WO2018212117A1 - 充填材、該充填材を用いた蒸留分離方法及び蒸留分離装置 - Google Patents

充填材、該充填材を用いた蒸留分離方法及び蒸留分離装置 Download PDF

Info

Publication number
WO2018212117A1
WO2018212117A1 PCT/JP2018/018464 JP2018018464W WO2018212117A1 WO 2018212117 A1 WO2018212117 A1 WO 2018212117A1 JP 2018018464 W JP2018018464 W JP 2018018464W WO 2018212117 A1 WO2018212117 A1 WO 2018212117A1
Authority
WO
WIPO (PCT)
Prior art keywords
capillary
filler
distillation
liquid
column
Prior art date
Application number
PCT/JP2018/018464
Other languages
English (en)
French (fr)
Inventor
淳二 水谷
慶明 三保
Original Assignee
株式会社ササクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017096835A external-priority patent/JP2018192399A/ja
Priority claimed from JP2017096836A external-priority patent/JP2018192400A/ja
Application filed by 株式会社ササクラ filed Critical 株式会社ササクラ
Publication of WO2018212117A1 publication Critical patent/WO2018212117A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/26Fractionating columns in which vapour and liquid flow past each other, or in which the fluid is sprayed into the vapour, or in which a two-phase mixture is passed in one direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/02Separation by phase transition
    • B01D59/04Separation by phase transition by distillation

Definitions

  • the present invention relates to a packing material used in a packed tower, a distillation separation method using the packing material, and a distillation separation apparatus, and more particularly, a distillation separation method that can be suitably implemented for separation of tritium water and light water, and
  • the present invention relates to a distillation separation apparatus.
  • Patent Document 2 if a distillation separation method using silica gel beads as a filler is studied, it is estimated that the number of theoretical plates can be 133 with the same reflux ratio.
  • the reflux ratio and the number of theoretical plates can be greatly reduced.
  • a high reflux ratio is required and a special manufacturing method is required for the production of the adsorbent, there is a problem that the energy required for operation becomes enormous and the production cost of the filler increases.
  • Patent Document 1 a filler composed of a porous body having a continuous air hole with a specific pore diameter has been proposed even if it has no adsorptivity (see Patent Document 1 below).
  • the filler of Patent Document 1 is a porous body made of polypropylene, for example, and has an average pore diameter of 80 to 300 ⁇ m.
  • the wet surface area increases when the liquid penetrates into the continuous air holes. As a result, it is said that the separation performance can be improved by increasing the gas-liquid contact area.
  • a filler made of the above-mentioned polypropylene and having continuous vents with an average pore diameter of 80 to 300 ⁇ m has not yet obtained sufficient separation performance. This is because, as will be described later in the section of [Examples], according to experiments by the present inventors, HETP (equivalent height per theoretical plate number) is a considerably high value, and the filling height is practical. It has been proven that it cannot be lowered to the level.
  • the present invention has been conceived in view of the above problems, and its purpose is a porous body and a packing material that can reduce the packing height to a practical level, and a distillation using the packing material. It is to provide a separation method and a distillation separation apparatus.
  • the invention described in claim 1 is a packing material filled in a distillation column to which a processing liquid is supplied, wherein at least the surface has fine pores composed of a porous material that exhibits capillary action. It is covered with a forming means, and the fine hole forming means is a metal sprayed layer or a metal sintered body.
  • micropore forming means composed of a porous material that exhibits capillary action
  • the liquid penetrating through the micropores is soaked into the filler surface by the action of the capillary phenomenon and diffuses so as to cover the filler surface in a short time.
  • Increase and mass transfer rate in the distillation column are increased.
  • HETP height equivalent of theoretical plate: abbreviation of Height equivalent of theoretical plate
  • the distillation separation method capable of reducing the packing height to a practical level
  • a distillation separation device (the invention according to claim 5) can be realized.
  • the invention according to claim 2 is the filler according to claim 1, wherein the metal sprayed layer is an aluminum sprayed layer.
  • invention of Claim 3 is a filler of Claim 1, Comprising:
  • the said metal sintered compact is an aluminum sintered compact, It is characterized by the above-mentioned.
  • the invention described in claim 4 is a distillation separation method characterized in that the stock solution to be treated is subjected to distillation separation using the distillation tower packed with the filler according to any one of claims 1 to 3. .
  • the invention according to claim 5 is a distillation separation apparatus provided with a distillation column, wherein the distillation column is filled with the filler according to any one of claims 1 to 3.
  • a distillation separation apparatus can be realized in which the separation performance is improved and the packing height can be lowered to a practical level.
  • the invention described in claim 6 is a packing material filled in a distillation column to which a treatment liquid is supplied, and is composed of a porous body having a large number of pores. It is composed of a capillary structure configured so that the liquid penetrating inside can be leached to the surface of the filler by the action of capillary action and diffused so as to cover the surface of the filler in a short time. It is characterized by.
  • pore means a minute cavity contained in a group of objects, and includes open pores connected to the outside air and closed pores isolated inside the object.
  • short time means that the liquid flowing down the filler surface is temporarily interrupted at the position due to intrusion into the pores, and at least the inside of the pores until the subsequent flowing liquid passes from the interrupted state at the position. This means a very short time during which the liquid that permeates the liquid diffuses so as to cover the surface of the filler and makes contact with the subsequent falling liquid.
  • the liquid penetrating into the pores is soaked into the surface of the filler due to the action of capillary action and diffuses so as to cover the surface of the filler in a short time, thereby increasing the gas-liquid contact area.
  • Invention of Claim 7 is a filler of Claim 1, Comprising: As capillary force of the said capillary structure, normal temperature water is used using the following 1st formula approximated by the capillary water column in one capillary It has the characteristic that the capillary water column height calculated on condition is 0.03 m or more.
  • the invention according to claim 8 is the filler according to claim 6 or 7, wherein the penetration rate of the liquid in the capillary structure is calculated by using the following second formula with one narrow tube facing sideways. It is characterized in that the time required for penetrating 10 mm in the horizontal direction in the narrow tube is 0.1 seconds or less.
  • the invention according to claim 9 is the filler according to any one of claims 6 to 8, characterized in that the surface of the capillary structure is hydrophilized.
  • the surface of the capillary structure is hydrophilized, so that the capillary force is increased and the separation performance can be further improved.
  • a tenth aspect of the present invention is a distillation separation method characterized by performing a distillation separation of a stock solution to be treated using a distillation column packed with the filler according to any one of the sixth to ninth aspects. .
  • the invention described in claim 11 is a distillation separation apparatus provided with a distillation column, wherein the distillation column is filled with the filler according to any one of claims 6-9.
  • a distillation separation apparatus can be realized in which the separation performance is improved and the packing height can be lowered to a practical level.
  • the liquid penetrating the pores is leached on the surface of the filler due to the appearance of the capillary phenomenon, and diffuses so as to cover the surface of the filler in a short time, thereby increasing the gas-liquid contact area.
  • the mass transfer rate in the distillation column is increased.
  • HETP height equivalent of theoretical plate: abbreviation of Height ⁇ equivalent of theoretical plate
  • a distillation separation method and distillation separation apparatus capable of reducing the packing height to a practical level can be realized. be able to.
  • the graph which shows the capillary water column height for every combination of the material regarding a capillary structure, and a capillary radius.
  • the graph which shows the liquid osmosis
  • the filler according to the present embodiment is a filler filled in a distillation column to which a processing liquid is supplied, and includes a capillary structure.
  • the “capillary structure” is composed of a porous body having a large number of pores, and a liquid penetrating the pores is leached to the surface of the filler by the action of capillary action, and the surface of the filler is It means a structure configured so that a state of spreading so as to cover in a short time can be developed.
  • the “pore” means a minute cavity included in a group of objects, and includes open pores connected to the outside air and closed pores isolated inside the object.
  • the “pore” means a minute cavity included in a group of objects, and includes open pores connected to the outside air and closed pores isolated inside the object.
  • short time means that the liquid flowing down the surface of the filler is temporarily interrupted at the position due to intrusion into the pores, and at least until the subsequent flowing liquid passes from the interrupted state at the position. It means an extremely short time during which the liquid penetrating the pores diffuses so as to cover the surface of the filler and can come into contact with the subsequent falling liquid. The specific meaning of “short time” is described in paragraph 0081 of [Example] described later.
  • the capillary water column height is not less than a predetermined value, and the permeation speed at which the liquid permeates the capillary structure is not less than a predetermined value. It is necessary that the time required to permeate the predetermined length is expressed as “predetermined or less”.
  • the height of the capillary water column is not less than a predetermined value, the material and pore diameter of the porous body for obtaining the capillary force required for the capillary structure as described later are determined.
  • the material and pore diameter of the porous body for obtaining the fluidity of the liquid required for the capillary structure are determined as described later.
  • calculation as an example of regular packing is as follows.
  • a plurality of model formulas of this type have been proposed, but here, an SRP model including an element of contact angle (abbreviation of University of TexasexSeparation Research Program :) was used.
  • the present inventors if the packing material filled in the distillation column is composed of a capillary structure, the liquid spreads to all surfaces by capillary force, and as a result, the liquid covers the entire surface of the packing material. I found that the force works. For example, if the contact angle between the constituent material and water is the same, the capillary force increases as the pore diameter decreases. However, the filler used in the distillation column is not effective simply by having capillary action.
  • HETP Height equivalent of theoretical plate
  • the height of the capillary water column is an index for evaluating the capillary force of the capillary structure.
  • the capillary force is expressed by approximating the capillary force with the capillary water column in one capillary tube, and is expressed by the following equation (8).
  • the water used is normal temperature.
  • ⁇ (contact angle) and capillary radius r employ the values shown in Table 2 below, calculate the capillary water column height using Equation 8 for each combination of the constituent material and capillary radius r, and calculate the result.
  • Table 3 shows.
  • a glass bead has a capillary radius of 500 ⁇ m
  • an aluminum capillary structure has a capillary radius of 330 ⁇ m
  • a plastic capillary has a radius of 100 ⁇ m
  • a ceramic capillary structure has a capillary radius of 390 ⁇ m
  • a stainless capillary structure has a capillary radius of 180 ⁇ m
  • a copper When the capillary structure has a capillary radius of 270 ⁇ m, the capillary water column height is about 0.03 m. In the case of plastic and the capillary radius is 50 ⁇ m, the capillary water column height is about 0.05 m. In all other cases in FIG.
  • the capillary water column height is a value significantly higher than about 0.05 m. Therefore, the capillary force of the capillary structure preferably has at least a capillary water column height of 0.03 m or more, more preferably 0.05 m or more. It will be proved by examples and comparative examples described later that the capillary structure having 0.03 m or more, more preferably 0.05 m or more will have a reduction in HETP (the height equivalent to the theoretical plate). In addition to the condition of 0.03 m or more, more preferably 0.05 m or more, there is also a condition that the time (seconds) for advancing 10 mm described later is within 0.1 seconds, more preferably within 0.05 seconds. (Provided if added).
  • the liquid permeation rate of the capillary structure is expressed by an expression that the time required for the liquid to permeate a predetermined length is not more than a predetermined value.
  • Equation 12 is shown in the literature as the Lucas-Washburn equation, but the capillary flow was analyzed using the Hagen-Poiseuille flow equation using the capillary force converted to a pressure difference. .
  • the flow rate when the liquid flows inside the structure by capillary force is related to the mass transfer rate of the packed tower. Even if the capillary force is large, the structure through which the liquid permeates is fine and the structure with a slow permeation rate is ineffective or small in increasing the mass transfer rate. According to a distillation separation test using various packings, the capillary structure in which this time is, for example, within 0.1 second to penetrate 10 mm, and more preferably within 0.05 second, shows the mass transfer rate of the packed column. It was found that it is effective in increasing
  • a glass bead has a capillary radius of 10 ⁇ m
  • an aluminum capillary structure has a capillary radius of 40 ⁇ m
  • a cellulose capillary structure has a capillary radius of 10 ⁇ m
  • a plastic capillary structure has a capillary radius of 5 ⁇ m
  • a plastic capillary structure When the capillary radius is 50 ⁇ m, the plastic capillary structure is 100 ⁇ m, or the ceramic capillary structure is 35 ⁇ m, the time required is 0.1 seconds or more.
  • the time required is 0.05 seconds or more. It is. In the other cases in FIG. 2, the time required for each is a value much smaller than 0.05 seconds. Therefore, the permeation rate of the capillary structure is preferably at least 0.1 seconds, more preferably within 0.05 seconds.
  • the capillary structure having the time within 0.1 seconds, more preferably within 0.05 seconds reduces HETP (the height equivalent to the theoretical plate).
  • the capillary water column height is 0.03 m or more, more preferably 0.05 m or more, in addition to the condition that it is within 0.1 seconds, more preferably within 0.05 seconds.
  • a capillary structure satisfying the conditions of [Capillary water column height of capillary structure] and [Liquid permeation rate of capillary structure] is preferable.
  • the material is preferably ceramic, stainless steel, aluminum, or copper.
  • r 390
  • FIG. 3 is an overall configuration diagram of a distillation separation apparatus in which a filler composed of a capillary structure is used in a distillation column.
  • the stock solution supplied to the distillation separation apparatus 1 is light water (H 2 O) containing tritium water (HTO or T 2 O).
  • HTO or T 2 O tritium water
  • this distillation separation apparatus 1 light water (H 2 O) containing tritium water (HTO or T 2 O) is separated into tritium water having a higher concentration than the stock solution and tritium water having a lower concentration than the stock solution. used.
  • the distillation separation device 1 cools the vapor supplied from the packed multistage distillation column 2, the reboiler 3 that heats and vaporizes the stored liquid at the bottom of the distillation column 2, and the top of the distillation column 2.
  • a control valve V1 provided in the reflux line L1 and a cooling tank 7 which is a supply source of cooling water supplied to the condenser 4.
  • the filler for the distillation column 2 a filler made of a capillary structure is used.
  • the extraction air of the condenser 4 is connected to a vacuum pump (not shown) provided separately, and the inside of the distillation column 2 is evacuated by this vacuum pump.
  • the operating temperature is controlled to a predetermined value by adjusting the degree of vacuum of the vacuum pump.
  • the distillation separation apparatus 1 includes a thermometer, a pressure gauge, and a flow meter as necessary.
  • the thermometer, pressure gauge, and flow meter include a thermometer T1 and a pressure gauge P1 provided at the top of the distillation tower 2, a thermometer T2 and a pressure gauge P2 provided at the bottom of the distillation tower 2, and a reflux line L1.
  • the thermometer T5 etc. which are provided in the tank 5 are mentioned.
  • the operation of the distillation separation apparatus 1 having the above configuration is the same as that of a general distillation separation apparatus. Briefly described below, the stock solution is supplied from the center of the distillation column 2, flows down in the distillation column 2, and is heated by the reboiler 3 at the bottom of the distillation column 2 to generate steam. The generated steam rises in the distillation column 2 and gas-liquid contact is made with the undiluted solution that descends in the distillation column 2.
  • the filler is a capillary structure, a state in which the liquid diffuses so as to cover the entire surface of the filler is exhibited. As a result, the gas-liquid contact area is increased, and the gas-liquid contact can be performed on more contact surfaces, thereby improving the separation performance.
  • the tritium concentration in the descending liquid increases, and the tritium concentration in the rising steam decreases. Then, the rising steam after the gas-liquid contact reaches the top of the column and is further guided to the condenser 4.
  • the supplied steam is cooled by cooling water, partly returned to the top of the column through the reflux tank 5 (reflux), and partly discharged as low-concentration tritium water having a lower tritium concentration than the stock solution. Discharged from.
  • the descending liquid after the gas-liquid contact is stored in the tower bottom, and a part of the stored liquid is recovered from the discharge line L5 as high-concentration tritium water having a higher tritium concentration than the stock solution.
  • the pores of the capillary structure may be communication holes or independent holes.
  • the surface of the capillary structure is hydrophilized.
  • the filler may be cylindrical beads or spherical beads, and may be regular packing or irregular packing having appropriate pressure loss characteristics, which is often used in an actual apparatus. Further, a configuration in which a filler whose surface is made porous or a porous material supported on the surface may be adopted. Even if it is such a structure, the same effect can be achieved.
  • tritium water is used as the “solution to be treated (raw solution)”, but the present invention is not limited to this, and heavy water and other isotopes with similar relative volatility are approached. It can also be applied to body separation.
  • the distillation separation apparatus is not limited to the above embodiment, and is provided with a steam compressor that functions as a heat pump, and the steam from the top of the distillation tower is reused as a heating source for the reboiler using the steam compressor. It may be an energy saving distillation separation device.
  • a filler (corresponding to a capillary structure) in the above embodiment, at least the surface is covered with a micropore forming means composed of a porous material that exhibits capillary action, and the micropore forming means is a metal It may be a sprayed layer or a metal sintered body.
  • “at least the surface is covered with a micropore forming means composed of a porous material that exhibits capillary action” means that the entire filler is composed of micropore forming means, This means that the micropore forming means covers only the surface of the material.
  • the metal spray layer is preferably an aluminum spray layer.
  • Examples of the filler using the aluminum sprayed layer include “aluminum sprayed pine rule 250S” (corresponding to Example 6 described later).
  • the metal sintered body is preferably an aluminum sintered body.
  • Examples of the filler using the aluminum sintered body include a “porous aluminum cross shape” (corresponding to Example 5 described later) made of an aluminum sintered body.
  • the filler using the aluminum sprayed layer can reduce HETP (height equivalent to the theoretical plate) and reduce the filling height to a practical level.
  • the filler using the aluminum sintered body can reduce HETP (height equivalent to the theoretical plate) and reduce the filling height to a practical level.
  • the present invention will be described more specifically with reference to examples.
  • the present invention is not limited in any way by the following examples.
  • the following examples and comparative examples are the same as those in the above embodiment except that the size of the distillation column (the barrel diameter in the actual distillation column as in the embodiment is several meters) is different.
  • various fillers having different materials and pore diameters were used, and distillation separation was performed using the stock solution as heavy water.
  • Example 1 Alumina cylindrical beads having a diameter of 0.34 cm and a length of 0.4 cm (product number R-200, manufactured by Nishimura Ceramics) were used as the filler. On this surface, fine holes of about 10 ⁇ m are provided.
  • As the packed tower a glass column having an inner diameter of 18 mm packed with the above packing material so that the packed height is approximately 50 cm to 60 cm was used.
  • the boiler was prepared by adding 2.0 ml of heavy water to 300 ml of pure water. Operation was at atmospheric pressure. The boiler temperature was about 100 ° C., and the boiler heater output was set to 70 to 75 W for steady operation.
  • the distillate amount at this time was about 150 ml / h (the evaporation rate was 590 kg / m 2 h).
  • the steam flowing out from the top of the tower was cooled by a cooler, and the entire amount of condensed water was allowed to flow down from the top of the tower. 2 hours is maintained until steady operation is obtained, and after 4 hours after the steady operation is continued, the heavy water concentration at the bottom of the boiler and the heavy water concentration in the condensate at the top of the tower are measured with a gas chromatograph. Got.
  • Example 2 Cellulose porous beads having a diameter of 0.3 to 0.4 cm (Rengo Co., Ltd., trade name Viscopearl P type) were used as the filler. On this surface, fine pores of about 20 to 30 ⁇ m are provided.
  • the boiler was prepared by adding 2.0 ml of heavy water to 300 ml of pure water. Operation was at atmospheric pressure. The boiler temperature was about 100 ° C., and the boiler heater output was set to 60 to 65 W for steady operation.
  • the distillate amount at this time was about 150 ml / h (the evaporation rate was 590 kg / m 2 h).
  • the steam flowing out from the top of the tower was cooled by a cooler, and the entire amount of condensed water was allowed to flow down from the top of the tower. 2 hours is maintained until steady operation is obtained, and after 4 hours after the steady operation is continued, the heavy water concentration at the bottom of the boiler and the heavy water concentration in the condensate at the top of the tower are measured with a gas chromatograph. Got.
  • Example 3 As the filler, porous glass beads (manufactured by ROBU), which is a sintered body of glass having a diameter of 0.3 to 0.4 cm, were used. On this surface, fine pores of about 40 to 100 ⁇ m are provided.
  • As the packed tower a glass column having an inner diameter of 18 mm packed with the above packing material so that the packed height is approximately 50 cm to 60 cm was used.
  • the boiler was prepared by adding 2.0 ml of heavy water to 300 ml of pure water. Operation was at atmospheric pressure. The boiler temperature was about 100 ° C., and the boiler heater output was set to 60 to 65 W for steady operation.
  • the distillate amount at this time was about 80 ml / h (the evaporation rate was 300 kg / m 2 h).
  • the steam flowing out from the top of the tower was cooled by a cooler, and the entire amount of condensed water was allowed to flow down from the top of the tower. 2 hours is maintained until steady operation is obtained, and after 4 hours after the steady operation is continued, the concentration of heavy water at the bottom of the boiler and the concentration of condensed water at the top of the tower are measured by gas chromatography. Got.
  • Example 4 A porous alumina plate (NDC sales company), which is an aluminum sintered body, was used as a filler after processing into pellets having a diameter of 0.3 to 0.4 cm. On this surface, a fine hole of about 200 ⁇ m is provided.
  • As the packed tower a glass column having an inner diameter of 18 mm packed with the above packing so that the packed height is approximately 50 cm to 60 cm was used.
  • the boiler was prepared by adding 2.0 ml of heavy water to 300 ml of pure water. Operation was at atmospheric pressure. The boiler temperature was about 100 ° C., and the boiler heater output was set to 60 to 65 W for steady operation. The amount of distillate at this time was about 70 ml / h (evaporation rate was 270 kg / m 2 h).
  • the steam flowing out from the top of the tower was cooled by a cooler, and the entire amount of condensed water was allowed to flow down from the top of the tower. 2 hours is maintained until steady operation is obtained, and after 4 hours after the steady operation is continued, the heavy water concentration at the bottom of the boiler and the heavy water concentration in the condensate at the top of the tower are measured with a gas chromatograph. Got.
  • the HETP height equivalent to the theoretical plate
  • the relative volatility of heavy water at 100 ° C. was 0.975.
  • Separation Factor Separation factor ⁇ : Specific volatility
  • Z Packed bed height [m]
  • HETP of Examples 1 to 4-2 is 22 to 72% of HETP of Comparative Example 2 (filler is zeolite beads). From this, the following matters are derived. That is, the zeolite beads are also porous like the packings of Examples 1 to 4-2, but the pore size is, for example, 0.15 to 0.43 ⁇ m, which is too porous in the hollow structure. Is too small to move the liquid. For this reason, it is thought that an effect is small for a distillation column. That is, in order to reduce HETP, it is premised that the material is porous. However, if the pore size is too small, it is unsuitable.
  • the HETP of Examples 1 to 4-2 is 22 to 22 of HETP of Comparative Example 3 (filler is a PP (polypropylene) plastic sintered porous body having a pore diameter of 200 ⁇ m). 72% is specified. From this, the following matters are derived. That is, when the filler is a polymer porous body such as polypropylene, it is led to be inappropriate for lowering HETP. This is probably because the contact angle between water and polypropylene is large, and the force for sucking water in the capillary structure is small, so that the area in which the liquid moves through the capillary structure is small. If the pore size is increased, the movement time of the liquid can be shortened, but the movement is limited by the action of gravity and other forces.
  • the HETP of Examples 1 to 4-2 is 10 to 10 of HETP of Comparative Example 4 (filler is a PP (polypropylene) plastic sintered porous body with a pore size of 100 ⁇ m). It is specified that it is 34%. From this, the following matters are derived. That is, as in Comparative Example 3, when the filler is a polymer porous material such as polypropylene, it is inadequate for lowering HETP. However, even if the contact angle between water and polypropylene is large, if the pore size is reduced, the force for sucking water with the capillary structure can be increased. However, when the pore size is small, it takes too much time for the liquid to move through the capillary structure, which is considered inappropriate for lowering the HETP.
  • the overall conclusion is that the HETP of the packing according to the present invention is 15 to 49% of that of glass beads and 22 to 72% of that of zeolite beads, so the same performance is required.
  • the packed height of the distillation column can be greatly reduced, and the effect is great.
  • Example 5 As a second experimental example, the following Example 5 and Comparative Examples 5 and 6 were performed.
  • a stainless steel circular column container having an inner diameter of 100 mm was used as the packed tower.
  • the irregular packing was used as a filler.
  • the difference is that the regular packing is used as the filler.
  • a “porous aluminum cross type” composed of an aluminum sintered body was used.
  • the “porous aluminum cross shape” is a porous aluminum plate (typical dimension: 12.5 mm) formed into a cross shape, and has a fine hole of about 200 ⁇ m on the surface.
  • a stainless steel circular column container having an inner diameter of 100 mm was filled with the above packing so that the packed height was 41.5 cm.
  • the boiler was prepared by adding 1 kg of heavy water to 55 L of pure water. The operation was performed under a predetermined reduced pressure. The boiler temperature was about 65 ° C., and the boiler heater output was set to 12 kW for steady operation.
  • the amount of distillate at this time was about 18.4 l / h (the evaporation rate was 2000 kg / m 2 h).
  • the steam flowing out from the top of the tower was cooled by a cooler, and the entire amount of condensed water was allowed to flow down from the top of the tower. 2 hours is maintained until steady operation is obtained, and after 4 hours after the steady operation is continued, the heavy water concentration at the bottom of the boiler and the heavy water concentration in the condensate at the top of the tower are measured with a gas chromatograph. Got.
  • Example 5 Comparative Example 5
  • “Matsui Cascade Mini Ring” manufactured by Matsui Machine Co., Ltd.
  • the “Matsui Cascade Mini Ring” is a non-porous irregular packing (representative dimension: 17 mm), and the surface is exposed by shot blast surface treatment.
  • Example 6 Comparative Example 6
  • the packing height was 48 cm using a ceramic Raschig ring (surface coated with zeolite, typical size 12.5 mm) as an irregular packing.
  • the ceramic Raschig ring has a surface coated with zeolite.
  • Example 5 shows that HETP of Example 5 is 36% of HETP of Comparative Example 5 and 62% of HETP of Comparative Example 6. From this, even in the case of irregular packing, it is preferable for a non-porous packing (Comparative Example 5) and a packing that is porous but has too small pore size (Comparative Example 6). It is derived that the “porous aluminum cross shape” (Example 5) configured with the pore size can lower the HETP. It is understood that the fine hole forming means is preferably composed of an aluminum sintered body.
  • Example 6 As a third experimental example, the following Example 6 and Comparative Examples 7 and 8 were performed.
  • a stainless steel circular column container having an inner diameter of 100 mm was used as the packed tower.
  • the regular packing was used as a filler.
  • Example 6 As the filler, “Aluminum Sprayed Matsui Rule 250S” was used.
  • the “aluminum sprayed matsui rule 250S” is a filler in which an aluminum sprayed layer is provided on the surface of an existing filler (“Matsui rule 250S” made of corrugated metal). Fine holes of about 200 ⁇ m are provided.
  • As the packed tower a stainless steel circular column container having an inner diameter of 100 mm was filled with the above packing so that the packed height was 90 cm.
  • the boiler was prepared by adding 1 kg of heavy water to 55 L of pure water. Operation was at atmospheric pressure.
  • the boiler temperature was about 65 ° C., and the boiler heater output was set to 12 kW for steady operation.
  • the amount of distillate at this time was about 18.4 l / h (the evaporation rate was 2000 kg / m 2 h).
  • the steam flowing out from the top of the tower was cooled by a cooler, and the entire amount of condensed water was allowed to flow down from the top of the tower. 2 hours is maintained until steady operation is obtained, and after 4 hours after the steady operation is continued, the heavy water concentration at the bottom of the boiler and the heavy water concentration in the condensate at the top of the tower are measured with a gas chromatograph. Got.
  • a known spraying method such as plasma spraying or arc spraying was used.
  • Example 6 is 54% of HETP of Comparative Example 7. From this, even in the case of regular packing, the packing (Example 6) provided with fine pores on the surface by aluminum spraying can lower HETP compared to the non-porous packing (Comparative Example 7). Is guided. In addition, it is understood that it is preferable to form an aluminum sprayed layer by aluminum spraying as the fine hole forming means. Moreover, when Example 5 which is irregular packing is compared with Example 6 which is regular packing, Example 6 which is regular packing is more preferable from the viewpoint that pressure loss can be suppressed small. .
  • the surface of the filler is at the flow rate (270 kg / m 2 h to 590 kg / m 2 h in the first experimental example and 2000 kg / m 2 h in the second and third experimental examples) at which the test was performed. Focusing on a certain point on the surface, it is presumed that the liquid does not always flow, but the liquid flow is often interrupted and directly comes into contact with the vapor, and after a while the liquid again covers the surface and flows down. When in contact with the vapor, liquid remains in the porous portion on the surface, and this portion is considered to come closer to the equilibrium concentration of the vapor due to contact with the components in the vapor. Since the falling liquid is in contact therewith, it is considered that the concentration of the falling liquid is concentrated higher than when there is no porous material.
  • the present invention is suitable for distillation separation of components used in a distillation column, a distillation separation method using the packing material, and a distillation separation apparatus, particularly components having close relative volatility such as tritium water.
  • the present invention can be applied to a distillation separation method and a distillation separation apparatus that can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

【課題】多孔体であって、且つ充填高さを実用的レベルの高さまで低減できる充填材、該充填材を用いた蒸留分離方法及び蒸留分離装置を提供する。 【手段】処理液が供給される蒸留塔内に充填される充填材は、少なくとも表面が、毛細管現象を発現する多孔質で構成された微細孔形成手段で覆われており、微細孔形成手段は金属溶射層又は金属焼結体である。金属溶射層としてはアルミ溶射層が用いられる。アルミ溶射層を用いた充填材としては、「アルミ溶射マツイ規則250S」が例示される。金属焼結体を用いた充填材としては、アルミの焼結体で構成された「多孔質アルミ十字型」が例示される。

Description

充填材、該充填材を用いた蒸留分離方法及び蒸留分離装置
 本発明は、充填塔に使用される充填材、該充填材を用いた蒸留分離方法及び蒸留分離装置に関し、特に、トリチウム水と軽水との分離に好適に実施することが可能な蒸留分離方法及び蒸留分離装置に関するものである。
 充填塔を蒸留塔として用いた蒸留分離装置において、従来使用されているガラスビーズ等の充填材を用いて比揮発度が接近した成分の蒸留分離を行うと、蒸留塔の段数が実用的レベルを超えた多数の段数が必要となる。例えば、トリチウム水の蒸留分離の場合には、その濃度を10倍に濃縮するのに還流比を30として理論段数が230段を必要とするとの報告がある(以下の非特許文献1参照)。ここで、還流比を大きく取れば段数は少なくできる。しかし、還流比を大きくしようとすれば、エネルギーを増加する必要があり、エネルギーコストの増加を招来することになる。
 そこで、かかる課題を解決するため、蒸留分離対象となる当該成分を選択的に吸着する吸着材を充填材として使用する充填塔式蒸留分離が効果的であることが提案されている(以下の非特許文献2参照)。この非特許文献2によれば、シリカゲルビーズを充填材とする場合の蒸留分離方法を検討すると、同じ還流比で理論段数を133段とすることができると推測される。
 上記従来例のように、シリカゲルビーズのような選択的吸着材を充填材とする場合には、還流比及び理論段数を大幅に小さくできる。しかしながら、なお高い還流比を必要とするうえ、吸着材の製造には特殊な製法を必要とするため、運転に要するエネルギーが膨大となり、充填材の製造コストが高くなるという問題が生じる。
 一方、近年、吸着性がなくても、その内部に特定の孔径の連通気孔をもつ多孔体から成る充填材が提案されている(以下の特許文献1参照)。この特許文献1の充填材は、例えば、ポリプロピレンから成る多孔体であって、平均孔径は80~300μmとされている。このような構成の充填材では、連通気孔の内部に液が浸透することにより、濡れ表面積が大きくなる。その結果、気液接触面積の増加による分離性能の向上が図れるとされている。
昭55-8819号公開公報
「2009 Evaluation of Tritium Removal and Mitigation Technologies for Wastewater Treatment」, DOE/RL-2009-18 「Tritium Isotope Separation by Water Distillation Column Packed with Silica-gel Beads」, Journal of NUCLEAR SCIENCE and TECHNOLOGY Vol.41, No.5 pp619-623
 しかし、上記のポリプロピレンから成る多孔体であって、平均孔径が80~300μmの連通気孔をもつ充填材は、未だ充分な分離性能が得られていない。そのことは、後述する[実施例]の項で説明するように、本発明者らによる実験により、HETP(1理論段数当たりの相当高さ)がかなり高い値であり、充填高さを実用的レベルの高さまで低くできないということが立証されている。
 本願発明は、上記課題に鑑みて考え出されたものであり、その目的は、多孔体であって、且つ充填高さを実用的レベルの高さまで低減できる充填材、該充填材を用いた蒸留分離方法及び蒸留分離装置を提供することである。
 上記目的を達成するために請求項1記載の発明は、処理液が供給される蒸留塔内に充填される充填材であって、少なくとも表面が毛細管現象を発現する多孔質で構成された微細孔形成手段で覆われており、前記微細孔形成手段は金属溶射層又は金属焼結体であることを特徴とする。
 ここで、「少なくとも表面が毛細管現象を発現する多孔質で構成された微細孔形成手段で覆われており」とは、充填材全体が微細孔形成手段で構成されている場合と、充填材基材の表面のみを微細孔形成手段が覆うように構成されている場合とを含むことを意味する。
 上記構成によれば、微細孔内を浸透する液が、毛細管現象の作用により、充填材表面に浸出し、且つ、充填材表面を短時間に覆うように拡散し、そのため、気液接触面積の増大及び蒸留塔における物質移動速度が高められる。この結果、HETP(理論段相当高さ:Height equivalent of theoretical plateの略)を低減でき、充填高さを実用的レベルの高さまで低くすることができる蒸留分離方法(請求項4記載の発明)及び蒸留分離装置(請求項5記載の発明)を実現可能とすることができる。
 請求項2記載の発明は、請求項1記載の充填材であって、前記金属溶射層はアルミ溶射層であることを特徴とする。
 請求項3記載の発明は、請求項1記載の充填材であって、前記金属焼結体はアルミ焼結体であることを特徴とする。
 請求項4記載の発明は、請求項1~3のいずれかに記載の充填材が充填された蒸留塔を用いて、処理すべき原液の蒸留分離を行うことを特徴とする蒸留分離方法である。
 上記構成によれば、分離性能が改善し、且つ、充填高さを実用的レベルの高さまで低くできる蒸留分離方法が実現できる。
 請求項5記載の発明は、蒸留塔を備えた蒸留分離装置であって、前記蒸留塔は請求項1~3のいずれかに記載の充填材が充填されていることを特徴とする。
 上記構成によれば、分離性能が改善し、且つ、充填高さを実用的レベルの高さまで低くできる蒸留分離装置が実現できる。
 また、上記目的を達成するために請求項6記載の発明は、処理液が供給される蒸留塔内に充填される充填材であって、多数の気孔を有する多孔体で構成されると共に、気孔内を浸透する液が、毛細管現象の作用により、充填材表面に浸出し、且つ、充填材表面を短時間に覆うように拡散する状態が発現し得るように構成された毛管構造体から成ることを特徴とする。
 用語「気孔」は、ひとまとまりの物体に含まれる微小な空洞を意味し、外気と接続している開気孔と物体内部に孤立している閉気孔とを含む。
 また、用語「短時間」は、充填材表面を流下する液が気孔に侵入することにより当該位置において一旦途切れ、当該位置において途切れた状態から後続する流下液が通過するまでに、少なくとも前記気孔内を浸透する液が充填材表面を覆うように拡散し、前記後続する流下液と接触することを可能とする極めて短い時間を意味する。
 上記構成によれば、気孔内を浸透する液が、毛細管現象の作用により、充填材表面に浸出し、且つ、充填材表面を短時間に覆うように拡散し、そのため、気液接触面積の増大及び蒸留塔における物質移動速度が高められる。この結果、HETP(理論段相当高さ:Height equivalent of theoretical plateの略)を低減でき、充填高さを実用的レベルの高さまで低くすることができる蒸留分離方法(請求項10記載の発明)及び蒸留分離装置(請求項11記載の発明)を実現可能とすることができる。
 請求項7記載の発明は、請求項1記載の充填材であって、前記毛管構造体の毛管力としては、一本の細管における毛管水柱で近似した以下の第1式を用いて常温水の条件下で算出した毛管水柱高さが0.03m以上であるような特性を有することを特徴とする。
Figure JPOXMLDOC01-appb-M000003
 上記構成により、好ましい毛管構造体の具体化が図れる。
 請求項8記載の発明は、請求項6又は7記載の充填材であって、前記毛管構造体の液の浸透速度としては、一本の細管を横に向け以下の第2式を用いて算出した該細管内を水平方向に10mmを浸透するのに要する時間が0.1秒以下であるような特性を有することを特徴とする。
Figure JPOXMLDOC01-appb-M000004
 但し、
 上記構成によれば、より好ましい毛管構造体の具体化が図れる。
 請求項9記載の発明は、請求項6~8のいずれかに記載の充填材であって、前記毛管構造体の表面が親水化処理されていることを特徴とする。
 上記構成によれば、毛管構造体の表面が親水化処理されることにより、毛管力が大きくなり、分離性能の更なる向上が図れる。
 請求項10記載の発明は、請求項6~9のいずれかに記載の充填材が充填された蒸留塔を用いて、処理すべき原液の蒸留分離を行うことを特徴とする蒸留分離方法である。
 上記構成によれば、分離性能が改善し、且つ、充填高さを実用的レベルの高さまで低くできる蒸留分離方法が実現できる。
 請求項11記載の発明は、蒸留塔を備えた蒸留分離装置であって、前記蒸留塔は請求項6~9のいずれかに記載の充填材が充填されていることを特徴とする。
 上記構成によれば、分離性能が改善し、且つ、充填高さを実用的レベルの高さまで低くできる蒸留分離装置が実現できる。
 本発明によれば、気孔内を浸透する液が、毛細管現象の発現により、充填材表面に浸出し、且つ、充填材表面を短時間に覆うように拡散し、そのため、気液接触面積の増大及び蒸留塔における物質移動速度が高められる。この結果、HETP(理論段相当高さ:Height equivalent of theoretical plateの略)を低減でき、充填高さを実用的レベルの高さまで低くすることができる蒸留分離方法及び蒸留分離装置を実現可能とすることができる。
毛管構造体に関する材料と細管半径の組み合わせ毎の毛管水柱高さを示すグラフ。 毛管構造体に関する材料と細管半径の組み合わせ毎の液浸透速度(10mmを進む時間で表現)を示すグラフ。 毛管構造体から成る充填材を蒸留塔に使用した蒸留分離装置の全体構成図。
 以下、本発明を実施の形態に基づいて詳述する。なお、本発明は、以下の実施の形態に限定されるものではない。
 (実施の形態)
 本実施の形態に係る充填材は、処理液が供給される蒸留塔内に充填される充填材であって、毛管構造体から成る。ここで「毛管構造体」とは、多数の気孔を有する多孔体で構成されると共に、気孔内を浸透する液が、毛細管現象の作用により、充填材表面に浸出し、且つ、充填材表面を短時間に覆うように拡散する状態が発現し得るように構成された構造体を意味する。ここで、「気孔」とは、ひとまとまりの物体に含まれる微小な空洞を意味し、外気と接続している開気孔と物体内部に孤立している閉気孔とを含む。「気孔」は、ひとまとまりの物体に含まれる微小な空洞を意味し、外気と接続している開気孔と物体内部に孤立している閉気孔とを含む。また、ここで、「短時間」とは、充填材表面を流下する液が気孔に侵入することにより当該位置において一旦途切れ、当該位置において途切れた状態から後続する流下液が通過するまでに、少なくとも前記気孔内を浸透する液が充填材表面を覆うように拡散し、前記後続する流下液と接触することを可能とする極めて短い時間を意味する。なお、「短時間」の具体的な意義は、後述する[実施例]の段落0081において説明されている。
 また、毛管構造体の具体的構成としては、毛管水柱高さが所定以上であり、且つ毛管構造体内を液が浸透する浸透速度が所定以上(なお、以下の具体的な表現としては、液が所定長さを浸透するのに要する時間が所定以下という表現)であることが必要である。ここで、毛管水柱高さが所定以上という限定によって、後述するように毛管構造体として要請される毛管力が得られるための多孔体の材質と孔径とが決定される。毛管構造体内を液が浸透する浸透速度が所定以上という限定によって、後述するように毛管構造体として要請される液の流動性が得られるための多孔体の材質と孔径とが決定される。
 以下に、先ず、本実施の形態に至る経緯について説明し、次いで、毛管構造体の毛管水柱高さの具体的な概念、及び毛管構造体の液浸透速度の具体的な概念について詳述する。
[実施の形態に至る経緯]
 本発明者らは、構造体の内部に毛管力が作用する程度の空間を設けると、液は毛管力によってあらゆる面に拡がって行き、結果として充填材の表面の全体を液が覆う力が作用し、この力を利用した気液接触装置は大幅に物質移動速度を高めることを見出した。
 従来では、充填材の表面の濡れ性を改善するための表面処理(例えば、特に水系においてステンレス材料を用いるとき、物理的なサンドブラスト、化学的な表面処理)が行なわれている。しかし、これらは液(特に水の場合)との接触角を小さくして濡れ性を改善するものであるが、接触角が存在する限り濡れ面積は物理的表面積のある割合に留まることを免れず、その面積は予測式が提案されており、物理的表面積より相当小さい。
 例えば、規則充填物の例として計算すると以下のようである。この種のモデル式は複数のものが提案されているが、ここでは接触角の要素を含んだSRPモデル(University of Texas Separation Research Programの略称:)を用いた。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 ここで、数3~数8に以下の表1の条件数値を代入すると、
Figure JPOXMLDOC01-appb-M000012
 仮に、濡れ性改善を試みて充填物表面の接触角を50°まで改善することが出来たとしてもその値は0.14に留まり、特に、液の空塔速度が小さい時(5m/mhのような)は、如何に有効に作用していない面積が多くなっているかが判る。
 そこで、本発明者らは、蒸留塔内に充填される充填材を毛管構造体で構成すれば、液は毛管力によってあらゆる面に拡がって行き、結果として充填材の表面の全体を液が覆う力が作用することを見出した。毛管力は、例えば構成材料と水の接触角が同じであれば、細孔口径が小さいほど大きくなる。しかしながら、蒸留塔に用いる充填材は単に毛管現象を有するというだけでは効果がない。本発明者らは、液が毛管内を流動する際の速度が重要なファクターになっていることを見出した。この結果、気液接触面積の増大及び蒸留塔における物質移動速度が高められることにより、HETP(理論段相当高さ:Height equivalent of theoretical plateの略)を低減でき、充填高さを実用的レベルの高さまで低くすることができる。
Figure JPOXMLDOC01-appb-T000013
 [毛管構造体の毛管水柱高さ]
 毛管水柱高さは毛管構造体の毛管力を評価する指標であり、具体的には毛管力を一本の細管における毛管水柱で近似して表したもので以下の数8による。なお、使用する水は常温である。
Figure JPOXMLDOC01-appb-M000014
 ここで、θ(接触角)と細管半径rは以下の表2の値を採用し、構成材料と細管半径rの組み合わせ毎に数8を用いて毛管水柱高さを算出し、その算出結果を表3に示す。また、表3に示す各毛管水柱高さを図1にグラフ化して示している。なお、図1においては、ガラスビーズ(r=10μm)、セルロース毛管構造体(r=10μm)、プラスチック毛管構造体(r=5μm)及びセラミック毛管構造体(r=35μm)における毛管水柱高さは、いずれも枠外の値であるので、0.3mまで描いている。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 図1においてガラスビーズで細管半径が500μm、アルミ毛管構造体で細管半径が330μm、プラスチックで細管半径が100μm、セラミックス毛管構造体で細管半径が390μm、ステンレス毛管構造体で細管半径が180μm、あるいは銅毛管構造体で細管半径が270μmの場合は、毛管水柱高さが約0.03mである。また、プラスチックで細管半径が50μmの場合は、毛管水柱高さが約0.05mである。図1においてその他場合は、いずれも毛管水柱高さが約0.05mよりも格段に大きい値である。そこで、毛管構造体の毛管力としては、少なくとも毛管水柱高さが0.03m以上を有していることが好ましく、より好ましくは0.05m以上とした。この0.03m以上、より好ましくは0.05m以上を有する毛管構造体が、HETP(理論段相当高さ)の低減になることは後述する実施例、比較例により立証(より正確に説明すれば、0.03m以上、より好ましくは0.05m以上を有するという条件に加えて、後述する10mmを進む時間(秒)が0.1秒以内、より好ましくは0.05秒以内を有するという条件も付加された場合の立証)されている。
 [毛管構造体の液浸透速度]
 毛管構造体の液浸透速度は、液が所定長さを浸透するのに要する時間が所定以下という表現で示す。
 同じ毛管構造であってもその空隙サイズがあまり小さすぎると毛管現象による流動性が流動摩擦によって低下し、充填塔の物質移動速度を低下させる。そこで、液は毛管力と毛管を流れる摩擦抵抗が等しくなって毛管構造体の中を流れが拡大してゆくと考え、水平方向に仮に10mmを浸透する時間を以下の数9により算出した結果を以下の表4に示す。この表4は、表3と同様の材料と細管半径の組み合わせ毎に算出される10mmを進む時間(秒)を示している。また、また、表4に示す各10mmを進む時間(秒)を図2にグラフ化して示している。なお、図2において、プラスチック毛管構造体(r=5μm)における当該時間(秒)は、枠外の値であるので、1.2秒まで描いている。
 なお、数12はLucas-Washburnの式として文献資料に示されているが、毛管力を圧力差に換算したものを用い、Hagen-Poiseuilleの流動式を利用して毛管流れを解析したものである。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-M000018
 これは、毛管力によって液が構造体内部を流れる時の流動速度が、充填塔の物質移動速度に関係していることを示している。毛管力が大きくても、液が浸透する構造が細かく、浸透速度が遅い構造は物質移動速度を高めるのに効果がないか、または小さい。各種の充填物を用いた蒸留分離試験により、この時間は例えば10mmを浸透するのに0.1秒以内、より好ましくは0.05秒以内であるような毛管構造体が充填塔の物質移動速度を高めるのに効果があることを見出した。
 具体的には、図2においてガラスビーズで細管半径が10μm、アルミ毛管構造体で細管半径が40μm、セルロース毛管構造体で細管半径が10μm、プラスチック毛管構造体で細管半径が5μm、プラスチック毛管構造体で細管半径が50μm、プラスチック毛管構造体で細管半径が100μm、あるいはセラミックス毛管構造体で細管半径が35μmの場合は、要する時間が0.1秒以上である。また、ガラスビーズで細管半径が50μm、アルミ毛管構造体で細管半径が50μm、ステンレス毛管構造体で細管半径が75μmあるいは銅毛管構造体で細管半径50μmの場合は、要する時間が0.05秒以上である。図2においてその他場合は、いずれも要する時間が0.05秒よりも格段に小さい値である。そこで、毛管構造体の浸透速度としては、要する時間が少なくとも0.1秒以内であることが好ましく、より好ましくは0.05秒以内とした。この0.1秒以内、より好ましくは0.05秒以内を有する毛管構造体が、HETP(理論段相当高さ)の低減になることは後述する実施例、比較例により立証(より正確に説明すれば、0.1秒以内、より好ましくは0.05秒以内を有するという条件に加えて、毛管水柱高さが0.03m以上を有していることが好ましく、より好ましくは0.05m以上を有する条件も付加された場合の立証)されている。
 [好ましい毛管構造体の具体例]
 上記の[毛管構造体の毛管水柱高さ]及び[毛管構造体の液浸透速度]の条件を満たす毛管構造体が好ましい。なお、工業的作製を考慮して、材質としてはセラミック、ステンレス、アルミ、銅とするのが好ましい。このような条件から、具体的な好ましい毛管構造体としては、細孔口径が70μm(細管半径r=35に相当)以上、800(細管半径r=400に相当、なお、上記例ではr=390を使用)μm以下のセラミック毛管構造体、細孔口径が150μm(細管半径r=75に相当)以上、400(細管半径r=200に相当、なお、上記例ではr=180を使用)μm以下のステンレス毛管構造体、細孔口径が80μm(細管半径r=40に相当)以上、700(細管半径r=350に相当、なお、上記例ではr=330を使用)μm以下のアルミ毛管構造体、及び細孔口径が100μm(細管半径r=50に相当)以上、500(細管半径r=250に相当、なお、上記例ではr=270を使用)μm以下の銅毛管構造体である。
 [蒸留分離装置の適用例]
 図3は毛管構造体から成る充填材を蒸留塔に使用した蒸留分離装置の全体構成図である。蒸留分離装置1に供給される原液は、トリチウム水(HTO又はTO)を含む軽水(HO)である。この蒸留分離装置1においては、トリチウム水(HTO又はTO)を含む軽水(HO)を、原液よりも高濃度のトリチウム水と、原液よりも低濃度のトリチウム水に分離する用途に使用される。
 蒸留分離装置1は、充填式の多段の蒸留塔2と、蒸留塔2の塔底部の貯留液を加熱して蒸気化するリボイラー3と、蒸留塔2の塔頂部から供給される蒸気を冷却して液化する凝縮器4と、凝縮器4からの凝縮液を貯留する還流タンク5と、還流タンク5の底部から蒸留塔2の塔頂部に凝縮液を還流する還流ラインL1に設けられるポンプ6と、還流ラインL1に設けられる制御弁V1と、凝縮器4に供給される冷却水の供給源である冷却槽7とを備える。蒸留塔2の充填材としては、毛管構造体から成る充填材が使用されている。凝縮器4の抽気は別途設けられた真空ポンプ(図示せず)に接続されており、この真空ポンプによって蒸留塔2内は真空になっている。また、運転温度は真空ポンプの真空度を調整することによって所定の値に制御されている。
 なお、蒸留分離装置1は、必要に応じて、温度計、圧力計及び流量計を備えている。温度計、圧力計及び流量計としては、例えば、蒸留塔2の塔頂部に設けられる温度計T1及び圧力計P1、蒸留塔2の塔底部に設けられる温度計T2及び圧力計P2、還流ラインL1に設けられ蒸留塔2の塔頂部に戻される還流量を計測する流量計F1、冷却水往きラインL2に設けられる温度計T3及び流量計F2、冷却水戻りラインL3に設けられる温度計T4、還流タンク5に設けられる温度計T5等が挙げられる。
 上記構成の蒸留分離装置1の動作は、一般的な蒸留分離装置と同様な動作である。以下に簡単に説明すると、原液は蒸留塔2の中央部から供給され、蒸留塔2内を流下し、蒸留塔2の塔底部においてリボイラー3によって加熱され蒸気を発生させる。発生蒸気は蒸留塔2内を上昇し、蒸留塔2内を下降する原液と気液接触が行われる。このとき、充填材が毛管構造体であることから、液が充填材表面全体を覆うように拡散していく状態が発現される。これにより気液接触面積が増大し、より多くの接触面で気液接触が行われることが可能となり、分離性能が向上する。
 そして、この気液接触の過程で、下降液中のトリチウム濃度は増加し、上昇蒸気中のトリチウム濃度は減少する。そして、気液接触後の上昇蒸気は塔頂部に到達し、更に、凝縮器4に導かれる。凝縮器4では供給された蒸気が冷却水によって冷却され、還流タンク5を経て一部は塔頂部に戻され(還流)、一部は原液よりもトリチウム濃度の低い低濃度トリチウム水として排出ラインL4から排出される。一方、気液接触後の下降液体は塔底部に貯留され、この貯留液の一部は原液よりもトリチウム濃度の高い高濃度トリチウム水として排出ラインL5から回収される。
 (その他の事項)
 (1)毛管構造体の気孔は、連通孔でも独立孔でもよい。
 (2)毛管構造体の表面が親水化処理されているのが好ましい。
 (3)充填材としては、円柱ビーズ状や球状ビーズでもよく、また、実際の装置で使用されることが多い、規則充填物、または適切な圧力損失特性を有する不規則充填物であっても、その表面を多孔質にした充填材を採用したり、表面に多孔質材料を担持させる構成であってもよい。このような構成であっても、同様の効果を達成できる。
 (4)上記実施の形態では、「処理の対象となる液(原液)」としては、トリチウム水を用いたけれども、本発明はこれに限定されず、重水やその他の比揮発度が接近した同位体の分離においても適用できる。
 (5)蒸留分離装置は、上記実施の形態に限らず、ヒートポンプとして機能する蒸気圧縮機を設け、蒸留塔の塔頂部からの蒸気を、蒸気圧縮機を使用してリボイラーの加熱源に再利用する省エネルギー型の蒸留分離装置であってもよい。
 (6)上記実施の形態における充填材(毛管構造体に相当)としては、少なくとも表面が毛細管現象を発現する多孔質で構成された微細孔形成手段で覆われており、微細孔形成手段は金属溶射層又は金属焼結体であってもよい。ここで、「少なくとも表面が毛細管現象を発現する多孔質で構成された微細孔形成手段で覆われており」とは、充填材全体が微細孔形成手段で構成されている場合と、充填材基材の表面のみを微細孔形成手段が覆うように構成されている場合とを含むことを意味する。
 また、金属溶射層はアルミ溶射層であることが好ましい。アルミ溶射層を用いた充填材としては、「アルミ溶射マツイ規則250S」(後述する実施例6に相当)が例示される。
 また、金属焼結体はアルミ焼結体であることが好ましい。アルミ焼結体を用いた充填材としては、アルミの焼結体で構成された「多孔質アルミ十字型」(後述する実施例5に相当)が例示される。
 ここで、アルミ溶射層を用いた充填材が、HETP(理論段相当高さ)を低減でき、充填高さを実用的レベルの高さまで低くすることができることは、後述する第3実験例によって立証されている。また、アルミ焼結体を用いた充填材が、HETP(理論段相当高さ)を低減でき、充填高さを実用的レベルの高さまで低くすることができることは、後述する第2実験例によって立証されている。
 以下、実施例により本発明をより具体的に説明する。本発明は以下の実施例によって何ら限定されるものではない。なお、以下の実施例、比較例においては、蒸留塔の大きさ(実施の形態のような実機の蒸留塔における胴径は数mレベルである)が異なること以外は上記実施の形態と同様の構成の試験用蒸留分離装置を用いて、材料及び孔径が異なる種々の充填材を使用し、原液を重水として蒸留分離を行なった。
[第1実験例]
 第1実験例として、以下の実施例1~実施例4および比較例1~比較例4を行った。この第1実験例では、以下に述べるように、充填塔としては内径18mmのガラスカラムを用いた。
 (実施例1)
 充填材として直径0.34cm、長さ0.4cmのアルミナ製円柱ビーズ(西村陶業製
 商品番号R-200)を用いた。この表面には10μm程度の微細孔が設けられている。
 充填塔は内径18mmのガラスカラムに上記の充填材を充填高さが、ほぼ50cm~60cmになるように充填したものを用いた。ボイラーには300mlの純水に重水2.0mlを投入して調製した。運転は大気圧状態とした。ボイラーの温度は約100℃となり、ボイラーのヒーターの出力は70~75Wとして定常運転となるようにした。この時の留出量は約150ml/h(蒸発速度としては590kg/mh)であった。塔頂部から流出する蒸気は冷却器で冷却し、凝縮水の全量を塔頂部から流下させた。定常運転が得られるまで2時間を維持し、その後も定常運転を維持してさらに4時間経過後、ボイラーの下部の重水濃度と塔頂部の凝縮液の重水濃度をガスクロマトグラフで測定し次のデータを得た。
 ボイラーの濃縮液;0.699%
 塔頂部の凝縮液;0.563%
 分離係数(塔頂濃度÷ボイラー濃度)=0.81
 (実施例2)
 充填材として直径0.3~0.4cmのセルロース多孔性ビーズ(レンゴー(株)商品名ビスコパールPタイプ)を用いた。この表面には20~30μm程度の微細孔が設けられている。充填塔は内径18mmのガラスカラムに上記の充填物を充填高さが、ほぼ50cm~60cmになるように充填したものを用いた。ボイラーには300mlの純水に重水2.0mlを投入して調製した。運転は大気圧状態とした。ボイラーの温度は約100℃となり、ボイラーのヒーターの出力は60~65Wとして定常運転となるようにした。この時の留出量は約150ml/h(蒸発速度としては590kg/mh)であった。塔頂部から流出する蒸気は冷却器で冷却し、凝縮水の全量を塔頂部から流下させた。定常運転が得られるまで2時間を維持し、その後も定常運転を維持してさらに4時間経過後、ボイラーの下部の重水濃度と塔頂部の凝縮液の重水濃度をガスクロマトグラフで測定し次のデータを得た。
ボイラーの濃縮液;0.828%
塔頂部の凝縮液;0.629%
分離係数(塔頂濃度÷ボイラー濃度)=0.76
 (実施例3)
 充填材として直径0.3~0.4cmのガラスの焼結体である多孔性ガラスビーズ(ROBU社製)を用いた。この表面には40~100μm程度の微細孔が設けられている。充填塔は内径18mmのガラスカラムに上記の充填材を充填高さが、ほぼ50cm~60cmになるように充填したものを用いた。ボイラーには300mlの純水に重水2.0mlを投入して調製した。運転は大気圧状態とした。ボイラーの温度は約100℃となり、ボイラーのヒーターの出力は60~65Wとして定常運転となるようにした。この時の留出量は約80ml/h(蒸発速度としては300kg/mh)であった。塔頂部から流出する蒸気は冷却器で冷却し、凝縮水の全量を塔頂部から流下させた。定常運転が得られるまで2時間を維持し、その後も定常運転を維持してさらに4時間経過後、ボイラーの下部の重水濃度と塔頂部の凝縮液の重水濃度をガスクロマトグラフで測定し次のデータを得た。
ボイラーの濃縮液;0.980%
塔頂部の凝縮液;0.523%
分離係数(塔頂濃度÷ボイラー濃度)=0.53
 (実施例4)
 充填材としてアルミの焼結体である多孔性アルミナ板(NDC販売社製)を直径0.3~0.4cmのペレットに加工して用いた。この表面には約200μm程度の微細孔が設けられている。充填塔は内径18mmのガラスカラムに上記の充填物を充填高さが、ほぼ50cm~60cmになるように充填したものを用いた。ボイラーには300mlの純水に重水2.0mlを投入して調製した。運転は大気圧状態とした。ボイラーの温度は約100℃となり、ボイラーのヒーターの出力は60~65Wとして定常運転となるようにした。この時の留出量は約70ml/h(蒸発速度としては270kg/mh)であった。塔頂部から流出する蒸気は冷却器で冷却し、凝縮水の全量を塔頂部から流下させた。定常運転が得られるまで2時間を維持し、その後も定常運転を維持してさらに4時間経過後、ボイラーの下部の重水濃度と塔頂部の凝縮液の重水濃度をガスクロマトグラフで測定し次のデータを得た。
ボイラーの濃縮液;0.771%
塔頂部の凝縮液;0.482%
分離係数(塔頂濃度÷ボイラー濃度)=0.63
(実施例4-2)
 実施例4で用いた充填材に、表面の濡水性を改善するための親水性処理(ベーマイト処理)を行い、当該親水性処理を行った充填材を用いて、実施例4と同様の試験を行った。
ボイラーの濃縮液;0.753%
塔頂部の凝縮液;0.436%
分離係数(塔頂濃度÷ボイラー濃度)=0.58
 (比較例1)
 実施例と同じ装置で、同じ運転条件を採用し、充填材に微細孔のないガラスビーズ(4mmφ)を同じ充填高さに充填し、同様にして重水濃度を測定すると以下のとおりとなった。
ボイラーの濃縮液;0.792
塔頂部の凝縮液;0.703
分離係数(塔頂濃度÷ボイラー濃度)=0.89
 (比較例2)
 実施例と同じ装置で、同じ運転条件を採用し、充填物にゼオライトビーズ(ユニオン昭和 商品番号MS-13X、3~4mmφ)を同じ充填高さに充填し、同様にして重水濃度を測定すると以下のとおりとなった。
ボイラーの濃縮液;0.967
塔頂部の凝縮液;0.844
分離係数(塔頂濃度÷ボイラー濃度)=0.87
 (比較例3)
 実施例と同じ装置で、同じ運転条件を採用し、充填物にPP(ポリプロピレン)製プラスチック焼結多孔体、細孔径が200μm(富士ケミカル 厚み4mm)を同じ充填高さに充填し、同様にして重水濃度を測定すると以下のとおりとなった。
ボイラーの濃縮液;0.785
塔頂部の凝縮液;0.691
分離係数(塔頂濃度÷ボイラー濃度)=0.88
 (比較例4)
 実施例と同じ装置で、同じ運転条件を採用し、充填物にPP(ポリプロピレン)製プラスチック焼結多孔体、細孔径100μm(富士ケミカル 厚み4mm)を同じ充填高さに充填し、同様にして重水濃度を測定すると以下のとおりとなった。
ボイラーの濃縮液;0.726
塔頂部の凝縮液;0.785
分離係数(塔頂濃度÷ボイラー濃度)=0.93
 ここで、上記実施例と上記比較例において蒸留塔のHETP(理論段相当高さ)を計算したので、その結果を以下の表5に示す。但し、100℃における重水の比揮発度は0.975とした。
 なお、HETPの計算は以下の式を使った。
 HETP=Z/N
 N={Log(Separation Factor)/Log(α)}-1
 但し、Separation Factor:分離係数
 α:比揮発度
 Z:充填層高さ[m]
Figure JPOXMLDOC01-appb-T000019
 (第1実験例における実験結果の検討)
 (1)表5より、実施例1~実施例4-2のHETPが、比較例1(充填物が細孔のないガラスビーズ)のHETPの15~49%であることが明示される。このことから、充填物の細孔の有無によってHETPを低くできることが導かれる。
 (2)また、表5より、実施例1~実施例4-2のHETPが、比較例2(充填物がゼオライトビーズ)のHETPの22~72%であることが明示される。このことから、以下の事項が導かれる。即ち、ゼオライトビーズも実施例1~実施例4-2の充填物と同様に多孔質であるが、その細孔サイズは例えば0.15~0.43μmであり、あまりにも多孔質構造の空洞部分が小さいので液の移動に時間が掛かりすぎる。このため、蒸留塔には効果が小さいと考えられる。つまり、HETPを低くするためには、多孔質であることが前提であるが、細孔サイズがあまりにも小さい場合は却って不適当であることが導かれる。
 (3)また、表5より、実施例1~実施例4-2のHETPが、比較例3(充填物がPP製(ポリプロピレン)プラスチック焼結多孔体、細孔径が200μm)のHETPの22~72%であることが明示される。このことから、以下の事項が導かれる。即ち、充填物がポリプロピレンのような高分子の多孔体の場合は、HETPを低くするのに不適当であることが導かれる。この理由は、水とポリプロピレンの接触角が大きいため、毛管構造で水を吸引する力が小さく、そのため、毛管構造部分を液が移動するエリアが小さいことによるものと考えられる。なお、細孔サイズを大きくすれば液の移動時間は短くできるが、その移動は重力やその他の力が作用して限定される。
 (4)また、表5より、実施例1~実施例4-2のHETPが、比較例4(充填物がPP製(ポリプロピレン)プラスチック焼結多孔体、細孔径が100μm)のHETPの10~34%であることが明示される。このことから、以下の事項が導かれる。即ち、比較例3と同様に、充填物がポリプロピレンのような高分子の多孔体の場合は、HETPを低くするのに不適当であることが導かれる。但し、水とポリプロピレンの接触角が大きくても細孔サイズを小さくすると、毛管構造で水を吸引する力は大きくすることができる。しかし、細孔サイズが小さい場合は毛管構造部分を液が移動するのに時間が掛かりすぎることになり、HETPを低くするのに不適当であると認められる。
 (5)表5より、総括的な結論としては、本発明による充填物のHETPはガラスビーズのそれの15~49%、ゼオライトビーズのそれの22~72%となったから、同じ性能を必要とする蒸留塔の充填高さを大きく低減することができ、その効果は大きい。
 [第2実験例]
 第2実験例として、以下の実施例5および比較例5,6を行った。この第2実験例では、以下に述べるように、充填塔としては内径100mmのステンレス製円塔容器を用いた。また、充填材として不規則充填物を用いた。なお、後述する第3実験例では充填材として規則充填物を用いたことにおいて相違する。
 (実施例5)
 充填材としてアルミの焼結体で構成された「多孔質アルミ十字型」を用いた。「多孔質アルミ十字型」は、多孔質アルミ板(代表寸法12.5mm)を十字型に成型したものであり、表面には約200μm程度の微細孔が設けられている。充填塔は内径100mmのステンレス製円塔容器に上記の充填物を充填高さが、41.5cmになるように充填したものを用いた。ボイラーには55Lの純水に重水1kgを投入して調製した。運転は所定減圧状態とした。ボイラーの温度は約65℃となり、ボイラーのヒーターの出力は12kwとして定常運転となるようにした。この時の留出量は約18.4l/h(蒸発速度としては2000kg/m2h)であった。塔頂部から流出する蒸気は冷却器で冷却し、凝縮水の全量を塔頂部から流下させた。定常運転が得られるまで2時間を維持し、その後も定常運転を維持してさらに4時間経過後、ボイラーの下部の重水濃度と塔頂部の凝縮液の重水濃度をガスクロマトグラフで測定し次のデータを得た。
ボイラーの濃縮液;1.740%
塔頂部の凝縮液;1.441%
分離係数(塔頂濃度÷ボイラー濃度)=0.828
 (比較例5)
 実施例5と同じ装置で、同じ運転条件を採用し、充填物に「マツイカスケードミニリング」(マツイマシン株式会社製)を用いて充填高さが100cmとなるように充填し、実施例5と同様の測定方法により重水濃度を測定すると以下のとおりとなった。なお、「マツイカスケードミニリング」は、多孔質でない不規則充填物(代表寸法17mm)であり、ショットブラスト表面処理によって表面があらされている。
ボイラーの濃縮液;1.630%
塔頂部の凝縮液;1.373%
分離係数(塔頂濃度÷ボイラー濃度)=0.842
 (比較例6)
 実施例5と同じ装置で、同じ運転条件を採用し、充填物に不規則充填物であるセラミック製ラシヒリング(表面がゼオライトでコーティングされ、代表寸法12.5mm)を用いて充填高さが48cmとなるように充填し、実施例5と同様の測定方法により重水濃度を測定すると以下のとおりとなった。なお、当該セラミック製ラシヒリングは、表面がゼオライトでコーティングされている。
ボイラーの濃縮液;1.706%
塔頂部の凝縮液;1.468%
分離係数(塔頂濃度÷ボイラー濃度)=0.860
Figure JPOXMLDOC01-appb-T000020
 (第2実験例における実験結果の検討)
 表6より、実施例5のHETPが、比較例5のHETPの36%、比較例6のHETPの62%であることが明示される。このことから、不規則充填物の場合であっても、多孔質でない充填物(比較例5)や多孔質であっても細孔サイズが小さすぎる充填物(比較例6)に対して、好ましい細孔サイズで構成された「多孔質アルミ十字型」(実施例5)がHETPを低くできることが導かれる。なお、微細孔形成手段として、アルミの焼結体で構成するのが好ましいことが理解される。
 [第3実験例]
 第3実験例として、以下の実施例6および比較例7,8を行った。この第3実験例では、以下に述べるように、充填塔としては内径100mmのステンレス製円塔容器を用いた。また、充填材として規則充填物を用いた。
 (実施例6)
 充填材として「アルミ溶射マツイ規則250S」を用いた。「アルミ溶射マツイ規則250S」は、既存の充填物(金属の波板で構成された「マツイ規則250S」)の表面にアルミ溶射層が設けられている充填物であって、その表面には約200μm程度の微細孔が設けられている。充填塔は内径100mmのステンレス製円塔容器に上記の充填物を充填高さが、90cmになるように充填したものを用いた。ボイラーには55Lの純水に重水1kgを投入して調製した。運転は大気圧状態とした。ボイラーの温度は約65℃となり、ボイラーのヒーターの出力は12kwとして定常運転となるようにした。この時の留出量は約18.4l/h(蒸発速度としては2000kg/m2h)であった。塔頂部から流出する蒸気は冷却器で冷却し、凝縮水の全量を塔頂部から流下させた。定常運転が得られるまで2時間を維持し、その後も定常運転を維持してさらに4時間経過後、ボイラーの下部の重水濃度と塔頂部の凝縮液の重水濃度をガスクロマトグラフで測定し次のデータを得た。
 なお、上記アルミ溶射層の形成に際しては、プラズマ溶射やアーク溶射等の公知の溶射法を用いた。
ボイラーの濃縮液;1.711%
塔頂部の凝縮液;1.350%
分離係数(塔頂濃度÷ボイラー濃度)=0.789
 (比較例7)
 実施例6と同じ装置で、同じ運転条件を採用し、充填材としてはアルミ溶射していない「マツイ規則250S」(マツイマシン株式会社製)を用いて充填高さが90cmとなるように充填し、実施例6と同様の測定方法により重水濃度を測定すると以下のとおりとなった。
ボイラーの濃縮液;1.836%
塔頂部の凝縮液;1.583%
分離係数(塔頂濃度÷ボイラー濃度)=0.863
Figure JPOXMLDOC01-appb-T000021
 (第3実験例における実験結果の検討)
 表7より、実施例6のHETPが、比較例7のHETPの54%であることが明示される。このことから、規則充填物の場合であっても、多孔質でない充填物(比較例7)に対して、アルミ溶射により表面に微細孔を設けた充填物(実施例6)がHETPを低くできることが導かれる。なお、微細孔形成手段として、アルミ溶射によりアルミ溶射層を形成するのが好ましいことが理解される。また、不規則充填物である実施例5と、規則充填物である実施例6とを比較すると、圧力損失を小さく抑えることができるという観点から、規則充填物である実施例6の方が好ましい。
 (第1実験例~第3実験例における実験結の総括)
 以上のように本発明による充填物のHETPはガラスビーズのそれの15~49%、ゼオライトビーズのそれの22~72%となったから、同じ性能を必要とする蒸留塔の充填高さを大きく低減することができ、その効果は大きい。
 比揮発度が接近している成分の蒸留分離(例えば重水と軽水、トリチウムと軽水、トリチウムと重水、など)には充填高を如何に低くするかが工業上の課題になっている。従来、この問題に対して、充填物に吸着性を持たせる試みが為されてきた。本発明は吸着性を有しないが多数の気孔を有する毛管構造体を構成することにより、吸着材の場合よりもさらに分離効果を高めることが出来ることを見出した。このような構造に分離効果を高める効果があることの理論的な考察はなお継続しているが、以下のように考えられる。即ち、充填材の表面は、この試験を行った液流下速度(第1実験例の270kg/mh~590kg/mhと、第2および第3実験例の2000kg/mh)では、表面のある一点に着目すると、常時液が流れるのではなく、しばしば液流下が途切れ、蒸気と直接接触し、しばらく後に液が再び表面を覆って流れ下るものと推測される。蒸気と接触したとき、表面には多孔部分に液が留まっており、この部分が蒸気中の成分と接触して、より蒸気の平衡濃度に接近するものと考えられる。そこに流下液が接触するので流下液の濃度が、多孔質の存在しない場合よりも高く濃縮されるものと考えられる。
 本発明は、蒸留塔に使用される充填材、該充填材を用いた蒸留分離方法、及び蒸留分離装置に、特に、トリチウム水のように比揮発度が接近した成分の蒸留分離に好適に実施することが可能な蒸留分離方法及び蒸留分離装置に適用することが可能である。
    1:蒸留装置            2:蒸留塔
    3:リボイラー           4:凝縮器

Claims (11)

  1.  処理液が供給される蒸留塔内に充填される充填材であって、
     少なくとも表面が毛細管現象を発現する多孔質で構成された微細孔形成手段で覆われており、前記微細孔形成手段は金属溶射層又は金属焼結体であることを特徴とする充填材。
  2.  前記金属溶射層はアルミ溶射層である請求項1記載の充填材。
  3.  前前記金属焼結体はアルミ焼結体である請求項1記載の充填材。
  4.  請求項1~3のいずれかに記載の充填材が充填された蒸留塔を用いて、処理すべき原液の蒸留分離を行うことを特徴とする蒸留分離方法。
  5.  蒸留塔を備えた蒸留分離装置であって、
     前記蒸留塔は請求項1~3のいずれかに記載の充填材が充填されていることを特徴とする蒸留分離装置。
  6.  処理液が供給される蒸留塔内に充填される充填材であって、
     多数の気孔を有する多孔体で構成されると共に、気孔内を浸透する液が、毛細管現象の作用により、充填材表面に浸出し、且つ、充填材表面を短時間に覆うように拡散する状態が発現し得るように構成された毛管構造体から成ることを特徴とする充填材。
  7.  前記毛管構造体の毛管力としては、一本の細管における毛管水柱で近似した以下の第1式を用いて常温水の条件下で算出した毛管水柱高さが0.03m以上であるような特性を有する請求項6記載の充填材。
    Figure JPOXMLDOC01-appb-M000001
  8.  前記毛管構造体の液の浸透速度としては、一本の細管を横に向け以下の第2式を用いて算出した該細管内を水平方向に10mmを浸透するのに要する時間が0.1秒以下であるような特性を有する請求項6又は7記載の充填材。
    Figure JPOXMLDOC01-appb-M000002
  9.  前記毛管構造体の表面が親水化処理されている請求項6~8のいずれかに記載の充填材。
  10.  請求項6~9のいずれかに記載の充填材が充填された蒸留塔を用いて、処理すべき原液の蒸留分離を行うことを特徴とする蒸留分離方法。
  11.  蒸留塔を備えた蒸留分離装置であって、
     前記蒸留塔は請求項6~9のいずれかに記載の充填材が充填されていることを特徴とする蒸留分離装置。
PCT/JP2018/018464 2017-05-15 2018-05-14 充填材、該充填材を用いた蒸留分離方法及び蒸留分離装置 WO2018212117A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017096835A JP2018192399A (ja) 2017-05-15 2017-05-15 充填材、該充填材を用いた蒸留分離方法及び蒸留分離装置
JP2017096836A JP2018192400A (ja) 2017-05-15 2017-05-15 充填材、該充填材を用いた蒸留分離方法及び蒸留分離装置
JP2017-096835 2017-05-15
JP2017-096836 2017-05-15

Publications (1)

Publication Number Publication Date
WO2018212117A1 true WO2018212117A1 (ja) 2018-11-22

Family

ID=64274225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018464 WO2018212117A1 (ja) 2017-05-15 2018-05-14 充填材、該充填材を用いた蒸留分離方法及び蒸留分離装置

Country Status (1)

Country Link
WO (1) WO2018212117A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3410057A (en) * 1964-01-09 1968-11-12 Bernard J. Lerner Method for gas-liquid disentrainment operations
JPS558819A (en) * 1978-07-03 1980-01-22 Ricoh Co Ltd Packed tower
JPS62110701A (ja) * 1985-09-05 1987-05-21 ノ−トン カンパニ− 交換塔用充填要素
JPH026843A (ja) * 1988-02-05 1990-01-11 Boc Group Plc:The 気液接触塔
JPH05214504A (ja) * 1991-12-09 1993-08-24 Yoshida Kogyo Kk <Ykk> 高性能伝熱管及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3410057A (en) * 1964-01-09 1968-11-12 Bernard J. Lerner Method for gas-liquid disentrainment operations
JPS558819A (en) * 1978-07-03 1980-01-22 Ricoh Co Ltd Packed tower
JPS62110701A (ja) * 1985-09-05 1987-05-21 ノ−トン カンパニ− 交換塔用充填要素
JPH026843A (ja) * 1988-02-05 1990-01-11 Boc Group Plc:The 気液接触塔
JPH05214504A (ja) * 1991-12-09 1993-08-24 Yoshida Kogyo Kk <Ykk> 高性能伝熱管及びその製造方法

Similar Documents

Publication Publication Date Title
Kim et al. Adsorption equilibria of water vapor on alumina, zeolite 13X, and a zeolite X/activated carbon composite
Santiago et al. From kinetics to equilibrium control in CO2 capture columns using Encapsulated Ionic Liquids (ENILs)
KR102359878B1 (ko) 응축 입자 카운터의 허위 카운트 성능
Ash et al. Flow of adsorbable gases and vapours in a microporous medium, I. Single sorbates
JPS6099328A (ja) 凝縮性ガス分離装置
JP2018202413A (ja) 水素分離装置と水素分離方法
Rahimi et al. CO2 removal from air in a countercurrent rotating packed bed, experimental determination of height of transfer unit
WO2018212117A1 (ja) 充填材、該充填材を用いた蒸留分離方法及び蒸留分離装置
Macedonio et al. Recovery of water and contaminants from cooling tower plume
Ye et al. Mass transfer simulation on pervaporation dehydration of ethanol through hollow fiber NaA zeolite membranes
Ye et al. Efficient separation of N2 and he at low temperature using MFI membranes
JP2018192400A (ja) 充填材、該充填材を用いた蒸留分離方法及び蒸留分離装置
JP7264543B2 (ja) 充填材を用いた蒸留分離方法及び蒸留分離装置
JP2018192399A (ja) 充填材、該充填材を用いた蒸留分離方法及び蒸留分離装置
Petukhov et al. Porous polypropylene membrane contactors for dehumidification of gases
JP7065492B2 (ja) 分離膜
Mirzaei et al. Improving Physical Adsorption of CO2 by Ionic Liquids‐Loaded Mesoporous Silica
AU2013201349B2 (en) Membrane stripping process for removing volatile organic compounds from a latex
JP7116055B2 (ja) 低ノイズ粒子カウントのための複合芯体
Sakai et al. Olefin Recovery by* BEA‐Type Zeolite Membrane: Affinity‐Based Separation with Olefin− Ag+ Interaction
RU2672452C1 (ru) Мембранный контактор для очистки природных и технологических газов от кислых компонентов
JP7039560B2 (ja) プロピレンの精製方法および精製装置
WO2016175177A1 (ja) 充填材、該充填材を用いた蒸留分離方法及び蒸留分離装置
RU2532518C2 (ru) Способ выделения и концентрирования органических веществ из жидких смесей и устройство для его осуществления
JP6081348B2 (ja) 多孔質膜評価装置および多孔質膜評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18801887

Country of ref document: EP

Kind code of ref document: A1