WO2018212242A1 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
WO2018212242A1
WO2018212242A1 PCT/JP2018/018961 JP2018018961W WO2018212242A1 WO 2018212242 A1 WO2018212242 A1 WO 2018212242A1 JP 2018018961 W JP2018018961 W JP 2018018961W WO 2018212242 A1 WO2018212242 A1 WO 2018212242A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
air
indoor
humidity
target
Prior art date
Application number
PCT/JP2018/018961
Other languages
French (fr)
Japanese (ja)
Inventor
尚吾 太田
拓也 上総
浩介 平井
昂之 砂山
明日香 八木
孝則 鈴木
和洋 秋田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201880032848.9A priority Critical patent/CN110637199A/en
Publication of WO2018212242A1 publication Critical patent/WO2018212242A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air

Definitions

  • the present invention relates to an air conditioning system.
  • the air conditioning system described in Patent Document 1 includes a refrigerant circuit to which a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are connected, and is configured to perform a refrigeration cycle in the refrigerant circuit. .
  • the evaporation temperature of the indoor heat exchanger is lowered during the operation of dehumidifying the room.
  • air is cooled to a temperature lower than the dew point temperature, and moisture in the air is condensed. As a result, the room is dehumidified.
  • indoor humidity may be high particularly at the start of operation. For this reason, if indoor humidity can be rapidly reduced under such conditions, indoor comfort can be improved. On the other hand, if the air is excessively cooled in order to reduce the humidity in the room, the temperature in the room is excessively lowered, leading to a reduction in energy saving performance.
  • the present invention has been made paying attention to such problems, and an object of the present invention is to provide an air conditioning system that can quickly process latent heat in a room and is excellent in energy saving.
  • the first invention is directed to an air conditioning system, and includes an indoor unit (30, 50) and an outdoor unit (21, 41), each of which individually performs a refrigeration cycle and targets the same room.
  • the control device (60) includes all the air conditioners (20, 40). 40) indoor unit (30,50) controlled to cool air below dew point temperature and at least one air conditioner (20) indoor unit (30) air below dew point temperature And the second operation in which the indoor unit (50) of the other air conditioner (40) is controlled to cool the air at a temperature higher than the dew point temperature. It is characterized by being.
  • the first operation and the second operation are switched and executed by the control device (60).
  • the indoor units (30, 50) of all the air conditioners (20, 40) are controlled to cool the air to the dew point temperature or lower.
  • All the air conditioners (20, 40) target the same indoor space (11) for air conditioning. For this reason, the latent heat in the room can be quickly processed by performing the first operation.
  • the indoor units (30) of some of the air conditioners (20) are controlled to cool the air to below the dew point temperature.
  • the indoor unit (50) of the other air conditioner (40) is controlled to cool the air at a temperature higher than the dew point temperature.
  • the latent heat of air is preferentially processed by some air conditioners (20), and the sensible heat of air is processed by other air conditioners (40).
  • the indoor temperature and humidity can be brought close to the target value without excessively lowering the indoor temperature. Therefore, the driving
  • the second invention is characterized in that, in the first invention, the control device (60) executes the first operation when a condition indicating that at least indoor humidity is higher than a predetermined value is satisfied.
  • the first operation is executed under conditions of high indoor humidity. Thereby, the latent heat in the room can be quickly processed, and the comfort in the room can be secured quickly.
  • the control device (60) executes the second operation when a condition indicating that the indoor temperature and humidity are within a target range is satisfied.
  • the second operation is executed when the indoor temperature and humidity reach the target ranges.
  • indoor temperature and humidity can be maintained in a target range, ensuring energy saving.
  • control device (60) includes a temperature control mode including a normal cooling operation, and a temperature and humidity including the first operation and the second operation. It is characterized by being configured to switch between control modes.
  • the temperature control mode and the temperature / humidity control mode are selectively executed.
  • the temperature control mode is an operation mode for adjusting the indoor temperature, and includes a normal cooling operation.
  • the temperature / humidity mode is an operation mode for adjusting the temperature and humidity in the room, and includes a first operation for preferentially processing latent heat and a second operation for separately processing latent heat and sensible heat.
  • control device (60) determines the start of execution of the next operation including the first operation and the second operation at the start of the temperature / humidity control mode. It is characterized by.
  • the temperature / humidity control mode when the temperature / humidity control mode is started, it is determined whether to start at least the first operation and the second operation.
  • control device (60) is configured so that the indoor units (30, 50) of all the air conditioners (20, 40) extract air from the dew point temperature.
  • the third operation controlled to cool at a high temperature is configured to be executable.
  • the indoor units (30, 50) of all the air conditioners (20, 40) are controlled to cool the air at a temperature higher than the dew point temperature. All the air conditioners (20, 40) target the same indoor space (11) for air conditioning. For this reason, the sensible heat in the room can be quickly processed by performing the third operation.
  • control device (60) performs the third operation when a condition indicating that the indoor humidity is lower than a predetermined value and the indoor temperature is higher than the predetermined value is satisfied. It is characterized by making it.
  • the third operation is executed under the condition that only the indoor temperature is high. Thereby, only the sensible heat in the room can be processed without excessively reducing the humidity of the air. Therefore, the room temperature and humidity can be brought close to the target value without consuming unnecessary energy for the latent heat treatment.
  • the first operation for preferentially processing latent heat in all the air conditioners (20, 40).
  • a second operation in which latent heat and sensible heat are substantially separated and processed by the plurality of air conditioners (20, 40).
  • FIG. 1 is a schematic overall configuration diagram of an air conditioning system according to an embodiment.
  • FIG. 2 is a schematic piping system diagram of the first air conditioner and the second air conditioner of the air conditioning system according to the embodiment.
  • FIG. 3 is a block diagram of the air conditioning system according to the embodiment.
  • FIG. 4 is a flowchart for explaining a flow at the time of shifting to the temperature and humidity control mode of the air conditioning system according to the embodiment.
  • FIG. 5 is a flowchart for explaining a flow of determination operations for each operation in the temperature and humidity control mode of the air conditioning system according to the embodiment.
  • FIG. 6 is an air line diagram for explaining the relationship between the threshold value or region used in the first determination operation at the start of the temperature / humidity control mode and each operation.
  • FIG. 1 is a schematic overall configuration diagram of an air conditioning system according to an embodiment.
  • FIG. 2 is a schematic piping system diagram of the first air conditioner and the second air conditioner of the air conditioning system according to the embodiment.
  • FIG. 3 is a
  • FIG. 7 is an air line diagram for explaining the relationship between the threshold value or region used in the determination operation during the dehumidifying operation and the non-separation operation and each operation.
  • FIG. 8 is an air line diagram for explaining a relationship between a threshold value or a region used in a determination operation at the time of a latent-visible separation operation and each operation.
  • FIG. 9 is an air line diagram for explaining the relationship between the threshold value or region used in the determination operation during the sensible heat operation and each operation.
  • FIG. 10 is an air line diagram for explaining the relationship between the threshold value or region used in the determination operation during the latent heat operation and each operation.
  • FIG. 11 is an air diagram for explaining the evaporating temperature determination operation during the dehumidifying operation and the latent heat operation.
  • the air conditioning system (10) of the present embodiment includes a plurality of air conditioners (20, 40).
  • the plurality of air conditioners (20, 40) target the same indoor space (11) for air conditioning.
  • the air conditioning system (10) of the present embodiment is provided with two air conditioners (a first air conditioner (20) and a second air conditioner (40)).
  • the air conditioning system (10) may include three or more air conditioners.
  • the first air conditioner (20) and the second air conditioner (40) have the same basic configuration.
  • the air conditioning system (10) includes a control device (60) for controlling the air conditioners (20, 40).
  • the first air conditioner (20) includes a first outdoor unit (21) installed outdoors and a plurality of first indoor units (30) installed indoors. I have.
  • the plurality of first indoor units (30) are connected in parallel to the first outdoor unit (21) via two communication pipes.
  • the first indoor unit (30) may be one, two, or three or more.
  • the first air conditioner (20) includes a first refrigerant circuit (22) filled with a refrigerant.
  • the refrigerant circulates to perform a refrigeration cycle.
  • the first refrigerant circuit (22) includes a first compressor (23), a first outdoor heat exchanger (24), a first outdoor expansion valve (25), a first four-way switching valve (26), and a plurality of first One indoor heat exchanger (32) is connected.
  • the first compressor (23), the first outdoor heat exchanger (24), the first outdoor expansion valve (25), and the first four-way switching valve (26) are provided in the first outdoor unit (21).
  • the first compressor (23) is an inverter compressor having a variable capacity.
  • the first compressor (23) is configured such that the operation frequency (the number of rotations of the electric motor) can be adjusted by controlling the output of the inverter device.
  • the first outdoor heat exchanger (24) is, for example, a fin-and-tube heat exchanger.
  • a first outdoor fan (27) is provided in the vicinity of the first outdoor heat exchanger (24). In the first outdoor heat exchanger (24), the outdoor air blown by the first outdoor fan (27) and the refrigerant exchange heat.
  • the first outdoor expansion valve (25) is an electronic expansion valve having a variable opening.
  • the first four-way switching valve (26) has first to fourth ports.
  • the first port communicates with the discharge side of the first compressor (23), and the second port communicates with the suction side of the first compressor (23).
  • the third port communicates with the gas side end of the first outdoor heat exchanger (24), and the fourth port communicates with the gas side end of the first indoor heat exchanger (32).
  • the first four-way switching valve (26) includes a first state (state indicated by a solid line in FIG. 2) in which the first port and the third port communicate and the second port and the fourth port communicate with each other, It is switched to a second state (state indicated by a broken line in FIG. 2) in which the four ports communicate and the second port and the third port communicate.
  • Each first indoor heat exchanger (32) is provided in each first indoor unit (30).
  • the first indoor heat exchanger (32) is disposed in the air passage in the first indoor unit (30).
  • a first indoor fan (33) is provided in the vicinity (downstream side) of the first indoor heat exchanger (32).
  • the indoor air intake air
  • the air exchanged by the first indoor heat exchanger (32) is supplied to the indoor space (11) as blown air.
  • the first indoor fan (33) is constituted by, for example, a centrifugal fan, and the air volume of the fan can be adjusted.
  • the air volume of the first indoor fan (33) according to the present embodiment can be switched between three stages of L tap (small air volume), M tap (medium air volume), and H tap (large air volume).
  • Each first indoor unit (30) is provided with one first suction temperature sensor (34) and one first suction humidity sensor (35).
  • the first suction temperature sensor (34) detects the temperature of the suction air.
  • the first suction humidity sensor (35) detects the humidity (absolute humidity) of the suction air.
  • the first refrigerant circuit (22) In the first refrigerant circuit (22), the first refrigeration cycle (cooling cycle) and the second refrigeration cycle (heating cycle) are switched.
  • the first four-way selector valve (26) In the first refrigeration cycle, the first four-way selector valve (26) is in the first state, and the first compressor (23), the first outdoor fan (27), and the first indoor fan (33) are operated.
  • the refrigerant dissipates heat (condenses) in the first outdoor heat exchanger (24), is decompressed by the first outdoor expansion valve (25), and evaporates in the first indoor heat exchanger (32).
  • the first four-way switching valve (26) In the second refrigeration cycle, the first four-way switching valve (26) is in the second state, and the first compressor (23), the first outdoor fan (27), and the first indoor fan (33) are operated.
  • the refrigerant dissipates heat (condenses) in the first indoor heat exchanger (32), is depressurized by the first outdoor expansion valve (25), and evaporates in the first outdoor heat exchanger (24). To do.
  • the first indoor heat exchanger (32) of the first refrigerant circuit (22) is provided with a refrigerant temperature sensor (not shown) that detects the evaporation temperature (Te).
  • the second air conditioner (40) includes the same components as the first air conditioner (20). That is, the second air conditioner (40) includes a second refrigerant circuit (42) in which the second outdoor unit (41) and the plurality of second indoor units (50) are connected to circulate the refrigerant.
  • the second outdoor unit (41) includes a second compressor (43), a second outdoor heat exchanger (44), a second outdoor expansion valve (45), a second four-way switching valve (46), and a second outdoor unit.
  • a fan (47) is provided.
  • the second indoor unit (50) is provided with a second indoor heat exchanger (52), a second indoor fan (53), a second suction temperature sensor (54), and a second suction humidity sensor (55).
  • the first refrigeration cycle (cooling cycle) and the second refrigeration cycle (heating cycle) are switched. Since the structure of each apparatus of a 2nd air conditioner (40) is the same as that of a 1st air conditioner (20), detailed description is abbreviate
  • the first air conditioner (20) is provided with a first remote controller (36).
  • the second air conditioner (40) is provided with a second remote controller (56).
  • Each of the remote controllers (36, 56) is provided on, for example, an indoor wall and is configured to be operable by the user.
  • Each remote controller (36, 56) is provided with an operation unit for performing power ON / OFF of the corresponding air conditioner (20, 40), switching of the operation mode, switching of the direction of the blown air, and the like.
  • Each remote controller (36, 56) is provided with a display unit for displaying the current operation mode, set temperature, set humidity and the like of the corresponding air conditioner (20, 40).
  • the air conditioning system (10) includes a control device (60) (control system) for controlling the air conditioners (20, 40).
  • the control device (60) of the present embodiment includes a first local controller (61), a second local controller (71), a communication terminal (80), a router (85), and a cloud server (90).
  • the first local controller (61) is provided corresponding to the first air conditioner (20).
  • the first local controller (61) is configured to be able to control each component device of the first refrigerant circuit (22), the first indoor fan (33), and the like.
  • the first local controller (61) is configured using a microcomputer and a memory device (specifically, a semiconductor memory) that stores software for operating the microcomputer.
  • the first local controller (61) includes a first capability determination unit (62), a first capability control unit (63), and a first communication unit (64).
  • a 1st capability determination part (62) is a calculating part for determining the capability of a 1st air conditioner (20).
  • a 1st capability control part (63) is a control part for controlling the capability of a 1st air conditioner (20).
  • the first communication unit (64) is connected to the Internet (86) via the router (85), and is configured to be able to communicate with the cloud server (90) via the Internet (86).
  • Communication between the first communication unit (64) and the router (85) may be realized by a wired method or may be realized by a wireless method. With such a configuration, signals such as operation commands and control parameters can be exchanged bidirectionally between the first local controller (61) and the cloud server (90).
  • the second local controller (71) is provided corresponding to the second air conditioner (40).
  • the second local controller (71) is configured to be able to control each component device of the second refrigerant circuit (42), the second indoor fan (53), and the like.
  • the second local controller (71) is configured using a microcomputer and a memory device (specifically, a semiconductor memory) that stores software for operating the microcomputer.
  • the second local controller (71) includes a second capability determination unit (72), a second capability control unit (73), and a second communication unit (74).
  • a 2nd capability determination part (72) is a calculating part for determining the capability of a 2nd air conditioner (40).
  • a 2nd capability control part (73) is a control part for controlling the capability of a 2nd air conditioner (40).
  • the second communication unit (74) is connected to the Internet (86) via the router (85), and is configured to be able to communicate with the cloud server (90) via the Internet (86). Communication between the second communication unit (74) and the router (85) may be realized by a wired method or a wireless method.
  • the communication terminal (80) is a communication device for the user to instruct operation in a temperature and humidity control mode, which will be described in detail later.
  • the communication terminal (80) is configured by, for example, a smartphone or a tablet PC.
  • the communication terminal (80) includes a microcomputer and a memory device (specifically, a semiconductor memory) that stores software for operating the microcomputer.
  • the communication terminal (80) includes a touch panel (81) that also serves as a display unit and an operation unit, and a communication unit (82) that is connected to the cloud server (90) via the Internet (86).
  • the communication terminal (80) stores a program (control application) for executing the temperature / humidity control mode.
  • the user operates the touch panel (81) of the communication terminal (80) to switch the temperature / humidity control mode ON / OFF, set the indoor target temperature (Ts) in the temperature / humidity control mode, and set the temperature / humidity control mode.
  • the indoor target humidity (Rs) can be set.
  • the cloud server (90) is configured to be capable of bidirectional communication with the first local controller (61), the second local controller (71), and the communication terminal (80) via the Internet (86).
  • the cloud server (90) includes a microcomputer and a memory device (specifically, a semiconductor memory) that stores software for operating the microcomputer.
  • the cloud server (90) includes an operation determination unit (91) and a capability determination unit (92).
  • the operation determination unit (91) performs a determination operation for switching various operations (details will be described later) in the temperature and humidity control mode.
  • the capacity determining unit (92) determines the target evaporation temperature of each air conditioner (20, 40) and the speed of the indoor fan (fan tap) in each operation in the temperature / humidity control mode.
  • the cloud server (90) transmits the operation parameters obtained in this way to the local controllers (61, 71) every predetermined time (for example, 20 seconds) via the Internet (86).
  • the temperature control mode is an operation mode for adjusting only the temperature of the indoor air in the indoor space (11), and includes a cooling operation and a heating operation. In the temperature control mode, control is performed so that the temperature of the room air approaches the target value.
  • the temperature / humidity control mode is an operation mode for adjusting the temperature and humidity of the indoor air in the indoor space (11).
  • the temperature / humidity control mode includes 1) dehumidifying operation, 2) non-separation operation, 3) latent sensible separation operation, 4) sensible heat operation, and 5) latent heat operation.
  • the operations 1) to 5) are automatically switched and executed according to the indoor air condition (temperature and humidity). Details of these operations will be described later.
  • each air conditioner (20, 40) the refrigerant compressed by the compressor (23, 43) is condensed by each outdoor heat exchanger (24, 44) and radiated to the outdoor air.
  • the condensed refrigerant is depressurized by the outdoor expansion valves (25, 45) and then flows through the indoor heat exchangers (32, 52).
  • the refrigerant absorbs heat from the indoor air and evaporates. Thereby, in each indoor unit (30, 50), intake air is cooled.
  • the evaporated refrigerant is sucked into each compressor (23, 43) and compressed again.
  • the air cooled by each indoor heat exchanger (32, 52) is supplied as blown air to the indoor space (11).
  • each air conditioner (20, 40) In the cooling operation, the capacity of each air conditioner (20, 40) is controlled according to the difference ⁇ T between the temperature of the intake air of each indoor unit (30, 50) and the set temperature.
  • ⁇ T the difference between the temperature of the intake air of each indoor unit (30, 50) and the set temperature.
  • the operation in the temperature / humidity control mode is an operation in which the indoor temperature is brought close to the target temperature (Ts) and the indoor humidity is brought close to the target humidity (Rs).
  • various operations are switched in accordance with the current air state point (C) so that the current indoor temperature / humidity approaches the target point (S) (see FIG. 6).
  • the temperature / humidity control mode is realized by transmission / reception of signals between the local controllers (61, 71), the cloud server (90), and the communication terminal (80). Transmission / reception of signals between these terminals is performed every predetermined time (for example, 20 seconds).
  • the cloud server (90) sends the received target temperature (Ts) and target humidity (Rs) to each local controller (61, 71) of each air conditioner (20, 40) or each remote controller (36, 56). ).
  • Each local controller (61, 71) starts each air conditioner (20, 40) using the intake air temperature detected by each air conditioner (20, 40) and the target temperature (Ts) (thermo ON) Judgment is made.
  • Each local controller (61, 71) determines the start-up of each air conditioner (20, 40) using the intake air humidity detected by each air conditioner (20, 40) and the target humidity (Rs). May be performed.
  • step St2 when the thermo-ON condition is satisfied, the process proceeds from step St2 to step St3 and the temperature / humidity control mode.
  • the first determination operation is performed (step St51).
  • the operation determination unit (91) determines which of 1) dehumidifying operation, 3) sensible heat operation, 4) sensible heat operation, and 5) latent heat operation is performed. That is, in the first determination operation, 2) non-separation operation is not selected.
  • the target temperature (Ts) set in the communication terminal (80), the target humidity (Rs) set in the communication terminal (80), and the current air condition in the indoor space (11) are used. .
  • an index indicating the current air condition the current air temperature (T) of the indoor space (11), the current air humidity (R) of the indoor space (11), and the current of the indoor space (11) Of discomfort index (DI).
  • the air temperature (T) the highest air temperature (Tmax) among the detected temperatures of the plurality of first suction temperature sensors (34) and the detected temperatures of the plurality of second suction temperature sensors (54) is used.
  • the air humidity (R) corresponds to the highest air temperature (Tmax) among the detected humidity of the plurality of first suction humidity sensors (35) and the detected humidity of the plurality of second suction humidity sensors (55).
  • the detected humidity That is, the air temperature (T) and the air humidity (R) correspond to the suction temperature sensor (34, 54) and the suction humidity sensor (35, 55) which are a pair of the same indoor unit (30, 50).
  • the discomfort index (DI) is obtained from air temperature (T) and air humidity (R).
  • T air temperature
  • R air humidity
  • the discomfort index (discomfort index) is one of the thermal indices for representing the thermal sensation of the human body, and can be obtained by a relational expression including temperature and humidity.
  • a plurality of threshold values for determining the transition of each operation are used. These threshold values are determined based on target values of indoor air conditions (that is, target temperature (Ts) and target humidity (Rs)).
  • the operation determination unit (91) is based on the target temperature (Ts), the first temperature threshold (Ts1), the second temperature threshold ( Ts2), a third temperature threshold value (Ts3), a fourth temperature threshold value (Ts4), and a thermo-off determination temperature (Toff) are calculated.
  • the first temperature threshold value (Ts1) is a value obtained by adding a predetermined temperature ⁇ t1 (for example, 0.5 ° C.) to the target temperature (Ts).
  • the second temperature threshold (Ts2) is a value obtained by adding a predetermined temperature ⁇ t2 (for example, 1.5 ° C.) to the target temperature (Ts).
  • the third temperature threshold value (Ts3) is a value obtained by adding a predetermined temperature ⁇ t3 (for example, 2.0 ° C.) to the target temperature (Ts).
  • the fourth temperature threshold value (Ts4) is a value obtained by subtracting a predetermined temperature ⁇ t4 (for example, 0.5 ° C.) from the target temperature (Ts).
  • the thermo-off determination temperature (Toff) is a value obtained by subtracting a predetermined temperature (for example, 2 ° C.) from the target temperature. In the present embodiment, ⁇ t1 and ⁇ t4 are equal.
  • the operation determination unit (91) determines the first humidity threshold (Rs1), the second humidity threshold (Rs2), the third humidity threshold (Rs3), and the fourth humidity threshold (Rs4) based on the target humidity (Rs). calculate.
  • the first humidity threshold (Rs1) is a value obtained by adding a predetermined humidity ⁇ r1 (for example, 1.0 g / kg (dry-air)) to the target humidity (Rs).
  • the second humidity threshold (Rs2) is a value obtained by adding a predetermined humidity ⁇ r2 (for example, 2.0 g / kg (dry-air)) to the target humidity (Rs).
  • the third humidity threshold (Rs3) is a value obtained by subtracting a predetermined humidity ⁇ r3 (for example, 1.0 g / kg (dry-air)) from the target humidity (Rs).
  • the fourth humidity threshold (Rs4) is a value obtained by subtracting a predetermined humidity ⁇ r4 (for example, 2.0 g / kg (dry-air)) from the target humidity (Rs).
  • ⁇ r1 and ⁇ r3 are equal and ⁇ r2 and ⁇ r4 are equal.
  • the operation determination unit (91) calculates a target discomfort index (target discomfort index (DIs1)) for the indoor space (11) from the target temperature (Ts) and the target humidity (Rs).
  • target discomfort index (DIs1) is a line extending to the upper left
  • this target discomfort index (DIs1) is the first discomfort index threshold.
  • the driving determination unit (91) sets a value obtained by adding a predetermined value (for example, 0.5) to the target discomfort index (DIs1) as the second discomfort index threshold (DIs2).
  • the operation determination unit (91) compares each threshold as described above with the current air state point (C) (ie, air temperature (T) and air humidity (R)), and shifts to any operation. Judge whether to do.
  • C current air state point
  • T air temperature
  • R air humidity
  • the operation determination unit (91) determines the shift to the latent-splitting separation operation. That is, the air temperature (T) is lower than the second temperature threshold value (Ts2), the air humidity (R) is not less than the third humidity threshold value (Rs3), and the air humidity (R) is the first humidity threshold value (Rs1). If it is lower, the shift to the latent-splitting separation operation is determined.
  • the driving determination unit (91) may also be configured when the current air discomfort index (DI) is lower than the target discomfort index (DIs1) and the air humidity (R) is greater than or equal to the third humidity threshold (Rs3). Determine the transition to latent-splitting separation operation.
  • the operation determination unit (91) determines the transition to the sensible heat operation when the current air state point (C) is within the region E2 surrounded by a thick line. That is, when the air temperature (T) is equal to or higher than the second temperature threshold (Ts2) and the air humidity (R) is smaller than the first humidity threshold (Rs1), the shift to the sensible heat operation is determined. The operation determination unit (91) also switches to sensible heat operation when the air temperature (T) is lower than the second temperature threshold (Ts2) and the air humidity (R) is lower than the third humidity threshold (Rs3). Determine the migration.
  • the operation determination unit (91) determines the transition to the latent heat operation when the current air state point (C) is within the region E3 surrounded by a thick line. That is, the air temperature (T) is lower than the first temperature threshold (Ts1), the air humidity (R) is equal to or higher than the first humidity threshold (Rs1), and the discomfort index (DI) is equal to or higher than the target discomfort index (DIs1). If so, the transition to the latent heat operation is determined.
  • the operation determination unit (91) determines the transition to the dehumidifying operation when the current air state point (C) is in the region of E4. That is, when the air temperature (T) is equal to or higher than the first temperature threshold (Ts1) and the air humidity (R) is equal to or higher than the first humidity threshold (Rs1), the shift to the dehumidifying operation is determined.
  • step St56 after a dehumidifying operation is started in step St56, when a predetermined time (for example, 120 seconds) elapses, the process proceeds to step St57, where the dehumidifying operation is switched to the non-separating operation. It is done.
  • a predetermined time for example, 120 seconds
  • the operation determination unit (91) performs other operations except the dehumidification operation (2) non-separation operation, 3) sensible heat operation, 4 It is determined whether to perform (1) sensible heat operation or (5) latent heat operation). That is, in the temperature / humidity control mode, the dehumidifying operation is executed only in the first determination operation immediately after the start of the temperature / humidity control mode, when the current air is within the E4 region.
  • the determination operation after the second time is performed at a predetermined time (for example, every 20 seconds) during each operation.
  • the basic criteria for the second and subsequent determination operations are the same as the first determination operation described above. However, in the second and subsequent determination operations, the threshold value for determining the next operation is different from the first determination operation in accordance with the type of the current operation.
  • the threshold value of the determination operation during the dehumidifying operation and the non-separating operation is as shown in FIG. Although a detailed description is omitted, in these operations, the humidity range of the region E1 corresponding to the latent-visible separation operation is expanded to the lower side (low humidity side) than other determination operations. In these operations, the discomfort index threshold in the range equal to or higher than the first humidity threshold (Rs1) does not exist in the region E1 corresponding to the latent-visible separation operation.
  • ⁇ Determination operation during latent-splitting separation operation The threshold value of the determination operation during the latent-visible separation operation is as shown in FIG. Although detailed description is omitted, in the latent sensible separation operation, the region E2 corresponding to the sensible heat operation and the region E3 corresponding to the latent heat operation are smaller than the first determination operation. Further, in the latent-splitting separation operation, when the current air state point (C) is within the region E5, the transition to the non-separation operation is determined. The range of the region E5 in the latent-visible separation operation is smaller than the region E4 (the transition range to the dehumidifying operation) of the first determination operation.
  • the region E1 for continuously performing the latent-scientific separation operation is larger than the region E1 of the initial determination operation. Therefore, after a transition from a certain operation to a latent-visible separation operation, it is possible to avoid returning to another operation (so-called hunting) by slightly increasing the air temperature (T) or the air humidity (R).
  • the threshold value of the determination operation during the sensible heat operation is as shown in FIG. Although a detailed description is omitted, in the sensible heat operation, there is a region E6 (a hatched region) that is not included in other determination operations.
  • the region E6 is a region for determining the shift to the non-separation operation, similarly to the region E5.
  • the determination operation during the sensible heat operation when the air state point (C) is in the region E5, the state immediately shifts to the non-separation operation, whereas the air state point (C) is in the region E6.
  • this state continues for a predetermined time (for example, 180 seconds), the operation shifts to the non-separation operation.
  • a predetermined time for example, 180 seconds
  • ⁇ Evaluation operation of latent heat operation> The threshold value of the determination operation during the latent heat operation is as shown in FIG. Although detailed description is omitted, in the latent heat operation, the humidity range of the region E1 corresponding to the latent-scientific separation operation is expanded to the lower side (low humidity side) than the first determination operation.
  • the operation in the temperature and humidity control mode includes a first operation in which all of the plurality of air conditioners (20, 40) are latent heat machines, and a part of the plurality of air conditioners (in this example, the first air conditioner ( 20)) becomes a latent heat machine, and another air conditioner (second air conditioner (40) in this example) becomes a sensible heat machine, and a plurality of air conditioners (20,40) (in this example)
  • the first air conditioner (20) and the second air conditioner (40) are roughly divided into a third operation in which all of them are sensible heat machines.
  • the dehumidifying operation, non-separation operation, and latent heat operation are included in the first operation.
  • the latent sensible separation operation corresponds to the second operation
  • the sensible heat operation corresponds to the third operation.
  • the “latent heat machine” is an air conditioner that is controlled so that the indoor heat exchanger (32, 52) of the indoor unit (30, 50) cools the air to the dew point temperature or less. Therefore, when the air is cooled by the indoor units (30, 50) of the latent heat machine, moisture in the air is condensed and the condensed water is collected in a drain pan or the like. Thereby, in the indoor unit (30, 50) of the latent heat machine, both the temperature and humidity of the air are reduced.
  • “Sensible heat machine” is an air conditioner that is controlled so that the indoor heat exchanger (32, 52) of the indoor unit (30, 50) cools the air at a temperature higher than the dew point temperature. Therefore, when air is cooled in the indoor units (30, 50) of the sensible heat machine, moisture in the air is not condensed, and only the temperature of the air is lowered.
  • the dehumidifying operation is an operation that rapidly reduces the absolute humidity in the room under conditions where the humidity and temperature in the room are high.
  • both the first air conditioner (20) and the second air conditioner (40) are latent heat machines.
  • the cloud server (90) transmits a signal for controlling the air volume of the indoor fan (33, 53) of each air conditioner (20, 40) to each local controller (61, 71). .
  • a signal for controlling the air volume of the indoor fans (33, 53) to L taps is transmitted.
  • the cloud server (90) appropriately obtains the target evaporation temperature (TeS) of each air conditioner (20, 40) and transmits the obtained target evaporation temperature (TeS) to each local controller (61, 71).
  • the target evaporation temperature (TeS) is calculated based on the current air state by the following process (target evaporation temperature determination process).
  • the capacity determining unit (92) calculates a target evaporation temperature (TeS) using a function formula stored in the memory.
  • this functional equation is a function including a saturation curve, a current air temperature (T), and a current air humidity (R) shown on the air diagram of FIG. Specifically, as shown in FIG.
  • this functional equation expresses the temperature (Tp) corresponding to the contact point (P) between the saturation curve on the air diagram and the straight line M passing through the current air state point. It is what you want.
  • the current air state point (C) corresponds to the current air temperature (T) and the current air humidity (R).
  • the temperature (Tp) corresponding to the contact (P) is calculated from this function equation, and this temperature (Tp) is set as the target evaporation temperature (TeS).
  • the target evaporating temperature determination process is executed every predetermined time (20 seconds) in principle.
  • each air conditioner (20, 40) has an operating frequency of the compressor (23, 43) so that the current evaporation temperature (Te) approaches the target evaporation temperature (TeS) received every predetermined time. To control.
  • the target evaporation temperature (TeS) can be prevented from becoming excessively high or excessively low. If the target evaporation temperature (TeS) is too high, the temperature at which air can be cooled becomes high, and the amount of water that can be condensed from air also decreases. For this reason, the room air cannot be quickly dehumidified, and the room temperature and humidity cannot be quickly brought close to the target point (S). As a result, the comfort of the indoor space (11) is impaired.
  • the target evaporation temperature (TeS) if the target evaporation temperature (TeS) is too low, the air will be dehumidified in a region where the sensible heat ratio of air is large (region where the slope of the arrow in FIG. 11a is small). In this region, the ratio of latent heat to be processed becomes small with respect to the total amount of heat to be processed, which is a disadvantageous condition for dehumidification. For this reason, when air is cooled in this region, the efficiency of dehumidification is lowered, and as a result, energy saving performance is impaired.
  • TeS target evaporation temperature
  • the target evaporation temperature (TeS) becomes excessively high or excessively low. None become. As a result, it is possible to achieve both indoor comfort and energy saving of the air conditioning system (10).
  • TeS target evaporation temperature
  • the target evaporation temperature determination process is performed every predetermined time (20 seconds) in principle.
  • the next update determination is performed before the execution of each target evaporation temperature determination process.
  • the update determination it is determined whether or not to execute the target evaporation temperature process again.
  • the update determination when one or both of condition 1-A and condition 1-B are satisfied, target evaporation temperature determination processing is performed, and the target evaporation temperature (TeS) is updated.
  • is the absolute value of the difference between the current evaporation temperature (Te) and the current target evaporation temperature (TeS).
  • corresponds to
  • E1 and E2 are preset determination threshold values.
  • Condition 1-A it can be determined that the actual evaporation temperature (Te) has converged to the target evaporation temperature (TeS). Therefore, when the condition 1-A is satisfied, the target evaporation temperature determination process is performed again, and the target evaporation temperature (TeS) is recalculated.
  • the condition 1-B When the condition 1-B is satisfied, the decreasing change amount of the difference between the evaporation temperature (Te) and the target evaporation temperature (TeS) is small, and the evaporation temperature (Te) tends to converge to the target evaporation temperature (TeS). It can be judged that there is. Accordingly, even when the condition 1-B is satisfied, the target evaporation temperature determination process is performed again, and the target evaporation temperature (TeS) is recalculated.
  • Condition 1-A If neither Condition 1-A nor Condition 1-B is satisfied, it can be determined that the evaporation temperature (Te) has not converged to the target evaporation temperature (TeS) and the evaporation temperature (Te) has changed significantly. Therefore, when these conditions are not satisfied, the target evaporation temperature determination process is prohibited and the target evaporation temperature (TeS) is not recalculated. Thereby, it is possible to restrict the target evaporation temperature (TeS) from being changed again when the evaporation temperature (Te) changes relatively greatly. Therefore, it is possible to avoid the operating frequency of the compressor (23, 43) from changing greatly and the evaporation temperature (Te) from hunting.
  • the non-separation operation is an operation for reducing the indoor absolute humidity under conditions of high indoor humidity and temperature, as in the dehumidifying operation.
  • both the first air conditioner (20) and the second air conditioner (40) are latent heat machines.
  • the non-separation operation is not executed in the first determination operation (see FIG. 5).
  • both the first air conditioner (20) and the second air conditioner (40) are latent heat machines.
  • the cloud server (90) When shifting to non-separated operation, the cloud server (90) sends a signal for controlling the air volume of the indoor fan (33,53) of each air conditioner (20,40) to each local controller (61,71) To do. In the non-separated operation, a signal for controlling the air volume of the indoor fans (33, 53) to M taps is transmitted. Thereby, in the non-separation operation, the air volume of all the indoor fans (33, 53) becomes the medium air volume.
  • the cloud server (90) appropriately obtains the target evaporation temperature (TeS) of each air conditioner (20, 40) and transmits the obtained target evaporation temperature (TeS) to each local controller (61, 71).
  • the target evaporation temperature (TeS) in the non-separation operation is obtained by a method similar to the cooling operation in the temperature control mode.
  • the target evaporating temperature (TeS) is calculated according to the difference ⁇ Trs between the current air temperature (T) and the target temperature (Ts) set in the communication terminal (80). To do. As ⁇ Trs increases, the target evaporation temperature (TeS) decreases in order to increase the capacity of each air conditioner (20, 40). Conversely, when ⁇ Trs decreases, the target evaporation temperature (TeS) increases in order to reduce the capacity of each air conditioner (20, 40).
  • TeS target evaporation temperature
  • the latent heat operation is an operation that lowers the absolute humidity in the room, particularly under conditions where the indoor humidity is high.
  • both the first air conditioner (20) and the second air conditioner (40) are latent heat machines.
  • the latent heat operation basically the same control as the dehumidifying operation is performed.
  • the target evaporation temperature (TeS) is determined from the temperature (Tp) corresponding to the contact (P), as in the dehumidification operation.
  • the update determination of the target evaporation temperature (TeS) is not performed. Therefore, in the latent heat operation, the target evaporation temperature (TeS) is always recalculated every predetermined time (for example, 20 seconds).
  • the latent heat operation is performed when the air state point (C) is in the region E3 as described above, and this region E3 is located near the thermo-off region. If the recalculation of the target evaporation temperature (TeS) is prohibited in the latent heat operation as in the dehumidification operation, the air is excessively cooled during this time, and the air temperature (T) becomes the target evaporation temperature (TeS). May be significantly lower than In this case, the air temperature (T) may reach the thermo-off region.
  • the target evaporation temperature (TeS) is always updated in the latent heat operation, so that the target evaporation temperature (TeS) can be adjusted before the air temperature (T) is excessively cooled. Thereby, it can also be avoided that the air temperature (T) reaches the thermo-off region. Also, in the latent heat operation, the evaporation temperature (Te) tends to converge to the target evaporation temperature (TeS) compared to the dehumidification operation, so the compressor (23, 43) The operating frequency and evaporation temperature (Te) do not vary greatly.
  • a local controller (first local controller (61) in this example) corresponding to the latent heat machine and a local controller (second local in this example) corresponding to the sensible heat machine are sent from the cloud server (90). It is necessary to send different control signals to the controller (71)). This is because different controls are performed on the sensible heat machine and the latent heat machine. For this reason, the cloud server (90) indicates which air conditioner (20, 40) becomes a latent heat machine and which air conditioner (20, 40) becomes a sensible heat machine when performing the latent sensible separation operation. Device information is registered.
  • device information indicating that the first air conditioner (20) is a latent heat machine and device information indicating that the second air conditioner (40) is a sensible heat machine include: Registered in the cloud server (90). For example, such information is transmitted from the communication terminal (80) and each local controller (61, 71) to the cloud server (90) via the Internet (86).
  • the cloud server (90) controls the air volume of the first indoor fan (33) to the first local controller (61) corresponding to the first air conditioner (20) that is a latent heat machine. Send the signal.
  • the air volume of the first indoor fan (33) of the first air conditioner (20) is switched between two stages (for example, two stages of L tap and M tap).
  • the first indoor fan (33) may be switched between two stages of M taps and H taps.
  • the cloud server (90) transmits a target evaporation temperature (first target evaporation temperature (TeS1)) for controlling the evaporation temperature (Te) of the first air conditioner (20) to the first local controller (61). To do.
  • first target evaporation temperature first target evaporation temperature (TeS1)
  • the evaporating temperature determination process of the latent heat machine in the latent sensible separation operation is obtained by a method similar to the dehumidifying operation. Specifically, the capacity determining unit (92) sets the temperature corresponding to the saturation curve on the air diagram and the straight contact point passing through the target point (S) as the first target evaporation temperature (TeS1). In other words, in the dehumidifying operation, the current air state point (C) (that is, the air temperature (T) and the air humidity (R)) is used to obtain the contact point with the saturation curve, while in the latent microscope separation operation. They differ in that they use a target point (S) (ie, target temperature (Ts) and target humidity (Rs)).
  • the target point (S) Since the target point (S) is determined by the set value of the communication terminal (80), it basically does not change like the state point (C). Therefore, by obtaining the contact point based on the target point (S), the first target evaporation temperature (TeS1) does not vary greatly. Accordingly, it is possible to avoid the current air state point (C) from deviating from the region E1 in FIG. 8 due to such fluctuations in the first target evaporation temperature (TeS1). It can suppress switching to the driving
  • update determination is performed in the same manner as in the dehumidifying operation. Thereby, while protecting a compressor (23,43), the hunting of evaporation temperature (Te) can be prevented.
  • the current air state point (C), target point (S), and air state point (C) air temperature (T) and air humidity (R)
  • the first target evaporation temperature (TeS1) of the latent heat machine is adjusted stepwise.
  • the cloud server (90) controls the air volume of the second indoor fan (53) to the second local controller (71) corresponding to the second air conditioner (40) which is a sensible heat machine. Send the signal.
  • the air volume of the second indoor fan (53) of the second air conditioner (40) is controlled to, for example, an M tap or an H tap.
  • the cloud server (90) uses the second local controller (71) to control the evaporation temperature (Te) of the second air conditioner (40) (target evaporation temperature (TeS) (second target evaporation temperature (TeS2)) Send.
  • Te evaporation temperature
  • TeS target evaporation temperature
  • TeS2 second target evaporation temperature
  • the second target evaporation temperature (TeS2) is determined so that the air processed by the sensible heat machine becomes higher than the dew point temperature.
  • the dew point temperature (Tdew-s) corresponding to this air is calculated from the air state point (target temperature (Ts) and target humidity (Rs)) corresponding to the current target point (S). That is, the dew point temperature (Tdew-s) is a temperature at which dew condensation occurs from the air when the air at the target point (S) is cooled.
  • the dew point temperature (Tdew-s) is set as the second target evaporation temperature (TeS2).
  • the latent-splitting separation operation is executed when the current air state point (C) is in the region E1 including the target point (S). Therefore, there is no significant difference in air temperature and humidity between the current air state point (C) and the target point (S).
  • the air cooled by the second indoor heat exchanger (52) of the sensible heat machine cannot substantially be cooled to a temperature equal to or lower than the evaporation temperature. For this reason, by setting the dew point temperature (Tdew-s) corresponding to the target point (S) as the second target evaporation temperature (TeS2), the sensible heat machine has substantially higher air temperature than the actual dew point temperature. To be cooled.
  • the target point (S) is determined by the setting value of the communication terminal (80), it basically does not change like the state point (C). Accordingly, by obtaining the dew point temperature based on the target point (S), the second target evaporation temperature (TeS2) does not vary greatly. As a result, it is possible to avoid that the current air state point (C) deviates from the region E1 in FIG. 8 due to such a variation in the second target evaporation temperature (TeS2). Switching to another operation can be suppressed.
  • the sensible heat operation is an operation that lowers the indoor temperature, particularly under conditions where the indoor temperature is high.
  • both the first air conditioner (20) and the second air conditioner (40) are sensible heat machines.
  • the cloud server (90) When shifting to sensible heat operation, the cloud server (90) sends a signal for controlling the air volume of the indoor fans (33, 53) of each air conditioner (20, 40) to each local controller (61, 71). To do. In the sensible heat operation, a signal for controlling the air volume of the indoor fans (33, 53) to M taps is transmitted. Thereby, in the sensible heat operation, the air volume of all the indoor fans (33, 53) becomes the medium air volume.
  • the cloud server (90) transmits a target evaporation temperature (TeS) for controlling the evaporation temperature (Te) of each air conditioner (20, 40) to each local controller (61, 71).
  • TeS target evaporation temperature
  • the target evaporating temperature (TeS) is determined so that the air processed by the sensible heat machine becomes higher than the dew point temperature.
  • the dew point temperature (Tdew-c) corresponding to this air is calculated from the current air state point (C) (air temperature (T) and air humidity (R)). That is, the dew point temperature (Tdew-c) is a temperature at which dew condensation occurs from the air when the air at the current state point is cooled.
  • the dew point temperature (Tdew-c) is set as the second target evaporation temperature (TeS2).
  • Sensible heat operation is executed when the current air state point (C) is in the region E2 away from the target point (S). Therefore, the current air state point (C) is at a relatively higher temperature than the target point (S). For this reason, in the sensible heat operation, unlike the latent heat control in the latent sensible separation operation, the target dew point temperature (Tdew-c) corresponding to the current air state point (C) is used instead of the target point (S). Evaporation temperature (TeS). In other words, in sensible heat operation, if the dew point temperature (Tdew-s) corresponding to the target point (S) is the target evaporation temperature, the target evaporation temperature (TeS) becomes excessively low, and the air is below the actual dew point temperature.
  • the dew point temperature (Tdew-c) corresponding to the current air state point (C) is set as the target evaporation temperature (TeS), so that air is dehumidified in sensible heat operation. Can be reliably prevented.
  • thermo-off operation In each operation described above, in principle, when the detected temperature of each suction temperature sensor (34, 54) of each air conditioner (20, 40) falls below the thermo-off determination temperature (Toff), the corresponding indoor unit (30, 50) is thermo-off.
  • thermo-off determination temperature (Toff) the thermo-off determination temperature
  • the temperature of the blown air differs between the sensible heat machine and the latent heat machine. For this reason, in the indoor space (11), temperature unevenness is likely to occur, and due to this, the detection temperature of the suction temperature sensor (34, 54) of some indoor units (30, 50) becomes extremely low. There is a possibility that the latent-splitting operation cannot be continued. On the other hand, by performing the above-described thermo-off determination, the latent microscope separation operation can be continued until the entire temperature of the indoor space (11) becomes equal to or lower than the thermo-off determination temperature.
  • a condition indicating that the indoor humidity is higher than a predetermined value a condition where the indoor humidity (R) is, for example, the first humidity threshold (Rs1) or higher, or the second humidity threshold (Rs2) or higher.
  • the first operation dehumidification operation, non-separation operation, latent heat operation
  • all air conditioners (20, 40) as latent heat machines. For this reason, this humidity load can be quickly processed under conditions where the indoor humidity load is high, and indoor comfort can be ensured.
  • the first air conditioner (20) is set as a latent heat machine
  • the second operation latent sensible separation operation using the second air conditioner (40) as a sensible heat machine is performed.
  • a condition indicating that the indoor humidity is lower than the predetermined value and the indoor temperature is higher than the predetermined value for example, the indoor humidity (R) is lower than the first humidity threshold (Rs1) and the indoor temperature (T) is the second.
  • the third operation sensensible heat operation
  • the first air conditioner (20) and the second air conditioner (40) as the sensible heat machine. ing. For this reason, when only the indoor temperature is high, only the sensible heat in the room can be quickly processed without reducing the humidity.
  • the state point (C) can be converged to the first region E1, and the latent microscope separation operation can be performed as much as possible. Can run for a long time. Thereby, the driving
  • Air flow control> it is preferable to control the air volume of the blown air from the latent heat machine and the sensible heat machine as follows.
  • the air conditioner (20, 40) serving as the latent heat machine is controlled so as to cool the air to the dew point temperature or lower.
  • the air conditioner (20, 40) serving as the sensible heat machine is controlled so as to cool the air at a temperature higher than the dew point temperature. For this reason, the temperature of the blown air from the latent heat machine is lower than the temperature of the blown air from the sensible heat machine.
  • the air volume of the air conditioner (20, 40) serving as the latent heat machine is changed by the control device (60) to the amount of the blown air of the air conditioner (20, 40) serving as the sensible heat machine.
  • the air volume of the indoor fan (33, 53) of the air conditioner (20, 40) serving as the latent heat machine is, for example, M taps (medium air volume), and the air conditioner serving as the sensible heat machine.
  • the air volume of the (20, 40) indoor fan (33, 53) is, for example, H tap (large air volume).
  • the temperature distribution in the indoor space may become uneven due to the difference between the temperature of the latent air blown air and the temperature of the sensible heat blown air.
  • the air volume of the air conditioner (20, 40) that is the sensible heat machine is larger than the air volume of the air conditioner (20, 40) that is the latent heat machine. Mixing of the blown air and the blown air of the sensible heat machine can be promoted. Thereby, the nonuniformity of the temperature distribution of the indoor space in the latent microscope separation operation can be suppressed.
  • the air conditioner blades (flaps) of the air conditioner (20, 40) are adjusted by the control device (60) so that the air direction of the air blown from the air conditioner (20, 40) as the latent heat machine becomes substantially horizontal. To control. Thereby, it can avoid that the blowing air of a latent heat machine hits a resident directly.
  • Such wind direction control can be adopted as long as at least one of the air conditioners (20, 40) is a latent heat machine.
  • the latent heat machine can be horizontally blown in the dehumidifying operation, non-separation operation, latent heat operation, and latent sensible separation operation described above.
  • the wind direction setting unit can be provided in the above-described remote controller (36, 56) or communication terminal (80).
  • the control device (60) of the above embodiment includes a cloud server (90), a communication terminal (80), and the like, and realizes a temperature / humidity control mode via the Internet (86).
  • the control device (60) may control the air conditioner (20, 40) only by a local controller without using the Internet.
  • the air conditioning system (10) of the said embodiment is comprised by the two air conditioners (20,40) which target the same indoor space (11), an air conditioner (20,40) May be three or more. Also in this case, in the latent and sensible separation operation, which air conditioner becomes the latent heat machine and which air conditioner becomes the sensible heat machine is registered in advance. In the latent and sensible separation operation, the ratio between the latent heat machine and the sensible heat machine is determined based on the registered information.
  • the air conditioner may be a so-called multi-type for buildings in which three or more indoor units are provided and an indoor expansion valve is provided in a refrigerant circuit in the indoor unit. .
  • the present invention is useful for an air conditioning system.
  • Air conditioning system 20 1st air conditioner 21 1st outdoor unit 30 1st indoor unit 40 2nd air conditioner 41 2nd outdoor unit 50 2nd indoor unit 60 Control apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An air conditioning system (10) is provided with: a plurality of air conditioners (20, 40) for air conditioning the same room; and a control device (60) for controlling the plurality of air conditioners (20, 40). The control device (60) is formed so as to capable of executing: a first operation in which indoor units (30, 50) of all of the air conditioners (20, 40) are controlled so as to cool the air to a dew point temperature or lower; and a second operation in which the indoor unit (30) of at least one of the air conditioners (20) is controlled so as to cool the air to the dew point temperature or lower, and, at the same time, the indoor unit (50) of the other air conditioner (40) is controlled so as to cool the air to a temperature higher than the dew point temperature.

Description

空調システムAir conditioning system
  本発明は、空調システムに関する。 The present invention relates to an air conditioning system.
  従来より、室内の空調を行う空調システムが知られている。この種の空調システムとして、室内の冷房に加えて、室内の除湿を行うものがある。 Conventionally, air conditioning systems that perform indoor air conditioning are known. As this type of air-conditioning system, there is one that performs indoor dehumidification in addition to indoor cooling.
  例えば特許文献1に記載の空調システムは、圧縮機、室外熱交換器、膨張弁、及び室内熱交換器が接続される冷媒回路を有し、該冷媒回路で冷凍サイクルを行うように構成される。空調システムでは、室内の除湿を行う運転において、室内熱交換器の蒸発温度を低下させる。これにより、室内熱交換器では、空気が露点温度より低い温度まで冷却され、空気中の水分が凝縮する。この結果、室内の除湿がなされる。 For example, the air conditioning system described in Patent Document 1 includes a refrigerant circuit to which a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are connected, and is configured to perform a refrigeration cycle in the refrigerant circuit. . In the air conditioning system, the evaporation temperature of the indoor heat exchanger is lowered during the operation of dehumidifying the room. Thereby, in the indoor heat exchanger, air is cooled to a temperature lower than the dew point temperature, and moisture in the air is condensed. As a result, the room is dehumidified.
特開平9-14724号公報Japanese Patent Laid-Open No. 9-14724
  上述したような空調システムでは、特に運転開始時において、室内の湿度(潜熱負荷)が高いことがある。このため、このような条件下で室内の湿度を速やかに低下できれば、室内の快適性を向上できる。一方、室内の湿度を低下させるために空気を過剰に冷却すると、室内の温度も過剰に低くなり、省エネ性の低下を招いてしまう。 In the air conditioning system as described above, indoor humidity (latent heat load) may be high particularly at the start of operation. For this reason, if indoor humidity can be rapidly reduced under such conditions, indoor comfort can be improved. On the other hand, if the air is excessively cooled in order to reduce the humidity in the room, the temperature in the room is excessively lowered, leading to a reduction in energy saving performance.
  本発明は、このような課題に着目してなされたものであり、その目的は、室内の潜熱を速やかに処理でき、且つ省エネ性に優れた空調システムを提供することである。 The present invention has been made paying attention to such problems, and an object of the present invention is to provide an air conditioning system that can quickly process latent heat in a room and is excellent in energy saving.
  第1の発明は、空調システムを対象とし、室内ユニット(30,50)及び室外ユニット(21,41)をそれぞれ有し、各々が個別に冷凍サイクルを行うとともに互いに同一の室内を対象とする複数の空気調和機(20,40)と、前記複数の空気調和機(20,40)を制御する制御装置(60)とを備え、前記制御装置(60)は、全ての空気調和機(20,40)の室内ユニット(30,50)が空気を露点温度以下まで冷却するように制御される第1運転と、少なくとも1つの空気調和機(20)の室内ユニット(30)が空気を露点温度以下まで冷却するように制御されると同時に、他の空気調和機(40)の室内ユニット(50)が空気を露点温度より高い温度で冷却するように制御される第2運転とを実行可能に構成されることを特徴とする。 The first invention is directed to an air conditioning system, and includes an indoor unit (30, 50) and an outdoor unit (21, 41), each of which individually performs a refrigeration cycle and targets the same room. Air conditioners (20, 40) and a control device (60) for controlling the plurality of air conditioners (20, 40). The control device (60) includes all the air conditioners (20, 40). 40) indoor unit (30,50) controlled to cool air below dew point temperature and at least one air conditioner (20) indoor unit (30) air below dew point temperature And the second operation in which the indoor unit (50) of the other air conditioner (40) is controlled to cool the air at a temperature higher than the dew point temperature. It is characterized by being.
  第1の発明では、制御装置(60)により、第1運転と第2運転とが切り換えて実行される。第1運転が実行されると、全ての空気調和機(20,40)の室内ユニット(30,50)が、空気を露点温度以下にまで冷却するように制御される。全ての空気調和機(20,40)は、同一の室内空間(11)を空調の対象としている。このため、第1運転を行うことで、室内の潜熱を速やかに処理できる。 In the first invention, the first operation and the second operation are switched and executed by the control device (60). When the first operation is executed, the indoor units (30, 50) of all the air conditioners (20, 40) are controlled to cool the air to the dew point temperature or lower. All the air conditioners (20, 40) target the same indoor space (11) for air conditioning. For this reason, the latent heat in the room can be quickly processed by performing the first operation.
  第2運転が実行されると、一部の空気調和機(20)の室内ユニット(30)が空気を露点温度以下にまで冷却するように制御される。同時に他の空気調和機(40)の室内ユニット(50)が空気を露点温度より高い温度で冷却するように制御される。第2運転では、一部の空気調和機(20)により空気の潜熱が優先的に処理されると同時に、他の空気調和機(40)により空気の顕熱が処理される。これにより、室内の温度が過剰に低下することなく、室内の温湿度を目標値に近づけることができる。従って、省エネ性に優れた運転を行うことができる。 When the second operation is executed, the indoor units (30) of some of the air conditioners (20) are controlled to cool the air to below the dew point temperature. At the same time, the indoor unit (50) of the other air conditioner (40) is controlled to cool the air at a temperature higher than the dew point temperature. In the second operation, the latent heat of air is preferentially processed by some air conditioners (20), and the sensible heat of air is processed by other air conditioners (40). As a result, the indoor temperature and humidity can be brought close to the target value without excessively lowering the indoor temperature. Therefore, the driving | operation excellent in energy saving can be performed.
  第2の発明は、第1の発明において、前記制御装置(60)は、少なくとも室内の湿度が所定値より高いことを示す条件が成立すると前記第1運転を実行させることを特徴とする。 The second invention is characterized in that, in the first invention, the control device (60) executes the first operation when a condition indicating that at least indoor humidity is higher than a predetermined value is satisfied.
  第2の発明では、室内の湿度が高い条件下において、第1運転が実行される。これにより、室内の潜熱を速やかに処理でき、室内の快適性を迅速に確保できる。 In the second invention, the first operation is executed under conditions of high indoor humidity. Thereby, the latent heat in the room can be quickly processed, and the comfort in the room can be secured quickly.
  第3の発明は、第1又は第2の発明において、前記制御装置(60)は、室内の温度及び湿度が目標範囲であることを示す条件が成立すると前記第2運転を実行させることを特徴とする。 According to a third invention, in the first or second invention, the control device (60) executes the second operation when a condition indicating that the indoor temperature and humidity are within a target range is satisfied. And
  第3の発明では、室内の温度及び湿度が目標範囲に至ると、第2運転が実行される。これにより、省エネ性を確保しつつ、室内の温湿度を目標範囲に維持させることができる。 In the third invention, the second operation is executed when the indoor temperature and humidity reach the target ranges. Thereby, indoor temperature and humidity can be maintained in a target range, ensuring energy saving.
  第4の発明は、第1乃至第3のいずれか1つの発明において、前記制御装置(60)は、通常の冷房運転を含む温度制御モードと、前記第1運転及び第2運転を含む温湿度制御モードとを切り換えるように構成されることを特徴とする。 In a fourth aspect based on any one of the first to third aspects, the control device (60) includes a temperature control mode including a normal cooling operation, and a temperature and humidity including the first operation and the second operation. It is characterized by being configured to switch between control modes.
  第4の発明では、温度制御モードと温湿度制御モードとが選択的に実行される。温度制御モードは、室内の温度を調節する運転モードであり、通常の冷房運転を含んでいる。温湿度モードは、室内の温度及び湿度を調節する運転モードであり、潜熱を優先して処理する第1運転と、潜熱と顕熱とを個別に処理する第2運転とを含んでいる。 In the fourth invention, the temperature control mode and the temperature / humidity control mode are selectively executed. The temperature control mode is an operation mode for adjusting the indoor temperature, and includes a normal cooling operation. The temperature / humidity mode is an operation mode for adjusting the temperature and humidity in the room, and includes a first operation for preferentially processing latent heat and a second operation for separately processing latent heat and sensible heat.
  第5の発明は、第4の発明において、前記制御装置(60)は、前記温湿度制御モードの開始時に、第1運転、第2運転を含む次の運転の実行の開始の判定を行うことを特徴とする。 In a fifth aspect based on the fourth aspect, the control device (60) determines the start of execution of the next operation including the first operation and the second operation at the start of the temperature / humidity control mode. It is characterized by.
  第5の発明では、温湿度制御モードが開始されると、少なくとも第1運転、第2運転の実行の開始の判定が行われる。 In the fifth aspect of the invention, when the temperature / humidity control mode is started, it is determined whether to start at least the first operation and the second operation.
  第6の発明は、第1乃至第5のいずれか1つにおいて、前記制御装置(60)は、全ての空気調和機(20,40)の室内ユニット(30,50)が空気を露点温度より高い温度で冷却するように制御される第3運転を実行可能に構成される。 According to a sixth aspect of the present invention, in any one of the first to fifth aspects, the control device (60) is configured so that the indoor units (30, 50) of all the air conditioners (20, 40) extract air from the dew point temperature. The third operation controlled to cool at a high temperature is configured to be executable.
  第6の発明では、第3運転が実行されると、全ての空気調和機(20,40)の室内ユニット(30,50)が空気を露点温度より高い温度で冷却するように制御される。全ての空気調和機(20,40)は、同一の室内空間(11)を空調の対象としている。このため、第3運転を行うことで、室内の顕熱を速やかに処理できる。 In the sixth invention, when the third operation is executed, the indoor units (30, 50) of all the air conditioners (20, 40) are controlled to cool the air at a temperature higher than the dew point temperature. All the air conditioners (20, 40) target the same indoor space (11) for air conditioning. For this reason, the sensible heat in the room can be quickly processed by performing the third operation.
  第7の発明は、第6の発明において、前記制御装置(60)は、室内の湿度が所定値より低く且つ室内の温度が所定値より高いことを示す条件が成立すると前記第3運転を実行させることを特徴とする。 In a seventh aspect based on the sixth aspect, the control device (60) performs the third operation when a condition indicating that the indoor humidity is lower than a predetermined value and the indoor temperature is higher than the predetermined value is satisfied. It is characterized by making it.
  第7の発明では、室内の温度のみが高い条件下において、第3運転が実行される。これにより、空気の湿度が過剰に低くなることなく、室内の顕熱だけを処理できる。従って、潜熱処理に無駄なエネルギーを消費することなく、室内の温湿度を目標値に近づけることができる。 In the seventh invention, the third operation is executed under the condition that only the indoor temperature is high. Thereby, only the sensible heat in the room can be processed without excessively reducing the humidity of the air. Therefore, the room temperature and humidity can be brought close to the target value without consuming unnecessary energy for the latent heat treatment.
  本発明によれば、同一の室内空間(11)を対象とする複数の空気調和機(20,40)において、全ての空気調和機(20,40)で潜熱を優先的に処理する第1運転と、複数の空気調和機(20,40)で潜熱と顕熱とを実質的に分離して処理する第2運転とを切り換えるようにしている。これにより、潜熱負荷が高い条件下においては、第1運転を実行することで、室内の潜熱を速やかに処理でき、室内の快適性を確保できる。また、室内の温湿度が目標範囲にある条件下においては、第2運転を実行することで、空気を過剰に低い温度まで冷却してしまうことを回避できる。これにより、空気の冷却に無駄にエネルギーを消費したり、ユーザがコールドドラフトを覚えたりすることを抑制できる。 According to the present invention, in the plurality of air conditioners (20, 40) targeting the same indoor space (11), the first operation for preferentially processing latent heat in all the air conditioners (20, 40). And a second operation in which latent heat and sensible heat are substantially separated and processed by the plurality of air conditioners (20, 40). Thereby, under conditions with a high latent heat load, by executing the first operation, the latent heat in the room can be quickly processed, and the comfort in the room can be ensured. Moreover, under conditions where the indoor temperature and humidity are within the target range, it is possible to avoid cooling the air to an excessively low temperature by executing the second operation. As a result, it is possible to suppress the wasteful consumption of energy for cooling the air and the user's learning of a cold draft.
図1は、実施形態に係る空調システムの概略の全体構成図である。FIG. 1 is a schematic overall configuration diagram of an air conditioning system according to an embodiment. 図2は、実施形態に係る空調システムの第1空気調和機及び第2空気調和機の概略の配管系統図である。FIG. 2 is a schematic piping system diagram of the first air conditioner and the second air conditioner of the air conditioning system according to the embodiment. 図3は、実施形態に係る空調システムのブロック図である。FIG. 3 is a block diagram of the air conditioning system according to the embodiment. 図4は、実施形態に係る空調システムの温湿度制御モードへの移行時の流れを説明するためのフローチャートである。FIG. 4 is a flowchart for explaining a flow at the time of shifting to the temperature and humidity control mode of the air conditioning system according to the embodiment. 図5は、実施形態に係る空調システムの温湿度制御モード時の各運転の判定動作の流れを説明するためのフローチャートである。FIG. 5 is a flowchart for explaining a flow of determination operations for each operation in the temperature and humidity control mode of the air conditioning system according to the embodiment. 図6は、温湿度制御モードの開始時の初回の判定動作で用いる閾値ないし領域と、各運転との関係を説明するための空気線図である。FIG. 6 is an air line diagram for explaining the relationship between the threshold value or region used in the first determination operation at the start of the temperature / humidity control mode and each operation. 図7は、除湿運転及び非分離運転時の判定動作で用いる閾値ないし領域と、各運転との関係を説明するための空気線図である。FIG. 7 is an air line diagram for explaining the relationship between the threshold value or region used in the determination operation during the dehumidifying operation and the non-separation operation and each operation. 図8は、潜顕分離運転時の判定動作で用いる閾値ないし領域と、各運転との関係を説明するための空気線図である。FIG. 8 is an air line diagram for explaining a relationship between a threshold value or a region used in a determination operation at the time of a latent-visible separation operation and each operation. 図9は、顕熱運転時の判定動作で用いる閾値ないし領域と、各運転との関係を説明するための空気線図である。FIG. 9 is an air line diagram for explaining the relationship between the threshold value or region used in the determination operation during the sensible heat operation and each operation. 図10は、潜熱運転時の判定動作で用いる閾値ないし領域と、各運転との関係を説明するための空気線図である。FIG. 10 is an air line diagram for explaining the relationship between the threshold value or region used in the determination operation during the latent heat operation and each operation. 図11は、除湿運転及び潜熱運転時における、蒸発温度決定動作を説明するための空気線図である。FIG. 11 is an air diagram for explaining the evaporating temperature determination operation during the dehumidifying operation and the latent heat operation.
  以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
 〈空調システムの全体構成〉
  本実施形態の空調システム(10)は、複数の空気調和機(20,40)を備えている。複数の空気調和機(20,40)は、同一の室内空間(11)を空調の対象としている。本実施形態の空調システム(10)には、2台の空気調和機(第1空気調和機(20)と第2空気調和機(40))が設けられる。空調システム(10)は、3台以上の空気調和機を備えてもよい。第1空気調和機(20)と第2空気調和機(40)とは、基本的な構成は同じである。また、空調システム(10)は、各空気調和機(20,40)を制御するための制御装置(60)を備えている。
<Overall configuration of air conditioning system>
The air conditioning system (10) of the present embodiment includes a plurality of air conditioners (20, 40). The plurality of air conditioners (20, 40) target the same indoor space (11) for air conditioning. The air conditioning system (10) of the present embodiment is provided with two air conditioners (a first air conditioner (20) and a second air conditioner (40)). The air conditioning system (10) may include three or more air conditioners. The first air conditioner (20) and the second air conditioner (40) have the same basic configuration. The air conditioning system (10) includes a control device (60) for controlling the air conditioners (20, 40).
 〈第1空気調和機〉
  図1及び図2に示すように、第1空気調和機(20)は、室外に設置される第1室外ユニット(21)と、室内に設置される複数の第1室内ユニット(30)とを備えている。複数の第1室内ユニット(30)は、2本の連絡配管を介して第1室外ユニット(21)に並列に接続される。なお、第1室内ユニット(30)は、1台、2台、又は3台以上であってもよい。
<First air conditioner>
As shown in FIGS. 1 and 2, the first air conditioner (20) includes a first outdoor unit (21) installed outdoors and a plurality of first indoor units (30) installed indoors. I have. The plurality of first indoor units (30) are connected in parallel to the first outdoor unit (21) via two communication pipes. The first indoor unit (30) may be one, two, or three or more.
  第1空気調和機(20)は、冷媒が充填される第1冷媒回路(22)を備える。第1冷媒回路(22)では、冷媒が循環することで冷凍サイクルが行われる。第1冷媒回路(22)には、第1圧縮機(23)、第1室外熱交換器(24)、第1室外膨張弁(25)、第1四方切換弁(26)、及び複数の第1室内熱交換器(32)が接続される。 The first air conditioner (20) includes a first refrigerant circuit (22) filled with a refrigerant. In the first refrigerant circuit (22), the refrigerant circulates to perform a refrigeration cycle. The first refrigerant circuit (22) includes a first compressor (23), a first outdoor heat exchanger (24), a first outdoor expansion valve (25), a first four-way switching valve (26), and a plurality of first One indoor heat exchanger (32) is connected.
  第1圧縮機(23)、第1室外熱交換器(24)、第1室外膨張弁(25)、及び第1四方切換弁(26)は、第1室外ユニット(21)に設けられる。第1圧縮機(23)は、容量が可変なインバータ式の圧縮機で構成される。第1圧縮機(23)は、インバータ装置の出力が制御されることで運転周波数(電動機の回転数)が調節可能に構成される。第1室外熱交換器(24)は、例えばフィンアンドチューブ式の熱交換器である。第1室外熱交換器(24)の近傍には、第1室外ファン(27)が設けられる。第1室外熱交換器(24)では、第1室外ファン(27)が送風する室外空気と冷媒とが熱交換する。第1室外膨張弁(25)は、開度が可変な電子膨張弁で構成される。第1四方切換弁(26)は、第1~第4のポートを有する。第1ポートは、第1圧縮機(23)の吐出側に連通し、第2ポートは第1圧縮機(23)の吸入側に連通する。第3ポートは、第1室外熱交換器(24)のガス側端に連通し、第4ポートは第1室内熱交換器(32)のガス側端に連通する。第1四方切換弁(26)は、第1ポートと第3ポートが連通し且つ第2ポートと第4ポートが連通する第1状態(図2の実線で示す状態)と、第1ポートと第4ポートが連通し且つ第2ポートと第3ポートが連通する第2状態(図2の破線で示す状態)とに切り換えられる。 The first compressor (23), the first outdoor heat exchanger (24), the first outdoor expansion valve (25), and the first four-way switching valve (26) are provided in the first outdoor unit (21). The first compressor (23) is an inverter compressor having a variable capacity. The first compressor (23) is configured such that the operation frequency (the number of rotations of the electric motor) can be adjusted by controlling the output of the inverter device. The first outdoor heat exchanger (24) is, for example, a fin-and-tube heat exchanger. A first outdoor fan (27) is provided in the vicinity of the first outdoor heat exchanger (24). In the first outdoor heat exchanger (24), the outdoor air blown by the first outdoor fan (27) and the refrigerant exchange heat. The first outdoor expansion valve (25) is an electronic expansion valve having a variable opening. The first four-way switching valve (26) has first to fourth ports. The first port communicates with the discharge side of the first compressor (23), and the second port communicates with the suction side of the first compressor (23). The third port communicates with the gas side end of the first outdoor heat exchanger (24), and the fourth port communicates with the gas side end of the first indoor heat exchanger (32). The first four-way switching valve (26) includes a first state (state indicated by a solid line in FIG. 2) in which the first port and the third port communicate and the second port and the fourth port communicate with each other, It is switched to a second state (state indicated by a broken line in FIG. 2) in which the four ports communicate and the second port and the third port communicate.
  各第1室内熱交換器(32)は、各第1室内ユニット(30)に1つずつ設けられる。第1室内熱交換器(32)は、第1室内ユニット(30)内の空気通路に配置される。第1室内熱交換器(32)の近傍(下流側)には、第1室内ファン(33)が設けられる。第1室内熱交換器(32)では、室内空間(11)から吸い込んだ室内空気(吸込空気)と冷媒とが熱交換する。第1室内熱交換器(32)で熱交換した空気は、吹出空気として室内空間(11)へ供給される。 Each first indoor heat exchanger (32) is provided in each first indoor unit (30). The first indoor heat exchanger (32) is disposed in the air passage in the first indoor unit (30). A first indoor fan (33) is provided in the vicinity (downstream side) of the first indoor heat exchanger (32). In the first indoor heat exchanger (32), the indoor air (intake air) sucked from the indoor space (11) and the refrigerant exchange heat. The air exchanged by the first indoor heat exchanger (32) is supplied to the indoor space (11) as blown air.
  第1室内ファン(33)は、例えば遠心ファンで構成され、ファンの風量が調節可能に構成される。本実施形態の第1室内ファン(33)の風量は、Lタップ(小風量)、Mタップ(中風量)、及びHタップ(大風量)の3段階に切換可能である。 The first indoor fan (33) is constituted by, for example, a centrifugal fan, and the air volume of the fan can be adjusted. The air volume of the first indoor fan (33) according to the present embodiment can be switched between three stages of L tap (small air volume), M tap (medium air volume), and H tap (large air volume).
  各第1室内ユニット(30)には、第1吸込温度センサ(34)及び第1吸込湿度センサ(35)がそれぞれ1つずつ設けられる。第1吸込温度センサ(34)は、吸込空気の温度を検出する。第1吸込湿度センサ(35)は、吸込空気の湿度(絶対湿度)を検出する。 Each first indoor unit (30) is provided with one first suction temperature sensor (34) and one first suction humidity sensor (35). The first suction temperature sensor (34) detects the temperature of the suction air. The first suction humidity sensor (35) detects the humidity (absolute humidity) of the suction air.
  第1冷媒回路(22)では、第1冷凍サイクル(冷房サイクル)と、第2冷凍サイクル(暖房サイクル)とが切り換えて行われる。第1冷凍サイクルでは、第1四方切換弁(26)が第1状態となり、第1圧縮機(23)、第1室外ファン(27)、及び第1室内ファン(33)が運転される。これにより、第1冷凍サイクルでは、冷媒が第1室外熱交換器(24)で放熱(凝縮)し、第1室外膨張弁(25)で減圧され、第1室内熱交換器(32)で蒸発する。第2冷凍サイクルでは、第1四方切換弁(26)が第2状態となり、第1圧縮機(23)、第1室外ファン(27)、及び第1室内ファン(33)が運転される。これにより、第2冷凍サイクルでは、冷媒が第1室内熱交換器(32)で放熱(凝縮)し、第1室外膨張弁(25)で減圧され、第1室外熱交換器(24)で蒸発する。 In the first refrigerant circuit (22), the first refrigeration cycle (cooling cycle) and the second refrigeration cycle (heating cycle) are switched. In the first refrigeration cycle, the first four-way selector valve (26) is in the first state, and the first compressor (23), the first outdoor fan (27), and the first indoor fan (33) are operated. Thus, in the first refrigeration cycle, the refrigerant dissipates heat (condenses) in the first outdoor heat exchanger (24), is decompressed by the first outdoor expansion valve (25), and evaporates in the first indoor heat exchanger (32). To do. In the second refrigeration cycle, the first four-way switching valve (26) is in the second state, and the first compressor (23), the first outdoor fan (27), and the first indoor fan (33) are operated. Thus, in the second refrigeration cycle, the refrigerant dissipates heat (condenses) in the first indoor heat exchanger (32), is depressurized by the first outdoor expansion valve (25), and evaporates in the first outdoor heat exchanger (24). To do.
  第1冷媒回路(22)の第1室内熱交換器(32)には、蒸発温度(Te)を検出する冷媒温度センサ(図示省略)が設けられる。 The first indoor heat exchanger (32) of the first refrigerant circuit (22) is provided with a refrigerant temperature sensor (not shown) that detects the evaporation temperature (Te).
 〈第2空気調和機〉
  図2に示すように、第2空気調和機(40)は、第1空気調和機(20)と同様の構成機器を備えている。つまり、第2空気調和機(40)は、第2室外ユニット(41)と複数の第2室内ユニット(50)とが接続され、冷媒が循環する第2冷媒回路(42)が構成される。
<Second air conditioner>
As shown in FIG. 2, the second air conditioner (40) includes the same components as the first air conditioner (20). That is, the second air conditioner (40) includes a second refrigerant circuit (42) in which the second outdoor unit (41) and the plurality of second indoor units (50) are connected to circulate the refrigerant.
  第2室外ユニット(41)には、第2圧縮機(43)、第2室外熱交換器(44)、第2室外膨張弁(45)、第2四方切換弁(46)、及び第2室外ファン(47)が設けられる。第2室内ユニット(50)には、第2室内熱交換器(52)、第2室内ファン(53)、第2吸込温度センサ(54)、第2吸込湿度センサ(55)が設けられる。第2冷媒回路(42)では、第1冷媒回路(22)と同様にして、第1冷凍サイクル(冷房サイクル)と第2冷凍サイクル(暖房サイクル)とが切り換えて行われる。第2空気調和機(40)の各機器の構成は、第1空気調和機(20)と同様であるので詳細な説明は省略する。 The second outdoor unit (41) includes a second compressor (43), a second outdoor heat exchanger (44), a second outdoor expansion valve (45), a second four-way switching valve (46), and a second outdoor unit. A fan (47) is provided. The second indoor unit (50) is provided with a second indoor heat exchanger (52), a second indoor fan (53), a second suction temperature sensor (54), and a second suction humidity sensor (55). In the second refrigerant circuit (42), similarly to the first refrigerant circuit (22), the first refrigeration cycle (cooling cycle) and the second refrigeration cycle (heating cycle) are switched. Since the structure of each apparatus of a 2nd air conditioner (40) is the same as that of a 1st air conditioner (20), detailed description is abbreviate | omitted.
 〈リモコン〉
  図1に示すように、第1空気調和機(20)には、第1リモコン(36)が設けられる。第2空気調和機(40)には、第2リモコン(56)が設けられる。各リモコン(36,56)は、例えば室内の壁に設けられ、ユーザが操作可能に構成される。各リモコン(36,56)には、対応する空気調和機(20,40)の電源のON/OFF、運転モードの切り換え、吹出空気の風向の切り換え等を行うための操作部が設けられる。また、各リモコン(36,56)には、対応する空気調和機(20,40)の現在の運転モード、設定温度、設定湿度等を表示する表示部が設けられる。
<Remote controller>
As shown in FIG. 1, the first air conditioner (20) is provided with a first remote controller (36). The second air conditioner (40) is provided with a second remote controller (56). Each of the remote controllers (36, 56) is provided on, for example, an indoor wall and is configured to be operable by the user. Each remote controller (36, 56) is provided with an operation unit for performing power ON / OFF of the corresponding air conditioner (20, 40), switching of the operation mode, switching of the direction of the blown air, and the like. Each remote controller (36, 56) is provided with a display unit for displaying the current operation mode, set temperature, set humidity and the like of the corresponding air conditioner (20, 40).
 〈制御装置〉
  図1及び図3に示すように、空調システム(10)は、各空気調和機(20,40)を制御するための制御装置(60)(制御システム)を備えている。本実施形態の制御装置(60)は、第1ローカルコントローラ(61)、第2ローカルコントローラ(71)、通信端末(80)、ルータ(85)、及びクラウドサーバ(90)を含んでいる。
<Control device>
As shown in FIGS. 1 and 3, the air conditioning system (10) includes a control device (60) (control system) for controlling the air conditioners (20, 40). The control device (60) of the present embodiment includes a first local controller (61), a second local controller (71), a communication terminal (80), a router (85), and a cloud server (90).
  第1ローカルコントローラ(61)は、第1空気調和機(20)に対応して設けられる。第1ローカルコントローラ(61)は、第1冷媒回路(22)の各構成機器、第1室内ファン(33)等を制御可能に構成される。第1ローカルコントローラ(61)は、マイクロコンピュータと、該マイクロコンピュータを動作させるためのソフトウエアを格納するメモリディバイス(具体的には半導体メモリ)とを用いて構成されている。 The first local controller (61) is provided corresponding to the first air conditioner (20). The first local controller (61) is configured to be able to control each component device of the first refrigerant circuit (22), the first indoor fan (33), and the like. The first local controller (61) is configured using a microcomputer and a memory device (specifically, a semiconductor memory) that stores software for operating the microcomputer.
  第1ローカルコントローラ(61)は、第1能力決定部(62)、第1能力制御部(63)、及び第1通信部(64)を備えている。第1能力決定部(62)は、第1空気調和機(20)の能力を決定するための演算部である。第1能力制御部(63)は、第1空気調和機(20)の能力を制御するための制御部である。 The first local controller (61) includes a first capability determination unit (62), a first capability control unit (63), and a first communication unit (64). A 1st capability determination part (62) is a calculating part for determining the capability of a 1st air conditioner (20). A 1st capability control part (63) is a control part for controlling the capability of a 1st air conditioner (20).
  第1通信部(64)は、ルータ(85)を介してインターネット(86)に接続され、該インターネット(86)を経由してクラウドサーバ(90)と通信可能に構成される。第1通信部(64)とルータ(85)との間の通信は、有線方式で実現してもよいし、無線方式で実現してもよい。このような構成により、第1ローカルコントローラ(61)とクラウドサーバ(90)との間では、運転指令や制御パラメータ等の信号のやりとりが双方向に可能となっている。 The first communication unit (64) is connected to the Internet (86) via the router (85), and is configured to be able to communicate with the cloud server (90) via the Internet (86). Communication between the first communication unit (64) and the router (85) may be realized by a wired method or may be realized by a wireless method. With such a configuration, signals such as operation commands and control parameters can be exchanged bidirectionally between the first local controller (61) and the cloud server (90).
  第2ローカルコントローラ(71)は、第2空気調和機(40)に対応して設けられる。第2ローカルコントローラ(71)は、第2冷媒回路(42)の各構成機器、第2室内ファン(53)等を制御可能に構成される。第2ローカルコントローラ(71)は、マイクロコンピュータと、該マイクロコンピュータを動作させるためのソフトウエアを格納するメモリディバイス(具体的には半導体メモリ)とを用いて構成されている。 The second local controller (71) is provided corresponding to the second air conditioner (40). The second local controller (71) is configured to be able to control each component device of the second refrigerant circuit (42), the second indoor fan (53), and the like. The second local controller (71) is configured using a microcomputer and a memory device (specifically, a semiconductor memory) that stores software for operating the microcomputer.
  第2ローカルコントローラ(71)は、第2能力決定部(72)、第2能力制御部(73)、及び第2通信部(74)を備えている。第2能力決定部(72)は、第2空気調和機(40)の能力を決定するための演算部である。第2能力制御部(73)は、第2空気調和機(40)の能力を制御するための制御部である。 The second local controller (71) includes a second capability determination unit (72), a second capability control unit (73), and a second communication unit (74). A 2nd capability determination part (72) is a calculating part for determining the capability of a 2nd air conditioner (40). A 2nd capability control part (73) is a control part for controlling the capability of a 2nd air conditioner (40).
  第2通信部(74)は、ルータ(85)を介してインターネット(86)に接続され、該インターネット(86)を経由してクラウドサーバ(90)と通信可能に構成される。第2通信部(74)とルータ(85)との間の通信は、有線方式で実現してもよいし、無線方式で実現してもよい。 The second communication unit (74) is connected to the Internet (86) via the router (85), and is configured to be able to communicate with the cloud server (90) via the Internet (86). Communication between the second communication unit (74) and the router (85) may be realized by a wired method or a wireless method.
  通信端末(80)は、ユーザが、詳細は後述する温湿度制御モードの運転を指令するための通信機器である。通信端末(80)は、例えばスマートフォンやタブレットPC等で構成される。通信端末(80)は、マイクロコンピュータと、該マイクロコンピュータを動作させるためのソフトウエアを格納するメモリディバイス(具体的には半導体メモリ)とを有する。また、通信端末(80)は、表示部及び操作部を兼用するタッチパネル(81)と、インターネット(86)を経由してクラウドサーバ(90)と接続する通信部(82)とを有する。 The communication terminal (80) is a communication device for the user to instruct operation in a temperature and humidity control mode, which will be described in detail later. The communication terminal (80) is configured by, for example, a smartphone or a tablet PC. The communication terminal (80) includes a microcomputer and a memory device (specifically, a semiconductor memory) that stores software for operating the microcomputer. The communication terminal (80) includes a touch panel (81) that also serves as a display unit and an operation unit, and a communication unit (82) that is connected to the cloud server (90) via the Internet (86).
  通信端末(80)には、温湿度制御モードを実行するためのプログラム(制御用アプリケーション)が記憶されている。ユーザは、通信端末(80)のタッチパネル(81)を操作することにより、温湿度制御モードのON/OFFの切り換え、温湿度制御モードの室内の目標温度(Ts)の設定、温湿度制御モードの室内の目標湿度(Rs)の設定を行うことができる。 The communication terminal (80) stores a program (control application) for executing the temperature / humidity control mode. The user operates the touch panel (81) of the communication terminal (80) to switch the temperature / humidity control mode ON / OFF, set the indoor target temperature (Ts) in the temperature / humidity control mode, and set the temperature / humidity control mode. The indoor target humidity (Rs) can be set.
  クラウドサーバ(90)は、インターネット(86)を経由して、第1ローカルコントローラ(61)、第2ローカルコントローラ(71)、及び通信端末(80)と双方向に通信可能に構成されている。クラウドサーバ(90)は、マイクロコンピュータと、該マイクロコンピュータを動作させるためのソフトウエアを格納するメモリディバイス(具体的には半導体メモリ)とを有する。 The cloud server (90) is configured to be capable of bidirectional communication with the first local controller (61), the second local controller (71), and the communication terminal (80) via the Internet (86). The cloud server (90) includes a microcomputer and a memory device (specifically, a semiconductor memory) that stores software for operating the microcomputer.
  クラウドサーバ(90)は、運転判定部(91)及び能力決定部(92)を備えている。運転判定部(91)は、温湿度制御モードでの各種の運転(詳細は後述する)を切り換えるための判定動作を行う。能力決定部(92)は、温湿度制御モードの各運転において、各空気調和機(20,40)の目標蒸発温度、及び室内ファンの速度(ファンタップ)をそれぞれ決定する。クラウドサーバ(90)は、このようにして求めた運転パラメータを、インターネット(86)を経由して、各ローカルコントローラ(61,71)へ所定時間(例えば20秒)毎に送信する。 The cloud server (90) includes an operation determination unit (91) and a capability determination unit (92). The operation determination unit (91) performs a determination operation for switching various operations (details will be described later) in the temperature and humidity control mode. The capacity determining unit (92) determines the target evaporation temperature of each air conditioner (20, 40) and the speed of the indoor fan (fan tap) in each operation in the temperature / humidity control mode. The cloud server (90) transmits the operation parameters obtained in this way to the local controllers (61, 71) every predetermined time (for example, 20 seconds) via the Internet (86).
 -運転動作-
  空調システム(10)の運転動作について詳細に説明する。
-Driving operation-
The operation of the air conditioning system (10) will be described in detail.
  空調システム(10)では、温度制御モードと温湿度制御モードとが選択可能となっている。温度制御モードは、室内空間(11)の室内空気の温度のみを調節するための運転モードであり、冷房運転及び暖房運転を含んでいる。温度制御モードでは、室内空気の温度を目標値に近づける制御が行われる。温湿度制御モードは、室内空間(11)の室内空気の温度と湿度とを調節するための運転モードである。温湿度制御モードでは、1)除湿運転、2)非分離運転、3)潜顕分離運転、4)顕熱運転、及び5)潜熱運転を含んでいる。温湿度制御モードでは、室内の空気状態(温度及び湿度)に応じて、1)~5)の運転が自動的に切り換えて実行される。これらの運転の詳細は後述する。 In the air conditioning system (10), the temperature control mode and the temperature / humidity control mode can be selected. The temperature control mode is an operation mode for adjusting only the temperature of the indoor air in the indoor space (11), and includes a cooling operation and a heating operation. In the temperature control mode, control is performed so that the temperature of the room air approaches the target value. The temperature / humidity control mode is an operation mode for adjusting the temperature and humidity of the indoor air in the indoor space (11). The temperature / humidity control mode includes 1) dehumidifying operation, 2) non-separation operation, 3) latent sensible separation operation, 4) sensible heat operation, and 5) latent heat operation. In the temperature / humidity control mode, the operations 1) to 5) are automatically switched and executed according to the indoor air condition (temperature and humidity). Details of these operations will be described later.
 -温度制御モードの冷房運転-
  温度制御モードの冷房運転について説明する。冷房運転では、各空気調和機(20,40)で上述した第1冷凍サイクルが行われる。つまり、圧縮機(23,43)で圧縮された冷媒は、各室外熱交換器(24,44)で凝縮し、室外空気へ放熱する。凝縮した冷媒は、各室外膨張弁(25,45)で減圧された後、各室内熱交換器(32,52)を流れる。各室内熱交換器(32,52)では、冷媒が室内空気から吸熱して蒸発する。これにより、各室内ユニット(30,50)では、吸込空気が冷却される。蒸発した冷媒は、各圧縮機(23,43)に吸入され、再び圧縮される。各室内熱交換器(32,52)で冷却された空気は、室内空間(11)へ吹出空気として供給される。
-Cooling operation in temperature control mode-
The cooling operation in the temperature control mode will be described. In the cooling operation, the first refrigeration cycle described above is performed in each air conditioner (20, 40). That is, the refrigerant compressed by the compressor (23, 43) is condensed by each outdoor heat exchanger (24, 44) and radiated to the outdoor air. The condensed refrigerant is depressurized by the outdoor expansion valves (25, 45) and then flows through the indoor heat exchangers (32, 52). In each indoor heat exchanger (32, 52), the refrigerant absorbs heat from the indoor air and evaporates. Thereby, in each indoor unit (30, 50), intake air is cooled. The evaporated refrigerant is sucked into each compressor (23, 43) and compressed again. The air cooled by each indoor heat exchanger (32, 52) is supplied as blown air to the indoor space (11).
  冷房運転では、各室内ユニット(30,50)の吸込空気の温度と設定温度との差ΔTに応じて、各空気調和機(20,40)の能力が制御される。このΔTが大きくなると、各空気調和機(20,40)の目標蒸発温度が小さくなり、ひいては各圧縮機(23,43)の運転周波数が増大する。逆にΔTが小さくなると、各空気調和機(20,40)の目標蒸発温度が大きくなり、ひいては各圧縮機(23,43)の運転周波数が減少する。 In the cooling operation, the capacity of each air conditioner (20, 40) is controlled according to the difference ΔT between the temperature of the intake air of each indoor unit (30, 50) and the set temperature. When this ΔT increases, the target evaporation temperature of each air conditioner (20, 40) decreases, and consequently the operating frequency of each compressor (23, 43) increases. Conversely, when ΔT decreases, the target evaporation temperature of each air conditioner (20, 40) increases, and consequently the operating frequency of each compressor (23, 43) decreases.
 -温湿度制御モード-
  温湿度制御モードの運転は、室内の温度を目標温度(Ts)に近づけるともに、室内の湿度を目標湿度(Rs)に近づける運転である。温湿度制御モードでは、現在の室内の温湿度を目標点(S)(図6を参照)に近づけるように、現在の空気の状態点(C)に応じて、各種の運転を切り換える。温湿度制御モードは、各ローカルコントローラ(61,71)、クラウドサーバ(90)、及び通信端末(80)間の相互の信号の授受によって実現される。これらの端末間の信号の送受信は所定時間(例えば20秒)毎に行われる。
-Temperature and humidity control mode-
The operation in the temperature / humidity control mode is an operation in which the indoor temperature is brought close to the target temperature (Ts) and the indoor humidity is brought close to the target humidity (Rs). In the temperature / humidity control mode, various operations are switched in accordance with the current air state point (C) so that the current indoor temperature / humidity approaches the target point (S) (see FIG. 6). The temperature / humidity control mode is realized by transmission / reception of signals between the local controllers (61, 71), the cloud server (90), and the communication terminal (80). Transmission / reception of signals between these terminals is performed every predetermined time (for example, 20 seconds).
 〈温湿度制御モードへの移行まで制御〉
  温湿度制御モードへ移行するまでの制御について、図4を参照しながら説明する。ユーザが通信端末(80)のアプリケーションを起動させ、タッチパネル(81)上において「温湿度制御モード」の「ON」を選択すると、この信号がクラウドサーバ(90)へ出力される。同時に、クラウドサーバ(90)には、通信端末(80)に設定された目標温度(Ts)及び目標湿度(Rs)が入力される。以上のようにして、温湿度制御モードの開始の指示があると、ステップSt1からステップSt2へ移行する。
<Control up to temperature / humidity control mode>
Control up to the transition to the temperature / humidity control mode will be described with reference to FIG. When the user activates the application of the communication terminal (80) and selects “ON” of the “temperature / humidity control mode” on the touch panel (81), this signal is output to the cloud server (90). At the same time, the target temperature (Ts) and target humidity (Rs) set in the communication terminal (80) are input to the cloud server (90). As described above, when there is an instruction to start the temperature / humidity control mode, the process proceeds from step St1 to step St2.
  次いで、クラウドサーバ(90)は、受信した目標温度(Ts)及び目標湿度(Rs)を、各空気調和機(20,40)の各ローカルコントローラ(61,71)、又は各リモコン(36,56)へ送信する。各ローカルコントローラ(61,71)では、各空気調和機(20,40)で検出した吸込空気温度と目標温度(Ts)とを用いて各空気調和機(20,40)の起動(サーモON)の判定を行う。なお、各ローカルコントローラ(61,71)は、各空気調和機(20,40)で検出した吸込空気湿度と目標湿度(Rs)とを用いて各空気調和機(20,40)の起動の判定を行うようにしてもよい。 Next, the cloud server (90) sends the received target temperature (Ts) and target humidity (Rs) to each local controller (61, 71) of each air conditioner (20, 40) or each remote controller (36, 56). ). Each local controller (61, 71) starts each air conditioner (20, 40) using the intake air temperature detected by each air conditioner (20, 40) and the target temperature (Ts) (thermo ON) Judgment is made. Each local controller (61, 71) determines the start-up of each air conditioner (20, 40) using the intake air humidity detected by each air conditioner (20, 40) and the target humidity (Rs). May be performed.
  以上のようにして、サーモON条件が成立すると、ステップSt2からステップSt3へ移行し、温湿度制御モードへ移行する。 As described above, when the thermo-ON condition is satisfied, the process proceeds from step St2 to step St3 and the temperature / humidity control mode.
 〈初回の判定動作〉
  図5に示すように、温湿度制御モードへ移行すると、初回の判定動作が行われる(ステップSt51)。初回の判定動作では、運転判定部(91)が、1)除湿運転、3)顕熱運転、4)顕熱運転、5)潜熱運転のいずれを実行するかの判定を行う。つまり、初回の判定動作では、2)非分離運転が選択されることはない。判定動作では、通信端末(80)に設定された目標温度(Ts)と、通信端末(80)に設定された目標湿度(Rs)と、室内空間(11)の現在の空気状態とが用いられる。ここで、現在の空気状態を示す指標としては、室内空間(11)の現在の空気温度(T)と、室内空間(11)の現在の空気湿度(R)と、室内空間(11)の現在の不快指数(DI)とが用いられる。
<First judgment operation>
As shown in FIG. 5, when the mode is shifted to the temperature / humidity control mode, the first determination operation is performed (step St51). In the first determination operation, the operation determination unit (91) determines which of 1) dehumidifying operation, 3) sensible heat operation, 4) sensible heat operation, and 5) latent heat operation is performed. That is, in the first determination operation, 2) non-separation operation is not selected. In the determination operation, the target temperature (Ts) set in the communication terminal (80), the target humidity (Rs) set in the communication terminal (80), and the current air condition in the indoor space (11) are used. . Here, as an index indicating the current air condition, the current air temperature (T) of the indoor space (11), the current air humidity (R) of the indoor space (11), and the current of the indoor space (11) Of discomfort index (DI).
  空気温度(T)は、複数の第1吸込温度センサ(34)の各検出温度と、複数の第2吸込温度センサ(54)の各検出温度のうち、最も高い空気温度(Tmax)が用いられる。空気湿度(R)は、複数の第1吸込湿度センサ(35)の各検出湿度と、複数の第2吸込湿度センサ(55)の各検出湿度のうち、最も高い空気温度(Tmax)に対応する検出湿度である。つまり、空気温度(T)と空気湿度(R)は、同じ室内ユニット(30,50)の対となる吸込温度センサ(34,54)及び吸込湿度センサ(35,55)に対応している。 As the air temperature (T), the highest air temperature (Tmax) among the detected temperatures of the plurality of first suction temperature sensors (34) and the detected temperatures of the plurality of second suction temperature sensors (54) is used. . The air humidity (R) corresponds to the highest air temperature (Tmax) among the detected humidity of the plurality of first suction humidity sensors (35) and the detected humidity of the plurality of second suction humidity sensors (55). The detected humidity. That is, the air temperature (T) and the air humidity (R) correspond to the suction temperature sensor (34, 54) and the suction humidity sensor (35, 55) which are a pair of the same indoor unit (30, 50).
  不快指数(DI)は、空気温度(T)及び空気湿度(R)とから求められる。ここで、不快指数(discomfort index)は、人体の温熱感覚を表すための温熱指標の一つであり、温度と湿度とを含む関係式により求めることができる。 The discomfort index (DI) is obtained from air temperature (T) and air humidity (R). Here, the discomfort index (discomfort index) is one of the thermal indices for representing the thermal sensation of the human body, and can be obtained by a relational expression including temperature and humidity.
  判定動作では、各運転の移行の判定を行うための複数の閾値が用いられる。これらの閾値は、室内の空気状態の目標値(即ち、目標温度(Ts)及び目標湿度(Rs))に基づいて決定される。 In the determination operation, a plurality of threshold values for determining the transition of each operation are used. These threshold values are determined based on target values of indoor air conditions (that is, target temperature (Ts) and target humidity (Rs)).
  具体的には、図6の空気線図を用いて概念的に説明すると、運転判定部(91)は、目標温度(Ts)に基づいて、第1温度閾値(Ts1)、第2温度閾値(Ts2)、第3温度閾値(Ts3)、第4温度閾値(Ts4)、及びサーモオフ判定温度(Toff)を算出する。第1温度閾値(Ts1)は、目標温度(Ts)に所定温度Δt1(例えば0.5℃)を加えた値である。第2温度閾値(Ts2)は、目標温度(Ts)に所定温度Δt2(例えば1.5℃)を加えた値である。第3温度閾値(Ts3)は、目標温度(Ts)に所定温度Δt3(例えば2.0℃)を加えた値である。第4温度閾値(Ts4)は、目標温度(Ts)から所定温度Δt4(例えば0.5℃)を引いた値である。サーモオフ判定温度(Toff)は、目標温度に所定温度(例えば2℃)を引いた値である。本実施形態では、Δt1とΔt4とが等しい。 Specifically, when conceptually described with reference to the air diagram of FIG. 6, the operation determination unit (91) is based on the target temperature (Ts), the first temperature threshold (Ts1), the second temperature threshold ( Ts2), a third temperature threshold value (Ts3), a fourth temperature threshold value (Ts4), and a thermo-off determination temperature (Toff) are calculated. The first temperature threshold value (Ts1) is a value obtained by adding a predetermined temperature Δt1 (for example, 0.5 ° C.) to the target temperature (Ts). The second temperature threshold (Ts2) is a value obtained by adding a predetermined temperature Δt2 (for example, 1.5 ° C.) to the target temperature (Ts). The third temperature threshold value (Ts3) is a value obtained by adding a predetermined temperature Δt3 (for example, 2.0 ° C.) to the target temperature (Ts). The fourth temperature threshold value (Ts4) is a value obtained by subtracting a predetermined temperature Δt4 (for example, 0.5 ° C.) from the target temperature (Ts). The thermo-off determination temperature (Toff) is a value obtained by subtracting a predetermined temperature (for example, 2 ° C.) from the target temperature. In the present embodiment, Δt1 and Δt4 are equal.
  運転判定部(91)は、目標湿度(Rs)に基づいて、第1湿度閾値(Rs1)、第2湿度閾値(Rs2)、第3湿度閾値(Rs3)、及び第4湿度閾値(Rs4)を算出する。ここで、第1湿度閾値(Rs1)は、目標湿度(Rs)に所定湿度Δr1(例えば1.0g/kg(dry-air))を加えた値である。第2湿度閾値(Rs2)は、目標湿度(Rs)に所定湿度Δr2(例えば2.0g/kg(dry-air))を加えた値である。第3湿度閾値(Rs3)は、目標湿度(Rs)から所定湿度Δr3(例えば1.0g/kg(dry-air))を引いた値である。第4湿度閾値(Rs4)は、目標湿度(Rs)から所定湿度Δr4(例えば2.0g/kg(dry-air))を引いた値である。本実施形態では、Δr1とΔr3とが等しくΔr2とΔr4とが等しい。 The operation determination unit (91) determines the first humidity threshold (Rs1), the second humidity threshold (Rs2), the third humidity threshold (Rs3), and the fourth humidity threshold (Rs4) based on the target humidity (Rs). calculate. Here, the first humidity threshold (Rs1) is a value obtained by adding a predetermined humidity Δr1 (for example, 1.0 g / kg (dry-air)) to the target humidity (Rs). The second humidity threshold (Rs2) is a value obtained by adding a predetermined humidity Δr2 (for example, 2.0 g / kg (dry-air)) to the target humidity (Rs). The third humidity threshold (Rs3) is a value obtained by subtracting a predetermined humidity Δr3 (for example, 1.0 g / kg (dry-air)) from the target humidity (Rs). The fourth humidity threshold (Rs4) is a value obtained by subtracting a predetermined humidity Δr4 (for example, 2.0 g / kg (dry-air)) from the target humidity (Rs). In the present embodiment, Δr1 and Δr3 are equal and Δr2 and Δr4 are equal.
  運転判定部(91)は、目標温度(Ts)及び目標湿度(Rs)とから、室内空間(11)の目標とする不快指数(目標不快指数(DIs1))を算出する。図6の空気線図では、右上にいくほど(温度及び湿度が高くなるほど)不快指数が大きくなり、左下(温度及び湿度が低くなる)ほど不快指数は小さくなる。従って、空気線図において、目標不快指数(Ds1)は左上に延びる線となり、この目標不快指数(DIs1)が第1の不快指数閾値となる。更に、運転判定部(91)は、目標不快指数(DIs1)に所定値(例えば0.5)を加えた値を第2不快指数閾値(DIs2)とする。 The operation determination unit (91) calculates a target discomfort index (target discomfort index (DIs1)) for the indoor space (11) from the target temperature (Ts) and the target humidity (Rs). In the air diagram of FIG. 6, the discomfort index increases toward the upper right (the higher the temperature and humidity), and the discomfort index decreases at the lower left (the lower the temperature and humidity). Therefore, in the air diagram, the target discomfort index (Ds1) is a line extending to the upper left, and this target discomfort index (DIs1) is the first discomfort index threshold. Furthermore, the driving determination unit (91) sets a value obtained by adding a predetermined value (for example, 0.5) to the target discomfort index (DIs1) as the second discomfort index threshold (DIs2).
  運転判定部(91)は、以上のような各閾値と、現在の空気の状態点(C)(即ち、空気温度(T)及び空気湿度(R))とを比較し、いずれの運転に移行するかを判定する。 The operation determination unit (91) compares each threshold as described above with the current air state point (C) (ie, air temperature (T) and air humidity (R)), and shifts to any operation. Judge whether to do.
  具体的には、運転判定部(91)は、現在の空気の状態点(C)が、太線で囲んだE1の領域内にある場合、潜顕分離運転への移行を決定する。つまり、空気温度(T)が第2温度閾値(Ts2)より低く、且つ空気湿度(R)が第3湿度閾値(Rs3)以上であり、且つ空気湿度(R)が第1湿度閾値(Rs1)より低い場合には、潜顕分離運転への移行を決定する。また、運転判定部(91)は、現在の空気の不快指数(DI)が目標不快指数(DIs1)よりも低く、且つ空気湿度(R)が第3湿度閾値(Rs3)以上である場合にも、潜顕分離運転への移行を決定する。 Specifically, when the current air state point (C) is within the area E1 surrounded by a thick line, the operation determination unit (91) determines the shift to the latent-splitting separation operation. That is, the air temperature (T) is lower than the second temperature threshold value (Ts2), the air humidity (R) is not less than the third humidity threshold value (Rs3), and the air humidity (R) is the first humidity threshold value (Rs1). If it is lower, the shift to the latent-splitting separation operation is determined. The driving determination unit (91) may also be configured when the current air discomfort index (DI) is lower than the target discomfort index (DIs1) and the air humidity (R) is greater than or equal to the third humidity threshold (Rs3). Determine the transition to latent-splitting separation operation.
  運転判定部(91)は、現在の空気の状態点(C)が、太線で囲んだE2の領域内にある場合、顕熱運転への移行を決定する。つまり、空気温度(T)が第2温度閾値(Ts2)以上であり、且つ空気湿度(R)が第1湿度閾値(Rs1)より小さい場合には、顕熱運転への移行を決定する。また、運転判定部(91)は、空気温度(T)が第2温度閾値(Ts2)より低く、且つ空気湿度(R)が第3湿度閾値(Rs3)より低い場合にも、顕熱運転への移行を決定する。 The operation determination unit (91) determines the transition to the sensible heat operation when the current air state point (C) is within the region E2 surrounded by a thick line. That is, when the air temperature (T) is equal to or higher than the second temperature threshold (Ts2) and the air humidity (R) is smaller than the first humidity threshold (Rs1), the shift to the sensible heat operation is determined. The operation determination unit (91) also switches to sensible heat operation when the air temperature (T) is lower than the second temperature threshold (Ts2) and the air humidity (R) is lower than the third humidity threshold (Rs3). Determine the migration.
  運転判定部(91)は、現在の空気の状態点(C)が、太線で囲んだE3の領域内にある場合、潜熱運転への移行を決定する。つまり、空気温度(T)が第1温度閾値(Ts1)より低く、且つ空気湿度(R)が第1湿度閾値(Rs1)以上であり、且つ不快指数(DI)が目標不快指数(DIs1)以上である場合には、潜熱運転への移行を決定する。 The operation determination unit (91) determines the transition to the latent heat operation when the current air state point (C) is within the region E3 surrounded by a thick line. That is, the air temperature (T) is lower than the first temperature threshold (Ts1), the air humidity (R) is equal to or higher than the first humidity threshold (Rs1), and the discomfort index (DI) is equal to or higher than the target discomfort index (DIs1). If so, the transition to the latent heat operation is determined.
  運転判定部(91)は、現在の空気の状態点(C)が、E4の領域内にある場合、除湿運転への移行を決定する。つまり、空気温度(T)が第1温度閾値(Ts1)以上であり、空気湿度(R)が第1湿度閾値(Rs1)以上である場合、除湿運転への移行を決定する。 The operation determination unit (91) determines the transition to the dehumidifying operation when the current air state point (C) is in the region of E4. That is, when the air temperature (T) is equal to or higher than the first temperature threshold (Ts1) and the air humidity (R) is equal to or higher than the first humidity threshold (Rs1), the shift to the dehumidifying operation is determined.
  なお、図5に示すように、本実施形態では、ステップSt56で除湿運転が開始された後、所定時間(例えば120秒)が経過すると、ステップSt57へ移行し、除湿運転から非分離運転へ切り換えられる。 As shown in FIG. 5, in the present embodiment, after a dehumidifying operation is started in step St56, when a predetermined time (for example, 120 seconds) elapses, the process proceeds to step St57, where the dehumidifying operation is switched to the non-separating operation. It is done.
 〈2回目以降の判定動作の概要〉
  温湿度制御モードに移行した後の2回目以降の判定動作(ステップSt58)では、運転判定部(91)が、除湿運転を除く他の運転( 2)非分離運転、3)顕熱運転、4)顕熱運転、5)潜熱運転)のいずれを実行するかの判定を行う。つまり、温湿度制御モードでは、該温湿度制御モードの開始直後の初回の判定動作において、現在の空気がE4の領域内にある場合のみ、除湿運転が実行される。
<Outline of judgment operation after the second>
In the second and subsequent determination operations after the transition to the temperature / humidity control mode (step St58), the operation determination unit (91) performs other operations except the dehumidification operation (2) non-separation operation, 3) sensible heat operation, 4 It is determined whether to perform (1) sensible heat operation or (5) latent heat operation). That is, in the temperature / humidity control mode, the dehumidifying operation is executed only in the first determination operation immediately after the start of the temperature / humidity control mode, when the current air is within the E4 region.
  2回目以降の判定動作は、各運転中において、所定時間(例えば20秒毎)に行われる。2回目以降の判定動作の基本的な判断基準は、上述した初回の判定動作と同じである。ただし、2回目以降の判定動作では、現在の運転の種類に応じて、次の運転を決定するための閾値が初回の判定動作とは異なる。 The determination operation after the second time is performed at a predetermined time (for example, every 20 seconds) during each operation. The basic criteria for the second and subsequent determination operations are the same as the first determination operation described above. However, in the second and subsequent determination operations, the threshold value for determining the next operation is different from the first determination operation in accordance with the type of the current operation.
 〈除湿運転/非分離運転中の判定動作〉
  除湿運転及び非分離運転中の判定動作の閾値は、図7のようになる。詳細の説明は省略するが、これらの運転では、潜顕分離運転に対応する領域E1の湿度の範囲が、他の判定動作よりも下側(低湿側)に拡大されている。また、これらの運転では、潜顕分離運転に対応する領域E1において、第1湿度閾値(Rs1)以上の範囲での不快指数の閾値が存在しない。
<Determining operation during dehumidifying operation / non-separating operation>
The threshold value of the determination operation during the dehumidifying operation and the non-separating operation is as shown in FIG. Although a detailed description is omitted, in these operations, the humidity range of the region E1 corresponding to the latent-visible separation operation is expanded to the lower side (low humidity side) than other determination operations. In these operations, the discomfort index threshold in the range equal to or higher than the first humidity threshold (Rs1) does not exist in the region E1 corresponding to the latent-visible separation operation.
 〈潜顕分離運転中の判定動作〉
  潜顕分離運転中の判定動作の閾値は、図8のようになる。詳細の説明は省略するが、潜顕分離運転では、顕熱運転に対応する領域E2、及び潜熱運転に対応する領域E3が、初回の判定動作よりも小さくなっている。また、潜顕分離運転において、現在の空気の状態点(C)が領域E5内にある場合、非分離運転への移行が決定される。潜顕分離運転における領域E5の範囲は、初回の判定動作の領域E4(除湿運転への移行範囲)よりも小さい。このように、潜顕分離運転中の判定動作では、継続して潜顕分離運転を行うための領域E1が、初回の判定動作の領域E1よりも大きくなっている。従って、ある運転から潜顕分離運転に移行した後、空気温度(T)や空気湿度(R)が僅かに高くなることで、他の運転が再び戻ること(いわゆるハンチング)を回避できる。
<Determination operation during latent-splitting separation operation>
The threshold value of the determination operation during the latent-visible separation operation is as shown in FIG. Although detailed description is omitted, in the latent sensible separation operation, the region E2 corresponding to the sensible heat operation and the region E3 corresponding to the latent heat operation are smaller than the first determination operation. Further, in the latent-splitting separation operation, when the current air state point (C) is within the region E5, the transition to the non-separation operation is determined. The range of the region E5 in the latent-visible separation operation is smaller than the region E4 (the transition range to the dehumidifying operation) of the first determination operation. As described above, in the determination operation during the latent-splitting separation operation, the region E1 for continuously performing the latent-scientific separation operation is larger than the region E1 of the initial determination operation. Therefore, after a transition from a certain operation to a latent-visible separation operation, it is possible to avoid returning to another operation (so-called hunting) by slightly increasing the air temperature (T) or the air humidity (R).
  〈顕熱運転の判定動作〉
  顕熱運転中の判定動作の閾値は、図9のようになる。詳細の説明は省略するが、顕熱運転では、他の判定動作にはない領域E6(ハッチングを付した領域)が存在する。領域E6は、領域E5と同様、非分離運転への移行を決定するための領域である。ただし、顕熱運転中の判定動作において、空気の状態点(C)が領域E5にある場合、速やかに非分離運転へ移行するのに対し、空気の状態点(C)が領域E6にある場合、この状態が所定時間(例えば180秒)継続することで、非分離運転に移行する。このように、顕熱運転から非分離運転への境界付近の領域において、時間の制約を加えることで、顕熱運転と非分離運転との間のハンチングを回避できる。
<Judgment operation of sensible heat operation>
The threshold value of the determination operation during the sensible heat operation is as shown in FIG. Although a detailed description is omitted, in the sensible heat operation, there is a region E6 (a hatched region) that is not included in other determination operations. The region E6 is a region for determining the shift to the non-separation operation, similarly to the region E5. However, in the determination operation during the sensible heat operation, when the air state point (C) is in the region E5, the state immediately shifts to the non-separation operation, whereas the air state point (C) is in the region E6. When this state continues for a predetermined time (for example, 180 seconds), the operation shifts to the non-separation operation. As described above, hunting between the sensible heat operation and the non-separation operation can be avoided by adding the time restriction in the region near the boundary from the sensible heat operation to the non-separation operation.
  〈潜熱運転の判定動作〉
  潜熱運転中の判定動作の閾値は、図10のようになる。詳細の説明は省略するが、潜熱運転では、潜顕分離運転に対応する領域E1の湿度の範囲が、初回の判定動作よりも下側(低湿側)に拡大されている。
<Evaluation operation of latent heat operation>
The threshold value of the determination operation during the latent heat operation is as shown in FIG. Although detailed description is omitted, in the latent heat operation, the humidity range of the region E1 corresponding to the latent-scientific separation operation is expanded to the lower side (low humidity side) than the first determination operation.
  〈各運転の概要〉
  次いで、温湿度制御モードで実行される各運転について説明する。温湿度制御モードの運転は、複数の空気調和機(20,40)の全てが潜熱機となる第1運転と、複数の空気調和機のうちの一部(本例では第1空気調和機(20))が潜熱機となり、他の空気調和機(本例では第2空気調和機(40))が顕熱機となる第2運転と、複数の空気調和機(20,40)(本例では第1空気調和機(20)及び第2空気調和機(40))の全てが顕熱機となる第3運転とに大別される。除湿運転、非分離運転、及び潜熱運転は第1運転に含まれる。潜顕分離運転は、第2運転に該当し、顕熱運転は、第3運転に該当する。
<Overview of each operation>
Next, each operation executed in the temperature and humidity control mode will be described. The operation in the temperature and humidity control mode includes a first operation in which all of the plurality of air conditioners (20, 40) are latent heat machines, and a part of the plurality of air conditioners (in this example, the first air conditioner ( 20)) becomes a latent heat machine, and another air conditioner (second air conditioner (40) in this example) becomes a sensible heat machine, and a plurality of air conditioners (20,40) (in this example) The first air conditioner (20) and the second air conditioner (40) are roughly divided into a third operation in which all of them are sensible heat machines. The dehumidifying operation, non-separation operation, and latent heat operation are included in the first operation. The latent sensible separation operation corresponds to the second operation, and the sensible heat operation corresponds to the third operation.
  「潜熱機」は、室内ユニット(30,50)の室内熱交換器(32,52)が空気を露点温度以下まで冷却するように制御される空気調和機である。従って、潜熱機の室内ユニット(30,50)で空気が冷却されると、空気中の水分が結露し、結露水がドレンパン等に回収される。これにより、潜熱機の室内ユニット(30,50)では、空気の温度及び湿度の双方が低下する。 The “latent heat machine” is an air conditioner that is controlled so that the indoor heat exchanger (32, 52) of the indoor unit (30, 50) cools the air to the dew point temperature or less. Therefore, when the air is cooled by the indoor units (30, 50) of the latent heat machine, moisture in the air is condensed and the condensed water is collected in a drain pan or the like. Thereby, in the indoor unit (30, 50) of the latent heat machine, both the temperature and humidity of the air are reduced.
  「顕熱機」は、室内ユニット(30,50)の室内熱交換器(32,52)が空気を露点温度より高い温度で冷却するように制御される空気調和機である。従って、顕熱機の室内ユニット(30,50)で空気が冷却されると、空気中の水分は結露せず、空気の温度のみが低下する。 "Sensible heat machine" is an air conditioner that is controlled so that the indoor heat exchanger (32, 52) of the indoor unit (30, 50) cools the air at a temperature higher than the dew point temperature. Therefore, when air is cooled in the indoor units (30, 50) of the sensible heat machine, moisture in the air is not condensed, and only the temperature of the air is lowered.
  〈除湿運転〉
  除湿運転は、室内の湿度及び温度が高い条件下において、室内の絶対湿度を急激に低下させる運転である。除湿運転では、第1空気調和機(20)と第2空気調和機(40)との双方が潜熱機となる。
<Dehumidifying operation>
The dehumidifying operation is an operation that rapidly reduces the absolute humidity in the room under conditions where the humidity and temperature in the room are high. In the dehumidifying operation, both the first air conditioner (20) and the second air conditioner (40) are latent heat machines.
  除湿運転に移行すると、クラウドサーバ(90)は、各空気調和機(20,40)の室内ファン(33,53)の風量を制御するための信号を各ローカルコントローラ(61,71)に送信する。除湿運転では、室内ファン(33,53)の風量をLタップに制御する信号が送信される。これにより、除湿運転では、全ての室内ファン(33,53)の風量が小風量となり、各室内ユニット(30,50)の除湿性能が向上する。 When the dehumidifying operation is started, the cloud server (90) transmits a signal for controlling the air volume of the indoor fan (33, 53) of each air conditioner (20, 40) to each local controller (61, 71). . In the dehumidifying operation, a signal for controlling the air volume of the indoor fans (33, 53) to L taps is transmitted. Thereby, in the dehumidifying operation, the air volume of all the indoor fans (33, 53) becomes a small air volume, and the dehumidifying performance of each indoor unit (30, 50) is improved.
  クラウドサーバ(90)は、各空気調和機(20,40)の目標蒸発温度(TeS)を適宜求め、求めた目標蒸発温度(TeS)を各ローカルコントローラ(61,71)に送信する。ここで、除湿運転では、次のような処理(目標蒸発温度決定処理)により、現在の空気状態に基づいて目標蒸発温度(TeS)を算出する。具体的には、能力決定部(92)は、メモリに記憶された関数式を用いて目標蒸発温度(TeS)を算出する。ここで、この関数式は、図11の空気線図上で示す飽和曲線と、現在の空気温度(T)と、現在の空気湿度(R)とを含む関数である。具体的に、この関数式は、図11に示すように、空気線図上における飽和曲線と、現在の空気の状態点を通過する直線Mとの接点(P)に対応する温度(Tp)を求めるものである。ここで、現在の空気の状態点(C)は、現在の空気温度(T)と現在の空気湿度(R)に対応する。この関数式により、接点(P)に対応する温度(Tp)が算出され、この温度(Tp)を目標蒸発温度(TeS)とする。除湿運転では、このような目標蒸発温度決定処理が、原則として、所定時間(20秒)毎に実行される。 The cloud server (90) appropriately obtains the target evaporation temperature (TeS) of each air conditioner (20, 40) and transmits the obtained target evaporation temperature (TeS) to each local controller (61, 71). Here, in the dehumidifying operation, the target evaporation temperature (TeS) is calculated based on the current air state by the following process (target evaporation temperature determination process). Specifically, the capacity determining unit (92) calculates a target evaporation temperature (TeS) using a function formula stored in the memory. Here, this functional equation is a function including a saturation curve, a current air temperature (T), and a current air humidity (R) shown on the air diagram of FIG. Specifically, as shown in FIG. 11, this functional equation expresses the temperature (Tp) corresponding to the contact point (P) between the saturation curve on the air diagram and the straight line M passing through the current air state point. It is what you want. Here, the current air state point (C) corresponds to the current air temperature (T) and the current air humidity (R). The temperature (Tp) corresponding to the contact (P) is calculated from this function equation, and this temperature (Tp) is set as the target evaporation temperature (TeS). In the dehumidifying operation, the target evaporating temperature determination process is executed every predetermined time (20 seconds) in principle.
  このようにして得た目標蒸発温度(TeS)は、インターネット(86)を経由して、各ローカルコントローラ(61,71)に適宜送信される。この結果、各空気調和機(20,40)は、現在の蒸発温度(Te)が、所定時間毎に受信される目標蒸発温度(TeS)に近づくように圧縮機(23,43)の運転周波数を制御する。 The target evaporation temperature (TeS) obtained in this way is appropriately transmitted to each local controller (61, 71) via the Internet (86). As a result, each air conditioner (20, 40) has an operating frequency of the compressor (23, 43) so that the current evaporation temperature (Te) approaches the target evaporation temperature (TeS) received every predetermined time. To control.
  除湿運転では、このように目標蒸発温度(T)を求めることで、目標蒸発温度(TeS)が過剰に高くなる、あるいは過剰に低くなることを防止できる。目標蒸発温度(TeS)が高すぎると、空気を冷却可能な温度が高くなり、空気から凝縮可能な水分量も少なくなってしまう。このため、室内空気を速やかに除湿できず、室内の温湿度を速やかに目標点(S)に近づけることができない。この結果、室内空間(11)の快適性が損なわれてしまう。 In the dehumidifying operation, by obtaining the target evaporation temperature (T) in this way, the target evaporation temperature (TeS) can be prevented from becoming excessively high or excessively low. If the target evaporation temperature (TeS) is too high, the temperature at which air can be cooled becomes high, and the amount of water that can be condensed from air also decreases. For this reason, the room air cannot be quickly dehumidified, and the room temperature and humidity cannot be quickly brought close to the target point (S). As a result, the comfort of the indoor space (11) is impaired.
  一方、目標蒸発温度(TeS)が低すぎると、空気の顕熱比が大きい領域(図11のaの矢印の傾きが小さい領域)で空気を除湿しようとする。この領域では、処理される全熱量に対して処理される潜熱の割合が小さくなるため、除湿に不利な条件となる。このため、この領域で空気を冷却すると、除湿の効率が低下し、ひいては省エネ性が損なわれてしまう。 On the other hand, if the target evaporation temperature (TeS) is too low, the air will be dehumidified in a region where the sensible heat ratio of air is large (region where the slope of the arrow in FIG. 11a is small). In this region, the ratio of latent heat to be processed becomes small with respect to the total amount of heat to be processed, which is a disadvantageous condition for dehumidification. For this reason, when air is cooled in this region, the efficiency of dehumidification is lowered, and as a result, energy saving performance is impaired.
  これに対し、図11に示すように、接点(P)に対応する温度(Tp)を目標蒸発温度(TeS)とすることで、目標蒸発温度(TeS)が過剰に高くなる、あるいは過剰に低くなることがない。この結果、室内の快適性と、空調システム(10)の省エネ性を両立できる。 On the other hand, as shown in FIG. 11, by setting the temperature (Tp) corresponding to the contact (P) as the target evaporation temperature (TeS), the target evaporation temperature (TeS) becomes excessively high or excessively low. Never become. As a result, it is possible to achieve both indoor comfort and energy saving of the air conditioning system (10).
  なお、除湿運転で求められる目標蒸発温度(TeS)には、各潜熱機で空気を確実に露点温度以下で冷却できるよう、上限値が設定されている。従って、除湿運転では、各潜熱機の冷却される空気が、露点温度より高くなってしまうことはない。 Note that an upper limit is set for the target evaporation temperature (TeS) required in the dehumidifying operation so that each latent heat machine can reliably cool the air below the dew point temperature. Accordingly, in the dehumidifying operation, the air cooled by each latent heat machine does not become higher than the dew point temperature.
  除湿運転では、上述したように目標蒸発温度決定処理が、原則として所定時間(20秒)毎に実行される。ただし、圧縮機(23,43)の保護や蒸発温度(Te)のハンチングの防止を目的として、各目標蒸発温度決定処理の実行前に次の更新判定が行われる。 In the dehumidifying operation, as described above, the target evaporation temperature determination process is performed every predetermined time (20 seconds) in principle. However, for the purpose of protecting the compressors (23, 43) and preventing evaporation temperature (Te) hunting, the next update determination is performed before the execution of each target evaporation temperature determination process.
  更新判定では、目標蒸発温度処理を再び実行するか否かを判定する。更新判定において、条件1-A及び条件1-Bのいずれか一方又は両方が成立する場合、目標蒸発温度決定処理が行われ、目標蒸発温度(TeS)は更新される。 In the update determination, it is determined whether or not to execute the target evaporation temperature process again. In the update determination, when one or both of condition 1-A and condition 1-B are satisfied, target evaporation temperature determination processing is performed, and the target evaporation temperature (TeS) is updated.
  1-A:現在|Te-TeS|≦E1
  1-B:|(現在|Te-TeS|-前回|Te-TeS|)|≦E2
1-A: Present | Te-TeS | ≦ E1
1-B: | (present | Te-TeS | -previous | Te-TeS |) | ≦ E2
  ここで、現在|Te-TeS|は、現在の蒸発温度(Te)と現在の目標蒸発温度(TeS)との差分の絶対値である。前回|Te-TeS|は、今回の更新判定より1つ前の更新判定で算出された|Te-TeS|に相当する。E1及びE2は、予め設定された判定閾値である。 Here, current | Te-TeS | is the absolute value of the difference between the current evaporation temperature (Te) and the current target evaporation temperature (TeS). The previous | Te−TeS | corresponds to | Te−TeS | calculated in the update determination immediately before the current update determination. E1 and E2 are preset determination threshold values.
  条件1-Aが成立する場合、実際の蒸発温度(Te)が目標蒸発温度(TeS)に収束していると判断できる。従って、条件1-Aが成立する場合、再び目標蒸発温度決定処理を行い、目標蒸発温度(TeS)を再計算する。 If Condition 1-A is satisfied, it can be determined that the actual evaporation temperature (Te) has converged to the target evaporation temperature (TeS). Therefore, when the condition 1-A is satisfied, the target evaporation temperature determination process is performed again, and the target evaporation temperature (TeS) is recalculated.
  条件1-Bが成立する場合、蒸発温度(Te)と目標蒸発温度(TeS)の差分の減少変化量が小さくなっており、蒸発温度(Te)が目標蒸発温度(TeS)に収束する傾向にあると判断できる。従って、条件1-Bが成立する場合にも、再び目標蒸発温度決定処理を行い、目標蒸発温度(TeS)を再計算する。 When the condition 1-B is satisfied, the decreasing change amount of the difference between the evaporation temperature (Te) and the target evaporation temperature (TeS) is small, and the evaporation temperature (Te) tends to converge to the target evaporation temperature (TeS). It can be judged that there is. Accordingly, even when the condition 1-B is satisfied, the target evaporation temperature determination process is performed again, and the target evaporation temperature (TeS) is recalculated.
  条件1-A及び条件1-Bのいずれも成立しない場合、蒸発温度(Te)が目標蒸発温度(TeS)に収束しておらず、蒸発温度(Te)が大きく変化していると判断できる。従って、これらの条件が成立しない場合、目標蒸発温度決定処理を禁止し、目標蒸発温度(TeS)を再計算しない。これにより、蒸発温度(Te)が比較的大きく変化しているときに、目標蒸発温度(TeS)が再び変更されることを制限できる。従って、圧縮機(23,43)の運転周波数が大きく変化したり、蒸発温度(Te)がハンチングしたりすることを回避できる。 If neither Condition 1-A nor Condition 1-B is satisfied, it can be determined that the evaporation temperature (Te) has not converged to the target evaporation temperature (TeS) and the evaporation temperature (Te) has changed significantly. Therefore, when these conditions are not satisfied, the target evaporation temperature determination process is prohibited and the target evaporation temperature (TeS) is not recalculated. Thereby, it is possible to restrict the target evaporation temperature (TeS) from being changed again when the evaporation temperature (Te) changes relatively greatly. Therefore, it is possible to avoid the operating frequency of the compressor (23, 43) from changing greatly and the evaporation temperature (Te) from hunting.
 〈非分離運転〉
  非分離運転は、除湿運転と同様、室内の湿度及び温度が高い条件下において、室内の絶対湿度を低下させる運転である。非分離運転では、第1空気調和機(20)と第2空気調和機(40)との双方が潜熱機となる。ただし、上述したように、非分離運転は、初回の判定動作においては実行されない(図5を参照)。非分離運転では、第1空気調和機(20)と第2空気調和機(40)との双方が潜熱機となる。
<Non-separate operation>
The non-separation operation is an operation for reducing the indoor absolute humidity under conditions of high indoor humidity and temperature, as in the dehumidifying operation. In the non-separation operation, both the first air conditioner (20) and the second air conditioner (40) are latent heat machines. However, as described above, the non-separation operation is not executed in the first determination operation (see FIG. 5). In the non-separation operation, both the first air conditioner (20) and the second air conditioner (40) are latent heat machines.
  非分離運転に移行すると、クラウドサーバ(90)は、各空気調和機(20,40)の室内ファン(33,53)の風量を制御するための信号を各ローカルコントローラ(61,71)に送信する。非分離運転では、室内ファン(33,53)の風量をMタップに制御する信号が送信される。これにより、非分離運転では、全ての室内ファン(33,53)の風量が中風量となる。 When shifting to non-separated operation, the cloud server (90) sends a signal for controlling the air volume of the indoor fan (33,53) of each air conditioner (20,40) to each local controller (61,71) To do. In the non-separated operation, a signal for controlling the air volume of the indoor fans (33, 53) to M taps is transmitted. Thereby, in the non-separation operation, the air volume of all the indoor fans (33, 53) becomes the medium air volume.
  クラウドサーバ(90)は、各空気調和機(20,40)の目標蒸発温度(TeS)を適宜求め、求めた目標蒸発温度(TeS)を各ローカルコントローラ(61,71)に送信する。ここで、非分離運転の目標蒸発温度(TeS)は、温度制御モードの冷房運転と類似の方法で求められる。 The cloud server (90) appropriately obtains the target evaporation temperature (TeS) of each air conditioner (20, 40) and transmits the obtained target evaporation temperature (TeS) to each local controller (61, 71). Here, the target evaporation temperature (TeS) in the non-separation operation is obtained by a method similar to the cooling operation in the temperature control mode.
  つまり、非分離運転の蒸発温度決定処理では、現在の空気温度(T)と、通信端末(80)に設定した目標温度(Ts)との差ΔTrsに応じて、目標蒸発温度(TeS)を算出する。ΔTrsが大きくなると、各空気調和機(20,40)の能力を増大させるために目標蒸発温度(TeS)が低下する。逆に、ΔTrsが小さくなると、各空気調和機(20,40)の能力を低下させるために目標蒸発温度(TeS)が高くなる。 That is, in the evaporating temperature determination process in non-separation operation, the target evaporating temperature (TeS) is calculated according to the difference ΔTrs between the current air temperature (T) and the target temperature (Ts) set in the communication terminal (80). To do. As ΔTrs increases, the target evaporation temperature (TeS) decreases in order to increase the capacity of each air conditioner (20, 40). Conversely, when ΔTrs decreases, the target evaporation temperature (TeS) increases in order to reduce the capacity of each air conditioner (20, 40).
  なお、非分離運転で求められる目標蒸発温度(TeS)には、各潜熱機で空気を確実に露点温度以下で冷却できるよう、上限値が設定されている。従って、非分離運転では、各潜熱機で冷却される空気が、露点温度より高くなってしまうことはない。 It should be noted that an upper limit is set for the target evaporation temperature (TeS) required in non-separation operation so that each latent heat machine can reliably cool the air below the dew point temperature. Therefore, in the non-separation operation, the air cooled by each latent heat machine does not become higher than the dew point temperature.
  非分離運転においても、除湿運転と同様にして、目標蒸発温度(TeS)を更新するか否かの更新判定が行われる。これにより、圧縮機(23,43)を保護するとともに、蒸発温度(Te)のハンチングを回避できる。 In non-separation operation, an update determination is made as to whether or not to update the target evaporation temperature (TeS) in the same manner as in the dehumidification operation. Thereby, while protecting a compressor (23, 43), the hunting of evaporation temperature (Te) can be avoided.
 〈潜熱運転〉
  潜熱運転は、特に室内の湿度が高い条件下において、室内の絶対湿度を低下させる運転である。潜熱運転では、第1空気調和機(20)と第2空気調和機(40)との双方が潜熱機となる。潜熱運転は、基本的には除湿運転と同じ制御が行われる。
<Latent heat operation>
The latent heat operation is an operation that lowers the absolute humidity in the room, particularly under conditions where the indoor humidity is high. In the latent heat operation, both the first air conditioner (20) and the second air conditioner (40) are latent heat machines. In the latent heat operation, basically the same control as the dehumidifying operation is performed.
  潜熱運転では、室内ファン(33,53)の風量をMタップに制御する信号が送信される。これにより、潜熱運転では、全ての室内ファン(33,53)の風量が中風量となる。 In the latent heat operation, a signal for controlling the air volume of the indoor fans (33, 53) to M taps is transmitted. Thereby, in the latent heat operation, the air volume of all the indoor fans (33, 53) becomes the medium air volume.
  潜熱運転の蒸発温度決定処理では、除湿運転と同様、上記接点(P)に応じた温度(Tp)から目標蒸発温度(TeS)が決定される。ただし、潜熱運転では、除湿運転と異なり、目標蒸発温度(TeS)の更新判定が行われない。従って、潜熱運転では、所定時間(例えば20秒)毎に目標蒸発温度(TeS)が必ず再計算されることになる。 In the evaporation temperature determination process in the latent heat operation, the target evaporation temperature (TeS) is determined from the temperature (Tp) corresponding to the contact (P), as in the dehumidification operation. However, in the latent heat operation, unlike the dehumidification operation, the update determination of the target evaporation temperature (TeS) is not performed. Therefore, in the latent heat operation, the target evaporation temperature (TeS) is always recalculated every predetermined time (for example, 20 seconds).
  潜熱運転が実行されるのは、上記のように空気の状態点(C)が領域E3にある場合であり、この領域E3は、サーモオフ領域に近い位置にある。仮に、潜熱運転において、除湿運転と同様にして目標蒸発温度(TeS)の再計算が禁止されると、この間に空気が過剰に冷却されてしまい、空気温度(T)が目標蒸発温度(TeS)を大きく下回ってしまう可能性がある。この場合、空気温度(T)がサーモオフ領域に至ってしまう可能性もある。 The latent heat operation is performed when the air state point (C) is in the region E3 as described above, and this region E3 is located near the thermo-off region. If the recalculation of the target evaporation temperature (TeS) is prohibited in the latent heat operation as in the dehumidification operation, the air is excessively cooled during this time, and the air temperature (T) becomes the target evaporation temperature (TeS). May be significantly lower than In this case, the air temperature (T) may reach the thermo-off region.
  これに対し、本実施形態では、潜熱運転において目標蒸発温度(TeS)を必ず更新するため、空気温度(T)が過剰に冷却される前に目標蒸発温度(TeS)を調整できる。これにより、空気温度(T)がサーモオフ領域に至ってしまうことも回避できる。また、潜熱運転では、除湿運転と比べると、蒸発温度(Te)が目標蒸発温度(TeS)に収束しやすい傾向にあるため、更新判定による制限をかけずとも、圧縮機(23,43)の運転周波数や蒸発温度(Te)が大きく変動することはない。 On the other hand, in the present embodiment, the target evaporation temperature (TeS) is always updated in the latent heat operation, so that the target evaporation temperature (TeS) can be adjusted before the air temperature (T) is excessively cooled. Thereby, it can also be avoided that the air temperature (T) reaches the thermo-off region. Also, in the latent heat operation, the evaporation temperature (Te) tends to converge to the target evaporation temperature (TeS) compared to the dehumidification operation, so the compressor (23, 43) The operating frequency and evaporation temperature (Te) do not vary greatly.
 〈潜顕分離運転の概要〉
  潜顕分離運転(同時運転)は、室内の温度及び湿度が目標点(S)に近い範囲にあるときに、各空気調和機(20,40)で室内の潜熱と顕熱とを個別に処理する運転である。本実施形態の潜顕分離運転では、第1空気調和機(20)が潜熱機となり、第2空気調和機(40)が顕熱機となる。従って、潜顕分離運転では、第1空気調和機(20)の室内ユニット(30,50)によって空気が冷却及び除湿されると同時に、第2空気調和機(40)の室内ユニット(30,50)によって空気の冷却のみが行われる。このように、潜熱機と顕熱機とを同時に運転することで、室内の温度が過剰に低下することを回避しつつ、室内の温湿度を目標の範囲に近づけることができる。
<Overview of latent-splitting separation operation>
In the latent sensible separation operation (simultaneous operation), when the indoor temperature and humidity are in the range close to the target point (S), the latent heat and sensible heat in the room are individually processed by each air conditioner (20, 40). Driving. In the latent and sensible separation operation of this embodiment, the first air conditioner (20) serves as a latent heat machine, and the second air conditioner (40) serves as a sensible heat machine. Therefore, in the latent microscope separation operation, air is cooled and dehumidified by the indoor unit (30, 50) of the first air conditioner (20), and at the same time, the indoor unit (30, 50) of the second air conditioner (40). ) Only cools the air. Thus, by operating the latent heat machine and the sensible heat machine at the same time, the indoor temperature and humidity can be brought close to the target range while avoiding an excessive decrease in the indoor temperature.
  潜顕分離運転では、クラウドサーバ(90)から、潜熱機に対応するローカルコントローラ(本例では、第1ローカルコントローラ(61))と、顕熱機に対応するローカルコントローラ(本例では、第2ローカルコントローラ(71))とにそれぞれ異なる制御信号を送る必要がある。顕熱機と潜熱機とでは、それぞれ異なる制御が行われるからである。このため、クラウドサーバ(90)には、潜顕分離運転を行う際、どの空気調和機(20,40)が潜熱機となり、どの空気調和機(20,40)が顕熱機となるかを示す機器情報が登録される。本例では、潜顕分離運転において、第1空気調和機(20)が潜熱機となることを示す機器情報と、第2空気調和機(40)が顕熱機となることを示す機器情報とが、クラウドサーバ(90)に登録される。例えば、このような情報は、通信端末(80)や各ローカルコントローラ(61,71)から、インターネット(86)を経由して、クラウドサーバ(90)に送信される。 In the latent sensible separation operation, a local controller (first local controller (61) in this example) corresponding to the latent heat machine and a local controller (second local in this example) corresponding to the sensible heat machine are sent from the cloud server (90). It is necessary to send different control signals to the controller (71)). This is because different controls are performed on the sensible heat machine and the latent heat machine. For this reason, the cloud server (90) indicates which air conditioner (20, 40) becomes a latent heat machine and which air conditioner (20, 40) becomes a sensible heat machine when performing the latent sensible separation operation. Device information is registered. In this example, in the latent sensible separation operation, device information indicating that the first air conditioner (20) is a latent heat machine and device information indicating that the second air conditioner (40) is a sensible heat machine include: Registered in the cloud server (90). For example, such information is transmitted from the communication terminal (80) and each local controller (61, 71) to the cloud server (90) via the Internet (86).
 〈潜顕分離運転の潜熱機の制御〉
  潜顕分離運転において、クラウドサーバ(90)は、潜熱機である第1空気調和機(20)に対応する第1ローカルコントローラ(61)に、第1室内ファン(33)の風量を制御するための信号を送信する。潜顕分離運転では、第1空気調和機(20)の第1室内ファン(33)の風量が2段階(例えばLタップとMタップの2段階)の間で切り換えられる。なお、第1室内ファン(33)は、MタップとHタップの2段階の間で切り換えられてもよい。
<Control of latent heat machine for latent-splitting separation operation>
In the latent microscope separation operation, the cloud server (90) controls the air volume of the first indoor fan (33) to the first local controller (61) corresponding to the first air conditioner (20) that is a latent heat machine. Send the signal. In the latent microscope separation operation, the air volume of the first indoor fan (33) of the first air conditioner (20) is switched between two stages (for example, two stages of L tap and M tap). The first indoor fan (33) may be switched between two stages of M taps and H taps.
  また、クラウドサーバ(90)は、第1ローカルコントローラ(61)に第1空気調和機(20)の蒸発温度(Te)を制御するための目標蒸発温度(第1目標蒸発温度(TeS1)を送信する。 In addition, the cloud server (90) transmits a target evaporation temperature (first target evaporation temperature (TeS1)) for controlling the evaporation temperature (Te) of the first air conditioner (20) to the first local controller (61). To do.
  潜顕分離運転の潜熱機の蒸発温度決定処理は、除湿運転と類似の方法で求められる。具体的には、能力決定部(92)は、空気線図上における飽和曲線と、目標点(S)を通過する直線の接点に対応する温度を第1目標蒸発温度(TeS1)とする。つまり、除湿運転では、飽和曲線との接点を求める際、現在の空気の状態点(C)(即ち、空気温度(T)及び空気湿度(R))を用いるのに対し、潜顕分離運転では、目標点(S)(即ち、目標温度(Ts)及び目標湿度(Rs))を用いる点で両者は異なる。目標点(S)は、通信端末(80)の設定値で決まるため、基本的には状態点(C)のように変化しない。従って、目標点(S)に基づいて接点を求めることで、第1目標蒸発温度(TeS1)が大きく変動することがない。従って、このような第1目標蒸発温度(TeS1)の変動に起因して、現在の空気の状態点(C)が図8の領域E1から外れてしまうことを回避でき、潜顕分離運転から他の運転へ切り換わることを抑制できる。 The evaporating temperature determination process of the latent heat machine in the latent sensible separation operation is obtained by a method similar to the dehumidifying operation. Specifically, the capacity determining unit (92) sets the temperature corresponding to the saturation curve on the air diagram and the straight contact point passing through the target point (S) as the first target evaporation temperature (TeS1). In other words, in the dehumidifying operation, the current air state point (C) (that is, the air temperature (T) and the air humidity (R)) is used to obtain the contact point with the saturation curve, while in the latent microscope separation operation. They differ in that they use a target point (S) (ie, target temperature (Ts) and target humidity (Rs)). Since the target point (S) is determined by the set value of the communication terminal (80), it basically does not change like the state point (C). Therefore, by obtaining the contact point based on the target point (S), the first target evaporation temperature (TeS1) does not vary greatly. Accordingly, it is possible to avoid the current air state point (C) from deviating from the region E1 in FIG. 8 due to such fluctuations in the first target evaporation temperature (TeS1). It can suppress switching to the driving | operation of.
  潜顕分離運転の潜熱機の蒸発温度決定処理においては、除湿運転と同様にして、更新判定が行われる。これにより、圧縮機(23,43)を保護するとともに、蒸発温度(Te)のハンチングを防止できる。 In the evaporating temperature determination process of the latent heat machine in the latent sensible separation operation, update determination is performed in the same manner as in the dehumidifying operation. Thereby, while protecting a compressor (23,43), the hunting of evaporation temperature (Te) can be prevented.
  詳細の説明は省略するが、潜顕分離運転では、現在の空気の状態点(C)、目標点(S)、及び空気の状態点(C)(空気温度(T)及び空気湿度(R))の直前の変化に基づいて、潜熱機の第1目標蒸発温度(TeS1)が段階的に調節される。 Although detailed explanation is omitted, in the latent microscope separation operation, the current air state point (C), target point (S), and air state point (C) (air temperature (T) and air humidity (R) ), The first target evaporation temperature (TeS1) of the latent heat machine is adjusted stepwise.
 〈潜顕分離運転の顕熱機の制御〉
  潜顕分離運転において、クラウドサーバ(90)は、顕熱機である第2空気調和機(40)に対応する第2ローカルコントローラ(71)に、第2室内ファン(53)の風量を制御するための信号を送信する。潜顕分離運転では、第2空気調和機(40)の第2室内ファン(53)の風量が、例えばMタップ、あるいはHタップに制御される。
<Control of the sensible heat machine for latent sensible separation operation>
In the latent sensible separation operation, the cloud server (90) controls the air volume of the second indoor fan (53) to the second local controller (71) corresponding to the second air conditioner (40) which is a sensible heat machine. Send the signal. In the latent microscope separation operation, the air volume of the second indoor fan (53) of the second air conditioner (40) is controlled to, for example, an M tap or an H tap.
  クラウドサーバ(90)は、第2ローカルコントローラ(71)に第2空気調和機(40)の蒸発温度(Te)を制御するための目標蒸発温度(TeS)(第2目標蒸発温度(TeS2))を送信する。 The cloud server (90) uses the second local controller (71) to control the evaporation temperature (Te) of the second air conditioner (40) (target evaporation temperature (TeS) (second target evaporation temperature (TeS2)) Send.
  潜顕分離運転の顕熱機の蒸発温度決定処理では、顕熱機で処理される空気が露点温度より高くなるように、第2目標蒸発温度(TeS2)が決定される。具体的には、現在の目標点(S)に対応する空気の状態点(目標温度(Ts)及び目標湿度(Rs))から、この空気に対応する露点温度(Tdew-s)を算出する。つまり、この露点温度(Tdew-s)は、目標点(S)にある空気を冷却した場合に、この空気中から結露が生じる温度である。そして、蒸発温度決定処理では、この露点温度(Tdew-s)を第2目標蒸発温度(TeS2)とする。 In the evaporation temperature determination process of the sensible heat separator in the latent sensible separation operation, the second target evaporation temperature (TeS2) is determined so that the air processed by the sensible heat machine becomes higher than the dew point temperature. Specifically, the dew point temperature (Tdew-s) corresponding to this air is calculated from the air state point (target temperature (Ts) and target humidity (Rs)) corresponding to the current target point (S). That is, the dew point temperature (Tdew-s) is a temperature at which dew condensation occurs from the air when the air at the target point (S) is cooled. In the evaporation temperature determination process, the dew point temperature (Tdew-s) is set as the second target evaporation temperature (TeS2).
   潜顕分離運転は、現在の空気の状態点(C)が、目標点(S)を含む領域E1にあるときに実行される。従って、現在の空気の状態点(C)と目標点(S)とでは、空気の温湿度の大きな差が生じない。また、顕熱機の第2室内熱交換器(52)で冷却される空気が、蒸発温度以下の温度まで冷却されることは実質的にあり得ない。このため、目標点(S)に対応する露点温度(Tdew-s)を第2目標蒸発温度(TeS2)とすることで、顕熱機では、実質的に、空気が実際の露点温度より高い温度で冷却される。 潜 The latent-splitting separation operation is executed when the current air state point (C) is in the region E1 including the target point (S). Therefore, there is no significant difference in air temperature and humidity between the current air state point (C) and the target point (S). In addition, the air cooled by the second indoor heat exchanger (52) of the sensible heat machine cannot substantially be cooled to a temperature equal to or lower than the evaporation temperature. For this reason, by setting the dew point temperature (Tdew-s) corresponding to the target point (S) as the second target evaporation temperature (TeS2), the sensible heat machine has substantially higher air temperature than the actual dew point temperature. To be cooled.
  ここで、目標点(S)は、通信端末(80)の設定値で決まるため、基本的には状態点(C)のように変化しない。従って、目標点(S)に基づいて露点温度を求めることで、第2目標蒸発温度(TeS2)が大きく変動することがない。これにより、このような第2目標蒸発温度(TeS2)の変動に起因して、現在の空気の状態点(C)が図8の領域E1から外れてしまうことを回避でき、潜顕分離運転から他の運転へ切り換わることを抑制できる。 Here, since the target point (S) is determined by the setting value of the communication terminal (80), it basically does not change like the state point (C). Accordingly, by obtaining the dew point temperature based on the target point (S), the second target evaporation temperature (TeS2) does not vary greatly. As a result, it is possible to avoid that the current air state point (C) deviates from the region E1 in FIG. 8 due to such a variation in the second target evaporation temperature (TeS2). Switching to another operation can be suppressed.
 〈顕熱運転〉
  顕熱運転は、特に室内の温度が高い条件下において、室内の温度を低下させる運転である。顕熱運転では、第1空気調和機(20)と第2空気調和機(40)との双方が顕熱機となる。
<Sensible heat operation>
The sensible heat operation is an operation that lowers the indoor temperature, particularly under conditions where the indoor temperature is high. In the sensible heat operation, both the first air conditioner (20) and the second air conditioner (40) are sensible heat machines.
  顕熱運転に移行すると、クラウドサーバ(90)は、各空気調和機(20,40)の室内ファン(33,53)の風量を制御するための信号を各ローカルコントローラ(61,71)に送信する。顕熱運転では、室内ファン(33,53)の風量をMタップに制御する信号が送信される。これにより、顕熱運転では、全ての室内ファン(33,53)の風量が中風量となる。 When shifting to sensible heat operation, the cloud server (90) sends a signal for controlling the air volume of the indoor fans (33, 53) of each air conditioner (20, 40) to each local controller (61, 71). To do. In the sensible heat operation, a signal for controlling the air volume of the indoor fans (33, 53) to M taps is transmitted. Thereby, in the sensible heat operation, the air volume of all the indoor fans (33, 53) becomes the medium air volume.
  また、クラウドサーバ(90)は、各ローカルコントローラ(61,71)に各空気調和機(20,40)の蒸発温度(Te)を制御するための目標蒸発温度(TeS)を送信する。 Also, the cloud server (90) transmits a target evaporation temperature (TeS) for controlling the evaporation temperature (Te) of each air conditioner (20, 40) to each local controller (61, 71).
  潜顕運転の蒸発温度決定処理では、顕熱機で処理される空気が露点温度より高くなるように、目標蒸発温度(TeS)が決定される。具体的には、現在の空気の状態点(C)(空気温度(T)及び空気湿度(R))から、この空気に対応する露点温度(Tdew-c)を算出する。つまり、この露点温度(Tdew-c)は、現在の状態点にある空気を冷却した場合に、この空気中から結露が生じる温度である。そして、蒸発温度決定処理では、この露点温度(Tdew-c)を第2目標蒸発温度(TeS2)とする。 In the evaporating temperature determination process of the latent sensible operation, the target evaporating temperature (TeS) is determined so that the air processed by the sensible heat machine becomes higher than the dew point temperature. Specifically, the dew point temperature (Tdew-c) corresponding to this air is calculated from the current air state point (C) (air temperature (T) and air humidity (R)). That is, the dew point temperature (Tdew-c) is a temperature at which dew condensation occurs from the air when the air at the current state point is cooled. In the evaporation temperature determination process, the dew point temperature (Tdew-c) is set as the second target evaporation temperature (TeS2).
   顕熱運転は、現在の空気の状態点(C)が目標点(S)から離れた領域E2にあるときに実行される。従って、現在の空気の状態点(C)は、目標点(S)よりも比較的高い温度となる。このため、顕熱運転では、上記潜顕分離運転の潜熱機の制御と異なり、目標点(S)ではなく、現在の空気の状態点(C)に対応する露点温度(Tdew-c)を目標蒸発温度(TeS)としている。つまり、顕熱運転において、目標点(S)に対応する露点温度(Tdew-s)を目標蒸発温度とすると、目標蒸発温度(TeS)が過剰に低くなってしまい、空気が実際の露点温度以下まで冷却される可能性がある。これに対し、顕熱運転では、現在の空気の状態点(C)に対応する露点温度(Tdew-c)を目標蒸発温度(TeS)としているため、顕熱運転で空気が除湿されてしまうことを確実に防止できる。 Sensible heat operation is executed when the current air state point (C) is in the region E2 away from the target point (S). Therefore, the current air state point (C) is at a relatively higher temperature than the target point (S). For this reason, in the sensible heat operation, unlike the latent heat control in the latent sensible separation operation, the target dew point temperature (Tdew-c) corresponding to the current air state point (C) is used instead of the target point (S). Evaporation temperature (TeS). In other words, in sensible heat operation, if the dew point temperature (Tdew-s) corresponding to the target point (S) is the target evaporation temperature, the target evaporation temperature (TeS) becomes excessively low, and the air is below the actual dew point temperature. May be cooled down to In contrast, in sensible heat operation, the dew point temperature (Tdew-c) corresponding to the current air state point (C) is set as the target evaporation temperature (TeS), so that air is dehumidified in sensible heat operation. Can be reliably prevented.
 〈サーモオフ動作〉
  上述した各運転では、原則として、各空気調和機(20,40)の各吸込温度センサ(34,54)の検出温度が、サーモオフ判定温度(Toff)以下になると、対応する室内ユニット(30,50)がサーモオフする。
<Thermo-off operation>
In each operation described above, in principle, when the detected temperature of each suction temperature sensor (34, 54) of each air conditioner (20, 40) falls below the thermo-off determination temperature (Toff), the corresponding indoor unit (30, 50) is thermo-off.
  ただし、潜顕分離運転では、少なくとも、動作中の複数の室内ユニット(30,50)の全ての吸込温度センサ(34,54)の検出温度がサーモオフ判定温度(Toff)以下になるまで、全ての室内ユニット(30,50)のサーモオフが禁止される。従って、潜顕分離運転では、一部の室内ユニット(30,50)の吸込温度センサ(34,54)の検出温度だけがサーモオフ判定温度(Toff)以下になっても、該室内ユニット(30,50)はサーモオフしない。 However, in the latent microscope separation operation, at least until the detected temperatures of all the suction temperature sensors (34, 54) of the plurality of indoor units (30, 50) in operation are below the thermo-off determination temperature (Toff) Thermo-off of indoor units (30, 50) is prohibited. Therefore, in the latent microscope separation operation, even if only the detection temperature of the suction temperature sensor (34, 54) of some indoor units (30, 50) is equal to or lower than the thermo-off determination temperature (Toff), the indoor units (30, 50) 50) do not thermo-off.
  潜顕分離運転では、顕熱機と潜熱機とで、吹出空気の温度が異なる。このため、室内空間(11)では、温度ムラが生じやすく、このことに起因して、一部の室内ユニット(30,50)の吸込温度センサ(34,54)の検出温度が極端に低くなり、潜顕分離運転を継続できなくなる可能性がある。これに対し、上記のサーモオフ判定を行うことで、室内空間(11)の全体の温度がサーモオフ判定温度以下になるまでの間、潜顕分離運転を継続することができる。 In the latent sensible separation operation, the temperature of the blown air differs between the sensible heat machine and the latent heat machine. For this reason, in the indoor space (11), temperature unevenness is likely to occur, and due to this, the detection temperature of the suction temperature sensor (34, 54) of some indoor units (30, 50) becomes extremely low. There is a possibility that the latent-splitting operation cannot be continued. On the other hand, by performing the above-described thermo-off determination, the latent microscope separation operation can be continued until the entire temperature of the indoor space (11) becomes equal to or lower than the thermo-off determination temperature.
 -実施形態の効果-
  上記実施形態では、室内の湿度が所定値より高いことを示す条件(室内湿度(R)が例えば第1湿度閾値(Rs1)以上である条件、あるいは第2湿度閾値(Rs2)以上である条件)が成立する場合、全ての空気調和機(20,40)を潜熱機とする第1運転(除湿運転、非分離運転、潜熱運転)を実行するようにしている。このため、室内の湿度負荷が高い条件下において、この湿度負荷を速やかに処理でき、室内の快適性を確保できる。
-Effects of the embodiment-
In the above embodiment, a condition indicating that the indoor humidity is higher than a predetermined value (a condition where the indoor humidity (R) is, for example, the first humidity threshold (Rs1) or higher, or the second humidity threshold (Rs2) or higher). When is established, the first operation (dehumidification operation, non-separation operation, latent heat operation) is performed with all air conditioners (20, 40) as latent heat machines. For this reason, this humidity load can be quickly processed under conditions where the indoor humidity load is high, and indoor comfort can be ensured.
  また、室内の温湿度が目標の範囲にあることを示す条件(空気の状態点(C)が領域E1内にある条件)が成立する場合、第1空気調和機(20)を潜熱機とし、第2空気調和機(40)を顕熱機とする第2運転(潜顕分離運転)を実行するようにしている。このため、室内の温湿度が最適な範囲にある場合に、潜熱と顕熱とを分離して処理できる。これにより、室内空気を過剰に冷却することで省エネ性が損なわれたり、ユーザがコールドドラフトを覚えたりすることも回避できる。 Further, when a condition indicating that the indoor temperature and humidity are within the target range (condition that the air state point (C) is within the region E1) is satisfied, the first air conditioner (20) is set as a latent heat machine, The second operation (latent sensible separation operation) using the second air conditioner (40) as a sensible heat machine is performed. For this reason, when indoor temperature and humidity are in the optimal range, latent heat and sensible heat can be separated and processed. Thereby, it is also possible to prevent the energy saving performance from being impaired by excessively cooling the indoor air and the user from learning a cold draft.
  また、室内の湿度が所定値より低く且つ室内の温度が所定値より高いことを示す条件(例えば室内湿度(R)が第1湿度閾値(Rs1)より低く、且つ室内温度(T)が第2温度閾値(Ts2)以上である条件)が成立する場合、第1空気調和機(20)及び第2空気調和機(40)を顕熱機とする第3運転(顕熱運転)を実行するようにしている。このため、室内の温度のみが高いときに、湿度を低下させずに室内の顕熱のみを速やかに処理することができる。 Further, a condition indicating that the indoor humidity is lower than the predetermined value and the indoor temperature is higher than the predetermined value (for example, the indoor humidity (R) is lower than the first humidity threshold (Rs1) and the indoor temperature (T) is the second. When the condition that the temperature threshold (Ts2) or more is satisfied, the third operation (sensible heat operation) is performed with the first air conditioner (20) and the second air conditioner (40) as the sensible heat machine. ing. For this reason, when only the indoor temperature is high, only the sensible heat in the room can be quickly processed without reducing the humidity.
  温湿度制御モードでは、このような各運転を、室内の空気の温湿度に応じて切り換えることで、状態点(C)を第1領域E1に収束させることができ、潜顕分離運転をできる限り長い間実行できる。これにより、室内の快適性を確保しつつ、省エネ性に優れた運転を行うことができる。 In the temperature / humidity control mode, by switching these operations according to the temperature / humidity of the indoor air, the state point (C) can be converged to the first region E1, and the latent microscope separation operation can be performed as much as possible. Can run for a long time. Thereby, the driving | operation excellent in energy-saving property can be performed, ensuring indoor comfort.
 〈風量制御について〉
  上述した実施形態においては、潜熱機及び顕熱機の吹出空気の風量を次のように制御するのが好ましい。
<Air flow control>
In the embodiment described above, it is preferable to control the air volume of the blown air from the latent heat machine and the sensible heat machine as follows.
  上述したように、潜熱機となる空気調和機(20,40)は、空気を露点温度以下まで冷却するように制御される。顕熱機となる空気調和機(20,40)は、空気を露点温度より高い温度で冷却するように制御される。このため、潜熱機の吹出空気の温度は、顕熱機の吹出空気の温度よりも低くなる。潜熱機の吹出空気が、在室者に直接的に当たってしまうと、在室者がドラフト感を覚える。そこで、潜顕分離運転では、制御装置(60)により、潜熱機となる空気調和機(20,40)の吹出空気の風量を、顕熱機となる空気調和機(20,40)の吹出空気の風量よりも小さくする。具体的には、潜顕分離運転では、潜熱機となる空気調和機(20,40)の室内ファン(33,53)の風量を例えばMタップ(中風量)とし、顕熱機となる空気調和機(20,40)の室内ファン(33,53)の風量を例えばHタップ(大風量)とする。これにより、潜熱機の吹出空気の到達距離が短くなり、低温の風が在室者に直接あたることを抑制できる。逆に、顕熱機の吹出空気の到達距離は長くなるため、比較的高温の風を在室者に当てることで在室者の快適性を向上できる。 As described above, the air conditioner (20, 40) serving as the latent heat machine is controlled so as to cool the air to the dew point temperature or lower. The air conditioner (20, 40) serving as the sensible heat machine is controlled so as to cool the air at a temperature higher than the dew point temperature. For this reason, the temperature of the blown air from the latent heat machine is lower than the temperature of the blown air from the sensible heat machine. When the blowout air of the latent heat machine directly hits the occupant, the occupant feels a draft. Therefore, in the latent sensible separation operation, the air volume of the air conditioner (20, 40) serving as the latent heat machine is changed by the control device (60) to the amount of the blown air of the air conditioner (20, 40) serving as the sensible heat machine. Make it smaller than the air volume. Specifically, in the latent sensible / separation operation, the air volume of the indoor fan (33, 53) of the air conditioner (20, 40) serving as the latent heat machine is, for example, M taps (medium air volume), and the air conditioner serving as the sensible heat machine. The air volume of the (20, 40) indoor fan (33, 53) is, for example, H tap (large air volume). Thereby, the reach | attainment distance of the blowing air of a latent heat machine becomes short, and it can suppress that a low temperature wind hits a resident directly. On the contrary, since the reach distance of the blowing air of the sensible heat machine becomes long, the comfort of the occupant can be improved by applying a relatively high temperature wind to the occupant.
  潜顕分離運転では、潜熱機の吹出空気の温度と、顕熱機の吹出空気の温度との差に起因して、室内空間の温度分布にムラが生じてしまう可能性がある。これに対し、顕熱機となる空気調和機(20,40)の吹出空気の風量を、潜熱機となる空気調和機(20,40)の吹出空気の風量よりも大きくすることで、潜熱機の吹出空気と顕熱機の吹出空気との混合を促すことができる。これにより、潜顕分離運転における室内空間の温度分布のムラを抑制できる。 In the latent and sensible separation operation, the temperature distribution in the indoor space may become uneven due to the difference between the temperature of the latent air blown air and the temperature of the sensible heat blown air. On the other hand, the air volume of the air conditioner (20, 40) that is the sensible heat machine is larger than the air volume of the air conditioner (20, 40) that is the latent heat machine. Mixing of the blown air and the blown air of the sensible heat machine can be promoted. Thereby, the nonuniformity of the temperature distribution of the indoor space in the latent microscope separation operation can be suppressed.
 〈風向制御について〉
  上述した実施形態においては、潜熱機の風向を次のように制御するのが好ましい。
<About wind direction control>
In the embodiment described above, it is preferable to control the wind direction of the latent heat machine as follows.
  上述したように、潜熱機の吹出空気が在室者に直接的に当たってしまうと、在室者がドラフト感を覚える。そこで、制御装置(60)により、潜熱機となる空気調和機(20,40)の吹出空気の風向が略水平方向となるように、空気調和機(20,40)の風向調節羽根(フラップ)を制御する。これにより、潜熱機の吹出空気が在室者に直接あたってしまうことを回避できる。空気調和機(20,40)の少なくとも1台が潜熱機となる運転であれば、このような風向制御を採用できる。具体的には、上述した除湿運転、非分離運転、潜熱運転、及び潜顕分離運転において、潜熱機を水平吹きとすることができる。 As described above, the occupant feels a draft when the air blown from the latent heat machine directly hits the occupant. Therefore, the air conditioner blades (flaps) of the air conditioner (20, 40) are adjusted by the control device (60) so that the air direction of the air blown from the air conditioner (20, 40) as the latent heat machine becomes substantially horizontal. To control. Thereby, it can avoid that the blowing air of a latent heat machine hits a resident directly. Such wind direction control can be adopted as long as at least one of the air conditioners (20, 40) is a latent heat machine. Specifically, the latent heat machine can be horizontally blown in the dehumidifying operation, non-separation operation, latent heat operation, and latent sensible separation operation described above.
  室内のレイアウトなどの影響により、潜熱機を水平吹きにすると不都合がある場合もある。このため、ユーザが潜熱機の吹出空気の風向を任意に変更できるように風向設定部を設けるとよい。例えば風向設定部は、上述したリモコン(36,56)や通信端末(80)に設けることができる。 ∙ Due to the influence of the indoor layout, it may be inconvenient if the latent heat machine is blown horizontally. For this reason, it is good to provide a wind direction setting part so that a user can change arbitrarily the wind direction of the blowing air of a latent heat machine. For example, the wind direction setting unit can be provided in the above-described remote controller (36, 56) or communication terminal (80).
 《その他の実施形態》
  上記実施形態の制御装置(60)は、クラウドサーバ(90)、通信端末(80)等を備え、インターネット(86)を経由して、温湿度制御モードを実現している。しかし、制御装置(60)は、インターネットを介さず、ローカル側のコントローラのみで空気調和機(20,40)を制御するものであってもよい。
<< Other Embodiments >>
The control device (60) of the above embodiment includes a cloud server (90), a communication terminal (80), and the like, and realizes a temperature / humidity control mode via the Internet (86). However, the control device (60) may control the air conditioner (20, 40) only by a local controller without using the Internet.
  また、上記実施形態の空調システム(10)は、同一の室内空間(11)を対象とする2台の空気調和機(20,40)で構成されているが、空気調和機(20,40)は3台以上であってもよい。この場合にも、潜顕分離運転において、どの空気調和機が潜熱機となり、どの空気調和機が顕熱機となるかを予め登録する。そして、潜顕分離運転では、この登録された情報に基づいて、潜熱機と顕熱機の割合が決定される。 Moreover, although the air conditioning system (10) of the said embodiment is comprised by the two air conditioners (20,40) which target the same indoor space (11), an air conditioner (20,40) May be three or more. Also in this case, in the latent and sensible separation operation, which air conditioner becomes the latent heat machine and which air conditioner becomes the sensible heat machine is registered in advance. In the latent and sensible separation operation, the ratio between the latent heat machine and the sensible heat machine is determined based on the registered information.
  上記実施形態の空調システム(10)において、空気調和機は、3台以上の室内ユニットを有し、室内ユニット内の冷媒回路に室内膨張弁が設けられる、いわゆるビル用マルチ型であってもよい。 In the air conditioning system (10) of the above-described embodiment, the air conditioner may be a so-called multi-type for buildings in which three or more indoor units are provided and an indoor expansion valve is provided in a refrigerant circuit in the indoor unit. .
  以上説明したように、本発明は、空調システムについて有用である。 As described above, the present invention is useful for an air conditioning system.
10   空調システム
20   第1空気調和機
21   第1室外ユニット
30   第1室内ユニット
40   第2空気調和機
41   第2室外ユニット
50   第2室内ユニット
60   制御装置
DESCRIPTION OF SYMBOLS 10 Air conditioning system 20 1st air conditioner 21 1st outdoor unit 30 1st indoor unit 40 2nd air conditioner 41 2nd outdoor unit 50 2nd indoor unit 60 Control apparatus

Claims (7)

  1.  室内ユニット(30,50)及び室外ユニット(21,41)をそれぞれ有し、各々が個別に冷凍サイクルを行うとともに互いに同一の室内を対象とする複数の空気調和機(20,40)と、
     前記複数の空気調和機(20,40)を制御する制御装置(60)とを備え、
     前記制御装置(60)は、
      全ての空気調和機(20,40)の室内ユニット(30,50)が空気を露点温度以下まで冷却するように制御される第1運転と、
      少なくとも1つの空気調和機(20)の室内ユニット(30)が空気を露点温度以下まで冷却するように制御されると同時に、他の空気調和機(40)の室内ユニット(50)が空気を露点温度より高い温度で冷却するように制御される第2運転と
     を実行可能に構成されることを特徴とする空調システム。
    A plurality of air conditioners (20, 40) each having an indoor unit (30, 50) and an outdoor unit (21, 41), each performing an individual refrigeration cycle and targeting the same room;
    A control device (60) for controlling the plurality of air conditioners (20, 40),
    The control device (60)
    A first operation in which the indoor units (30, 50) of all the air conditioners (20, 40) are controlled to cool the air below the dew point;
    The indoor unit (30) of at least one air conditioner (20) is controlled to cool the air to below the dew point temperature, while the indoor unit (50) of the other air conditioner (40) An air conditioning system configured to be capable of performing a second operation controlled to cool at a temperature higher than the temperature.
  2.  請求項1において、
     前記制御装置(60)は、少なくとも室内の湿度が所定値より高いことを示す条件が成立すると前記第1運転を実行させることを特徴とする空調システム。
    In claim 1,
    The control device (60) performs the first operation when a condition indicating that at least indoor humidity is higher than a predetermined value is satisfied.
  3.  請求項1又は2において、
     前記制御装置(60)は、室内の温度及び湿度が目標範囲であることを示す条件が成立すると前記第2運転を実行させることを特徴とする空調システム。
    In claim 1 or 2,
    The control device (60) is configured to execute the second operation when a condition indicating that the indoor temperature and humidity are within a target range is satisfied.
  4.  請求項1乃至3のいずれか1つにおいて、
     前記制御装置(60)は、通常の冷房運転を含む温度制御モードと、前記第1運転及び第2運転を含む温湿度制御モードとを切り換えるように構成されることを特徴とする空調システム。
    In any one of Claims 1 thru | or 3,
    The air conditioning system, wherein the control device (60) is configured to switch between a temperature control mode including a normal cooling operation and a temperature / humidity control mode including the first operation and the second operation.
  5.  請求項4において、
     前記制御装置(60)は、前記温湿度制御モードの開始時に、第1運転、第2運転を含む次の運転の実行の開始の判定を行うことを特徴とする空調システム。
    In claim 4,
    The said control apparatus (60) determines the start of execution of the next driving | operation including a 1st driving | operation and a 2nd driving | operation at the time of the start of the said temperature / humidity control mode.
  6.  請求項1乃至5のいずれか1つにおいて、
     前記制御装置(60)は、全ての空気調和機(20,40)の室内ユニット(30,50)が空気を露点温度より高い温度で冷却するように制御される第3運転を実行可能に構成されることを特徴とする空調システム。
    In any one of Claims 1 thru | or 5,
    The control device (60) is configured to execute a third operation in which the indoor units (30, 50) of all the air conditioners (20, 40) are controlled to cool the air at a temperature higher than the dew point temperature. Air conditioning system characterized by being.
  7.  請求項6において、
     前記制御装置(60)は、室内の湿度が所定値より低く且つ室内の温度が所定値より高いことを示す条件が成立すると前記第3運転を実行させることを特徴とする空調システム。
    In claim 6,
    The control device (60) performs the third operation when a condition indicating that the indoor humidity is lower than a predetermined value and the indoor temperature is higher than a predetermined value is satisfied.
PCT/JP2018/018961 2017-05-19 2018-05-16 Air conditioning system WO2018212242A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880032848.9A CN110637199A (en) 2017-05-19 2018-05-16 Air conditioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017099810 2017-05-19
JP2017-099810 2017-05-19

Publications (1)

Publication Number Publication Date
WO2018212242A1 true WO2018212242A1 (en) 2018-11-22

Family

ID=64273973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018961 WO2018212242A1 (en) 2017-05-19 2018-05-16 Air conditioning system

Country Status (3)

Country Link
JP (2) JP6439890B2 (en)
CN (1) CN110637199A (en)
WO (1) WO2018212242A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7376807B2 (en) * 2019-03-19 2023-11-09 ダイキン工業株式会社 Equipment evaluation system and equipment evaluation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005036989A (en) * 2003-07-15 2005-02-10 Mitsubishi Electric Corp Air conditioning system
JP2009180492A (en) * 2008-02-01 2009-08-13 Daikin Ind Ltd Dehumidifying unit and air conditioner
JP2011047647A (en) * 2010-11-04 2011-03-10 Mitsubishi Electric Corp Air conditioning device
JP2016138666A (en) * 2015-01-26 2016-08-04 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3622754B2 (en) * 2003-04-11 2005-02-23 ダイキン工業株式会社 Air conditioning system
JP4667496B2 (en) * 2008-11-17 2011-04-13 三菱電機株式会社 Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005036989A (en) * 2003-07-15 2005-02-10 Mitsubishi Electric Corp Air conditioning system
JP2009180492A (en) * 2008-02-01 2009-08-13 Daikin Ind Ltd Dehumidifying unit and air conditioner
JP2011047647A (en) * 2010-11-04 2011-03-10 Mitsubishi Electric Corp Air conditioning device
JP2016138666A (en) * 2015-01-26 2016-08-04 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner

Also Published As

Publication number Publication date
JP2019007730A (en) 2019-01-17
JP2018194291A (en) 2018-12-06
JP6439890B2 (en) 2018-12-19
CN110637199A (en) 2019-12-31

Similar Documents

Publication Publication Date Title
JP5802340B2 (en) Air conditioner
JP6946738B2 (en) Air conditioning system
US10161651B2 (en) Air conditioning apparatus
JP2014190600A (en) Air conditioner
JP5695861B2 (en) Outside air processing air conditioner and multi air conditioning system using the same
JPWO2014061129A1 (en) Air conditioner
WO2018212243A1 (en) Air conditioning system
JP2006145204A (en) Air conditioner
JP6946739B2 (en) Air conditioning system
JP6989755B2 (en) Air conditioning system
JP6439890B2 (en) Air conditioning system
JP7074992B2 (en) Air conditioning system
JP6881021B2 (en) Air conditioning system
JP2019215109A (en) Air conditioning system
JP7157308B2 (en) air conditioning system
JP7280471B2 (en) air conditioning system
JP7328487B2 (en) air conditioning system
JP7068580B2 (en) Air conditioning system
JP6906689B2 (en) Air conditioner
JP7355986B2 (en) air conditioning system
JP2017044382A (en) Operation control device for air conditioner and air conditioner with the operation control device
JP2019215106A (en) Air conditioning system
JP2019215108A (en) Air conditioning system
JP2009109097A (en) Air conditioner
JP2002022302A (en) Multi-chamber type air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18801293

Country of ref document: EP

Kind code of ref document: A1