WO2018211903A1 - Silicon wafer polishing method - Google Patents

Silicon wafer polishing method Download PDF

Info

Publication number
WO2018211903A1
WO2018211903A1 PCT/JP2018/016132 JP2018016132W WO2018211903A1 WO 2018211903 A1 WO2018211903 A1 WO 2018211903A1 JP 2018016132 W JP2018016132 W JP 2018016132W WO 2018211903 A1 WO2018211903 A1 WO 2018211903A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
silicon wafer
pad
slurry
polishing slurry
Prior art date
Application number
PCT/JP2018/016132
Other languages
French (fr)
Japanese (ja)
Inventor
正彬 大関
三千登 佐藤
薫 石井
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Publication of WO2018211903A1 publication Critical patent/WO2018211903A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a method for polishing a silicon wafer.
  • a silicon wafer is manufactured by slicing a single crystal ingot pulled up by the Czochralski (CZ) method and then performing multi-stage polishing (see Patent Document 1).
  • the polishing process requires flatness and low defectivity, but it has been found that it is generally very difficult to achieve both.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a silicon wafer polishing method capable of achieving improved flatness and low defectivity.
  • the present invention provides a method for polishing a silicon wafer by interposing a polishing slurry between a silicon wafer and a polishing pad, wherein the polishing slurry includes colloidal silica. And (alkoxide concentration [OH ⁇ ] (mol / l) in the polishing slurry) / (mass fraction of the colloidal silica in the mass of the polishing slurry) ⁇ 0.1 (mol / A method for polishing a silicon wafer is provided, wherein polishing is performed using a material satisfying l).
  • a polishing pad having a Shore A hardness of 60 or more is preferably used as the polishing pad.
  • polishing pad having a Shore A hardness of 70 or more as the polishing pad.
  • the hydroxide ion concentration [OH ⁇ ] in the polishing slurry is used as an indicator of the strength of the chemical action relative to the mechanical action in polishing.
  • 6 is a graph showing the relationship between the mass fraction value of [OH ⁇ ] / colloidal silica and the number of LLS defects in Examples 1 to 4 and Comparative Example 1. 6 is a graph showing the relationship between the mass fraction value of [OH ⁇ ] / colloidal silica and the number of LLS defects in Examples 5 to 8 and Comparative Examples 2 and 3. It is the schematic which shows an example of the single-side polish apparatus which can be used in the grinding
  • the present inventors paid attention to the chemical action in polishing in solving the problem.
  • Conventionally there are many techniques that focus on mechanical action in polishing, such as pad hardness, pad surface roughness, abrasive grain size, polishing pressure, or polishing rotation speed, but there are few examples that focus on chemical action.
  • the chemical action in polishing is the expectation of a reaction between silicon and alkali. Specifically, it is caused by the reaction of Si + OH ⁇ ⁇ SiOH. This is because the Si crystal in contact with alkali is an OH group. It shows that it changes in quality.
  • the present inventors have provided a buffer layer between the polishing pad and the Si crystal part by increasing the chemical action in polishing and altering the wafer surface, and the hard pad or the foreign matter held by the hard pad. I thought I could reduce the damage.
  • the inventors of the present invention have found that the altered layer (buffer layer) formed by the chemical action is quickly removed by the mechanical action, so that the strength of the chemical action in polishing is absolute such as pH. Instead of using strength as an indicator, we thought that the strength of chemical action relative to mechanical action should be used as an indicator.
  • the strength of chemical action is the concentration of hydroxide ions
  • the strength of mechanical action is the mass fraction of colloidal silica in the mass of the polishing slurry (hereinafter also referred to as abrasive concentration)
  • abrasive concentration the mass fraction of colloidal silica in the mass of the polishing slurry
  • the present inventors pay attention to a value obtained by dividing the hydroxide ion concentration [OH ⁇ ] in the polishing slurry by the abrasive concentration as an index of the chemical action strength in polishing, and the value is 0. It was found that by preparing a polishing slurry so as to be 1 or more and using it for polishing, even if a hard polishing pad is used, low defect can be achieved, and the present invention has been achieved.
  • the present invention is a silicon wafer polishing method for polishing the silicon wafer by interposing a polishing slurry between a silicon wafer and a polishing pad, the polishing slurry containing colloidal silica and alkali, What satisfies the hydroxide ion concentration [OH ⁇ ] (mol / l)) / (mass fraction of the colloidal silica in the mass of the polishing slurry) ⁇ 0.1 (mol / l) in the polishing slurry
  • a method for polishing a silicon wafer is provided.
  • the polishing apparatus used in the silicon wafer polishing method of the present invention may be either a double-side polishing apparatus or a single-side polishing apparatus.
  • a single-side polishing apparatus 10 including a surface plate 2 on which a polishing pad 1 is attached and a polishing head 3 for holding a silicon wafer W can be used.
  • the single-side polishing apparatus 10 polishes the polishing pad 1 by supplying the polishing slurry from the nozzle 4 while sliding the surface of the silicon wafer W held by the polishing head 3 on the polishing pad 1.
  • the silicon wafer is polished by interposing a polishing slurry between the silicon wafer W and the polishing pad 1.
  • the polishing slurry supplied from the nozzle 4 includes colloidal silica and alkali (in the polishing slurry).
  • the hydroxide ion concentration [OH ⁇ ] (mol / l)) / (mass fraction of the colloidal silica in the mass of the polishing slurry) ⁇ 0.1 (mol / l) is used.
  • the chemical action strength is the hydroxide ion concentration
  • the mechanical action strength is the mass fraction of colloidal silica in the mass of the polishing slurry
  • the hydroxide ion concentration is the abrasive concentration
  • the conventional polishing slurry has a value of (hydroxide ion concentration in polishing slurry [OH ⁇ ] (mol / l)) / (mass fraction of colloidal silica in the mass of polishing slurry) of less than 0.1
  • the type and pH of alkali, the concentration and particle size of colloidal silica are not particularly limited.
  • a material having a pH of 9 to 13, a colloidal silica particle size of 15 to 70 nm, a colloidal silica concentration of 0.01 to 1 wt%, and satisfying the above values can be used.
  • the alkali KOH, tetramethylammonium hydroxide (TMAH), or the like can be used.
  • the upper limit of (hydroxide ion concentration in the polishing slurry [OH ⁇ ] (mol / l)) / (mass fraction of colloidal silica in the mass of the polishing slurry) is not particularly limited, but is, for example, 10 mol / l or less. can do.
  • the polishing pad 1 is not particularly limited, but it is preferable to use a polishing pad (for example, nonwoven fabric) having a Shore A hardness of 60 or more, particularly 70 or more.
  • the upper limit value of the Shore A hardness of the polishing pad 1 is not particularly limited.
  • the Shore A hardness can be 98 or less.
  • polishing pressure, the platen rotation speed, the head rotation speed, and the polishing time at the time of polishing can adopt general conditions and may be selected according to the purpose, and are not particularly limited.
  • Examples 1 to 4, Comparative Example 1 A single-side polishing apparatus using a hard pad with a Shore A hardness of 60 was used to verify and evaluate the chemical action against the mechanical action.
  • the mass fraction (abrasive grain concentration) in the polishing slurry of high purity colloidal silica having a particle size of 35 nm is made constant at 0.01 (ie 1%), and the alkali concentration (hydroxide ion concentration) of the polishing slurry is changed.
  • the silicon wafer was polished.
  • the pH was adjusted with potassium hydroxide and tetramethylammonium hydroxide (TMAH).
  • the polishing pressure was 20 kPa, the platen rotation speed and the head rotation speed were 30 rpm, and polishing was performed for 3 minutes.
  • polishing evaluation was performed by measuring the number of LLS (Localized Light Scattering) defects (37 nm or more) using SP2 manufactured by KLA Tencor.
  • FIG. 1 is a graph showing the relationship between the mass fraction value of [OH ⁇ ] / colloidal silica and the number of LLS defects. It was found that when the value of the mass fraction of [OH-] / colloidal silica was 0.1 mol / l or more, the number of LLS defects was reduced.
  • FIG. 2 is a graph showing the relationship between the mass fraction value of [OH ⁇ ] / colloidal silica and the number of LLS defects. Again, it was found that LLS defects were reduced when the [OH ⁇ ] / abrasive grain concentration was 0.1 mol / l or more.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

The present invention provides a silicon wafer polishing method of polishing a silicon wafer with a polishing slurry interposed between the silicon wafer and a polishing pad, the silicon wafer polishing method being characterized in that the polishing slurry used for polishing comprises a choroidal silica and an alkali and satisfies (hydroxide ion concentration [OH-] in the polishing slurry (mol/l))/(mass fraction of the choroidal silica in the mass of the polishing slurry) ≥ 0.1 (mol/l). In this way, a silicon wafer polishing method with which low defect performance can be achieved even when a hard pad is used is provided.

Description

シリコンウエーハの研磨方法Polishing method of silicon wafer
 本発明は、シリコンウエーハの研磨方法に関する。 The present invention relates to a method for polishing a silicon wafer.
 半導体デバイスの細線化が進むにつれ、基板となるシリコンウェーハにはより一層の平坦性、低欠陥が求められる。一般的に、シリコンウェーハはチョクラルスキー(CZ)法により引き上げられた単結晶インゴットをスライスした後、多段研磨を行うことで作製される(特許文献1参照)。 As semiconductor devices become thinner, silicon wafers that are substrates are required to have even greater flatness and lower defects. Generally, a silicon wafer is manufactured by slicing a single crystal ingot pulled up by the Czochralski (CZ) method and then performing multi-stage polishing (see Patent Document 1).
 特に、樹脂製のパッドを用いた研磨工程では、エッジ・ロールオフ等により外周平坦性が損なわれやすく、その結果、ウェーハ外周部のデバイス歩留まりが悪化してしまう。同時に、スクラッチ等の表面欠陥の導入もデバイスの歩留まりが悪化してしまう原因となるため、研磨工程には、外周平坦性、低欠陥性が求められている。 In particular, in the polishing process using a resin pad, the flatness of the outer periphery is liable to be damaged due to edge / roll-off, and as a result, the device yield at the outer peripheral portion of the wafer is deteriorated. At the same time, since the introduction of surface defects such as scratches also causes the device yield to deteriorate, the polishing process requires outer peripheral flatness and low defectivity.
特開2008-205147号公報JP 2008-205147 A
 上記のように研磨工程には平坦性と低欠陥性が求められるが、一般的にその両立は極めて困難であることが分かっている。研磨工程で良好な外周平坦性を維持するためには硬質の研磨パッドを用いることが重要である。硬質の研磨パッドを用いることで外周のパッド変位を抑制し、ウェーハ外周部の圧力集中を抑制できるためである。 As described above, the polishing process requires flatness and low defectivity, but it has been found that it is generally very difficult to achieve both. In order to maintain good peripheral flatness in the polishing process, it is important to use a hard polishing pad. This is because by using a hard polishing pad, the displacement of the pad on the outer periphery can be suppressed, and the pressure concentration on the outer periphery of the wafer can be suppressed.
 しかし、硬質の研磨パッドを用いた場合には低欠陥性の達成が困難である。パッドが硬質であるためパッド自体がウェーハにスクラッチを導入する可能性や、異物がウェーハ/パッド間に侵入した場合、同じ異物でも軟質パッドよりも硬質パッドの方がウェーハへのダメージは大きくなるため、スクラッチの導入可能性が高まる。 However, it is difficult to achieve low defectivity when using a hard polishing pad. Because the pad is hard, the pad itself may introduce scratches into the wafer, and if a foreign object enters between the wafer and the pad, the hard pad will damage the wafer more than the soft pad even if the same foreign object enters the wafer. This increases the possibility of introducing scratches.
 以上のことから、外周平坦性と低欠陥性は研磨パッドの硬度においてトレードオフの関係になっていることがわかり、硬質のパッドを用いても低欠陥性を達成することが課題となっている。 From the above, it can be seen that the outer peripheral flatness and the low defect have a trade-off relationship in the hardness of the polishing pad, and it is an issue to achieve the low defect even if a hard pad is used. .
 本発明は、上記問題点に鑑みてなされたものであって、平坦性の向上と低欠陥性を達成することができるシリコンウエーハの研磨方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a silicon wafer polishing method capable of achieving improved flatness and low defectivity.
 上記課題を解決するために、本発明は、シリコンウェーハと研磨パッドとの間に研磨スラリーを介在させて、前記シリコンウエーハを研磨するシリコンウエーハの研磨方法であって、前記研磨スラリーとして、コロイダルシリカとアルカリを含み、(前記研磨スラリー中の水酸化物イオン濃度[OH](mol/l))/(前記研磨スラリーの質量中の前記コロイダルシリカの質量分率)≧0.1(mol/l)を満たすものを用いて研磨することを特徴とするシリコンウェーハの研磨方法を提供する。 In order to solve the above-described problems, the present invention provides a method for polishing a silicon wafer by interposing a polishing slurry between a silicon wafer and a polishing pad, wherein the polishing slurry includes colloidal silica. And (alkoxide concentration [OH ] (mol / l) in the polishing slurry) / (mass fraction of the colloidal silica in the mass of the polishing slurry) ≧ 0.1 (mol / A method for polishing a silicon wafer is provided, wherein polishing is performed using a material satisfying l).
 このように、上記条件を満たす研磨スラリーを用いてシリコンウェーハを研磨することで、例え硬質のパッドを用いても低欠陥性を達成することが可能となる。 Thus, by polishing a silicon wafer using a polishing slurry that satisfies the above conditions, it is possible to achieve low defectivity even if a hard pad is used.
 またこの場合、前記研磨パッドとして、ショアA硬度60以上の研磨パッドを用いることが好ましい。 In this case, a polishing pad having a Shore A hardness of 60 or more is preferably used as the polishing pad.
 更に、前記研磨パッドとして、ショアA硬度70以上の研磨パッドを用いることが好ましい。 Furthermore, it is preferable to use a polishing pad having a Shore A hardness of 70 or more as the polishing pad.
 このように硬質な研磨パッドを用いて研磨することにより、平坦性と低欠陥性の両立が達成されたシリコンウェーハを得ることができる。 By polishing using such a hard polishing pad, a silicon wafer having both flatness and low defect can be obtained.
 本発明のシリコンウエーハの研磨方法であれば、研磨における機械的作用に対する化学的作用の強さの指標として、研磨スラリー中の水酸化物イオン濃度[OH]を研磨スラリーの質量中のコロイダルシリカの質量分率で割った値に着目し、その値が0.1以上となるような研磨スラリーを用いることで、低欠陥性を達成することができる。そのため、例え硬質な研磨パッドを用いても、低欠陥とできることから、平坦性と低欠陥性の両立が達成されたシリコンウェーハを得ることができる。 In the method for polishing a silicon wafer according to the present invention, the hydroxide ion concentration [OH ] in the polishing slurry is used as an indicator of the strength of the chemical action relative to the mechanical action in polishing. By paying attention to the value divided by the mass fraction of and using a polishing slurry whose value is 0.1 or more, low defectivity can be achieved. For this reason, even if a hard polishing pad is used, it is possible to obtain a low defect. Therefore, it is possible to obtain a silicon wafer in which both flatness and low defect are achieved.
実施例1~4及び比較例1における、[OH]/コロイダルシリカの質量分率の値と、LLS欠陥個数との関係を示すグラフである。6 is a graph showing the relationship between the mass fraction value of [OH ] / colloidal silica and the number of LLS defects in Examples 1 to 4 and Comparative Example 1. 実施例5~8、比較例2、3における、[OH]/コロイダルシリカの質量分率の値と、LLS欠陥個数との関係を示すグラフである。6 is a graph showing the relationship between the mass fraction value of [OH ] / colloidal silica and the number of LLS defects in Examples 5 to 8 and Comparative Examples 2 and 3. 本発明のシリコンウエーハの研磨方法において用いることができる片面研磨装置の一例を示す概略図である。It is the schematic which shows an example of the single-side polish apparatus which can be used in the grinding | polishing method of the silicon wafer of this invention.
 上述したように、従来、硬質のパッドを用いても低欠陥性を達成することができるシリコンウエーハの研磨方法が求められていた。 As described above, conventionally, there has been a demand for a method for polishing a silicon wafer that can achieve low defectivity even when a hard pad is used.
 本発明者らは、課題解決にあたり研磨における化学的作用に着目した。従来、パッド硬度、パッド表面粗さ、砥粒径、研磨圧力、又は研磨回転数など、研磨における機械的作用に着目した技術は多いが、化学的作用に着目した例はほとんどない。 The present inventors paid attention to the chemical action in polishing in solving the problem. Conventionally, there are many techniques that focus on mechanical action in polishing, such as pad hardness, pad surface roughness, abrasive grain size, polishing pressure, or polishing rotation speed, but there are few examples that focus on chemical action.
 研磨における化学的作用とは、シリコンとアルカリによる反応を期待したもので、具体的には、Si+OH→SiOHの反応に起因し、これは、アルカリに接液しているSiの結晶がOH基により変質することを示している。 The chemical action in polishing is the expectation of a reaction between silicon and alkali. Specifically, it is caused by the reaction of Si + OH → SiOH. This is because the Si crystal in contact with alkali is an OH group. It shows that it changes in quality.
 本発明者らは、研磨における化学的作用を増大させ、ウェーハ表面を変質させることにより、研磨パッドとSi結晶部との間に緩衝層を設け、硬質パッド、又は硬質パッドに保持された異物によるダメージを軽減できると発想した。 The present inventors have provided a buffer layer between the polishing pad and the Si crystal part by increasing the chemical action in polishing and altering the wafer surface, and the hard pad or the foreign matter held by the hard pad. I thought I could reduce the damage.
 そして、本発明者らは、化学的作用により形成された変質層(緩衝層)は、機械的作用により速やかに除去されるため、研磨における化学的作用の強さは、pHなどの絶対的な強さを指標にするのではなく、機械的作用に対しての化学的作用の強さを指標にするべきであると考えた。そこで、本発明では、化学的作用の強さを水酸化物イオンの濃度、機械的作用の強さを研磨スラリーの質量中のコロイダルシリカの質量分率(以下、砥粒濃度ともいう)とし、水酸化物イオンの濃度を砥粒濃度で割った値を機械的作用に対する化学的作用の指標として用い、硬質パッドを用いた際にこの指標がどのような範囲に入っていればよいか求めた。 The inventors of the present invention have found that the altered layer (buffer layer) formed by the chemical action is quickly removed by the mechanical action, so that the strength of the chemical action in polishing is absolute such as pH. Instead of using strength as an indicator, we thought that the strength of chemical action relative to mechanical action should be used as an indicator. Therefore, in the present invention, the strength of chemical action is the concentration of hydroxide ions, and the strength of mechanical action is the mass fraction of colloidal silica in the mass of the polishing slurry (hereinafter also referred to as abrasive concentration), The value obtained by dividing the hydroxide ion concentration by the abrasive concentration was used as an indicator of the chemical action for the mechanical action, and the range that this indicator should be in when using a hard pad was determined. .
 そして、本発明者らは、研磨における化学的作用の強さの指標として、研磨スラリー中の水酸化物イオン濃度[OH]を砥粒濃度で割った値に着目し、その値が0.1以上になるように研磨スラリーを調製し、研磨に用いることで、例え硬質な研磨パッドを用いても低欠陥性を達成することができることを見出し、本発明に到達した。 Then, the present inventors pay attention to a value obtained by dividing the hydroxide ion concentration [OH ] in the polishing slurry by the abrasive concentration as an index of the chemical action strength in polishing, and the value is 0. It was found that by preparing a polishing slurry so as to be 1 or more and using it for polishing, even if a hard polishing pad is used, low defect can be achieved, and the present invention has been achieved.
 即ち、本発明は、シリコンウェーハと研磨パッドとの間に研磨スラリーを介在させて、前記シリコンウエーハを研磨するシリコンウエーハの研磨方法であって、前記研磨スラリーとして、コロイダルシリカとアルカリを含み、(前記研磨スラリー中の水酸化物イオン濃度[OH](mol/l))/(前記研磨スラリーの質量中の前記コロイダルシリカの質量分率)≧0.1(mol/l)を満たすものを用いて研磨することを特徴とするシリコンウェーハの研磨方法を提供する。 That is, the present invention is a silicon wafer polishing method for polishing the silicon wafer by interposing a polishing slurry between a silicon wafer and a polishing pad, the polishing slurry containing colloidal silica and alkali, What satisfies the hydroxide ion concentration [OH ] (mol / l)) / (mass fraction of the colloidal silica in the mass of the polishing slurry) ≧ 0.1 (mol / l) in the polishing slurry A method for polishing a silicon wafer is provided.
 以下、本発明のシリコンウエーハの研磨方法について詳細に説明する。 Hereinafter, the method for polishing a silicon wafer according to the present invention will be described in detail.
 本発明のシリコンウェーハの研磨方法で用いる研磨装置としては、両面研磨装置、片面研磨装置のいずれでも良い。例えば、図3に示すような、研磨パッド1が貼り付けられた定盤2と、シリコンウェーハWを保持するための研磨ヘッド3を具備した、片面研磨装置10を使用することができる。この片面研磨装置10は、研磨パッド1上にノズル4から研磨スラリーを供給しつつ、その研磨パッド1に研磨ヘッド3が保持するシリコンウェーハWの表面を摺接させて研磨するものである。 The polishing apparatus used in the silicon wafer polishing method of the present invention may be either a double-side polishing apparatus or a single-side polishing apparatus. For example, as shown in FIG. 3, a single-side polishing apparatus 10 including a surface plate 2 on which a polishing pad 1 is attached and a polishing head 3 for holding a silicon wafer W can be used. The single-side polishing apparatus 10 polishes the polishing pad 1 by supplying the polishing slurry from the nozzle 4 while sliding the surface of the silicon wafer W held by the polishing head 3 on the polishing pad 1.
 本発明では、シリコンウェーハWと研磨パッド1との間に研磨スラリーを介在させて、シリコンウエーハを研磨するが、このノズル4から供給する研磨スラリーとして、コロイダルシリカとアルカリを含み、(研磨スラリー中の水酸化物イオン濃度[OH](mol/l))/(研磨スラリーの質量中の前記コロイダルシリカの質量分率)≧0.1(mol/l)を満たすものを用いる。 In the present invention, the silicon wafer is polished by interposing a polishing slurry between the silicon wafer W and the polishing pad 1. The polishing slurry supplied from the nozzle 4 includes colloidal silica and alkali (in the polishing slurry). The hydroxide ion concentration [OH ] (mol / l)) / (mass fraction of the colloidal silica in the mass of the polishing slurry) ≧ 0.1 (mol / l) is used.
 このように、化学的作用の強さを水酸化物イオンの濃度、機械的作用の強さを研磨スラリーの質量中のコロイダルシリカの質量分率とし、水酸化物イオンの濃度を砥粒濃度で割った値を機械的作用に対する化学的作用の指標として用い、この値が0.1以上の研磨スラリーを用いることで、低欠陥性を達成することができる。 In this way, the chemical action strength is the hydroxide ion concentration, the mechanical action strength is the mass fraction of colloidal silica in the mass of the polishing slurry, and the hydroxide ion concentration is the abrasive concentration. By using the divided value as an index of the chemical action with respect to the mechanical action and using a polishing slurry having this value of 0.1 or more, low defectivity can be achieved.
 従来の研磨スラリーは、(研磨スラリー中の水酸化物イオン濃度[OH](mol/l))/(研磨スラリーの質量中のコロイダルシリカの質量分率)の値が0.1未満のものであり、上記値が0.1以上である研磨スラリー、即ち、砥粒濃度に対する水酸化物イオンの濃度が高い研磨スラリーは用いられていなかった。 The conventional polishing slurry has a value of (hydroxide ion concentration in polishing slurry [OH ] (mol / l)) / (mass fraction of colloidal silica in the mass of polishing slurry) of less than 0.1 A polishing slurry having the above value of 0.1 or more, that is, a polishing slurry having a high hydroxide ion concentration relative to the abrasive concentration was not used.
 (研磨スラリー中の水酸化物イオン濃度[OH](mol/l))/(研磨スラリーの質量中のコロイダルシリカの質量分率)の値が0.1未満の研磨スラリーであると、機械的作用に対する化学的作用が弱くなるため、硬質の研磨パッドを用いた場合にスクラッチ等の表面欠陥が導入されてしまい、低欠陥性を達成することができない。 When the value of (hydroxide ion concentration in polishing slurry [OH ] (mol / l)) / (mass fraction of colloidal silica in the mass of polishing slurry) is less than 0.1, Since the chemical action with respect to the mechanical action becomes weak, surface defects such as scratches are introduced when a hard polishing pad is used, and low defectivity cannot be achieved.
 上記条件を満たす研磨スラリーであれば、アルカリの種類やpH、コロイダルシリカの濃度や粒径は特に限定されない。例えば、pH9~13、コロイダルシリカ粒径15~70nm、コロイダルシリカ濃度0.01~1wt%のもので、上記値を満たすものを用いることができる。アルカリとしては、KOH、水酸化テトラメチルアンモニウム(TMAH)等を用いることができる。 As long as the polishing slurry satisfies the above conditions, the type and pH of alkali, the concentration and particle size of colloidal silica are not particularly limited. For example, a material having a pH of 9 to 13, a colloidal silica particle size of 15 to 70 nm, a colloidal silica concentration of 0.01 to 1 wt%, and satisfying the above values can be used. As the alkali, KOH, tetramethylammonium hydroxide (TMAH), or the like can be used.
(研磨スラリー中の水酸化物イオン濃度[OH](mol/l))/(研磨スラリーの質量中のコロイダルシリカの質量分率)の上限は特に限定されないが、例えば、10mol/l以下とすることができる。 The upper limit of (hydroxide ion concentration in the polishing slurry [OH ] (mol / l)) / (mass fraction of colloidal silica in the mass of the polishing slurry) is not particularly limited, but is, for example, 10 mol / l or less. can do.
 研磨パッド1としては、特に限定されないが、ショアA硬度60以上、特には70以上の研磨パッド(例えば、不織布)を用いることが好ましい。この場合の研磨パッド1のショアA硬度の上限値としては特に限定されないが、例えば、ショアA硬度98以下とすることができる。このように硬質の研磨パッドを用いて研磨することにより、平坦性と低欠陥性の両立が達成されたシリコンウェーハを得ることができる。但し、本発明により低欠陥性は達成されるため、必ずしもこのような硬質の研磨パッドを用いなければならないわけではない。目的に応じ、軟質のパッドを用いる場合にも適用可能である。 The polishing pad 1 is not particularly limited, but it is preferable to use a polishing pad (for example, nonwoven fabric) having a Shore A hardness of 60 or more, particularly 70 or more. In this case, the upper limit value of the Shore A hardness of the polishing pad 1 is not particularly limited. For example, the Shore A hardness can be 98 or less. By polishing using such a hard polishing pad, a silicon wafer in which both flatness and low defectivity are achieved can be obtained. However, since a low defect is achieved by the present invention, it is not always necessary to use such a hard polishing pad. Depending on the purpose, the present invention can also be applied when using a soft pad.
 また、研磨の際の研磨圧力、定盤回転数、ヘッド回転数、研磨時間は、一般の条件を採用することができ、目的に応じて選択すれば良く、特に限定されない。 Also, the polishing pressure, the platen rotation speed, the head rotation speed, and the polishing time at the time of polishing can adopt general conditions and may be selected according to the purpose, and are not particularly limited.
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
(実施例1~4、比較例1)
 ショアA硬度60の硬質パッドを用いた片面研磨装置を使用し、機械的作用に対する化学的作用の検証評価を行った。まず、粒径35nmの高純度コロイダルシリカの研磨スラリー中の質量分率(砥粒濃度)を0.01(即ち1%)で一定として、研磨スラリーのアルカリ濃度(水酸化物イオン濃度)を変え、シリコンウェーハの研磨を行った。pHの調整は水酸化カリウムおよび水酸化テトラメチルアンモニウム(TMAH)により行った。研磨圧力は20kPaとし、定盤回転数、ヘッド回転数は30rpmとし、研磨は3分間行った。
(Examples 1 to 4, Comparative Example 1)
A single-side polishing apparatus using a hard pad with a Shore A hardness of 60 was used to verify and evaluate the chemical action against the mechanical action. First, the mass fraction (abrasive grain concentration) in the polishing slurry of high purity colloidal silica having a particle size of 35 nm is made constant at 0.01 (ie 1%), and the alkali concentration (hydroxide ion concentration) of the polishing slurry is changed. The silicon wafer was polished. The pH was adjusted with potassium hydroxide and tetramethylammonium hydroxide (TMAH). The polishing pressure was 20 kPa, the platen rotation speed and the head rotation speed were 30 rpm, and polishing was performed for 3 minutes.
 硬質研磨パッドによる研磨工程を経た後、軟質研磨パッドにより最終仕上げ研磨工程を行った後、研磨評価を行った。研磨評価はKLAテンコール社製SP2によりLLS(Localized Light Scattering)欠陥(37nm以上)の個数を測定することにより行った。 After passing through a polishing step with a hard polishing pad, a final finishing polishing step was performed with a soft polishing pad, and then polishing evaluation was performed. Polishing evaluation was performed by measuring the number of LLS (Localized Light Scattering) defects (37 nm or more) using SP2 manufactured by KLA Tencor.
 表1に各条件を示し、図1に[OH]/コロイダルシリカの質量分率の値と、LLS欠陥個数との関係を示すグラフを示す。[OH-]/コロイダルシリカの質量分率の値が0.1mol/l以上であれば、LLS欠陥数が減少していることが判った。 Table 1 shows the conditions, and FIG. 1 is a graph showing the relationship between the mass fraction value of [OH ] / colloidal silica and the number of LLS defects. It was found that when the value of the mass fraction of [OH-] / colloidal silica was 0.1 mol / l or more, the number of LLS defects was reduced.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例5~8、比較例2、3)
 次に、研磨スラリーのアルカリ濃度を一定(PH10.5)とし、コロイダルシリカの質量分率(砥粒濃度)を変えて研磨評価を行った。その他の条件は実施例1~4、比較例1と同様とした。表2に各条件を示し、図2に[OH]/コロイダルシリカの質量分率の値と、LLS欠陥個数との関係を示すグラフを示す。こちらも、[OH]/砥粒濃度が0.1mol/l以上であればLLS欠陥が減少していることが判った。
(Examples 5 to 8, Comparative Examples 2 and 3)
Next, polishing evaluation was performed by changing the mass fraction (abrasive grain concentration) of colloidal silica while keeping the alkali concentration of the polishing slurry constant (PH10.5). Other conditions were the same as in Examples 1 to 4 and Comparative Example 1. Each condition is shown in Table 2, and FIG. 2 is a graph showing the relationship between the mass fraction value of [OH ] / colloidal silica and the number of LLS defects. Again, it was found that LLS defects were reduced when the [OH ] / abrasive grain concentration was 0.1 mol / l or more.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上の結果から、硬質パッドを用いたにも関わらず、研磨における機械的作用に対する化学的作用の指標である[OH]/砥粒濃度の値が0.1以上である研磨スラリーを用いることで(実施例1~8)、比較例1~3に比べ、LLS欠陥が減少していることが判った。しかも、上記のように、得られたウェーハの平坦度(SFQR)も高いものであった。 From the above results, a polishing slurry having a value of [OH ] / abrasive grain concentration of 0.1 or more, which is an index of chemical action for mechanical action in polishing, despite using a hard pad is used. (Examples 1 to 8), it was found that LLS defects were reduced as compared with Comparative Examples 1 to 3. Moreover, as described above, the flatness (SFQR) of the obtained wafer was also high.
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Claims (3)

  1.  シリコンウェーハと研磨パッドとの間に研磨スラリーを介在させて、前記シリコンウエーハを研磨するシリコンウエーハの研磨方法であって、
     前記研磨スラリーとして、コロイダルシリカとアルカリを含み、(前記研磨スラリー中の水酸化物イオン濃度[OH](mol/l))/(前記研磨スラリーの質量中の前記コロイダルシリカの質量分率)≧0.1(mol/l)を満たすものを用いて研磨することを特徴とするシリコンウェーハの研磨方法。
    A method for polishing a silicon wafer, wherein a polishing slurry is interposed between a silicon wafer and a polishing pad to polish the silicon wafer,
    The polishing slurry contains colloidal silica and alkali, (hydroxide ion concentration in the polishing slurry [OH ] (mol / l)) / (mass fraction of the colloidal silica in the mass of the polishing slurry) A method for polishing a silicon wafer, comprising polishing using a material satisfying ≧ 0.1 (mol / l).
  2.  前記研磨パッドとして、ショアA硬度60以上の研磨パッドを用いることを特徴とする請求項1に記載のシリコンウェーハの研磨方法。 The method for polishing a silicon wafer according to claim 1, wherein a polishing pad having a Shore A hardness of 60 or more is used as the polishing pad.
  3.  前記研磨パッドとして、ショアA硬度70以上の研磨パッドを用いることを特徴とする請求項1又は請求項2に記載のシリコンウェーハの研磨方法。
     
    The method for polishing a silicon wafer according to claim 1, wherein a polishing pad having a Shore A hardness of 70 or more is used as the polishing pad.
PCT/JP2018/016132 2017-05-15 2018-04-19 Silicon wafer polishing method WO2018211903A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017096563A JP6747376B2 (en) 2017-05-15 2017-05-15 Silicon wafer polishing method
JP2017-096563 2017-05-15

Publications (1)

Publication Number Publication Date
WO2018211903A1 true WO2018211903A1 (en) 2018-11-22

Family

ID=64274094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016132 WO2018211903A1 (en) 2017-05-15 2018-04-19 Silicon wafer polishing method

Country Status (3)

Country Link
JP (1) JP6747376B2 (en)
TW (1) TWI727165B (en)
WO (1) WO2018211903A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119951A1 (en) * 2021-12-21 2023-06-29 信越半導体株式会社 Double side polishing apparatus, double side polishing method for semiconductor silicon wafer, double side polished silicon wafer and method for producing same
JP7435634B2 (en) 2021-12-21 2024-02-21 信越半導体株式会社 Double-sided polishing device, double-sided polishing method for semiconductor silicon wafers, and method for manufacturing double-sided polished silicon wafers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010076075A (en) * 2008-09-29 2010-04-08 Fujibo Holdings Inc Polishing sheet used in polishing pad for use in polishing, and the polishing pad
WO2010122985A1 (en) * 2009-04-20 2010-10-28 日立化成工業株式会社 Polishing liquid for semiconductor substrate and method for polishing semiconductor substrate
JP2013258227A (en) * 2012-06-12 2013-12-26 Sumco Techxiv株式会社 Semiconductor wafer manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5254727B2 (en) * 2008-09-29 2013-08-07 富士紡ホールディングス株式会社 Polishing pad
DE102013204839A1 (en) * 2013-03-19 2014-09-25 Siltronic Ag Method of polishing a wafer of semiconductor material
JP6311183B2 (en) * 2014-03-31 2018-04-18 富士紡ホールディングス株式会社 Polishing pad and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010076075A (en) * 2008-09-29 2010-04-08 Fujibo Holdings Inc Polishing sheet used in polishing pad for use in polishing, and the polishing pad
WO2010122985A1 (en) * 2009-04-20 2010-10-28 日立化成工業株式会社 Polishing liquid for semiconductor substrate and method for polishing semiconductor substrate
JP2013258227A (en) * 2012-06-12 2013-12-26 Sumco Techxiv株式会社 Semiconductor wafer manufacturing method

Also Published As

Publication number Publication date
JP2018195641A (en) 2018-12-06
TW201900333A (en) 2019-01-01
JP6747376B2 (en) 2020-08-26
TWI727165B (en) 2021-05-11

Similar Documents

Publication Publication Date Title
US20110223840A1 (en) Polishing Composition and Polishing Method Using The Same
KR101092884B1 (en) Method for polishing wafer
JP5557506B2 (en) Polishing both sides of a semiconductor wafer
JP5622124B2 (en) Polishing method of silicon wafer
JP5853041B2 (en) Method for polishing a semiconductor material wafer
JP4696086B2 (en) Final polishing method for silicon single crystal wafer and silicon single crystal wafer
JP5493956B2 (en) Manufacturing method of semiconductor wafer
JP2009012164A (en) Method for polishing glass substrate
JP4852302B2 (en) Method for producing abrasive, abrasive produced thereby and method for producing silicon wafer
US10066128B2 (en) Method for preparing an aluminum oxide polishing solution
WO2018211903A1 (en) Silicon wafer polishing method
JP2006205265A (en) Polishing method and polishing composition
JP5516594B2 (en) CMP polishing liquid, and polishing method and semiconductor substrate manufacturing method using the same
WO2013073025A1 (en) Polishing liquid composition for semiconductor wafers
JPWO2019043890A1 (en) Method for manufacturing semiconductor wafer
US20130149941A1 (en) Method Of Machining Semiconductor Substrate And Apparatus For Machining Semiconductor Substrate
TW201940759A (en) Method for producing silicon wafer
JP2010021391A (en) Polishing method of silicon wafer
EP4321295A1 (en) Wafer processing method and wafer
JP5803601B2 (en) Polishing slurry supply method and supply apparatus, and polishing apparatus
WO2012176377A1 (en) Polishing method for silicon wafer
KR101581469B1 (en) Method of polishing substrate
KR20230013031A (en) Abrasive for synthetic quartz glass substrate, manufacturing method of the abrasive, and polishing method for synthetic quartz glass substrate
CN113861848A (en) Regenerated wafer chemical mechanical polishing solution and preparation method thereof
KR20170117276A (en) CMP slurry composition for polishing wafer and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18803119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18803119

Country of ref document: EP

Kind code of ref document: A1