第4入力ギヤ72aと噛合し、副軸43と一体回転するように設けられた第4副ギヤ72bとからなる。
 第2連結機構73は、不図示のギヤシフトアクチュエータによって第2スリーブ73aを軸方向に移動させることによって、第3入力ギヤ71aおよび第4入力ギヤ72aを択一的に第2入力軸42と一体回転させる。
 前後進切替部80は、前進ギヤ列81と、後進ギヤ列82と、第3連結機構83とを備えている。前進ギヤ列81は、出力軸44に対して相対回転可能に設けられた第1出力ギヤ81aと、第1出力ギヤ81aと噛合し、副軸43と一体回転するように設けられた第5副ギヤ81bとからなる。
 後進ギヤ列82は、出力軸44に対して相対回転可能に設けられた第2出力ギヤ82aと、第2出力ギヤ82aとアイドラギヤ82cを介して噛合し、副軸43と一体回転するように設けられた第6副ギヤ82bとからなる。
 第3連結機構83は、不図示のギヤシフトアクチュエータによって第3スリーブ83aを軸方向に移動させることによって、第1出力ギヤ81aおよび第2出力ギヤ82aを択一的に出力軸44と一体回転させる。
 ここで、DCT2における動力伝達経路について簡単に説明する。1速は、第1連結機構63によって第2入力ギヤ62aと第1入力軸41とを連結し、第3連結機構83によって第1出力ギヤ81aと出力軸44とを連結し、かつ第1クラッチ20を接とすることで成立する。これにより、エンジン10の動力は、第1クラッチ20から、第1入力軸41、第1低速ギヤ列62、副軸43、前進ギヤ列81、出力軸44の順に伝達される。
 2速は、第2連結機構73によって第4入力ギヤ72aと第2入力軸42とを連結し、第3連結機構83によって第1出力ギヤ81aと出力軸44とを連結し、かつ第2クラッチ30を接とすることで成立する。これにより、エンジン10の動力は、第2クラッチ30から、第2入力軸42、第2低速ギヤ列72、副軸43、前進ギヤ列81、出力軸44の順に伝達される。
 3速は、第1連結機構63によって第1入力ギヤ61aと第1入力軸41とを連結し、第3連結機構83によって第1出力ギヤ81aと出力軸44とを連結し、かつ第1クラッチ20を接とすることで成立する。これにより、エンジン10の動力は、第1クラッチ20から、第1入力軸41、第1高速ギヤ列61、副軸43、前進ギヤ列81、出力軸44の順に伝達される。
 4速は、第2連結機構73によって第3入力ギヤ71aと第2入力軸42とを連結し、第3連結機構83によって第1出力ギヤ81aと出力軸44とを連結し、かつ第2クラッチ30を接とすることで成立する。これにより、エンジン10の動力は、第2クラッチ30から、第2入力軸42、第2高速ギヤ列71、副軸43、前進ギヤ列81、出力軸44の順に伝達される。
 制御装置50は、CPU51、メモリ52、並びに、種々のセンサ及び装置と接続され信号を授受する図示しないインタフェース等から構成されている。CPU51はメモリ52に記憶されているプログラムを実行することにより、エンジン10を制御するとともに、油圧回路90の制御を介してDCT2を制御する。具体的には、CPU51はメモリ52に記憶されているプログラムを実行することにより、図2に示されるように、変速条件成立判断部53、保護変速実行判断部54(「判断部」の一例)及び実行部55として機能する。
 変速条件成立判断部53は、アクセル開度Acc、車速V、及び、メモリ52に記憶されている変速マップ等に基づいて、アップシフト又はダウンシフトの変速条件が成立したか否かを判断する。
 保護変速実行判断部54は、第1クラッチ20及び第2クラッチ30(複数の摩擦締結要素)の掴み換えに先だってDCT2の出力トルクの低減が行われる変速の実行条件が成立したか否かを判断する。以下、必要に応じ、このような変速を「保護変速」と記載する。
 実行部55は、保護変速実行判断部54によって保護変速の実行条件が成立したと判断された場合に、保護変速を実行する。
 また、実行部55は、変速条件成立判断部53によって変速条件が成立したと判断されたものの、保護変速実行判断部54によって保護変速の実行条件は成立していないと判断された場合には、保護変速とは異なる変速を実行する。このときに行われる変速は、第1クラッチ20及び第2クラッチ30の掴み換えに先立ってDCT2の出力トルクが低減されない変速である。以下、必要に応じ、このような変速を「通常変速」と記載する。
 実行部55は、油圧回路90を介して第1クラッチ20の断接、第2クラッチ30の断接、並びに、第1スリーブ63a、第2スリーブ73a及び第3スリーブ83aの移動を行うことによって、保護変速及び通常変速のいずれか一方でアップシフト又はダウンシフトを実行する。
 なお、上に説明した各機能部の全てが制御装置50によって実現される必要はなく、上に説明した各機能部のうちの何れか1つ以上が制御装置50とは別の他の制御装置によって実現されてもよい。例えば、制御装置50は保護変速実行判断部54及び実行部55として機能するように構成されていてもよい。また、上に説明した各機能部のうち何れか1つが他の機能部の機能をも兼ねるように構成されていても良いことは勿論である。
 続いて、図3のフローチャートを参照して、本実施形態に係る変速機の制御装置による変速制御について詳細に説明する。
 まず、変速条件成立判断部53によって、アップシフト又はダウンシフトの変速条件が成立したか否かが判断される(S1)。変速条件が成立していない(S1においてNO)と判断される間は、変速条件が成立した(S1においてYES)と判断されるまで、変速条件が成立したか否かの判断が繰り返される。
 変速条件が成立したと判断されると、保護変速の実行条件が成立しているか否かが保護変速実行判断部54によって判断される(S2)。保護変速の実行条件は、例えば、第1クラッチ20及び第2クラッチ30のうち、掴み換えによって締結される側のクラッチの変速開始時の温度、又は、当該クラッチの変速完了時の推定温度が、あらかじめ定められた閾値以上であることとすることができる。
 保護変速実行判断部54によって保護変速の実行条件が成立している(S2においてYES)と判断されると、実行部55はアップシフト又はダウンシフトの保護変速を実行する(S3)。一方、保護変速実行判断部54によって保護変速の実行条件が成立していない(S2においてNO)と判断されると、実行部55はアップシフト又はダウンシフトの通常変速を実行する(S4)。
 保護変速について説明する前に、通常変速のタイムチャートを示す図4を参照しながら、通常変速について説明する。ここでは、3速から4速へのアップシフトが行われる場合を例に挙げて説明する。
 通常変速が開始されると、まず、中段のチャートに示されるように、実行部55は第1クラッチ20のトルク容量(伝達可能トルク)をエンジントルクまで低減する。なおこのとき、エンジントルクはドライバ要求エンジントルクに一致している。
 続いて、実行部55は、第1クラッチ20のトルク容量を徐々に低減させつつ、第2クラッチ30のトルク容量を徐々に増加させる。すなわち、クラッチの掴み換えが行われる。
 その結果、下段のチャートに示されるように、第1クラッチ20及び第1変速部60を介して出力軸44に伝達されるトルクである第1クラッチ系統出力トルクは徐々に減少する。また、第2クラッチ30及び第2変速部70を介して出力軸44に伝達されるトルクである第2クラッチ系統出力トルクは徐々に増加する。出力軸44から出力されるトルクである変速機出力トルク(DCT2の出力トルク)は、第1クラッチ系統出力トルクと第2クラッチ系統出力トルクの和となる。通常変速実行時、実行部55は、掴み換えの前後を通じて、変速機出力トルクがドライバ要求出力トルクに一致するように、各クラッチのトルク容量を制御する。
 第1クラッチ系統出力トルクが0になり、変速機出力トルクが第2クラッチ系統出力トルクと等しくなると、実行部55は、次のように制御を行う。すなわち、中段のチャートに示されるように、実行部55は、所定時間、第2クラッチ30のトルク容量を、クラッチの掴み換えが行われていたときのエンジントルクと同じ値に維持するとともに、エンジントルクを所定量低減する。その結果、上段のチャートに示されるように、エンジン回転数は第1入力軸41の回転数から第2入力軸42の回転数に遷移する。エンジン回転数が第2入力軸42の回転数に一致すると、いずれのクラッチにおいても滑りが生じていない状態となる。
 エンジン回転数が第2入力軸42の回転数に一致すると、実行部55は、中段のチャートに示されるように、第2クラッチ30のトルク容量を、滑りが生じないように所定量増加させる。これにより、4速が達成され通常変速が完了する。
 なお、通常変速実行中は、変速機出力トルクがドライバ要求出力トルクに一致している。よって、変速実行中にドライバに違和感を与えることは少ない。ただし、変速機出力トルクが比較的高い結果、掴み換え時に各クラッチで吸収されるエネルギも比較的大きくなるので、各クラッチの温度が高くなる傾向がある。
 次に、保護変速のタイムチャートを示す図5を参照しながら、保護変速について説明する。ここでは、3速から4速へのアップシフトが行われるものとする。
 保護変速が開始されると、まず、下段のチャートに示されるように、実行部55は変速機出力トルクをドライバ要求出力トルクから、所定の出力トルクまで低減させる。具体的には、中段のチャートに示されるように、実行部55はエンジントルクを所定値まで低減させるとともに、締結されているクラッチである第1クラッチ20のトルク容量を、当該所定値まで低減させる。
 上記所定の出力トルクは、実験結果、車両1の使われ方、車種等に基づいてあらかじめ定められている。また、掴み換えによって締結される側のクラッチの変速開始時の温度、又は、当該クラッチの変速完了時の推定温度と、あらかじめ定められた閾値との差に基づいて決定することができる。
 いずれの場合であっても、上記所定の出力トルクは、保護変速を開始するときの車速を維持可能なトルクであるゼロ加速度出力トルク又はそれよりも大きなトルクとすることが好ましい。そのようにすることで、実行部55が変速機出力トルクを低減させても、車両1は減速することなく走行することができる。例えば、登坂路走行中に保護変速が行われる場合も、車両1は失速することなく走行を継続することができる。なお、ゼロ加速度出力トルクは次の数式1から求めることができる。
Figure JPOXMLDOC01-appb-M000001
 数式1において、T0acc0はゼロ加速度出力トルク、rはタイヤ半径、iはファイナルギア比、記号^付Faeroは空気抵抗推定値、記号^付Frollはころがり抵抗推定値、gは重力加速度、記号^付mは車両重量、記号^付θは勾配推定値である。なお、数式1の右辺中の各パラメータは、あらかじめ定められているか、本願出願時に公知となっている方法によって求めることができるものである。よって詳細な説明は省略する。
 また、ドライバ要求出力トルクから上記所定の出力トルクへの変速機出力トルクの低減は、ドライバに違和感を与えないように行うことが好ましい。すなわち、2つのクラッチの掴み換えに先立つ変速機出力トルクの低減は、当該低減が行われている最中の車両1の加加速度がドライバに違和感を与える値とならないような変化速度で行われることが好ましい。例えば、以下の数式2を満たすように、実行部55は変速機出力トルクを低減させる。なお、ここでいう加加速度とは、車両1の進行方向の加加速度である前方加加速度である。
Figure JPOXMLDOC01-appb-M000002
 数式2において、記号・は1階時間微分を、記号・・は2階時間微分を意味している。Toiは変速機出力トルクである。よって、Toiの1階時間微分値は、変速機出力トルクの変化速度を意味している。また、vは車両1の前方速度である。よって、その2階時間微分値は車両1の前方加加速度を意味している。なお、その他の記号は、数式1と共通である。
 vの2階時間微分値(車両1の前方加加速度)の好適な値の範囲として、ドライバが違和感を持たない値の範囲が、予め実験的に求められ、メモリ52に格納されている。よって、そのような値を数式2に代入して求められる数値範囲内の変化速度で変速機出力トルクを変化させることで、ドライバに違和感を与えることなく、クラッチの掴み換えに先立って変速機出力トルクを低減させることができる。
 続いて、中段のチャートに示されるように、実行部55は第1クラッチ20のトルク容量を徐々に低減させつつ、第2クラッチ30のトルク容量を徐々に増加させる。すなわち、クラッチの掴み換えが行われる。
 その結果、下段のチャートに示されるように、第1クラッチ20及び第1変速部60を介して出力軸44に伝達されるトルクである第1クラッチ系統出力トルクは徐々に減少する。また、第2クラッチ30及び第2変速部70を介して出力軸44に伝達されるトルクである第2クラッチ系統出力トルクは徐々に増加する。出力軸44から出力されるトルクである変速機出力トルクは、第1クラッチ系統出力トルクと第2クラッチ系統出力トルクの和となる。保護変速実行中、実行部55は、掴み換えの前後を通じて、変速機出力トルクがドライバ要求出力トルク未満、且つ、ゼロ加速度出力トルク以上となる状態を維持しながら、各クラッチのトルク容量を制御する。
 第1クラッチ系統出力トルクが0になり、変速機出力トルクが第2クラッチ系統出力トルクと等しくなると、実行部55は、第2クラッチ30のトルク容量を次のように制御する。すなわち、中段のチャートに示されるように、実行部55は、所定時間、第2クラッチ30のトルク容量を、クラッチの掴み換えが行われていたときのエンジントルクに維持するとともに、エンジントルクを所定量低減する。その結果、上段のチャートに示されるように、エンジン回転数は第1入力軸41の回転数から第2入力軸42の回転数に遷移する。エンジン回転数が第2入力軸42の回転数に一致すると、いずれのクラッチにおいても滑りが生じていない状態となる。
 エンジン回転数が第2入力軸42の回転数に一致すると、実行部55は、中段のチャートに示されるように、第2クラッチ30のトルク容量を、変速開始前の第1クラッチ20のトルク容量と等しくなるように増加させる。また、エンジントルクをドライバ要求エンジントルクに回復させる。これにより、4速が達成され保護変速が完了する。
 保護変速実行中、第1クラッチ20と第2クラッチ30の掴み換え工程において、第1クラッチ20及び第2クラッチ30は滑っている。また、エンジン回転数の遷移工程において、第2クラッチ30は滑っている。しかしながら、通常変速実行時と比較して、各クラッチのトルク容量は、これらの工程を通して低減している。よって、各クラッチで吸収されるエネルギは低減し、各クラッチにおける発熱量は通常変速実行時よりも小さくなる。すなわち、保護変速を行うことによって、各クラッチにおける過度な発熱を防止することができる。しかも、DCT2の出力トルクである変速機出力トルクが低減した状態でクラッチの掴み換え工程やエンジン回転数の遷移工程が行われるので、より確実に、各クラッチにおける発熱量を低減させることができる。
 なお、本開示に係る保護変速は、ダウンシフトの場合にも適用することができる。図6は3速から2速へのダウンシフトが通常変速によって実行される場合のタイムチャートである。また、図7は、3速から2速へのダウンシフトが保護変速によって実行される場合のタイムチャートである。
 これらのタイムチャートから明らかなように、保護変速によってダウンシフトが実行される場合、エンジン回転数の遷移工程、及び、第1クラッチ20と第2クラッチ30の掴み換え工程において、変速機出力トルクは低減されている。すなわち、各クラッチのトルク容量は、これらの工程を通して低減している。よって、各クラッチにおける発熱量は通常変速実行時よりも小さくなる。すなわち、保護変速を行うことによって、各クラッチにおける過度な発熱を防止することができる。
 なお、自動変速機は、ギヤ列をさらに多数有し、より多段に変速できるDCTであってもよいし、遊星歯車を構成する要素同士の相対回転を停止させるクラッチと、当該要素の回転を停止させるブレーキとを備える自動変速機であってもよい。
 本出願は、2017年5月19日付で出願された日本国特許出願(特願2017-099973)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示によれば、摩擦締結要素の掴み換えを行う際の、摩擦締結要素の過度な発熱を防止することが可能な自動変速機の制御装置を提供することができる。よって、その産業上の利用可能性は多大である。
 1 車両
 2 DCT
 10 エンジン
 11 エンジン出力軸
 20 第1クラッチ
 21 第1入力側クラッチ板
 22 第1出力側クラッチ板
 23 第1ピストン
 30 第2クラッチ
 31 第2入力側クラッチ板
 32 第2出力側クラッチ板
 33 第2ピストン
 40 変速部
 41 第1入力軸
 42 第2入力軸
 43 副軸
 44 出力軸
 50 制御装置
 51 CPU
 52 メモリ
 53 変速条件成立判断部
 54 保護変速実行判断部
 55 実行部
 60 第1変速部
 61 第1高速ギヤ列
 61a 第1入力ギヤ
 61b 第1副ギヤ
 62 第1低速ギヤ列
 62a 第2入力ギヤ
 62b 第2副ギヤ
 63 第1連結機構
 63a 第1スリーブ
 70 第2変速部
 71 第2高速ギヤ列
 71a 第3入力ギヤ
 71b 第3副ギヤ
 72 第2低速ギヤ列
 72a 第4入力ギヤ
 72b 第4副ギヤ
 73 第2連結機構
 73a 第2スリーブ
 80 前後進切替部
 81 前進ギヤ列
 81a 第1出力ギヤ
 81b 第5副ギヤ
 82 後進ギヤ列
 82a 第2出力ギヤ
 82b 第6副ギヤ
 82c アイドラギヤ
 83 第3連結機構
 83a 第3スリーブ
 101 アクセル開度センサ
 102 エンジン回転数センサ
 103 車速センサ
 90 油圧回路

Claims (3)

  1.  複数の摩擦締結要素の掴み換えに先だって自動変速機の出力トルクの低減が行われる変速の実行条件が成立したか否かを判断する判断部と、
     前記判断部によって前記変速の実行条件が成立したと判断された場合に、前記変速を実行する実行部と、を備える自動変速機の制御装置。
  2.  前記実行部は、前記変速の実行中、前記自動変速機の出力トルクを、前記判断部によって前記変速の実行条件が成立したと判断されたときの車速を維持可能なトルク以上に維持する、
     請求項1に記載の自動変速機の制御装置。
  3.  前記実行部は、前記低減が行われている最中の車両の加加速度が、前記車両のドライバが違和感をもたないものとして予め定めた所定の範囲内となる変化速度で、前記自動変速機の出力トルクを低減させる、請求項1に記載の自動変速機の制御装置。
PCT/JP2018/019295 2017-05-19 2018-05-18 自動変速機の制御装置 WO2018212324A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880030138.2A CN110799781B (zh) 2017-05-19 2018-05-18 自动变速器的控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-099973 2017-05-19
JP2017099973A JP6911519B2 (ja) 2017-05-19 2017-05-19 自動変速機の制御装置

Publications (1)

Publication Number Publication Date
WO2018212324A1 true WO2018212324A1 (ja) 2018-11-22

Family

ID=64273830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019295 WO2018212324A1 (ja) 2017-05-19 2018-05-18 自動変速機の制御装置

Country Status (3)

Country Link
JP (1) JP6911519B2 (ja)
CN (1) CN110799781B (ja)
WO (1) WO2018212324A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005090308A (ja) * 2003-09-16 2005-04-07 Hitachi Ltd 自動車の制御装置及び制御方法
JP2009127793A (ja) * 2007-11-27 2009-06-11 Nissan Motor Co Ltd 車両の駆動力制御装置
JP2013053732A (ja) * 2011-09-06 2013-03-21 Aisin Ai Co Ltd 自動変速機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034280A1 (ja) * 2012-08-31 2014-03-06 ジヤトコ株式会社 自動変速機の制御装置および自動変速機の制御方法
DE102015101806A1 (de) * 2014-09-23 2016-03-24 Hyundai Motor Company Verfahren zum Schutz einer Kupplung für ein Doppelkupplungsgetriebe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005090308A (ja) * 2003-09-16 2005-04-07 Hitachi Ltd 自動車の制御装置及び制御方法
JP2009127793A (ja) * 2007-11-27 2009-06-11 Nissan Motor Co Ltd 車両の駆動力制御装置
JP2013053732A (ja) * 2011-09-06 2013-03-21 Aisin Ai Co Ltd 自動変速機

Also Published As

Publication number Publication date
JP2018194128A (ja) 2018-12-06
CN110799781B (zh) 2021-05-07
JP6911519B2 (ja) 2021-07-28
CN110799781A (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
US9174644B2 (en) Vehicle shift control device
US8583336B2 (en) Power transmission control apparatus for vehicle
EP2653754B1 (en) Control device for dual clutch transmission and control method for dual clutch transmission
CN108799480A (zh) 具有dct的混合动力车辆的换挡控制方法
EP2767733B1 (en) Power transmission control device for vehicle
JP4577073B2 (ja) 複数クラッチ式変速機の制御装置
WO2018212314A1 (ja) 自動変速機の制御装置
WO2018212313A1 (ja) 自動変速機の制御装置
JP2006226380A (ja) ツインクラッチ式変速機の制御装置
WO2018212324A1 (ja) 自動変速機の制御装置
JP2006308061A (ja) 変速機の制御装置
WO2018212325A1 (ja) 自動変速機の制御装置
JP2013032825A (ja) 車両の動力伝達制御装置
JP6897309B2 (ja) 自動変速機の制御装置
JP6897171B2 (ja) 車両の制御システム
WO2020188930A1 (ja) 車両の変速制御装置および変速制御方法
JP2018058495A (ja) 車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18802803

Country of ref document: EP

Kind code of ref document: A1