WO2018212028A1 - マグネシウム空気電池 - Google Patents

マグネシウム空気電池 Download PDF

Info

Publication number
WO2018212028A1
WO2018212028A1 PCT/JP2018/017868 JP2018017868W WO2018212028A1 WO 2018212028 A1 WO2018212028 A1 WO 2018212028A1 JP 2018017868 W JP2018017868 W JP 2018017868W WO 2018212028 A1 WO2018212028 A1 WO 2018212028A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
current collector
magnesium
Prior art date
Application number
PCT/JP2018/017868
Other languages
English (en)
French (fr)
Inventor
和弘 田所
正洋 權太
Original Assignee
株式会社ドリームエンジン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017098879A external-priority patent/JP6272530B1/ja
Priority claimed from JP2017098880A external-priority patent/JP6272531B1/ja
Application filed by 株式会社ドリームエンジン filed Critical 株式会社ドリームエンジン
Publication of WO2018212028A1 publication Critical patent/WO2018212028A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/78Shapes other than plane or cylindrical, e.g. helical

Definitions

  • the present invention relates to a magnesium-air battery using magnesium or a magnesium alloy as a negative electrode active material and oxygen as an active material for a positive electrode.
  • the conductive metal layer is bonded to the five surfaces including one of the wide surfaces of the magnesium alloy plate of the negative electrode active material using a conductive adhesive. For this reason, there was a possibility that the cost at the time of manufacture might increase.
  • the present invention has been made in view of the above points, and it is not necessary to apply the negative electrode current collector to the entire surface of the negative electrode active material by providing a gap on the surface of the negative electrode active material. It aims at providing the magnesium air battery which made low internal resistance and reduction of manufacturing cost compatible by reducing the area of a body.
  • the magnesium-air battery of the present invention is A sheet-like negative electrode active material containing magnesium or a magnesium alloy; A negative electrode terminal connected to the negative electrode active material; A sheet-like separator impregnated with an ionization reaction material in contact with the negative electrode active material; A sheet-like positive electrode in contact with a surface of the separator opposite to the negative electrode active material; A negative electrode current collector made of a conductor connected to the negative electrode terminal and provided with a gap on the surface of the negative electrode active material so that the negative electrode active material is in contact with the separator; A positive electrode current collector in contact with a surface of the positive electrode opposite to the separator; A positive electrode terminal connected to the positive electrode current collector; It is characterized by providing.
  • the negative electrode current collector is connected to the negative electrode terminal, and the negative electrode active material is exposed with a gap so that the negative electrode active material is exposed and abuts on the separator.
  • the negative electrode active material is exposed from the gap of the negative electrode current collector, and does not interfere with the ionization reaction of the negative electrode active material, and further remains at the end of the life of the magnesium-air battery even if the negative electrode active material is divided. Electric power can be obtained from substantially all of the negative electrode active material.
  • a preferred example of the magnesium air battery of the present invention is:
  • the negative electrode current collector is spirally wound around the negative electrode active material.
  • the negative electrode current collector is spirally wound around the negative electrode active material. For this reason, the number of negative electrode current collectors can be reduced while providing the negative electrode current collector over substantially the entire area of the negative electrode active material. For example, even if the negative electrode current collector is a single conductor, current can be collected from substantially the entire area of the negative electrode active material.
  • a preferred example of the magnesium air battery of the present invention is: A conductive adhesive is provided for adhering a part of a surface where the positive electrode and the positive electrode current collector are in contact with each other.
  • the magnesium-air battery of the present invention a part of the contact surface between the positive electrode and the positive electrode current collector is bonded by the conductive adhesive, so that an electrical connection is made between the positive electrode and the positive electrode current collector. In addition, a good circuit is formed, and the close contact between the positive electrode and the positive electrode current collector is reduced.
  • the conductive adhesive is provided only on a part of the contact surface between the positive electrode and the positive electrode current collector, and the positive electrode current collector is also air permeable, oxygen is sufficient for the positive electrode. The reaction between the electrolyte supplied to the separator and impregnated in the separator during use and oxygen is not hindered.
  • a preferred example of the magnesium air battery of the present invention is:
  • the negative electrode current collector is provided at a position corresponding to an adhesive surface of the conductive adhesive as viewed from a direction orthogonal to the surface of the negative electrode active material.
  • the negative electrode current collector is provided at a position corresponding to the adhesive surface of the conductive adhesive when viewed from the direction orthogonal to the surface of the negative electrode active material. This is because, in the negative electrode active material, the location corresponding to the adhesive surface of the conductive adhesive as viewed from the direction orthogonal to the surface tends to be dull and the ionization reaction tends to be slow until the end of the life of the magnesium-air battery.
  • the magnesium-air battery of the present invention can also obtain power from the remaining negative electrode active material.
  • a preferred example of the magnesium air battery of the present invention is: Two separators, the positive electrode, and the positive electrode current collector are provided for one negative electrode active material, and the separator, the positive electrode, and the positive electrode current collector are provided on both surfaces of the negative electrode active material. It is characterized by that.
  • the magnesium-air battery of the present invention since electricity is generated on each side using both sides of the negative electrode active material, the current is approximately doubled and a larger current can be taken out. Further, since the negative electrode active material is exposed from the gap of the negative electrode current collector, both surfaces of the negative electrode active material can be used as they are, and only one negative electrode active material is required per cell while doubling the current. . As a result, the number of parts can be reduced, and the manufacturing cost can be reduced.
  • a preferred example of the magnesium air battery of the present invention is: Each position of the adhesion surface of the positive electrode provided on both surfaces of the negative electrode active material with the conductive adhesive is in a different position when viewed from a direction orthogonal to the surface of the negative electrode active material. .
  • the positions of the positive electrode provided on both surfaces of the negative electrode active material and the adhesive surface with the conductive adhesive are viewed from the direction orthogonal to the surface of the negative electrode active material. Are in different positions. This is because, as already described, the ionization reaction tends to be slow at the location corresponding to the adhesive surface of the conductive adhesive as viewed from the direction orthogonal to the surface of the negative electrode active material. Since the position of the surface is different on both sides of the negative electrode active material, even in a portion where this ionization reaction is difficult to occur, the ionization reaction can be performed from the opposite side of the portion without any problem, and the negative electrode active material should be used evenly. Can do.
  • the magnesium-air battery of the present invention it is not necessary to apply the negative electrode current collector to the entire wide surface of the negative electrode by rotating the negative electrode active material with a gap on the surface, By reducing the area of the negative electrode current collector, it is possible to achieve both a low internal resistance of the battery and a reduction in manufacturing cost.
  • FIG. 3 is a sectional view taken along line AA in FIG. 2. It is a figure explaining the position of a conductive adhesive in the right view of a negative electrode active material and a negative electrode electrical power collector. It is a figure explaining the position of a conductive adhesive in the left view of a negative electrode active material and a negative electrode electrical power collector. It is a figure which shows a negative electrode terminal. It is a figure explaining the advancing state of the ionization reaction of a negative electrode active material. It is a figure which shows the other example of a negative electrode active material. It is a front view of the magnesium air battery which concerns on other embodiment of this invention.
  • the magnesium-air battery 10 of the present embodiment includes a negative electrode active material 20, a negative electrode terminal 22, a negative electrode current collector 21, separators 30 and 31, positive electrodes 40 and 41, Positive electrode current collectors 42 and 43 and conductive adhesives 50 and 51 are provided.
  • a negative electrode active material 20 As shown in FIGS. 1 to 6, the magnesium-air battery 10 of the present embodiment includes a negative electrode active material 20, a negative electrode terminal 22, a negative electrode current collector 21, separators 30 and 31, positive electrodes 40 and 41, Positive electrode current collectors 42 and 43 and conductive adhesives 50 and 51 are provided.
  • These configurations are built in a battery case (not shown).
  • each component in a figure is represented typically and may differ from an actual thickness and magnitude
  • the negative electrode active material 20 is a metal plate containing sheet-like magnesium or magnesium alloy, and is provided one per cell. This negative electrode active material 20 is brought into contact with the separators 30 and 31 and undergoes an ionization reaction for power generation, and from the upper edge 32 of the separators 30 and 31 without contact with the separators 30 and 31. And a protruding terminal connecting portion 25.
  • the terminal connection portion 25 includes a full width portion 26 having the same width w as the reaction portion 24 and a narrow portion 27 having a narrow width.
  • the negative electrode terminal 22 is electrically connected to the negative electrode active material 20 and is connected to the narrow portion 27.
  • the connection of the negative electrode terminal 22 is preferably a conductive terminal that is directly connected by caulking the negative electrode active material 20 and the negative electrode terminal 22 in the thickness direction with the negative electrode active material 20 and the negative electrode terminal 22 being overlapped.
  • One of the terminals 22 on the side connected to the negative electrode active material 20 may be a so-called eyelet or grommet or a rivet.
  • the negative electrode terminal 22 used in this embodiment includes a cylindrical portion 23 as shown in FIG. 6, and the cylindrical portion 23 penetrates the negative electrode active material 20 and is then crimped in the direction of the arrow in the figure. Connected by.
  • a copper alloy such as copper or brass, a conductive material such as aluminum, or an aluminum alloy can be employed as a material of the negative electrode terminal 22.
  • a conductive material such as aluminum, or an aluminum alloy
  • aluminum or an aluminum alloy (hereinafter, referred to as “aluminum or the like” in some cases). .) Is preferred. This is because, when aluminum or the like is adopted as the material of the negative electrode terminal 22, since the oxidation-reduction potential between magnesium or a magnesium alloy of the negative electrode active material 20 and aluminum or the like is close, The surrounding negative electrode active material 20 is not locally consumed. Thereby, the negative electrode active material 20 becomes difficult to be divided, and power can be stably generated until the end of the life of the magnesium-air battery 10.
  • the terminal connection portion 25 of the negative electrode active material 20 is not necessarily provided with the narrow portion 27 in the upper portion as described above.
  • the negative electrode active material 120 including the terminal connection portion 125 may be used.
  • the negative electrode terminal 22 is not limited to the example shown in FIG. 6, and another lead wire can be connected to the other end of the negative electrode terminal 22 opposite to the cylindrical portion 23 to be crimped.
  • the negative electrode terminal or the conductor is brought into contact with the terminal connection portion 25 of the negative electrode active material and pressed by a battery case (not shown) without crimping the connection between the negative electrode terminal and the negative electrode active material.
  • Various modes such as sandwiching the terminal connection portion 25 can be adopted.
  • the reason for causing the terminal connection portion 25 to protrude from the edge 32 of the separators 30 and 31 is that when the separators 30 and 31 come into contact with the terminal connection portion 25, the thickness changes around the negative electrode terminal 22.
  • the contact between the negative electrode active material 20 and the separators 30 and 31 of the part is deteriorated, and unevenness is easily generated in the ionization reaction. Then, the reaction of the local negative electrode active material 20 proceeds, and there is a possibility that the negative electrode active material 20 may be divided at the portion or its periphery.
  • the separators 30 and 31 are in contact with only the reaction part 24, such unevenness hardly occurs, and the negative electrode active material 20 as a whole is uniformly ionized.
  • the separators 30 and 31, the positive electrodes 40 and 41, and the positive electrode current collectors 42 and 43 are not pushed by the negative electrode terminal 22, so that the thickness of the magnesium air battery 10 does not change. This facilitates storage in a battery case (not shown).
  • the upper edge 32 of the separators 30 and 31 is in contact with the full width portion 26 of the terminal connection portion 25, and the edge 32 of the separators 30 and 31 is not in contact with the boundary 28 with the narrow portion 27.
  • the separators 30 and 31 are brought into contact with the boundary 28 with the narrow portion 27, the current density is increased at the boundary 28 and a local ionization reaction is performed. This is because the negative electrode active material 20 may be divided at the boundary 28.
  • the separators 30 and 31 are not in contact with the boundary 28, and the ionization reaction at the boundary 28 does not occur. For this reason, the negative electrode active material 20 is not divided at the boundary 28.
  • the narrow part 27 for connecting the negative electrode terminal 22 to the terminal connection part 25 is provided, the length of the full width part 26 can be shortened, and the area (amount) of the negative electrode active material 20 can be reduced. it can.
  • a negative electrode current collector 21 made of a conductor is connected to the negative electrode terminal 22 together with the negative electrode active material 20 by caulking.
  • the negative electrode current collector 21 is spirally wound around the negative electrode active material 20 with a gap s provided on the surface of the negative electrode active material 20 so as not to inhibit the ionization reaction of the negative electrode active material 20.
  • the negative electrode current collector 21 is pressed against the negative electrode active material 20 by the separators 30 and 31 that are in contact with each other.
  • the area occupied by the negative electrode current collector 21 is small, it is sufficient for the negative electrode active material 20 Contact can be made with surface pressure. For this reason, it is not particularly necessary to bond the negative electrode active material 20 and the negative electrode current collector 21 with a conductive adhesive.
  • the negative electrode current collector 21 is spread over substantially the entire area of the negative electrode active material 20, a partial increase in current density in the negative electrode active material 20 and a local ionization reaction due to the increase in current density are suppressed.
  • the negative electrode active material 20 as a whole is uniformly ionized. Thereby, the division
  • the negative electrode current collector 21 is made of a conductive wire having a diameter of 0.01 mm to 0.3 mm, preferably 0.05 mm to 0.15 mm, made of copper.
  • a thin conducting wire By using such a thin conducting wire, it is possible to prevent a space from being formed between the negative electrode active material 20 and the separators 30 and 31, to prevent uneven ionization reaction, and to generate power efficiently.
  • the negative electrode current collector 21 is not limited to this, and may have a thickness corresponding to the current generated. Further, the shape is not limited to this, and a belt-like conductor may be wound, for example.
  • the negative electrode current collector 21 is not limited to the spiral shape as long as the negative electrode current collector 21 is provided over substantially the entire surface while leaving a gap s on the surface of the negative electrode active material 20. May be provided so as to hang down on both surfaces of the negative electrode active material 20.
  • a conductor having a low electrical resistance such as a copper alloy such as copper or brass, aluminum or an aluminum alloy, gold, or silver.
  • the negative electrode current collector 21 occupies a small area with respect to the negative electrode active material 20 as described above. For this reason, there is no particular problem even if a copper alloy such as copper or brass having a redox potential separated from the negative electrode active material 20 is used for the negative electrode current collector 21.
  • two separators 30 and 31 are provided per cell, and the separators 30 and 31 are in contact with the reaction portions 24 on both surfaces of the negative electrode active material 20.
  • the separators 30 and 31 are made of a non-woven fabric with high water absorption, and are impregnated with an ionization reaction material and dried during distribution. In use, moisture is supplied by supplying water, and an ionization reaction is performed between the negative electrode active material 20 and oxygen as the positive electrode active material to generate power.
  • two positive electrodes 40 and 41 are provided per cell, and each of the positive electrodes 40 and 41 is brought into contact with a surface of the separators 30 and 31 opposite to the negative electrode active material 20.
  • the positive electrodes 40 and 41 are preferably formed of a porous body that has conductivity and easily transmits oxygen.
  • a sheet-like material containing carbon can be employed.
  • carbon fiber sheets are employed as the positive electrodes 40 and 41.
  • each of the positive electrode current collectors 42 and 43 is a surface of the positive electrodes 40 and 41 opposite to the separators 30 and 31. Abut.
  • the positive electrode current collectors 42 and 43 have air permeability so that a large amount of air touches the positive electrodes 40 and 41, and the air is replaced while the magnesium-air battery 10 is in use, so that fresh air always touches the positive electrodes 40 and 41. It is preferable to be configured as described above. Specifically, it is preferable that the air flow not only in the direction perpendicular to the surface of the positive electrode current collectors 42 and 43 but also in the direction along the surface of the positive electrode current collectors 42 and 43.
  • a mesh material in which wavy conductive wires are woven in a net shape is adopted as having air permeability in both the direction orthogonal to these surfaces and the direction along the surfaces.
  • a copper alloy such as copper or brass
  • a conductor having low electrical resistance such as aluminum or an aluminum alloy, gold or silver.
  • the two positive electrode current collectors 42 and 43 are electrically connected by a jumper wire 45 or the like. Further, a positive electrode terminal 44 is connected to the upper end portion of one of the positive electrode current collectors 42 and 43.
  • the positive current collectors 42 and 43 and the positive terminal 44 are connected by a method such as soldering or connection by caulking similar to the negative terminal 22.
  • the conductive adhesives 50 and 51 are for adhering a part of the contact surface between the positive electrodes 40 and 41 and the positive electrode current collectors 42 and 43.
  • the conductive adhesives 50 and 51 are a part of the positive electrode 40 and the positive electrode current collector 42 provided on one surface side of the negative electrode active material 20 and the positive electrode 41 and the positive electrode current collector provided on the other surface side.
  • a part of the body 43 is bonded.
  • the adhesive surface 52 of the conductive adhesive 50 on one surface side of these negative electrode active materials 20 and the adhesive surface 53 on the other surface side are as shown in FIG. 1, FIG. 3, FIG. 4, and FIG. It is preferable that they are at different positions when viewed from the direction orthogonal to the surface of the negative electrode active material 20.
  • the negative electrode active material 20 corresponding to the bonding surfaces 52 and 53 to which the conductive adhesives 50 and 51 are bonded is unlikely to undergo an ionization reaction and may remain until the end of the lifetime of the magnesium-air battery 10. is there. Therefore, the adhesive surface 52 of the conductive adhesive 50 bonded to one surface side of the negative electrode active material 20 and the adhesive surface 53 of the conductive adhesive 51 bonded to the other surface side are the negative electrode active material. This is because, if they are at the same position as viewed from the direction orthogonal to the plane of 20, the negative electrode active material 20 in the portion remains until the end, and it is difficult to secure an effective power generation capacity.
  • the adhesive surface 52 on one surface side of the negative electrode active material 20 and the adhesive surface 53 provided on the other surface side are the surface of the negative electrode active material 20. If the negative electrode active material 20 is provided at different positions when viewed from the orthogonal direction, the remaining negative electrode active material 20 continues to generate power by an ionization reaction from the surface opposite to the adhesive surfaces 52 and 53 of the conductive adhesives 50 and 51. be able to.
  • the positions of the adhesive surfaces 52 and 53 of the conductive adhesives 50 and 51 viewed from the direction orthogonal to the surface of the negative electrode active material 20 are the positions where the negative electrode current collector 21 is present.
  • the negative electrode active material 20 is wound around the surface of the negative electrode active material 20 at positions corresponding to the adhesion surfaces 52 and 53 when viewed from the direction orthogonal to the surface of the negative electrode active material 20.
  • the negative electrode current collector 21 is configured to exist.
  • the portions corresponding to the adhesive surfaces 52 and 53 of the conductive adhesives 50 and 51 may remain until the end of the lifetime of the magnesium-air battery 10.
  • the negative electrode current collector 21 By making the negative electrode current collector 21 exist in a place where the negative electrode active material 20 may remain, the power generated by the remaining negative electrode active material 20 is effectively recovered at the end of the life of the magnesium-air battery 10. can do. 4 and 5, the circles representing the adhesive surfaces 52 and 53 of the conductive adhesives 50 and 51 are solid lines, and the adhesive surfaces 52 and 53 of the conductive adhesives 50 and 51 are on the front side of the negative electrode active material 20. It exists and the broken line has shown that the adhesive surfaces 52 and 53 exist on the back side.
  • the area of the adhesive surfaces 52 and 53 of the conductive adhesives 50 and 51 in the wide surface of the positive electrodes 40 and 41 is preferably 1 to 30%, and more preferably 2 to 10%. This is because if the area of the bonding surfaces 52 and 53 is too small, the internal resistance of the battery may increase. If it is too wide, the supply of oxygen from the positive electrode current collectors 42 and 43 will be hindered. At the same time, the use amount of the conductive adhesive is increased and the manufacturing cost is increased. In the magnesium-air battery of the present invention, as a more preferable example, the area occupied by the bonding surfaces 52 and 53 is in the range of 4 to 8% of the area of the wide surface of the positive electrodes 40 and 41.
  • FIG. 7A schematically shows the negative electrode active material 20 when the magnesium-air battery 10 is in the middle of its life
  • FIG. 7B shows the negative electrode active material 20 when the magnesium-air battery 10 is at the end of its life.
  • the ionization reactant impregnated in the separators 30 and 31 causes the negative electrode active material 20 and oxygen as the positive electrode active material to An ionization reaction is performed to generate electricity.
  • the positive electrode reacts with oxygen in the air, the positive electrodes 40 and 41 are not consumed.
  • the negative electrode when the magnesium or magnesium alloy that is the negative electrode active material 20 is changed to magnesium hydroxide, the negative electrode active material 20 decreases from the initial thickness as shown in FIG. .
  • the negative electrode active material 20 reacts almost uniformly.
  • the negative electrode active material 20 may partially remain on the bonding surfaces 52 and 53 of the adhesives 50 and 51. This is because the negative electrode active material 20 is subjected to an ionization reaction from both sides of the negative electrode active material 20 at locations other than the locations corresponding to the adhesive surfaces 52 and 53 of the conductive adhesives 50 and 51, and the negative electrode active material 20 is double-sided. Decrease from.
  • the ionization reaction is slow, and the side on which the adhesion surfaces 52 and 53 mainly exist is defined. An ionization reaction takes place on the opposite side.
  • the negative electrode current collector 21 is pressed against the negative electrode active material 20 by the separators 30 and 31, the negative electrode current collector 21 moves together even when the thickness of the negative electrode active material 20 decreases and contacts the surface of the negative electrode active material 20. Yes.
  • the negative electrode active material 20 may be divided.
  • the ionization reaction is performed mainly from one side of the negative electrode active material 20 at a location corresponding to the adhesive surfaces 52 and 53 of the conductive adhesives 50 and 51.
  • the air battery 10 may remain until the end of its life.
  • the thickness of the negative electrode active material 20 is not necessarily reduced uniformly even in places other than the locations corresponding to the adhesive surfaces 52 and 53 of the conductive adhesives 50 and 51, and a part remains while being divided. There are things to do.
  • the negative electrode current collector 21 is spirally wound around the surface of the negative electrode active material 20 and further provided in a location corresponding to the adhesive surfaces 52 and 53 of the conductive adhesives 50 and 51 in the negative electrode active material 20. Therefore, electric power can be efficiently recovered from the remaining negative electrode active material 20.
  • the two separators 30 and 31 come into contact with each other through the divided portion of the negative electrode active material 20 and are supplied from the separators 30 and 31 with a large amount of electrolyte to the separators 30 and 31 with a small amount of electrolyte.
  • stable power generation can be expected even at the end of the life of the magnesium-air battery 10.
  • the area occupied by the negative electrode current collector 21 is small with respect to the surface area of the negative electrode active material 20, and the separators 30, 31 and the negative electrode active material 20 are in contact with each other with a sufficient area. The current collector 21 does not hinder the ionization reaction.
  • a plurality of magnesium air batteries 100 may be stacked.
  • the negative electrode terminal 22 is directly connected to the negative electrode active material 20 together with the negative electrode current collector 21 by caulking, The resistance can be reduced and the manufacturing cost can be reduced. Moreover, by providing the narrow portion 27 in the negative electrode active material 20, the area of the negative electrode active material 20 can be reduced, and the manufacturing cost can be reduced. Moreover, since the part where the edge 32 of the separators 30 and 31 is in contact is the full width part 26 of the negative electrode active material 20, the ionization reaction due to the increase in current density at the boundary 28 between the full width part 26 and the narrow part 27. Is not promoted, and the negative electrode active material 20 is not divided at the boundary 28. Moreover, since the negative electrode terminal 22 and the terminal connection part 25 protrude from the separators 30 and 31, the thickness of the said part does not change and it becomes easy to accommodate in a battery case etc.
  • the negative electrode current collector 21 is wound around the surface of the negative electrode active material 20 with a gap s, power can be generated using both surfaces of the negative electrode active material 20 while the negative electrode current collector 21 is provided. For this reason, the current that can be extracted is doubled, and a current that can be practically used can be extracted.
  • the negative electrode current collector 21 is wound around substantially the entire area of the negative electrode active material 20, the internal resistance of the battery can be reduced, and current does not concentrate on a part of the negative electrode active material 20, A local reaction of the negative electrode active material 20 can be avoided, and substantially uniform power generation can be performed in the entire negative electrode active material 20.
  • the negative electrode current collector 21 covers only a part of the surface area of the negative electrode active material 20, the material cost of the negative electrode current collector 21 itself can be reduced, and the negative electrode current collector 21 has a relatively high surface pressure. Can contact with the negative electrode active material 20. For this reason, it is not always necessary to bond the negative electrode active material 20 and the negative electrode current collector 21 with a conductive adhesive, and the cost for providing the negative electrode current collector 21 can be reduced. Furthermore, since the area occupied by the negative electrode current collector 21 is narrower than the area of the negative electrode active material 20, even if copper or a copper alloy having a redox potential at a distance is used for the negative electrode current collector 21, there is substantially no problem. Therefore, manufacture becomes easy.
  • the negative electrode current collector 21 is provided at a position corresponding to the adhesive surfaces 52 and 53 of the conductive adhesives 50 and 51 in the negative electrode active material 20, at the end of the life of the magnesium-air battery 10, Even if the portion of the negative electrode active material 20 remains in a separated state, power can be efficiently recovered from the remaining portion. Furthermore, since the two separators 30 and 31 facing each other with the negative electrode active material 20 in between are in contact with each other in a place where the negative electrode active material 20 is divided, the electrolyte solution is supplied to each other. The amount of electrolyte is uniform.
  • the adhesive surfaces 52 and 53 of the conductive adhesives 50 and 51 are at different positions on one surface side and the other surface side of the negative electrode active material 20 when viewed from the direction orthogonal to the surface of the negative electrode active material 20. Therefore, even in a place where the ionization reaction corresponding to the bonding surfaces 52 and 53 of the conductive adhesives 50 and 51 is difficult to occur in the negative electrode active material 20, the ionization reaction is performed from the opposite surface, and the power generation is performed without any problem. can do.
  • the conductive adhesives 50 and 51 are used to bond a part of the contact surface between the positive electrodes 40 and 41 and the positive electrode current collectors 42 and 43, the positive electrodes 40 and 41 and the positive electrode current collectors 42 and 43 are bonded. The internal resistance between them can be reduced, and a large current can be taken out.
  • the adhesive surfaces 52 and 53 of the conductive adhesives 50 and 51 are a part of the surface where the positive electrodes 40 and 41 and the positive electrode current collectors 42 and 43 are in contact with each other, and the positive electrode current collectors 42 and 43 Since 43 has air permeability, supply of oxygen is not hindered.
  • magnesium-air battery is an exemplification of the present invention, and the configuration thereof can be changed as appropriate without departing from the spirit of the invention.

Abstract

負極集電体を負極活物質の表面に隙間を設けて這わすことで負極の広い面全体への貼付けが不要となり、負極集電体の面積を減らすことで、低い内部抵抗と製造コストの低減を両立させる。 マグネシウム又はマグネシウム合金を含むシート状の負極活物質20と、前記負極活物質に接続された負極端子22と、前記負極活物質に当接される、イオン化反応材が含浸されたシート状のセパレータ30と、前記セパレータ30のうち前記負極活物質と反対側の面に当接される、シート状の正極40と、前記負極端子22に接続されるとともに、前記負極活物質20が前記セパレータ30に当接されるよう前記負極活物質20の表面に隙間sを設けて這わされた導体からなる負極集電体21と、前記正極40のうち前記セパレータ30と反対側の面に当接される、通気性を有する正極集電体42と、前記正極集電体42に接続された正極端子44と、を備える。

Description

マグネシウム空気電池
 本発明は、負極活物質にマグネシウム又はマグネシウム合金を用い、正極に活物質として酸素を用いるマグネシウム空気電池に関する。
 従来、マグネシウム空気電池において、実用に耐えうる程度の電流を取り出そうとしたとき、その内部抵抗が問題となって十分な電流値が得られにくいという課題があった。このため、内部抵抗の低減が必要となるのであるが、例えば、特開2011-181382号公報に、一方の板面及び全ての端面を覆うように密着させた導電性金属層と、その上に形成された絶縁性樹脂層とからなる複合集電層を有するマグネシウム合金板を負極に用いたマグネシウム空気電池が開示されている。
特開2011-181382号公報
 しかし、特許文献1に開示されている技術では、負極活物質のマグネシウム合金板の広い面の片面を含む5つの面に導電性接着剤を用いて導電性金属層を接着している。このため、製造時のコストが増大するおそれがあった。
 本発明は、上記の点に鑑みなされたもので、負極集電体を負極活物質の表面に隙間を設けて這わすことで負極の広い面全体への貼付けが不要となり、また、負極集電体の面積を減らすことで、低い内部抵抗と製造コストの低減を両立させたマグネシウム空気電池を提供することを目的とする。
 本発明のマグネシウム空気電池は、
 マグネシウム又はマグネシウム合金を含むシート状の負極活物質と、
 前記負極活物質に接続された負極端子と、
 前記負極活物質に当接される、イオン化反応材が含浸されたシート状のセパレータと、
 前記セパレータのうち前記負極活物質と反対側の面に当接される、シート状の正極と、
 前記負極端子に接続されるとともに、前記負極活物質が前記セパレータに当接されるよう前記負極活物質の表面に隙間を設けて這わされた導体からなる負極集電体と、
 前記正極のうち前記セパレータと反対側の面に当接される正極集電体と、
 前記正極集電体に接続された正極端子と、
 を備えることを特徴とする。
 本発明のマグネシウム空気電池によれば、負極集電体が、負極端子に接続されるとともに、負極活物質が露出してセパレータに当接されるよう負極活物質の表面に隙間を設けて這わされる。このため、負極集電体の面積を負極活物質に対して小さなものとしながら負極の略全域を覆うことが可能となり、集電性能を犠牲にすることなく内部抵抗を低減させることができる。また、負極集電体の隙間から負極活物質が露出しており、負極活物質のイオン化反応を妨げることなく、さらに、マグネシウム空気電池の寿命の終期において、負極活物質が分断されても、残存する負極活物質の略全てから電力を得ることができる。
 本発明のマグネシウム空気電池の好ましい例は、
 前記負極集電体が、前記負極活物質に螺旋状に巻着されていることを特徴とする。
 本発明のマグネシウム空気電池の好ましい例によれば、負極集電体が、負極活物質に螺旋状に巻着されている。このため、負極集電体を負極活物質の略全域に設けながら、負極集電体の本数を減らすことができる。例えば、負極集電体が1本の導体であっても負極活物質の略全域から集電することができる。
 本発明のマグネシウム空気電池の好ましい例は、
 前記正極と前記正極集電体との当接される面の一部を接着する導電性接着剤を備えることを特徴とする。
 本発明のマグネシウム空気電池によれば、導電性接着剤によって、正極と正極集電体との当接される面の一部が接着されるため、正極と正極集電体との間に電気的な回路が形成されるとともにこれらの密着が良好になされ、正極と正極集電体との間の電気抵抗も低減される。また、導電性接着剤は、正極と正極集電体との当接される面の一部にしか設けられておらず、かつ、正極集電体も通気性を有するため、酸素が正極に十分に供給され、使用時にセパレータに含浸される電解液と酸素との反応を阻害することがない。
 本発明のマグネシウム空気電池の好ましい例は、
 前記負極集電体が、前記負極活物質の面に直交する方向から見て前記導電性接着剤の接着面に対応する位置に設けられていることを特徴とする。
 本発明のマグネシウム空気電池の好ましい例によれば、負極集電体が、負極活物質の面に直交する方向から見て導電性接着剤の接着面に対応する位置に設けられている。これは、負極活物質のうち、面に直交する方向から見て導電性接着剤の接着面に対応する場所については、イオン化反応が鈍くなる傾向があり、マグネシウム空気電池の寿命の終期まで当該場所の負極活物質が残存する可能性があるのだが、本発明のマグネシウム空気電池は、この残存した箇所の負極活物質からも電力を得ることができる。
 本発明のマグネシウム空気電池の好ましい例は、
 前記負極活物質1つに対して前記セパレータ、前記正極、及び前記正極集電体を2つ備え、前記セパレータ、前記正極、及び前記正極集電体が前記負極活物質の両面に設けられていることを特徴とする。
 本発明のマグネシウム空気電池の好ましい例によれば、負極活物質の両面を用いてそれぞれの面で発電するため、電流が略2倍となり、さらに大電流を取り出すことができる。また、負極集電体の隙間から負極活物質が露出しているため、負極活物質の両面をそのまま使用することができ、電流を2倍としながら、負極活物質が1セルあたり1枚で済む。これらにより、部品点数の削減が可能となり、製造コストの低減を図ることができる。
 本発明のマグネシウム空気電池の好ましい例は、
 前記負極活物質の両面に設けられた前記正極の前記導電性接着剤との接着面のそれぞれの位置が、前記負極活物質の面に直交する方向から見て異なる位置にあることを特徴とする。
 本発明のマグネシウム空気電池の好ましい例によれば、負極活物質の両面に設けられた正極の、導電性接着剤との接着面のそれぞれの位置が、負極活物質の面に直交する方向から見て異なる位置にある。これは、既に述べたように、負極活物質のうち、面に直交する方向から見て導電性接着剤の接着面に対応する場所については、イオン化反応が鈍くなる傾向があるのだが、前記接着面の位置が負極活物質の両面で異なる位置にあるため、このイオン化反応が起きにくい部分においても、当該部分の反対側の面からは問題なくイオン化反応がなされ、負極活物質を満遍なく活用することができる。
 以上、説明したように、本発明のマグネシウム空気電池によれば、負極集電体を負極活物質の表面に隙間を設けて這わすことで負極の広い面全体への貼付けが不要となり、また、負極集電体の面積を減らすことで、低い電池の内部抵抗と製造コストの低減を両立させることができる。
本発明の一実施形態に係るマグネシウム空気電池の正面図である。 図1に示すマグネシウム空気電池の左側面図である。 図2のA-A線断面図である。 負極活物質及び負極集電体の右側面図において、導電性接着剤の位置を説明する図である。 負極活物質及び負極集電体の左側面図において、導電性接着剤の位置を説明する図である。 負極端子を示す図である。 負極活物質のイオン化反応の進行状態を説明する図である。 負極活物質の他の例を示す図である。 本発明の他の実施形態に係るマグネシウム空気電池の正面図である。
 以下、本発明のマグネシウム空気電池10の実施の形態について、添付図面を参照して詳細に説明する。
 図1ないし図6に示すように、本実施形態のマグネシウム空気電池10は、負極活物質20と、負極端子22と、負極集電体21と、セパレータ30,31と、正極40,41と、正極集電体42,43と、導電性接着剤50,51とを備える。また、これらの構成は、図示しない電池ケースに内蔵される。なお、図中においての各構成要素は模式的に表わしており、実際の厚さや大きさとは相違する場合がある(その他の図においても同様。)。
 負極活物質20は、シート状のマグネシウム又はマグネシウム合金を含む金属板であり、1セルあたり1枚設けられる。この負極活物質20は、セパレータ30,31と当接され発電のためにイオン化反応がなされる反応部24と、セパレータ30,31が当接されずにセパレータ30,31の上側の辺縁32から突出する端子接続部25とを備える。また、この端子接続部25は、反応部24と同じ幅wを備える全幅部26と、幅が狭められた狭小部27とを備える。
 負極端子22は、負極活物質20に電気的に接続されるもので、上記狭小部27に接続される。この負極端子22の接続であるが、負極活物質20と負極端子22とを重ね合わせた状態で、これらを厚さ方向にカシメ加工することで直接に接続される導電性の端子が好ましく、負極端子22のうち負極活物質20と接続される側の一端が、例えばハトメやグロメットと呼ばれるものやリベット状となっているものが採用できる。本実施形態に用いられる負極端子22は、図6に示すように筒部23を備え、その筒部23が負極活物質20を貫通し、その後、図中の矢印の方向にカシメ加工されることによって接続される。
 この負極端子22の材質としては、銅、真鍮等の銅合金、アルミニウム、又はアルミニウム合金等の導電性材料が採用できるが、この中でもアルミニウム又はアルミニウム合金(以下、「アルミニウム等」と称することがある。)が好ましい。これは、負極端子22の材質にアルミニウム等を採用すると、負極活物質20のマグネシウム又はマグネシウム合金と、アルミニウム等との酸化還元電位が近いために、マグネシウム空気電池10の使用中に負極端子22の周囲の負極活物質20が局部的に消耗することがない。これにより、負極活物質20が分断され難くなり、マグネシウム空気電池10の寿命の終期まで安定して発電できるからである。
 なお、負極活物質20の端子接続部25は、上記の様にその上部に狭小部27を備えることは必須ではなく、例えば、図8に示すように、反応部24から全幅部のまま延伸される端子接続部125を備える負極活物質120としてもよい。また、負極端子22も図6に示す例に限られず、負極端子22のうちカシメ加工される筒部23とは反対の他端に、さらに別のリード線を接続する等することができる。また、負極端子と負極活物質との接続にカシメ加工をすることなく、負極端子又は導体を負極活物質の端子接続部25に当接させて図示しない電池ケースで押圧させる、負極端子をクリップ状にして端子接続部25を挟む等、様々な態様を採用することができる。
 なお、端子接続部25をセパレータ30,31の辺縁32から突出させる理由であるが、端子接続部25にセパレータ30,31が当接されると、負極端子22周りの厚さの変化により当該部分の負極活物質20とセパレータと30,31との接触が悪くなり、イオン化反応にムラが発生し易くなる。すると、局部的な負極活物質20の反応が進み、当該部分又はその周辺で負極活物質20が分断されてしまうおそれがある。一方、本実施形態のマグネシウム空気電池10では、セパレータ30,31は反応部24のみに当接されているため、そのようなムラが発生し難くなり、負極活物質20全体で満遍なくイオン化反応がなされる。また、負極端子22によってセパレータ30,31、正極40,41、正極集電体42,43が押されてマグネシウム空気電池10全体の厚さが変化することがない。これにより、図示しない電池ケースに収納することが容易となる。
 また、端子接続部25のうち全幅部26にセパレータ30,31の上側の辺縁32が接しており、狭小部27との境28までセパレータ30,31の辺縁32が当接していない理由であるが、狭小部27との境28までセパレータ30,31が当接されると、境28において電流密度が上昇し局部的なイオン化反応がなされる。これにより、境28で負極活物質20が分断されてしまうおそれがあるからである。一方、本実施形態のマグネシウム空気電池10では、境28にセパレータ30,31が当接されておらず、境28でのイオン化反応は起きない。このため、境28において負極活物質20が分断されることがない。また、端子接続部25に負極端子22を接続するための狭小部27を設けているため、全幅部26の長さを短くすることができ、負極活物質20の面積(量)を減らすことができる。
 また、負極端子22には、導体からなる負極集電体21の一端が、負極活物質20とともにカシメ加工によって接続されている。この負極集電体21は、負極活物質20のイオン化反応を阻害しないよう、負極活物質20の表面に隙間sを設けて、負極活物質20に螺旋状に巻着される。この、負極活物質20が露出するように隙間sを設けて負極集電体21を設けることにより、負極活物質20の表面が十分にセパレータ30,31に当接されるとともに、負極活物質20の両面を活用することができる。
 また、負極集電体21は、当接されるセパレータ30,31によって負極活物質20に押し付けられているが、負極集電体21の占める面積が少ないため、負極活物質20に対して十分な面圧で接触することができる。このため、負極活物質20と負極集電体21とを導電性接着剤で接着することは特に必要ではない。また、負極集電体21を負極活物質20の略全域に這わしているため、負極活物質20における部分的な電流密度の上昇、及び電流密度の上昇による局部的なイオン化反応が抑制され、負極活物質20全体で満遍なくイオン化反応がなされる。これにより、マグネシウム空気電池10の寿命の中期以降における負極活物質20の分断を抑制することができる。
 なお、本実施形態のマグネシウム空気電池10では、負極集電体21に銅からなる直径0.01mm~0.3mm、好ましくは0.05mm~0.15mmの導線を用いている。この様な細い導線を用いることで、負極活物質20とセパレータ30,31との間に空間ができることを防止し、イオン化反応のムラを防止するとともに効率の良い発電をすることができる。もっとも、負極集電体21はこれに限られず、発電される電流に応じた太さであればよい。また形状もこれに限られず、例えば帯状の導体を巻着させてもよい。また、負極集電体21は、負極活物質20の表面に隙間sを空けながら略全域にわたって設けられていればよく、上記の螺旋状に限られず、例えば、負極端子22から数本の導線等を負極活物質20の両面に垂らすようにして設けることもできる。また、負極集電体21の材質としては、銅、真鍮等の銅合金、アルミニウム又はアルミニウム合金、金、銀等の電気抵抗の少ない導体が用いられることが好ましい。なお、負極集電体21は、既に述べたように負極活物質20に対して占める面積が小さい。このため、負極集電体21に、負極活物質20と酸化還元電位が離れた銅又は真鍮等の銅合金を用いても特に問題はない。
 セパレータ30,31は、本実施形態では1セルあたり2枚設けられており、それぞれのセパレータ30,31が上記負極活物質20の両面の反応部24に当接される。このセパレータ30,31は、吸水性に富んだ不織布等で構成され、イオン化反応材が含浸され流通時には乾燥された状態となっている。そして、使用時には水分が供給されることで湿潤し、負極活物質20及び正極活物質である酸素とでイオン化反応がなされ発電する。
 正極40,41は、本実施形態では1セルあたり2枚設けられており、それぞれの正極40,41が、上記セパレータ30,31のうち負極活物質20と反対側の面に当接される。この正極40,41は、導電性を有しつつ酸素を透過しやすい多孔質体で構成されることが好ましく、例えば炭素を含むシート状のものが採用できる。なお、本実施形態では正極40,41として炭素繊維シートを採用している。
 正極集電体42,43は、本実施形態では1セルあたり2つ設けられており、それぞれの正極集電体42,43が、上記正極40,41のうちセパレータ30,31と反対側の面に当接される。この正極集電体42,43は、多くの空気が正極40,41に触れ、さらにマグネシウム空気電池10の使用中に空気が入れ替わり、常に新鮮な空気が正極40,41に触れるよう通気性を有するように構成されることが好ましい。詳しくは、正極集電体42,43の面に直交する方向に空気を通過させるのみならず、正極集電体42,43の面に沿った方向にも空気が流れるようにすることが好ましい。本実施形態では、これらの面に直交する方向と面に沿った方向の両方の通気性を有するものとして、波状に形成された導線を網状に織り込んだメッシュ素材を採用している。なお、正極集電体42,43の材質としては、銅、真鍮等の銅合金、アルミニウム又はアルミニウム合金、金、銀等の電気抵抗の少ない導体が用いられることが好ましい。
 また、2枚ある正極集電体42,43は、ジャンパー線45等で電気的に接続される。さらに、正極集電体42,43のうち1枚の上端部には、正極端子44が接続される。この正極集電体42,43と正極端子44との接続であるが、はんだ付け、又は負極端子22同様のカシメ加工による接続等の方法でなされる。
 導電性接着剤50,51は、正極40,41と正極集電体42,43との当接される面の一部を接着するものである。この導電性接着剤50,51は、負極活物質20の一方の面側に設けられた正極40と正極集電体42の一部、及び他方の面側に設けられた正極41と正極集電体43の一部を接着するのである。これらの負極活物質20の一方の面側の導電性接着剤50の接着面52と、他方の面側の接着面53は、図1、図3、図4、及び図5に示すように、負極活物質20の面に直交する方向から見て異なる位置にあることが好ましい。
 これは、導電性接着剤50,51が接着された接着面52,53に対応する箇所の負極活物質20は、イオン化反応が起きにくく、マグネシウム空気電池10の寿命の終期まで残存する可能性がある。このため、負極活物質20の一方の面側に接着された導電性接着剤50の接着面52と、他方の面側に接着された導電性接着剤51の接着面53とが、負極活物質20の面に直交する方向から見て同じ位置にあると、当該部分の負極活物質20が最後まで残り、有効な発電容量を確保し難くなるからである。一方、本実施形態のマグネシウム空気電池10のように、負極活物質20の一方の面側の接着面52と、他方の面側に設けられた接着面53とが、負極活物質20の面と直交する方向から見て異なる位置に設けられていると、残存した負極活物質20は、導電性接着剤50,51の接着面52,53とは反対側の面からのイオン化反応によって発電を続けることができる。
 また、負極活物質20の面に直交する方向から見た導電性接着剤50,51の接着面52,53の位置は、負極集電体21がある位置であることが好ましい。本実施形態では、図4及び図5に示すように、負極活物質20の面に直交する方向から見て接着面52,53に対応する位置に、負極活物質20の表面に巻着された負極集電体21が存在するように構成される。これは、既に述べたように、負極活物質20において、導電性接着剤50,51の接着面52,53に対応する箇所は、マグネシウム空気電池10の寿命の終期まで残存する可能性がある。この負極活物質20が残存する可能性がある場所に負極集電体21を存在させることで、マグネシウム空気電池10の寿命の終期において、残存した負極活物質20によって発電される電力を有効に回収することができる。なお、図4及び図5において導電性接着剤50,51の接着面52,53を表わす円は、実線が負極活物質20の手前側に導電性接着剤50,51の接着面52,53が存在し、破線は裏側に接着面52,53が存在することを示している。
 また、導電性接着剤50,51の接着面52,53の、正極40,41の広い面に占める面積は、1~30%が好ましく、2~10%がより好ましい。これは、接着面52,53の面積が狭すぎると電池の内部抵抗が増大してしまうおそれがあるからであり、広すぎると正極集電体42,43からの酸素の供給を阻害してしまうとともに、導電性接着剤の使用量が増えて製造コストが増大してしまうからである。本発明のマグネシウム空気電池では、さらに好ましい例として、接着面52,53占める面積を、正極40,41の広い面の面積の4~8%の範囲としている。
 次に、図7を参照しながら、本発明のマグネシウム空気電池10の使用時の負極活物質20の状態を説明する。図7(A)はマグネシウム空気電池10の寿命の中期のときの負極活物質20を模式的に示した図、図7(B)はマグネシウム空気電池10の寿命の終期のときの負極活物質20を模式的に示した図である。
 マグネシウム空気電池10のセパレータ30,31に水分を供給し、セパレータ30,31を湿潤させると、セパレータ30,31に含浸されたイオン化反応剤によって、負極活物質20及び正極活物質である酸素とでイオン化反応がなされ、発電がなされる。このとき、正極は空気中の酸素とで反応がなされるため、正極40,41は消耗しない。一方、負極では負極活物質20であるマグネシウム又はマグネシウム合金が、水酸化マグネシウムへと変化することで、負極活物質20は図7(A)に示すように、当初の厚さから減少していく。
 このとき、既に述べたように、負極集電体21によって負極活物質20における部分的な電流密度の上昇が抑制されるため、負極活物質20は略満遍なく反応していくのであるが、導電性接着剤50,51の接着面52,53において、部分的に負極活物質20が残存する場合がある。これは、負極活物質20のうち、導電性接着剤50,51の接着面52,53に対応する場所以外のところでは、負極活物質20の両面からイオン化反応がなされ、負極活物質20が両面から減少する。これに対し、図中の破線d1,d2で示す導電性接着剤50,51の接着面52,53に対応する場所では、イオン化反応が鈍く、主に接着面52,53が存在する側とは反対側の面でイオン化反応がなされる。これによって、負極活物質20のうち、導電性接着剤50,51の接着面52,53に対応する場所は、残存しやすい傾向にある。なお、負極集電体21は、セパレータ30,31によって負極活物質20に押し付けられているため、負極活物質20の厚みが減少してもともに移動し、負極活物質20の表面に接触している。
 次に、図7(B)に示すように、さらに発電がなされると、負極活物質20は分断されることがある。このとき、負極活物質20のうち導電性接着剤50,51の接着面52,53に対応する場所では、上記の様に負極活物質20の主に片面からしかイオン化反応がなされないため、マグネシウム空気電池10の寿命の終期まで残存する可能性がある。また、負極活物質20のうち、導電性接着剤50,51の接着面52,53に対応する場所以外のところでも、必ずしも一律に厚さが減少する訳ではなく、分断されながら一部は残存することがある。このとき、負極集電体21が、負極活物質20の表面に螺旋状に巻着され、さらに負極活物質20のうち導電性接着剤50,51の接着面52,53に対応する場所に設けられているため、残存する負極活物質20から効率的に電力を回収することができる。
 また、負極活物質20の分断された箇所を通じて、2枚のセパレータ30,31が接触し、電解液が多いセパレータ30,31から少ないセパレータ30,31に供給される。これらにより、マグネシウム空気電池10の寿命の終期においても、安定した発電が期待できる。なお、既に述べたように、負極活物質20の表面積に対して負極集電体21の占める面積は小さく、セパレータ30,31と負極活物質20とは十分な面積で接触しているため、負極集電体21によってイオン化反応が妨げられることはない。
 なお、図9に示すように、他の実施形態のマグネシウム空気電池100として、1つの負極活物質20に対して1つずつのセパレータ30、正極40、正極集電体42としてもよいし、このマグネシウム空気電池100を、複数積層させてもよい。
 以上、説明したように、これらの本実施形態のマグネシウム空気電池によれば、負極端子22を負極集電体21とともに直接に負極活物質20にカシメ加工によって接続しているため、当該部分の電気抵抗を低減させることができるとともに、製造コストの低減を図ることができる。また、負極活物質20に狭小部27を設けることにより、負極活物質20の面積を減らすことができ、製造コストの低減を図ることができる。また、セパレータ30,31の辺縁32が当接される部分は、負極活物質20の全幅部26であるため、全幅部26と狭小部27との境28において、電流密度の上昇によるイオン化反応の促進が起きず、この境28において負極活物質20が分断されることがない。また、負極端子22及び端子接続部25がセパレータ30,31から突出しているため、当該部分の厚さが変化せず、電池ケース等に収納することが容易となる。
 また、負極集電体21が負極活物質20の表面に隙間sを設けて巻着されているため、負極集電体21を設けながら負極活物質20の両面を用いて発電することができる。このため、取り出せる電流が2倍となり、実用に耐え得る電流を取り出すことができる。また、負極集電体21が、負極活物質20の略全域に巻着されているため、電池の内部抵抗を低減させることができるとともに、負極活物質20の一部分に電流が集中することなく、負極活物質20の局部的な反応が避けられ、負極活物質20全体で略均一な発電をすることができる。
 また、負極集電体21は、負極活物質20の表面積の一部のみを覆っているため、負極集電体21自体の材料コストを低減できるとともに、負極集電体21が比較的高い面圧で負極活物質20と接触できる。このため、負極活物質20と負極集電体21とを導電性接着剤で必ずしも接着する必要がなく、負極集電体21を設けるコストを低減させることができる。さらに、負極集電体21の占める面積が、負極活物質20の面積に対して狭いため、負極集電体21に酸化還元電位の離れた銅又は銅合金を用いても実質的に問題とならず、製造が容易となる。
 また、負極集電体21が、負極活物質20のうち導電性接着剤50,51の接着面52,53に対応する位置に設けられているため、マグネシウム空気電池10の寿命の終期において、当該部分の負極活物質20が分断された状態で残存しても、残存した部分から効率よく電力を回収することができる。さらに、負極活物質20が分断された場所に置いて、負極活物質20を挟んで向かい合う2枚のセパレータ30,31が接触し、互いに電解液を供給するため、2枚のセパレータ30,31の電解液の量が均一となる。
 また、導電性接着剤50,51の接着面52,53が、負極活物質20の一方の面側と他方の面側とで、負極活物質20の面に直交する方向から見て異なる位置にあるため、負極活物質20のうち導電性接着剤50,51の接着面52,53に対応するイオン化反応が起きにくい場所であっても、その反対側の面からイオン化反応がなされ、問題なく発電することができる。
 また、導電性接着剤50,51によって、正極40,41と正極集電体42,43との当接される面の一部を接着するため、正極40,41と正極集電体42,43との間の内部抵抗を低減させることができ、大電流を取り出すことができる。また、導電性接着剤50,51の接着面52,53が、正極40,41と正極集電体42,43との当接される面の一部であること、及び正極集電体42,43が通気性を有するため、酸素の供給を阻害することがない。
 これらにより、マグネシウム空気電池の寿命の終期まで、大電流を取出しながら安定した発電をするとともに、低コストなマグネシウム空気電池とすることができる。
 なお、上述のマグネシウム空気電池は本発明の例示であり、発明の趣旨を逸脱しない範囲において、その構成を適宜変更することができる。
10,100・・マグネシウム空気電池、
20,120・・負極活物質、21・・負極集電体、22・・負極端子、23・・筒部、24・・反応部、25,125・・端子接続部、26・・全幅部、27・・狭小部、28・・境、w・・幅、s・・隙間、
30,31・・セパレータ、32・・辺縁、
40,41・・正極、42,43・・正極集電体、44・・正極端子、45・・ジャンパー線、
50,51・・導電性接着剤、52,53・・接着面、

Claims (7)

  1.  マグネシウム又はマグネシウム合金を含むシート状の負極活物質と、
     前記負極活物質に接続された負極端子と、
     前記負極活物質に当接される、イオン化反応材が含浸されたシート状のセパレータと、
     前記セパレータのうち前記負極活物質と反対側の面に当接される、シート状の正極と、
     前記負極端子に接続されるとともに、前記負極活物質が前記セパレータに当接されるよう前記負極活物質の表面に隙間を設けて這わされた導体からなる負極集電体と、
     前記正極のうち前記セパレータと反対側の面に当接される正極集電体と、
     前記正極集電体に接続された正極端子と、
     を備えることを特徴とするマグネシウム空気電池。
  2.  前記負極集電体が、前記負極活物質に螺旋状に巻着されていることを特徴とする請求項1に記載のマグネシウム空気電池。
  3.  前記正極と前記正極集電体との当接される面の一部を接着する導電性接着剤を備えることを特徴とする請求項1又は2に記載のマグネシウム空気電池。
  4.  前記負極集電体が、前記負極活物質の面に直交する方向から見て前記導電性接着剤の接着面に対応する位置に設けられていることを特徴とする請求項3に記載のマグネシウム空気電池。
  5.  前記負極活物質1つに対して前記セパレータ、前記正極、及び前記正極集電体を2つ備え、前記セパレータ、前記正極、及び前記正極集電体が前記負極活物質の両面に設けられていることを特徴とする請求項1又は2に記載のマグネシウム空気電池。
  6.  前記負極活物質1つに対して前記セパレータ、前記正極、及び前記正極集電体を2つ備え、前記セパレータ、前記正極、及び前記正極集電体が前記負極活物質の両面に設けられていることを特徴とする請求項3又は4に記載のマグネシウム空気電池。
  7.  前記負極活物質の両面に設けられた前記正極の前記導電性接着剤との接着面のそれぞれの位置が、前記負極活物質の面に直交する方向から見て異なる位置にあることを特徴とする請求項6に記載のマグネシウム空気電池。
PCT/JP2018/017868 2017-05-18 2018-05-09 マグネシウム空気電池 WO2018212028A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-098879 2017-05-18
JP2017098879A JP6272530B1 (ja) 2017-05-18 2017-05-18 マグネシウム空気電池
JP2017-098880 2017-05-18
JP2017098880A JP6272531B1 (ja) 2017-05-18 2017-05-18 マグネシウム空気電池

Publications (1)

Publication Number Publication Date
WO2018212028A1 true WO2018212028A1 (ja) 2018-11-22

Family

ID=64273686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017868 WO2018212028A1 (ja) 2017-05-18 2018-05-09 マグネシウム空気電池

Country Status (2)

Country Link
TW (1) TWI670891B (ja)
WO (1) WO2018212028A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298932A (en) * 1976-02-13 1977-08-19 Yuasa Battery Co Ltd Liquid injection type battery
JPH0251876A (ja) * 1988-08-12 1990-02-21 Koa Oil Co Ltd 空気電池
JPH07130406A (ja) * 1993-10-29 1995-05-19 Koa Oil Co Ltd 空気電池
WO2013018769A1 (ja) * 2011-08-02 2013-02-07 一般社団法人 Suwei マグネシウム金属空気電池
JP2015035271A (ja) * 2013-08-07 2015-02-19 日産自動車株式会社 空気電池及びその製造方法
JP2015060665A (ja) * 2013-09-17 2015-03-30 国能科技創新有限公司 空気電池、空気電池用負極及び空気電池ユニット
JP2015207494A (ja) * 2014-04-22 2015-11-19 シャープ株式会社 電槽及び金属空気電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT971354B (it) * 1971-12-20 1974-04-30 Comp Generale Electricite Generatore elettrochimico a circolazione forzata

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298932A (en) * 1976-02-13 1977-08-19 Yuasa Battery Co Ltd Liquid injection type battery
JPH0251876A (ja) * 1988-08-12 1990-02-21 Koa Oil Co Ltd 空気電池
JPH07130406A (ja) * 1993-10-29 1995-05-19 Koa Oil Co Ltd 空気電池
WO2013018769A1 (ja) * 2011-08-02 2013-02-07 一般社団法人 Suwei マグネシウム金属空気電池
JP2015035271A (ja) * 2013-08-07 2015-02-19 日産自動車株式会社 空気電池及びその製造方法
JP2015060665A (ja) * 2013-09-17 2015-03-30 国能科技創新有限公司 空気電池、空気電池用負極及び空気電池ユニット
JP2015207494A (ja) * 2014-04-22 2015-11-19 シャープ株式会社 電槽及び金属空気電池

Also Published As

Publication number Publication date
TWI670891B (zh) 2019-09-01
TW201902007A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
CN106159179B (zh) 金属锂电池
JP4987228B2 (ja) 電気化学的電池束及びその製作方法
CN107305942B (zh) 一种卷绕式负极片以及设有该负极片的电芯及锂浆料电池
JP5114990B2 (ja) 電気化学キャパシタの製造方法及びこれにより得られた電気化学キャパシタ
US11121410B2 (en) Secondary energy storage element having a reference electrode
KR102158246B1 (ko) 전고체 전지
JP5288452B2 (ja) 非水電解液二次電池
CN107275117A (zh) 电化学器件
US20050233209A1 (en) Electrical contact for current collectors of electrochemical cells and method therefor
JPH0935701A (ja) 電 池
JP2023113759A (ja) 蓄電デバイス及び蓄電モジュール
JP2013118115A (ja) 組電池の電極集電部構造及び該電極集電部構造を有する組電池
JP6272529B1 (ja) マグネシウム空気電池
JP6272528B1 (ja) マグネシウム空気電池
JPWO2014061491A1 (ja) 電池用電極体、アノードおよび金属空気電池
JP6272530B1 (ja) マグネシウム空気電池
JP6293351B1 (ja) マグネシウム空気電池
JP6274635B1 (ja) マグネシウム空気電池
JP6272531B1 (ja) マグネシウム空気電池
WO2018212028A1 (ja) マグネシウム空気電池
CN107851523B (zh) 电化学器件
JP6642598B2 (ja) 電気化学デバイス
JP2018500725A (ja) 電池のための急速充電装置
JP2002056863A (ja) 電気エネルギー発生素子
JPH11339756A (ja) 電極巻回型電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18802151

Country of ref document: EP

Kind code of ref document: A1