WO2018212144A1 - しゅう動部品 - Google Patents

しゅう動部品 Download PDF

Info

Publication number
WO2018212144A1
WO2018212144A1 PCT/JP2018/018624 JP2018018624W WO2018212144A1 WO 2018212144 A1 WO2018212144 A1 WO 2018212144A1 JP 2018018624 W JP2018018624 W JP 2018018624W WO 2018212144 A1 WO2018212144 A1 WO 2018212144A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding
sliding surface
dimples
random dimple
dimple group
Prior art date
Application number
PCT/JP2018/018624
Other languages
English (en)
French (fr)
Inventor
忠継 井村
綾乃 谷島
井上 秀行
雄一郎 徳永
猛 細江
雄大 根岸
優貴 前谷
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to EP18803055.5A priority Critical patent/EP3627011B1/en
Priority to CN201880031052.1A priority patent/CN110691931B/zh
Priority to US16/610,844 priority patent/US11053975B2/en
Priority to KR1020197033293A priority patent/KR102346395B1/ko
Priority to JP2019518778A priority patent/JP7102086B2/ja
Publication of WO2018212144A1 publication Critical patent/WO2018212144A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • F16J15/3408Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/045Sliding-contact bearings for exclusively rotary movement for axial load only with grooves in the bearing surface to generate hydrodynamic pressure, e.g. spiral groove thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • F16J15/3408Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
    • F16J15/3412Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • F16J15/3408Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
    • F16J15/3424Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with microcavities

Definitions

  • the present invention relates to a sliding part suitable for a sliding part, for example, a mechanical seal, a sliding bearing, and the like.
  • the present invention relates to a sliding component such as a seal ring or a bearing that requires a fluid to be interposed on a sliding surface to reduce friction and prevent fluid from leaking from the sliding surface.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-343741
  • a plurality of elongate dimples having a different inclination direction between the outer peripheral side and the inner peripheral side are regularly arranged with the boundary reference line X as a boundary, and the front end of the rotation direction of the outer peripheral dimple is inclined toward the outer peripheral side.
  • the rotation direction tip of the dimple on the inner peripheral side is inclined toward the inner peripheral side.
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-221179
  • a plurality of dimples are provided on the front end surface and both end surfaces of a sliding vane as the inner wall of a cylinder of a rotary compressor. Are randomly arranged.
  • the lubrication performance is improved compared to the aligned arrangement.
  • it is difficult to obtain a so-called pumping effect by sucking a fluid to leak to the low-pressure fluid side. Therefore, there is a problem that leakage occurs, and as a result of random arrangement, there is also a problem that it is unclear what kind of arrangement affects the lubrication performance.
  • the present invention first elucidates the relationship between the dimple arrangement characteristics and the pumping characteristics in the case of randomly arranging a plurality of dimples, and improves the fluid suction characteristics from the leakage side to the sliding surface.
  • the purpose of the present invention is to provide a sliding part having excellent properties.
  • the present invention in addition to improving the inflow characteristics of the fluid from the sealed fluid side to the sliding surface, satisfies both conflicting conditions of sealing and lubrication. It is an object of the present invention to provide a sliding part that can be used.
  • the inventor of the present invention conducted a numerical experiment on the arrangement condition of 200 cases using an experimental design based on the Latin supersquare method in a sliding part in which a plurality of dimples were randomly arranged on the sliding surface. And the following relationship between pumping characteristics and lubrication characteristics.
  • pumping amount The amount of suction from the leakage side to the sliding surface (hereinafter sometimes referred to as pumping amount) has a correlation with the average value of the radial coordinates of the sliding surface of the dimple (Spearman rank correlation coefficient 0. 672). As shown in FIG.
  • the radial coordinate average value (meaning the radial center of gravity of the dimple group) constituting the dimple group is the sliding radius (the radial center of the sliding surface).
  • the average radial coordinate rmean is smaller than 0.5, the amount of fluid sucked into the sliding surface from the inner peripheral side (leakage side) of the sliding surface increases.
  • the average radial direction coordinate rmean in FIG. 2A is expressed by the following equation.
  • the torque of the sliding surface relative to the sliding surface is the standard deviation of the angular direction coordinates of the dimples normalized by a uniform distribution (hereinafter referred to as the “angular direction standard deviation ⁇ ”). 2) (Spearman rank correlation coefficient 0.595), and as shown in FIG. 2B, the angular direction standard deviation ⁇ is smaller than 1, more preferably smaller than 0.8. This makes it difficult to generate a large torque.
  • the present invention firstly arranges the dimples so that the radial coordinate average value of the dimple center is smaller than the sliding radius, thereby improving the suction characteristics from the leakage side to the sliding surface.
  • the second is to improve the lubricity by arranging the dimples so that the standard deviation ⁇ in the angular direction of the dimples is smaller than 1, more preferably smaller than 0.8. This prevents the generation of a large torque.
  • a sliding component according to the present invention is firstly a sliding component in which a plurality of dimples are arranged on an annular sliding surface on at least one side of a pair of sliding components that slide relative to each other. , The plurality of dimples are randomly arranged to form a random dimple group, and the dimples are arranged so that a radial coordinate average of the centers of the dimples of the random dimple group is smaller than a sliding radius of the sliding surface. It is characterized by that. According to this feature, it is possible to improve the fluid suction characteristics from the leakage side to the sliding surface, and it is possible to provide a sliding component with excellent sealing performance.
  • the sliding component of the present invention is secondly characterized in that, in the first feature, a plurality of the random dimple groups are independently formed in the circumferential direction of the sliding surface. According to this feature, the suction characteristic of the fluid from the leakage side to the sliding surface can be improved uniformly in the circumferential direction of the sliding surface.
  • the sliding component of the present invention is characterized in that, in the first or second feature, the dimple is arranged so that the standard deviation in the angular direction of the dimple of the random dimple group is less than 1. It is said. According to this feature, the inflow characteristic of the fluid from the sealed fluid side to the sliding surface can be improved, a thick liquid film can be obtained, and a sliding component having excellent lubricity can be provided.
  • the dimples are arranged so that the standard deviation in the angular direction of the dimples of the random dimple group is less than 0.8. It is characterized by. According to this feature, it is possible to further improve the inflow characteristics of the fluid from the sealed fluid side to the sliding surface, obtain a thick liquid film, and provide a sliding component with excellent lubricity. .
  • the radial coordinate average of the center of the dimple of the random dimple group is applied to the leakage side sliding surface.
  • a pumping type random dimple group in which the dimples are arranged so as to be smaller than the sliding radius of the surface is disposed, and the sliding surface on the sealed fluid side has a standard deviation in the angular direction of the dimples of the random dimple group.
  • a lubricated random dimple group in which the dimples are arranged so as to be at least less than 1 is provided. According to this feature, the sealing performance of the sliding surface can be improved, and the lubricity can be further improved.
  • the sliding surface is provided with a deep groove spaced apart from the leakage side and communicated with the sealed fluid side.
  • a circumferential deep groove of the deep groove is disposed between the pumping random dimple group and the lubricated random dimple group.
  • the present invention has the following excellent effects.
  • the dimples are arranged so that the radial coordinate average of the centers of the dimples of the random dimple group is smaller than the sliding radius of the sliding surface, thereby improving the fluid suction characteristics from the leakage side to the sliding surface. Therefore, it is possible to provide a sliding part having excellent sealing performance.
  • a pumping random dimple group in which dimples are arranged so that the radial coordinate average of the centers of the dimples in the random dimple group is smaller than the sliding radius of the sliding surface is arranged on the sliding surface on the leakage side.
  • the sliding surface on the sealed fluid side is provided with a lubricated random dimple group in which the dimples are arranged so that the standard deviation in the angular direction of the dimple of the random dimple group is at least less than 1.
  • the lubricity can be further improved.
  • the sliding surface is provided with a deep groove that is separated from the leakage side and communicated with the sealed fluid side, and the circumferential deep groove of the deep groove includes a pumping random dimple group and a lubricating random dimple group. Since the fluid can be supplied from the sealed fluid side to the sliding surface through the deep groove, the lubricity of the sliding surface can be improved and the pumping type random dimple is provided by the circumferential deep groove. The mutual interference between the group and the lubricated random dimple group can be prevented, and the respective functions of the pumping random dimple group and the lubricated random dimple group can be sufficiently exhibited.
  • Example 1 of this invention With reference to FIG. 1 thru
  • a mechanical seal which is an example of a sliding component, will be described as an example.
  • the present invention is not limited to this, and for example, lubricating oil is applied to one axial side of a cylindrical sliding surface. It can also be used as a sliding part of a bearing that slides on a rotating shaft while being sealed.
  • the outer peripheral side of the sliding part constituting the mechanical seal is described as the high pressure fluid side (sealed fluid side) and the inner peripheral side is described as the low pressure fluid side (leak side), the present invention is not limited to this.
  • the present invention can also be applied to the case where the high-pressure fluid side and the low-pressure fluid side are reversed.
  • FIG. 1 is a longitudinal sectional view showing an example of a mechanical seal, which is an inside type that seals a sealed fluid on the high-pressure fluid side that is about to leak from the outer periphery of the sliding surface toward the inner peripheral direction.
  • a mechanical seal which is an inside type that seals a sealed fluid on the high-pressure fluid side that is about to leak from the outer periphery of the sliding surface toward the inner peripheral direction.
  • annular ring which is one sliding component provided on the rotary shaft 1 side for driving a pump impeller (not shown) on the high pressure fluid side via a sleeve 2 so as to be rotatable integrally with the rotary shaft 1.
  • the annular stationary side sealing ring 5 which is the other sliding part provided in the pump housing 4 in a non-rotating state and movable in the axial direction.
  • FIG. 1 shows the case where the width of the sliding surface of the rotation-side sealing ring 3 is wider than the width of the sliding surface of the stationary-side sealing ring 5.
  • the present invention can also be applied.
  • the material of the rotating side sealing ring 3 and the stationary side sealing ring 5 is selected from silicon carbide (SiC) having excellent wear resistance and carbon having excellent self-lubricating properties.
  • SiC silicon carbide
  • both are SiC or rotating.
  • the side seal ring 3 can be made of SiC and the fixed side seal ring 5 can be combined with carbon.
  • a dimple is disposed on at least one of the sliding surfaces of the rotating side sealing ring 3 and the stationary side sealing ring 5 that slide relative to each other.
  • the “dimple” is a recess formed in the flat sliding surface S, and its shape is not particularly limited.
  • the planar shape of the recess includes a circle, an ellipse, an oval, or a rectangle
  • the cross-sectional shape of the recess includes various shapes such as a bowl or a rectangle.
  • a dimple has a concave shape to provide a fluid lubrication action
  • the fluid lubrication mechanism in the dimple is as follows.
  • a negative pressure is generated in the upstream portion of the hole and a positive pressure is generated in the downstream portion due to the wedge action of the hole portion of the dimple.
  • the liquid film is broken, a cavity formed by liquid vapor or bubbles is formed (cavitation), and the negative pressure is canceled.
  • the positive pressure remains and the load capacity is generated, so that the sliding surface S is lifted.
  • the gap between the two sliding surfaces that slide relative to each other increases, and a lubricating fluid flows into the sliding surface S, thereby obtaining a fluid lubricating action.
  • the rotation-side sealing ring 3 may or may not be provided with dimples.
  • the random arrangement means an arrangement excluding the arrangement arranged with regularity, and does not include the staggered arrangement.
  • a plurality of dimples 10 are arranged on the sliding surface S of the stationary seal ring 5.
  • a plurality of dimples 10 are randomly arranged to form a random dimple group 11.
  • the random dimple groups 11 are arranged in 36 equal positions independently in the circumferential direction of the sliding surface S via the land portion R, but the present invention is limited to 36 equal positions. 1 or more is sufficient.
  • the average value of the radial coordinate of the center of the dimple 10 constituting the random dimple group 11 is the sliding radius 15 of the sliding surface S (the radial center of the sliding surface S indicated by the two-dot chain line). .) Is arranged so that the average radial coordinate rmean is 0.5 or less.
  • Ro is the outer radius of the sliding surface
  • Ri is the inner radius of the sliding surface.
  • the dimple 10 is arranged so that the radial coordinate average of the center of the dimple 10 is smaller than the sliding radius 15 of the sliding surface S (the radial center of the sliding surface S indicated by a two-dot chain line).
  • Each random dimple group thus formed is called a “pumping random dimple group”.
  • the arrangement of the dimples 10 in the pumping type random dimple group is performed as follows.
  • the dimples 10 are regarded as mass system electrons, and a plurality of dimples 10 are randomly arranged using software by Coulomb force acting between the electrons.
  • the virtual force is manipulated by software so that many dimples 10 are arranged on the inner diameter side of the sliding surface, and the bias is intentionally applied.
  • the average coordinate in the radial direction of the center of the dimple 10 is calculated from the dimple coordinates to which the bias is applied, using software.
  • (4) Check whether the radial coordinate average of the center of the dimple 10 is smaller than the sliding radius 15 of the sliding surface S.
  • the operation (2) is performed.
  • the dimples 10 are arranged such that the standard deviation ⁇ in the angular direction of the dimple 10 is less than 1.
  • the angular standard deviation is less than 1 as in the following formula 1.
  • Angular direction standard deviation ⁇ angular direction standard deviation ⁇ of random dimple group / angular direction standard deviation ⁇ r of uniformly arranged dimple group ⁇ 1
  • each random dimple group 11 when the angular direction standard deviation ⁇ is arranged to be less than 1, the lubricity of the sliding surface S is improved, and the generation of a large torque (sliding resistance) is prevented. Further, when the angular direction standard deviation ⁇ is arranged to be less than 0.8, the lubricity of the sliding surface S is further improved.
  • a random dimple group arranged so that the angular direction standard deviation ⁇ is less than 1 is referred to as a “lubricated random dimple group”.
  • the random dimple group 11 shown in FIG. 3 is a pumping type random dimple group that is arranged so that the average radial coordinate of the center of the dimple 10 is smaller than the sliding radius 15 of the sliding surface S. It is also a lubrication type random dimple group arranged so that the standard deviation ⁇ is less than 1.
  • the arrangement of the dimples 10 in which the standard deviation ⁇ in the angular direction of the dimples 10 of each random dimple group 11 is less than 1 is performed as follows. (1) In FIG. 3, since the random dimple groups 11 are arranged in 36 equidistant directions in the circumferential direction of the sliding surface S, first, the standard deviation in the angular direction of uniformly arranged dimple groups in the case of 36 equidistant arrangements. ⁇ r is obtained. In the case of 36 equidistant arrangements, the angle of the section 16 of the uniformly arranged dimple group is 10 °, and the uniform position from the center position 17 of the section 16 is a position of 2.5 °.
  • the standard deviation ⁇ r in the angular direction of the uniformly arranged dimple group in the case of 36 equidistant distributions is 2.5 °.
  • a virtual force is manipulated by software so that many dimples 10 are arranged on the center position 17 side, and a bias is intentionally applied.
  • the angle direction standard deviation ⁇ of the random dimple group 11 is calculated from the coordinates of the biased dimples using software.
  • the angular direction standard deviation ⁇ of the random dimple group 11 obtained by normalizing the angular direction standard deviation ⁇ of the random dimple group 11 by the angular direction standard deviation ⁇ r of the aligned dimple group is less than 1. Make sure.
  • (5) When the angular direction standard deviation ⁇ of the random dimple group 11 is larger than 1, the operation (2) is performed.
  • the sliding component according to the first embodiment of the present invention has the following remarkable effects.
  • (1) In a sliding part in which a plurality of dimples are arranged on at least one annular sliding surface that slides relative to each other of a pair of sliding parts, the plurality of dimples 10 are randomly arranged to form a random dimple group 11. And the dimple 10 is arranged so that the average radial coordinate of the center of the dimple 10 of the random dimple group 11 is smaller than the sliding radius 15 of the sliding surface S.
  • the fluid suction characteristics can be improved, and a sliding component having excellent sealing performance can be provided.
  • the suction characteristics of the fluid from the leakage side to the sliding surface are uniformly improved in the circumferential direction of the sliding surface. Can be made. At that time, since the adjacent random dimple groups 11 are disposed via the land portion R, the dynamic pressure generation effect can be increased in the land portion R.
  • the dimple 10 is arranged so that the standard deviation ⁇ in the angular direction of the dimple 10 of the random dimple group 11 is less than 1, thereby improving the inflow characteristics of the fluid from the sealed fluid side to the sliding surface, A thick liquid film can be obtained, and a sliding part having excellent lubricity can be provided.
  • the dimple 10 is arranged such that the standard deviation ⁇ in the angular direction of the dimple 10 of the random dimple group 11 is less than 0.8, the inflow characteristic of the fluid from the sealed fluid side to the sliding surface is further improved. It is possible to provide a sliding part that can be improved and has excellent lubricity.
  • the sliding component according to the second embodiment is different from the sliding component according to the first embodiment in that the pumping type random dimple group and the lubrication type random dimple group are separated and arranged separately.
  • the same members are denoted by the same reference numerals, and redundant description is omitted.
  • the radial coordinate average of the center of the dimple 10 of the random dimple group 11 is smaller than the sliding radius 15 of the sliding surface S on the sliding surface S on the leakage side (inner peripheral side in FIG. 4).
  • the pumping random dimple groups 11-P in which the dimples 10 are arranged in this manner are arranged in 36 equidistant positions via the land portion R, and are arranged on the sliding surface S on the sealed fluid side (the outer peripheral side in FIG. 4).
  • lubricated random dimple groups 11-L in which the dimples 10 are arranged so that the standard deviation in the angular direction of the dimples 10 is at least less than 1 are arranged in 36 equidistant positions via the land portions R.
  • the pumping type random dimple group 11-P and the lubrication type random dimple group 11-L are not limited to 36 and may be plural, and may not be even.
  • a pumping type random dimple group 11-P having a large amount of suction from the leakage side to the sliding surface S is disposed on the leakage side of the sliding surface S, and at the sealed fluid side to the sliding surface.
  • the pumping random dimple group 11-P and the lubricated random dimple group 11-L are symmetrical with respect to the center line r through which the two adjacent dimple groups 11-P and dimple group 11-L pass through the rotation center. Is formed. Therefore, the same function can be achieved regardless of which direction the other sliding surface rotates, and the shape is suitable for both-rotation type sliding parts.
  • the sliding component according to the second embodiment of the present invention has the following remarkable effects.
  • a pumping type random dimple group 11-P in which the dimples 10 are arranged on the sliding surface S on the sealed fluid side is arranged so that the standard deviation in the angular direction of the dimples 10 of the random dimple group 11 is less than 1.
  • the sealing performance of the sliding surface S can be improved and the lubricity can be further improved.
  • the two adjacent dimple groups 11-P and dimple groups 11-L are formed symmetrically with respect to the center line r passing through the rotation center, so that the sliding parts are suitable for both rotation types. Can be provided.
  • the sliding component according to the third embodiment is different from the sliding component according to the second embodiment (FIG. 4) in that the deep groove 12 is provided, but the other basic configuration is the same as that of the second embodiment and the same member. Are denoted by the same reference numerals, and redundant description is omitted.
  • pumping type random dimple groups 11-P are arranged in a uniform manner on the sliding surface S on the leakage side (inner diameter side in FIG. 5), and the sealed fluid side (outer diameter side in FIG. 5).
  • a deep groove 12 is disposed between the group 11-L and the pumping random dimple group 11-P.
  • the deep groove 12 includes a circumferential deep groove 12A and a radial deep groove 12B.
  • the circumferential deep groove 12A is provided over the entire circumference of the sliding surface S, and the outer peripheral side and the inner peripheral side of the circumferential deep groove 12A are defined by the sliding surface S.
  • One of the radial deep grooves 12B has an opening that opens to the sealed fluid side, and the other communicates with the circumferential deep groove 12A.
  • the deep groove 12 is partitioned by the sliding surface S except for the opening that opens to the sealed fluid side, and is separated from the leakage side.
  • the deep groove 12 has a function of supplying fluid to the sliding surface S from the sealed fluid side and lubricating the sliding surface S, and includes a pumping region in which the pumping type random dimple group 11-P is disposed and a lubricating type random. It has a function of blocking the space between the dimple group 11-L and the liquid film holding region where the dimple group 11-L is disposed, and exhibiting the respective effects of both regions without diminishing.
  • the sliding surface S is provided with a deep groove 12 that is separated from the leakage side and communicated with the sealed fluid side, and the circumferential deep groove 12A of the deep groove 12 is connected to the pumping type random dimple group 11-P.
  • the fluid By being arranged between the lubrication type random dimple groups 11-L, the fluid can be supplied to the sliding surface S from the sealed fluid side, the lubricity of the sliding surface S can be improved, and the pumping type random dimples
  • the mutual interference between the group 11-P and the lubricated random dimple group 11-L can be prevented, and the respective functions of the pumping random dimple group 11-P and the lubricated random dimple group 11-L can be sufficiently exhibited. it can.
  • lubricated random dimple groups 11-L are arranged in a substantially equal 20 arrangement on the sliding surface S on the sealed fluid side (outer diameter side in FIG. 6).
  • pumping type random dimple groups 11-P are arranged at approximately 10 intervals, and the number of lubrication type random dimple groups 11-L and the number of pumping type random dimple groups 11-P are the same.
  • the other basic configuration is the same as that of the third embodiment, and the same members are denoted by the same reference numerals, and redundant description is omitted.
  • the sliding surface S on the leakage side is divided into approximately 10 equal sections, and pumping random dimple groups 11 -P are arranged in each section 18.
  • the dimple 10 of the pumping type random dimple group 11-P directly contacts the inner peripheral portion 5B (leakage side) to form an opening, and sucks fluid from the leak side to the sliding surface, thereby improving the sealing performance of the sliding parts. It is improving.
  • the sliding surface S on the sealed fluid side (the outer diameter side in FIG. 6) is divided into approximately 20 equal parts, and each of the compartments 16 is provided with a lubricated random dimple group 11-L.
  • the dimples 10 of the lubricated random dimple group 11-L are in direct contact with the outer peripheral portion 5A (sealed fluid side) of the sliding surface S to form an opening so that fluid from the sealed fluid side to the sliding surface can be formed. Inflow characteristics are improved, and a thick liquid film is formed to improve the lubricity of sliding parts.
  • the sliding surface S on the leakage side is partitioned into approximately 10 parts and the sliding surface S on the sealed fluid side is partitioned into approximately 20 parts, but the number of sections is not limited thereto. Alternatively, the number of other sections may be used.
  • a deep groove 12 is disposed between the pumping random dimple group 11-P and the lubricating random dimple group 11-L.
  • the deep groove 12 includes a circumferential deep groove 12A and a radial deep groove 12B.
  • the circumferential deep groove 12A is provided over the entire circumference of the sliding surface S, and the outer peripheral side and the inner peripheral side of the circumferential deep groove 12A are defined by the sliding surface S.
  • One of the radial deep grooves 12B has an opening that opens to the sealed fluid side, and the other communicates with the circumferential deep groove 12A.
  • the deep groove 12 is partitioned by the sliding surface S except for the opening that opens to the sealed fluid side, and is separated from the leakage side.
  • the deep groove 12 has a function of supplying fluid to the sliding surface S from the sealed fluid side and lubricating the sliding surface S, and includes a pumping region in which the pumping type random dimple group 11-P is disposed and a lubricating type random. It has a function of blocking the space between the dimple group 11-L and the liquid film holding region where the dimple group 11-L is disposed, and exhibiting the respective effects of both regions without diminishing.
  • the sliding component according to the fourth embodiment of the present invention has the following remarkable effects.
  • the sliding surface S is provided with a deep groove 12 that is separated from the leakage side and communicated with the sealed fluid side, and the circumferential deep groove 12A of the deep groove 12 is connected to the pumping type random dimple group 11-P.
  • the fluid By being arranged between the lubrication type random dimple groups 11-L, the fluid can be supplied to the sliding surface S from the sealed fluid side, the lubricity of the sliding surface S can be improved, and the pumping type random dimples
  • the mutual interference between the group 11-P and the lubricated random dimple group 11-L can be prevented, and the respective functions of the pumping random dimple group 11-P and the lubricated random dimple group 11-L can be sufficiently exhibited. it can.
  • the dimple groups having different roles of the pumping random dimple group 11-P and the lubricated random dimple group 11-L can be freely arranged on the outer diameter side and inner diameter side of the sliding surface, the design of the sliding parts Can be made easier.
  • the sliding component is used for at least one of the pair of rotation sealing rings and the fixing sealing ring in the mechanical seal device. It can also be used as a sliding part of a bearing that slides on a rotating shaft while sealing lubricating oil.
  • the pumping type random dimple group and the lubrication type random dimple group are arranged in 36 equidistant arrangements. It does n’t have to be.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Sealing (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

【課題】漏れ側からしゅう動面への吸い込み特性の向上を図ることにより、密封性の優れたしゅう動部品を提供する。 【解決手段】一対のしゅう動部品の互いに相対しゅう動する少なくとも一方側の環状のしゅう動面に複数のディンプルが配置されるしゅう動部品において、複数のディンプル10はランダムに配置されてランダムディンプル群11が形成され、ランダムディンプル群11のディンプル10の中心の半径方向座標平均が前記しゅう動面Sのしゅう動半径15より小さくなるようにディンプル10が配置されることを特徴としている。

Description

しゅう動部品
 本発明は、たとえば、メカニカルシール、すべり軸受、その他、しゅう動部に適したしゅう動部品に関する。特に、しゅう動面に流体を介在させて摩擦を低減させるとともに、しゅう動面から流体が漏洩するのを防止する必要のある密封環または軸受などのしゅう動部品に関する。
 しゅう動部品の一例である、メカニカルシールにおいて、密封性を維持しつつ、回転中のしゅう動摩擦を極限まで下げることが求められている。低摩擦化の手法としては、しゅう動面に多様なテクスチャリングを施すことで、これらの実現を図ろうとしており、例えば、テクスチャリングのひとつとしてしゅう動面にディンプルを配列したものが知られている。
 従来、密封と潤滑という相反する条件を両立させるため、しゅう動面にディンプルを設ける場合、複数のディンプルを整列に配置するのが一般的である。例えば、特開2003-343741号公報(以下、「特許文献1」という。)に記載の発明は、しゅう動面の摩擦係数を低減すると共に、シール能力を向上させることを目的として、しゅう動面に境界基準線Xを境に外周側と内周側とが傾斜方向を異にする複数の細長いディンプルを規則的に整列して設け、外周側のディンプルの回転方向先端を外周側へ向かって傾斜させると共に、内周側のディンプルの回転方向先端を内周側へ向かって傾斜させるようにしたものである。
 また、従来、潤滑性の向上のため、複数のディンプルをランダムに配置することも知られている。例えば、特開2001-221179号公報(以下、「特許文献2」という。)に記載の発明は、ロータリ圧縮機のシリンダの内壁としゅう動するベーンの先端面及び両側端面に、複数個のディンプルをランダム配列したものである。
特開2003-343741号公報 特開2001-221179号公報
 しかし、特許文献1に記載の発明は、ディンプルを整列に配置していることから、漏れ側からしゅう動面への吸い込み効果及び被密封流体側からしゅう動面への流入効果が少ないため、外周側のディンプルの回転方向先端を外周側へ向かって傾斜させると共に、内周側のディンプルの回転方向先端を内周側へ向かって傾斜させるという複雑な構成をとる必要があり、また、しゅう動面の径方向の中心部に流体が集中するためしゅう動面全体を均一に潤滑することができないという問題があった。
 また、特許文献2に記載の発明は、潤滑性の向上のため、複数のディンプルをランダムに配置したというに過ぎず、密封性の向上に関しての考察はされていない。
 複数のディンプルをランダムに配置することで整列配置に比べて潤滑性能の向上がみられるが、ランダム配置においては、低圧流体側に漏れようとする流体を吸い込む効果、いわゆる、ポンピング効果が得られにくいことから漏れが生じるという問題があり、また、ランダムに配置した結果、どのような配置がどのように潤滑性能に影響しているか不明瞭であるという問題もあった。
 本発明は、第一に、複数のディンプルをランダム配置する場合のディンプル配置特性とポンピング特性との関係を解明し、漏れ側からしゅう動面への流体の吸い込み特性の向上を図ることにより、密封性の優れたしゅう動部品を提供することを目的とするものである。
 また、本発明は、第二に、上記第一の目的に加えて、被密封流体側からしゅう動面への流体の流入特性の向上を図ることにより、密封と潤滑という相反する条件を両立させることができるしゅう動部品を提供することを目的とするものである。
 〔本発明の原理〕
 本願発明の発明者は、しゅう動面に複数ディンプルをランダムに配置したしゅう動部品において、ラテン超方格法による実験計画を用いた200ケースの配置条件の数値実験を行った結果、ディンプルの配置とポンピング特性及び潤滑特性との間には以下の関係があるという知見を得た。
(1)漏れ側からしゅう動面への吸い込み量(以下、ポンピング量ということもある。)は、ディンプルのしゅう動面の半径方向座標の平均値と相関がある(スピアマン順位相関係数0.672)。図2(a)に示すように、ディンプル群を構成するディンプル中心の半径方向座標平均値(ディンプル群の半径方向重心を意味する。)がしゅう動半径(しゅう動面の径方向の中心。)より小さくなると、すなわち平均半径方向座標rmeanが0.5より小さくなるとしゅう動面の内周側(漏れ側)からしゅう動面内に流体を吸い込む量が多くなる。ここで、図2(a)の平均半径方向座標rmeanは次の式により表される。
rmean=(ディンプル群を構成するディンプルの中心の半径方向座標の平均値-しゅう動面の内半径Ri)/(しゅう動面の外半径Ro-しゅう動面の内半径Ri)
(2)相対しゅう動するしゅう動面のトルクは、均一な分布によって正規化されたディンプルの角度方向座標の標準偏差(以下「角度方向標準偏差σθ」といい、ディンプル群の角度方向の分散度合を意味する。)と相関があり(スピアマン順位相関係数0.595)、図2(b)に示すように、角度方向標準偏差σθが1より小さく、より好ましくは、0.8より小さくなると、大きなトルクが発生しにくくなる。
 本願発明は、上記の知見に基づき、第一に、ディンプル中心の半径方向座標平均値がしゅう動半径より小さくなるようにディンプルを配置して、漏れ側からしゅう動面への吸い込み特性の向上を図ることにより密封性を向上させるものであり、第二に、ディンプルの角度方向標準偏差σθが1より小さく、より好ましくは0.8より小さくなるようにディンプルを配置して、潤滑性を向上させ、大きなトルクの発生を防止するものである。
 〔解決手段〕
 上記目的を達成するため本発明のしゅう動部品は、第1に、一対のしゅう動部品の互いに相対しゅう動する少なくとも一方側の環状のしゅう動面に複数のディンプルが配置されるしゅう動部品において、
 前記複数のディンプルはランダムに配置されてランダムディンプル群が形成され、前記ランダムディンプル群の前記ディンプルの中心の半径方向座標平均が前記しゅう動面のしゅう動半径より小さくなるように前記ディンプルが配置されることを特徴としている。
 この特徴によれば、漏れ側からしゅう動面への流体の吸い込み特性を向上することができ、密封性の優れたしゅう動部品を提供することができる。
 また、本発明のしゅう動部品は、第2に、第1の特徴において、前記ランダムディンプル群は、しゅう動面の周方向に独立して複数形成されることを特徴としている。
 この特徴によれば、漏れ側からしゅう動面への流体の吸い込み特性をしゅう動面の周方向において均一に向上させることができる。
 また、本発明のしゅう動部品は、第3に、第1又は第2の特徴において、前記ランダムディンプル群のディンプルの角度方向標準偏差が1未満になるように前記ディンプルが配置されることを特徴としている。
 この特徴によれば、被密封流体側からしゅう動面への流体の流入特性を向上させ、厚い液膜を得ることができ、潤滑性の優れたとしゅう動部品を提供することができる。
 また、本発明のしゅう動部品は、第4に、第1又は第2の特徴において、前記ランダムディンプル群のディンプルの角度方向標準偏差が0.8未満になるように前記ディンプルが配置されることを特徴としている。
 この特徴によれば、より一層、被密封流体側からしゅう動面への流体の流入特性を向上させ、厚い液膜を得ることができ、潤滑性の優れたしゅう動部品を提供することができる。
 また、本発明のしゅう動部品は、第5に、第3又は第4の特徴において、漏れ側のしゅう動面には、前記ランダムディンプル群の前記ディンプルの中心の半径方向座標平均が前記しゅう動面のしゅう動半径より小さくなるように前記ディンプルが配置されてなるポンピング形ランダムディンプル群が配設され、被密封流体側のしゅう動面には、前記ランダムディンプル群のディンプルの角度方向標準偏差が少なくとも1未満になるように前記ディンプルが配置されてなる潤滑形ランダムディンプル群が配設されることを特徴としている。
 この特徴によれば、しゅう動面の密封性を向上させると共に、潤滑性を、より一層、向上させることができる。
 また、本発明のしゅう動部品は、第6に、第5の特徴において、前記しゅう動面には、前記漏れ側と離隔されると共に前記被密封流体側と連通された深溝が配設され、前記深溝の円周方向深溝が前記ポンピング形ランダムディンプル群と前記潤滑形ランダムディンプル群との間に配設されることを特徴としている。
 この特徴によれば、深溝を介してしゅう動面に被密封流体側から流体を供給できるのでしゅう動面の潤滑性を向上することができると共に、円周方向深溝によりポンピング形ランダムディンプル群と潤滑形ランダムディンプル群との相互干渉を防止することができ、ポンピング形ランダムディンプル群及び潤滑形ランダムディンプル群の有するそれぞれの機能を十分に発揮させることができる。
 本発明は、以下のような優れた効果を奏する。
(1)一対のしゅう動部品の互いに相対しゅう動する少なくとも一方側の環状のしゅう動面に複数のディンプルが配置されるしゅう動部品において、複数のディンプルはランダムに配置されてランダムディンプル群が形成され、ランダムディンプル群のディンプルの中心の半径方向座標平均がしゅう動面のしゅう動半径より小さくなるようにディンプルが配置されることにより、漏れ側からしゅう動面への流体の吸い込み特性を向上することができ、密封性の優れたしゅう動部品を提供することができる。
(2)ランダムディンプル群は、しゅう動面の周方向に独立して複数形成されることにより、漏れ側からしゅう動面への流体の吸い込み特性をしゅう動面の周方向において均一に向上させることができる。
(3)ランダムディンプル群のディンプルの角度方向標準偏差が1未満になるようにディンプルが配置されることにより、被密封流体側からしゅう動面への流体の流入特性を向上させ、厚い液膜を得ることができ、潤滑性の優れたとしゅう動部品を提供することができる。
(4)ランダムディンプル群のディンプルの角度方向標準偏差が0.8未満になるようにディンプルが配置されることにより、より一層、被密封流体側からしゅう動面への流体の流入特性を向上させ、厚い液膜を得ることができ、潤滑性の優れたしゅう動部品を提供することができる。
(5)漏れ側のしゅう動面には、ランダムディンプル群のディンプルの中心の半径方向座標平均がしゅう動面のしゅう動半径より小さくなるようにディンプルが配置されてなるポンピング形ランダムディンプル群が配設され、被密封流体側のしゅう動面には、ランダムディンプル群のディンプルの角度方向標準偏差が少なくとも1未満になるようにディンプルが配置されてなる潤滑形ランダムディンプル群が配設されることにより、しゅう動面の密封性を向上させると共に、潤滑性を、より一層、向上させることができる。
(6)しゅう動面には、漏れ側と離隔されると共に被密封流体側と連通された深溝が配設され、深溝の円周方向深溝がポンピング形ランダムディンプル群と潤滑形ランダムディンプル群との間に配設されることにより、深溝を介してしゅう動面に被密封流体側から流体を供給できるのでしゅう動面の潤滑性を向上することができると共に、円周方向深溝によりポンピング形ランダムディンプル群と潤滑形ランダムディンプル群との相互干渉を防止することができ、ポンピング形ランダムディンプル群及び潤滑形ランダムディンプル群の有するそれぞれの機能を十分に発揮させることができる。
本発明の実施例1に係るメカニカルシールの一例を示す縦断面図である。 本発明の原理を説明するための説明図である。 本発明の実施例1に係るしゅう動部品のしゅう動面の一例を説明するための平面図である。 本発明の実施例2に係るしゅう動部品のしゅう動面の一例を説明するための平面図である。 本発明の実施例3に係るしゅう動部品のしゅう動面の一例を説明するための平面図である。 本発明の実施例4に係るしゅう動部品のしゅう動面の一例を説明するための平面図である。
 以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対的配置などは、特に明示的な記載がない限り、本発明の範囲をそれらのみに限定する趣旨のものではない。
 図1ないし図3を参照して、本発明の実施例1に係るしゅう動部品について説明する。
 なお、以下の実施例においては、しゅう動部品の一例であるメカニカルシールを例にして説明するが、これに限定されることなく、例えば、円筒状しゅう動面の軸方向一方側に潤滑油を密封しながら回転軸としゅう動する軸受のしゅう動部品として利用することも可能である。
 なお、メカニカルシールを構成するしゅう動部品の外周側を高圧流体側(被密封流体側)、内周側を低圧流体側(漏れ側)として説明するが、本発明はこれに限定されることなく、高圧流体側と低圧流体側とが逆の場合も適用可能である。
 図1は、メカニカルシールの一例を示す縦断面図であって、しゅう動面の外周から内周方向に向かって漏れようとする高圧流体側の被密封流体を密封する形式のインサイド形式のものであり、高圧流体側のポンプインペラ(図示省略)を駆動させる回転軸1側にスリーブ2を介してこの回転軸1と一体的に回転可能な状態に設けられた一方のしゅう動部品である円環状の回転側密封環3と、ポンプのハウジング4に非回転状態かつ軸方向移動可能な状態で設けられた他方のしゅう動部品である円環状の固定側密封環5とが設けられ、固定側密封環5を軸方向に付勢するコイルドウェーブスプリング6及びベローズ7によって、しゅう動面S同士で密接しゅう動するようになっている。すなわち、このメカニカルシールは、回転側密封環3と固定側密封環5との互いのしゅう動面Sにおいて、被密封流体が回転軸1の外周側から内周側へ流出するのを防止するものである。
 なお、図1では、回転側密封環3のしゅう動面の幅が固定側密封環5のしゅう動面の幅より広い場合を示しているが、これに限定されることなく、逆の場合においても本発明を適用出来ることはもちろんである。
 回転側密封環3及び固定側密封環5の材質は、耐摩耗性に優れた炭化ケイ素(SiC)及び自己潤滑性に優れたカーボンなどから選定されるが、例えば、両者がSiC、あるいは、回転側密封環3がSiCであって固定側密封環5がカーボンの組合せが可能である。
 相対しゅう動する回転側密封環3あるいは固定側密封環5の少なくともいずれか一方のしゅう動面には、ディンプルが配設される。
 本発明において、「ディンプル」とは、平坦なしゅう動面Sに形成される窪みのことであり、その形状は特に限定されるものではない。例えば、くぼみの平面形状は円形、楕円形、長円形、もしくは矩形が包含され、くぼみの断面形状もお椀状、または、方形など種々の形が包含される。
 しゅう動面の摩擦係数を低減させるためには、流体潤滑状態で作動させることが望ましい。ディンプルは窪み形状により流体潤滑作用が得られるものであり、ディンプルにおける流体潤滑のメカニズムは次のとおりである。
 相手側しゅう動面が相対移動すると、ディンプルの穴部のくさび作用によって、穴部の上流側の部分では負圧、下流側の部分で正圧が発生する。その際、穴部の上流側の負圧部分では、液膜が破断され、液体の蒸気や気泡による空洞が形成され(キャビテーション)、負圧が打ち消される。その結果、正圧のみが残り負荷能力が発生することで、しゅう動面Sが持ち上がる。しゅう動面Sが持ち上がると、相対しゅう動する2つのしゅう動面の間隙が大きくなり、しゅう動面Sに潤滑性の流体が流入し、流体潤滑作用が得られる。
 本例では、固定側密封環5のしゅう動面Sに複数のディンプルがランダムに配置される場合について説明する。この場合、回転側密封環3にはディンプルは設けられなくても、設けられてもよい。 
 なお、ランダム配置とは、規則性を持って配置される整列配置を除く配置の意味であり、千鳥配置は含まれない。
 図3において、固定側密封環5のしゅう動面Sには、複数のディンプル10が配置されている。複数のディンプル10はランダムに配置されてランダムディンプル群11が形成されている。
 図3の場合は、ランダムディンプル群11は、ランド部Rを介してしゅう動面Sの周方向に独立して36等配で配設されているが、本発明は、36等配に限定されることなく、1以上であればよい。
 各ランダムディンプル群11において、ランダムディンプル群11を構成するディンプル10の中心の半径方向座標の平均値がしゅう動面Sのしゅう動半径15(二点鎖線で示すしゅう動面Sの径方向の中心。)より小さくなるように、すなわち平均半径方向座標rmeanが0.5以下になるように配置される。ここで、しゅう動半径15は、Rm=(Ro+Ri)/2、Roはしゅう動面の外半径、Riはしゅう動面の内半径である。
 各ランダムディンプル群11のディンプル10の中心の半径方向座標平均が、しゅう動面Sのしゅう動半径15より小さくなると、しゅう動面Sの内周側(漏れ側)からしゅう動面内に流体を吸い込む量が多くなる。
 本発明においては、ディンプル10の中心の半径方向座標平均がしゅう動面Sのしゅう動半径15(二点鎖線で示すしゅう動面Sの径方向の中心。)より小さくなるようにディンプル10が配置されてなる各ランダムディンプル群を「ポンピング形ランダムディンプル群」と呼ぶ。
 ポンピング形ランダムディンプル群のディンプル10の配置は次のようにして行われる。
(1)ディンプル10を質点系の電子とみなし、電子間に働くクーロン力によって複数のディンプル10をソフトウェアを用いてランダムに配置する。
(2)しゅう動面の内径側に多くのディンプル10が配置されるように、ソフトウェアで仮想の力を操作し、意図的に偏りを与える。
(3)偏りを与えたディンプルの座標から、ソフトウェアを用いて、ディンプル10の中心の半径方向座標平均を算出する。
(4)ディンプル10の中心の半径方向座標平均がしゅう動面Sのしゅう動半径15より小さいか確認する。
(5)ディンプル10の中心の半径方向座標平均がしゅう動面Sのしゅう動半径15より大きい場合は、上記(2)の操作を行う。
 図3に示す実施例1においては、さらに、各ランダムディンプル群11において、ディンプル10は、ディンプル10の角度方向標準偏差σθが1未満であるように配置されている。
 この角度方向標準偏差が1未満であるとは、次の式1のとおりである。
 角度方向標準偏差σθ=ランダムディンプル群の角度方向標準偏差σ/均一配置の整列ディンプル群の角度方向標準偏差σr <1            式1
 各ランダムディンプル群11において、角度方向標準偏差σθが1未満であるように配置されると、しゅう動面Sの潤滑性が向上され、大きなトルク(しゅう動の抵抗)の発生が防止される。また、角度方向標準偏差σθが0.8未満であるように配置されると、より一層、しゅう動面Sの潤滑性が向上される。
 本発明において、角度方向標準偏差σθが1未満であるように配置されてなるランダムディンプル群を「潤滑形ランダムディンプル群」と呼ぶ。
 図3に示すランダムディンプル群11は、ディンプル10の中心の半径方向座標平均がしゅう動面Sのしゅう動半径15より小さくなるように配置されてなるポンピング形ランダムディンプル群であり、同時に、角度方向標準偏差σθが1未満であるように配置されてなる潤滑形ランダムディンプル群でもある。
 図3に示す実施例1において、各ランダムディンプル群11のディンプル10の角度方向標準偏差σθが1未満であるようなディンプル10の配置は次のようにして行われる。
(1)図3において、ランダムディンプル群11はしゅう動面Sの周方向に36等配で配設されているため、まず、36等配の場合の均一配置の整列ディンプル群の角度方向標準偏差σrを求める。36等配の場合の均一配置の整列ディンプル群の区画16の角度は10°であり、区画16の中心位置17からの均等位置は2.5°の位置になる。よって、36等配の場合の均一配置の整列ディンプル群の角度方向標準偏差σrは2.5°となる。
(2)次に、この状態で、中心位置17側に多くのディンプル10が配置されるように、ソフトウェアで仮想の力を操作し、意図的に偏りを与える。
(3)偏りを与えたディンプルの座標から、ソフトウェアを用いて、ランダムディンプル群11の角度方向標準偏差σを算出する。
(4)上記の式1に基づいて、ランダムディンプル群11の角度方向標準偏差σを整列ディンプル群の角度方向標準偏差σrによって正規化したランダムディンプル群11の角度方向標準偏差σθが1未満であるか確認する。
(5)ランダムディンプル群11の角度方向標準偏差σθが1より大きい場合は、上記(2)の操作を行う。
 以上の説明によれば、本発明の実施例1に係るしゅう動部品は以下のような格別顕著な効果を奏する。
(1)一対のしゅう動部品の互いに相対しゅう動する少なくとも一方側の環状のしゅう動面に複数のディンプルが配置されるしゅう動部品において、複数のディンプル10はランダムに配置されてランダムディンプル群11が形成され、ランダムディンプル群11のディンプル10の中心の半径方向座標平均がしゅう動面Sのしゅう動半径15より小さくなるようにディンプル10が配置されることにより、漏れ側からしゅう動面への流体の吸い込み特性を向上することができ、密封性の優れたしゅう動部品を提供することができる。
(2)ランダムディンプル群11は、しゅう動面Sの周方向に独立して複数形成されることにより、漏れ側からしゅう動面への流体の吸い込み特性をしゅう動面の周方向において均一に向上させることができる。また、その際、隣接するランダムディンプル群11がランド部Rを介して配設されるので、ランド部Rにおいて動圧発生効果を増大することができる。
(3)ランダムディンプル群11のディンプル10の角度方向標準偏差σθが1未満になるようにディンプル10が配置されることにより、被密封流体側からしゅう動面への流体の流入特性を向上させ、厚い液膜を得ることができ、潤滑性の優れたとしゅう動部品を提供することができる。
 また、ランダムディンプル群11のディンプル10の角度方向標準偏差σθが0.8未満になるようにディンプル10が配置されると、より一層、被密封流体側からしゅう動面への流体の流入特性を向上することができ、潤滑性の優れたとしゅう動部品を提供することができる。
 図4を参照して、本発明の実施例2に係るしゅう動部品について説明する。
 実施例2に係るしゅう動部品は、ポンピング形ランダムディンプル群と潤滑形ランダムディンプル群とが区分けされて別々に配設される点で実施例1のしゅう動部品と相違するが、その他の基本構成は実施例1と同じであり、同じ部材には同じ符号を付し、重複する説明は省略する。
 図4において、漏れ側(図4においては内周側)のしゅう動面Sには、ランダムディンプル群11のディンプル10の中心の半径方向座標平均がしゅう動面Sのしゅう動半径15より小さくなるようにディンプル10が配置されてなるポンピング形ランダムディンプル群11-Pがランド部Rを介して36等配で配設され、被密封流体側(図4においては外周側)のしゅう動面Sには、ランダムディンプル群11のディンプル10の角度方向標準偏差が少なくとも1未満になるようにディンプル10が配置されてなる潤滑形ランダムディンプル群11-Lがランド部Rを介して36等配で配設されている。
 なお、ポンピング形ランダムディンプル群11-P及び潤滑形ランダムディンプル群11-Lは、36等配に限らず、複数であればよく、また、等配でなくてもよい。
 本例では、しゅう動面Sの漏れ側に漏れ側からしゅう動面Sへの大きな吸い込み量を有するポンピング形ランダムディンプル群11-Pが配設されると共に被密封流体側にしゅう動面への流体の流入特性が向上させ、液膜厚さを厚くする潤滑形ランダムディンプル群11-Lが配設されることにより、しゅう動面Sの密封性及び潤滑性を向上することができる。
 また、ポンピング形ランダムディンプル群11-P及び潤滑形ランダムディンプル群11-Lは、隣接する2個のディンプル群11-P及びディンプル群11-Lがそれぞれ回転中心を通る中心線rに対して対称に形成されている。
 そのため、相手側しゅう動面がいずれの方向に回転しても同様の機能を果たすことができ、両回転型のしゅう動部品に適した形状とされている。
 以上の説明によれば、本発明の実施例2に係るしゅう動部品は以下のような格別顕著な効果を奏する。
(1)漏れ側(図3においては内周側)のしゅう動面Sには、ランダムディンプル群11のディンプル10の中心の半径方向座標平均がしゅう動面Sのしゅう動半径15より小さくなるようにディンプル10が配置されてなるポンピング形ランダムディンプル群11-Pが配設され、被密封流体側のしゅう動面Sには、ランダムディンプル群11のディンプル10の角度方向標準偏差が少なくとも1未満になるようにディンプル10が配置されてなる潤滑形ランダムディンプル群11-Lが配設されることにより、しゅう動面Sの密封性を向上させると共に、潤滑性を、より一層、向上させることができる。
(2)隣接する2個のディンプル群11-P及びディンプル群11-Lは、それぞれ、回転中心を通る中心線rに対して対称に形成されることにより、両回転型に好適なしゅう動部品を提供することができる。
 図5を参照して、本発明の実施例3に係るしゅう動部品について説明する。
 実施例3に係るしゅう動部品は、深溝12が設けられている点で実施例2(図4)のしゅう動部品と相違するが、その他の基本構成は実施例2と同じであり、同じ部材には同じ符号を付し、重複する説明は省略する。
 図5において、漏れ側(図5においては内径側)のしゅう動面Sにはポンピング形ランダムディンプル群11-Pが36等配で配設され、被密封流体側(図5においては外径側)のしゅう動面Sには潤滑形ランダムディンプル群11-Lが配設され、漏れ側(図5においては内径側)にはポンピング形ランダムディンプル群11-Pが配設され、潤滑形ランダムディンプル群11-Lとポンピング形ランダムディンプル群11-Pとの間には深溝12が配設されている。
 深溝12は、円周方向深溝12Aと半径方向深溝12Bとから構成される。円周方向深溝12Aはしゅう動面Sの全周に亘って設けられており、円周方向深溝12Aの外周側及び内周側はしゅう動面Sによって区画される。半径方向深溝12Bは一方が被密封流体側に開口する開口部を有し、他方が円周方向深溝12Aに連通している。これにより、深溝12は、被密封流体側に開口する開口部を除きしゅう動面Sによって区画され、漏れ側とは離隔されている。
 深溝12は、しゅう動面Sに被密封流体側から流体を供給し、しゅう動面Sを潤滑する機能を有すると共に、ポンピング形ランダムディンプル群11-Pの配設されたポンピング領域と潤滑形ランダムディンプル群11-Lの配設された液膜保持領域との間を遮断し、両領域の有するそれぞれの効果を減殺させることなく発揮させる機能を有するものである。
 以上の説明によれば、本発明の実施例3に係るしゅう動部品は以下のような格別顕著な効果を奏する。
(1)しゅう動面Sには、漏れ側と離隔されると共に被密封流体側と連通された深溝12が配設され、深溝12の円周方向深溝12Aがポンピング形ランダムディンプル群11-Pと潤滑形ランダムディンプル群11-Lとの間に配設されることにより、しゅう動面Sに被密封流体側から流体を供給し、しゅう動面Sの潤滑性を向上できると共に、ポンピング形ランダムディンプル群11-Pと潤滑形ランダムディンプル群11-Lとの相互干渉を防止し、ポンピング形ランダムディンプル群11-P及び潤滑形ランダムディンプル群11-Lの有するそれぞれの機能を十分に発揮させることができる。
(2)ポンピング形ランダムディンプル群11-Pと潤滑形ランダムディンプル群11-Lとの役割が分けられるため、しゅう動部品の設計を容易にすることができる。
 図6を参照して、本発明の実施例4に係るしゅう動部品について説明する。
 実施例4に係るしゅう動部品は、被密封流体側(図6においては外径側)のしゅう動面Sには潤滑形ランダムディンプル群11-Lが略20等配で配設され、漏れ側(図6においては内径側)にはポンピング形ランダムディンプル群11-Pが略10等配で配設され、潤滑形ランダムディンプル群11-Lの個数とポンピング形ランダムディンプル群11-Pの個数が異なる点で実施例3(図5)のしゅう動部品と相違するが、その他の基本構成は実施例3と同じであり、同じ部材には同じ符号を付し、重複する説明は省略する。
 図6において、漏れ側(図6においては内径側)のしゅう動面Sは略10等配に区画され、各区画18には、ポンピング形ランダムディンプル群11-Pが配設される。ポンピング形ランダムディンプル群11-Pのディンプル10は内周部5B(漏れ側)に直接接触して開口部を形成して、漏れ側からしゅう動面へ流体を吸込み、しゅう動部品の密封性を向上させている。また、被密封流体側(図6においては外径側)のしゅう動面Sは略20等配に区画され、各区画16には潤滑形ランダムディンプル群11-Lが配設される。潤滑形ランダムディンプル群11-Lのディンプル10は摺動面Sの外周部5A(被密封流体側)に直接接触して開口部を形成して、被密封流体側からしゅう動面への流体の流入特性を向上させ、厚い液膜を形成してしゅう動部品の潤滑性を向上している。なお、実施例4において、漏れ側のしゅう動面Sは略10等配に区画され、被密封流体側のしゅう動面Sは略20等配に区画されているが、区画数はこれに限らず、他の区画数であってもよい。
 ポンピング形ランダムディンプル群11-Pと潤滑形ランダムディンプル群11-Lとの間には深溝12が配設されている。深溝12は、円周方向深溝12Aと半径方向深溝12Bとから構成される。円周方向深溝12Aはしゅう動面Sの全周に亘って設けられており、円周方向深溝12Aの外周側及び内周側はしゅう動面Sによって区画される。半径方向深溝12Bは一方が被密封流体側に開口する開口部を有し、他方が円周方向深溝12Aに連通している。これにより、深溝12は、被密封流体側に開口する開口部を除きしゅう動面Sによって区画され、漏れ側とは離隔されている。
 深溝12は、しゅう動面Sに被密封流体側から流体を供給し、しゅう動面Sを潤滑する機能を有すると共に、ポンピング形ランダムディンプル群11-Pの配設されたポンピング領域と潤滑形ランダムディンプル群11-Lの配設された液膜保持領域との間を遮断し、両領域の有するそれぞれの効果を減殺させることなく発揮させる機能を有するものである。
 以上の説明によれば、本発明の実施例4に係るしゅう動部品は以下のような格別顕著な効果を奏する。
(1)しゅう動面Sには、漏れ側と離隔されると共に被密封流体側と連通された深溝12が配設され、深溝12の円周方向深溝12Aがポンピング形ランダムディンプル群11-Pと潤滑形ランダムディンプル群11-Lとの間に配設されることにより、しゅう動面Sに被密封流体側から流体を供給し、しゅう動面Sの潤滑性を向上できると共に、ポンピング形ランダムディンプル群11-Pと潤滑形ランダムディンプル群11-Lとの相互干渉を防止し、ポンピング形ランダムディンプル群11-P及び潤滑形ランダムディンプル群11-Lの有するそれぞれの機能を十分に発揮させることができる。
(2)ポンピング形ランダムディンプル群11-Pと潤滑形ランダムディンプル群11-Lとの役割の異なるディンプル群をしゅう動面の外径側、内径側に自由に配置できるので、しゅう動部品の設計を容易にすることができる。
 以上、本発明の実施の形態を実施例により説明してきたが、具体的な構成はこれら実施例の形態に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。
 例えば、前記実施例では、しゅう動部品をメカニカルシール装置における一対の回転用密封環及び固定用密封環の少なくともいずれか一方に用いる例について説明したが、円筒状しゅう動面の軸方向一方側に潤滑油を密封しながら回転軸としゅう動する軸受のしゅう動部品として利用することも可能である。
 また、例えば、前記実施例では、外周側に高圧の被密封流体が存在する場合について説明したが、内周側が高圧流体の場合にも適用できる。
 また、例えば、前記実施例では、ポンピング形ランダムディンプル群及び潤滑形ランダムディンプル群は36等配で配設されているが、これに限らず、1以上配設されていればよく、また、等配でなくてもよい。
  1        回転軸
  2        スリーブ
  3        回転側密封環
  4        ハウジング
  5        固定側密封環
  6        コイルドウェーブスプリング
  7        ベローズ
  10       ディンプル
  11       ランダムディンプル群
  11-P     ポンピング形ランダムディンプル群
  11-L     潤滑形ランダムディンプル群
  12       深溝
  12A      円周方向深溝
  12B      半径方向深溝
  15       しゅう動半径
  16       区画
  17       区画の中心位置
  S        しゅう動面
  R        ランド領域

Claims (6)

  1.  一対のしゅう動部品の互いに相対しゅう動する少なくとも一方側の環状のしゅう動面に複数のディンプルが配置されるしゅう動部品において、
     前記複数のディンプルはランダムに配置されてランダムディンプル群が形成され、前記ランダムディンプル群の前記ディンプルの中心の半径方向座標平均が前記しゅう動面のしゅう動半径より小さくなるように前記ディンプルが配置されることを特徴とするしゅう動部品。
  2.  前記ランダムディンプル群は、ランド部を介してしゅう動面の周方向に独立して複数形成されることを特徴とする請求項1に記載のしゅう動部品。
  3.  前記ランダムディンプル群のディンプルの角度方向標準偏差が1未満になるように前記ディンプルが配置されることを特徴とする請求項1又は請求項2に記載のしゅう動部品。
  4.  前記ランダムディンプル群のディンプルの角度方向標準偏差が0.8未満になるように前記ディンプルが配置されることを特徴とする請求項1又は請求項2に記載のしゅう動部品。
  5.  漏れ側のしゅう動面には、前記ランダムディンプル群の前記ディンプルの中心の半径方向座標平均が前記しゅう動面のしゅう動半径より小さくなるように前記ディンプルが配置されてなるポンピング形ランダムディンプル群が配設され、被密封流体側のしゅう動面には、前記ランダムディンプル群のディンプルの角度方向標準偏差が少なくとも1未満になるように前記ディンプルが配置されてなる潤滑形ランダムディンプル群が配設されることを特徴とする請求項3又は請求項4に記載のしゅう動部品。
  6.  前記しゅう動面には、前記漏れ側と離隔されると共に前記被密封流体側と連通された深溝が配設され、前記深溝の円周方向深溝が前記ポンピング形ランダムディンプル群と前記潤滑形ランダムディンプル群との間に配設されることを特徴とする請求項5に記載のしゅう動部品。
PCT/JP2018/018624 2017-05-19 2018-05-15 しゅう動部品 WO2018212144A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18803055.5A EP3627011B1 (en) 2017-05-19 2018-05-15 Sliding component
CN201880031052.1A CN110691931B (zh) 2017-05-19 2018-05-15 滑动部件
US16/610,844 US11053975B2 (en) 2017-05-19 2018-05-15 Sliding component
KR1020197033293A KR102346395B1 (ko) 2017-05-19 2018-05-15 슬라이딩 부품
JP2019518778A JP7102086B2 (ja) 2017-05-19 2018-05-15 しゅう動部品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017099502 2017-05-19
JP2017-099502 2017-05-19

Publications (1)

Publication Number Publication Date
WO2018212144A1 true WO2018212144A1 (ja) 2018-11-22

Family

ID=64273959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018624 WO2018212144A1 (ja) 2017-05-19 2018-05-15 しゅう動部品

Country Status (6)

Country Link
US (1) US11053975B2 (ja)
EP (1) EP3627011B1 (ja)
JP (1) JP7102086B2 (ja)
KR (1) KR102346395B1 (ja)
CN (1) CN110691931B (ja)
WO (1) WO2018212144A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021205554A1 (ja) * 2020-04-07 2021-10-14

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3627010B1 (en) 2017-05-19 2023-10-11 Eagle Industry Co., Ltd. Sliding component
CN110691931B (zh) 2017-05-19 2022-02-01 伊格尔工业股份有限公司 滑动部件
CN110785587B (zh) * 2017-07-14 2022-05-17 伊格尔工业股份有限公司 滑动部件
JP7234123B2 (ja) * 2017-10-03 2023-03-07 イーグル工業株式会社 摺動部品
US12104598B2 (en) 2020-07-06 2024-10-01 Eagle Industry Co., Ltd. Eccentric sliding assembly with a plurality of dynamic pressure generation mechanisms
US20230296176A1 (en) * 2020-07-06 2023-09-21 Eagle Industry Co., Ltd. Sliding component

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221179A (ja) 2000-02-09 2001-08-17 Matsushita Electric Ind Co Ltd ロータリ圧縮機
JP2003343741A (ja) 2002-03-19 2003-12-03 Eagle Ind Co Ltd 摺動部品
WO2013031530A1 (ja) * 2011-09-03 2013-03-07 イーグル工業株式会社 摺動部品
WO2014112455A1 (ja) * 2013-01-16 2014-07-24 イーグル工業株式会社 摺動部品
WO2015041048A1 (ja) * 2013-09-18 2015-03-26 イーグル工業株式会社 しゅう動部品
WO2016035860A1 (ja) * 2014-09-04 2016-03-10 イーグル工業株式会社 メカニカルシール
WO2016203878A1 (ja) * 2015-06-15 2016-12-22 イーグル工業株式会社 摺動部品

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1114623A (en) * 1965-04-24 1968-05-22 Crane Packing Ltd Mechanical seal
DE3619828A1 (de) 1986-06-12 1987-12-17 Rothemuehle Brandt Kritzler Axialdruck- bzw. -traglager, insbesondere fuer langsam drehende maschinen
WO2002093046A1 (en) 2001-05-15 2002-11-21 Aes Engineering Limited Mechanical seal
US6902168B2 (en) * 2002-03-19 2005-06-07 Eagle Industry Co., Ltd. Sliding element
JP4205910B2 (ja) * 2002-04-02 2009-01-07 イーグル工業株式会社 摺動部品
JP4316956B2 (ja) * 2002-10-23 2009-08-19 イーグル工業株式会社 摺動部品
JP4719414B2 (ja) * 2003-12-22 2011-07-06 イーグル工業株式会社 摺動部品
CN102322526B (zh) * 2004-11-09 2014-10-22 伊格尔工业股份有限公司 机械密封装置
JP4557223B2 (ja) 2005-03-29 2010-10-06 Ntn株式会社 駆動車輪用軸受装置
CN100564962C (zh) 2007-02-15 2009-12-02 浙江工业大学 变分布多孔端面机械密封结构
EP2375112B1 (en) 2009-05-25 2018-07-18 Eagle Industry Co., Ltd. Sealing device
JP5518527B2 (ja) * 2010-03-04 2014-06-11 イーグル工業株式会社 摺動部品
WO2011115073A1 (ja) 2010-03-15 2011-09-22 イーグル工業株式会社 摺動部材
CN202927050U (zh) * 2012-11-29 2013-05-08 石家庄三环阀门股份有限公司 一种布料器浮动补偿密封装置
CN203286000U (zh) * 2012-12-24 2013-11-13 浙江工业大学 微凸体双层复合槽深端面机械密封结构
CN103090005B (zh) 2013-02-04 2014-04-23 北京理工大学 一种螺旋分布式多孔端面的车用旋转密封环
JP6224087B2 (ja) * 2013-04-24 2017-11-01 イーグル工業株式会社 摺動部品
CN203641506U (zh) 2013-08-20 2014-06-11 浙江工业大学 倾斜渐变多孔端面非接触式机械密封结构
US9970478B2 (en) 2013-09-18 2018-05-15 Eagle Industry Co., Ltd. Sliding parts
US9841106B2 (en) * 2014-06-26 2017-12-12 Eagle Industry Co., Ltd. Sliding parts
JP6683630B2 (ja) * 2015-02-14 2020-04-22 イーグル工業株式会社 しゅう動部品
EP3270016B1 (en) * 2015-03-11 2022-03-02 Eagle Industry Co., Ltd. Method of processing a sliding component
CN205350360U (zh) * 2016-01-20 2016-06-29 中国石油大学(华东) 一种可双向旋转的液膜密封端面槽型结构
CN105987175B (zh) * 2016-08-05 2019-04-12 江西省科学院应用物理研究所 具有各种孔型与三维似雪花状槽型相结合的机械密封结构
US20190170257A1 (en) 2016-09-01 2019-06-06 Eagle Industry Co., Ltd. Sliding component
EP3527859B1 (en) 2016-10-14 2023-12-20 Eagle Industry Co., Ltd. Sliding component
CN109844382B (zh) 2016-11-14 2021-01-12 伊格尔工业股份有限公司 滑动部件
JP6890611B2 (ja) 2016-11-18 2021-06-18 イーグル工業株式会社 摺動部材
CN110691931B (zh) 2017-05-19 2022-02-01 伊格尔工业股份有限公司 滑动部件
EP3627010B1 (en) 2017-05-19 2023-10-11 Eagle Industry Co., Ltd. Sliding component
CN110785587B (zh) 2017-07-14 2022-05-17 伊格尔工业股份有限公司 滑动部件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221179A (ja) 2000-02-09 2001-08-17 Matsushita Electric Ind Co Ltd ロータリ圧縮機
JP2003343741A (ja) 2002-03-19 2003-12-03 Eagle Ind Co Ltd 摺動部品
WO2013031530A1 (ja) * 2011-09-03 2013-03-07 イーグル工業株式会社 摺動部品
WO2014112455A1 (ja) * 2013-01-16 2014-07-24 イーグル工業株式会社 摺動部品
WO2015041048A1 (ja) * 2013-09-18 2015-03-26 イーグル工業株式会社 しゅう動部品
WO2016035860A1 (ja) * 2014-09-04 2016-03-10 イーグル工業株式会社 メカニカルシール
WO2016203878A1 (ja) * 2015-06-15 2016-12-22 イーグル工業株式会社 摺動部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3627011A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021205554A1 (ja) * 2020-04-07 2021-10-14
CN115244319A (zh) * 2020-04-07 2022-10-25 伊格尔工业股份有限公司 滑动部件
US20230160475A1 (en) * 2020-04-07 2023-05-25 Eagle Industry Co., Ltd. Sliding component
EP4102111A4 (en) * 2020-04-07 2023-10-18 Eagle Industry Co., Ltd. SLIDING COMPONENT
JP7385006B2 (ja) 2020-04-07 2023-11-21 イーグル工業株式会社 摺動部品
US11994216B2 (en) 2020-04-07 2024-05-28 Eagle Industry Co., Ltd. Sliding component

Also Published As

Publication number Publication date
JP7102086B2 (ja) 2022-07-19
KR20190133261A (ko) 2019-12-02
EP3627011B1 (en) 2022-10-19
EP3627011A1 (en) 2020-03-25
JPWO2018212144A1 (ja) 2020-03-26
KR102346395B1 (ko) 2022-01-03
EP3627011A4 (en) 2021-01-20
CN110691931B (zh) 2022-02-01
US11053975B2 (en) 2021-07-06
US20200158162A1 (en) 2020-05-21
CN110691931A (zh) 2020-01-14

Similar Documents

Publication Publication Date Title
WO2018212144A1 (ja) しゅう動部品
JP6861730B2 (ja) しゅう動部品
US11143232B2 (en) Sliding component
JP6776232B2 (ja) 摺動部品
KR102459648B1 (ko) 슬라이딩 부품
AU2015281104B2 (en) Sliding component
US20180135699A1 (en) Sliding component
US10989249B2 (en) Sliding component
WO2018043307A1 (ja) しゅう動部品
WO2015199172A1 (ja) 摺動部品
WO2018212143A1 (ja) 摺動部品
WO2018212108A1 (ja) 摺動部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18803055

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019518778

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197033293

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018803055

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018803055

Country of ref document: EP

Effective date: 20191219