WO2018212181A1 - Tuning-fork crystal vibration element, method for manufacturing tuning-fork crystal vibration element, and tuning-fork crystal vibrator - Google Patents

Tuning-fork crystal vibration element, method for manufacturing tuning-fork crystal vibration element, and tuning-fork crystal vibrator Download PDF

Info

Publication number
WO2018212181A1
WO2018212181A1 PCT/JP2018/018767 JP2018018767W WO2018212181A1 WO 2018212181 A1 WO2018212181 A1 WO 2018212181A1 JP 2018018767 W JP2018018767 W JP 2018018767W WO 2018212181 A1 WO2018212181 A1 WO 2018212181A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
connecting portion
fork type
type crystal
tuning
Prior art date
Application number
PCT/JP2018/018767
Other languages
French (fr)
Japanese (ja)
Inventor
有彌 井田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2019518804A priority Critical patent/JP6819945B2/en
Publication of WO2018212181A1 publication Critical patent/WO2018212181A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/21Crystal tuning forks
    • H03H9/215Crystal tuning forks consisting of quartz

Definitions

  • the present invention relates to a tuning fork type crystal vibrating element that operates based on the piezoelectric effect of quartz, a manufacturing method thereof, and a tuning fork type crystal resonator.
  • tuning fork type crystal resonator a tuning fork type crystal vibrating element in which a pair of vibrating arms are extended in parallel from the base of the base material is used.
  • a crystal resonator is used for a timing device or a vibration gyro sensor mounted on an electronic device such as a mobile computer, a portable game machine, a mobile phone, an IC card, and a communication base station.
  • tuning fork type crystal resonators and tuning fork type crystal resonator elements incorporated therein are required to be downsized and improved in reliability.
  • Patent Document 1 discloses a resonator element including a base, a pair of vibrating arms extending from the base, and a support arm extending in parallel with the vibrating arms.
  • the vibration piece described in Patent Document 1 has a cut so as to indicate constriction on both main surfaces of the base for the purpose of reducing loss of vibration energy.
  • the vibration arm should be in contact with the vibration arm when displaced beyond the normal amplitude range.
  • the support arm has a receiving portion at the tip.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a tuning fork type crystal resonator element that can be reduced in size while improving impact resistance, a method for manufacturing the same, and a tuning fork type crystal resonator. It is.
  • a tuning fork type crystal resonator element includes a base, a plurality of vibrating arm portions extending in a first direction from the base and arranged in a second direction intersecting the first direction, and at least one receiving portion
  • the base includes a connecting portion provided to fix the roots of the plurality of vibrating arm portions in common, a support portion provided at a distance from the connecting portion in the first direction, and a connecting portion.
  • the support portion, the connection portion and the support portion are connected to each other, the width in the second direction is smaller than the connection portion and the support portion, and the receiving portion is in the first direction. It is provided between the connection part and the support part.
  • a tuning fork type crystal resonator element includes a base, a plurality of vibrating arms extending in the first direction from the base and arranged in a second direction intersecting the first direction, and at least one receiving portion. And a base portion is provided so as to commonly fix the roots of the plurality of vibrating arm portions, and a support portion provided at a distance from the connection portion in the first direction, The connecting part and the support part are provided so as to connect the connecting part and the support part, and the width in the second direction is smaller than the connecting part and the support part.
  • a method for manufacturing a tuning-fork type crystal resonator element comprising: preparing a quartz substrate; providing a photoresist layer on the quartz substrate; patterning the photoresist layer; And a step of etching the quartz crystal substrate by wet etching based on the photoresist layer formed to form a quartz piece, the quartz piece extending from the base in the first direction and intersecting the first direction.
  • a tuning fork crystal resonator includes a base member, a lid member that forms an internal space between the base member, a tuning fork crystal resonator element housed in the internal space, and a tuning fork type A tuning fork type quartz crystal vibrating element including a base and a plurality of vibrating arms extending in the first direction and extending in the second direction intersecting the first direction. At least one receiving portion, and the base portion is provided at a distance from the connecting portion in the first direction and a connecting portion provided so as to fix the roots of the plurality of vibrating arm portions in common.
  • a support portion and a narrow portion that is provided so as to connect the connection portion and the support portion between the connection portion and the support portion, and whose width in the second direction is smaller than that of the connection portion and the support portion,
  • the receiving part is provided between the connecting part and the support part in the first direction. It is and the holding member is fixed to the base member supporting portion.
  • the present invention it is possible to provide a tuning fork crystal resonator element that can be reduced in size while improving impact resistance, a method for manufacturing the same, and a tuning fork crystal resonator.
  • FIG. 1 is an exploded perspective view schematically showing a configuration of a tuning fork type crystal resonator.
  • FIG. 2 is a cross-sectional view schematically showing a cross-sectional configuration along the line II-II of the tuning fork type crystal resonator shown in FIG.
  • FIG. 3 is a plan view schematically showing the configuration of the tuning fork type crystal resonator element according to the first embodiment.
  • 4 is a cross-sectional view schematically showing a cross-sectional configuration along the line IV-IV of the tuning-fork type crystal vibrating element shown in FIG.
  • FIG. 5 is an enlarged plan view showing the structure of the base portion of the tuning fork type crystal resonator element more specifically.
  • FIG. 1 is an exploded perspective view schematically showing a configuration of a tuning fork type crystal resonator.
  • FIG. 2 is a cross-sectional view schematically showing a cross-sectional configuration along the line II-II of the tuning fork type crystal resonator shown in
  • FIG. 6 is a plan view schematically showing a configuration of a tuning fork type crystal resonator element according to the second embodiment.
  • FIG. 7 is a plan view schematically showing a configuration of a tuning-fork type crystal resonator element according to the third embodiment.
  • FIG. 8 is a flowchart showing manufacturing steps of the tuning-fork type crystal vibrating element according to the fourth embodiment.
  • FIG. 9 is a view showing a cross section along the electric axis of the quartz substrate in the step of cutting the quartz substrate shown in FIG.
  • FIG. 1 is an exploded perspective view schematically showing a configuration of a tuning fork type crystal resonator.
  • FIG. 2 is a cross-sectional view schematically showing a cross-sectional configuration along the line II-II of the tuning fork type crystal resonator shown in FIG.
  • FIG. 3 is a plan view schematically showing the configuration of the tuning fork type crystal resonator element according to the first embodiment.
  • first direction D1, the second direction D2, and the third direction D3 shown in the drawing are, for example, directions orthogonal to each other.
  • the first direction D1, the second direction D2, and the third direction D3 may be directions that intersect each other at an angle other than 90 °.
  • the first direction D1, the second direction D2, and the third direction D3 are not limited to the arrow direction (positive direction) shown in FIG. 1, but also include the direction opposite to the arrow (negative direction).
  • the tuning fork type crystal resonator 1 is a kind of crystal resonator (Quartz Crystal Resonator Unit). Further, the tuning fork type crystal resonator element 10 is a kind of crystal resonator element (Quartz Crystal Resonator), and an excitation portion excited according to an applied voltage corresponds to a parallel arm portion in a tuning fork shape.
  • the crystal resonator element is a piezoelectric resonator element that uses a quartz piece (Quartz Crystal Element) as a piezoelectric body that vibrates according to an applied voltage.
  • the tuning fork crystal resonator 1 includes a tuning fork crystal resonator element 10, a lid member 20, a base member 30, and a bonding member 40.
  • the base member 30 and the lid member 20 are holders for housing the tuning fork type crystal resonator element 10.
  • the lid member 20 has a concave shape, specifically, a box shape having an opening
  • the base member 30 has a flat plate shape.
  • the shapes of the lid member 20 and the base member 30 are not limited to the above.
  • the base member may have a concave shape, and both the lid member and the base member have a concave shape having openings on the sides facing each other. It may be.
  • the tuning fork type crystal resonator element 10 includes a crystal piece 11.
  • the crystal piece 11 is a Z plate crystal piece. Specifically, in a Cartesian coordinate system composed of an X axis, a Y axis, and a Z axis, a surface specified by the X axis and the Y axis by rotating clockwise around the Z axis in the range of 0 degrees to 5 degrees. (Hereinafter referred to as “XY plane”, the same applies to surfaces specified by other axes or other directions) is the principal surface of the Z-plate crystal piece, and is parallel to the Z axis. Is the thickness of the Z-plate crystal piece.
  • the Z plate crystal piece is formed, for example, by etching a quartz substrate obtained by cutting and polishing an ingot of an artificial quartz (Synthetic Quartz Crystal).
  • the X axis, the Y axis, and the Z axis are crystal axes of quartz, respectively.
  • the X axis corresponds to the electrical axis
  • the Y axis corresponds to the mechanical axis
  • the Z axis corresponds to the optical axis.
  • the X axis is a polar axis having a positive direction.
  • a direction parallel to the + X axis is referred to as a + X axis direction.
  • the crystal piece 11 may be applied with a different cut other than the Z-plate crystal piece.
  • the tuning fork type crystal resonator element 10 is determined so that the Y axis is parallel to the first direction D1, the X axis is parallel to the second direction D2, and the Z axis is parallel to the third direction D3.
  • the X-axis direction that is the polar axis
  • the + X-axis direction is the positive direction of the second direction D2
  • the -X-axis direction is the negative direction of the second direction D2.
  • the first direction D1 only needs to be along the Y-axis direction, and for example, the first direction D1 may be inclined within a range of ⁇ 5 degrees to +5 degrees from the Y-axis direction.
  • the second direction D2 may be tilted in the range of ⁇ 5 degrees to +5 degrees from the X-axis direction
  • the third direction D3 may be tilted in the range of ⁇ 5 degrees to +5 degrees from the Z-axis direction.
  • the tuning-fork type crystal vibrating element 10 made of a Z-plate crystal piece 11 has a base 50 and a vibrating arm 60 extending from the base 50 in the second direction D2.
  • the base 50 has a front surface (first main surface) 50 a on the side facing the lid member 20, and a back surface (second main surface) 50 b on the side facing the base member 30.
  • the base 50 includes a connecting portion 51, a support portion 52, and a narrow portion 53 that are arranged in a direction parallel to the first main surface 50 a.
  • the connecting portion 51 is provided at the base of the vibrating arm portion 60 and commonly fixes the vibrating arm portions 60 arranged in the second direction D2.
  • the support portion 52 is provided at a distance from the connecting portion 51 in the first direction D1.
  • the narrow portion 53 is provided between the connecting portion 51 and the support portion 52 so as to connect the connecting portion 51 and the support portion 52.
  • the connecting portion 51 has a facing surface 51 a that faces the support portion 52, and the supporting portion 52 has a facing surface 51 b that faces the connecting portion 51.
  • the narrow portion 53 is connected to the central portion of the opposing surface 51 a of the connecting portion 51, and is connected to the central portion of the opposing surface 52 a of the support portion 52.
  • the narrow portion 53 has a constricted portion 53a having a minimum width in the second direction D2 when the first main surface 50a is viewed in plan.
  • the constricted portion 53 a is located in the central portion of the narrow portion 53 in the first direction D1.
  • the width of the connecting portion 51 in the second direction D2 is W1
  • the width of the support portion 52 in the second direction D2 is W2
  • the width of the narrow portion 53 in the second direction D2 is W3.
  • the width W3 is the width at the constricted portion 53a of the narrow portion 53.
  • the width W3 is smaller than the width W1 and the width W2 (W3 ⁇ W1, W3 ⁇ W2).
  • the shape of the base 50 is confined in the second direction D2 by the narrow portion 53 when the first main surface 50a of the base 50 is viewed in plan. Since the base 50 has a constricted shape, the propagation of vibration in the base 50 can be suppressed.
  • the width W2 is larger than the width W1 (W1 ⁇ W2).
  • the magnitude relationship between the width W1 and the width W2 is not limited to this, and the width W1 may be equal to or greater than the width W2.
  • the vibrating arm 60 also has a surface (first main surface) 60a on the side facing the lid member 20, and a back surface (second main surface) 60b on the side facing the base member 30.
  • the vibrating arm portion 60 is a general term for the first vibrating arm portion 61 and the second vibrating arm portion 62 that extend from the connecting portion 51 of the base portion 50 in the first direction D1 and are aligned in the second direction D2.
  • the first vibrating arm portion 61 is located on the positive side of the second vibrating arm portion 62 in the second direction D2.
  • Each of the first vibrating arm portion 61 and the second vibrating arm portion 62 is provided with a bottomed first groove 63a along the first direction D1 in the first main surface 60a, and in the first direction on the second main surface 60b.
  • a bottomed second groove 63b along D1 is provided.
  • the first groove 63a and the second groove 63b are opposed in the third direction D3.
  • the tuning fork type crystal resonator element 10 further includes a receiving portion 70 between the connecting portion 51 and the support portion 52 of the base portion 50.
  • the receiving part 70 regulates the displacement of the pair of vibrating arm parts 60 when the pair of vibrating arm parts 60 exceeds a desired amplitude range.
  • the receiving portion 70 is a general term for the first receiving portion 71 and the second receiving portion 72 that extend from the facing surface 52 a of the support portion 52.
  • the first receiving portion 71 and the second receiving portion 72 are provided so as to sandwich the narrow portion 53 in the second direction D2.
  • the first receiving portion 71 is preferably separated from the narrow portion 53 so as not to inhibit the vibration of the vibrating arm portion 60.
  • the first receiving portion 71 is an end on the positive direction side in the second direction D2 of the facing surface 52a of the support portion 52.
  • the second receiving portion 72 is also away from the narrow portion 53.
  • the second receiving portion 72 is connected to an end portion on the negative direction side in the second direction D ⁇ b> 2 of the facing surface 52 a of the support portion 52. It faces the end of the surface 51a.
  • the first receiving part 71 and the second receiving part 72 are opposed to the first vibrating arm part 61 and the second vibrating arm part 62, respectively, in the first direction D1.
  • the first receiving portion 71 has a contact surface 71 a on the side facing the facing surface 51 a of the connecting portion 51.
  • the second receiving portion 72 has a contact surface 72 a on the side facing the facing surface 51 a of the connecting portion 51.
  • the distance between the contact surfaces 71 a and 72 a of the receiving portions 71 and 72 and the facing surface 51 a of the connecting portion 51 is smaller than the distance between the facing surface 51 a of the connecting portion 51 and the facing surface 52 a of the support portion 52.
  • the tuning fork type crystal vibrating element 10 when a driving voltage is applied to each of the first vibrating arm 61 and the second vibrating arm 62 by an excitation electrode (not shown), the first vibrating arm 61 and the second vibrating arm 62 are applied.
  • the parts 62 vibrate so as to approach or separate from each other in the direction indicated by the arrow in the drawing at the tip of the vibrating arm part 60. In other words, the vibrating arm portion 60 is excited in the arc direction starting from the connecting portion 51.
  • the tuning fork type crystal resonator element 10 When the tuning fork type crystal resonator element 10 is left stationary, or when the first vibrating arm portion 61 and the second vibrating arm portion 62 vibrate in an amplitude range by excitation, the opposing surface 51a of the connecting portion 51 and the first receiver The contact surface 71a of the part 71 is separated, and the opposing surface 51a of the connecting part 51 and the contact surface 72a of the second receiving part 72 are also separated.
  • the contact surface 71a of the first receiving portion 71 or the contact surface 72a of the second receiving portion 72 is connected to the connecting portion 51. In contact with the opposite surface 51a.
  • the opposing surface 51a of the connecting portion 51 and the first receiving portion 51a comes into contact, and the first receiving part 71 regulates the displacement of the first vibrating arm part 61.
  • the second receiving portion 72 is moved to the second vibrating arm portion 62. Regulate the displacement of.
  • the deformation stress is concentrated on the narrow portion 53 (particularly the constricted portion 53a).
  • the first receiving portion 71 and the second receiving portion 72 reduce the deformation stress applied to the narrow portion 53 by restricting the displacement of the first vibrating arm portion 61 and the second vibrating arm portion 62, and the narrow portion 53. Suppresses damage.
  • the case where the first vibrating arm portion 61 or the second vibrating arm portion 62 is greatly displaced in the second direction D2 refers to a case where an impact is applied to the crystal piece 11 due to vibration or dropping during transportation, for example.
  • the shape of the lid member 20 has a concave shape and is a box shape opened toward the first main surface 32a of the base member 30.
  • the lid member 20 is joined to the base member 30 to provide an internal space 26 surrounded by the lid member 20 and the base member 30.
  • the tuning fork type crystal resonator element 10 is accommodated in the internal space 26.
  • the shape of the lid member 20 is not particularly limited as long as the tuning fork type crystal resonator element 10 can be accommodated.
  • the lid member 20 has a rectangular shape when the main surface of the top surface portion 21 is viewed in plan view. .
  • the shape of the lid member 20 is defined by, for example, a long side parallel to the first direction D1, a short side parallel to the second direction D2, and a height parallel to the third direction D3.
  • the material of the lid member 20 is not particularly limited, but is made of a conductive material such as metal. By including the conductive material, an electromagnetic shielding function capable of shielding at least a part of electromagnetic waves entering and exiting the internal space 26 through the lid member 20 is obtained.
  • the lid member 20 has an inner surface 24 and an outer surface 25.
  • the inner surface 24 is a surface on the inner space 26 side
  • the outer surface 25 is a surface opposite to the inner surface 24.
  • the lid member 20 is connected to the top surface portion 21 facing the first main surface 32 a of the base member 30 and the outer edge of the top surface portion 21 and extends in a direction intersecting the main surface of the top surface portion 21.
  • the lid member 20 has a facing surface 23 that faces the first main surface 32a of the base member 30 at the concave opening end (the end of the side wall 22 on the side close to the base member 30).
  • the facing surface 23 extends in a frame shape so as to surround the periphery of the tuning fork type crystal resonator element 10.
  • the base member 30 holds the tuning-fork type crystal resonator element 10 so that it can be excited.
  • the base member 30 has a flat plate shape.
  • the base member 30 has a long side parallel to the first direction D1, a short side parallel to the second direction D2, and a thickness parallel to the third direction D3.
  • the base member 30 has a base 31.
  • the base 31 has a first main surface 32a (front surface) and a second main surface 32b (back surface) that face each other.
  • the base 31 is a sintered material such as insulating ceramic (alumina).
  • the base 31 is preferably made of a heat resistant material.
  • the base member 30 has electrode pads 33a and 33b provided on the first main surface 32a and external electrodes 35a, 35b, 35c and 35d provided on the second main surface 32b.
  • the electrode pads 33 a and 33 b are terminals for electrically connecting the base member 30 and the tuning fork type crystal resonator element 10.
  • the external electrodes 35a, 35b, 35c, and 35d are terminals for electrically connecting a circuit board (not shown) and the tuning fork type crystal resonator 1.
  • the electrode pad 33a is electrically connected to the external electrode 35a via a via electrode 34a extending in the third direction D3, and the electrode pad 33b is an external electrode via the via electrode 34b extending in the third direction D3. It is electrically connected to 35b.
  • the via electrodes 34a and 34b are formed in via holes that penetrate the base 31 in the third direction D3.
  • the external electrodes 35c and 35d may be dummy electrodes through which an electric signal or the like is not input / output, or may be ground electrodes that improve the electromagnetic shielding function of the lid member 20 by supplying a ground potential to the lid member 20.
  • the external electrodes 35c and 35d may be omitted.
  • the conductive holding members 36 a and 36 b are provided between the first main surface 32 a of the base member 30 and the second main surface 50 b of the base 50 of the tuning fork type crystal resonator element 10. Specifically, the conductive holding members 36 a and 36 b fix the support portion 52 of the base portion 50 to the base member 30. The conductive holding members 36 a and 36 b electrically connect the tuning fork type crystal vibrating element 10 to the pair of electrode pads 33 a and 33 b of the base member 30. Further, the conductive holding members 36 a and 36 b hold the tuning fork type crystal resonator element 10 on the first main surface 32 a of the base member 30 so as to be excited.
  • the conductive holding members 36a and 36b are electrically conductive to a filler and a holding member for maintaining a distance between a resin material including a thermosetting resin, an ultraviolet curable resin, and the like, and a base member and a crystal vibrating element, or for increasing strength. And conductive particles for imparting properties.
  • the member for holding the tuning fork type crystal resonator element on the base member may be insulative. At this time, the tuning fork type crystal resonator element may be electrically connected to the electrode pad by a conduction means such as a wire bond.
  • a sealing member 37 is provided on the first main surface 32 a of the base member 30.
  • the shape of the sealing member 37 is a rectangular frame shape when the first main surface 32 a is viewed in plan.
  • the electrode pads 33 a and 33 b are disposed inside the sealing member 37, and the sealing member 37 is provided so as to surround the tuning fork type crystal resonator element 10. Yes.
  • the sealing member 37 is made of a conductive material. For example, by forming the sealing member 37 with the same material as the electrode pads 33a and 33b, the sealing member 37 can be provided simultaneously in the step of providing the electrode pads 33a and 33b.
  • the joining member 40 is provided over the entire circumference of the lid member 20 and the base member 30. Specifically, the joining member 40 is provided on the sealing member 37 and is formed in a rectangular frame shape. The sealing member 37 and the joining member 40 are sandwiched between the facing surface 23 of the side wall portion 22 of the lid member 20 and the first main surface 32 a of the base member 30.
  • the tuning fork type crystal resonator element 10 is surrounded by the lid member 20 and the base member 30 (inside space ( Cavity) 26 is sealed.
  • the internal space 26 preferably has an atmospheric pressure lower than the atmospheric pressure, and more preferably in a vacuum state. According to this, it is possible to reduce a variation with time of frequency characteristics of the tuning fork type crystal resonator 1 due to oxidation of a first excitation electrode 81 and a second excitation electrode 82 which will be described later.
  • the sealing member 37 may be provided in a discontinuous frame shape
  • the joining member 40 may be provided in a discontinuous frame shape.
  • FIG. 4 is a cross-sectional view schematically showing a cross-sectional configuration along the line IV-IV of the tuning-fork type crystal vibrating element shown in FIG.
  • a first excitation electrode 81 and a second excitation electrode 82 are provided on the surfaces of the first vibrating arm portion 61 and the second vibrating arm portion 62, respectively.
  • the first excitation electrode 81 is provided on each side surface of the first vibrating arm portion 61 and the second vibrating arm portion 62. Both side surfaces are a pair of side surfaces that connect the first main surface 60a and the second main surface 60b. That is, the first excitation electrode 81 is opposed to sandwich the first vibrating arm portion 61 and the second vibrating arm portion 62 in the second direction D2.
  • the second excitation electrode 82 is provided in each of the first groove 63a and the second groove 63b on the first main surface 60a and the second main surface 60b.
  • the second excitation electrode 82 is also provided outside the first groove 63a and the second groove 63b.
  • the first excitation electrode 81 and the second excitation electrode 82 are electrodes made of a metal film having a multilayer structure in which, for example, nickel (Ni) or chromium (Cr) is used as a base layer and gold (Au) is used as an outermost layer.
  • Chromium has high adhesion to the crystal piece, so that the excitation electrode can be prevented from being peeled off by continuous operation for a long period of time. Since gold has high chemical stability, fluctuations in vibration characteristics due to oxidation of the excitation electrode can be suppressed.
  • the first excitation electrode 81 and the second excitation electrode 82 are electrically connected to the external electrode 35a and the external electrode 35b through the conductive holding member 36a and the conductive holding member 36b, respectively.
  • the first excitation electrode 81 and the second excitation electrode 82 form an electric field inside the first vibrating arm portion 61 and the second vibrating arm portion 62, each side surface of the first vibrating arm portion 61 and the second vibrating arm portion 62. Expands and contracts based on the magnitude of the electric field voltage.
  • an alternating electric field having a specific frequency between the first excitation electrode 81 and the second excitation electrode 82 the first vibrating arm portion 61 and the second vibrating arm portion 62 become a pair of vibrating arm portions 60 in FIG. 3. Oscillate at the resonance frequency so as to approach and separate from each other in the direction of the arrow shown at the tip of the.
  • FIG. 5 is an enlarged plan view showing the structure of the base portion of the tuning fork type crystal resonator element more specifically.
  • the connection part 51 of the base 50, the support part 52, and the narrow part 53 shall be provided by cutting a quartz substrate by the wet etching mentioned later.
  • an etching residue is formed on the end face of the crystal piece 11 as shown in FIG. 5, but in the other drawings, the illustration of the etching residue is omitted in order to simplify the explanation.
  • Quartz has the characteristic that the etching rate differs depending on the crystal orientation in chemical etching such as wet etching. For this reason, etching residues of different sizes may be generated on the end face of the crystal piece 11 processed by wet etching.
  • the etching residue is a fin-like portion that is thinner than the base 50.
  • the etching residue L1 is formed on the + X axis direction side of the end surface of the base 50 extending in the Y axis direction. Therefore, the etching residue L1 extends along the + X-axis direction from the connecting portion 51 and the support portion 52 when the first main surface 50a of the base portion 50 is viewed in plan.
  • the etching residue is not substantially formed on the end surface extending in the Y-axis direction on the ⁇ X-axis direction side.
  • the etching residues L21 and L22 are formed between the narrow portion 53 and the first receiving portion 71.
  • the etching residue L21 extends from the end surfaces of the narrow portion 53 and the support portion 52
  • the etching residue L22 extends from the end surfaces of the first receiving portion 71 and the support portion 52.
  • the etching residues L31 and L32 are formed between the narrow portion 53 and the second receiving portion 72.
  • the etching residue L31 extends from the end surfaces of the narrow portion 53 and the support portion 52, and the etching residue L32 extends from the end surfaces of the second receiving portion 72 and the support portion 52. ing.
  • the etching residue L21 extends to the vicinity of the connecting portion 51, and thus the etching residue L21 is larger than the etching residue L31.
  • the narrow portion 53 has higher impact resistance against displacement along the + X-axis direction than impact resistance against displacement along the ⁇ X-axis direction of the connecting portion 51.
  • the narrow portion 53 may have a lower impact resistance against the displacement along the + X-axis direction than the impact resistance against the displacement along the ⁇ X-axis direction of the connecting portion 51.
  • the etching residue L22 can be formed relatively larger than the etching residue L21 in a substantially U-shaped (crotch-shaped) region surrounded by the narrow portion 53, the first receiving portion 71, and the support portion 52.
  • the etching residue L31 can be formed relatively larger than the etching residue L32.
  • the etching residue L31 may be formed to be relatively larger than the etching residue L21.
  • Etching residue is not substantially formed on the contact surface 71 a of the first receiving portion 71 and the contact surface 72 a of the second receiving portion 72.
  • the etching residue is not substantially formed on the facing surface 51 a of the connecting portion 51. Accordingly, when the vibrating arm portion 60 is greatly displaced so as to exceed the normal amplitude range, the receiving portion 70 is opposed to the contact surface 71a, 72a having substantially no etching residue, even in the end surface of the connecting portion 51, having substantially no etching residue. Receiving surface 51a.
  • FIG. 6 is a plan view schematically showing a configuration of a tuning fork type crystal resonator element according to the second embodiment.
  • the difference from the tuning-fork type crystal resonator element 10 according to the first embodiment is that the receiving portion 170 is composed of one first receiving portion 171.
  • the first receiving portion 171 is connected to a region on the positive direction side in the second direction D ⁇ b> 2 with respect to the narrow portion 153 in the facing surface 152 a of the support portion 152.
  • the first receiving portion 171 extends along the first direction D1 toward the connecting portion 151.
  • the position of the receiving portion 170 is not limited to the above, and the receiving portion 170 may be provided in a region on the negative direction side in the second direction D2 relative to the narrow portion 153 in the facing surface 152a of the support portion 152. According to this, the big displacement to the 2nd direction D2 negative direction side of the 2nd vibration arm part 162 can be controlled.
  • an anisotropic etching residue is generated on the end face of the tuning fork type quartz vibrating element due to the etching anisotropy based on the crystal orientation of the quartz, so that the first vibrating arm unit and the second vibrating arm unit are machined.
  • the balance of strength is broken. Therefore, in the case of using one receiving part, it is possible to calculate or measure the balance of the mechanical strength of the tuning-fork type crystal vibrating element and to arrange the receiving part so as to receive the displacement in the direction where the mechanical strength is low. desirable.
  • FIG. 7 is a plan view schematically showing a configuration of a tuning-fork type crystal resonator element according to the third embodiment.
  • the receiving portion 270 is connected to the facing surface 251a of the connecting portion 251 and extends along the first direction D1 toward the support portion 252.
  • the contact surface 271a of the first receiving portion 271 and the contact surface 272a of the second receiving portion 272 are opposed to the facing surface 252a of the support portion 252 with a gap in the first direction D1.
  • a first receiving portion 271 is provided at an end portion on the positive direction side in the second direction D2, and a second receiving portion 272 is provided at an end portion on the negative direction side in the second direction D2. Yes.
  • the first receiving portion 271 restricts a large displacement of the first vibrating arm portion 261 by receiving the opposing surface 252a of the support portion 252 with the contact surface 271a, and the second receiving portion 272 has the opposing surface 252a of the support portion 252 as the contact surface.
  • the second receiving portion 272 has the opposing surface 252a of the support portion 252 as the contact surface.
  • FIG. 8 is a flowchart showing manufacturing steps of the tuning-fork type crystal vibrating element according to the fourth embodiment.
  • FIG. 9 is a view showing a cross section along the electric axis of the quartz substrate in the step of cutting the quartz substrate shown in FIG.
  • the fourth embodiment corresponds to a manufacturing process of a crystal piece 911 applicable to the tuning fork type crystal resonator element according to each of the above embodiments.
  • a tuning fork type crystal resonator element is completed through a process of providing an electrode such as an excitation electrode.
  • the quartz substrate 910 is a plate-like member cut out from a single crystal of artificial quartz so that the XY plane becomes the first principal surface 910a and the second principal surface 910b, and is a quartz wafer, for example.
  • the quartz substrate 910 is not limited to a quartz wafer as long as it has a plurality of element regions where a quartz piece of a tuning fork type quartz vibrating element can be formed and a collective element of tuning fork type quartz vibrating elements can be formed.
  • the quartz substrate 910 may be, for example, a rectangular plate member cut from a quartz wafer.
  • the quartz substrate 910 is cut into a flat plate shape, the surface thereof is flattened by a polishing process such as chemical mechanical polishing.
  • a polishing process such as chemical mechanical polishing.
  • a photoresist layer is provided (S12).
  • the first metal layer 912a is provided on the first main surface 910a of the crystal substrate 910 so that the first metal layer 912a and the second metal layer 912b sandwich the crystal substrate 910, and the second main surface 910b is provided on the second main surface 910b.
  • a second metal layer 912b is provided.
  • the first metal layer 912a and the second metal layer 912b correspond to a corrosion-resistant film against an etching solution (for example, ammonium fluoride or buffered hydrofluoric acid) used when the crystal substrate 910 is etched, and improve the etching processing accuracy. .
  • an etching solution for example, ammonium fluoride or buffered hydrofluoric acid
  • the first metal layer 912a and the second metal layer 912b for example, a multilayer film having a chromium (Cr) layer and a gold (Au) layer is used.
  • the Cr layer improves the adhesion of the first metal layer 912a and the second metal layer 912b to the quartz substrate 910 as a base layer.
  • the Au layer improves the corrosion resistance of the first metal layer 912a and the second metal layer 912b as the outermost layer.
  • the method for forming the first metal layer 912a and the second metal layer 912b is not particularly limited.
  • the first metal layer 912a and the second metal layer 912b are provided by dry plating (dry process) such as vapor deposition or sputtering, or wet plating (wet process) such as electrolytic plating. It is done.
  • a first photoresist layer 913a is provided on the first metal layer 912a so that the first photoresist layer 913a and the second photoresist layer 913b sandwich the quartz crystal substrate 910, and the second metal layer A second photoresist layer 913b is provided on 912b.
  • the first photoresist layer 913a and the second photoresist layer 913b respectively apply a photoresist solution containing a photoresist material on the first metal layer 912a and the second metal layer 912b, and volatilize the solvent by heating.
  • the film is formed.
  • the photoresist solution coating method is, for example, a spin coating method.
  • the photoresist material is a positive photosensitive resin in which the solubility of the exposed portion is increased from the viewpoint of improving the processing accuracy of the pattern obtained by developing the first photoresist layer 913a and the second photoresist layer 913b. Is desirable.
  • the coating method of a photoresist solution is not specifically limited, For example, the spray coating method etc. may be sufficient.
  • the photoresist layer is exposed (S13).
  • the first photoresist layer 913a and the second photoresist layer 913b are irradiated with light such as ultraviolet light through a photomask on which the external pattern of the plurality of crystal pieces 911 is drawn.
  • the exposure apparatus used for the exposure is a single-sided exposure apparatus that exposes only one of the first photoresist layer 913a and the second photoresist layer 913b. Note that a double-sided exposure apparatus capable of exposing both at the same time may be used.
  • the photoresist layer is developed (S14).
  • the exposed portion is developed by immersing the first photoresist layer 913a and the second photoresist layer 913b in a developer. Dissolved in the liquid and removed.
  • the outer shape pattern of the crystal piece 911 is patterned on the first photoresist layer 913a and the second photoresist layer 913b. In other words, parts of the first metal layer 912a and the second metal layer 912b are exposed based on the outer shape pattern of the crystal piece 911, respectively.
  • step S15 the quartz substrate is cut by wet etching (S15).
  • step S15 first, the first metal layer 912a and the second metal layer 912b exposed based on the outer shape pattern of the crystal piece 911 are etched. Thereby, a part of the quartz substrate 910 is exposed based on the external pattern of the quartz piece 911.
  • the first metal layer 912a and the second metal layer 912b are etched by, for example, wet etching of a Cr layer using a cerium-based etching solution and wet etching of an Au layer using an iodine-based etching solution.
  • step S15 next, the exposed portion of the quartz substrate 910 is cut so as to penetrate.
  • the quartz substrate 910 is etched by wet etching using a hydrofluoric acid-based etching solution to form a quartz piece 911 of a tuning fork type quartz vibrating element.
  • the quartz substrate 910 is processed into an aggregate substrate having a plurality of quartz pieces 911.
  • the photoresist layer is removed (S16).
  • the first metal layer 912a and the first photoresist layer 913a remain on the first main surface 910a of the quartz substrate 910, and the second metal layer 912b on the second main surface 910b.
  • the second photoresist layer 913b remains.
  • the residue of the first photoresist layer 913a and the second photoresist layer 913b is removed from the quartz substrate 910 by cleaning with a solvent, and then the residue of the first metal layer 912a and the second metal layer 912b is removed.
  • step S15 since the single crystal of artificial quartz has a different etching speed (etching rate) depending on the crystal orientation, an etching residue L1 is formed on the crystal piece 911 formed by etching.
  • the etching residue L1 extends outward from the first main surface 911a with a different size depending on the crystal axis direction.
  • the cross section of the crystal piece 911 parallel to the XZ plane has a first main surface 911a, a second main surface 911b, and an etching residue L1.
  • the first main surface 911a and the second main surface 911b correspond to portions covered by the first metal layer 912a and the second metal layer 912b as the quartz substrate 910, respectively.
  • the etching residue L1 corresponds to an end surface connecting the end portions of the first main surface 911a and the second main surface 911b in the + X-axis direction (electrical axis positive direction).
  • the crystal substrate 910 is etched in the direction in which the crystal plane is formed, for example. Specifically, the quartz substrate 910 is etched so that the first end surface 911c is formed so as to approach the crystal surface from the first main surface 910a, and is etched so as to approach the crystal surface from the second main surface 910b. As a result, the second end face 911d is formed. The first end surface 911c is inclined with respect to the first main surface 911a and the second end surface 911d is inclined with respect to the second main surface 911b, following the inclination of the crystal plane with respect to the + X axis direction of the crystal.
  • the etching residue L1 is connected to the first main surface 911c connected to the first main surface 911a so as to form an obtuse angle on the crystal piece 911 side, and the second end surface connected to the second main surface 911b so as to form an obtuse angle on the crystal piece 911 side. And an end face 911d.
  • the first end surface 911c and the second end surface 911d are tips of the etching residue L1 in the + X-axis direction and are connected to form an angle ⁇ 1 on the crystal piece 911 side.
  • the ends of the first main surface 911a and the second main surface 911b in the ⁇ X-axis direction are connected by a third end surface 911e substantially orthogonal to the first main surface 911a and the second main surface 911b.
  • the length of the third end surface 911e in the XZ plane is smaller than the sum of the lengths of the first end surface 911c and the second end surface 911d in the XZ plane. Since the angle formed by the tip of the etching residue L1 is ⁇ 1, the end surface having the etching residue L1 is an end surface where the other etching residue is not substantially generated (for example, the opposing surface 51a of the connecting portion 51 and the contact surface 71a of the receiving portion 70). , 72a), and is easily damaged by an external impact.
  • One base 70, and the base 50 is spaced from the connecting part 51 in the first direction D1 by a connecting part 51 provided to fix the roots of the plurality of vibrating arm parts 60 in common.
  • the connection part 51 and the support part 52 may be connected between the support part 52 provided in the space and the connection part 51 and the support part 52, and the width in the second direction D2 is the connection part 51 and the support part.
  • the tuning fork crystal resonator element 10 provided between the connecting portion 51 and the support portion 52 in the first direction D1 is provided.
  • the crystal resonator element can be made smaller than the configuration in which the receiving portion and the vibrating arm portion are arranged in the second direction.
  • the base and the receiving portion come into contact with each other, and large displacement of the vibrating arm that exceeds the normal amplitude range as a crystal vibrating element can be regulated. .
  • the impact resistance of the crystal resonator element is improved, and damage to the vibrating arm portion and the base portion can be suppressed.
  • the vibrating arm portion is mechanically connected to the support portion via a narrow portion having a small vibration propagation region. Therefore, vibration leakage from the connecting portion to the support portion is reduced, and attenuation of vibration energy in the vibrating arm portion can be suppressed.
  • the receiving part 70 may be connected to one of the connecting part 51 and the supporting part 52 and may extend toward the other. According to this, since a complicated structure or the like for providing the receiving portion is unnecessary, the tuning fork type crystal vibrating element can be reduced in size.
  • the receiving unit 70 may be connected to the support unit 52. According to this, it is possible to suppress the influence on the vibration characteristics of the tuning-fork type crystal resonator element by providing the receiving portion.
  • the support portion 52 may be a fixed portion to which the tuning fork type crystal resonator element 10 is fixed. According to this, vibration leakage from the vibrating arm portion to the cage such as the base member or the lid member of the tuning fork type crystal resonator can be suppressed through the fixing portion. Further, the impact resistance of the tuning fork type crystal vibrating element is improved by connecting the receiving part to the fixed part.
  • the connecting portion 51 and the support portion 52 have opposing surfaces 51a and 52a that face each other in the first direction D1, and the narrow portion 53 is connected to the central portion of the opposing surface 51a of the connecting portion 51 in the second direction D2.
  • the receiving portion 70 may be connected to the facing surface 52a of the support portion 52 and face the end portion of the facing surface 51a of the connecting portion 51 in the second direction D2. According to this, interference with a receiving part and a narrow part can be suppressed.
  • the connecting portion 251 and the support portion 252 have facing surfaces 251a and 252a that face each other in the first direction D1, and the narrow portion 253 is connected to the central portion in the second direction D2 of the facing surface 251a of the connecting portion 251.
  • the receiving portion 270 may be connected to the end portion in the second direction D2 of the facing surface 251a of the connecting portion 251 and may face the facing surface 252a of the support portion 252. According to this, interference with a receiving part and a narrow part can be suppressed.
  • the receiving part 70 may be provided in at least two places so as to sandwich the narrow part 53 in the second direction D2. According to this, even if the direction of the large displacement of the vibrating arm part is the positive direction or the negative direction of the second direction, it can be regulated by the receiving part.
  • the base 50, the vibrating arm portion 60, and the receiving portion 70 are provided by crystal, and the receiving portion 70 is a contact surface that contacts the connecting portion 51 or the support portion 52 when the vibrating arm portion 60 exceeds a desired amplitude range.
  • 71a and 72a may be provided, and the contact surfaces 71a and 72a of the receiving part 70 may extend along the electric axis of the crystal. According to this, the etching residue formed on the contact surface of the receiving portion is small. For this reason, the particles generated due to the damage of the etching residue when the receiving part comes into contact with the base part can be suppressed.
  • the base 50 the plurality of vibrating arms 60 extending from the base 50 in the first direction D1 and arranged in the second direction D2 intersecting the first direction D1, and at least one receiving member.
  • the base 50 is provided with a connecting portion 51 provided so as to fix the roots of the plurality of vibrating arm portions 60 in common, and spaced from the connecting portion 51 in the first direction D1.
  • the connecting portion 51 and the supporting portion 52 are provided so as to connect the connecting portion 51 and the supporting portion 52, and the width in the second direction D2 is larger than that of the connecting portion 51 and the supporting portion 52.
  • the receiving portion 70 vibrates by contacting the connecting portion 51 or the supporting portion 52 in the first direction D1 when the plurality of vibrating arm portions 60 exceed a desired amplitude range.
  • Tuning fork type that regulates displacement of arm 60 Crystal vibrating element 10, is provided. Even in such an embodiment, the same effect as described above can be obtained.
  • a step of preparing a quartz substrate 910 a step of providing photoresist layers 913a and 913b on the quartz substrate 910, a step of patterning the photoresist layers 913a and 913b, and patterning
  • the crystal substrate 910 is etched by wet etching on the basis of the photoresist layers 913a and 913b, and the crystal piece 911 is formed.
  • the crystal piece 911 includes the base 50 and the base 50 in the first direction D1.
  • a plurality of vibrating arm portions 60 arranged in the second direction D2 intersecting the extending first direction D1 and at least one receiving portion 70 are provided, and the base 50 has a common root of the plurality of vibrating arm portions 60 in common.
  • the connecting part 51 provided so as to be fixed, and the supporting part provided at a distance from the connecting part 51 in the first direction D1. 2 and the connecting portion 51 and the support portion 52 are provided so as to connect the connecting portion 51 and the support portion 52, and the width in the second direction D2 is smaller than the connecting portion 51 and the support portion 52.
  • the receiving part 70 is provided with a method for manufacturing a tuning-fork type crystal vibrating element provided between the connecting part 51 and the support part 52 in the first direction D1. Even in such an embodiment, the same effect as described above can be obtained.
  • the first direction D1 may extend along the mechanical axis Y of the crystal constituting the crystal piece 911, and the second direction D2 may extend along the electrical axis X of the crystal. . According to this, it is possible to form the end surfaces of the connecting portion and the receiving portion that face each other (the opposing surface of the connecting portion and the contact surface of the receiving portion) so that substantially no etching residue is generated.
  • the base member 30, the lid member 20 that forms the internal space 26 between the base member 30, the tuning-fork type crystal resonator element 10 accommodated in the internal space 26, and the tuning fork Conductive holding members 36a and 36b for holding the quartz crystal resonator element 10 on the base member 30, and the tuning fork crystal resonator element 10 extends in the first direction D1 from the base 50 and the first direction D1.
  • a plurality of vibrating arm portions 60 arranged in the intersecting second direction D2 and at least one receiving portion 70 are provided, and the base 50 is provided so as to fix the roots of the plurality of vibrating arm portions 60 in common.
  • the receiving portion 70 is provided between the connecting portion 51 and the support portion 52 in the first direction D1, and is electrically conductive.
  • the tuning fork type crystal resonator 1 in which the support portion 52 is fixed to the base member 30 is provided. Even in such an embodiment, the same effect as described above can be obtained.
  • a tuning fork type crystal resonator element As described above, according to one aspect of the present invention, it is possible to provide a tuning fork type crystal resonator element, a manufacturing method thereof, and a tuning fork type crystal resonator that can be reduced in size while improving impact resistance.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

The present invention is provided with: a base part (50); a plurality of vibration arm parts (60) extending from the base part (50) in a first direction (D1), the vibration arm parts (60) being arranged in a second direction (D2) that intersects the first direction (D1); and at least one receiving part (70). The base part (50) is provided with: a linking part (51) provided so as to fix, in common, the roots of the plurality of vibration arm parts (60); a support part (52) provided so as to be set apart in the first direction (D1) from the linking part (51); and a low-width part (53) provided between the linking part (51) and the support part (52) so as to connect the linking part (51) and the support part (52), the low-width part (53) having a lower width in the second direction (D2) than do the linking part (51) and the support part (52). The receiving part (70) is provided between the linking part (51) and the support part (52) in the first direction (D1).

Description

音叉型水晶振動素子及びその製造方法、並びに音叉型水晶振動子Tuning fork type crystal resonator element, manufacturing method thereof, and tuning fork type crystal resonator
 本発明は、水晶の圧電効果に基づき動作する音叉型水晶振動素子及びその製造方法、並びに音叉型水晶振動子に関する。 The present invention relates to a tuning fork type crystal vibrating element that operates based on the piezoelectric effect of quartz, a manufacturing method thereof, and a tuning fork type crystal resonator.
 音叉型水晶振動子は、基材の基部から一対の振動腕を並行に延出させた音叉型水晶振動素子が用いられる。このような水晶振動子は、モバイルコンピュータ、携帯ゲーム機、携帯電話、ICカード、通信基地局、等の電子機器に搭載されるタイミングデバイスや振動ジャイロセンサ等に利用される。電子機器の小型化や高性能化に伴い、音叉型水晶振動子及びそれに内蔵される音叉型水晶振動素子は、小型化及び信頼性の向上が求められている。 As the tuning fork type crystal resonator, a tuning fork type crystal vibrating element in which a pair of vibrating arms are extended in parallel from the base of the base material is used. Such a crystal resonator is used for a timing device or a vibration gyro sensor mounted on an electronic device such as a mobile computer, a portable game machine, a mobile phone, an IC card, and a communication base station. With the downsizing and high performance of electronic devices, tuning fork type crystal resonators and tuning fork type crystal resonator elements incorporated therein are required to be downsized and improved in reliability.
 例えば、特許文献1には、基部と、基部のから延出した一対の振動腕と、振動腕と並行するように伸びた支持腕と、を備えた振動片が開示されている。特許文献1に記載の振動片は、振動エネルギの損失を低減する目的で基部の両主面に括れを表すように切り込みを有している。また、振動腕が大きく変位するような衝撃が加わった際に基部の括れが破損することを防止する目的で、振動腕が通常の振幅範囲を超えて変位したときに振動腕に接触するように、支持腕の先端に受け部を有している。 For example, Patent Document 1 discloses a resonator element including a base, a pair of vibrating arms extending from the base, and a support arm extending in parallel with the vibrating arms. The vibration piece described in Patent Document 1 has a cut so as to indicate constriction on both main surfaces of the base for the purpose of reducing loss of vibration energy. In addition, in order to prevent the base neck from being damaged when an impact that causes the vibration arm to be greatly displaced is applied, the vibration arm should be in contact with the vibration arm when displaced beyond the normal amplitude range. The support arm has a receiving portion at the tip.
特開2012-151639号公報JP 2012-151539 A
 しかしながら、特許文献1に記載の振動片では受け部を設けるためには、振動腕と並行するように支持腕を設けなければならず、小型化が妨げられる課題がある。 However, in order to provide the receiving portion in the resonator element described in Patent Document 1, it is necessary to provide a support arm in parallel with the vibrating arm, and there is a problem that miniaturization is hindered.
 本発明はこのような事情に鑑みてなされたものであり、本発明の目的は、耐衝撃性を向上しつつ小型化できる音叉型水晶振動素子及びその製造方法、並びに音叉型水晶振動子の提供である。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a tuning fork type crystal resonator element that can be reduced in size while improving impact resistance, a method for manufacturing the same, and a tuning fork type crystal resonator. It is.
 本発明の一態様に係る音叉型水晶振動素子は、基部と、基部から第1方向に延出し第1方向と交差する第2方向に並ぶ複数の振動腕部と、少なくとも1つの受け部と、を備え、基部は、複数の振動腕部の付け根を共通して固定するように設けられている連結部と、第1方向において連結部から間隔を空けて設けられている支持部と、連結部と支持部との間において連結部と支持部とを繋ぐように設けられ、第2方向における幅が連結部及び支持部よりも小さい幅狭部と、を備え、受け部は、第1方向における連結部と支持部との間に設けられている。 A tuning fork type crystal resonator element according to an aspect of the present invention includes a base, a plurality of vibrating arm portions extending in a first direction from the base and arranged in a second direction intersecting the first direction, and at least one receiving portion, The base includes a connecting portion provided to fix the roots of the plurality of vibrating arm portions in common, a support portion provided at a distance from the connecting portion in the first direction, and a connecting portion. And the support portion, the connection portion and the support portion are connected to each other, the width in the second direction is smaller than the connection portion and the support portion, and the receiving portion is in the first direction. It is provided between the connection part and the support part.
 本発明の他の一態様に係る音叉型水晶振動素子は、基部と、基部から第1方向に延出し第1方向と交差する第2方向に並ぶ複数の振動腕部と、少なくとも1つの受け部と、を備え、基部は、複数の振動腕部の付け根を共通して固定するように設けられている連結部と、第1方向において連結部から間隔を空けて設けられている支持部と、連結部と支持部との間において連結部と支持部とを繋ぐように設けられ、第2方向における幅が連結部及び支持部よりも小さい幅狭部と、を備え、受け部は、複数の振動腕部が所望の振幅範囲を超えた場合に、第1方向において連結部又は支持部と接触することによって振動腕部の変位を規制する。 A tuning fork type crystal resonator element according to another aspect of the present invention includes a base, a plurality of vibrating arms extending in the first direction from the base and arranged in a second direction intersecting the first direction, and at least one receiving portion. And a base portion is provided so as to commonly fix the roots of the plurality of vibrating arm portions, and a support portion provided at a distance from the connection portion in the first direction, The connecting part and the support part are provided so as to connect the connecting part and the support part, and the width in the second direction is smaller than the connecting part and the support part. When the vibrating arm part exceeds a desired amplitude range, the displacement of the vibrating arm part is regulated by contacting the connecting part or the support part in the first direction.
 本発明の他の一態様に係る音叉型水晶振動素子の製造方法は、水晶基板を準備する工程と、水晶基板の上にフォトレジスト層を設ける工程と、フォトレジスト層をパターニングする工程と、パターニングされたフォトレジスト層に基づいて水晶基板をウェットエッチングによってエッチング加工し水晶片を形成する工程と、を含み、水晶片は、基部と、基部から第1方向に延出し第1方向と交差する第2方向に並ぶ複数の振動腕部と、少なくとも1つの受け部と、を備え、基部は、複数の振動腕部の付け根を共通して固定するように設けられている連結部と、第1方向において連結部から間隔を空けて設けられている支持部と、連結部と支持部との間において連結部と支持部とを繋ぐように設けられ、第2方向における幅が連結部及び支持部よりも小さい幅狭部と、を備え、受け部は、第1方向における連結部と支持部との間に設けられる。 According to another aspect of the present invention, there is provided a method for manufacturing a tuning-fork type crystal resonator element comprising: preparing a quartz substrate; providing a photoresist layer on the quartz substrate; patterning the photoresist layer; And a step of etching the quartz crystal substrate by wet etching based on the photoresist layer formed to form a quartz piece, the quartz piece extending from the base in the first direction and intersecting the first direction. A plurality of vibrating arm portions arranged in two directions, and at least one receiving portion, wherein the base portion includes a connecting portion provided so as to fix the roots of the plurality of vibrating arm portions in common; and a first direction And a support portion provided at a distance from the connection portion, and the connection portion and the support portion are provided so as to connect the connection portion and the support portion, and the width in the second direction is the connection portion and the support portion. And a small narrow portion than the receiving unit, provided between the coupling portion and the support portion in the first direction.
 本発明の他の一態様に係る音叉型水晶振動子は、ベース部材と、ベース部材との間に内部空間を形成する蓋部材と、内部空間に収容される音叉型水晶振動素子と、音叉型水晶振動素子をベース部材に保持する保持部材とを備え、音叉型水晶振動素子は、基部と、基部から第1方向に延出し第1方向と交差する第2方向に並ぶ複数の振動腕部と、少なくとも1つの受け部と、を備え、基部は、複数の振動腕部の付け根を共通して固定するように設けられている連結部と、第1方向において連結部から間隔を空けて設けられている支持部と、連結部と支持部との間において連結部と支持部とを繋ぐように設けられ、第2方向における幅が連結部及び支持部よりも小さい幅狭部と、を備え、受け部は、第1方向における連結部と支持部との間に設けられており、保持部材は、支持部をベース部材に固定している。 A tuning fork crystal resonator according to another aspect of the present invention includes a base member, a lid member that forms an internal space between the base member, a tuning fork crystal resonator element housed in the internal space, and a tuning fork type A tuning fork type quartz crystal vibrating element including a base and a plurality of vibrating arms extending in the first direction and extending in the second direction intersecting the first direction. At least one receiving portion, and the base portion is provided at a distance from the connecting portion in the first direction and a connecting portion provided so as to fix the roots of the plurality of vibrating arm portions in common. A support portion, and a narrow portion that is provided so as to connect the connection portion and the support portion between the connection portion and the support portion, and whose width in the second direction is smaller than that of the connection portion and the support portion, The receiving part is provided between the connecting part and the support part in the first direction. It is and the holding member is fixed to the base member supporting portion.
 本発明によれば、耐衝撃性を向上しつつ小型化できる音叉型水晶振動素子及びその製造方法、並びに音叉型水晶振動子の提供が可能となる。 According to the present invention, it is possible to provide a tuning fork crystal resonator element that can be reduced in size while improving impact resistance, a method for manufacturing the same, and a tuning fork crystal resonator.
図1は、音叉型水晶振動子の構成を概略的に示す分解斜視図である。FIG. 1 is an exploded perspective view schematically showing a configuration of a tuning fork type crystal resonator. 図2は、図1に示した音叉型水晶振動子のII-II線に沿った断面の構成を概略的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a cross-sectional configuration along the line II-II of the tuning fork type crystal resonator shown in FIG. 図3は、第1実施形態に係る音叉型水晶振動素子の構成を概略的に示す平面図である。FIG. 3 is a plan view schematically showing the configuration of the tuning fork type crystal resonator element according to the first embodiment. 図4は、図3に示した音叉型水晶振動素子のIV-IV線に沿った断面の構成を概略的に示す断面図である。4 is a cross-sectional view schematically showing a cross-sectional configuration along the line IV-IV of the tuning-fork type crystal vibrating element shown in FIG. 図5は、音叉型水晶振動素子の基部の構造をより具体的に示した拡大平面図である。FIG. 5 is an enlarged plan view showing the structure of the base portion of the tuning fork type crystal resonator element more specifically. 図6は、第2実施形態に係る音叉型水晶振動素子の構成を概略的に示す平面図である。FIG. 6 is a plan view schematically showing a configuration of a tuning fork type crystal resonator element according to the second embodiment. 図7は、第3実施形態に係る音叉型水晶振動素子の構成を概略的に示す平面図である。FIG. 7 is a plan view schematically showing a configuration of a tuning-fork type crystal resonator element according to the third embodiment. 図8は、第4実施形態に係る音叉型水晶振動素子の製造工程を示すフローチャートである。FIG. 8 is a flowchart showing manufacturing steps of the tuning-fork type crystal vibrating element according to the fourth embodiment. 図9は、図8に示した水晶基板を切削する工程における、水晶基板の電気軸に沿った断面を示す図である。FIG. 9 is a view showing a cross section along the electric axis of the quartz substrate in the step of cutting the quartz substrate shown in FIG.
 以下、図面を参照しながら本発明の実施形態について説明する。但し、第2実施形態以降において、第1実施形態と同一又は類似の構成要素は、第1実施形態と同一又は類似の符号で表し、詳細な説明を適宜省略する。また、第2実施形態以降の実施形態において得られる効果について、第1実施形態と同様のものについては説明を適宜省略する。各実施形態の図面は例示であり、各部の寸法や形状は模式的なものであり、本願発明の技術的範囲を当該実施形態に限定して解するべきではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, in the second and subsequent embodiments, the same or similar components as those in the first embodiment are denoted by the same or similar reference numerals as those in the first embodiment, and detailed description thereof is omitted as appropriate. Moreover, about the effect acquired in embodiment after 2nd Embodiment, description is abbreviate | omitted suitably about the thing similar to 1st Embodiment. The drawings of the embodiments are exemplifications, the dimensions and shapes of the respective parts are schematic, and the technical scope of the present invention should not be understood as being limited to the embodiments.
 <第1実施形態>
 まず、図1~図3を参照しつつ、本発明の第1実施形態に係る音叉型水晶振動素子10、及び音叉型水晶振動素子10を備えた音叉型水晶振動子1について説明する。図1は、音叉型水晶振動子の構成を概略的に示す分解斜視図である。図2は、図1に示した音叉型水晶振動子のII-II線に沿った断面の構成を概略的に示す断面図である。図3は、第1実施形態に係る音叉型水晶振動素子の構成を概略的に示す平面図である。
<First Embodiment>
First, a tuning fork type crystal resonator element 10 according to a first embodiment of the present invention and a tuning fork type crystal resonator 1 including the tuning fork type crystal resonator element 10 will be described with reference to FIGS. FIG. 1 is an exploded perspective view schematically showing a configuration of a tuning fork type crystal resonator. FIG. 2 is a cross-sectional view schematically showing a cross-sectional configuration along the line II-II of the tuning fork type crystal resonator shown in FIG. FIG. 3 is a plan view schematically showing the configuration of the tuning fork type crystal resonator element according to the first embodiment.
 なお、図1~図3において、音叉型水晶振動素子10に備えられる励振電極、接続電極、等の電極については図示を省略している。また、図中に示した第1方向D1、第2方向D2、及び第3方向D3は、例えばそれぞれ互いに直交する方向である。なお、第1方向D1、第2方向D2、及び第3方向D3は、互いに90°以外の角度で交差する方向であってもよい。また、第1方向D1、第2方向D2、及び第3方向D3は、図1に示す矢印の方向(正方向)に限定されず、矢印とは反対の方向(負方向)も含む。 1 to 3, illustration of the electrodes such as the excitation electrode and the connection electrode provided in the tuning-fork type crystal resonator element 10 is omitted. Also, the first direction D1, the second direction D2, and the third direction D3 shown in the drawing are, for example, directions orthogonal to each other. The first direction D1, the second direction D2, and the third direction D3 may be directions that intersect each other at an angle other than 90 °. Further, the first direction D1, the second direction D2, and the third direction D3 are not limited to the arrow direction (positive direction) shown in FIG. 1, but also include the direction opposite to the arrow (negative direction).
 音叉型水晶振動子1は、水晶振動子(Quartz Crystal Resonator Unit)の一種である。また、音叉型水晶振動素子10は、水晶振動素子(Quartz Crystal Resonator)の一種であり、印加電圧に応じて励振する励振部分が音叉形状における並行する腕部に相当する。水晶振動素子は、印加電圧に応じて振動する圧電体として水晶片(Quartz Crystal Element)を利用する圧電振動素子(Piezoelctric Resonator)である。 The tuning fork type crystal resonator 1 is a kind of crystal resonator (Quartz Crystal Resonator Unit). Further, the tuning fork type crystal resonator element 10 is a kind of crystal resonator element (Quartz Crystal Resonator), and an excitation portion excited according to an applied voltage corresponds to a parallel arm portion in a tuning fork shape. The crystal resonator element is a piezoelectric resonator element that uses a quartz piece (Quartz Crystal Element) as a piezoelectric body that vibrates according to an applied voltage.
 図1に示すように、音叉型水晶振動子1は、音叉型水晶振動素子10と、蓋部材20と、ベース部材30と、接合部材40と、を備える。ベース部材30及び蓋部材20は、音叉型水晶振動素子10を収容するための保持器である。ここで図示した例では、蓋部材20は凹状、具体的には開口部を有する箱状、をなしており、ベース部材30は平板状をなしている。蓋部材20及びベース部材30の形状は、上記に限定されるものではなく、例えばベース部材が凹状をなしていてもよく、蓋部材及びベース部材の両方が互いに対向する側に開口部を有する凹状であってもよい。 As shown in FIG. 1, the tuning fork crystal resonator 1 includes a tuning fork crystal resonator element 10, a lid member 20, a base member 30, and a bonding member 40. The base member 30 and the lid member 20 are holders for housing the tuning fork type crystal resonator element 10. In the example illustrated here, the lid member 20 has a concave shape, specifically, a box shape having an opening, and the base member 30 has a flat plate shape. The shapes of the lid member 20 and the base member 30 are not limited to the above. For example, the base member may have a concave shape, and both the lid member and the base member have a concave shape having openings on the sides facing each other. It may be.
 音叉型水晶振動素子10は、水晶片11を有する。水晶片11は、Z板水晶片である。詳細には、X軸、Y軸、及びZ軸からなる直交座標系において、Z軸を中心に時計回りに0度~5度の範囲で回転させて、X軸及びY軸によって特定される面と平行な面(以下、「XY面」と呼ぶ。他の軸又は他の方向によって特定される面についても同様である。)がZ板水晶片の主面であり、Z軸と平行な方向の長さがZ板水晶片の厚さである。Z板水晶片は、例えば、人工水晶(Synthetic Quartz Crystal)のインゴットを切断及び研磨加工して得られる水晶基板をエッチング加工することで形成される。X軸、Y軸、及びZ軸は、それぞれ水晶の結晶軸であり、X軸が電気軸、Y軸が機械軸、Z軸が光学軸に相当する。また、X軸は、正方向を持つ極性軸である。以下、+X軸と平行な方向を+X軸方向と呼ぶ。-X軸方向、Y軸方向、Z軸方向についても同様とする。なお、水晶片11は、Z板水晶片以外の異なるカットを適用してもよい。 The tuning fork type crystal resonator element 10 includes a crystal piece 11. The crystal piece 11 is a Z plate crystal piece. Specifically, in a Cartesian coordinate system composed of an X axis, a Y axis, and a Z axis, a surface specified by the X axis and the Y axis by rotating clockwise around the Z axis in the range of 0 degrees to 5 degrees. (Hereinafter referred to as “XY plane”, the same applies to surfaces specified by other axes or other directions) is the principal surface of the Z-plate crystal piece, and is parallel to the Z axis. Is the thickness of the Z-plate crystal piece. The Z plate crystal piece is formed, for example, by etching a quartz substrate obtained by cutting and polishing an ingot of an artificial quartz (Synthetic Quartz Crystal). The X axis, the Y axis, and the Z axis are crystal axes of quartz, respectively. The X axis corresponds to the electrical axis, the Y axis corresponds to the mechanical axis, and the Z axis corresponds to the optical axis. The X axis is a polar axis having a positive direction. Hereinafter, a direction parallel to the + X axis is referred to as a + X axis direction. The same applies to the X-axis direction, the Y-axis direction, and the Z-axis direction. The crystal piece 11 may be applied with a different cut other than the Z-plate crystal piece.
 音叉型水晶振動素子10は、Y軸が第1方向D1と平行であり、X軸が第2方向D2と平行であり、Z軸が第3方向D3と平行となるように定められている。極性軸であるX軸方向においては、+X軸方向を第2方向D2の正方向とし、-X軸方向を第2方向D2の負方向とする。但し、第1方向D1はY軸方向に沿っていればよく、例えばY軸方向から-5度~+5度の範囲で傾いてもよい。同様に、第2方向D2もX軸方向から-5度~+5度の範囲で傾いてもよく、第3方向D3もZ軸方向から-5度~+5度の範囲で傾いてもよい。 The tuning fork type crystal resonator element 10 is determined so that the Y axis is parallel to the first direction D1, the X axis is parallel to the second direction D2, and the Z axis is parallel to the third direction D3. In the X-axis direction that is the polar axis, the + X-axis direction is the positive direction of the second direction D2, and the -X-axis direction is the negative direction of the second direction D2. However, the first direction D1 only needs to be along the Y-axis direction, and for example, the first direction D1 may be inclined within a range of −5 degrees to +5 degrees from the Y-axis direction. Similarly, the second direction D2 may be tilted in the range of −5 degrees to +5 degrees from the X-axis direction, and the third direction D3 may be tilted in the range of −5 degrees to +5 degrees from the Z-axis direction.
 図1及び図3に示すように、Z板の水晶片11からなる音叉型水晶振動素子10は、基部50と、基部50から第2方向D2に延出した振動腕部60と、を有する。 As shown in FIGS. 1 and 3, the tuning-fork type crystal vibrating element 10 made of a Z-plate crystal piece 11 has a base 50 and a vibrating arm 60 extending from the base 50 in the second direction D2.
 基部50は、蓋部材20と対向する側に表面(第1主面)50aを有し、ベース部材30と対向する側に裏面(第2主面)50bを有する。基部50は、第1主面50aと平行な方向に並ぶ連結部51、支持部52、及び幅狭部53を有する。連結部51は、振動腕部60の付け根に設けられ、第2方向D2に並ぶ振動腕部60を共通して固定している。支持部52は、第1方向D1において連結部51から間隔を空けて設けられている。幅狭部53は、連結部51と支持部52との間において、連結部51と支持部52とを繋ぐように設けられている。連結部51は支持部52と対向する対向面51aを有し、支持部52は連結部51と対向する対向面51bを有する。幅狭部53は、連結部51の対向面51aの中央部に接続され、支持部52の対向面52aの中央部に接続されている。なお、幅狭部53は、第1主面50aを平面視したとき、第2方向D2における幅が最小となる括れ部53aを有している。括れ部53aは、幅狭部53の第1方向D1における中央部に位置している。 The base 50 has a front surface (first main surface) 50 a on the side facing the lid member 20, and a back surface (second main surface) 50 b on the side facing the base member 30. The base 50 includes a connecting portion 51, a support portion 52, and a narrow portion 53 that are arranged in a direction parallel to the first main surface 50 a. The connecting portion 51 is provided at the base of the vibrating arm portion 60 and commonly fixes the vibrating arm portions 60 arranged in the second direction D2. The support portion 52 is provided at a distance from the connecting portion 51 in the first direction D1. The narrow portion 53 is provided between the connecting portion 51 and the support portion 52 so as to connect the connecting portion 51 and the support portion 52. The connecting portion 51 has a facing surface 51 a that faces the support portion 52, and the supporting portion 52 has a facing surface 51 b that faces the connecting portion 51. The narrow portion 53 is connected to the central portion of the opposing surface 51 a of the connecting portion 51, and is connected to the central portion of the opposing surface 52 a of the support portion 52. The narrow portion 53 has a constricted portion 53a having a minimum width in the second direction D2 when the first main surface 50a is viewed in plan. The constricted portion 53 a is located in the central portion of the narrow portion 53 in the first direction D1.
 連結部51の第2方向D2における幅をW1、支持部52の第2方向D2における幅をW2、幅狭部53の第2方向D2における幅をW3とする。なお、幅W3は、幅狭部53の括れ部53aにおける幅である。幅W3は幅W1及び幅W2よりも小さい(W3<W1,W3<W2)。言い換えると、基部50の形状は、基部50の第1主面50aを平面視したとき、幅狭部53で第2方向D2に括れている。基部50が括れ形状となっていることにより、基部50における振動の伝播が抑制できる。したがって、一対の振動腕部60で励起された振動が基部50を通して外部に伝わる、いわゆる振動漏れが抑制できる。また、一例として、幅W2は幅W1よりも大きい(W1<W2)。但し、幅W1及び幅W2の大小関係はこれに限定されるものではなく、幅W1が幅W2と同等以上であってもよい。 The width of the connecting portion 51 in the second direction D2 is W1, the width of the support portion 52 in the second direction D2 is W2, and the width of the narrow portion 53 in the second direction D2 is W3. The width W3 is the width at the constricted portion 53a of the narrow portion 53. The width W3 is smaller than the width W1 and the width W2 (W3 <W1, W3 <W2). In other words, the shape of the base 50 is confined in the second direction D2 by the narrow portion 53 when the first main surface 50a of the base 50 is viewed in plan. Since the base 50 has a constricted shape, the propagation of vibration in the base 50 can be suppressed. Therefore, so-called vibration leakage, in which the vibration excited by the pair of vibrating arms 60 is transmitted to the outside through the base 50, can be suppressed. As an example, the width W2 is larger than the width W1 (W1 <W2). However, the magnitude relationship between the width W1 and the width W2 is not limited to this, and the width W1 may be equal to or greater than the width W2.
 振動腕部60も基部50と同様、蓋部材20と対向する側に表面(第1主面)60aを有し、ベース部材30と対向する側に裏面(第2主面)60bを有する。振動腕部60は、基部50の連結部51から第1方向D1に延出し、第2方向D2に並ぶ第1振動腕部61及び第2振動腕部62を総称するものである。第1振動腕部61は、第2振動腕部62の第2方向D2正方向側に位置している。第1振動腕部61及び第2振動腕部62は、それぞれ、第1主面60aに第1方向D1に沿った有底の第1溝63aが設けられ、第2主面60bに第1方向D1に沿った有底の第2溝63bが設けられている。第1溝63a及び第2溝63bは、第3方向D3において対向している。このように、第1溝63a及び第2溝63bを設けることで、第1振動腕部61及び第2振動腕部62の動きやすさが向上し、第1振動腕部61及び第2振動腕部62から基部50への振動漏れが抑制できる。 Similarly to the base 50, the vibrating arm 60 also has a surface (first main surface) 60a on the side facing the lid member 20, and a back surface (second main surface) 60b on the side facing the base member 30. The vibrating arm portion 60 is a general term for the first vibrating arm portion 61 and the second vibrating arm portion 62 that extend from the connecting portion 51 of the base portion 50 in the first direction D1 and are aligned in the second direction D2. The first vibrating arm portion 61 is located on the positive side of the second vibrating arm portion 62 in the second direction D2. Each of the first vibrating arm portion 61 and the second vibrating arm portion 62 is provided with a bottomed first groove 63a along the first direction D1 in the first main surface 60a, and in the first direction on the second main surface 60b. A bottomed second groove 63b along D1 is provided. The first groove 63a and the second groove 63b are opposed in the third direction D3. Thus, by providing the first groove 63a and the second groove 63b, the ease of movement of the first vibrating arm 61 and the second vibrating arm 62 is improved, and the first vibrating arm 61 and the second vibrating arm are improved. Vibration leakage from the portion 62 to the base portion 50 can be suppressed.
 音叉型水晶振動素子10は、さらに、基部50の連結部51と支持部52との間に受け部70を有している。受け部70は、一対の振動腕部60が所望の振幅範囲を超えた場合に一対の振動腕部60の変位を規制する。例えば、受け部70は、支持部52の対向面52aから延出した第1受け部71及び第2受け部72を総称するものである。 The tuning fork type crystal resonator element 10 further includes a receiving portion 70 between the connecting portion 51 and the support portion 52 of the base portion 50. The receiving part 70 regulates the displacement of the pair of vibrating arm parts 60 when the pair of vibrating arm parts 60 exceeds a desired amplitude range. For example, the receiving portion 70 is a general term for the first receiving portion 71 and the second receiving portion 72 that extend from the facing surface 52 a of the support portion 52.
 第1受け部71及び第2受け部72は、幅狭部53を第2方向D2において挟むように設けられている。第1受け部71は、振動腕部60の振動を阻害しないために幅狭部53から離れていることが望ましく、例えば、支持部52の対向面52aの第2方向D2における正方向側の端部に接続され、連結部51の対向面51aの端部と対向している。第2受け部72も同様に幅狭部53から離れていることが望ましく、例えば、支持部52の対向面52aの第2方向D2における負方向側の端部に接続され、連結部51の対向面51aの端部と対向している。第1受け部71及び第2受け部72は、それぞれ、第1方向D1において第1振動腕部61及び第2振動腕部62と対向している。第1受け部71は、連結部51の対向面51aと対向する側に接触面71aを有する。また、第2受け部72は、連結部51の対向面51aと対向する側に接触面72aを有する。受け部71,72の接触面71a,72aと連結部51の対向面51aとの間の距離は、連結部51の対向面51aと支持部52の対向面52aとの間の距離よりも小さい。 The first receiving portion 71 and the second receiving portion 72 are provided so as to sandwich the narrow portion 53 in the second direction D2. The first receiving portion 71 is preferably separated from the narrow portion 53 so as not to inhibit the vibration of the vibrating arm portion 60. For example, the first receiving portion 71 is an end on the positive direction side in the second direction D2 of the facing surface 52a of the support portion 52. To the end of the opposing surface 51 a of the connecting portion 51. Similarly, it is desirable that the second receiving portion 72 is also away from the narrow portion 53. For example, the second receiving portion 72 is connected to an end portion on the negative direction side in the second direction D <b> 2 of the facing surface 52 a of the support portion 52. It faces the end of the surface 51a. The first receiving part 71 and the second receiving part 72 are opposed to the first vibrating arm part 61 and the second vibrating arm part 62, respectively, in the first direction D1. The first receiving portion 71 has a contact surface 71 a on the side facing the facing surface 51 a of the connecting portion 51. Further, the second receiving portion 72 has a contact surface 72 a on the side facing the facing surface 51 a of the connecting portion 51. The distance between the contact surfaces 71 a and 72 a of the receiving portions 71 and 72 and the facing surface 51 a of the connecting portion 51 is smaller than the distance between the facing surface 51 a of the connecting portion 51 and the facing surface 52 a of the support portion 52.
 音叉型水晶振動素子10において、図示を省略した励振電極によって第1振動腕部61及び第2振動腕部62のそれぞれに駆動電圧が印加されると、第1振動腕部61及び第2振動腕部62が、振動腕部60先端の図中矢印で示す方向で互いに接近又は離間するように振動する。言い換えると、振動腕部60は、連結部51を起点とした円弧方向に励振される。音叉型水晶振動素子10が静置された状態、又は第1振動腕部61及び第2振動腕部62が励振による振幅範囲で振動する状態のとき、連結部51の対向面51aと第1受け部71の接触面71aは離れており、連結部51の対向面51aと第2受け部72の接触面72aも離れている。 In the tuning fork type crystal vibrating element 10, when a driving voltage is applied to each of the first vibrating arm 61 and the second vibrating arm 62 by an excitation electrode (not shown), the first vibrating arm 61 and the second vibrating arm 62 are applied. The parts 62 vibrate so as to approach or separate from each other in the direction indicated by the arrow in the drawing at the tip of the vibrating arm part 60. In other words, the vibrating arm portion 60 is excited in the arc direction starting from the connecting portion 51. When the tuning fork type crystal resonator element 10 is left stationary, or when the first vibrating arm portion 61 and the second vibrating arm portion 62 vibrate in an amplitude range by excitation, the opposing surface 51a of the connecting portion 51 and the first receiver The contact surface 71a of the part 71 is separated, and the opposing surface 51a of the connecting part 51 and the contact surface 72a of the second receiving part 72 are also separated.
 第1振動腕部61及び第2振動腕部62が励振による振幅範囲を超えて大きく変位したときに、第1受け部71の接触面71a又は第2受け部72の接触面72aが連結部51の対向面51aと接触する。具体的には、第1振動腕部61が第2方向D2正方向側に大きく変位するような衝撃が音叉型水晶振動素子10に加わった場合に、連結部51の対向面51aと第1受け部71の接触面71aが接触し、第1受け部71が第1振動腕部61の変位を規制する。同様に、第2振動腕部62が第2方向D2負方向側に大きく変位するような衝撃が音叉型水晶振動素子10に加わった場合には、第2受け部72が第2振動腕部62の変位を規制する。 When the first vibrating arm portion 61 and the second vibrating arm portion 62 are greatly displaced beyond the amplitude range due to excitation, the contact surface 71a of the first receiving portion 71 or the contact surface 72a of the second receiving portion 72 is connected to the connecting portion 51. In contact with the opposite surface 51a. Specifically, when an impact is applied to the tuning fork type crystal resonator element 10 such that the first vibrating arm portion 61 is greatly displaced in the second direction D2 positive direction, the opposing surface 51a of the connecting portion 51 and the first receiving portion 51a. The contact surface 71 a of the part 71 comes into contact, and the first receiving part 71 regulates the displacement of the first vibrating arm part 61. Similarly, when an impact is applied to the tuning fork type crystal resonator element 10 such that the second vibrating arm portion 62 is largely displaced in the second direction D2 negative direction, the second receiving portion 72 is moved to the second vibrating arm portion 62. Regulate the displacement of.
 第1振動腕部61又は第2振動腕部62が第2方向D2に大きく変位する場合、変形応力は幅狭部53(特に括れ部53a)に集中する。第1受け部71及び第2受け部72は、第1振動腕部61及び第2振動腕部62の変位を規制することで、幅狭部53に加わる変形応力を低減し、幅狭部53の破損を抑制する。なお、第1振動腕部61又は第2振動腕部62が第2方向D2に大きく変位する場合とは、例えば搬送時の振動や落下等により水晶片11に衝撃が加わる場合等をいう。 When the first vibrating arm portion 61 or the second vibrating arm portion 62 is greatly displaced in the second direction D2, the deformation stress is concentrated on the narrow portion 53 (particularly the constricted portion 53a). The first receiving portion 71 and the second receiving portion 72 reduce the deformation stress applied to the narrow portion 53 by restricting the displacement of the first vibrating arm portion 61 and the second vibrating arm portion 62, and the narrow portion 53. Suppresses damage. The case where the first vibrating arm portion 61 or the second vibrating arm portion 62 is greatly displaced in the second direction D2 refers to a case where an impact is applied to the crystal piece 11 due to vibration or dropping during transportation, for example.
 蓋部材20の形状は、凹状をなしており、ベース部材30の第1主面32aに向かって開口した箱状である。蓋部材20は、ベース部材30に接合されて、蓋部材20及びベース部材30によって囲まれた内部空間26が設けられる。この内部空間26に音叉型水晶振動素子10が収容される。蓋部材20の形状は、音叉型水晶振動素子10を収容することができればその形状は特に限定されるものではなく、例えば、天面部21の主面を平面視したときに矩形状をなしている。蓋部材20の形状は、例えば、第1方向D1に平行な長辺と、第2方向D2に平行な短辺と、第3方向D3に平行な高さとで定義される。蓋部材20の材質は特に限定されるものではないが、例えば金属などの導電材料で構成される。導電材料を含むことで、蓋部材20を通して内部空間26へ出入りする電磁波の少なくとも一部を遮蔽できる電磁シールド機能が得られる。 The shape of the lid member 20 has a concave shape and is a box shape opened toward the first main surface 32a of the base member 30. The lid member 20 is joined to the base member 30 to provide an internal space 26 surrounded by the lid member 20 and the base member 30. The tuning fork type crystal resonator element 10 is accommodated in the internal space 26. The shape of the lid member 20 is not particularly limited as long as the tuning fork type crystal resonator element 10 can be accommodated. For example, the lid member 20 has a rectangular shape when the main surface of the top surface portion 21 is viewed in plan view. . The shape of the lid member 20 is defined by, for example, a long side parallel to the first direction D1, a short side parallel to the second direction D2, and a height parallel to the third direction D3. The material of the lid member 20 is not particularly limited, but is made of a conductive material such as metal. By including the conductive material, an electromagnetic shielding function capable of shielding at least a part of electromagnetic waves entering and exiting the internal space 26 through the lid member 20 is obtained.
 図2に示すように、蓋部材20は、内面24及び外面25を有している。内面24は、内部空間26側の面であり、外面25は、内面24とは反対側の面である。蓋部材20は、ベース部材30の第1主面32aに対向する天面部21と、天面部21の外縁に接続されており且つ天面部21の主面に対して交差する方向に延在する側壁部22と、を有する。また、蓋部材20は、凹状の開口端部(側壁部22のベース部材30に近い側の端部)においてベース部材30の第1主面32aに対向する対向面23を有する。この対向面23は、音叉型水晶振動素子10の周囲を囲むように枠状に延在している。 As shown in FIG. 2, the lid member 20 has an inner surface 24 and an outer surface 25. The inner surface 24 is a surface on the inner space 26 side, and the outer surface 25 is a surface opposite to the inner surface 24. The lid member 20 is connected to the top surface portion 21 facing the first main surface 32 a of the base member 30 and the outer edge of the top surface portion 21 and extends in a direction intersecting the main surface of the top surface portion 21. Part 22. The lid member 20 has a facing surface 23 that faces the first main surface 32a of the base member 30 at the concave opening end (the end of the side wall 22 on the side close to the base member 30). The facing surface 23 extends in a frame shape so as to surround the periphery of the tuning fork type crystal resonator element 10.
 ベース部材30は、音叉型水晶振動素子10を励振可能に保持するものである。ベース部材30は平板状をなしている。ベース部材30は、第1方向D1方向に平行な長辺と、第2方向D2に平行な短辺と、第3方向D3に平行な厚さとを有する。ベース部材30は基体31を有する。基体31は、互いに対向する第1主面32a(表面)及び第2主面32b(裏面)を有する。基体31は、例えば絶縁性セラミック(アルミナ)などの焼結材である。基体31は耐熱性材料から構成されることが好ましい。 The base member 30 holds the tuning-fork type crystal resonator element 10 so that it can be excited. The base member 30 has a flat plate shape. The base member 30 has a long side parallel to the first direction D1, a short side parallel to the second direction D2, and a thickness parallel to the third direction D3. The base member 30 has a base 31. The base 31 has a first main surface 32a (front surface) and a second main surface 32b (back surface) that face each other. The base 31 is a sintered material such as insulating ceramic (alumina). The base 31 is preferably made of a heat resistant material.
 ベース部材30は、第1主面32aに設けられた電極パッド33a,33bと、第2主面32bに設けられた外部電極35a,35b,35c,35dと、を有する。電極パッド33a,33bは、ベース部材30と音叉型水晶振動素子10とを電気的に接続するための端子である。また、外部電極35a,35b,35c,35dは、図示しない回路基板と音叉型水晶振動子1とを電気的に接続するための端子である。電極パッド33aは、第3方向D3に延在するビア電極34aを介して外部電極35aに電気的に接続され、電極パッド33bは、第3方向D3に延在するビア電極34bを介して外部電極35bに電気的に接続される。ビア電極34a,34bは基体31を第3方向D3に貫通するビアホール内に形成される。外部電極35c,35dは、電気信号等が入出力されないダミー電極でもよく、蓋部材20に接地電位を供給して蓋部材20の電磁シールド機能を向上させる接地電極であってもよい。外部電極35c,35dは、省略されてもよい。 The base member 30 has electrode pads 33a and 33b provided on the first main surface 32a and external electrodes 35a, 35b, 35c and 35d provided on the second main surface 32b. The electrode pads 33 a and 33 b are terminals for electrically connecting the base member 30 and the tuning fork type crystal resonator element 10. The external electrodes 35a, 35b, 35c, and 35d are terminals for electrically connecting a circuit board (not shown) and the tuning fork type crystal resonator 1. The electrode pad 33a is electrically connected to the external electrode 35a via a via electrode 34a extending in the third direction D3, and the electrode pad 33b is an external electrode via the via electrode 34b extending in the third direction D3. It is electrically connected to 35b. The via electrodes 34a and 34b are formed in via holes that penetrate the base 31 in the third direction D3. The external electrodes 35c and 35d may be dummy electrodes through which an electric signal or the like is not input / output, or may be ground electrodes that improve the electromagnetic shielding function of the lid member 20 by supplying a ground potential to the lid member 20. The external electrodes 35c and 35d may be omitted.
 導電性保持部材36a,36bは、ベース部材30の第1主面32aと、音叉型水晶振動素子10の基部50の第2主面50bとの間に設けられている。具体的には、導電性保持部材36a,36bは、基部50の支持部52を、ベース部材30に固定している。導電性保持部材36a,36bは、ベース部材30の一対の電極パッド33a,33bに、音叉型水晶振動素子10を電気的に接続している。また、導電性保持部材36a,36bは、ベース部材30の第1主面32aに音叉型水晶振動素子10を励振可能に保持している。導電性保持部材36a,36bは、例えば、熱硬化樹脂や紫外線硬化樹脂等を含む樹脂材料と、ベース部材と水晶振動素子との間隔を保つため、あるいは強度をたかめるためのフィラー、保持部材に導電性を与えるための導電性粒子等とを含んでいる。なお、ベース部材に音叉型水晶振動素子を保持するための部材は、絶縁性であってもよい。このとき、音叉型水晶振動素子は、ワイヤーボンド等の導通手段によって電極パッドに電気的に接続されてもよい。 The conductive holding members 36 a and 36 b are provided between the first main surface 32 a of the base member 30 and the second main surface 50 b of the base 50 of the tuning fork type crystal resonator element 10. Specifically, the conductive holding members 36 a and 36 b fix the support portion 52 of the base portion 50 to the base member 30. The conductive holding members 36 a and 36 b electrically connect the tuning fork type crystal vibrating element 10 to the pair of electrode pads 33 a and 33 b of the base member 30. Further, the conductive holding members 36 a and 36 b hold the tuning fork type crystal resonator element 10 on the first main surface 32 a of the base member 30 so as to be excited. For example, the conductive holding members 36a and 36b are electrically conductive to a filler and a holding member for maintaining a distance between a resin material including a thermosetting resin, an ultraviolet curable resin, and the like, and a base member and a crystal vibrating element, or for increasing strength. And conductive particles for imparting properties. The member for holding the tuning fork type crystal resonator element on the base member may be insulative. At this time, the tuning fork type crystal resonator element may be electrically connected to the electrode pad by a conduction means such as a wire bond.
 ベース部材30の第1主面32aには、封止部材37が設けられている。図1に示す例では、封止部材37の形状が、第1主面32aを平面視したときに矩形の枠状である。また、第1主面32aを平面視したときに、電極パッド33a,33bが封止部材37の内側に配置されており、封止部材37は音叉型水晶振動素子10を囲むように設けられている。封止部材37は、導電材料により構成されている。例えば、封止部材37を電極パッド33a,33bと同じ材料で構成することで、電極パッド33a,33bを設ける工程で同時に封止部材37を設けることができる。 A sealing member 37 is provided on the first main surface 32 a of the base member 30. In the example shown in FIG. 1, the shape of the sealing member 37 is a rectangular frame shape when the first main surface 32 a is viewed in plan. In addition, when the first main surface 32 a is viewed in plan, the electrode pads 33 a and 33 b are disposed inside the sealing member 37, and the sealing member 37 is provided so as to surround the tuning fork type crystal resonator element 10. Yes. The sealing member 37 is made of a conductive material. For example, by forming the sealing member 37 with the same material as the electrode pads 33a and 33b, the sealing member 37 can be provided simultaneously in the step of providing the electrode pads 33a and 33b.
 接合部材40は、蓋部材20及びベース部材30の各全周に亘って設けられている。具体的には、接合部材40は封止部材37上に設けられ、矩形の枠状に形成されている。封止部材37及び接合部材40は、蓋部材20の側壁部22の対向面23と、ベース部材30の第1主面32aと、の間に挟まれる。 The joining member 40 is provided over the entire circumference of the lid member 20 and the base member 30. Specifically, the joining member 40 is provided on the sealing member 37 and is formed in a rectangular frame shape. The sealing member 37 and the joining member 40 are sandwiched between the facing surface 23 of the side wall portion 22 of the lid member 20 and the first main surface 32 a of the base member 30.
 蓋部材20及びベース部材30の両者が封止部材37及び接合部材40を挟んで接合されることによって、音叉型水晶振動素子10が、蓋部材20とベース部材30とによって囲まれた内部空間(キャビティ)26に封止される。内部空間26は、気圧が大気圧力よりも低圧であることが好ましく、真空状態であることが更に好ましい。これによれば、後述する第1励振電極81及び第2励振電極82の酸化による音叉型水晶振動子1の周波数特性の経時的な変動などが低減できる。なお、封止部材37は不連続な枠状に設けられていてもよく、接合部材40も不連続な枠状に設けられていてもよい。 When the lid member 20 and the base member 30 are joined together with the sealing member 37 and the joining member 40 interposed therebetween, the tuning fork type crystal resonator element 10 is surrounded by the lid member 20 and the base member 30 (inside space ( Cavity) 26 is sealed. The internal space 26 preferably has an atmospheric pressure lower than the atmospheric pressure, and more preferably in a vacuum state. According to this, it is possible to reduce a variation with time of frequency characteristics of the tuning fork type crystal resonator 1 due to oxidation of a first excitation electrode 81 and a second excitation electrode 82 which will be described later. The sealing member 37 may be provided in a discontinuous frame shape, and the joining member 40 may be provided in a discontinuous frame shape.
 次に、図4を参照しつつ、振動腕部60のより詳細な構成、及び音叉型水晶振動素子10の動作について説明する。図4は、図3に示した音叉型水晶振動素子のIV-IV線に沿った断面の構成を概略的に示す断面図である。 Next, a more detailed configuration of the vibrating arm 60 and the operation of the tuning fork type crystal vibrating element 10 will be described with reference to FIG. 4 is a cross-sectional view schematically showing a cross-sectional configuration along the line IV-IV of the tuning-fork type crystal vibrating element shown in FIG.
 第1振動腕部61及び第2振動腕部62の表面には、それぞれ、第1励振電極81及び第2励振電極82が設けられている。第1励振電極81は、第1振動腕部61及び第2振動腕部62の各両側面に設けられている。両側面とは、第1主面60aと第2主面60bとを繋ぐ一対の側面である。すなわち、第1励振電極81は、第1振動腕部61及び第2振動腕部62のそれぞれを第2方向D2において挟むように対向している。第2励振電極82は、第1主面60a及び第2主面60bにおいて、第1溝63a及び第2溝63bのそれぞれの内部に設けられている。また、第2励振電極82は、第1溝63a及び第2溝63bの外側にも設けられている。 A first excitation electrode 81 and a second excitation electrode 82 are provided on the surfaces of the first vibrating arm portion 61 and the second vibrating arm portion 62, respectively. The first excitation electrode 81 is provided on each side surface of the first vibrating arm portion 61 and the second vibrating arm portion 62. Both side surfaces are a pair of side surfaces that connect the first main surface 60a and the second main surface 60b. That is, the first excitation electrode 81 is opposed to sandwich the first vibrating arm portion 61 and the second vibrating arm portion 62 in the second direction D2. The second excitation electrode 82 is provided in each of the first groove 63a and the second groove 63b on the first main surface 60a and the second main surface 60b. The second excitation electrode 82 is also provided outside the first groove 63a and the second groove 63b.
 第1励振電極81及び第2励振電極82は、例えば、ニッケル(Ni)やクロム(Cr)を下地層として、金(Au)を最表層とする多層構造の金属膜からなる電極である。クロムは水晶片との密着性が高いため、長期間の連続運転等による励振電極の剥離が抑制できる。金は化学的安定が高いため、励振電極の酸化による振動特性の変動が抑制できる。 The first excitation electrode 81 and the second excitation electrode 82 are electrodes made of a metal film having a multilayer structure in which, for example, nickel (Ni) or chromium (Cr) is used as a base layer and gold (Au) is used as an outermost layer. Chromium has high adhesion to the crystal piece, so that the excitation electrode can be prevented from being peeled off by continuous operation for a long period of time. Since gold has high chemical stability, fluctuations in vibration characteristics due to oxidation of the excitation electrode can be suppressed.
 第1励振電極81及び第2励振電極82は、それぞれ、導電性保持部材36a及び導電性保持部材36bを通して、外部電極35a及び外部電極35bに電気的に接続される。第1励振電極81及び第2励振電極82が第1振動腕部61及び第2振動腕部62の内部に電界を形成すると、第1振動腕部61及び第2振動腕部62の各両側面が電界の電圧の大きさに基づいて伸縮する。特定の周波数の交番電界を第1励振電極81及び第2励振電極82の間に印加することで、第1振動腕部61及び第2振動腕部62が、図3において一対の振動腕部60の先端に図示した矢印の方向で互いに接近及び離間するように共振周波数で振動する。 The first excitation electrode 81 and the second excitation electrode 82 are electrically connected to the external electrode 35a and the external electrode 35b through the conductive holding member 36a and the conductive holding member 36b, respectively. When the first excitation electrode 81 and the second excitation electrode 82 form an electric field inside the first vibrating arm portion 61 and the second vibrating arm portion 62, each side surface of the first vibrating arm portion 61 and the second vibrating arm portion 62. Expands and contracts based on the magnitude of the electric field voltage. By applying an alternating electric field having a specific frequency between the first excitation electrode 81 and the second excitation electrode 82, the first vibrating arm portion 61 and the second vibrating arm portion 62 become a pair of vibrating arm portions 60 in FIG. 3. Oscillate at the resonance frequency so as to approach and separate from each other in the direction of the arrow shown at the tip of the.
 次に、図5を参照しつつ、基部50のより具体的な構成について説明する。図5は、音叉型水晶振動素子の基部の構造をより具体的に示した拡大平面図である。なお、基部50の連結部51、支持部52、及び幅狭部53は、後述するウェットエッチングによって水晶基板を切削して設けたものとする。また、実際には図5に示したように水晶片11の端面にエッチング残渣が形成されるが、他の図においては、説明を単純化するためエッチング残渣の図示を省略している。 Next, a more specific configuration of the base 50 will be described with reference to FIG. FIG. 5 is an enlarged plan view showing the structure of the base portion of the tuning fork type crystal resonator element more specifically. In addition, the connection part 51 of the base 50, the support part 52, and the narrow part 53 shall be provided by cutting a quartz substrate by the wet etching mentioned later. Further, in practice, an etching residue is formed on the end face of the crystal piece 11 as shown in FIG. 5, but in the other drawings, the illustration of the etching residue is omitted in order to simplify the explanation.
 水晶は、ウェットエッチング等の化学エッチングにおいて、結晶方位によってエッチングレートが異なるという特性を有する。このため、ウェットエッチングによって加工された水晶片11の端面には互いに異なる大きさのエッチング残渣が発生し得る。エッチング残渣は、基部50よりも厚みの薄いヒレ状の部分である。例えば、エッチング残渣L1は、基部50のY軸方向に延在する端面のうち+X軸方向側に形成される。したがって、エッチング残渣L1は、基部50の第1主面50aを平面視したときに連結部51及び支持部52から+X軸方向に沿って延出している。なお、エッチング残渣は、-X軸方向側においてY軸方向に延在する端面には略形成されない。 Quartz has the characteristic that the etching rate differs depending on the crystal orientation in chemical etching such as wet etching. For this reason, etching residues of different sizes may be generated on the end face of the crystal piece 11 processed by wet etching. The etching residue is a fin-like portion that is thinner than the base 50. For example, the etching residue L1 is formed on the + X axis direction side of the end surface of the base 50 extending in the Y axis direction. Therefore, the etching residue L1 extends along the + X-axis direction from the connecting portion 51 and the support portion 52 when the first main surface 50a of the base portion 50 is viewed in plan. The etching residue is not substantially formed on the end surface extending in the Y-axis direction on the −X-axis direction side.
 例えば、エッチング残渣L21及びL22は、幅狭部53と第1受け部71との間に形成される。基部50の第1主面50aを平面視したとき、エッチング残渣L21は幅狭部53及び支持部52の端面から延出し、エッチング残渣L22は第1受け部71及び支持部52の端面から延出している。また、例えば、エッチング残渣L31及びL32は、幅狭部53と第2受け部72との間に形成される。基部50の第1主面50aを平面視したとき、エッチング残渣L31は幅狭部53及び支持部52の端面から延出し、エッチング残渣L32は第2受け部72及び支持部52の端面から延出している。 For example, the etching residues L21 and L22 are formed between the narrow portion 53 and the first receiving portion 71. When the first main surface 50a of the base 50 is viewed in plan, the etching residue L21 extends from the end surfaces of the narrow portion 53 and the support portion 52, and the etching residue L22 extends from the end surfaces of the first receiving portion 71 and the support portion 52. ing. For example, the etching residues L31 and L32 are formed between the narrow portion 53 and the second receiving portion 72. When the first main surface 50a of the base 50 is viewed in plan, the etching residue L31 extends from the end surfaces of the narrow portion 53 and the support portion 52, and the etching residue L32 extends from the end surfaces of the second receiving portion 72 and the support portion 52. ing.
 基部50の第1主面50aを平面視したときのエッチング残渣の面積を比較した場合、一例として、エッチング残渣L21が連結部51近傍まで延在するため、エッチング残渣L21はエッチング残渣L31よりも大きい。従って、幅狭部53は、連結部51の-X軸方向に沿った変位に対する耐衝撃性よりも+X軸方向に沿った変位に対する耐衝撃性の方が高い。なお、反対に、幅狭部53は、連結部51の-X軸方向に沿った変位に対する耐衝撃性よりも+X軸方向に沿った変位に対する耐衝撃性の方が低い場合もある。すなわち、幅狭部53、第1受け部71、及び支持部52によって囲まれた略U字状(股状)の領域において、エッチング残渣L22はエッチング残渣L21よりも比較的大きく形成され得る。また、幅狭部53、第2受け部72、及び支持部52によって囲まれた股状の領域において、エッチング残渣L31はエッチング残渣L32よりも比較的大きく形成され得る。これらのことから、エッチング残渣L31がエッチング残渣L21よりも比較的大きく形成され得る場合がある。 When the area of the etching residue when the first main surface 50a of the base 50 is viewed in plan is compared, as an example, the etching residue L21 extends to the vicinity of the connecting portion 51, and thus the etching residue L21 is larger than the etching residue L31. . Accordingly, the narrow portion 53 has higher impact resistance against displacement along the + X-axis direction than impact resistance against displacement along the −X-axis direction of the connecting portion 51. On the other hand, the narrow portion 53 may have a lower impact resistance against the displacement along the + X-axis direction than the impact resistance against the displacement along the −X-axis direction of the connecting portion 51. That is, the etching residue L22 can be formed relatively larger than the etching residue L21 in a substantially U-shaped (crotch-shaped) region surrounded by the narrow portion 53, the first receiving portion 71, and the support portion 52. In the crotch region surrounded by the narrow portion 53, the second receiving portion 72, and the support portion 52, the etching residue L31 can be formed relatively larger than the etching residue L32. For these reasons, the etching residue L31 may be formed to be relatively larger than the etching residue L21.
 エッチング残渣は、第1受け部71の接触面71a及び第2受け部72の接触面72aには略形成されない。エッチング残渣は、連結部51の対向面51aにも略形成されない。したがって、振動腕部60が通常の振幅範囲を超えるように大きく変位した場合、受け部70は、エッチング残渣の略無い接触面71a,72aによって、連結部51の端面の中でもエッチング残渣の略無い対向面51aを受け止める。 Etching residue is not substantially formed on the contact surface 71 a of the first receiving portion 71 and the contact surface 72 a of the second receiving portion 72. The etching residue is not substantially formed on the facing surface 51 a of the connecting portion 51. Accordingly, when the vibrating arm portion 60 is greatly displaced so as to exceed the normal amplitude range, the receiving portion 70 is opposed to the contact surface 71a, 72a having substantially no etching residue, even in the end surface of the connecting portion 51, having substantially no etching residue. Receiving surface 51a.
 <第2実施形態>
 次に、図6を参照しつつ、第2実施形態に係る音叉型水晶振動素子110の構成について説明する。図6は、第2実施形態に係る音叉型水晶振動素子の構成を概略的に示す平面図である。第1実施形態に係る音叉型水晶振動素子10との相違点は、受け部170が1つの第1受け部171からなる点である。
Second Embodiment
Next, the configuration of the tuning-fork type crystal vibrating element 110 according to the second embodiment will be described with reference to FIG. FIG. 6 is a plan view schematically showing a configuration of a tuning fork type crystal resonator element according to the second embodiment. The difference from the tuning-fork type crystal resonator element 10 according to the first embodiment is that the receiving portion 170 is composed of one first receiving portion 171.
 図6に示した例では、支持部152の対向面152aのうち、幅狭部153よりも第2方向D2正方向側の領域に第1受け部171が接続されている。第1受け部171は、連結部151に向かって第1方向D1に沿って延出している。連結部151の対向面151aを第1受け部171の接触面171aが受け止めることで、第1振動腕部161の通常の振幅範囲を超えた第2方向D2正方向側への大きな変位が規制できる。但し、受け部170の位置は上記に限定されるものではなく、支持部152の対向面152aのうち、幅狭部153よりも第2方向D2負方向側の領域に設けられてもよい。これによれば、第2振動腕部162の第2方向D2負方向側への大きな変位が規制できる。なお、前述の通り音叉型水晶振動素子の端面には水晶の結晶方位に基づいたエッチング異方性によって異方的なエッチング残渣が発生するため、第1振動腕部及び第2振動腕部の機械的強度バランスが崩れている。そのため、受け部を1つとする場合には、音叉型水晶振動素子の機械的強度のバランスを計算又は測定し、機械的強度の低い方向への変位を受け止められるように受け部を配置することが望ましい。 In the example shown in FIG. 6, the first receiving portion 171 is connected to a region on the positive direction side in the second direction D <b> 2 with respect to the narrow portion 153 in the facing surface 152 a of the support portion 152. The first receiving portion 171 extends along the first direction D1 toward the connecting portion 151. When the contact surface 171a of the first receiving portion 171 receives the facing surface 151a of the connecting portion 151, a large displacement in the second direction D2 positive direction beyond the normal amplitude range of the first vibrating arm portion 161 can be restricted. . However, the position of the receiving portion 170 is not limited to the above, and the receiving portion 170 may be provided in a region on the negative direction side in the second direction D2 relative to the narrow portion 153 in the facing surface 152a of the support portion 152. According to this, the big displacement to the 2nd direction D2 negative direction side of the 2nd vibration arm part 162 can be controlled. As described above, an anisotropic etching residue is generated on the end face of the tuning fork type quartz vibrating element due to the etching anisotropy based on the crystal orientation of the quartz, so that the first vibrating arm unit and the second vibrating arm unit are machined. The balance of strength is broken. Therefore, in the case of using one receiving part, it is possible to calculate or measure the balance of the mechanical strength of the tuning-fork type crystal vibrating element and to arrange the receiving part so as to receive the displacement in the direction where the mechanical strength is low. desirable.
 <第3実施形態>
 次に、図7を参照しつつ、第3実施形態に係る音叉型水晶振動素子210の構成について説明する。図7は、第3実施形態に係る音叉型水晶振動素子の構成を概略的に示す平面図である。第3実施形態に係る音叉型水晶振動素子210は、受け部270が連結部251の対向面251aに接続され、支持部252に向かって第1方向D1に沿って延出している。言い換えると、第1受け部271の接触面271a及び第2受け部272の接触面272aは、支持部252の対向面252aと第1方向D1で間隔を空けて対向している。支持部252の対向面252aのうち、第2方向D2正方向側の端部に第1受け部271が設けられ、第2方向D2負方向側の端部に第2受け部272が設けられている。第1受け部271は支持部252の対向面252aを接触面271aで受け止めることで第1振動腕部261の大きな変位を規制し、第2受け部272は支持部252の対向面252aを接触面272aで受け止めることで第2振動腕部262の大きな変位を規制する。このように、第3実施形態においても、第1実施形態と同様の効果が得られる。
<Third Embodiment>
Next, the configuration of a tuning fork type crystal resonator element 210 according to the third embodiment will be described with reference to FIG. FIG. 7 is a plan view schematically showing a configuration of a tuning-fork type crystal resonator element according to the third embodiment. In the tuning-fork type crystal resonator element 210 according to the third embodiment, the receiving portion 270 is connected to the facing surface 251a of the connecting portion 251 and extends along the first direction D1 toward the support portion 252. In other words, the contact surface 271a of the first receiving portion 271 and the contact surface 272a of the second receiving portion 272 are opposed to the facing surface 252a of the support portion 252 with a gap in the first direction D1. Of the opposing surface 252a of the support portion 252, a first receiving portion 271 is provided at an end portion on the positive direction side in the second direction D2, and a second receiving portion 272 is provided at an end portion on the negative direction side in the second direction D2. Yes. The first receiving portion 271 restricts a large displacement of the first vibrating arm portion 261 by receiving the opposing surface 252a of the support portion 252 with the contact surface 271a, and the second receiving portion 272 has the opposing surface 252a of the support portion 252 as the contact surface. By receiving at 272a, a large displacement of the second vibrating arm portion 262 is restricted. Thus, also in 3rd Embodiment, the effect similar to 1st Embodiment is acquired.
 <第4実施形態>
 次に、図8~図9を参照しつつ、第4実施形態に係る音叉型水晶振動素子の製造方法について説明する。また、エッチング残渣L1を例に挙げ、エッチング残渣の発生メカニズムについて説明する。図8は、第4実施形態に係る音叉型水晶振動素子の製造工程を示すフローチャートである。図9は、図8に示した水晶基板を切削する工程における、水晶基板の電気軸に沿った断面を示す図である。第4実施形態は、上記の各実施形態に係る音叉型水晶振動素子に適用可能な水晶片911の製造工程に相当する。図8に示した工程の後、励振電極等の電極を設ける工程等を経て音叉型水晶振動素子が完成する。
<Fourth embodiment>
Next, a method for manufacturing a tuning fork type crystal resonator element according to the fourth embodiment will be described with reference to FIGS. Further, the etching residue L1 will be described as an example, and an etching residue generation mechanism will be described. FIG. 8 is a flowchart showing manufacturing steps of the tuning-fork type crystal vibrating element according to the fourth embodiment. FIG. 9 is a view showing a cross section along the electric axis of the quartz substrate in the step of cutting the quartz substrate shown in FIG. The fourth embodiment corresponds to a manufacturing process of a crystal piece 911 applicable to the tuning fork type crystal resonator element according to each of the above embodiments. After the process shown in FIG. 8, a tuning fork type crystal resonator element is completed through a process of providing an electrode such as an excitation electrode.
 まず、水晶基板を準備する(S11)。水晶基板910は、人工水晶の単結晶からXY面が第1主面910a及び第2主面910bとなるように切り出された板状の部材であり、例えば水晶ウエハである。なお、水晶基板910は、音叉型水晶振動素子の水晶片を形成可能な素子領域を複数有し、音叉型水晶振動素子の集合素子を形成することができれば、水晶ウエハに限定されるものではない。水晶基板910は、例えば、水晶ウエハから切り分けられた四角形状の板状部材であってもよい。水晶基板910は、平板状に切り出された後、例えば化学機械研磨等の研磨処理によって、表面を平坦化される。この研磨処理によって水晶基板910の厚みを調整することにより、音叉型水晶振動素子としての周波数特性が調整できる。 First, a quartz substrate is prepared (S11). The quartz substrate 910 is a plate-like member cut out from a single crystal of artificial quartz so that the XY plane becomes the first principal surface 910a and the second principal surface 910b, and is a quartz wafer, for example. Note that the quartz substrate 910 is not limited to a quartz wafer as long as it has a plurality of element regions where a quartz piece of a tuning fork type quartz vibrating element can be formed and a collective element of tuning fork type quartz vibrating elements can be formed. . The quartz substrate 910 may be, for example, a rectangular plate member cut from a quartz wafer. After the quartz substrate 910 is cut into a flat plate shape, the surface thereof is flattened by a polishing process such as chemical mechanical polishing. By adjusting the thickness of the quartz substrate 910 by this polishing treatment, the frequency characteristics as a tuning fork type quartz vibrating element can be adjusted.
 次に、フォトレジスト層を設ける(S12)。工程S12では、まず、第1金属層912a及び第2金属層912bが水晶基板910を挟むように、水晶基板910の第1主面910aに第1金属層912aを設け、第2主面910bに第2金属層912bを設ける。第1金属層912a及び第2金属層912bは、水晶基板910をエッチングする際に用いられるエッチング液(例えば、フッ化アンモニウムあるいは緩衝フッ酸)に対する耐蝕膜に相当し、エッチングの加工精度を向上させる。第1金属層912a及び第2金属層912bは、例えば、クロム(Cr)層と金(Au)層とを有する多層膜が用いられる。Cr層は、下地層として、第1金属層912a及び第2金属層912bの水晶基板910に対する密着力を向上させる。また、Au層は、最表層として、第1金属層912a及び第2金属層912bの耐蝕性を向上させる。第1金属層912a及び第2金属層912bの成膜方法は特に限定されず、例えば、蒸着法やスパッタ法等の乾式めっき(ドライプロセス)、又は電解めっき等の湿式めっき(ウェットプロセス)によって設けられる。 Next, a photoresist layer is provided (S12). In step S12, first, the first metal layer 912a is provided on the first main surface 910a of the crystal substrate 910 so that the first metal layer 912a and the second metal layer 912b sandwich the crystal substrate 910, and the second main surface 910b is provided on the second main surface 910b. A second metal layer 912b is provided. The first metal layer 912a and the second metal layer 912b correspond to a corrosion-resistant film against an etching solution (for example, ammonium fluoride or buffered hydrofluoric acid) used when the crystal substrate 910 is etched, and improve the etching processing accuracy. . As the first metal layer 912a and the second metal layer 912b, for example, a multilayer film having a chromium (Cr) layer and a gold (Au) layer is used. The Cr layer improves the adhesion of the first metal layer 912a and the second metal layer 912b to the quartz substrate 910 as a base layer. In addition, the Au layer improves the corrosion resistance of the first metal layer 912a and the second metal layer 912b as the outermost layer. The method for forming the first metal layer 912a and the second metal layer 912b is not particularly limited. For example, the first metal layer 912a and the second metal layer 912b are provided by dry plating (dry process) such as vapor deposition or sputtering, or wet plating (wet process) such as electrolytic plating. It is done.
 工程S12では、次に、第1フォトレジスト層913a及び第2フォトレジスト層913bが水晶基板910を挟むように、第1金属層912aの上に第1フォトレジスト層913aを設け、第2金属層912bの上に第2フォトレジスト層913bを設ける。第1フォトレジスト層913a及び第2フォトレジスト層913bは、それぞれ、フォトレジスト材料を含むフォトレジスト溶液を第1金属層912a及び第2金属層912bの上に塗工し、加熱によって溶媒を揮発させることで成膜される。フォトレジスト溶液の塗工方法は、例えばスピンコート法である。フォトレジスト材料は、第1フォトレジスト層913a及び第2フォトレジスト層913bを現像して得られるパターンの加工精度を向上させる観点から、露光された部分の溶解性が高くなるポジ型の感光性樹脂が望ましい。なお、フォトレジスト溶液の塗工方法は特に限定されず、例えばスプレーコート法などであってもよい。 In step S12, next, a first photoresist layer 913a is provided on the first metal layer 912a so that the first photoresist layer 913a and the second photoresist layer 913b sandwich the quartz crystal substrate 910, and the second metal layer A second photoresist layer 913b is provided on 912b. The first photoresist layer 913a and the second photoresist layer 913b respectively apply a photoresist solution containing a photoresist material on the first metal layer 912a and the second metal layer 912b, and volatilize the solvent by heating. The film is formed. The photoresist solution coating method is, for example, a spin coating method. The photoresist material is a positive photosensitive resin in which the solubility of the exposed portion is increased from the viewpoint of improving the processing accuracy of the pattern obtained by developing the first photoresist layer 913a and the second photoresist layer 913b. Is desirable. In addition, the coating method of a photoresist solution is not specifically limited, For example, the spray coating method etc. may be sufficient.
 次に、フォトレジスト層を露光する(S13)。工程S13では、複数の水晶片911の外形パターンが描画されたフォトマスクを通して、第1フォトレジスト層913a及び第2フォトレジスト層913bに紫外光等の光を照射する。露光に用いられる露光装置は、第1フォトレジスト層913a及び第2フォトレジスト層913bの一方だけを露光する片面露光装置である。なお、両方を同時に露光可能な両面露光装置であってもよい。 Next, the photoresist layer is exposed (S13). In step S13, the first photoresist layer 913a and the second photoresist layer 913b are irradiated with light such as ultraviolet light through a photomask on which the external pattern of the plurality of crystal pieces 911 is drawn. The exposure apparatus used for the exposure is a single-sided exposure apparatus that exposes only one of the first photoresist layer 913a and the second photoresist layer 913b. Note that a double-sided exposure apparatus capable of exposing both at the same time may be used.
 次に、フォトレジスト層を現像する(S14)。第1フォトレジスト層913a及び第2フォトレジスト層913bがポジ型の感光性樹脂の場合、第1フォトレジスト層913a及び第2フォトレジスト層913bを現像液に浸すことによって、露光された部分が現像液に溶解し除去される。これによって、第1フォトレジスト層913a及び第2フォトレジスト層913bには、水晶片911の外形パターンがパターニングされる。言い換えると、第1金属層912a及び第2金属層912bの一部は、それぞれ、水晶片911の外形パターンに基づいて露出する。 Next, the photoresist layer is developed (S14). When the first photoresist layer 913a and the second photoresist layer 913b are a positive type photosensitive resin, the exposed portion is developed by immersing the first photoresist layer 913a and the second photoresist layer 913b in a developer. Dissolved in the liquid and removed. Thus, the outer shape pattern of the crystal piece 911 is patterned on the first photoresist layer 913a and the second photoresist layer 913b. In other words, parts of the first metal layer 912a and the second metal layer 912b are exposed based on the outer shape pattern of the crystal piece 911, respectively.
 次に、ウェットエッチングにより水晶基板を切削する(S15)。工程S15では、まず、水晶片911の外形パターンに基づいて露出した第1金属層912a及び第2金属層912bをエッチング加工する。これにより、水晶基板910の一部が、水晶片911の外形パターンに基づいて露出する。第1金属層912a及び第2金属層912bは、例えば、セリウム系のエッチング溶液を用いたCr層のウェットエッチング、及びヨウ素系のエッチング溶液を用いたAu層のウェットエッチングによってエッチング加工される。 Next, the quartz substrate is cut by wet etching (S15). In step S15, first, the first metal layer 912a and the second metal layer 912b exposed based on the outer shape pattern of the crystal piece 911 are etched. Thereby, a part of the quartz substrate 910 is exposed based on the external pattern of the quartz piece 911. The first metal layer 912a and the second metal layer 912b are etched by, for example, wet etching of a Cr layer using a cerium-based etching solution and wet etching of an Au layer using an iodine-based etching solution.
 工程S15では、次に、水晶基板910の露出した部分を貫通するように切削する。水晶基板910は、フッ酸系のエッチング溶液を用いたウェットエッチングによってエッチング加工され、音叉型水晶振動素子の水晶片911が形成される。これにより、水晶基板910は、複数の水晶片911を有する集合基板へと加工される。水晶基板910を第1主面910a及び第2主面910bの両側から同時にエッチング加工することで、一方側からエッチング加工する加工方法よりも加工速度及び加工精度が向上する。 In step S15, next, the exposed portion of the quartz substrate 910 is cut so as to penetrate. The quartz substrate 910 is etched by wet etching using a hydrofluoric acid-based etching solution to form a quartz piece 911 of a tuning fork type quartz vibrating element. Thereby, the quartz substrate 910 is processed into an aggregate substrate having a plurality of quartz pieces 911. By simultaneously etching the quartz substrate 910 from both sides of the first main surface 910a and the second main surface 910b, the processing speed and processing accuracy are improved as compared with the processing method of etching from one side.
 次に、フォトレジスト層を除去する(S16)。水晶基板910のエッチング加工が終了した段階では、水晶基板910の第1主面910aに第1金属層912a及び第1フォトレジスト層913aが残っており、第2主面910bに第2金属層912b及び第2フォトレジスト層913bが残っている。溶剤による洗浄によって、水晶基板910から第1フォトレジスト層913a及び第2フォトレジスト層913bの残渣を除去し、次いで第1金属層912a及び第2金属層912bの残渣を除去する。 Next, the photoresist layer is removed (S16). At the stage where the etching of the quartz substrate 910 is completed, the first metal layer 912a and the first photoresist layer 913a remain on the first main surface 910a of the quartz substrate 910, and the second metal layer 912b on the second main surface 910b. And the second photoresist layer 913b remains. The residue of the first photoresist layer 913a and the second photoresist layer 913b is removed from the quartz substrate 910 by cleaning with a solvent, and then the residue of the first metal layer 912a and the second metal layer 912b is removed.
 上記の工程S15において、人工水晶の単結晶は結晶方位によってエッチングされる速さ(エッチングレート)が異なるため、エッチングによって形成される水晶片911にはエッチング残渣L1が形成される。エッチング残渣L1は、水晶片911の第1主面911aを平面視したとき、結晶軸方向に応じて異なる大きさで第1主面911aから外側に延出する。 In the above-described step S15, since the single crystal of artificial quartz has a different etching speed (etching rate) depending on the crystal orientation, an etching residue L1 is formed on the crystal piece 911 formed by etching. When the first main surface 911a of the crystal piece 911 is viewed in plan, the etching residue L1 extends outward from the first main surface 911a with a different size depending on the crystal axis direction.
 図9に示すように、水晶片911のXZ面に平行な断面は、第1主面911a、第2主面911b、エッチング残渣L1を有する。第1主面911a及び第2主面911bは、それぞれ、水晶基板910として第1金属層912a及び第2金属層912bに覆われていた部分に相当する。エッチング残渣L1は、第1主面911a及び第2主面911bの+X軸方向(電気軸正方向)における端部を繋ぐ端面に相当する。 As shown in FIG. 9, the cross section of the crystal piece 911 parallel to the XZ plane has a first main surface 911a, a second main surface 911b, and an etching residue L1. The first main surface 911a and the second main surface 911b correspond to portions covered by the first metal layer 912a and the second metal layer 912b as the quartz substrate 910, respectively. The etching residue L1 corresponds to an end surface connecting the end portions of the first main surface 911a and the second main surface 911b in the + X-axis direction (electrical axis positive direction).
 エッチング残渣L1が形成される領域において、水晶基板910は、例えば、結晶面が形成される方向にエッチング加工が進行する。具体的には、水晶基板910は、第1主面910aから結晶面に近づくようにエッチング加工されることによって第1端面911cが形成され、第2主面910bから結晶面に近づくようにエッチング加工されることによって第2端面911dが形成される。水晶の+X軸方向に対する結晶面の傾きに倣って、第1端面911cは第1主面911aに対して傾き、第2端面911dは第2主面911bに対して傾く。この結果、エッチング残渣L1は、水晶片911側で鈍角を成すように第1主面911aに繋がる第1端面911cと、水晶片911側で鈍角を成すように第2主面911bに繋がる第2端面911dとで構成される。第1端面911c及び第2端面911dは、エッチング残渣L1の+X軸方向における先端で、水晶片911側において角度θ1を成すように繋がる。反対に、第1主面911a及び第2主面911bの-X軸方向における端部は、第1主面911a及び第2主面911bと略直交する第3端面911eによって繋がっている。 In the region where the etching residue L1 is formed, the crystal substrate 910 is etched in the direction in which the crystal plane is formed, for example. Specifically, the quartz substrate 910 is etched so that the first end surface 911c is formed so as to approach the crystal surface from the first main surface 910a, and is etched so as to approach the crystal surface from the second main surface 910b. As a result, the second end face 911d is formed. The first end surface 911c is inclined with respect to the first main surface 911a and the second end surface 911d is inclined with respect to the second main surface 911b, following the inclination of the crystal plane with respect to the + X axis direction of the crystal. As a result, the etching residue L1 is connected to the first main surface 911c connected to the first main surface 911a so as to form an obtuse angle on the crystal piece 911 side, and the second end surface connected to the second main surface 911b so as to form an obtuse angle on the crystal piece 911 side. And an end face 911d. The first end surface 911c and the second end surface 911d are tips of the etching residue L1 in the + X-axis direction and are connected to form an angle θ1 on the crystal piece 911 side. Conversely, the ends of the first main surface 911a and the second main surface 911b in the −X-axis direction are connected by a third end surface 911e substantially orthogonal to the first main surface 911a and the second main surface 911b.
 エッチング残渣L1が発生するため、第3端面911eのXZ面における長さは、第1端面911c及び第2端面911dのXZ面における長さの和よりも小さい。エッチング残渣L1の先端が成す角度がθ1となるため、エッチング残渣L1を有する端面は、他のエッチング残渣の略発生しない端面(例えば、連結部51の対向面51aや、受け部70の接触面71a,72a)に比べて、外部からの衝撃によって破損しやすい。 Since the etching residue L1 is generated, the length of the third end surface 911e in the XZ plane is smaller than the sum of the lengths of the first end surface 911c and the second end surface 911d in the XZ plane. Since the angle formed by the tip of the etching residue L1 is θ1, the end surface having the etching residue L1 is an end surface where the other etching residue is not substantially generated (for example, the opposing surface 51a of the connecting portion 51 and the contact surface 71a of the receiving portion 70). , 72a), and is easily damaged by an external impact.
 以上のように、本発明の一態様によれば、基部50と、基部50から第1方向D1に延出し第1方向D1と交差する第2方向D2に並ぶ複数の振動腕部60と、少なくとも1つの受け部70と、を備え、基部50は、複数の振動腕部60の付け根を共通して固定するように設けられている連結部51と、第1方向D1において連結部51から間隔を空けて設けられている支持部52と、連結部51と支持部52との間において連結部51と支持部52とを繋ぐように設けられ、第2方向D2における幅が連結部51及び支持部52よりも小さい幅狭部53と、を備え、受け部70は、第1方向D1における連結部51と支持部52との間に設けられている音叉型水晶振動素子10、が提供される。 As described above, according to one aspect of the present invention, the base 50, and the plurality of vibrating arm portions 60 arranged in the second direction D2 extending from the base 50 in the first direction D1 and intersecting the first direction D1, One base 70, and the base 50 is spaced from the connecting part 51 in the first direction D1 by a connecting part 51 provided to fix the roots of the plurality of vibrating arm parts 60 in common. It is provided so that the connection part 51 and the support part 52 may be connected between the support part 52 provided in the space and the connection part 51 and the support part 52, and the width in the second direction D2 is the connection part 51 and the support part. The tuning fork crystal resonator element 10 provided between the connecting portion 51 and the support portion 52 in the first direction D1 is provided.
 上記態様によれば、受け部が支持部と連結部との間に設けられるため、第2方向において受け部と振動腕部を並べる構成よりも水晶振動素子が小型化できる。また、落下等による外部からの衝撃によって振動腕部に外力が加わった際に、基部と受け部が接触し、水晶振動素子としての通常の振幅範囲を超えた振動腕部の大きな変位が規制できる。これによって、水晶振動素子の耐衝撃性が向上し、振動腕部や基部の損傷が抑制できる。また、振動腕部は、振動の伝搬領域が小さい幅狭部を介して支持部に機械的に接続されている。そのため、連結部から支持部への振動漏れが低減され、振動腕部における振動エネルギの減衰が抑制できる。 According to the above aspect, since the receiving portion is provided between the support portion and the connecting portion, the crystal resonator element can be made smaller than the configuration in which the receiving portion and the vibrating arm portion are arranged in the second direction. In addition, when an external force is applied to the vibrating arm due to an external impact due to dropping or the like, the base and the receiving portion come into contact with each other, and large displacement of the vibrating arm that exceeds the normal amplitude range as a crystal vibrating element can be regulated. . Thereby, the impact resistance of the crystal resonator element is improved, and damage to the vibrating arm portion and the base portion can be suppressed. Further, the vibrating arm portion is mechanically connected to the support portion via a narrow portion having a small vibration propagation region. Therefore, vibration leakage from the connecting portion to the support portion is reduced, and attenuation of vibration energy in the vibrating arm portion can be suppressed.
 受け部70は、連結部51及び支持部52のいずれか一方に接続され、他方に向かって延出していてもよい。これによれば、受け部を設けるための複雑な構造等が不要のため、音叉型水晶振動素子が小型化できる。 The receiving part 70 may be connected to one of the connecting part 51 and the supporting part 52 and may extend toward the other. According to this, since a complicated structure or the like for providing the receiving portion is unnecessary, the tuning fork type crystal vibrating element can be reduced in size.
 受け部70は、支持部52に接続されていてもよい。これによれば、受け部を備えることによる音叉型水晶振動素子の振動特性への影響が抑制できる。 The receiving unit 70 may be connected to the support unit 52. According to this, it is possible to suppress the influence on the vibration characteristics of the tuning-fork type crystal resonator element by providing the receiving portion.
 支持部52は、音叉型水晶振動素子10が固定される固定部であってもよい。これによれば、固定部を通して音叉型水晶振動子のベース部材や蓋部材等といった保持器への振動腕部からの振動漏れが抑制できる。また、受け部が固定部に接続されることで、音叉型水晶振動素子の耐衝撃性が向上する。 The support portion 52 may be a fixed portion to which the tuning fork type crystal resonator element 10 is fixed. According to this, vibration leakage from the vibrating arm portion to the cage such as the base member or the lid member of the tuning fork type crystal resonator can be suppressed through the fixing portion. Further, the impact resistance of the tuning fork type crystal vibrating element is improved by connecting the receiving part to the fixed part.
 連結部51及び支持部52は、第1方向D1において互いに対向する対向面51a,52aをそれぞれ有し、幅狭部53は、連結部51の対向面51aの第2方向D2における中央部に接続され、受け部70は、支持部52の対向面52aに接続され、連結部51の対向面51aの第2方向D2における端部と対向していてもよい。これによれば、受け部と幅狭部との干渉が抑制できる。 The connecting portion 51 and the support portion 52 have opposing surfaces 51a and 52a that face each other in the first direction D1, and the narrow portion 53 is connected to the central portion of the opposing surface 51a of the connecting portion 51 in the second direction D2. The receiving portion 70 may be connected to the facing surface 52a of the support portion 52 and face the end portion of the facing surface 51a of the connecting portion 51 in the second direction D2. According to this, interference with a receiving part and a narrow part can be suppressed.
 連結部251及び支持部252は、第1方向D1において互いに対向する対向面251a,252aをそれぞれ有し、幅狭部253は、連結部251の対向面251aの第2方向D2における中央部に接続され、受け部270は、連結部251の対向面251aの第2方向D2における端部に接続され、支持部252の対向面252aと対向していてもよい。これによれば、受け部と幅狭部との干渉が抑制できる。 The connecting portion 251 and the support portion 252 have facing surfaces 251a and 252a that face each other in the first direction D1, and the narrow portion 253 is connected to the central portion in the second direction D2 of the facing surface 251a of the connecting portion 251. The receiving portion 270 may be connected to the end portion in the second direction D2 of the facing surface 251a of the connecting portion 251 and may face the facing surface 252a of the support portion 252. According to this, interference with a receiving part and a narrow part can be suppressed.
 受け部70は、第2方向D2において幅狭部53を挟むように少なくとも2箇所に設けられていてもよい。これによれば、振動腕部の大きな変位の方向が第2方向の正方向であっても負方向であっても、受け部によって規制できる。 The receiving part 70 may be provided in at least two places so as to sandwich the narrow part 53 in the second direction D2. According to this, even if the direction of the large displacement of the vibrating arm part is the positive direction or the negative direction of the second direction, it can be regulated by the receiving part.
 基部50、振動腕部60、及び受け部70が水晶によって設けられ、受け部70は、振動腕部60が所望の振幅範囲を超えた場合に、連結部51又は支持部52に接触する接触面71a,72aを有し、受け部70の接触面71a,72aは、水晶の電気軸に沿って延在していてもよい。これによれば、受け部の接触面に形成されるエッチング残渣が小さい。このため、受け部が基部と接触した際にエッチング残渣の損傷に起因して発生するパーティクルが抑制できる。 The base 50, the vibrating arm portion 60, and the receiving portion 70 are provided by crystal, and the receiving portion 70 is a contact surface that contacts the connecting portion 51 or the support portion 52 when the vibrating arm portion 60 exceeds a desired amplitude range. 71a and 72a may be provided, and the contact surfaces 71a and 72a of the receiving part 70 may extend along the electric axis of the crystal. According to this, the etching residue formed on the contact surface of the receiving portion is small. For this reason, the particles generated due to the damage of the etching residue when the receiving part comes into contact with the base part can be suppressed.
 本発明の他の一態様によれば、基部50と、基部50から第1方向D1に延出し第1方向D1と交差する第2方向D2に並ぶ複数の振動腕部60と、少なくとも1つの受け部70と、を備え、基部50は、複数の振動腕部60の付け根を共通して固定するように設けられている連結部51と、第1方向D1において連結部51から間隔を空けて設けられている支持部52と、連結部51と支持部52との間において連結部51と支持部52とを繋ぐように設けられ、第2方向D2における幅が連結部51及び支持部52よりも小さい幅狭部53と、を備え、受け部70は、複数の振動腕部60が所望の振幅範囲を超えた場合に、第1方向D1において連結部51又は支持部52と接触することによって振動腕部60の変位を規制する音叉型水晶振動素子10、が提供される。このような態様においても、上記したのと同様の効果を得ることができる。 According to another aspect of the present invention, the base 50, the plurality of vibrating arms 60 extending from the base 50 in the first direction D1 and arranged in the second direction D2 intersecting the first direction D1, and at least one receiving member. The base 50 is provided with a connecting portion 51 provided so as to fix the roots of the plurality of vibrating arm portions 60 in common, and spaced from the connecting portion 51 in the first direction D1. The connecting portion 51 and the supporting portion 52 are provided so as to connect the connecting portion 51 and the supporting portion 52, and the width in the second direction D2 is larger than that of the connecting portion 51 and the supporting portion 52. The receiving portion 70 vibrates by contacting the connecting portion 51 or the supporting portion 52 in the first direction D1 when the plurality of vibrating arm portions 60 exceed a desired amplitude range. Tuning fork type that regulates displacement of arm 60 Crystal vibrating element 10, is provided. Even in such an embodiment, the same effect as described above can be obtained.
 本発明の他の一態様によれば、水晶基板910を準備する工程と、水晶基板910の上にフォトレジスト層913a,913bを設ける工程と、フォトレジスト層913a,913bをパターニングする工程と、パターニングされたフォトレジスト層913a,913bに基づいて水晶基板910をウェットエッチングによってエッチング加工し水晶片911を形成する工程と、を含み、水晶片911は、基部50と、基部50から第1方向D1に延出し第1方向D1と交差する第2方向D2に並ぶ複数の振動腕部60と、少なくとも1つの受け部70と、を備え、基部50は、複数の振動腕部60の付け根を共通して固定するように設けられている連結部51と、第1方向D1において連結部51から間隔を空けて設けられている支持部52と、連結部51と支持部52との間において連結部51と支持部52とを繋ぐように設けられ、第2方向D2における幅が連結部51及び支持部52よりも小さい幅狭部53と、を備え、受け部70は、第1方向D1における連結部51と支持部52との間に設けられる音叉型水晶振動素子の製造方法、が提供される。このような態様においても、上記したのと同様の効果を得ることができる。 According to another aspect of the present invention, a step of preparing a quartz substrate 910, a step of providing photoresist layers 913a and 913b on the quartz substrate 910, a step of patterning the photoresist layers 913a and 913b, and patterning The crystal substrate 910 is etched by wet etching on the basis of the photoresist layers 913a and 913b, and the crystal piece 911 is formed. The crystal piece 911 includes the base 50 and the base 50 in the first direction D1. A plurality of vibrating arm portions 60 arranged in the second direction D2 intersecting the extending first direction D1 and at least one receiving portion 70 are provided, and the base 50 has a common root of the plurality of vibrating arm portions 60 in common. The connecting part 51 provided so as to be fixed, and the supporting part provided at a distance from the connecting part 51 in the first direction D1. 2 and the connecting portion 51 and the support portion 52 are provided so as to connect the connecting portion 51 and the support portion 52, and the width in the second direction D2 is smaller than the connecting portion 51 and the support portion 52. The receiving part 70 is provided with a method for manufacturing a tuning-fork type crystal vibrating element provided between the connecting part 51 and the support part 52 in the first direction D1. Even in such an embodiment, the same effect as described above can be obtained.
 このような態様において、第1方向D1は、水晶片911を構成する水晶の機械軸Yに沿って延在し、第2方向D2は、水晶の電気軸Xに沿って延在してもよい。これによれば、連結部と受け部の互いに対向する端面(連結部の対向面及び受け部の接触面)を、略エッチング残渣が発生しないように形成できる。 In such an aspect, the first direction D1 may extend along the mechanical axis Y of the crystal constituting the crystal piece 911, and the second direction D2 may extend along the electrical axis X of the crystal. . According to this, it is possible to form the end surfaces of the connecting portion and the receiving portion that face each other (the opposing surface of the connecting portion and the contact surface of the receiving portion) so that substantially no etching residue is generated.
 本発明の他の一態様によれば、ベース部材30と、ベース部材30との間に内部空間26を形成する蓋部材20と、内部空間26に収容される音叉型水晶振動素子10と、音叉型水晶振動素子10をベース部材30に保持する導電性保持部材36a,36bとを備え、音叉型水晶振動素子10は、基部50と、基部50から第1方向D1に延出し第1方向D1と交差する第2方向D2に並ぶ複数の振動腕部60と、少なくとも1つの受け部70と、を備え、基部50は、複数の振動腕部60の付け根を共通して固定するように設けられている連結部51と、第1方向D1において連結部51から間隔を空けて設けられている支持部52と、連結部51と支持部52との間において連結部51と支持部52とを繋ぐように設けられ、第2方向D2における幅が連結部51及び支持部52よりも小さい幅狭部53と、を備え、受け部70は、第1方向D1における連結部51と支持部52との間に設けられており、導電性保持部材36a,36bは、支持部52をベース部材30に固定している音叉型水晶振動子1、が提供される。このような態様においても、上記したのと同様の効果を得ることができる。 According to another aspect of the present invention, the base member 30, the lid member 20 that forms the internal space 26 between the base member 30, the tuning-fork type crystal resonator element 10 accommodated in the internal space 26, and the tuning fork Conductive holding members 36a and 36b for holding the quartz crystal resonator element 10 on the base member 30, and the tuning fork crystal resonator element 10 extends in the first direction D1 from the base 50 and the first direction D1. A plurality of vibrating arm portions 60 arranged in the intersecting second direction D2 and at least one receiving portion 70 are provided, and the base 50 is provided so as to fix the roots of the plurality of vibrating arm portions 60 in common. The connecting portion 51, the support portion 52 provided at a distance from the connecting portion 51 in the first direction D1, and the connecting portion 51 and the supporting portion 52 so as to connect the connecting portion 51 and the supporting portion 52. In the second direction 2 and a narrow portion 53 having a width smaller than that of the connecting portion 51 and the support portion 52, and the receiving portion 70 is provided between the connecting portion 51 and the support portion 52 in the first direction D1, and is electrically conductive. As the holding members 36 a and 36 b, the tuning fork type crystal resonator 1 in which the support portion 52 is fixed to the base member 30 is provided. Even in such an embodiment, the same effect as described above can be obtained.
 以上説明したように、本発明の一態様によれば、耐衝撃性を向上しつつ小型化できる音叉型水晶振動素子及びその製造方法、並びに音叉型水晶振動子の提供が可能となる。 As described above, according to one aspect of the present invention, it is possible to provide a tuning fork type crystal resonator element, a manufacturing method thereof, and a tuning fork type crystal resonator that can be reduced in size while improving impact resistance.
 なお、以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るととともに、本発明にはその等価物も含まれる。即ち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、各実施形態が備える各要素及びその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、各実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。 The embodiment described above is for facilitating understanding of the present invention, and is not intended to limit the present invention. The present invention can be changed / improved without departing from the spirit thereof, and the present invention includes equivalents thereof. In other words, those obtained by appropriately modifying the design of each embodiment by those skilled in the art are also included in the scope of the present invention as long as they include the features of the present invention. For example, each element included in each embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be changed as appropriate. In addition, each element included in each embodiment can be combined as much as technically possible, and combinations thereof are included in the scope of the present invention as long as they include the features of the present invention.
 1…音叉型水晶振動子
 10…音叉型水晶振動素子
 11…水晶片
 30…ベース部材
 40…接合部材
 50…基部
 51…連結部
 52…支持部
 53…幅狭部
 51a,52a…対向面
 60…振動腕部
 61…第1振動腕部
 62…第2振動腕部
 70…受け部
 71…第1受け部
 72…第2受け部
 71a,72a…接触面
 L1,L21,L22,L31,L32…エッチング残渣
DESCRIPTION OF SYMBOLS 1 ... Tuning fork type crystal resonator 10 ... Tuning fork type crystal vibration element 11 ... Crystal piece 30 ... Base member 40 ... Joining member 50 ... Base 51 ... Connection part 52 ... Supporting part 53 ... Narrow part 51a, 52a ... Opposite surface 60 ... Vibrating arm portion 61 ... first vibrating arm portion 62 ... second vibrating arm portion 70 ... receiving portion 71 ... first receiving portion 72 ... second receiving portion 71a, 72a ... contact surface L1, L21, L22, L31, L32 ... etching Residue

Claims (12)

  1.  基部と、
     前記基部から第1方向に延出し前記第1方向と交差する第2方向に並ぶ複数の振動腕部と、
     少なくとも1つの受け部と、
    を備え、
     前記基部は、
     前記複数の振動腕部の付け根を共通して固定するように設けられている連結部と、
     前記第1方向において前記連結部から間隔を空けて設けられている支持部と、
     前記連結部と前記支持部との間において前記連結部と前記支持部とを繋ぐように設けられ、前記第2方向における幅が前記連結部及び前記支持部よりも小さい幅狭部と、
    を備え、
     前記受け部は、前記第1方向における前記連結部と前記支持部との間に設けられている、音叉型水晶振動素子。
    The base,
    A plurality of resonating arm portions extending in a first direction from the base portion and arranged in a second direction intersecting the first direction;
    At least one receptacle;
    With
    The base is
    A connecting portion provided to commonly fix the roots of the plurality of vibrating arm portions;
    A support portion provided at a distance from the connecting portion in the first direction;
    A narrow portion provided between the connecting portion and the support portion so as to connect the connecting portion and the support portion; and a width in the second direction smaller than the connecting portion and the support portion;
    With
    The receiving part is a tuning-fork type crystal vibrating element provided between the connecting part and the support part in the first direction.
  2.  前記受け部は、前記連結部及び前記支持部のいずれか一方に接続され、他方に向かって延出している、
     請求項1に記載の音叉型水晶振動素子。
    The receiving portion is connected to one of the coupling portion and the support portion, and extends toward the other.
    The tuning-fork type crystal vibrating element according to claim 1.
  3.  前記受け部は、前記支持部に接続されている、
     請求項2に記載の音叉型水晶振動素子。
    The receiving part is connected to the support part,
    The tuning-fork type crystal vibrating element according to claim 2.
  4.  前記支持部は、前記音叉型水晶振動素子が固定される固定部である、
     請求項3に記載の音叉型水晶振動素子。
    The support portion is a fixed portion to which the tuning fork type crystal resonator element is fixed.
    The tuning-fork type crystal resonator element according to claim 3.
  5.  前記連結部及び前記支持部は、前記第1方向において互いに対向する対向面をそれぞれ有し、
     前記幅狭部は、前記連結部の前記対向面の前記第2方向における中央部に接続され、
     前記受け部は、前記支持部の前記対向面に接続され、前記連結部の前記対向面の前記第2方向における端部と対向している、
     請求項1又は2に記載の音叉型水晶振動素子。
    The connecting portion and the support portion have opposing surfaces that face each other in the first direction,
    The narrow portion is connected to a central portion in the second direction of the facing surface of the connecting portion,
    The receiving portion is connected to the facing surface of the support portion, and is opposed to an end portion in the second direction of the facing surface of the coupling portion.
    The tuning-fork type crystal resonator element according to claim 1 or 2.
  6.  前記連結部及び前記支持部は、前記第1方向において互いに対向する対向面をそれぞれ有し、
     前記幅狭部は、前記連結部の前記対向面の前記第2方向における中央部に接続され、
     前記受け部は、前記連結部の前記対向面の前記第2方向における端部に接続され、前記支持部の対向面と対向している、
     請求項1又は2に記載の音叉型水晶振動素子。
    The connecting portion and the support portion have opposing surfaces that face each other in the first direction,
    The narrow portion is connected to a central portion in the second direction of the facing surface of the connecting portion,
    The receiving portion is connected to an end portion in the second direction of the facing surface of the connecting portion and faces the facing surface of the support portion.
    The tuning-fork type crystal resonator element according to claim 1 or 2.
  7.  前記受け部は、前記第2方向において前記幅狭部を挟むように少なくとも2箇所に設けられている、
     請求項1から6のいずれか1項に記載の音叉型水晶振動素子。
    The receiving portion is provided in at least two places so as to sandwich the narrow portion in the second direction.
    The tuning fork type crystal vibrating element according to any one of claims 1 to 6.
  8.  前記基部、前記振動腕部、及び前記受け部が水晶によって設けられ、
     前記受け部は、前記振動腕部が所望の振幅範囲を超えた場合に、前記連結部又は前記支持部に接触する接触面を有し、
     前記受け部の前記接触面は、前記水晶の電気軸に沿って延在している、
     請求項1から7のいずれか1項に記載の音叉型水晶振動素子。
    The base portion, the vibrating arm portion, and the receiving portion are provided by crystal,
    The receiving part has a contact surface that comes into contact with the connecting part or the support part when the vibrating arm part exceeds a desired amplitude range;
    The contact surface of the receiving portion extends along an electrical axis of the crystal;
    The tuning-fork type crystal vibrating element according to any one of claims 1 to 7.
  9.  基部と、
     前記基部から第1方向に延出し前記第1方向と交差する第2方向に並ぶ複数の振動腕部と、
     少なくとも1つの受け部と、
    を備え、
     前記基部は、
     前記複数の振動腕部の付け根を共通して固定するように設けられている連結部と、
     前記第1方向において前記連結部から間隔を空けて設けられている支持部と、
     前記連結部と前記支持部との間において前記連結部と前記支持部とを繋ぐように設けられ、前記第2方向における幅が前記連結部及び前記支持部よりも小さい幅狭部と、
    を備え、
     前記受け部は、前記複数の振動腕部が所望の振幅範囲を超えた場合に、前記第1方向において前記連結部又は前記支持部と接触することによって前記振動腕部の変位を規制する、音叉型水晶振動素子。
    The base,
    A plurality of resonating arm portions extending in a first direction from the base portion and arranged in a second direction intersecting the first direction;
    At least one receptacle;
    With
    The base is
    A connecting portion provided to commonly fix the roots of the plurality of vibrating arm portions;
    A support portion provided at a distance from the connecting portion in the first direction;
    A narrow portion provided between the connecting portion and the support portion so as to connect the connecting portion and the support portion; and a width in the second direction smaller than the connecting portion and the support portion;
    With
    The receiving portion regulates displacement of the vibrating arm portion by contacting the connecting portion or the supporting portion in the first direction when the plurality of vibrating arm portions exceed a desired amplitude range. Type crystal resonator element.
  10.  水晶基板を準備する工程と、
     前記水晶基板の上にフォトレジスト層を設ける工程と、
     前記フォトレジスト層をパターニングする工程と、
     パターニングされた前記フォトレジスト層に基づいて前記水晶基板をウェットエッチングによってエッチング加工し水晶片を形成する工程と、
    を含み、
     前記水晶片は、基部と、前記基部から第1方向に延出し前記第1方向と交差する第2方向に並ぶ複数の振動腕部と、少なくとも1つの受け部と、を備え、
     前記基部は、前記複数の振動腕部の付け根を共通して固定するように設けられている連結部と、前記第1方向において前記連結部から間隔を空けて設けられている支持部と、前記連結部と前記支持部との間において前記連結部と前記支持部とを繋ぐように設けられ、前記第2方向における幅が前記連結部及び前記支持部よりも小さい幅狭部と、を備え、
     前記受け部は、前記第1方向における前記連結部と前記支持部との間に設けられる、音叉型水晶振動素子の製造方法。
    Preparing a quartz substrate;
    Providing a photoresist layer on the quartz substrate;
    Patterning the photoresist layer;
    Etching the crystal substrate by wet etching based on the patterned photoresist layer to form a crystal piece;
    Including
    The crystal piece includes a base, a plurality of vibrating arm portions extending in a first direction from the base and arranged in a second direction intersecting the first direction, and at least one receiving portion,
    The base portion includes a connecting portion that is provided so as to commonly fix the roots of the plurality of vibrating arm portions, a support portion that is provided at a distance from the connecting portion in the first direction, and A narrow portion provided between the connecting portion and the support portion so as to connect the connecting portion and the support portion, and having a width in the second direction smaller than that of the connecting portion and the support portion;
    The receiving part is a method of manufacturing a tuning fork type crystal resonator element provided between the connecting part and the support part in the first direction.
  11.  前記第1方向は、前記水晶片を構成する水晶の機械軸に沿って延在し、
     前記第2方向は、前記水晶の電気軸に沿って延在する、
     請求項10に記載の音叉型水晶振動素子の製造方法。
    The first direction extends along a mechanical axis of a crystal constituting the crystal piece,
    The second direction extends along the electrical axis of the crystal;
    A method for manufacturing a tuning-fork type crystal vibrating element according to claim 10.
  12.  ベース部材と、
     前記ベース部材との間に内部空間を形成する蓋部材と、
     前記内部空間に収容される音叉型水晶振動素子と、
     前記音叉型水晶振動素子を前記ベース部材に保持する保持部材と
    を備え、
     前記音叉型水晶振動素子は、
     基部と、
     前記基部から第1方向に延出し前記第1方向と交差する第2方向に並ぶ複数の振動腕部と、
     少なくとも1つの受け部と、
    を備え、
     前記基部は、
     前記複数の振動腕部の付け根を共通して固定するように設けられている連結部と、
     前記第1方向において前記連結部から間隔を空けて設けられている支持部と、
     前記連結部と前記支持部との間において前記連結部と前記支持部とを繋ぐように設けられ、前記第2方向における幅が前記連結部及び前記支持部よりも小さい幅狭部と、
    を備え、
     前記受け部は、前記第1方向における前記連結部と前記支持部との間に設けられており、
     前記保持部材は、前記支持部を前記ベース部材に固定している、音叉型水晶振動子。
    A base member;
    A lid member that forms an internal space with the base member;
    A tuning fork-type crystal resonator element housed in the internal space;
    A holding member for holding the tuning fork type crystal resonator element on the base member,
    The tuning fork type crystal vibrating element is
    The base,
    A plurality of resonating arm portions extending in a first direction from the base portion and arranged in a second direction intersecting the first direction;
    At least one receptacle;
    With
    The base is
    A connecting portion provided to commonly fix the roots of the plurality of vibrating arm portions;
    A support portion provided at a distance from the connecting portion in the first direction;
    A narrow portion provided between the connecting portion and the support portion so as to connect the connecting portion and the support portion; and a width in the second direction smaller than the connecting portion and the support portion;
    With
    The receiving portion is provided between the connecting portion and the support portion in the first direction,
    The holding member is a tuning fork type crystal resonator in which the support portion is fixed to the base member.
PCT/JP2018/018767 2017-05-16 2018-05-15 Tuning-fork crystal vibration element, method for manufacturing tuning-fork crystal vibration element, and tuning-fork crystal vibrator WO2018212181A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019518804A JP6819945B2 (en) 2017-05-16 2018-05-15 Tuning fork type crystal vibration element and its manufacturing method, and tuning fork type crystal oscillator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017097229 2017-05-16
JP2017-097229 2017-05-16

Publications (1)

Publication Number Publication Date
WO2018212181A1 true WO2018212181A1 (en) 2018-11-22

Family

ID=64273852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018767 WO2018212181A1 (en) 2017-05-16 2018-05-15 Tuning-fork crystal vibration element, method for manufacturing tuning-fork crystal vibration element, and tuning-fork crystal vibrator

Country Status (2)

Country Link
JP (1) JP6819945B2 (en)
WO (1) WO2018212181A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109580030A (en) * 2019-01-10 2019-04-05 哈尔滨华凡传感技术有限公司 A kind of high-precision resonance type quartz crystal temperature sensor raised one's arm with more pieces of flechette-types

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152988A (en) * 2007-12-21 2009-07-09 Nippon Dempa Kogyo Co Ltd Piezoelectric vibration chip, piezoelectric device and manufacturing methods for them
JP2010087575A (en) * 2008-09-29 2010-04-15 Nippon Dempa Kogyo Co Ltd Piezoelectric device
JP2012151639A (en) * 2011-01-19 2012-08-09 Seiko Epson Corp Vibrating piece, piezoelectric device and electronic apparatus
JP2012257141A (en) * 2011-06-10 2012-12-27 Seiko Epson Corp Crystal vibrating piece, gyro sensor, electronic apparatus and manufacturing method of crystal vibrating piece
JP2014131352A (en) * 2014-03-20 2014-07-10 Seiko Epson Corp Vibration piece, vibrator, oscillator, gyro sensor, and electronic apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6137277B2 (en) * 2015-11-12 2017-05-31 セイコーエプソン株式会社 Vibrating piece, vibrator and oscillator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152988A (en) * 2007-12-21 2009-07-09 Nippon Dempa Kogyo Co Ltd Piezoelectric vibration chip, piezoelectric device and manufacturing methods for them
JP2010087575A (en) * 2008-09-29 2010-04-15 Nippon Dempa Kogyo Co Ltd Piezoelectric device
JP2012151639A (en) * 2011-01-19 2012-08-09 Seiko Epson Corp Vibrating piece, piezoelectric device and electronic apparatus
JP2012257141A (en) * 2011-06-10 2012-12-27 Seiko Epson Corp Crystal vibrating piece, gyro sensor, electronic apparatus and manufacturing method of crystal vibrating piece
JP2014131352A (en) * 2014-03-20 2014-07-10 Seiko Epson Corp Vibration piece, vibrator, oscillator, gyro sensor, and electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109580030A (en) * 2019-01-10 2019-04-05 哈尔滨华凡传感技术有限公司 A kind of high-precision resonance type quartz crystal temperature sensor raised one's arm with more pieces of flechette-types

Also Published As

Publication number Publication date
JPWO2018212181A1 (en) 2020-02-06
JP6819945B2 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
TWI483545B (en) Resonator element and resonator
JP5175128B2 (en) Tuning fork type piezoelectric vibrating piece and piezoelectric device
US20130193807A1 (en) Quartz crystal vibrating piece and quartz crystal device
JP5059399B2 (en) Method for manufacturing piezoelectric vibrating piece, piezoelectric vibrating piece and piezoelectric device
US7437932B2 (en) Gyro vibration piece and gyro sensor
JP2004357178A (en) Piezoelectric vibrator
JP2011229125A (en) Tuning-fork type piezoelectric vibration piece and piezoelectric device
JP5088664B2 (en) Method for manufacturing piezoelectric vibrating piece
JP5384406B2 (en) Manufacturing method of tuning-fork type crystal vibrating piece, crystal device
JP2011151780A (en) Bending vibration piece, vibration device, and electronic apparatus
WO2018212181A1 (en) Tuning-fork crystal vibration element, method for manufacturing tuning-fork crystal vibration element, and tuning-fork crystal vibrator
JP2009152988A (en) Piezoelectric vibration chip, piezoelectric device and manufacturing methods for them
JP5716557B2 (en) Vibrating piece, gyro sensor, electronic device, and method of manufacturing the vibrating piece
WO2018212188A1 (en) Piezoelectric vibration element
JP2017060125A (en) Piezoelectric vibration piece and piezoelectric vibrator
JP2011193316A (en) Piezoelectric resonator element and piezoelectric device
JP7466568B2 (en) Manufacturing method of quartz crystal element
JP2008131062A (en) Piezoelectric vibrator and manufacturing method thereof, and piezoelectric device
JP6591846B2 (en) Thickness sliding crystal element
JP7427399B2 (en) Piezoelectric vibrating piece and piezoelectric vibrator
JP7329592B2 (en) Crystal element and crystal device
US20230402994A1 (en) Peizoelectric element and piezoelectric device
JP2010088054A (en) Tuning fork piezoelectric vibration piece and piezoelectric device
CN108075741B (en) Method for manufacturing piezoelectric vibration element
JP7045637B2 (en) Manufacturing method of piezoelectric vibration element and assembly board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801568

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019518804

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18801568

Country of ref document: EP

Kind code of ref document: A1