WO2018211825A1 - 情報処理装置、電子機器、情報処理装置の制御方法、および制御プログラム - Google Patents

情報処理装置、電子機器、情報処理装置の制御方法、および制御プログラム Download PDF

Info

Publication number
WO2018211825A1
WO2018211825A1 PCT/JP2018/012392 JP2018012392W WO2018211825A1 WO 2018211825 A1 WO2018211825 A1 WO 2018211825A1 JP 2018012392 W JP2018012392 W JP 2018012392W WO 2018211825 A1 WO2018211825 A1 WO 2018211825A1
Authority
WO
WIPO (PCT)
Prior art keywords
usb
communication
resolution
information processing
determination unit
Prior art date
Application number
PCT/JP2018/012392
Other languages
English (en)
French (fr)
Inventor
尚志 黒田
弘樹 田邊
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2018211825A1 publication Critical patent/WO2018211825A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus

Definitions

  • the present invention relates to an information processing apparatus provided in an electronic device that can be connected to a host device via a USB (Universal Serial Bus) cable.
  • USB Universal Serial Bus
  • smartphones have a tendency to increase the amount of image data to be handled due to the high image quality of cameras and the high resolution of LCD (Liquid Crystal Display) resolution.
  • LCD Liquid Crystal Display
  • an application that requires real-time performance such as a video playback application, it is necessary to secure a large memory bandwidth in order to realize real-time performance.
  • Patent Document 1 discloses a data transfer device that suppresses power consumption associated with data transfer. This data transfer device switches the USB communication speed in accordance with the operating state of the USB-connected host-side device, and shortens the time required for communication of the host-side device.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2015-161986 (published on September 7, 2015)
  • One embodiment of the present invention has been made in view of the above problems, and its purpose is to ensure the quality of processing related to moving images and to improve the usability of electronic devices during USB communication.
  • An object is to provide an information processing apparatus and the like that can be used.
  • an information processing apparatus is an information processing apparatus provided in an electronic device that can be connected to a host device by a USB (UniversalUniversSerial ⁇ Bus) cable.
  • a processing determination unit that determines whether the electronic device is performing a predetermined process related to a moving image
  • a resolution determination unit that determines the resolution of a moving image
  • a communication control unit that controls a data transfer rate of USB communication that is a data amount per unit time that can be transmitted by the communication via the USB cable.
  • the communication control unit is used in the system for the USB communication process according to the determination result of the process determination unit and the determination result of the resolution determination unit. It is characterized by controlling the memory bandwidth.
  • a method for controlling an information processing apparatus is a method for controlling an information processing apparatus provided in an electronic device that can be connected to a host device using a USB (Universal Serial Bus) cable. Whether the electronic device is performing a predetermined process related to a moving image when the electronic device is communicating with the host device via the USB cable.
  • a communication control step, and the communication control step includes a determination result in the processing determination step and a determination result in the resolution determination step.
  • the method further includes a step of controlling a memory bandwidth used in the system for the USB communication process.
  • the information processing apparatus or the control method thereof it is possible to ensure the quality of processing related to a moving image and improve the usability of an electronic device during USB communication.
  • FIG. (A) is a flowchart which shows the flow of the USB access mode determination flow at the time of USB connection regarding the smart phone which concerns on the said Embodiment 1
  • (b) is USB when a moving image photography generate
  • (A) And (b) is a figure for demonstrating the relationship between the memory bandwidth used for USB, and the memory bandwidth used for another process, respectively.
  • (A)-(c) is a figure which shows the setting conditions of each logical value used in the smart phone which concerns on Embodiment 2 of this invention, respectively.
  • (A) is a flowchart which shows the flow of the USB access mode determination flow at the time of USB connection regarding the smart phone which concerns on the said Embodiment 2
  • (b) is USB access when a video reproduction
  • FIG. (A) is a flowchart which shows the flow of Display Port determination flow at the time of USB connection regarding the smartphone according to the third embodiment
  • (b) is a DP when camera video shooting occurs during Display Port connection.
  • FIG. 1 is a functional block diagram illustrating a configuration of a main part of the smartphone 1 (electronic device) according to the first embodiment.
  • the smartphone 1 can be connected to the host device 1000 via the USB cable 45, the moving image can be captured by the imaging unit 30, and the moving image can be reproduced on the display unit 31.
  • the connection using the USB cable 45 is also referred to as a USB connection.
  • the smartphone 1 is illustrated as an example of the electronic device, but the electronic device is not limited to the smartphone 1.
  • the electronic device may be a feature phone, for example, or may be any information processing apparatus such as a tablet PC (Personal Computer) or a notebook PC.
  • the electronic device can be USB-connected to the host device 1000, and performs predetermined processing related to moving images (eg, moving image generation such as moving image shooting and moving image editing, moving image reproduction, etc.) ), Any electronic device may be used.
  • the host device 1000 may be any electronic device capable of USB connection to the electronic device.
  • the host device 1000 is, for example, a notebook PC connected to a power source (not shown).
  • the smartphone 1 includes a control unit 10 (information processing device), a photographing unit 30, a display unit 31, a USB port 50a, a ROM (Read Only Memory) 90, and a RAM (Random Access Memory) 91.
  • the host device 1000 includes a USB port 50b.
  • the USB port 50a and the USB port 50b are connection portions of the USB cable 45 in the smartphone 1 and the host device 1000, respectively. For this reason, the smartphone 1 and the host device 1000 can be connected by the USB cable 45 connected to the USB ports 50a and 50b.
  • the first embodiment mainly exemplifies the case where the USB cable 45 is compatible with the USB Type-C standard (hereinafter also simply referred to as “USB Type-C”).
  • USB Type-C the USB Type-C standard
  • a USB cable corresponding to USB Type-C is also referred to as a USB Type-C cable.
  • USB ports 50a and 50b USB ports 50a and 50b
  • USB Type-C USB Type-C
  • USB Type-C is a USB standard having backward compatibility, and supports USB 2.0 standard and USB 3.0 standard. Therefore, for example, even when the host device 1000 is a legacy device (a device that does not support USB Type-C), communication between the host device 1000 and the smartphone 1 via the USB cable 45 (USB communication). Can be done.
  • USB 3.1 Gen1 / Gen2 (Generation 1 / Generation 2) standard (hereinafter also simply referred to as “USB 3.1”)
  • USB 3.1 Gen1 / Gen2
  • USB ports 50a and 50b are also compliant with USB 3.1
  • USB communication speed data communication speed
  • USB communication speed USB data transfer speed
  • USB communication speed USB data transfer speed
  • USB communication speed USB data transfer speed
  • the USB communication speed is the amount of data per unit time that can be transmitted by USB communication.
  • the USB communication speed is an index of a memory bandwidth used for USB communication processing in the smartphone 1 (USB used memory bandwidth). An example of the memory bandwidth will be described later.
  • the USB use memory bandwidth is also referred to as a USB communication memory bandwidth.
  • USB 3.1 The maximum USB communication speed in USB 3.1 is 10 Gbps. Note that the maximum value of USB communication speed in USB 2.0 is 480 Mbps. As described above, according to USB 3.1, a sufficiently high USB communication speed can be realized as compared with the conventional USB standard.
  • the control unit 10 comprehensively controls each unit of the smartphone 1.
  • the control unit 10 includes a multimedia processing unit 11, a USB controller 12 (communication control unit), and a USB transmission rate determination unit 13.
  • the function of the control unit 10 may be realized by a CPU (Central Processing Unit) executing a program stored in the ROM 90. Specific operations of the control unit 10 will be described later.
  • the ROM 90 may include a known nonvolatile memory (eg, hard disk drive).
  • the RAM 91 may include a known volatile memory (for example, SRAM (Staic RAM) or DRAM (Dynamic RAM)).
  • SRAM Staic RAM
  • DRAM Dynamic RAM
  • the ROM 90 stores various programs executed by the control unit 10 and data used by the programs.
  • the RAM 91 temporarily stores data used by the program.
  • the multimedia processing unit 11 controls the image capturing unit 30 (for example, a camera), the display unit 31 (for example, an LCD (Liquid Crystal Display)), and the codec processing of moving image compression data such as MP4 and related to moving images. This is the part that executes the process. For example, during moving image shooting, YUV (luminance color difference) data acquired by the shooting unit 30 is developed in the RAM 91. The multimedia processing unit 11 performs processing for converting the developed YUV data into moving image data such as an MPEG (Moving Picture Picture Experts Group) system while using the RAM 91 as a work area.
  • MPEG Motion Picture Picture Experts Group
  • the multimedia processing unit 11 expands the moving image compressed data stored in the ROM 90 in the RAM 91 during reproduction.
  • the multimedia processing unit 11 decodes the decompressed moving image compressed data using the RAM 91 as a work area, transfers the moving image data to the display unit 31, and performs a moving image display process (playback process).
  • the USB controller 12 comprehensively controls USB communication in the smartphone 1.
  • the USB controller 12 negotiates with the host device 1000 via the USB ports 50a and 50b, and sets USB connection conditions.
  • the USB controller 12 performs speed negotiation with the host device 1000 and sets the USB communication speed. Since the negotiation process is publicly known, detailed description thereof is omitted.
  • the USB transmission rate determination unit 13 controls the USB controller 12 and adjusts the USB communication speed (USB data transfer speed) by changing the USB communication speed.
  • the USB transmission rate determination unit 13 includes a process determination unit 131 and a resolution determination unit 132.
  • the USB transmission rate determination unit 13 controls the USB controller 12 based on the determination result of the process determination unit 131 and the determination result of the resolution determination unit 132.
  • FIG. 2 and FIG. (A) to (c) of FIG. 2 are diagrams showing the setting conditions of each logical value used in the smartphone 1.
  • FIG. 3 is a diagram illustrating a specific configuration of the USB transmission rate determination unit 13.
  • the process determination unit 131 determines whether the smartphone 1 is performing a predetermined process related to a moving image when the smartphone 1 is communicating with the host device 1000 via the USB cable 45. To do. Specifically, in the present embodiment, it is determined whether or not a moving image is being shot by the shooting unit 30. Then, the process determination unit 131 sets (calculates) the process determination value X1 as information (logical value, flag value) indicating the determination result. The process determination unit 131 outputs the process determination value X1 to the AND gate 133 (see FIG. 3 described later).
  • the resolution determination unit 132 determines (identifies) the resolution of the moving image captured by the imaging unit 30.
  • the resolution determination unit 132 sets a resolution determination value X2 as information indicating the determination result.
  • the resolution determination unit 132 outputs the resolution determination value X2 to the AND gate 133.
  • a predetermined resolution for example, FHD (full high definition: resolution 1920 ⁇ 1080).
  • FHD full high definition: resolution 1920 ⁇ 1080
  • the resolution of the moving image is equal to or higher than the predetermined resolution
  • the USB transmission rate determination unit 13 further includes a 2-input 1-output AND gate 133 in addition to the processing determination unit 131 and the resolution determination unit 132.
  • the processing determination value X1 is input from the processing determination unit 131
  • the resolution determination value X2 is input from the resolution determination unit 132 to the AND gate 133, respectively.
  • the USB access mode signal Y may be used as a control signal for the USB transmission rate determination unit 13 to control the USB controller 12.
  • the USB access mode signal Y may be used as a control signal for controlling each unit of the control unit 10.
  • the USB controller 12 may switch the USB communication mode (communication mode) according to the value of the USB access mode signal Y. That is, the USB controller 12 may control the USB communication speed (in other words, the USB used memory bandwidth) by switching the communication mode.
  • the communication mode in the first embodiment includes a first communication mode and a second communication mode.
  • the first communication mode is a communication mode based on USB 2.0 (USB 2.0 communication mode).
  • the second communication mode is a communication mode based on USB 3.1 (USB 3.1 communication mode).
  • the USB 2.0 communication mode and the USB 3.1 communication mode are examples of the first communication mode and the second communication mode.
  • the first communication mode and the second communication mode are not limited to these.
  • the second communication mode may be a communication mode in which the USB communication speed is faster than that of the first communication mode.
  • the USB controller 12 may select one of the first communication mode and the second communication mode according to the value of the USB access mode signal Y. For example, the USB controller 12 may decrease the USB communication speed by switching from the second communication mode to the first communication mode. Alternatively, the USB controller 12 may increase the USB communication speed by switching from the first communication mode to the second communication mode.
  • the USB access mode signal Y is 1.
  • the USB controller 12 invalidates (not permits) the second communication mode (USB 3.1 communication mode).
  • the USB access mode signal Y is 0.
  • the USB controller 12 enables (permits) the second communication mode (USB 3.1 communication mode).
  • FIG. 4A is a flowchart showing a flow of a USB access mode determination flow at the time of USB connection.
  • step S hereinafter, “step” is omitted
  • the multimedia processing unit 11 controls the shooting unit 30, starts shooting a moving image, and proceeds to S102.
  • the USB transmission rate determination unit 13 sets each of the processing determination value X1 and the resolution determination value X2 based on the determination result of the processing determination unit 131 and the determination result of the resolution determination unit 132, and the process proceeds to S103.
  • the user connects the smartphone 1 to the host device 1000 using the USB cable 45 (eg, USB Type-C cable), and proceeds to S104.
  • the USB controller 12 confirms the value of the USB access mode signal Y.
  • the USB controller 12 changes the speed with the host device 1000 so as to change the USB communication mode from the second communication mode (USB 3.1 communication mode) to the first communication mode (USB 2.0 communication mode).
  • the USB controller 12 establishes communication between the smartphone 1 and the host device 1000 in the first communication mode, and returns to S104.
  • the USB controller 12 continues the USB communication mode in the second communication mode, communicates with the host device 1000, and returns to S104.
  • FIG. 4B is a flowchart showing the flow of a USB access change flow when moving image shooting occurs during USB communication.
  • the USB transmission rate determination unit 13 sets each of the processing determination value X1 and the resolution determination value X2 based on the determination result of the processing determination unit 131 and the determination result of the resolution determination unit 132, and the process proceeds to S203.
  • the USB controller 12 confirms the value of the USB access mode signal Y.
  • the USB access mode signal Y 1 (YES)
  • the process proceeds to S204.
  • the USB access mode signal Y 0 (NO)
  • the process proceeds to S205.
  • the USB controller 12 changes the speed with the host device 1000 so as to change the USB communication mode from the second communication mode (USB 3.1 communication mode) to the first communication mode (USB 2.0 communication mode).
  • the USB controller 12 establishes communication between the smartphone 1 and the host device 1000 in the first communication mode, and proceeds to S206.
  • the USB controller 12 continues the USB communication mode with the second communication mode, communicates with the host device 1000, and proceeds to S206.
  • the multimedia processing unit 11 controls the shooting unit 30, starts shooting a moving image, and returns to S203.
  • FIG. 5 is a diagram for explaining the influence of the USB use memory bandwidth on the operability (usability) of the smartphone 1. Specifically, FIG. 5 shows the relationship between the USB memory bandwidth H2 described below and the memory bandwidth H4 (remaining memory bandwidth) used for other processing.
  • FIG. 5A shows the memory bandwidth (H1 to H4 described below) in each of three cases (cases 1 to 3) as a table.
  • FIG. 5B the breakdown of H1 to H4 with respect to the usable memory bandwidth H0 (theoretical value of the memory bandwidth usable in the smartphone 1) is shown as a band graph.
  • the memory bandwidth means the amount of data that can be handled per unit time (eg, 1 second) with respect to the RAM 91 of FIG.
  • the usable memory bandwidth H0 depends on the access speed to the RAM 91. Specifically, the usable memory bandwidth H0 increases as the operating frequency increases, and decreases as the operating frequency decreases. More specifically, the usable memory bandwidth H0 is proportional to the operating frequency.
  • Case 1 is an example of a case where the remaining battery level is high and the operating frequency is not suppressed.
  • the usable memory bandwidth H0 is 6.4 Gbps (Giga Byte per second).
  • the USB communication speed V is, for example, 10 Gbps (the maximum communication speed in the second communication mode (USB 3.1 communication mode)).
  • Case 1 corresponds to the case where either one of X1 and X2 is 0, or both X1 and X2 are 0 in FIG.
  • Case 2 and Case 3 have different USB communication speeds V.
  • the USB communication speed V is 10 Gbps as in Case 1.
  • Case 2 may be understood as a comparative example.
  • the USB communication speed V is set sufficiently lower than in cases 1 and 2.
  • the OS (Operation System) used memory bandwidth H1 is a memory bandwidth used for the OS among the usable memory bandwidth H0. In all cases 1 to 3, the OS use memory bandwidth H1 is 0.2 Gbps (a constant value).
  • the display system use memory bandwidth H3 is a memory bandwidth used for the display device (not shown) of the smartphone 1 and its peripheral devices out of the usable memory bandwidth H0. In any of cases 1 to 3, the display system use memory bandwidth H3 is 0.4 Gbps (a constant value).
  • the USB used memory bandwidth H2 depends on the USB communication speed V, as shown in FIG. Specifically, the USB memory bandwidth H2 increases as the USB communication speed V increases, and decreases as the USB communication speed V decreases. More specifically, the USB memory bandwidth H2 is proportional to the USB communication speed V.
  • the memory bandwidth H4 is a remaining memory bandwidth obtained by subtracting H1 to H3 from the usable memory bandwidth H0.
  • the memory bandwidth H4 is used for processing of the application of the smartphone 1 and processing of operations from the user. For this reason, if the memory bandwidth H4 is large, the operability of the smartphone 1 can be improved.
  • the ratio of the memory bandwidth H4 to the predetermined usable memory bandwidth H0 mainly depends on the USB use memory bandwidth H2. To do.
  • Case 1 shows a case where the operating frequency is not suppressed and the usable memory bandwidth H0 is sufficiently large (6.4 Gbps).
  • the usable memory bandwidth H0 is sufficiently large, the memory bandwidth H4 can be sufficiently secured even if the USB memory bandwidth H2 is large.
  • Case 2 shows a case where the operating frequency is suppressed and the usable memory bandwidth H0 is relatively small (4.8 Gbps).
  • the usable memory bandwidth H0 decreases, the memory bandwidth H4 also decreases if the USB used memory bandwidth H2 is not adjusted.
  • the smartphone 1 may not be able to respond quickly to the user's operation. That is, there may occur a case where a so-called “processing slowdown” occurs in the smartphone 1.
  • processing slowdown occurs in the smartphone 1.
  • the memory bandwidth H4 decreases, the operability of the smartphone 1 may decrease.
  • the inventors have come up with the idea of securing the memory bandwidth H4 by adjusting the USB-used memory bandwidth H2 even when the usable memory bandwidth H0 decreases.
  • the configuration of the smartphone 1 is realized based on the idea.
  • the item H4 in case 3 is hatched for emphasis.
  • the USB communication memory bandwidth H2 is adjusted (for example, the first communication mode is selected as the USB communication mode).
  • the memory bandwidth H4 can be sufficiently secured.
  • the memory bandwidth H4 substantially equal to that in the case 1 can be secured. Therefore, even when the usable memory bandwidth H0 is reduced, the operability of the smartphone 1 can be prevented from being lowered.
  • the USB memory bandwidth can be controlled according to (i) presence / absence of moving image shooting during USB communication and (ii) resolution of the moving image. For example, when moving image shooting is performed during USB communication and the resolution of the moving image is high (that is, when the USB used memory bandwidth can be increased), the data transfer speed of USB communication can be reduced. it can. Therefore, the remaining memory bandwidth (memory bandwidth that can be used for predetermined processing) can be secured, so that the quality of moving image shooting can be ensured and the usability of the electronic device during USB communication can be improved.
  • the second embodiment of the present invention will be described below with reference to FIGS.
  • members having the same functions as those described in the above embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the configuration of the smartphone 1 according to the present embodiment is the same as the configuration illustrated in FIG.
  • the configuration of the USB transmission rate determination unit 13 of the present embodiment is the same as the configuration shown in FIG.
  • the present embodiment is different from the first embodiment in that the process determination unit 131 determines whether or not the moving image reproduction process is performed on the smartphone 1 (whether or not the moving image is reproduced on the display unit 31). Is different.
  • the resolution determination unit 132 determines (identifies) the resolution of the moving image being reproduced by the display unit 31.
  • the resolution determination unit 132 sets a resolution determination value X2 as information indicating the determination result.
  • the resolution determination unit 132 outputs the resolution determination value X2 to the AND gate 133.
  • FHD for example, resolution 1920 ⁇ 1080
  • the USB access mode signal Y is 1.
  • the USB controller 12 invalidates (not permits) the second communication mode (USB 3.1 communication mode).
  • the USB access mode signal Y is 0.
  • the USB controller 12 enables (permits) the second communication mode (USB 3.1 communication mode).
  • FIG. 7 is a flowchart showing the flow of the USB access mode determination flow at the time of USB connection.
  • the multimedia processing unit 11 controls the display unit 31 to start playback of a moving image, and proceeds to S302.
  • the USB transmission rate determination unit 13 sets each of the processing determination value X1 and the resolution determination value X2 based on the determination result of the processing determination unit 131 and the determination result of the resolution determination unit 132, and the process proceeds to S303.
  • the user connects the smartphone 1 to the host device 1000 with the USB cable 45 (eg, USB Type-C cable), and proceeds to S304.
  • the USB controller 12 confirms the value of the USB access mode signal Y.
  • the USB controller 12 changes the speed with the host device 1000 so as to change the USB communication mode from the second communication mode (USB 3.1 communication mode) to the first communication mode (USB 2.0 communication mode).
  • the USB controller 12 establishes communication between the smartphone 1 and the host device 1000 in the first communication mode, and returns to S304.
  • the USB controller 12 continues the USB communication mode with the second communication mode, communicates with the host device 1000, and returns to S304.
  • FIG. 7 is a flowchart showing a flow of a USB access change flow when moving image reproduction occurs during USB communication.
  • the USB transmission rate determination unit 13 sets the processing determination value X1 and the resolution determination value X2 based on the determination result of the processing determination unit 131 and the determination result of the resolution determination unit 132, and the process proceeds to S403.
  • the USB controller 12 changes the speed with the host device 1000 so as to change the USB communication mode from the second communication mode (USB 3.1 communication mode) to the first communication mode (USB 2.0 communication mode).
  • the USB controller 12 establishes communication between the smartphone 1 and the host device 1000 in the first communication mode, and proceeds to S406.
  • the USB controller 12 continues the USB communication mode in the second communication mode, communicates with the host device 1000, and proceeds to S406.
  • the multimedia processing unit 11 controls the display unit 31 to start playback of a moving image, and the process returns to S403.
  • the USB use memory bandwidth can be controlled according to (i) presence or absence of moving image reproduction during USB communication and (ii) resolution of the moving image. For example, when moving image playback is performed during USB communication and the resolution of the moving image is high (that is, when the USB used memory bandwidth can be increased), the data transfer speed of USB communication can be reduced. it can. Therefore, the remaining memory bandwidth (memory bandwidth that can be used for predetermined processing) can be ensured, so that the quality of moving image reproduction can be ensured and the usability of the electronic device during USB communication can be improved.
  • FIG. 8 is a functional block diagram illustrating a configuration of a main part of the smartphone 2 (electronic device) according to the third embodiment.
  • the smartphone 2 has a configuration in which the USB transmission rate determination unit 13 is replaced with a DP (Display port) determination unit 23 in the smartphone 1 of the first embodiment.
  • the control part of the smart phone 2 is called the control part 20 (information processing apparatus) for distinction with Embodiment 1.
  • FIG. 20 information processing apparatus
  • the configuration of the DP determination unit (operation determination unit) 23 is substantially the same as the configuration of the USB transmission rate determination unit 13.
  • the DP standard is a video output interface standard. Since the DP standard is publicly known, a description thereof will be omitted.
  • USB Type-C defines a mode called Alternate Mode.
  • the alternate mode is a mode in which a part of the data signal line of the USB cable is diverted to data communication (data transmission / reception) according to another protocol (eg, DP standard).
  • the USB ports 50a and 50b can be operated as DP (DP terminal).
  • Data communication using DP is also referred to as DP communication.
  • FIG. 9 is a diagram illustrating a specific configuration of the DP determination unit 23.
  • (A) and (b) of FIG. 10 are diagrams showing the setting conditions of each logical value used in the smartphone 2.
  • the DP determination unit 23 determines whether or not the USB port 50a of the smartphone 2 can operate as a DP by communicating with the host device 1000 via the CC terminal and acquiring setting information (Configuration information) of the host device 1000. To do.
  • the DP determination unit 23 determines whether the USB port 50b of the host device 1000 can operate as a DP by acquiring the setting information of the host device 1000.
  • the USB port 50a of the smartphone 2 is assumed to be compatible with USB Type-C.
  • the DP determination unit 23 manages negotiations with the host device 1000 regarding what setting information can be connected to the host device 1000 when DP is used (compression / non-compression, resolution size, frame rate, number of lanes, etc.). It is a part to do. In this configuration, the DP setting information is uncompressed data, and the setting information for handling the frame rate of 60 fps is common, but the setting information is changed by the DP determination unit 23 for the resolution and the number of lanes.
  • the process determination unit 131 sets the process determination value X1 to 0 while the DP is not used and moving image shooting is not performed. On the other hand, the process determination unit 131 sets the process determination value X1 to 1 while DP is used and moving image shooting is performed. The process determination unit 131 outputs the process determination value X1 to the AND gate 133.
  • the resolution determination unit 132 sets the resolution determination value X2 to 0 when the moving image is captured at a resolution lower than the FHD. Also, the resolution determination unit 132 sets the resolution determination value X2 to 1 when moving image shooting is performed with a resolution higher than FHD. The resolution determination unit 132 outputs the resolution determination value X2 to the AND gate 133.
  • the DP determination unit 23 further includes a 2-input 1-output AND gate 133 in addition to the processing determination unit 131 and the resolution determination unit 132.
  • the processing determination value X1 is input from the processing determination unit 131
  • the resolution determination value X2 is input from the resolution determination unit 132 to the AND gate 133, respectively.
  • the DP signal Z may be used as a control signal for the DP determination unit 23 to control the USB controller 12.
  • the DP signal Z may be used as a control signal for controlling each unit of the control unit 20.
  • the USB controller 12 may switch the USB communication mode (communication mode) according to the value of the DP signal Z. That is, the USB controller 12 may control the USB communication speed (in other words, the USB used memory bandwidth) by switching the communication mode.
  • the communication mode in Embodiment 3 includes the first communication mode and the second communication mode.
  • the first communication mode is a communication mode in which only two lanes can be used and a moving image having a resolution smaller than FHD is handled.
  • the second communication mode is a communication mode that can be used up to four lanes and can handle moving images with a resolution of FHD or higher.
  • the USB controller 12 may select one of the first communication mode and the second communication mode according to the value of the DP signal Z. For example, the USB controller 12 may decrease the USB communication speed by switching from the second communication mode to the first communication mode. Alternatively, the USB controller 12 may increase the USB communication speed by switching from the first communication mode to the second communication mode.
  • the USB controller 12 sets the first communication mode (a communication mode in which only two lanes can be used and a moving image with a resolution smaller than FHD is handled).
  • the USB controller 12 sets the second communication mode (a communication mode that can be used up to 4 lanes and can handle a moving image with a resolution of FHD or higher).
  • the DP signal Z is 0.
  • the USB port 50a is not operated as a DP.
  • FIG. 11 is a flowchart showing the flow of the Display Port determination flow at the time of USB connection.
  • the multimedia processing unit 11 controls the shooting unit 30, starts shooting a moving image, and proceeds to S502.
  • the USB transmission rate determination unit 13 sets each of the processing determination value X1 and the resolution determination value X2 based on the determination result of the processing determination unit 131 and the determination result of the resolution determination unit 132, and the process proceeds to S503.
  • the user connects the smartphone 1 to the host device 1000 using the USB cable 45 (eg, USB Type-C cable), and the process proceeds to S504.
  • the USB controller 12 can use up to four lanes and transmits information indicating that it is possible to handle a moving image having a resolution of FHD or higher to the host device 1000, negotiates with the host device 1000, and performs S504. Return to.
  • FIG. 11B is a flowchart showing the flow of a DP setting change flow when moving image shooting occurs during DP connection.
  • the smartphone 1 can use up to 4 lanes and is connected to the DP with the resolution of FHD, and the process proceeds to S602.
  • the USB transmission rate determination unit 13 sets each of the processing determination value X1 and the resolution determination value X2 based on the determination result of the processing determination unit 131 and the determination result of the resolution determination unit 132, and the process proceeds to S603.
  • the USB controller 12 checks the value of the DP signal Z.
  • the process proceeds to S604.
  • the process proceeds to S605.
  • the USB controller 12 continues the DP connection with the current settings (settings that can be used up to 4 lanes and can handle moving images with a resolution of FHD), and the process proceeds to S606.
  • step S ⁇ b> 605 the USB controller 12 can use only two lanes, and transmits information to the host device 1000 indicating that it can handle a moving image with a resolution smaller than FHD, and negotiates with the host device 1000.
  • the process proceeds to S606.
  • the multimedia processing unit 11 controls the shooting unit 30, starts shooting a moving image, and returns to S603.
  • the USB memory bandwidth can be controlled by changing the number of used lanes. For example, the number of used lanes can be reduced to reduce the USB used memory bandwidth.
  • the control blocks (especially the control units 10 and 20) of the smartphones 1 and 2 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or using a CPU (Central Processing Unit). It may be realized by software.
  • the smartphones 1 and 2 include a CPU that executes instructions of a program that is software that realizes each function, and a ROM (Read Only Memory) in which the program and various data are recorded so as to be readable by the computer (or CPU).
  • a storage device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like are provided.
  • the objective of this invention is achieved when a computer (or CPU) reads the said program from the said recording medium and runs it.
  • a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • the program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program.
  • an arbitrary transmission medium such as a communication network or a broadcast wave
  • one embodiment of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
  • An information processing apparatus is an information processing apparatus (control unit 10) provided in a smartphone (1) connectable to a host device (1000) by a USB (Universal Serial Bus) cable (45). Processing determination for determining whether or not the electronic device is performing a predetermined process related to a moving image when the electronic device is communicating with the host device via the USB cable. A data transfer rate of USB communication that is a data amount per unit time that can be transmitted by the communication via the USB cable, and a resolution determination unit (132) that determines the resolution of the moving image. A communication control unit (USB controller 12) that controls the communication control unit. The communication control unit includes a determination result of the processing determination unit and a determination result of the resolution determination unit. Depending on a structure for controlling the memory bandwidth used in the system for processing the USB communication.
  • the memory bandwidth used by the USB is determined according to (i) the presence / absence of predetermined processing (eg, moving image shooting, moving image playback) during USB communication, and (ii) the resolution of the moving image.
  • predetermined processing eg, moving image shooting, moving image playback
  • the resolution of the moving image e.g., the resolution of the moving image.
  • the remaining memory bandwidth memory bandwidth that can be used for predetermined processing
  • can be secured so that the quality of processing related to moving images can be secured and the usability of the electronic device during USB communication can be improved.
  • the resolution determination unit determines whether or not the resolution is equal to or higher than a predetermined resolution
  • the communication control unit When the communication is performed via a USB cable, the data transfer speed of the USB communication is reduced when the electronic device performs the predetermined processing and the resolution is equal to or higher than the predetermined resolution. You may let them. According to the above configuration, it is possible to ensure the quality of processing related to a moving image and improve the usability of the electronic device during USB communication.
  • the predetermined process may include a process of generating a moving image. According to the above configuration, the quality of processing for generating a moving image can be ensured, and the usability of the electronic device during USB communication can be improved.
  • the predetermined process may include a process of reproducing a moving image. According to the above configuration, it is possible to ensure the quality of processing for playing back moving images and improve the usability of the electronic device during USB communication.
  • the information processing apparatus is the information processing apparatus according to any one of the aspects 1 to 4, wherein the communication control unit switches the communication mode that is the communication mode and changes the communication speed that is the communication speed.
  • the communication control unit switches the communication mode that is the communication mode and changes the communication speed that is the communication speed.
  • the memory bandwidth used in the system may be controlled for USB communication processing.
  • the USB memory bandwidth can be controlled by changing the communication speed by switching the communication mode.
  • the communication mode includes a first communication mode and a second communication mode, and the second communication mode is the first communication mode.
  • the communication speed is higher than that of the first communication mode, and the communication control unit reduces the communication speed by switching from the second communication mode to the first communication mode. You may let them.
  • the USB memory bandwidth can be controlled by changing the communication speed by switching the communication mode.
  • An information processing apparatus is the information processing apparatus according to any one of the aspects 1 to 6, wherein the electronic device includes a USB port as a connection unit of the USB cable, and the communication control unit includes the USB port.
  • the memory bandwidth used in the system for processing the display port may be controlled by changing the number of lanes used when operating as a display port.
  • the USB used memory bandwidth can be controlled by changing the number of used lanes. For example, the number of used lanes can be reduced to reduce the USB used memory bandwidth.
  • the information processing apparatus further includes an operation determination unit that determines whether or not the USB port is operable as the display port in the aspect 7, wherein the resolution determination unit includes the resolution Is determined to be equal to or higher than a predetermined resolution, and the communication control unit performs the predetermined process when the electronic device performs the communication via the USB cable.
  • the resolution is equal to or higher than a predetermined resolution and the USB port can operate as the display port
  • the number of lanes used when the USB port operates as the display port is reduced.
  • the memory bandwidth used in the system for processing the display port may be reduced.
  • the USB used memory bandwidth can be controlled by changing the number of used lanes. For example, the number of used lanes can be reduced to reduce the USB used memory bandwidth.
  • the electronic apparatus preferably includes the information processing apparatus according to any one of aspects 1 to 8. According to the said structure, the effect similar to the said aspect 1 is acquired.
  • a method for controlling an information processing apparatus is a method for controlling an information processing apparatus provided in an electronic device that can be connected to a host device by a USB (Universal Serial Bus) cable, via the USB cable.
  • a process determination step for determining whether or not the electronic device is performing a predetermined process related to a moving image when the electronic device is communicating with the host device; and
  • a resolution determination step for determining resolution, and a communication control step for controlling a data transfer rate of USB communication, which is a data amount per unit time that can be transmitted by the communication via the USB cable
  • the communication control step is a system for processing the USB communication according to the determination result in the processing determination step and the determination result in the resolution determination step.
  • the method further includes the step of controlling the memory bandwidth used in the system. According to the said method, the effect similar to the said aspect 1 is acquired.
  • the information processing apparatus may be realized by a computer.
  • the information processing apparatus is operated on each computer by causing the computer to operate as each unit (software element) included in the information processing apparatus.
  • the control program for the information processing apparatus to be realized in this way and a computer-readable recording medium on which the control program is recorded also fall within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Telephone Function (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Information Transfer Systems (AREA)

Abstract

動画像に関連する処理の品質を確保し、USB(Universal Serial Bus)通信時の電子機器のユーザビリティを向上させる。USBケーブル(45)を介してスマートフォン(1)がホスト機器(1000)との間の通信を行っている場合に、スマートフォン(1)が動画像に関連する所定の処理を行っているか否かを判定する処理判定部(131)と、上記動画像の解像度を判定する解像度判定部(132)と、USB通信のデータ転送速度を制御するUSBコントローラ(12)と、を備えており、USBコントローラ(12)は、処理判定部(131)の判定結果および解像度判定部(132)の判定結果に応じて、上記USB通信の処理のためにシステム内で使用されるメモリバンド幅を制御する。

Description

情報処理装置、電子機器、情報処理装置の制御方法、および制御プログラム
 本発明は、USB(Universal Serial Bus)ケーブルによってホスト機器と接続可能な電子機器に設けられる情報処理装置に関する。
 従来のスマートフォン(以下、「スマホ」と略称する)はUSB2.0に対応したものが主流となっており、最高データ伝送速度は、480Mbps(Mega bit per second)の速度でPC(Personal Computer)などとの通信を行っていた。また、最近のスマホは、USB3.1に対応し、最高10Gbps(Giga bps)の伝送速度で通信することが可能になった。
 また、スマホでは、カメラの高画質化、およびLCD(Liquid Crystal Display)解像度の高画質化により、扱う画像データのデータ量が大きくなる傾向があり、動画撮影アプリケーション(以下、「アプリ」と略称する)または動画再生アプリなどリアルタイム性が要求されるアプリでは、リアルタイム性実現のために多くのメモリバンド幅を確保する必要がある。
 このような、リアルタイム性が要求され、かつ、大量のメモリバンド幅が必要なアプリとUSB3.1(最高データ伝送速度=10Gbps)のような大量のメモリバンド幅を使用する通信が同時に行われると、メモリバンド幅の不足が発生する可能性がある。その結果、動画撮影では画面のコマ落ち、動画再生では動画のガタツキが、起きてしまう可能性がある。
 特許文献1には、データ転送に伴う電力消費を抑制するデータ転送装置が開示されている。このデータ転送装置は、USB接続のホスト側機器の動作状態に応じて、USB通信速度を切り替えて、ホスト側機器の通信にかかる時間を短くするようになっている。
日本国公開特許公報「特開2015-161986号公報(2015年9月7日公開)」
 しかしながら、上述のような従来技術には、リアルタイム性が要求されるアプリの品質を確保し、USB通信時の電子機器のユーザビリティを向上させる観点については何も開示されていないという問題点がある。
 本発明の一態様は、以上の問題点に鑑みて為されたものであり、その目的は、動画像に関連する処理の品質を確保し、USB通信時の電子機器のユーザビリティを向上させることができる情報処理装置等を提供することにある。
 上記の課題を解決するために、本発明の一態様に係る情報処理装置は、USB(Universal Serial Bus)ケーブルによってホスト機器と接続可能な電子機器に設けられる情報処理装置であって、上記USBケーブルを介して、上記電子機器が上記ホスト機器との間の通信を行っている場合に、当該電子機器が動画像に関連する所定の処理を行っているか否かを判定する処理判定部と、上記動画像の解像度を判定する解像度判定部と、上記USBケーブルを介しての上記通信によって伝送可能な単位時間当たりのデータ量であるUSB通信のデータ転送速度を制御する通信制御部と、を備えており、上記通信制御部は、上記処理判定部の判定結果および上記解像度判定部の判定結果に応じて、上記USB通信の処理のためにシステム内で使用されるメモリバンド幅を制御することを特徴としている。
 また、上記の課題を解決するために、本発明の一態様に係る情報処理装置の制御方法は、USB(Universal Serial Bus)ケーブルによってホスト機器と接続可能な電子機器に設けられる情報処理装置の制御方法であって、上記USBケーブルを介して、上記電子機器が上記ホスト機器との間の通信を行っている場合に、当該電子機器が動画像に関連する所定の処理を行っているか否かを判定する処理判定工程と、上記動画像の解像度を判定する解像度判定工程と、上記USBケーブルを介しての上記通信によって伝送可能な単位時間当たりのデータ量であるUSB通信のデータ転送速度を制御する通信制御工程と、を含んでおり、上記通信制御工程は、上記処理判定工程における判定結果および上記解像度判定工程における判定結果に応じて、上記USB通信の処理のためにシステム内で使用されるメモリバンド幅を制御する工程をさらに含んでいることを特徴としている。
 本発明の一態様に係る情報処理装置またはその制御方法によれば、動画像に関連する処理の品質を確保し、USB通信時の電子機器のユーザビリティを向上させることができるという効果を奏する。
本発明の実施形態1に係るスマートフォンの要部の構成を示す機能ブロック図である。 (a)~(c)はそれぞれ、上記実施形態1に係るスマートフォンにおいて用いられる各論理値の設定条件を示す図である。 上記実施形態1に係るスマートフォンにおけるUSB伝送レート判定部の具体的な構成を示す図である。 (a)は、上記実施形態1に係るスマートフォンに関し、USB接続時のUSBアクセスモード決定フローの流れを示すフローチャートであり、(b)は、USB通信中に動画像撮影が発生したときの、USBアクセス変更フローの流れを示すフローチャートである。 (a)および(b)はそれぞれ、USB使用メモリバンド幅とその他の処理に使用されるメモリバンド幅との関係を説明するための図である。 (a)~(c)はそれぞれ、本発明の実施形態2に係るスマートフォンにおいて用いられる各論理値の設定条件を示す図である。 (a)は、上記実施形態2に係るスマートフォンに関し、USB接続時のUSBアクセスモード決定フローの流れを示すフローチャートであり、(b)は、USB通信中に動画再生が発生したときの、USBアクセス変更フローの流れを示すフローチャートである。 本発明の実施形態3に係るスマートフォンの要部の構成を示す機能ブロック図である。 上記実施形態3に係るスマートフォンにおけるDP判定部の具体的な構成を示す図である。 上記実施形態3に係るスマートフォンにおいて用いられる各論理値の設定条件を示す図である。 (a)は、上記実施形態3に係るスマートフォンに関し、USB接続時のDisplay Port決定フローの流れを示すフローチャートであり、(b)は、Display Port接続中にカメラ動画撮影が発生したときの、DP(Display Port)設定変更フローの流れを示すフローチャートである。
 〔実施形態1〕
 以下、本発明の実施形態1について、図1~図5に基づいて詳細に説明する。図1は、実施形態1のスマートフォン1(電子機器)の要部の構成を示す機能ブロック図である。スマートフォン1は、USBケーブル45によってホスト機器1000と接続可能であり、撮影部30により動画像の撮影が可能であり、表示部31に動画像を再生することが可能である。以下、USBケーブル45による接続を、USB接続とも称する。
 実施形態1では、電子機器の一例としてスマートフォン1を例示するが、当該電子機器はスマートフォン1に限定されない。当該電子機器は、例えばフィーチャーフォンであってもよいし、あるいは、タブレットPC(Personal Computer)またはノート型PC等の、任意の情報処理装置であってよい。
 本発明の一態様に係る電子機器は、ホスト機器1000とUSB接続可能であり、動画像に関連する所定の処理(例:動画像撮影や動画像編集などの動画像生成、および動画像再生など)を行うことが可能であれば、任意の電子機器であってよい。ホスト機器1000は、上記電子機器に対してUSB接続が可能な任意の電子機器であってよい。実施形態1では、ホスト機器1000は、例えば、不図示の電源に接続されたノート型PCである。
 (スマートフォン1)
 スマートフォン1は、制御部10(情報処理装置)、撮影部30、表示部31、USBポート50a、ROM(Read Only Memory)90、およびRAM(Random Access Memory)91を備えている。また、ホスト機器1000は、USBポート50bを備えている。
 USBポート50aおよびUSBポート50bはそれぞれ、スマートフォン1およびホスト機器1000における、USBケーブル45の接続部である。このため、スマートフォン1とホスト機器1000とは、USBポート50a・50bに接続されたUSBケーブル45によって接続可能である。
 一例として、実施形態1では、USBケーブル45がUSB Type-C規格(以下、単に「USB Type-C」とも称する)に対応している場合を主に例示する。なお、USB Type-Cに対応するUSBケーブルは、USB Type-Cケーブルとも称される。
 このため、実施形態1では、スマートフォン1とホスト機器1000(USBポート50a・50b)もまた、USB Type-Cに対応している場合を主に例示する。USBケーブル45およびUSBポート50a・50bの構成は公知であるため、詳細な説明は省略する。
 USB Type-Cは、下位互換性を有するUSB規格であり、USB2.0規格およびUSB3.0規格をサポートしている。それゆえ、例えばホスト機器1000がレガシー機器(USB Type-Cに対応していない機器)である場合にも、USBケーブル45を介してのホスト機器1000とスマートフォン1との間の通信(USB通信)を行うことが可能である。
 また、実施形態1では、USBケーブル45がUSB3.1 Gen1/Gen2(Generation 1/ Generation 2)規格(以下、単に「USB3.1」とも称する)に対応している場合を主に例示する。このため、USBポート50a・50bもまた、USB3.1に準拠している場合を主に例示する。
 ここで、上記USB通信の速度(データ通信速度)を、USB通信速度(またはUSBデータ転送速度)と称する。USB通信速度(USBデータ転送速度)とは、USB通信によって伝送可能な単位時間当たりのデータ量である。USB通信速度は、スマートフォン1においてUSB通信の処理のために用いられるメモリバンド幅(USB使用メモリバンド幅)の指標となる。メモリバンド幅の一例については、後述する。なお、USB使用メモリバンド幅は、USB通信メモリバンド幅とも称される。
 USB3.1におけるUSB通信速度の最大値は、10Gbpsである。なお、USB2.0におけるUSB通信速度の最大値は、480Mbpsである。このように、USB3.1によれば、従来のUSB規格に比べて、十分に高いUSB通信速度を実現できる。
 制御部10は、スマートフォン1の各部を統括的に制御する。制御部10は、マルチメディア処理部11、USBコントローラ12(通信制御部)、およびUSB伝送レート判定部13を備えている。制御部10の機能は、ROM90に記憶されたプログラムを、CPU(Central Processing Unit)が実行することで実現されてよい。制御部10の具体的な動作については、後述する。
 ROM90は、公知の不揮発性メモリ(例:ハードディスクドライブ)を含んでいてよい。RAM91は、公知の揮発性メモリ(例:SRAM(Staic RAM)またはDRAM(Dynamic RAM))を含んでいてよい。ROM90は、制御部10が実行する各種のプログラム、および当該プログラムによって使用されるデータを格納する。RAM91は、当該プログラムによって使用されるデータを一時的に格納する。
 マルチメディア処理部11は、撮影部30(例えば、カメラ)、表示部31〔例えば、LCD(Liquid Crystal Display)〕、さらにはMP4など動画圧縮データのコーデック処理などを制御して、動画像に関連する処理を実行させる部分である。例えば、動画撮影時は、撮影部30で取得したYUV(輝度色差)データをRAM91に展開する。マルチメディア処理部11は、上記展開されたYUVデータを、RAM91をワーク領域として使用しながら、MPEG(Moving Picture Experts Group)方式などの動画データに変換する処理を行う。
 また、マルチメディア処理部11は、ROM90に格納された動画圧縮データを再生時には、RAM91に展開する。例えば、マルチメディア処理部11は、上記展開された動画圧縮データを、RAM91をワーク領域としてデコードして、動画データを表示部31に転送して動画表示処理(再生処理)を行う。
 USBコントローラ12は、スマートフォン1におけるUSB通信を統括的に制御する。USBコントローラ12は、USBポート50a・50bを介して、ホスト機器1000とのネゴシエーションを行い、USB接続の条件を設定する。
 具体的には、USBコントローラ12は、ホスト機器1000とのスピードネゴシエーションを行い、USB通信速度を設定する。ネゴシエーションの処理は公知であるため、詳細な説明は省略する。
 USB伝送レート判定部13は、USBコントローラ12を制御し、USB通信速度を変更することにより、USB通信速度(USBデータ転送速度)を調整する。USB伝送レート判定部13は、処理判定部131および解像度判定部132を備えている。USB伝送レート判定部13は、処理判定部131の判定結果、および、解像度判定部132の判定結果に基づいて、USBコントローラ12を制御する。
 以下、図2および図3を参照して、USB伝送レート判定部13について述べる。図2の(a)~(c)はそれぞれ、スマートフォン1において用いられる各論理値の設定条件を示す図である。図3は、USB伝送レート判定部13の具体的な構成を示す図である。
 処理判定部131は、USBケーブル45を介して、スマートフォン1がホスト機器1000との間の通信を行っている場合に、スマートフォン1が動画像に関連する所定の処理を行っているか否かを判定する。具体的には、本実施形態では、撮影部30によって動画像の撮影が行われているか否かを判定する。そして、処理判定部131は、当該判定結果を示す情報(論理値、フラグ値)として、処理判定値X1を設定(算出)する。処理判定部131は、処理判定値X1を、ANDゲート133(後述の図3を参照)に出力する。
 図2の(a)に示されるように、処理判定部131は、カメラ動画処理(撮影部30による動画像の撮影処理)が行われていない場合には、X1=0として、処理判定値X1を設定する。また、処理判定部131は、カメラ動画処理が行われている場合にはX1=1として、処理判定値X1を設定する。処理判定部131は、処理判定値X1を後述するANDゲート133に出力する。
 解像度判定部132は、撮影部30によって撮影されている動画像の解像度を判定(特定)する。解像度判定部132は、当該判定結果を示す情報として、解像度判定値X2を設定する。解像度判定部132は、解像度判定値X2を、ANDゲート133に出力する。
 また、図2の(b)に示されるように、解像度判定部132は、動画像の解像度が所定の解像度、例えばFHD(full high definition:解像度1920×1080)未満の場合には、X2=0として、解像度判定値X2を設定する。また、解像度判定部132は、動画像の解像度がFHD以上の場合には、X2=1として、解像度判定値X2を設定する。
 「動画像の解像度が所定の解像度以上である」とは、より具体的には、「動画像に含まれる各フレームの画素数が、所定の画素数以上である」ことを意味している。例えば、FHDよりも高い解像度を有する動画の撮影・再生時に、USB使用メモリバンド幅を低下させるケースを考えた場合、「所定の画素数」(画素数の閾値)は、「1920×1080=2073600画素」、または、それよりもやや小さい値に設定されても良い。
 次に、図3に示されるように、USB伝送レート判定部13は、処理判定部131および解像度判定部132に加えて、2入力1出力のANDゲート133をさらに備えている。上述のように、ANDゲート133には、(i)処理判定部131から処理判定値X1が、(ii)解像度判定部132から解像度判定値X2が、それぞれ入力される。
 ANDゲート133は、Y=X1・X2として、USBアクセスモード信号Yを算出する。そして、ANDゲート133は、USBアクセスモード信号YをUSBコントローラ12に出力する。USBアクセスモード信号Yは、USB伝送レート判定部13がUSBコントローラ12を制御するための制御信号として用いられてよい。なお、USBアクセスモード信号Yは、制御部10の各部を制御するための制御信号として用いられてもよい。
 USBコントローラ12は、USBアクセスモード信号Yの値に応じて、USB通信のモード(通信モード)を切り替えてよい。つまり、USBコントローラ12は、通信モードを切り替えることにより、USB通信速度(換言すれば、USB使用メモリバンド幅)を制御してよい。
 実施形態1における通信モードには、第1の通信モードと第2の通信モードとが含まれているものとする。一例として、第1の通信モードは、USB2.0に基づく通信モード(USB2.0通信モード)である。また、第2の通信モードは、USB3.1に基づく通信モード(USB3.1通信モード)である。
 但し、USB2.0通信モードおよびUSB3.1通信モードは、第1の通信モードおよび第2の通信モードの一例である。第1の通信モードおよび第2の通信モードは、これらに限定されない。第2の通信モードは、第1の通信モードよりもUSB通信速度が速い通信モードであればよい。
 USBコントローラ12は、USBアクセスモード信号Yの値に応じて、上記第1の通信モードまたは第2の通信モードの一方を選択してよい。例えば、USBコントローラ12は、第2の通信モードから第1の通信モードへの切り替えを行うことにより、USB通信速度を低下させてよい。あるいは、USBコントローラ12は、第1の通信モードから第2の通信モードへの切り替えを行うことにより、USB通信速度を増加させてよい。
 図2の(c)に示されるように、処理判定値X1および解像度判定値X2の両方が1である場合には、USBアクセスモード信号Yは1となる。USBコントローラ12は、Y=1である場合には、第2の通信モード(USB3.1通信モード)を無効にする(許可しない)。
 他方、処理判定値X1および解像度判定値X2の一方が1である場合、または、処理判定値X1および解像度判定値X2の両方が0である場合には、USBアクセスモード信号Yは0となる。USBコントローラ12は、Y=0である場合には、第2の通信モード(USB3.1通信モード)を有効にする(許可する)。
 (USB接続時のUSBアクセスモード決定フロー)
 次に、図4の(a)は、USB接続時のUSBアクセスモード決定フローの流れを示すフローチャートである。ステップS(以下、「ステップ」を省略する)101では、マルチメディア処理部11が、撮影部30を制御し、動画像の撮影を開始させて、S102に進む。
 S102では、USB伝送レート判定部13が、処理判定部131の判定結果および解像度判定部132の判定結果に基づき、処理判定値X1および解像度判定値X2のそれぞれの値を設定し、S103に進む。
 S103では、ユーザは、USBケーブル45(例:USB Type-Cケーブル)によって、スマートフォン1をホスト機器1000と接続し、S104に進む。S104では、USBコントローラ12が、USBアクセスモード信号Yの値を確認する。USBアクセスモード信号Y=1である場合(YES)、S105に進む。一方、USBアクセスモード信号Y=0である場合(NO)、S106に進む。
 S105では、USBコントローラ12は、USB通信モードを第2の通信モード(USB3.1通信モード)から第1の通信モード(USB2.0通信モード)へと変更するように、ホスト機器1000とのスピードネゴシエーションを行う。そして、USBコントローラ12は、当該スピードネゴシエーションの結果、第1の通信モードによる、スマートフォン1とホスト機器1000との通信を確立し、S104に戻る。S106では、USBコントローラ12は、USB通信モードを第2の通信モードのまま継続させ、ホスト機器1000と通信し、S104に戻る。
 (USB通信中に動画像撮影が発生したときのUSBアクセス変更フロー)
 次に、図4の(b)は、USB通信中に動画像撮影が発生したときのUSBアクセス変更フローの流れを示すフローチャートである。S201では、スマートフォン1は、USB3.1(10Gbps)の速度で、USB通信を行っている(このときのUSBアクセスモード信号Y=0)として、S202に進む。
 S202では、USB伝送レート判定部13が、処理判定部131の判定結果および解像度判定部132の判定結果に基づき、処理判定値X1および解像度判定値X2のそれぞれの値を設定し、S203に進む。
 S203では、USBコントローラ12が、USBアクセスモード信号Yの値を確認する。USBアクセスモード信号Y=1である場合(YES)、S204に進む。一方、USBアクセスモード信号Y=0である場合(NO)、S205に進む。
 S204では、USBコントローラ12は、USB通信モードを第2の通信モード(USB3.1通信モード)から第1の通信モード(USB2.0通信モード)へと変更するように、ホスト機器1000とのスピードネゴシエーションを行う。そして、USBコントローラ12は、当該スピードネゴシエーションの結果、第1の通信モードによる、スマートフォン1とホスト機器1000との通信を確立し、S206に進む。
 S205では、USBコントローラ12は、USB通信モードを第2の通信モードのまま継続させ、ホスト機器1000と通信し、S206に進む。S206では、マルチメディア処理部11が、撮影部30を制御し、動画像の撮影を開始させて、S203に戻る。
 (USB使用メモリバンド幅とその他の処理に使用されるメモリバンド幅との関係)
 図5は、USB使用メモリバンド幅がスマートフォン1の操作性(ユーザビリティ)に及ぼす影響を説明するための図である。具体的には、図5には、以下に述べるUSB使用メモリバンド幅H2とその他の処理に使用されるメモリバンド幅H4(残余分のメモリバンド幅)との関係が示されている。
 図5の(a)には、3通りのケース(ケース1~3)のそれぞれにおける各メモリバンド幅(以下に述べるH1~H4)が、表として示されている。また、図5の(b)には、使用可能メモリバンド幅H0(スマートフォン1において使用できるメモリバンド幅の理論値)に対してのH1~H4の内訳が、帯グラフとして示されている。
 なお、メモリバンド幅とは、図1のRAM91に対して単位時間(例:1秒)当たりに取扱いが可能なデータ量を意味する。使用可能メモリバンド幅H0は、RAM91へのアクセス速度に依存する。具体的には、使用可能メモリバンド幅H0は、動作周波数の増加に伴って増加し、かつ、当該動作周波数の減少に伴って減少する。より具体的には、使用可能メモリバンド幅H0は、動作周波数に比例する。
 ケース1は、電池残量が多く、動作周波数が抑制されていない場合の一例である。ケース1では、使用可能メモリバンド幅H0は6.4GBps(Giga Byte per second)である。ケース1では、USB通信速度Vは、例えば10Gbps(第2の通信モード(USB3.1通信モード)における通信速度の最大値)である。ケース1は、上述の図2の(c)において、X1およびX2の何れか一方が0、またはX1およびX2の両方が0である場合に相当する。
 また、ケース2・3はそれぞれ、電池残量が少なく、動作周波数が抑制されている場合の例である。一例として、ケース2・3では、ケース1に対して、動作周波数が3/4に抑制されている。このため、ケース2・3では、使用可能メモリバンド幅H0は、6.4GBps×3/4=4.8GBpsとなる。このように、ケース2・3は、ケース1に比べて、使用可能メモリバンド幅H0が制限された状態である。
 なお、ケース2とケース3とは、USB通信速度Vが異なる。ケース2では、USB通信速度Vは、ケース1と同様に10Gbpsである。ケース2は、比較例であると理解されてよい。
 他方、ケース3では、USB通信速度Vは、ケース1・2に比べて十分に低く設定されている。ケース3では、USB通信速度Vは、例えば480Mbps=0.48GBps(第1の通信モード(USB2.0通信モード)における通信速度の最大値)である。ケース3は、上述の図2の(c)において、X=1かつY=1である場合に相当する。
 図5において、OS(Operation System)使用メモリバンド幅H1は、使用可能メモリバンド幅H0のうち、OSに使用されるメモリバンド幅である。ケース1~3のいずれにおいても、OS使用メモリバンド幅H1は、0.2GBps(一定の値)である。
 また、表示系使用メモリバンド幅H3は、使用可能メモリバンド幅H0のうち、スマートフォン1の表示装置(不図示)およびその周辺機器に使用されるメモリバンド幅である。ケース1~3のいずれにおいても、表示系使用メモリバンド幅H3は、0.4GBps(一定の値)である。
 他方、図5に示されるように、USB使用メモリバンド幅H2は、USB通信速度Vに依存する。具体的には、USB使用メモリバンド幅H2は、USB通信速度Vの増加に伴って増加し、かつ、当該USB通信速度Vの減少に伴って減少する。より具体的には、USB使用メモリバンド幅H2は、USB通信速度Vに比例する。
 一例として、ケース1・2の場合、USB通信速度V=10Gbpsであるので、1B(1Byte)=8b(8bit)であることを考慮すると、H2=V/8=1.25GBpsとなる。また、ケース3の場合、V=0.48Gpbsであるので、H2=V/8=0.06GBpsとなる。
 ケース3では、USB通信速度Vがケース1・2に比べて十分に小さいことから、USB使用メモリバンド幅H2もケース1・2に比べて十分に小さい。このように、USB通信速度Vを調整することで、USB使用メモリバンド幅H2を調整できる。
 図5において、その他の処理に使用されるメモリバンド幅H4は、H4=H0-(H1+H2+H3)として表される。メモリバンド幅H4は、使用可能メモリバンド幅H0から、H1~H3を差し引いた残余分のメモリバンド幅である。
 メモリバンド幅H4は、スマートフォン1のアプリケーションの処理、および、ユーザからの操作の処理などに用いられる。このため、メモリバンド幅H4が大きければ、スマートフォン1の操作性を向上させることができる。
 ここで、OS使用メモリバンド幅H1および表示系使用メモリバンド幅H3は一定であるので、所定の使用可能メモリバンド幅H0に対するメモリバンド幅H4の割合は、USB使用メモリバンド幅H2に主に依存する。
 ケース1では、動作周波数が抑制されておらず、使用可能メモリバンド幅H0が十分に大きい(6.4GBpsである)場合が示されている。ケース1では、H4=6.4-(0.2+1.25+0.4)=4.55GBpsとなる。このように、使用可能メモリバンド幅H0が十分に大きい場合には、USB使用メモリバンド幅H2が大きくとも、メモリバンド幅H4を十分に確保できる。
 他方、ケース2では、動作周波数が抑制されており、使用可能メモリバンド幅H0が比較的小さい(4.8GBpsである)場合が示されている。ケース2では、H4=4.8-(0.2+1.25+0.4)=2.95GBpsとなる。このように、使用可能メモリバンド幅H0が低下した場合には、USB使用メモリバンド幅H2が調整されなければ、メモリバンド幅H4も低下する。
 このような場合、例えばユーザの操作に対して、スマートフォン1が速やかにレスポンスできない可能性がある。つまり、スマートフォン1において、いわゆる「処理落ち」(Slowdown)が発生するケースが生じうる。このように、メモリバンド幅H4が低下した場合には、スマートフォン1の操作性が低下しうる。
 この点を踏まえ、発明者らは、使用可能メモリバンド幅H0が低下した場合にも、USB使用メモリバンド幅H2を調整することで、メモリバンド幅H4を確保するという着想を想到した。スマートフォン1の構成は、当該着想に基づいて実現されたものである。
 一例として、ケース3では、USB通信速度Vをケース2に比べて減少させることにより、H2を0.06GBpsに低下させている。このため、H4=4.8-(0.2+0.06+0.4)=4.14GBpsとなる。図5では、強調のために、ケース3におけるH4の項目にハッチングが付されている。
 このように、スマートフォン1によれば、使用可能メモリバンド幅H0が低下した場合には、USB使用メモリバンド幅H2を調整することで(例:USB通信モードとして、第1の通信モードを選択することで)、メモリバンド幅H4を十分に確保できる。
 その結果、ケース3においても、ケース1とほぼ同等のメモリバンド幅H4を確保できる。それゆえ、使用可能メモリバンド幅H0が低下した場合にも、スマートフォン1の操作性の低下を防止できる。
 (スマートフォン1の効果)
 スマートフォン1によれば、USB使用メモリバンド幅を、(i)USB通信時の動画像撮影の有無、および、(ii)動画像の解像度に応じて、制御できる。例えば、USB通信時に動画像撮影が行われており、かつ、動画像の解像度が高い場合(つまり、USB使用メモリバンド幅が大きくなり得る場合)に、USB通信のデータ転送速度を低下させることができる。それゆえ、残余分のメモリバンド幅(所定の処理に利用可能なメモリバンド幅)を確保できるので、動画像撮影の品質を確保し、USB通信時の電子機器のユーザビリティを向上させることができる。
 〔実施形態2〕
 本発明の実施形態2について、図6および図7に基づいて説明すれば、以下の通りである。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。本実施形態のスマートフォン1の構成は、図1に示す構成と同様である。また、本実施形態のUSB伝送レート判定部13の構成は、図3に示す構成と同様である。本実施形態は、処理判定部131が、スマートフォン1にて動画再生処理が行われているか否か(表示部31において動画像が再生されているか否か)を判定する点で、実施形態1と異なっている。
 図6の(a)に示されるように、処理判定部131は、動画再生処理(表示部31による動画像の再生処理)が行われていない場合には、X1=0として、処理判定値X1を設定する。また、処理判定部131は、動画再生処理が行われている場合にはX1=1として、処理判定値X1を設定する。処理判定部131は、処理判定値X1を後述するANDゲート133に出力する。
 解像度判定部132は、表示部31によって再生されている動画像の解像度を判定(特定)する。解像度判定部132は、当該判定結果を示す情報として、解像度判定値X2を設定する。解像度判定部132は、解像度判定値X2を、ANDゲート133に出力する。
 また、図6の(b)に示されるように、解像度判定部132は、動画像の解像度が所定の解像度、FHD(例えば、解像度1920×1080)未満の場合には、X2=0として、解像度判定値X2を設定する。また、解像度判定部132は、動画像の解像度がFHD以上の場合には、X2=1として、解像度判定値X2を設定する。
 次に、図6の(c)に示されるように、処理判定値X1および解像度判定値X2の両方が1である場合には、USBアクセスモード信号Yは1となる。USBコントローラ12は、Y=1である場合には、第2の通信モード(USB3.1通信モード)を無効にする(許可しない)。
 他方、処理判定値X1および解像度判定値X2の一方が1である場合、または、処理判定値X1および解像度判定値X2の両方が0である場合には、USBアクセスモード信号Yは0となる。USBコントローラ12は、Y=0である場合には、第2の通信モード(USB3.1通信モード)を有効にする(許可する)。
 (USB接続時のUSBアクセスモード決定フロー)
 次に、図7の(a)は、USB接続時のUSBアクセスモード決定フローの流れを示すフローチャートである。
 S301では、マルチメディア処理部11が、表示部31を制御し、動画像の再生を開始させて、S302に進む。S302では、USB伝送レート判定部13が、処理判定部131の判定結果および解像度判定部132の判定結果に基づき、処理判定値X1および解像度判定値X2のそれぞれの値を設定し、S303に進む。
 S303では、ユーザは、USBケーブル45(例:USB Type-Cケーブル)によって、スマートフォン1をホスト機器1000と接続し、S304に進む。S304では、USBコントローラ12が、USBアクセスモード信号Yの値を確認する。USBアクセスモード信号Y=1である場合(YES)、S305に進む。一方、USBアクセスモード信号Y=0である場合(NO)、S306に進む。
 S305では、USBコントローラ12は、USB通信モードを第2の通信モード(USB3.1通信モード)から第1の通信モード(USB2.0通信モード)へと変更するように、ホスト機器1000とのスピードネゴシエーションを行う。そして、USBコントローラ12は、当該スピードネゴシエーションの結果、第1の通信モードによる、スマートフォン1とホスト機器1000との通信を確立し、S304に戻る。S306では、USBコントローラ12は、USB通信モードを第2の通信モードのまま継続させ、ホスト機器1000と通信し、S304に戻る。
 (USB通信中に動画再生が発生したときのUSBアクセス変更フロー)
 次に、図7の(b)は、USB通信中に動画再生が発生したときのUSBアクセス変更フローの流れを示すフローチャートである。S401では、スマートフォン1は、USB3.1(10Gbps)の速度で、USB通信を行っている(このときのUSBアクセスモード信号Y=0)として、S402に進む。
 S402では、USB伝送レート判定部13が、処理判定部131の判定結果および解像度判定部132の判定結果に基づき、処理判定値X1および解像度判定値X2のそれぞれの値を設定し、S403に進む。
 S403では、USBコントローラ12が、USBアクセスモード信号Yの値を確認する。USBアクセスモード信号Y=1である場合(YES)、S404に進む。一方、USBアクセスモード信号Y=0である場合(NO)、S405に進む。
 S404では、USBコントローラ12は、USB通信モードを第2の通信モード(USB3.1通信モード)から第1の通信モード(USB2.0通信モード)へと変更するように、ホスト機器1000とのスピードネゴシエーションを行う。そして、USBコントローラ12は、当該スピードネゴシエーションの結果、第1の通信モードによる、スマートフォン1とホスト機器1000との通信を確立し、S406に進む。
 S405では、USBコントローラ12は、USB通信モードを第2の通信モードのまま継続させ、ホスト機器1000と通信し、S406に進む。S406では、マルチメディア処理部11が、表示部31を制御し、動画像の再生を開始させて、S403に戻る。
 (実施形態2のスマートフォン1の効果)
 実施形態2のスマートフォン1によれば、USB使用メモリバンド幅を、(i)USB通信時の動画像再生の有無、および、(ii)動画像の解像度に応じて、制御できる。例えば、USB通信時に動画像再生が行われており、かつ、動画像の解像度が高い場合(つまり、USB使用メモリバンド幅が大きくなり得る場合)に、USB通信のデータ転送速度を低下させることができる。それゆえ、残余分のメモリバンド幅(所定の処理に利用可能なメモリバンド幅)を確保できるので、動画像再生の品質を確保し、USB通信時の電子機器のユーザビリティを向上させることができる。
 〔実施形態3〕
 図8は、実施形態3のスマートフォン2(電子機器)の要部の構成を示す機能ブロック図である。スマートフォン2は、実施形態1のスマートフォン1において、USB伝送レート判定部13をDP(Display port,ディスプレイポート)判定部23に置き換えた構成である。なお、実施形態1との区別のため、スマートフォン2の制御部を、制御部20(情報処理装置)と称する。
 DP判定部(動作判定部)23の構成は、USB伝送レート判定部13の構成とほぼ同じである。本実施形態では、スマートフォン2およびホスト機器1000が、USB Type-Cに対応しており、DP規格にも対応している場合を主に例示する。DP規格とは、映像出力インタフェースの規格である。DP規格については、公知であるため説明を省略する。
 USB Type-Cでは、オルタネートモード(Alternate Mode)というモードが規定されている。オルタネートモードとは、USBケーブルのデータ信号線の一部を、他のプロトコル(例:DP規格)によるデータ通信(データ送受信)に転用するモードである。オルタネートモードでは、USBポート50a・50bをDP(DP端子)として動作させることができる。なお、DPによるデータ通信を、DP通信とも称する。
 (DP判定部23)
 以下、図9および図10を参照して、DP判定部23について説明する。図9は、DP判定部23の具体的な構成を示す図である。図10の(a)~(b)はそれぞれ、スマートフォン2において用いられる各論理値の設定条件を示す図である。
 DP判定部23は、CC端子を介してホスト機器1000と通信し、ホスト機器1000の設定情報(Configuration情報)を取得することで、スマートフォン2のUSBポート50aがDPとして動作可能か否かを判定する。
 より、具体的には、DP判定部23は、ホスト機器1000の設定情報を取得することでホスト機器1000のUSBポート50bがDPとして動作可能か否かを判定する。実施形態3では、スマートフォン2のUSBポート50aはUSB Type-Cに対応しているものとする。
 DP判定部23は、DP使用時には、ホスト機器1000にどのような設定情報でDP接続可能か(圧縮・非圧縮、解像度サイズ、フレームレート、およびレーン数など)についてホスト機器1000と行うネゴシエーションを管理する部分である。本構成では、DPの設定情報は非圧縮データ、フレームレート60fpsを取り扱う設定情報は共通であるものの、解像度とレーン数については、DP判定部23によって、設定情報が変わるものとする。
 図10の(a)に示すように、処理判定部131は、DPが使用されず、動画像撮影が行われていない間は、処理判定値X1を0に設定する。一方、処理判定部131は、DPが使用され、動画像撮影が行われている間は、処理判定値X1を1に設定する。処理判定部131は、処理判定値X1を、ANDゲート133に出力する。
 図10の(b)に示すように、解像度判定部132は、動画像がFHD未満の解像度で動画像撮影が実施されているときは、解像度判定値X2を0に設定する。また、解像度判定部132は、FHD以上の大きな解像度で動画像撮影が行われているときは、解像度判定値X2を1に設定する。解像度判定部132は、解像度判定値X2を、ANDゲート133に出力する。
 次に、図9に示されるように、DP判定部23は、処理判定部131および解像度判定部132に加えて、2入力1出力のANDゲート133をさらに備えている。上述のように、ANDゲート133には、(i)処理判定部131から処理判定値X1が、(ii)解像度判定部132から解像度判定値X2が、それぞれ入力される。
 ANDゲート133は、Z=X1・X2として、DP信号Zを算出する。そして、ANDゲート133は、DP信号ZをUSBコントローラ12に出力する。DP信号Zは、DP判定部23がUSBコントローラ12を制御するための制御信号として用いられてよい。なお、DP信号Zは、制御部20の各部を制御するための制御信号として用いられてもよい。
 USBコントローラ12は、DP信号Zの値に応じて、USB通信のモード(通信モード)を切り替えてよい。つまり、USBコントローラ12は、通信モードを切り替えることにより、USB通信速度(換言すれば、USB使用メモリバンド幅)を制御してよい。
 実施形態3における通信モードには、第1の通信モードと第2の通信モードとが含まれているものとする。一例として、第1の通信モードは、2レーンしか使用できず、解像度がFHDより小さい動画像の取り扱いを行う通信モードである。また、第2の通信モードは、最大4レーンまで使用可能で、解像度がFHD以上の動画像の取り扱いが可能な通信モードである。
 USBコントローラ12は、DP信号Zの値に応じて、上記第1の通信モードまたは第2の通信モードの一方を選択してよい。例えば、USBコントローラ12は、第2の通信モードから第1の通信モードへの切り替えを行うことにより、USB通信速度を低下させてよい。あるいは、USBコントローラ12は、第1の通信モードから第2の通信モードへの切り替えを行うことにより、USB通信速度を増加させてよい。
 図10の(c)に示されるように、処理判定値X1および解像度判定値X2の両方が1である場合には、DP信号Zは1となる。USBコントローラ12は、Z=1である場合には、第1の通信モード(2レーンしか使用できず、解像度がFHDより小さい動画像の取り扱いを行う通信モード)に設定する。
 他方、処理判定値X1が1で、解像度判定値X2が0の場合、DP信号Zは0となる。このとき、USBコントローラ12は、第2の通信モード(最大4レーンまで使用可能で、解像度がFHD以上の動画像の取り扱いが可能な通信モード)に設定する。
 処理判定値X1が0で、解像度判定値X2が1の場合、または、処理判定値X1および解像度判定値X2の両方が0である場合には、DP信号Zは0となる。このとき、USBポート50aはDPとして動作させない。このため、レーン数/解像度を示す項目には、凡例「N/A」(Not Applicable)が付されている。なお、処理判定値X1=0の場合は、動画像撮影が行われず、DPは使用しないため、上記のように「N/A」として取り扱うこととしている。
 (USB接続時のDisplay Port決定フロー)
 次に、図11の(a)は、USB接続時のDisplay Port決定フローの流れを示すフローチャートである。
 S501では、マルチメディア処理部11が、撮影部30を制御し、動画像の撮影を開始させて、S502に進む。S502では、USB伝送レート判定部13が、処理判定部131の判定結果および解像度判定部132の判定結果に基づき、処理判定値X1および解像度判定値X2のそれぞれの値を設定し、S503に進む。
 S503では、ユーザは、USBケーブル45(例:USB Type-Cケーブル)によって、スマートフォン1をホスト機器1000と接続し、S504に進む。S504では、USBコントローラ12が、DP信号Zの値を確認する。DP信号Z=1である場合(YES)、S506に進む。一方、DP信号Z=0である場合(NO)、S505に進む。
 S505では、USBコントローラ12は、最大4レーンまで使用可能で、解像度がFHD以上の動画像の取り扱いが可能である旨の情報をホスト機器1000に送信し、ホスト機器1000とのネゴシエーションを行い、S504に戻る。
 S506では、2レーンしか使用できず、解像度がFHDより小さい動画像の取り扱いを行うことが可能である旨の情報をホスト機器1000に送信し、ホスト機器1000とのネゴシエーションを行い、S504に戻る。
 (DP接続中に動画像撮影が発生したときのDP設定変更フロー)
 次に、図11の(b)は、DP接続中に動画像撮影が発生したときのDP設定変更フローの流れを示すフローチャートである。
 S601では、スマートフォン1は、最大4レーンまで使用可能で、FHDの解像度でDPに接続中であるものとして、S602に進む。S602では、USB伝送レート判定部13が、処理判定部131の判定結果および解像度判定部132の判定結果に基づき、処理判定値X1および解像度判定値X2のそれぞれの値を設定し、S603に進む。
 S603では、USBコントローラ12が、DP信号Zの値を確認する。DP信号Z=1である場合(YES)、S604に進む。一方、DP信号Z=0である場合(NO)、S605に進む。
 S604では、USBコントローラ12は、現行の設定(最大4レーンまで使用可能で、解像度がFHDの動画像の取り扱いが可能な設定)でDP接続を継続し、S606に進む。
 S605では、USBコントローラ12は、2レーンしか使用できず、解像度がFHDより小さい動画像の取り扱いを行うことが可能である旨の情報をホスト機器1000に送信し、ホスト機器1000とのネゴシエーションを行い、S606に進む。S606では、マルチメディア処理部11が、撮影部30を制御し、動画像の撮影を開始させて、S603に戻る。
 (スマートフォン2の効果)
 スマートフォン2によれば、使用レーン数の変更によって、USB使用メモリバンド幅を制御できる。例えば、使用レーン数を減少させて、USB使用メモリバンド幅を低下させることができる。
 〔実施形態4〕
 スマートフォン1・2の制御ブロック(特に制御部10・20)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
 後者の場合、スマートフォン1・2は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
 〔まとめ〕
 本発明の態様1に係る情報処理装置は、USB(Universal Serial Bus)ケーブル(45)によってホスト機器(1000)と接続可能なスマートフォン(1)に設けられる情報処理装置(制御部10)であって、上記USBケーブルを介して、上記電子機器が上記ホスト機器との間の通信を行っている場合に、当該電子機器が動画像に関連する所定の処理を行っているか否かを判定する処理判定部(131)と、上記動画像の解像度を判定する解像度判定部(132)と、上記USBケーブルを介しての上記通信によって伝送可能な単位時間当たりのデータ量であるUSB通信のデータ転送速度を制御する通信制御部(USBコントローラ12)と、を備えており、上記通信制御部は、上記処理判定部の判定結果および上記解像度判定部の判定結果に応じて、上記USB通信の処理のためにシステム内で使用されるメモリバンド幅を制御する構成である。
 上記構成によれば、USB使用メモリバンド幅を、(i)USB通信時の所定の処理(例:動画像撮影、動画像再生)の有無、および、(ii)動画像の解像度に応じて、制御できる。例えば、USB通信時に動画像に関連する所定の処理が行われており、かつ、動画像の解像度が高い場合(つまり、USB使用メモリバンド幅が大きくなり得る場合)に、USB通信のデータ転送速度を低下させることができる。それゆえ、残余分のメモリバンド幅(所定の処理に利用可能なメモリバンド幅)を確保できるので、動画像に関連する処理の品質を確保し、USB通信時の電子機器のユーザビリティを向上させることができる。
 本発明の態様2に係る情報処理装置は、上記態様1において、上記解像度判定部は、上記解像度が所定の解像度以上であるか否かを判定し、上記通信制御部は、上記電子機器が上記USBケーブルを介して上記通信を行っている場合に、当該電子機器が上記所定の処理を行っており、かつ、上記解像度が所定の解像度以上である場合に、上記USB通信のデータ転送速度を低下させても良い。上記構成によれば、動画像に関連する処理の品質を確保し、USB通信時の電子機器のユーザビリティを向上させることができる。
 本発明の態様3に係る情報処理装置は、上記態様1または2において、上記所定の処理には、動画像を生成する処理が含まれていても良い。上記構成によれば、動画像を生成する処理の品質を確保し、USB通信時の電子機器のユーザビリティを向上させることができる。
 本発明の態様4に係る情報処理装置は、上記態様1~3の何れかにおいて、上記所定の処理には、動画像を再生する処理が含まれていても良い。上記構成によれば、動画像を再生する処理の品質を確保し、USB通信時の電子機器のユーザビリティを向上させることができる。
 本発明の態様5に係る情報処理装置は、上記態様1~4の何れかにおいて、上記通信制御部は、上記通信のモードである通信モードを切り替えて、上記通信の速度である通信速度を変更することにより、USB通信の処理のために、システム内で使用されるメモリバンド幅を制御しても良い。上記構成によれば、通信モードの切り替えで通信速度を変更することで、USB使用メモリバンド幅を制御できる。
 本発明の態様6に係る情報処理装置は、上記態様5において、上記通信モードには、第1の通信モードと第2の通信モードが含まれており、上記第2の通信モードは、上記第1の通信モードに比べて、上記通信速度がより速いモードであり、上記通信制御部は、上記第2の通信モードから上記第1の通信モードへの切り替えを行うことにより、上記通信速度を低下させても良い。上記構成によれば、通信モードの切り替えで通信速度を変更することで、USB使用メモリバンド幅を制御できる。
 本発明の態様7に係る情報処理装置は、上記態様1~6の何れかにおいて、上記電子機器は、上記USBケーブルの接続部としてのUSBポートを備え、上記通信制御部は、上記USBポートがディスプレイポートとして動作する場合に使用されるレーン数を変更することにより、上記ディスプレイポートの処理のためにシステム内で使用されるメモリバンド幅を制御しても良い。上記構成によれば、使用レーン数の変更によって、USB使用メモリバンド幅を制御できる。例えば、使用レーン数を減少させて、USB使用メモリバンド幅を低下させることができる。
 本発明の態様8に係る情報処理装置は、上記態様7において、上記USBポートが上記ディスプレイポートとして動作可能であるか否かを判定する動作判定部をさらに備え、上記解像度判定部は、上記解像度が所定の解像度以上であるか否かを判定し、上記通信制御部は、上記電子機器が上記USBケーブルを介して上記通信を行っている場合に、当該電子機器が上記所定の処理を行っており、上記解像度が所定の解像度以上であり、かつ、上記USBポートが上記ディスプレイポートとして動作可能である場合に、上記USBポートが上記ディスプレイポートとして動作する場合に使用されるレーン数を減少させることにより、上記ディスプレイポートの処理のためにシステム内で使用されるメモリバンド幅を低下させても良い。上記構成によれば、使用レーン数の変更によって、USB使用メモリバンド幅を制御できる。例えば、使用レーン数を減少させて、USB使用メモリバンド幅を低下させることができる。
 本発明の態様9に係る電子機器は、上記態様1~8の何れかの情報処理装置を備えていることが好ましい。上記構成によれば、上記態様1と同様の効果が得られる。
 本発明の態様10に係る情報処理装置の制御方法は、USB(Universal Serial Bus)ケーブルによってホスト機器と接続可能な電子機器に設けられる情報処理装置の制御方法であって、上記USBケーブルを介して、上記電子機器が上記ホスト機器との間の通信を行っている場合に、当該電子機器が動画像に関連する所定の処理を行っているか否かを判定する処理判定工程と、上記動画像の解像度を判定する解像度判定工程と、上記USBケーブルを介しての上記通信によって伝送可能な単位時間当たりのデータ量であるUSB通信のデータ転送速度を制御する通信制御工程と、を含んでおり、上記通信制御工程は、上記処理判定工程における判定結果および上記解像度判定工程における判定結果に応じて、上記USB通信の処理のためにシステム内で使用されるメモリバンド幅を制御する工程をさらに含んでいる方法である。上記方法によれば、上記態様1と同様の効果が得られる。
 本発明の各態様に係る情報処理装置は、コンピュータによって実現してもよく、この場合には、コンピュータを上記情報処理装置が備える各部(ソフトウェア要素)として動作させることにより上記情報処理装置をコンピュータにて実現させる情報処理装置の制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 1,2 スマートフォン(電子機器)
 10,20 制御部(情報処理装置)
 12 USBコントローラ(通信制御部)
 23 DP判定部(動作判定部)
 45 USBケーブル
 50a・50b USBポート
 131 処理判定部
 132 解像度判定部
 1000 ホスト機器
 H0 使用可能メモリバンド幅
 H2 USB使用メモリバンド幅
 H4 その他の処理に使用されるメモリバンド幅(残余分のメモリバンド幅)

Claims (11)

  1.  USB(Universal Serial Bus)ケーブルによってホスト機器と接続可能な電子機器に設けられる情報処理装置であって、
     上記USBケーブルを介して、上記電子機器が上記ホスト機器との間の通信を行っている場合に、当該電子機器が動画像に関連する所定の処理を行っているか否かを判定する処理判定部と、
     上記動画像の解像度を判定する解像度判定部と、
     上記USBケーブルを介しての上記通信によって伝送可能な単位時間当たりのデータ量であるUSB通信のデータ転送速度を制御する通信制御部と、を備えており、
     上記通信制御部は、上記処理判定部の判定結果および上記解像度判定部の判定結果に応じて、上記USB通信の処理のためにシステム内で使用されるメモリバンド幅を制御することを特徴とする情報処理装置。
  2.  上記解像度判定部は、上記解像度が所定の解像度以上であるか否かを判定し、
     上記通信制御部は、
      上記電子機器が上記USBケーブルを介して上記通信を行っている場合に、当該電子機器が上記所定の処理を行っており、かつ、
      上記解像度が所定の解像度以上である場合に、
     上記USB通信のデータ転送速度を低下させることを特徴とする請求項1に記載の情報処理装置。
  3.  上記所定の処理には、動画像を生成する処理が含まれていることを特徴とする請求項1または2に記載の情報処理装置。
  4.  上記所定の処理には、動画像を再生する処理が含まれていることを特徴とする請求項1から3のいずれか1項に記載の情報処理装置。
  5.  上記通信制御部は、上記通信のモードである通信モードを切り替えて、上記通信の速度である通信速度を変更することにより、USB通信の処理のためにシステム内で使用されるメモリバンド幅を制御することを特徴とする請求項1から4のいずれか1項に記載の情報処理装置。
  6.  上記通信モードには、第1の通信モードと第2の通信モードが含まれており、
     上記第2の通信モードは、上記第1の通信モードに比べて、上記通信速度がより速いモードであり、
     上記通信制御部は、上記第2の通信モードから上記第1の通信モードへの切り替えを行うことにより、上記通信速度を低下させることを特徴とする請求項5に記載の情報処理装置。
  7.  上記電子機器は、上記USBケーブルの接続部としてのUSBポートを備え、
     上記通信制御部は、上記USBポートがディスプレイポートとして動作する場合に使用されるレーン数を変更することにより、上記ディスプレイポートの処理のためにシステム内で使用されるメモリバンド幅を制御することを特徴とする請求項1から6のいずれか1項に記載の情報処理装置。
  8.  上記USBポートが上記ディスプレイポートとして動作可能であるか否かを判定する動作判定部をさらに備え、
     上記解像度判定部は、上記解像度が所定の解像度以上であるか否かを判定し、
     上記通信制御部は、
      上記電子機器が上記USBケーブルを介して上記通信を行っている場合に、当該電子機器が上記所定の処理を行っており、
      上記解像度が所定の解像度以上であり、かつ、
      上記USBポートが上記ディスプレイポートとして動作可能である場合に、
     上記USBポートが上記ディスプレイポートとして動作する場合に使用されるレーン数を減少させることにより、上記ディスプレイポートの処理のためにシステム内で使用されるメモリバンド幅を低下させることを特徴とする請求項7に記載の情報処理装置。
  9.  請求項1から8のいずれか1項に記載の情報処理装置を備えていることを特徴とする電子機器。
  10.  USB(Universal Serial Bus)ケーブルによってホスト機器と接続可能な電子機器に設けられる情報処理装置の制御方法であって、
     上記USBケーブルを介して、上記電子機器が上記ホスト機器との間の通信を行っている場合に、当該電子機器が動画像に関連する所定の処理を行っているか否かを判定する処理判定工程と、
     上記動画像の解像度を判定する解像度判定工程と、
     上記USBケーブルを介しての上記通信によって伝送可能な単位時間当たりのデータ量であるUSB通信のデータ転送速度を制御する通信制御工程と、を含んでおり、
     上記通信制御工程は、上記処理判定工程における判定結果および上記解像度判定工程における判定結果に応じて、上記USB通信の処理のためにシステム内で使用されるメモリバンド幅を制御する工程をさらに含んでいることを特徴とする情報処理装置の制御方法。
  11.  請求項1に記載の情報処理装置としてコンピュータを機能させるための制御プログラムであって、上記処理判定部、上記解像度判定部、および上通信制御部としてコンピュータを機能させるための制御プログラム。
PCT/JP2018/012392 2017-05-15 2018-03-27 情報処理装置、電子機器、情報処理装置の制御方法、および制御プログラム WO2018211825A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-096698 2017-05-15
JP2017096698 2017-05-15

Publications (1)

Publication Number Publication Date
WO2018211825A1 true WO2018211825A1 (ja) 2018-11-22

Family

ID=64274229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012392 WO2018211825A1 (ja) 2017-05-15 2018-03-27 情報処理装置、電子機器、情報処理装置の制御方法、および制御プログラム

Country Status (1)

Country Link
WO (1) WO2018211825A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030450A1 (ja) * 2020-08-05 2022-02-10 株式会社Medi Plus 医療映像システム及び医療映像処理装置
US20220382503A1 (en) * 2019-02-19 2022-12-01 Samsung Electronics Co., Ltd. Electronic device and display control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330831A (ja) * 2005-05-23 2006-12-07 Sharp Corp 携帯電子機器
JP2011203788A (ja) * 2010-03-24 2011-10-13 Brother Industries Ltd Usbホスト装置
WO2016112152A1 (en) * 2015-01-08 2016-07-14 Megachips Technology America Corporation Transmission device, dp source device, reception device, and dp sink device
US9575917B1 (en) * 2013-08-30 2017-02-21 Analogix Semiconductor, Inc. Protocol for digital audio-video interface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330831A (ja) * 2005-05-23 2006-12-07 Sharp Corp 携帯電子機器
JP2011203788A (ja) * 2010-03-24 2011-10-13 Brother Industries Ltd Usbホスト装置
US9575917B1 (en) * 2013-08-30 2017-02-21 Analogix Semiconductor, Inc. Protocol for digital audio-video interface
WO2016112152A1 (en) * 2015-01-08 2016-07-14 Megachips Technology America Corporation Transmission device, dp source device, reception device, and dp sink device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220382503A1 (en) * 2019-02-19 2022-12-01 Samsung Electronics Co., Ltd. Electronic device and display control method thereof
US11868671B2 (en) * 2019-02-19 2024-01-09 Samsung Electronics Co., Ltd. Electronic device and display control method thereof
WO2022030450A1 (ja) * 2020-08-05 2022-02-10 株式会社Medi Plus 医療映像システム及び医療映像処理装置
JP2022029515A (ja) * 2020-08-05 2022-02-18 株式会社Medi Plus 医療映像システム及び医療映像処理装置

Similar Documents

Publication Publication Date Title
KR102617258B1 (ko) 이미지 프로세싱 방법 및 장치
US20090231485A1 (en) Mobile Terminal Device, Dongle and External Display Device Having an Enhanced Video Display Interface
US20060181547A1 (en) Method and system for image editing in a mobile multimedia processor
JP2005051558A (ja) 送信装置、受信装置、及び送受信システム
EP1691371A2 (en) Image editor used for editing images in a mobile communication device
WO2018211825A1 (ja) 情報処理装置、電子機器、情報処理装置の制御方法、および制御プログラム
EP1691368A2 (en) An image editor with plug-in capability for editing images in a mobile communication device
CN112887608A (zh) 图像处理方法、装置、图像处理芯片和电子设备
JP2009294797A (ja) 通信デバイス、変換アダプタ、通信デバイスの制御方法
US20110316862A1 (en) Multi-Processor
US10249269B2 (en) System on chip devices and operating methods thereof
TWI610553B (zh) 影像資料傳送裝置
US10304213B2 (en) Near lossless compression scheme and system for processing high dynamic range (HDR) images
JP2007199815A (ja) メモリ制御装置およびメモリ制御方法
TWI486786B (zh) 隨著使用情境進行資料傳輸動態調整之方法與裝置及計算機程式產品
KR100663380B1 (ko) 촬상 장치 및 영상 신호 생성 방법
KR20150082812A (ko) 디스플레이장치 및 그 제어방법
US9627005B2 (en) Video processing apparatus and control method of video processing apparatus
CN113709493A (zh) 一种kvm系统的视频流数据加密装置、方法及设备
TWI600312B (zh) 顯示介面帶寬調制
US20130162757A1 (en) Image processing apparatus and image processing method
KR102324609B1 (ko) 다지점 영상회의 장치 및 그 제어 방법
US9025935B2 (en) Recording apparatus, recording method, and recording system
KR102581438B1 (ko) 무선 디스플레이 서브시스템 및 시스템-온-칩
WO2018211805A1 (ja) 情報処理装置、電子機器、情報処理装置の制御方法、および制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18801634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP