JP2011047647A - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
JP2011047647A
JP2011047647A JP2010247035A JP2010247035A JP2011047647A JP 2011047647 A JP2011047647 A JP 2011047647A JP 2010247035 A JP2010247035 A JP 2010247035A JP 2010247035 A JP2010247035 A JP 2010247035A JP 2011047647 A JP2011047647 A JP 2011047647A
Authority
JP
Japan
Prior art keywords
temperature
air
capacity
indoor
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010247035A
Other languages
Japanese (ja)
Other versions
JP5111590B2 (en
Inventor
Masanobu Baba
正信 馬場
Masahiko Takagi
昌彦 高木
Norikazu Ishikawa
憲和 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010247035A priority Critical patent/JP5111590B2/en
Publication of JP2011047647A publication Critical patent/JP2011047647A/en
Application granted granted Critical
Publication of JP5111590B2 publication Critical patent/JP5111590B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve comfort by executing an operation not lowering a room temperature while keeping a dehumidifying capacity of a certain degree in the entire room, even in cooling of low load. <P>SOLUTION: This air conditioning device has a plurality of air conditioners respectively having an indoor unit and an outdoor unit to form a complete one refrigerating cycle by the indoor unit and the outdoor unit, and an operating section for control. The plurality of indoor units are disposed in one air conditioning area, so that the indoor units performing an operation improved in a dehumidifying capacity, and the indoor unit performing an operation to adjust the load so that the indoor temperature is not lowered to a set temperature, coexist by allowing the operating section for control to execute intercommunication among the air conditioners. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、空気調和機を複数台設置する場合に、通常単独で動作するもの同士で通信を行うことで、省エネ性能・快適性の向上を図ることのできる空気調和装置に関する。   The present invention relates to an air conditioner that can improve energy saving performance and comfort by performing communication between those that normally operate independently when a plurality of air conditioners are installed.

業務用の空気調和機は、大空間の事務所や店舗に設置されることが多く、複数台の空気調和機を1つのグループとして1つのリモコンで運転・制御することは従来から行われている(例えば、特許文献1参照)。   Commercial air conditioners are often installed in large spaces in offices and stores, and it has been practiced to operate and control multiple air conditioners as a group with a single remote controller. (For example, refer to Patent Document 1).

特開平07−167519号公報Japanese Patent Application Laid-Open No. 07-167519 特開平03−001031号公報Japanese Patent Laid-Open No. 03-001031 特開2005−049022号公報JP 2005-049022 A

但し、この場合も1つのリモコンで運転停止の指示をして、冷房もしくは暖房により設定温度になるように、複数台の空気調和機が個別に運転されるにすぎない。   However, in this case as well, a plurality of air conditioners are merely operated individually so that the operation is stopped with one remote controller and the set temperature is reached by cooling or heating.

そのため、1つの部屋でも出入口や窓の近くといった比較的負荷が大きい場所に設置される空気調和機は能力を必要とされ、高能力で運転すると効率(=能力/入力)は低下するため、個別に運転制御していると温度ムラによりグループ全体の効率は低下してしまう。   For this reason, an air conditioner installed in a place with a relatively large load, such as near a doorway or window, even in a single room requires capacity, and the efficiency (= capacity / input) decreases when operating at high capacity. If the operation is controlled to a short time, the efficiency of the entire group will decrease due to temperature unevenness.

また、暖房運転時、外気温度が低い時は室外機の熱交換器に霜が発生・成長するため、ある一定の時間毎に除霜運転を行う必要がある。除霜運転は一般的に温風を室内へ送風する室内機を停止し、室外機のみを冷房サイクルで動かすことで行われるが、このときに暖房運転を一時的に停止するため室温が低下してしまう。さらに1つのグループは同時に運転開始されるため、ほぼ同時に除霜運転を迎えてしまうことが多く、部屋を暖めている空気調和機が一度に除霜運転になると、室温の低下による快適性の低下は深刻なものがある。   Further, during heating operation, when the outside air temperature is low, frost is generated and grows in the heat exchanger of the outdoor unit. Therefore, it is necessary to perform the defrosting operation every certain time. The defrosting operation is generally performed by stopping the indoor unit that blows hot air into the room and moving only the outdoor unit in the cooling cycle, but at this time the heating operation is temporarily stopped, so the room temperature decreases. End up. In addition, since one group starts operation at the same time, it is often the case that the defrosting operation is almost completed at the same time. There is something serious.

さらに、冷房低負荷運転時(温度はあまり高くないが、湿度が高いため不快指数の高い梅雨時等)には、空気調和機で冷房運転をしても蒸発温度が高く顕熱比(顕熱能力/全能力)が高い(除湿能力が低い)運転をしてしまい、部屋の除湿がされないため快適性は改善しない。そのため、部屋の設定温度を下げると、消費電力が上がったり、寒く感じるようになり快適性が低下してしまう。   Furthermore, during cooling and low-load operation (temperature is not so high, but the rainy season is high due to high humidity, etc.), the evaporation temperature is high and the sensible heat ratio (sensible heat) Comfortability is not improved because the room is not dehumidified because it is operated with high (capacity / total capacity) (low dehumidification capacity). Therefore, when the set temperature of the room is lowered, the power consumption increases or the user feels cold and the comfort is lowered.

この発明は上記のような課題を解決するためになされたもので、複数台の空気調和機が相互に通信を行うことで、温度ムラによる負荷のバラツキに影響されずに複数台の空気調和機が平準化した空調能力を発揮することで、消費電力を削減することを目的とする。   The present invention has been made to solve the above-described problems, and a plurality of air conditioners communicate with each other so that a plurality of air conditioners are not affected by a load variation due to temperature unevenness. Aims to reduce power consumption by demonstrating leveled air conditioning capability.

また、複数台の空気調和機が相互に通信を行うことで、暖房運転時に一度に複数台の空気調和機が除霜運転となることを防止し、室温の低下による快適性の悪化を避けることを目的とする。   In addition, multiple air conditioners communicate with each other to prevent multiple air conditioners from defrosting at a time during heating operation, and avoid deterioration of comfort due to a decrease in room temperature. With the goal.

また、冷房運転時に複数台の空気調和機が相互に通信を行うことで、全てが均等に低能力の高蒸発温度・高顕熱比の運転を行うのではなく、複数台の内数台は高能力で低蒸発温度・低顕熱比の運転を行い残りの数台は能力を絞って負荷調整を行うことにより、冷房低負荷時にも、部屋全体ではある程度の除湿能力を持ちつつも室温を下げない運転をすることを可能とし、快適性の向上を図ることを目的とする。   In addition, when multiple air conditioners communicate with each other during cooling operation, not all of them operate equally at low capacity, high evaporation temperature and high sensible heat ratio, but several of them are high. By operating at low evaporating temperature and low sensible heat ratio with the capacity, and adjusting the load for the remaining several units, the room temperature is lowered while having a certain degree of dehumidifying capacity even in a low cooling load. The purpose is to improve driving comfort and to improve comfort.

また、冷房運転時に複数台の空気調和機が相互に通信を行うことで、複数台の内数台は暖房運転をして、擬似的に再熱除湿運転を行うことが可能とすることを目的とする。   In addition, it is intended that a plurality of air conditioners communicate with each other during cooling operation, so that some of the plurality can perform heating operation and can perform pseudo reheat dehumidification operation. And

この発明に係る空気調和装置は、室内機と室外機とを有し、前記室内機と前記室外機とで完結した一つの冷凍サイクルを形成する複数台の空気調和機と、統制用の演算部とを備え、一つの空調エリアに複数台の前記室内機を配置し、前記統制用の演算部が、前記空気調和機間で相互に通信を行うことにより、冷房運転指令時に除湿能力アップ運転を行うものと、設定温度に対し室内温度が下がらないように負荷調整を行う運転を行うものとが混在するものである。   An air conditioner according to the present invention includes an indoor unit and an outdoor unit, a plurality of air conditioners that form one refrigeration cycle completed by the indoor unit and the outdoor unit, and a control arithmetic unit The plurality of indoor units are arranged in one air-conditioning area, and the control calculation unit communicates between the air conditioners to perform dehumidifying capacity increase operation at the time of a cooling operation command. There are a mix of what is performed and what is performed to perform load adjustment so that the room temperature does not drop with respect to the set temperature.

この発明に係る空気調和装置は、室内機と室外機とを有し、前記室内機と前記室外機とで完結した一つの冷凍サイクルを形成する複数台の空気調和機と、統制用の演算部とを備え、一つの空調エリアに複数台の前記室内機を配置し、前記統制用の演算部が、前記空気調和機間で相互に通信を行うことにより、冷房運転指令時に除湿能力アップ運転を行うものと、設定温度に対し室内温度が下がらないように負荷調整を行う運転を行うものとが混在する構成にしたので、冷房低負荷時にも、部屋全体ではある程度の除湿能力を持ちつつも室温を下げない運転をすることを可能とし、快適性の向上を図ることができる。   An air conditioner according to the present invention includes an indoor unit and an outdoor unit, a plurality of air conditioners that form one refrigeration cycle completed by the indoor unit and the outdoor unit, and a control arithmetic unit The plurality of indoor units are arranged in one air-conditioning area, and the control calculation unit communicates between the air conditioners to perform dehumidifying capacity increase operation at the time of a cooling operation command. Because there is a mix of what to perform and the operation to adjust the load so that the room temperature does not drop with respect to the set temperature, the room as a whole has a certain degree of dehumidification capability even at low cooling loads. This makes it possible to drive without lowering the comfort level and improve comfort.

実施の形態1乃至4を示す図で、空気調和装置100の構成図。FIG. 5 shows the first to fourth embodiments and is a configuration diagram of the air conditioning apparatus 100. 実施の形態1を示す図で、温度調節制御を示すフローチャート図。FIG. 3 is a diagram illustrating the first embodiment and is a flowchart illustrating temperature adjustment control. 一般的な空気調和機で使用されるインバータ駆動による圧縮機周波数に対する能力、入力及び運転効率を示すCOP(=能力/入力)の特性を示す図。The figure which shows the characteristic of COP (= capacity | capacitance / input) which shows the capability with respect to the compressor frequency by an inverter drive used with a general air conditioner, input, and operation efficiency. 実施の形態2を示す図で、暖房時の室外機の除霜運転制御を示すフローチャート図。The figure which shows Embodiment 2, and is a flowchart figure which shows the defrost operation control of the outdoor unit at the time of heating. 実施の形態3を示す図で、除湿制御を示すフローチャート図。FIG. 9 is a diagram illustrating the third embodiment and is a flowchart illustrating dehumidification control. 実施の形態3を示す図で、空気調和装置100の構成図。FIG. 5 shows the third embodiment, and is a configuration diagram of the air conditioning apparatus 100.

実施の形態1.
図1、図2は実施の形態1を示す図で、図1は空気調和装置100の構成図、図2は温度調節制御を示すフローチャートである。図3は一般的な空気調和機で使用されるインバータ駆動による圧縮機周波数に対する能力、入力及び運転効率を示すCOP(=能力/入力)の特性を示す図である。
Embodiment 1 FIG.
1 and 2 are diagrams showing Embodiment 1, FIG. 1 is a configuration diagram of an air conditioner 100, and FIG. 2 is a flowchart showing temperature adjustment control. FIG. 3 is a diagram showing the characteristics of COP (= capacity / input) indicating the capacity, the input, and the operation efficiency with respect to the compressor frequency by the inverter drive used in a general air conditioner.

図1に示すように、空気調和装置100は複数台の空気調和機を備え、複数台の室外機1a,1b,…1xと、複数台の室内機2a,2b,…2xと、室外機1a,1b,…1xと室内機2a,2b,…2xとのそれぞれを接続する配管・配線3と、室内機2a,2b,…2x間同士で通信する渡り線4と、リモコン5とで構成されている。配管・配線3の配管は冷媒配管であり、配線は電源及び通信用の配線である。   As shown in FIG. 1, the air conditioner 100 includes a plurality of air conditioners, a plurality of outdoor units 1a, 1b, ... 1x, a plurality of indoor units 2a, 2b, ... 2x, and an outdoor unit 1a. , 1b,... 1x and the indoor units 2a, 2b,... 2x, a crossover 4 that communicates between the indoor units 2a, 2b,. ing. The piping of the piping / wiring 3 is a refrigerant piping, and the wiring is a power supply and communication wiring.

図1に示す例は、一つのワイヤードリモコンのリモコン5を、室内機2bに設けているがこれは一例であって、リモコン5はワイヤレスでもよいし、設置する数も任意でよい。   In the example shown in FIG. 1, the remote controller 5 of one wired remote controller is provided in the indoor unit 2b. However, this is only an example, and the remote controller 5 may be wireless, and the number to be installed may be arbitrary.

空気調和機は、例えば、天井埋め込み形空気調和機である。一般的に、天井埋め込み形空気調和機は、室内の天井に据え付けられる室内機と、この室内機に接続し屋外に設置される室外機とを備えるセパレート形の空気調和機である。そして、一つの完結した冷凍サイクルを室内機と室外機とで形成する。   The air conditioner is, for example, a ceiling-embedded air conditioner. Generally, a ceiling-embedded air conditioner is a separate type air conditioner that includes an indoor unit installed on a ceiling in the room and an outdoor unit connected to the indoor unit and installed outdoors. Then, one complete refrigeration cycle is formed by the indoor unit and the outdoor unit.

図1に示す空気調和装置100の複数台の空気調和機は、それぞれが一つの完結した冷凍サイクルを持つものであり、1台の室外機と複数台の室内機とを備える所謂マルチタイプとは異なる構成のものである。   Each of the plurality of air conditioners of the air conditioner 100 shown in FIG. 1 has one complete refrigeration cycle, and what is called a multi-type that includes one outdoor unit and a plurality of indoor units. It has a different configuration.

室内機2a,2b,…2xと室外機1a,1b,…1xとはそれぞれの配管・配線3の内外通信線と渡り線4を通じ通信を行うことで室外機1a,1b,…1xの圧縮機の運転周波数を把握することができる。   The indoor units 2a, 2b,... 2x and the outdoor units 1a, 1b,... 1x communicate with the inside / outside communication lines and the crossover lines 4 of the respective pipes / wirings 3 to thereby compress the outdoor units 1a, 1b,. It is possible to grasp the operating frequency.

室外機1a,1b,…1xの圧縮機は、インバータで駆動されるものである。そのため、運転周波数は一定ではなく、指令に基づいて変化する。圧縮機には、回転式圧縮機、スクロール圧縮機等が用いられる。   The compressors of the outdoor units 1a, 1b, ... 1x are driven by inverters. Therefore, the operating frequency is not constant and changes based on the command. A rotary compressor, a scroll compressor, etc. are used for a compressor.

3台の空気調和機が、図1に示すように、接続される場合を想定する。室外機1aが最大空調能力に対し80%で運転し、室外機1bが最大空調能力に対し50%で運転し、室外機1cが最大空調能力に対し50%で運転していたら、平均を取り最大空調能力の60%で3台ともに運転することで部屋の負荷に対し対応が可能となるため、室内機2a、2b、2c及び室外機1a、1b、1cを図示しない演算部で、3台とも60%の空調能力運転をするように調整を行う。   Assume that three air conditioners are connected as shown in FIG. If the outdoor unit 1a operates at 80% of the maximum air conditioning capacity, the outdoor unit 1b operates at 50% of the maximum air conditioning capacity, and the outdoor unit 1c operates at 50% of the maximum air conditioning capacity, the average is taken. Since it is possible to cope with the load of the room by operating all three units at 60% of the maximum air conditioning capacity, the indoor units 2a, 2b, and 2c and the outdoor units 1a, 1b, and 1c are three units in a calculation unit (not shown). Both are adjusted to operate at 60% air conditioning capacity.

この統制用の演算部は、空気調和機の室外機1a,1b,…1x、室内機2a,2b,…2x、リモコン5のうちのいずれか1つに設けるか、もしくは別に統制用の演算部を持った機器を新たに追加して行うことでもよい。   The control arithmetic unit is provided in any one of the outdoor units 1a, 1b,... 1x, the indoor units 2a, 2b,. It may be performed by newly adding a device having the.

具体的には、図2に示すように、定時間隔で各室内機2a,2b,…2xの吸込み空気温度の平均値が、リモコン5で設定された設定温度になるよう各室外機機1a,1b,…1xの運転周波数を平準化して追従させることで実施が可能である。   Specifically, as shown in FIG. 2, each outdoor unit 1a, so that the average value of the intake air temperature of each indoor unit 2a, 2b,... 2x becomes a set temperature set by the remote controller 5 at regular intervals. It can be implemented by leveling the operation frequencies 1b,.

図2において、定時処理が開始されると(S10)、各室内機2a,2b,…2xの吸込み空気温度を、それらの吸込み口に設置される図示しない温度検出器(例えば、サーミスタ)により測定し統計をとる(S11)。   In FIG. 2, when the regular processing is started (S10), the intake air temperature of each indoor unit 2a, 2b,... 2x is measured by a temperature detector (for example, a thermistor) (not shown) installed at the intake port. The statistics are taken (S11).

次に、各室内機2a,2b,…2xの平均吸込み空気温度と設定温度とを比較することにより冷房能力又は暖房能力が足りているか判定する(S12)。吸込み口の吸込み空気の設定温度は、リモコン5でユーザが設定する温度である。   Next, it is determined whether the cooling capacity or the heating capacity is sufficient by comparing the average intake air temperature of each indoor unit 2a, 2b,... 2x with the set temperature (S12). The set temperature of the intake air at the suction port is a temperature set by the user with the remote controller 5.

冷房運転の場合は、各室内機2a,2b,…2xの平均吸込み空気温度≦設定温度ならば、冷房能力は足りていると判断する(図2のS12の※)。   In the case of the cooling operation, if the average intake air temperature of each indoor unit 2a, 2b,... 2x ≦ the set temperature, it is determined that the cooling capacity is sufficient (* of S12 in FIG. 2).

また、暖房運転の場合は、各室内機2a,2b,…2xの平均吸込み空気温度≧設定温度ならば、暖房能力は足りていると判断する(図2のS12の()の中)。   In the case of heating operation, if the average intake air temperature of each indoor unit 2a, 2b,... 2x ≧ the set temperature, it is determined that the heating capacity is sufficient (in () of S12 in FIG. 2).

S12で空調能力(冷房能力又は暖房能力)が足りている場合は、そのままの空調能力を維持するか又は低下させる(S13)。   When the air conditioning capability (cooling capability or heating capability) is sufficient in S12, the air conditioning capability is maintained or reduced as it is (S13).

空調能力が不足している場合(冷房運転では、各室内機2a,2b,…2xの平均吸込み空気温度>設定温度、暖房運転では各室内機2a,2b,…2xの平均吸込み空気温度<設定温度)は、接続室外機一律で空調能力をアップさせる(S14)。   When the air conditioning capacity is insufficient (in the cooling operation, the average intake air temperature of each indoor unit 2a, 2b,... 2x> set temperature, and in the heating operation, the average intake air temperature of each indoor unit 2a, 2b,. The temperature) increases the air conditioning capacity uniformly in the connected outdoor unit (S14).

以上で、定時処理を完了し(S15)、以後同様の処理を繰り返す。   Thus, the scheduled processing is completed (S15), and thereafter the same processing is repeated.

図3に一般的な空気調和機で使用されるインバータ駆動による圧縮機の周波数に対する、能力・入力と運転効率を示すCOP(成績係数=能力/入力)の特性を示す。能力は、空調能力のことである。図3に示す例は、圧縮機の周波数を、25〜90Hzの範囲で変化させたときの、圧縮機の周波数と、能力・入力及びCOPとの関係を示している。   FIG. 3 shows the characteristics of COP (coefficient of performance = capacity / input) indicating capacity / input and operating efficiency with respect to the frequency of the compressor driven by an inverter used in a general air conditioner. The capacity is the air conditioning capacity. The example shown in FIG. 3 shows the relationship between the compressor frequency and the capacity / input and COP when the compressor frequency is changed in the range of 25 to 90 Hz.

図3に示すように、高負荷に対応するよう圧縮機の周波数を上げるとCOPは低下し、逆に圧縮機の周波数を下げるとCOPは向上することがわかる。   As shown in FIG. 3, it can be seen that the COP decreases when the frequency of the compressor is increased to cope with a high load, and the COP increases when the frequency of the compressor is decreased.

圧縮機の周波数を変化させる場合、例えば、空調能力は周波数が最大では周波数が最小に対して約2.5倍に増加し、入力は周波数が最大では周波数が最小に対して約5倍に増加する。そのため、COP(成績係数=空調能力/入力)は、周波数が最大では周波数が最小に対して約1/2に低下する。   When changing the frequency of the compressor, for example, the air conditioning capacity increases about 2.5 times the minimum at the maximum frequency, and the input increases about 5 times the minimum at the maximum frequency. To do. Therefore, the COP (coefficient of performance = air conditioning capacity / input) is reduced to about ½ at the maximum frequency when the frequency is maximum.

以上のように、この実施の形態によれば、空気調和装置100の複数台の空気調和機が相互に通信を行うことで、温度ムラによる負荷のバラツキに影響されずに複数台の空気調和機が平準化した空調能力を発揮することで、消費電力を削減することができる。   As described above, according to this embodiment, a plurality of air conditioners of the air conditioner 100 communicate with each other, so that a plurality of air conditioners are not affected by load variations due to temperature unevenness. Power consumption can be reduced by demonstrating the leveled air conditioning capability.

実施の形態2.
図1に示す空気調和装置100の複数台の空気調和機は、暖房運転の場合、暖房運転を行っている各室内機2a,2b,…2xと各室外機1a,1b,…1xはそれぞれの配管・配線3の内外通信線と渡り線4を通じ通信を行うことで各室外機1a,1b,…1xの着霜の状態を把握することができる。各室外機1a,1b,…1xの着霜の状態は、室外熱交換器の配管温度とその継続時間などから把握することができる。
Embodiment 2. FIG.
In the air conditioner 100 shown in FIG. 1, in the case of heating operation, each of the indoor units 2 a, 2 b,... 2 x and each outdoor unit 1 a, 1 b,. It is possible to grasp the frosting state of each outdoor unit 1a, 1b,. The state of frost formation of each of the outdoor units 1a, 1b,... 1x can be grasped from the piping temperature of the outdoor heat exchanger and its duration.

図4は実施の形態を示す図で、除霜制御のフローチャートである。図4を参照しながら除霜制御について説明する。   FIG. 4 is a diagram showing the embodiment and is a flowchart of the defrosting control. Defrosting control will be described with reference to FIG.

暖房運転定時処理を開始したら(S20)、各空気調和機の室外熱交換器温度を測定し、統計をとる(S21)。室外熱交換器温度は、図示しない温度検出器(例えば、サーミスタ)を室外熱交換器に取り付けて測定する。   When the heating operation scheduled processing is started (S20), the outdoor heat exchanger temperature of each air conditioner is measured, and statistics are taken (S21). The outdoor heat exchanger temperature is measured by attaching a temperature detector (for example, a thermistor) (not shown) to the outdoor heat exchanger.

S21で測定・統計をとった各空気調和機の室外熱交換器温度から、各空気調和機が除霜許可時間に近づいているか判定する(S22)。   It is determined whether each air conditioner is approaching the defrosting permission time from the outdoor heat exchanger temperature of each air conditioner obtained by measurement / statistics in S21 (S22).

ここで、除霜許可時間とは、空気調和機が暖房運転を開始すると蒸発器である室外熱交換器温度は徐々に低下する。そして、室外熱交換器温度が、所定の「除霜許可温度Tdef」(例えば、−5℃〜−2℃)以下になっている暖房運転の時間を積算する。この所定のマイナス温度(例えば、−5℃〜−2℃)以下になっている暖房運転の時間の積算時間の所定値(例えば、60分)を「除霜許可時間」と定義する。   Here, the defrost permission time means that when the air conditioner starts the heating operation, the temperature of the outdoor heat exchanger, which is an evaporator, gradually decreases. And the time of the heating operation in which the outdoor heat exchanger temperature is below a predetermined “defrosting permission temperature Tdef” (for example, −5 ° C. to −2 ° C.) is integrated. A predetermined value (for example, 60 minutes) of the accumulated time of the heating operation time that is equal to or lower than the predetermined minus temperature (for example, −5 ° C. to −2 ° C.) is defined as “defrosting permission time”.

S22で複数台の空気調和機が、室外熱交換器温度≦除霜許可温度Tdefを満たす暖房運転の積算時間が、所定の除霜許可時間に近づいている場合、現在除霜運転中の空気調和機はあるか判定する(S23)。   In S22, when the integrated time of the heating operation in which a plurality of air conditioners satisfy the outdoor heat exchanger temperature ≦ defrosting permission temperature Tdef is approaching a predetermined defrosting permission time, the air conditioning currently in the defrosting operation is performed. It is determined whether there is a machine (S23).

S23で現在除霜運転中の空気調和機がない場合は、最も除霜許可時間に近づいた空気調和機の除霜運転を開始する(S25)。   When there is no air conditioner currently performing the defrosting operation in S23, the defrosting operation of the air conditioner that is closest to the defrosting permission time is started (S25).

そして暖房運転定時処理を完了し(S27)、S20へ戻る。   And a heating operation regular time process is completed (S27) and it returns to S20.

除霜運転は、温風を室内へ送風する室内機を停止し(送風機を停止する)、室外機のみを冷房サイクルで動かすことで行われる。このとき、室外機の室外熱交換器は、凝縮器として動作する。   The defrosting operation is performed by stopping the indoor unit that blows warm air into the room (stops the blower) and moving only the outdoor unit in the cooling cycle. At this time, the outdoor heat exchanger of the outdoor unit operates as a condenser.

S23で現在除霜運転中の空気調和機がある場合は、室外熱交換器温度≦除霜許可温度Tdefを満たす暖房運転の積算時間が所定の除霜許可時間に近づいている空気調和機の室外熱交換器の温度が、強制除霜温度(例えば、−20℃〜−10℃)を下回っているか判定する(S24)。   If there is an air conditioner currently performing a defrosting operation in S23, the outdoor time of the air conditioner in which the accumulated time of the heating operation that satisfies the outdoor heat exchanger temperature ≦ the defrosting permission temperature Tdef is approaching the predetermined defrosting permission time It is determined whether the temperature of the heat exchanger is lower than the forced defrost temperature (for example, −20 ° C. to −10 ° C.) (S24).

S24で室外熱交換器温度≦除霜許可温度Tdefを満たす暖房運転の積算時間が所定の除霜許可時間に近づいている空気調和機の室外熱交換器の温度が強制除霜温度を下回っている場合は、その他に除霜運転中の空気調和機の有無に関係なく、強制除霜温度を下回った空気調和機の除霜運転を開始する(S26)。   The temperature of the outdoor heat exchanger of the air conditioner in which the accumulated time of the heating operation satisfying the outdoor heat exchanger temperature ≦ defrosting permission temperature Tdef in S24 approaches the predetermined defrosting permission time is lower than the forced defrosting temperature. In this case, the defrosting operation of the air conditioner that has fallen below the forced defrosting temperature is started regardless of the presence or absence of the air conditioner during the defrosting operation (S26).

S24で室外熱交換器温度≦除霜許可温度Tdefを満たす暖房運転の積算時間が所定の除霜許可時間に近づいている空気調和機の室外熱交換器の温度が強制除霜温度を下回っていない場合は、その他に除霜運転中の空気調和機があるので、さらに除霜運転を行う空気調和機が増えると空気調和装置100全体としての暖房能力が低下するので、除霜運転は開始しないでS21に戻る。   The temperature of the outdoor heat exchanger of the air conditioner in which the accumulated time of the heating operation that satisfies the outdoor heat exchanger temperature ≦ defrosting permission temperature Tdef in S24 is approaching the predetermined defrosting permission time is not lower than the forced defrosting temperature. In this case, since there are other air conditioners during the defrosting operation, if the number of air conditioners performing the defrosting operation further increases, the heating capacity of the air conditioner 100 as a whole decreases, so the defrosting operation does not start. Return to S21.

S22で、室外熱交換器温度≦除霜許可温度Tdefを満たす暖房運転の積算時間が、所定の除霜許可時間に近づいている空気調和機がないか、1台のみある場合は、その1台の空気調和機の室外熱交換器の温度が強制除霜温度(例えば、−20℃〜−10℃)を下回っているか判定する(S24)。   In S22, if there is no air conditioner in which the accumulated time of the heating operation satisfying the outdoor heat exchanger temperature ≦ defrosting permission temperature Tdef is approaching the predetermined defrosting permission time or there is only one, one of them It is determined whether the temperature of the outdoor heat exchanger of the air conditioner is lower than the forced defrost temperature (for example, −20 ° C. to −10 ° C.) (S24).

1台の空気調和機の室外熱交換器の温度が強制除霜温度(例えば、−20℃〜−10℃)を下回っている場合は、その空気調和機の除霜運転を開始する(S26)。   When the temperature of the outdoor heat exchanger of one air conditioner is lower than the forced defrost temperature (for example, −20 ° C. to −10 ° C.), the defrost operation of the air conditioner is started (S26). .

S24で1台の空気調和機の室外熱交換器の温度が強制除霜温度を下回っていない場合は、除霜運転は開始しないでS21に戻る。   When the temperature of the outdoor heat exchanger of one air conditioner is not lower than the forced defrosting temperature in S24, the defrosting operation is not started and the process returns to S21.

S26の後、S25と同様に暖房運転定時処理を完了し(S27)、S20へ戻る。   After S26, the heating operation scheduled process is completed as in S25 (S27), and the process returns to S20.

以上の処理は、実施の形態1と同様、統制用の演算部が行う。統制用の演算部は、空気調和機の室外機1a,1b,…1x、室内機2a,2b,…2x、リモコン5のうちのいずれか1つに設けるか、もしくは別に統制用の演算部を持った機器を新たに追加して行うことでもよい。   The above processing is performed by the control arithmetic unit as in the first embodiment. The control calculation unit is provided in any one of the outdoor units 1a, 1b,... 1x, the indoor units 2a, 2b,. It may be performed by adding a new device.

以上のように、暖房時低外気温の時に、他の空気調和機が除霜運転に入っている場合は、強制除霜温度を下回る場合以外は、除霜運転に入らない、もしくは同時に除霜運転となりそうな場合には、早めに除霜運転を開始するという調整を行うことにより、空気調和機が相互に通信を行うことで、暖房運転時に一度に複数台の空気調和機が除霜運転となることを極力防止し、空気調和装置100の暖房能力不足により室温が低下し、快適性が悪化することを避けることができる。   As described above, when other air conditioners are in the defrosting operation at the time of low outside air temperature during heating, the defrosting operation is not performed or the defrosting is performed at the same time except when the temperature is lower than the forced defrosting temperature. When it is likely to be in operation, the air conditioner communicates with each other by making adjustments to start defrosting operation early, so that multiple air conditioners can be defrosted at the same time during heating operation. As much as possible, it is possible to prevent the room temperature from being lowered due to insufficient heating capacity of the air conditioner 100 and the comfort from being deteriorated.

実施の形態3.
図1に示す構成の複数台の空気調和機は、冷房運転を行っている各室内機2a,2b,…2xと各室外機1a,1b,…1xはそれぞれの配管・配線3の内外通信線と渡り線4を通じ通信を行うことで、各室内機2a,2b,…2xの室内熱交換器温度(=蒸発温度)を把握することができる。
Embodiment 3 FIG.
The plurality of air conditioners having the configuration shown in FIG. 1 are the indoor units 2a, 2b,... 2x and the outdoor units 1a, 1b,. By communicating through the crossover line 4, the indoor heat exchanger temperature (= evaporation temperature) of each indoor unit 2a, 2b,.

室内(空調エリア)に居る人が除湿優先にする指令をリモコン5から行うと、複数台の空気調和機の内の何台かの空調能力を上げ蒸発温度を下げる運転を行い、残りの空気調和機は増えた空調能力を調整するため空調能力を低下もしくは冷房運転を停止し送風運転として、室温の下がり過ぎを防ぐ。   When a person in the room (air-conditioning area) gives a command to prioritize dehumidification from the remote controller 5, the air-conditioning capacity of some of the multiple air conditioners is increased to lower the evaporation temperature, and the remaining air-conditioning In order to adjust the increased air conditioning capacity, the machine reduces the air conditioning capacity or stops the cooling operation, and prevents the room temperature from dropping excessively as a blowing operation.

増えた空調能力を調整するため空調能力を低下するのは、設定温度に対し室内温度が下がらないように負荷調整を行う運転のことである。   In order to adjust the increased air-conditioning capacity, the air-conditioning capacity is lowered in the operation of adjusting the load so that the room temperature does not decrease with respect to the set temperature.

図5は実施の形態3を示す図で、除湿制御を示すフローチャートである。具体的には、図5に示すように、リモコン5から除湿優先の設定をすると、接続している室内機2a,2b,…2xの台数の10%〜50%(所定の台数)を除湿能力アップ運転し、それ以外の室内機の空調能力を設定温度に近づくように追従させる。除湿能力アップ運転以外の室内機の運転を停止しても室温が低くなる場合は、除湿能力アップ運転をする空気調和機を停止して室温の下がりすぎを防ぐ。   FIG. 5 shows the third embodiment and is a flowchart showing dehumidification control. Specifically, as shown in FIG. 5, when dehumidification priority is set from the remote controller 5, 10% to 50% (predetermined number) of the number of connected indoor units 2a, 2b,. Run up and let the air conditioning capacity of other indoor units follow the set temperature. If the room temperature becomes low even after the operation of the indoor unit other than the operation for increasing the dehumidifying capacity is stopped, the air conditioner performing the operation for increasing the dehumidifying capacity is stopped to prevent the room temperature from being lowered excessively.

冷房運転の蒸発温度を下げて顕熱比(顕熱能力/全能力)を下げた運転を、「除湿能力アップ運転」と定義する。   An operation in which the sensible heat ratio (sensible heat capacity / total capacity) is lowered by lowering the evaporation temperature in the cooling operation is defined as “dehumidifying capacity increasing operation”.

図5において、室内(空調エリア)に居る人が除湿優先にする指令をリモコン5から行うと(S30)、接続している室内機2a,2b,…2xの台数の10%〜50%(所定の台数)を除湿能力アップ運転を行う。この場合、設定温度によらず圧縮機を高周波数で運転して、室内熱交換器温度の蒸発温度を下げる運転を行う(S31)。   5, when a person in the room (air conditioning area) gives a command to give priority to dehumidification from the remote controller 5 (S30), 10% to 50% (predetermined) of the number of connected indoor units 2a, 2b,. ) Increase the dehumidification capacity. In this case, the compressor is operated at a high frequency regardless of the set temperature, and the operation of lowering the evaporation temperature of the indoor heat exchanger temperature is performed (S31).

続いて定時処理を開始し(S32)、各室内機2a,2b,…2xの吸込み空気温度を、それらの吸込み口に設置される図示しない温度検出器(例えば、サーミスタ)により測定し統計をとる(S33)。   Subsequently, a scheduled process is started (S32), and the intake air temperature of each indoor unit 2a, 2b,... 2x is measured by a temperature detector (not shown) (for example, a thermistor) installed at the intake port to obtain statistics. (S33).

次に、各室内機2a,2b,…2xの平均吸込み空気温度と設定温度とを比較する(S34)。   Next, the average intake air temperature of each indoor unit 2a, 2b,... 2x is compared with the set temperature (S34).

冷房運転の場合は、各室内機2a,2b,…2xの平均吸込み空気温度≦設定温度ならば、空調能力は足りていると判断する。   In the case of the cooling operation, if the average intake air temperature of each indoor unit 2a, 2b,... 2x ≦ the set temperature, it is determined that the air conditioning capability is sufficient.

また、暖房運転の場合は、各室内機2a,2b,…2xの平均吸込み空気温度≧設定温度ならば、空調能力は足りていると判断する。   In the heating operation, if the average intake air temperature of each indoor unit 2a, 2b,... 2x ≧ the set temperature, it is determined that the air conditioning capability is sufficient.

S34で空調能力が足りている場合は、空調能力オーバーかを判断する(S35)。   If the air conditioning capability is sufficient in S34, it is determined whether the air conditioning capability is over (S35).

その場合、除湿能力アップ運転以外の室内機の運転を停止し、かつ室内機の平均吸込み空気温度<設定温度−Tdifならば、空調能力オーバーと判断する。ここで、Tdifは所定の温度差である。   In that case, if the operation of the indoor unit other than the dehumidifying capacity increasing operation is stopped and the average intake air temperature of the indoor unit <the set temperature−Tdif, it is determined that the air conditioning capacity is over. Here, Tdif is a predetermined temperature difference.

空調能力オーバーの場合は、除湿能力アップ運転をする室内機の運転台数を減らし(S38)、S32に戻る。   When the air conditioning capacity is exceeded, the number of indoor units that perform the dehumidifying capacity increasing operation is reduced (S38), and the process returns to S32.

空調能力オーバーでない場合は、空調能力を維持し(S37)、定時処理を完了し(S39)、S32に戻る。   If the air conditioning capacity is not over, the air conditioning capacity is maintained (S37), the scheduled processing is completed (S39), and the process returns to S32.

S34で空調能力が不足している場合は、除湿能力アップ運転以外の室内機の空調能力をアップし(S36)、空調能力を維持し(S37)、定時処理を完了し(S39)、S32に戻る。   If the air conditioning capacity is insufficient in S34, the air conditioning capacity of the indoor units other than the dehumidifying capacity increasing operation is increased (S36), the air conditioning capacity is maintained (S37), the scheduled processing is completed (S39), and the process goes to S32 Return.

冷房能力を上げる空気調和機を固定すると室内機周辺に居る人が寒く感じるため、10分から20分おきに除湿能力を上げる空気調和機とその他の(温度)能力調整をするための空気調和機の役割をローテーションすることで、快適性の悪化を防ぐ。   If you fix the air conditioner that increases the cooling capacity, people around the indoor unit feel cold, so the air conditioner that increases the dehumidification capacity every 10 to 20 minutes and other air conditioners that adjust the (temperature) capacity Rotating roles prevents comfort deterioration.

以上の処理は、実施の形態1と同様、統制用の演算部が行う。統制用の演算部は、空気調和機の室外機1a,1b,…1x、室内機2a,2b,…2x、リモコン5のうちのいずれか1つに設けるか、もしくは別に統制用の演算部を持った機器を新たに追加して行うことでもよい。   The above processing is performed by the control arithmetic unit as in the first embodiment. The control calculation unit is provided in any one of the outdoor units 1a, 1b,... 1x, the indoor units 2a, 2b,. It may be performed by adding a new device.

図6は実施の形態3を示す図で、空気調和装置100の構成図である。上述したものは、室内機2a,2b,…2xに湿度を検知するセンサが無い場合に、蒸発温度を下げて定性的に除湿能力を上げるものであるが、図6に示すようにオプション等で1台に湿度センサ6を後付けし、湿度センサ6の検出値を所定の目標値となるように運転すればより快適性の向上につながる。   FIG. 6 is a diagram showing the third embodiment and is a configuration diagram of the air-conditioning apparatus 100. As described above, when the indoor units 2a, 2b,... 2x do not have a sensor for detecting humidity, the evaporating temperature is lowered and the dehumidifying ability is increased qualitatively. However, as shown in FIG. If the humidity sensor 6 is retrofitted to one unit and the operation is performed so that the detected value of the humidity sensor 6 becomes a predetermined target value, the comfort is further improved.

除湿をする際には、蒸発温度を下げた方が除湿能力大となるため、室内機の風量を低下させる。これにより室内機周辺に居る人が寒さを感じるのをできるだけ避けることもできる。風向についても同様に快適性を考慮し、できるだけ風量を低下させる向きとし、直接風が当たらないような角度に設定するのが望ましい。   When dehumidifying, lowering the evaporation temperature increases the dehumidifying capacity, so the air volume of the indoor unit is reduced. As a result, it is possible to avoid as much as possible that people around the indoor unit feel cold. Similarly, in consideration of comfort, the direction of the wind should be set to an angle that reduces the air volume as much as possible, and is set to an angle at which direct wind does not strike.

実施の形態4.
実施の形態3で示したもので、室内に居る人が除湿優先のレベルをさらに上げる指令をリモコン5から行うと、複数台の空気調和機の内何台かを暖房運転とすることで、部屋全体の温度を下げずに除湿量を多くすることが可能となる。この場合も風量・風向について、快適性を考慮し、温風が直接人体に当たらないように設定するのが望ましい。
Embodiment 4 FIG.
As shown in the third embodiment, when a person in the room gives a command to further increase the dehumidification priority level from the remote controller 5, several of the plurality of air conditioners are set in the heating operation. It is possible to increase the amount of dehumidification without lowering the overall temperature. In this case as well, it is desirable to set the air volume and direction so that warm air does not directly hit the human body in consideration of comfort.

1a,1b, …2x 室外機、2a,2b,…2x 室内機、3 配管・配線、4 渡り線、5 リモコン、6 湿度センサ、100 空気調和装置。   1a, 1b, ... 2x outdoor unit, 2a, 2b, ... 2x indoor unit, 3 piping / wiring, 4 crossover, 5 remote control, 6 humidity sensor, 100 air conditioner.

Claims (2)

室内機と室外機とを有し、前記室内機と前記室外機とで完結した一つの冷凍サイクルを形成する複数台の空気調和機と、統制用の演算部とを備え、一つの空調エリアに複数台の前記室内機を配置し、前記統制用の演算部が、前記空気調和機間で相互に通信を行うことにより、冷房運転指令時に除湿能力アップ運転を行うものと、設定温度に対し室内温度が下がらないように負荷調整を行う運転を行うものとが混在することを特徴とする空気調和装置。   An indoor unit and an outdoor unit, and a plurality of air conditioners that form one refrigeration cycle completed by the indoor unit and the outdoor unit, and a control arithmetic unit, A plurality of the indoor units are arranged, and the control calculation unit communicates with each other between the air conditioners to perform a dehumidifying capacity up operation at the time of a cooling operation command, An air conditioner characterized by a mixture of those that perform an operation for adjusting a load so that the temperature does not decrease. 複数台の空気調和機の内、何台かを暖房運転することを特徴とする請求項1記載の空気調和装置。   The air conditioner according to claim 1, wherein some of the plurality of air conditioners are operated for heating.
JP2010247035A 2010-11-04 2010-11-04 Air conditioner Active JP5111590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010247035A JP5111590B2 (en) 2010-11-04 2010-11-04 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010247035A JP5111590B2 (en) 2010-11-04 2010-11-04 Air conditioner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008293474A Division JP4667496B2 (en) 2008-11-17 2008-11-17 Air conditioner

Publications (2)

Publication Number Publication Date
JP2011047647A true JP2011047647A (en) 2011-03-10
JP5111590B2 JP5111590B2 (en) 2013-01-09

Family

ID=43834149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010247035A Active JP5111590B2 (en) 2010-11-04 2010-11-04 Air conditioner

Country Status (1)

Country Link
JP (1) JP5111590B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014153008A (en) * 2013-02-12 2014-08-25 Sharp Corp Air conditioner
JP2016003805A (en) * 2014-06-16 2016-01-12 東芝キヤリア株式会社 Air conditioning system
WO2018212242A1 (en) * 2017-05-19 2018-11-22 ダイキン工業株式会社 Air conditioning system
WO2018212243A1 (en) * 2017-05-19 2018-11-22 ダイキン工業株式会社 Air conditioning system
JP2019215108A (en) * 2018-06-11 2019-12-19 ダイキン工業株式会社 Air conditioning system
JP2019215105A (en) * 2018-06-11 2019-12-19 ダイキン工業株式会社 Air conditioning system
JP2019215104A (en) * 2018-06-11 2019-12-19 ダイキン工業株式会社 Air conditioning system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167519A (en) * 1993-12-16 1995-07-04 Daikin Ind Ltd Multiroom type air conditioner
JPH10259944A (en) * 1997-03-19 1998-09-29 Hitachi Ltd Air conditioning system
JP2004293810A (en) * 2003-03-25 2004-10-21 Mitsubishi Electric Corp Air conditioning system
JP2004316946A (en) * 2003-04-11 2004-11-11 Daikin Ind Ltd Air-conditioning system
JP2006329468A (en) * 2005-05-24 2006-12-07 Daikin Ind Ltd Air conditioning system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167519A (en) * 1993-12-16 1995-07-04 Daikin Ind Ltd Multiroom type air conditioner
JPH10259944A (en) * 1997-03-19 1998-09-29 Hitachi Ltd Air conditioning system
JP2004293810A (en) * 2003-03-25 2004-10-21 Mitsubishi Electric Corp Air conditioning system
JP2004316946A (en) * 2003-04-11 2004-11-11 Daikin Ind Ltd Air-conditioning system
JP2006329468A (en) * 2005-05-24 2006-12-07 Daikin Ind Ltd Air conditioning system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014153008A (en) * 2013-02-12 2014-08-25 Sharp Corp Air conditioner
JP2016003805A (en) * 2014-06-16 2016-01-12 東芝キヤリア株式会社 Air conditioning system
CN110637199A (en) * 2017-05-19 2019-12-31 大金工业株式会社 Air conditioning system
WO2018212243A1 (en) * 2017-05-19 2018-11-22 ダイキン工業株式会社 Air conditioning system
JP2018194291A (en) * 2017-05-19 2018-12-06 ダイキン工業株式会社 Air conditioning system
JP2018194256A (en) * 2017-05-19 2018-12-06 ダイキン工業株式会社 Air conditioning system
WO2018212242A1 (en) * 2017-05-19 2018-11-22 ダイキン工業株式会社 Air conditioning system
JP2019215108A (en) * 2018-06-11 2019-12-19 ダイキン工業株式会社 Air conditioning system
JP2019215105A (en) * 2018-06-11 2019-12-19 ダイキン工業株式会社 Air conditioning system
JP2019215104A (en) * 2018-06-11 2019-12-19 ダイキン工業株式会社 Air conditioning system
JP7328487B2 (en) 2018-06-11 2023-08-17 ダイキン工業株式会社 air conditioning system
JP7355986B2 (en) 2018-06-11 2023-10-04 ダイキン工業株式会社 air conditioning system
JP7355987B2 (en) 2018-06-11 2023-10-04 ダイキン工業株式会社 air conditioning system

Also Published As

Publication number Publication date
JP5111590B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP4667496B2 (en) Air conditioner
JP5111590B2 (en) Air conditioner
JP6328049B2 (en) Air conditioner
EP2719966B1 (en) Refrigeration air-conditioning device
EP3318808A1 (en) Multi-split type air conditioner system controlling both temperature and humidity and control method thereof
JP5389211B2 (en) Air conditioning control method and air conditioner
JP2010121798A5 (en)
WO2014136199A1 (en) Air-conditioning system
KR20130012743A (en) Multi air conditioner and method for controlling the same
CN105258219B (en) Air conditioner and its control method and control system
JP5642121B2 (en) Air conditioner
JP5695861B2 (en) Outside air processing air conditioner and multi air conditioning system using the same
CN105318522B (en) Heat exchange structure, air-conditioning system and its control method in a kind of air-conditioning system room
JP5619056B2 (en) Air conditioner
JP6019773B2 (en) Air conditioner control device
CN107514749B (en) Multi-split fresh air system, control method thereof and computer readable storage medium
JP5627522B2 (en) Air conditioner
KR101153421B1 (en) Condensation volume control method for air conditioner
KR101622619B1 (en) Air conditioner
WO2023058197A1 (en) Air conditioner
JP6245207B2 (en) Air conditioner
KR20120080861A (en) Air conditioning system and the control method of the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5111590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250