WO2018209987A1 - Vcsel阵列光源 - Google Patents

Vcsel阵列光源 Download PDF

Info

Publication number
WO2018209987A1
WO2018209987A1 PCT/CN2018/071986 CN2018071986W WO2018209987A1 WO 2018209987 A1 WO2018209987 A1 WO 2018209987A1 CN 2018071986 W CN2018071986 W CN 2018071986W WO 2018209987 A1 WO2018209987 A1 WO 2018209987A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
sub
vcsel
light source
pattern
Prior art date
Application number
PCT/CN2018/071986
Other languages
English (en)
French (fr)
Inventor
王兆民
闫敏
许星
Original Assignee
深圳奥比中光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳奥比中光科技有限公司 filed Critical 深圳奥比中光科技有限公司
Publication of WO2018209987A1 publication Critical patent/WO2018209987A1/zh
Priority to US16/415,307 priority Critical patent/US10958893B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • G02B19/0057Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode in the form of a laser diode array, e.g. laser diode bar
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0944Diffractive optical elements, e.g. gratings, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0961Lens arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/254Image signal generators using stereoscopic image cameras in combination with electromagnetic radiation sources for illuminating objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping

Definitions

  • the present invention relates to the field of optical and electronic technologies, and more particularly to a VCSEL array formed from a plurality of sub-arrays.
  • 3D imaging especially in the consumer field, will continue to impact or even replace the traditional 2D imaging technology.
  • the 3D imaging technology can also acquire the depth information of the target object, according to the depth information. Functions such as 3D scanning, scene modeling, and gesture interaction can be further implemented.
  • Depth cameras especially structured light depth cameras or TOF (time flight) depth cameras, are currently commonly used as hardware devices for 3D imaging.
  • the core component in the depth camera is a laser projection module.
  • the structure and function of the laser projection module are different according to the type of depth camera.
  • the projection module disclosed in the patent CN201610977172A is used to project a speckle pattern into a space to realize Structural light depth measurement
  • this speckle structure light depth camera is also a relatively mature and widely adopted solution.
  • optical projection modules will evolve to smaller and smaller volumes and higher performance.
  • a depth camera using a VCSEL (Vertical Cavity Surface Emitting Laser) array source will replace the edge-emitting laser emitter source because of its small size, high power, and beam concentration.
  • the VCSEL array is characterized by an arrangement on an extremely small substrate.
  • Laser projection is performed in a manner of a plurality of VCSEL light sources, such as 100 or even more VCSEL light sources disposed on a 2 mm x 2 mm semiconductor substrate.
  • the speckle pattern projected by the laser projection module requires extremely high irrelevance, which increases the design difficulty of the light source arrangement on the VCSEL array.
  • the present invention proposes a VCSEL array light source.
  • the technical problem of the present invention is solved by the following technical solutions: the solution of the present invention includes a VCSEL array light source, a pattern design method of a VCSEL array light source, a laser projection device, and a 3D imaging device.
  • the VCSEL array light source of the present invention comprises: a semiconductor substrate; a plurality of VCSEL light sources are arranged on the semiconductor substrate in a two-dimensional array; and the two-dimensional array is generated by at least one sub-array by transformation.
  • the sub-array is distributed in a regular area and/or an irregular area, and the regular area further includes a polygonal area or a circular area.
  • the VCSEL light sources in the sub-array are arranged on the semiconductor substrate in an irregular two-dimensional pattern.
  • the semiconductor substrate is comprised of a plurality of sub-substrates on which the sub-arrays of the VCSEL light source are correspondingly arranged.
  • a VCSEL array light source includes: a semiconductor substrate; a plurality of VCSEL light sources are arranged on the semiconductor substrate in a two-dimensional array; the two-dimensional array is composed of at least two sub-arrays The sub-array differs in at least one of size, distribution shape, and number of light sources.
  • the method for designing a VCSEL array light source according to the present invention includes: generating an irregularly arranged sub-array pattern; and transforming the sub-array pattern to obtain a pattern of the two-dimensional array.
  • the laser projection apparatus proposed by the present invention comprises:
  • At least one lens for receiving and concentrating a light beam emitted by the VCSEL array light source
  • a speckle pattern generator for expanding the beam to emit a speckle pattern beam into the space
  • the lens is one or a combination of a single lens, a microlens array
  • the speckle pattern generator is one or a combination of a microlens array, a DOE, and a grating.
  • the 3D imaging device proposed by the present invention includes:
  • the above laser projection device for emitting a structured light pattern beam into a space
  • An image capturing device configured to collect a structured light image formed by the structured light pattern beam on the target object
  • the processor receives the structured light image and calculates a depth image of the target object according to a trigonometric principle. among them:
  • the trigonometric principle refers to calculating a deviation value between the structured light image and a reference image by using a matching algorithm, and calculating the depth image according to the deviation value.
  • Advantageous effects of the present invention in comparison with the prior art include: a plurality of VCSEL light sources are arranged on the semiconductor substrate in a two-dimensional array, wherein the two-dimensional array is arranged by at least one sub-array to be transformed
  • the manner of generating the two-dimensional array obtained by simply transforming the sub-array has an irrelevance along the sub-areas in any direction, and the two-dimensional array corresponds to the distribution of the VCSEL light source, thereby being distributed
  • the VCSEL source on the surface of the semiconductor substrate has an extremely high degree of non-correlation.
  • FIG. 1 is a side elevational view of a structured light depth camera system in accordance with an embodiment of the present invention.
  • FIG 2 is a side view of a laser projection apparatus in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a VCSEL array in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a VCSEL array in accordance with an embodiment of the present invention.
  • Figure 5 is a schematic illustration of a VCSEL array in accordance with one embodiment of the present invention.
  • Figure 6 is a schematic illustration of a VCSEL array in accordance with one embodiment of the present invention.
  • Figure 7 is a schematic illustration of a VCSEL array in accordance with one embodiment of the present invention.
  • Figure 8 is a schematic illustration of a VCSEL array in accordance with one embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a VCSEL array in accordance with an embodiment of the present invention.
  • the invention provides a VCSEL array formed by a plurality of sub-arrays, which can be used as a light source of a laser projection device in a 3D imaging device, and a corresponding laser projection device and a 3D imaging device are proposed based on the laser array, here
  • the 3D imaging device is also called a depth camera.
  • the value on each pixel in the image of the object captured by the depth camera represents the depth value between the corresponding point in the space and the depth camera.
  • a laser array, a laser projection device, and a depth camera will be described as an example, but it does not mean that such a laser array can be applied only in a depth camera, and any other device directly or indirectly utilizes the present invention.
  • the technical solutions are all included in the scope of protection of the present invention.
  • the depth camera (3D imaging device) 101 main components are a laser projection module (equivalent to a laser projection device) 104, an acquisition module (equivalent to an image acquisition device) 105, a main board 103, and a processor 102, which are also in some depth cameras. It is equipped with an RGB camera 107.
  • the laser projection module 104, the acquisition module 105, and the RGB camera 107 are generally mounted on the same depth camera plane and at the same baseline, and each module or camera corresponds to an incoming window 108.
  • the processor 102 is integrated on the main board 103, and the laser projection module 104 and the acquisition model 105 are connected to the main board through the interface 106.
  • the interface is an FPC interface.
  • the main board may be a circuit board including a circuit, a semiconductor substrate, or a support for supporting and dissipating heat, and the like.
  • the laser projection module is configured to project the encoded structured light pattern into the target space, and the acquisition module collects the structured light image and processes the image through the processor to obtain a depth image of the target space.
  • the structured light image is an infrared laser speckle pattern, the pattern having a relatively uniform particle distribution but having a high local irrelevance, where local uncorrelation refers to a dimension along a direction in the pattern ( Generally speaking, each sub-area has a high degree of uniqueness along the direction in which the laser projection module and the acquisition module are connected.
  • the corresponding acquisition module 105 is an infrared camera corresponding to the laser projection module 104.
  • Obtaining the depth image by the processor specifically refers to obtaining the depth image by calculating the deviation value between the speckle pattern and the reference speckle pattern after receiving the speckle pattern collected by the acquisition module.
  • the laser projection module 104 includes a substrate 201, a light source 202, a lens 203, and a speckle pattern generator 204.
  • the substrate 201 is typically a semiconductor substrate, such as a wafer, on which are disposed a plurality of light sources 202, which together with the light source 202 form a laser array, such as a VCSEL array chip.
  • the light source 202 includes a plurality of sub-light sources for emitting a plurality of sub-beams, and the light source may be a visible light source, a non-visible light such as an infrared light source, or an ultraviolet light source.
  • the light source may be an edge emitting laser or a vertical cavity surface laser, in order to make the overall projection device
  • the smaller size, the optimal solution is to select the vertical cavity surface laser emitter array (VCSEL array) as the light source, and the VCSEL array also has the advantages of small light source divergence angle.
  • different kinds of VCSELs can be arranged on the same substrate, for example, the shape, size, and brightness of the VCSEL can be different. For convenience of illustration, only three sub-light sources are listed in one dimension.
  • the VCSEL array is a two-dimensional light source arranged in a fixed two-dimensional pattern.
  • the VCSEL array chip can be either a die or a packaged chip. The difference between the two is that the die has a smaller size and thickness, while the packaged chip has better stability and a more convenient connection.
  • the arrangement pattern of the VCSEL array chip is required to be an irregular pattern, that is, the light sources are not arranged in a regular array, but are arranged in a certain irregular pattern.
  • the overall size of the VCSEL array chip is only on the order of millimeters, such as 2 mm x 2 mm, with tens or even hundreds of light sources arranged thereon, the distance between each light source being on the order of microns, such as 30 [mu]m.
  • Lens 203 is used to receive the beams emitted by VCSEL array source 202 and to converge the beams.
  • the diverging VCSEL beams are collimated into parallel beams to ensure a more concentrated spot energy.
  • a microlens array MLA
  • a lens group can also be employed to achieve beam convergence.
  • the speckle pattern generator 204 is configured to receive the lens beam and outwardly emit a beam capable of forming a speckle pattern.
  • the speckle pattern generator 204 is a diffractive optical element (DOE), and the DOE functions as a beam splitting, such as When the number of light sources 202 is 100, that is, the light beam transmitted to the DOE via the lens is 100, the DOE can expand the lens beam by a certain number (for example, 200), and finally emit 20,000 beams into the space, ideally. Below you will see 20,000 spots (in some cases there will be some spots overlapping, resulting in a decrease in the number of spots).
  • any other optical element that can form a spot such as an MLA, a grating, or a combination of optical elements, can be used.
  • Lens 203 and speckle pattern generator 204 may be fabricated on the same optical element in some embodiments to achieve a reduced volume effect.
  • FIGS. 3 through 9 are schematic diagrams of light source arrangements of a VCSEL array in accordance with an embodiment of the present invention.
  • a circle or plus sign indicates where the light source is located, and is not used to indicate the actual shape and size of the light source.
  • the double line box represents the outline of the substrate.
  • dashed lines are added to the figure as separate or auxiliary lines. These dashed lines are for illustrative purposes only and do not necessarily exist in the VCSEL array.
  • the key step in triangulation to measure depth is to calculate the pixel deviation value between the speckle image and the reference speckle pattern.
  • This calculation step is performed by the depth processor (or Dedicated processing chip), the most important step in the execution of the calculation is to find the same sub-region in the speckle image and the reference speckle image according to the matching algorithm, where the sub-region refers to a fixed-size pixel region in the image. For example, 7x7, 11x11 pixels.
  • the matching algorithm requires that the patterns in the sub-areas in the baseline direction in the speckle image are different, that is, the speckle image is required to have a high degree of local irrelevance, where the baseline refers to the laser projection module 104 and the acquisition module 105. Connected.
  • the arrangement of the light sources 202 in the VCSEL array requires irregular arrangement.
  • a common solution is to randomly generate the position information of the light source 202 on the substrate 201 at the time of design.
  • the advantage is that the design idea is clear, the design is relatively simple to implement; the disadvantage is that the arrangement pattern of the light source 202 is not controllable, and it is often necessary to undergo a lot of experiments and verification to generate a relatively good irrelevant pattern, on the other hand in the chip.
  • the positioning accuracy of each spot is difficult to grasp during the manufacturing process, and VCSEL chips with regular arrangement or symmetrical characteristics are better in terms of precision and efficiency in production.
  • a plurality of light sources 202 are arranged on the substrate 201 to form a two-dimensional pattern array.
  • the pattern array it can be divided into four sub-arrays 301, 302, 303, and 304, and a dotted line is used in FIG. 305 apart.
  • the light sources in the sub-array 301 are irregularly arranged on the substrate, and have a high degree of irrelevance.
  • the arrangement pattern of the light sources in the sub-arrays 302, 303, and 304 is the same as that of the sub-array 301.
  • the sub-array forms three other sub-arrays by means of translation, and finally the four sub-arrays together form a VCSEL light source array.
  • the sub-array 302 can be viewed as being formed by translating the sub-array 301 laterally until the boundaries of the two are coincident.
  • the sub-array 303 can be viewed as being formed by longitudinally translating the sub-array 301, while the sub-array 304 can be viewed.
  • the sub-array 301 is formed by oblique translation at a 45 degree clockwise direction.
  • the overall VCSEL array is irrelevant on each sub-array, but the adjacent sub-arrays are highly correlated, and the resulting light pattern of the two-dimensional pattern is ultimately uncorrelated.
  • the performance will be lower, and several more preferred VCSEL array arrangements will be presented in the following embodiments.
  • the sub-arrays 303, 304 in FIG. 3 can also be regarded as the sub-array 302 formed by translation, but since the sub-array 302 is formed by the sub-array 301, essentially the entire VCSEL array is translated by one sub-array. produced.
  • the VCSEL array is comprised of four sub-arrays 401, 402, 403, and 404.
  • the sub-array 402 is formed by mirroring along the right side line (dashed line 405) of the sub-array 401;
  • the sub-array 403 is formed by the sub-array 401 along its lower side line (dashed line 406) by mirroring, and the sub-array 404 is passed by the sub-array 401.
  • the dotted line 407 is mirror imaged.
  • the VCSEL array is also comprised of four sub-arrays 501, 502, 503, and 504.
  • the sub-array 502 is formed by sub-array 501 rotating 90 degrees clockwise along its geometric center, or may be formed by sub-array 501 rotating 90 degrees clockwise along the lower right side.
  • a dotted line is added to each sub-array.
  • sub-arrays 503 and 504 can be formed by sub-array 501 by rotation and/or translation.
  • the sub-array 602 is reduced in size by a sub-array 601 in the lateral and longitudinal directions to a quarter of the original, and in other embodiments may also be in different directions (
  • the sub-arrays may be reduced or enlarged (reduced or enlarged, collectively referred to as scaling) by different multiples in the lateral x-direction and/or the longitudinal y-direction to obtain different sub-arrays, so that the arrangement density of the light sources in the sub-array 602 is high.
  • the other sub-arrays are all formed by the sub-array 601 by translation and/or scaling.
  • the arrangement density of the light sources in the VCSEL array is different, and the advantage is that the VCSEL light sources of different densities can be grouped and controlled, so that structured light patterns of different densities can be formed to cope with different application scenarios.
  • FIG. 7 is a schematic diagram of a VCSEL array formed by translation of a sub-array 301 in accordance with yet another embodiment of the present invention.
  • the overlapping area is half of the entire sub-array area.
  • the area indicated by 7001 in the figure is formed by sub-array 301 to the left by a certain distance, which is half the width of the bottom of sub-array 301.
  • Region 7002 is formed by sub-array 301 shifting the distance to the right.
  • each of the regions 7001, 7002, 7003, 7004 and the two-dimensional array in the marked region are combined by the left half array and the right half array of the sub-array 301.
  • This manner of translation can increase the density of the array pattern.
  • the smaller the distance of translation the greater the density.
  • FIG. 8 is a schematic diagram of a VCSEL array formed by sub-array 801 by translation (up-and-down translation, oblique translation), where the shape of the sub-array 801 is a regular hexagon, and it should be noted that if When the entire VCSEL array is square, the sub-arrays of its edge regions are only a portion of sub-array 801, such as sub-array 802.
  • FIG. 9 is a schematic diagram of another embodiment of the present invention.
  • there are two sub-arrays respectively sub-array 901 and sub-array 903.
  • sub-array 902 is formed by sub-array 901
  • sub-array 904 is formed by sub-array 903
  • sub-array 905 is formed by sub-array 903 rotated 90 degrees clockwise
  • sub-array 906 is rotated by 90 degrees counterclockwise to form a translation.
  • the number of sub-arrays for generating a two-dimensional array in a transform manner by the above several embodiments is 1 or 2, but is not limited to the above-exemplified embodiments, and the sub-array may be other numbers when the sub-array When the number of the sub-arrays is not less than 2, at least one of the size, the distribution shape, and the number of light sources of the sub-arrays is different, and these sub-arrays generate a two-dimensional array having high correlation by transforming.
  • a plurality of different sub-arrays may be directly combined, and the difference may be various, such as the overall shape, distribution shape, size, or light source distribution of the sub-array.
  • the shape, the number, and the luminescent characteristics such as the wavelength are different in at least one aspect. In this way, a variety of different application scenarios can be implemented by grouping or controlling the different sub-arrays.
  • the above embodiments are illustrative examples that are exemplified in accordance with the teachings of the present invention and do not fully represent all of the inventive concepts.
  • the VCSEL array may form more sub-arrays by one or more sub-arrays by various transformation methods, and then the sub-arrays together constitute a VCSEL array, in addition to the translation, rotation, scaling, and mirroring described in the above embodiments. It can also be in other forms, such as one-way stretching, compression, or other deformations.
  • multiple transformation modes are allowed, and the same VCSEL array includes a plurality of sub-arrays, and the sub-arrays have at least one of a translation, rotation, mirroring, and scaling relationship with each other.
  • the overlapping regions are preferably not more than half, and the spacer regions and the edges may be overlapped between the sub-arrays, so that the sub-arrays may exist between the sub-arrays. Any one or more of the three cases. It can be clearly appreciated that an increase in the variety of transformations will help to improve the overall irrelevance of the VCSEL array.
  • the shape of the sub-array and the arrangement and number of internal VCSEL sources are the key factors determining the quality of the final VCSEL array.
  • the shape of the sub-array is generally a regular shape, such as a polygonal shape such as a square or a hexagon, or a circular shape, or other irregular shapes.
  • the number of sub-arrays is not limited to the number of cases in the embodiment provided by the present invention, and there may be various forms of transformation.
  • the number of sub-arrays in a square two-dimensional array may be n 2 (n is an integer greater than or equal to 2)
  • the number of sub-arrays may be other sub-array numbers, for example, 8, 12, and the like.
  • the shape described here is an abstract summary of the arrangement of VCSEL sources in the sub-array.
  • the presence of the shape is generally not visible on the VCSEL array, ie the dashed lines are generally not marked on the VCSEL array.
  • the arrangement of the patterns in the VCSEL array conforms to the idea of the present invention and should fall within the scope of the present invention.
  • the substrate 201 described in the present invention is by default a single substrate, and in fact may have a plurality of substrates.
  • a pattern of sub-arrays is independently formed on each substrate. The advantage of this approach is that by fabricating one or several sub-arrays, the VCSEL array source with higher correlation can be produced by physically splicing the sub-array by rotation and/or translation.
  • a plurality of sub-arrays are formed by transformation by one or more sub-arrays, and the plurality of sub-arrays formed together form a VCSEL array light source, thereby ensuring that the arrangement of the VCSEL array light sources is easily realized, and at the same time ensuring a high non-array. Correlation, and because of the transformation of a few sub-arrays, greatly reduces the manufacturing difficulty of VCSEL array chips to improve manufacturing efficiency and quality.
  • the arrangement pattern of the light sources in the VCSEL chip in the embodiment shown in FIGS. 3 to 9 should be understood as a description of a similar pattern, and a design method for generating the pattern is correspondingly given, that is, First, one or more sub-arrays are generated, and then the sub-arrays are transformed to finally generate a whole pattern (ie, a two-dimensional array pattern). It is not excluded that there are other design methods to achieve the same effect as using the sub-array conversion, that is, to generate a pattern having the same characteristics as the conversion, it is understood that any other design method achieves the same effect as the conversion of the VCSEL pattern also belongs to the present invention. Within the scope of protection.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种VCSEL阵列光源、VCSEL阵列光源的图案设计方法、激光投影装置及3D成像设备。其中,VCSEL阵列光源(202),包括:半导体衬底(201);多个VCSEL阵列光源(202)以二维阵列的形式排列在半导体衬底(201)上;二维阵列由至少一个子阵列(301、302、303、304)通过变换的方式产生。

Description

VCSEL阵列光源 技术领域
本发明涉及光学及电子技术领域,特别是涉及一种由多个子阵列形成的VCSEL阵列。
背景技术
3D成像特别是应用于消费领域中的3D成像技术将不断冲击甚至取代传统的2D成像技术,3D成像技术除了拥有对目标物体进行2D成像能力之外还可以获取目标物体的深度信息,根据深度信息可以进一步实现3D扫描、场景建模、手势交互等功能。深度相机特别是结构光深度相机或TOF(时间飞行)深度相机是目前普遍被用来3D成像的硬件设备。
深度相机中的核心部件是激光投影模组,按照深度相机种类的不同,激光投影模组的结构与功能也有区别,比如专利CN201610977172A中所公开的投影模组用于向空间中投射斑点图案以实现结构光深度测量,这种斑点结构光深度相机也是目前较为成熟且广泛采用的方案。随着深度相机应用领域的不断扩展,光学投影模组将向越来越小的体积以及越来越高的性能上不断进化。
采用VCSEL(垂直腔面发射激光器)阵列光源的深度相机因为具有体积小、功率大、光束集中等优点将会取代边发射激光发射器光源,VCSEL阵列的特点是在一个极其小的基底上通过布置多个VCSEL光源的方式来进行激光投影,比如在2mmx2mm的半导体衬底上布置100甚至更多个VCSEL光源。对于结构光深度相机而言,其激光投影模组向外投射的斑点图案要求具有极高的不相关性,这一要求增加了VCSEL阵列上光源排列的设计难度。
发明内容
为了解决用于3D成像的VCSEL光源的不相关性低的问题,本发明提出一种VCSEL阵列光源。
本发明的技术问题通过以下的技术方案予以解决:本发明的解决方案包括 VCSEL阵列光源、VCSEL阵列光源的图案设计方法、激光投影装置及3D成像设备。
本发明提出的VCSEL阵列光源,包括:半导体衬底;多个VCSEL光源以二维阵列的形式排列在所述半导体衬底上;所述二维阵列由至少一个子阵列通过变换的方式产生。其中,所述子阵列分布在规则区域和/或不规则区域内,所述规则区域又包括多边形区域或圆形区域。所述变化的方式有多种,可以是平移、旋转、镜像、缩放中的一种或多种的组合。构成二维阵列的相邻的两个子阵列之间会有:部分相互重叠、存在无VCSEL光源的间隔区域、边缘重合的一种或多种情况。当所述子阵列数量不小于2时,子阵列的大小、分布形状、光源数量中的至少一个方面不同。在具体实施方式中,所述子阵列中所述VCSEL光源以不规则二维图案排列在所述半导体衬底上。另外,所述半导体衬底由多个子衬底组成,所述子衬底上相应的排列了所述VCSEL光源的所述子阵列。
类似的,还包括一种VCSEL阵列光源,其中包括:半导体衬底;多个VCSEL光源以二维阵列的形式排列在所述半导体衬底上;所述二维阵列由至少两个子阵列组合而成;所述子阵列的大小、分布形状、光源数量中的至少一个方面不同。
此外,本发明提出的VCSEL阵列光源的图案设计方法,包括:生成排列不规则的子阵列图案;变换所述子阵列图案获取所述二维阵列的图案。
同时,本发明所提出的激光投影装置,包括:
上述任一所述的VCSEL阵列光源;
至少一个透镜,用于接收且汇聚由所述VCSEL阵列光源发射的光束;
斑点图案生成器,用于将所述光束进行扩束后向空间中发射斑点图案光束;
所述透镜为单个透镜、微透镜阵列中的一种或组合;
所述斑点图案生成器为微透镜阵列、DOE、光栅中的一种或多种组合。
另外,本发明所提出的3D成像设备,包括:
上述激光投影装置,用于向空间中发射结构光图案光束;
图像采集装置,用于采集由所述结构光图案光束照射在目标物体上所形成的结构光图像;
处理器,接收所述结构光图像并根据三角法原理计算出所述目标物体的深度图像。其中:
所述三角法原理指的是利用匹配算法计算所述结构光图像与参考图像之间的偏离值,根据所述偏离值计算出所述深度图像。
本发明与现有技术对比的有益效果包括:多个VCSEL光源以二维阵列的形式排列在所述半导体衬底上,其中,所述二维阵列的排布方式是通过至少一个子阵列以变换的方式产生,以简单地变换子阵列的方式获取到的二维阵列的排布方式沿任一方向上的子区域均具有不相关性,二维阵列对应的是VCSEL光源的分布情况,从而分布在半导体衬底表面的VCSEL光源具有极高的不相关性。
附图说明
图1是本发明具体实施方式中的结构光深度相机系统的侧视图。
图2是是本发明具体实施方式中的激光投影装置的侧视图。
图3是本发明的一种实施例的VCSEL阵列的示意图。
图4是本发明的一种实施例的VCSEL阵列的示意图。
图5是本发明的一种实施例的VCSEL阵列的示意图。
图6是本发明的一种实施例的VCSEL阵列的示意图。
图7是本发明的一种实施例的VCSEL阵列的示意图。
图8是本发明的一种实施例的VCSEL阵列的示意图。
图9是本发明的一种实施例的VCSEL阵列的示意图。
具体实施方式
下面对照附图并结合优选的实施方式对本发明作进一步说明。
本发明提出一种由多个子阵列形成的VCSEL阵列,该VCSEL阵列可以用作3D成像设备中的激光投影装置的光源,同时基于这一激光阵列提出了对应的激光投影装置以及3D成像设备,这里的3D成像设备又叫深度相机,深度相机所拍摄到的物体的图像中每个像素上的值代表的是空间中对应的点距离深度相机的之间的深度值。在后面的说明中将对激光阵列、激光投影装置以及深度相机为例进行说明,但并不意味着这种激光阵列仅能应用在深度相机中,任何其他装置中凡是直接或间接利用本发明中的技术方案都应被包含在本发明的保护范围内。
图1所示的基于结构光的深度相机侧面示意图。深度相机(3D成像设备) 101主要组成部件有激光投影模组(相当于激光投影装置)104、采集模组(相当于图像采集装置)105、主板103以及处理器102,在一些深度相机中还配备了RGB相机107。激光投影模组104、采集模组105以及RGB相机107一般被安装在同一个深度相机平面上,且处于同一条基线,每个模组或相机都对应一个进光窗口108。一般地,处理器102被集成在主板103上,而激光投影模组104与采集模型105通过接口106与主板连接,在一种实施例中,所述的接口为FPC接口。主板可以是包含电路的电路板,也可以是半导体基板,又或者可以是用于支撑及散热的支架等等。其中,激光投影模组用于向目标空间中投射经编码的结构光图案,采集模组采集到该结构光图像后通过处理器的处理从而得到目标空间的深度图像。在一个实施例中,结构光图像为红外激光散斑图案,图案具有颗粒分布相对均匀但具有很高的局部不相关性,这里的局部不相关性指的是图案中沿某一个方向维度上(一般指沿着激光投影模组与采集模组连线所在的方向)各个子区域都具有较高的唯一性。对应的采集模组105为与激光投影模组104对应的红外相机。利用处理器获取深度图像具体地指接收到由采集模组采集到的散斑图案后,通过计算散斑图案与参考散斑图案之间的偏离值来进一步得到深度图像。
图2是图1中激光投影模组104的一种实施例。激光投影模组104包括衬底201、光源202、透镜203以及斑点图案生成器204。衬底201一般为半导体衬底,比如晶圆,在其上布置多个光源202,衬底201与光源202共同构成了激光阵列,例如VCSEL阵列芯片。光源202包含多个子光源用于发射多个子光束,光源可以是可见光、不可见光如红外、紫外等激光光源,光源的种类可以是边发射激光也可以是垂直腔面激光,为了使得整体的投影装置体积较小,最优的方案是选择垂直腔面激光发射器阵列(VCSEL阵列)作为光源,VCSEL阵列还具有光源发散角小等优点。另外,同一个衬底上也可布置不同种类的VCSEL,比如VCSEL的形状、大小、亮度均可以有差别。图中为了方便示意,仅在一维上列出3个子光源,事实上VCSEL阵列是以固定二维图案排列的二维光源。VCSEL阵列芯片可以是裸片也可以经过封装后的芯片,两者的区别在于,裸片拥有更小的体积和厚度,而封装芯片则具有更好的稳定性以及更方便的连接。
为了使得激光投影装置发射出的图案具有均匀、不相关等特性,要求VCSEL阵列芯片的排列图案为不规则图案,即光源并非以规则阵列排列,而是以一定的 不规则图案排列。在一些实施例中,VCSEL阵列芯片整体大小仅在毫米量级,比如2mmX2mm大小,上面排列了几十个甚至上百个光源,各个光源之间的距离处于微米量级,比如30μm。
透镜203用于接收由VCSEL阵列光源202发射的光束,并对光束进行汇聚,在一种实施例中,将发散的VCSEL光束准直成平行光束,以确保发射出的斑点能量更加集中。除了用单个透镜之外,在一个实施例中也可以采用微透镜阵列(MLA),微透镜阵列中每一个微透镜单元与每个光源202对应,也可以一个微透镜单元与多个光源202对应;在另一实施例中也可以采用透镜组来实现光束汇聚。
斑点图案生成器204用于接收透镜光束并向外发射能形成斑点图案的光束,在一种实施例中,斑点图案生成器204是衍射光学元件(DOE),DOE起到分束的作用,比如当光源202数量为100时,即经由透镜传输到DOE上的光束为100,DOE可以将透镜光束以某一数量(比如200)的倍率进行扩束,最终向空间中发射20000个光束,理想情况下将会看到有20000个斑点(在一些情况下会有一些斑点重叠的情形,导致斑点数量减少)。除了DOE之外,也可以采用其他任何可以形成斑点的光学元件,比如MLA、光栅或者多种光学元件的组合。
透镜203与斑点图案生成器204在一些实施例中可以被制作在同一个光学元件上,以达到缩小体积的效果。
图3至图9是根据本发明的实施例的VCSEL阵列的光源排列示意图。在每个图中圆圈或加号表示光源所在的位置,并不用来表示光源的实际形状及大小,双线条方框代表的是衬底的轮廓。为了便于对本发明概念的阐述,在图中还增加了一些虚线来作为分隔或辅助线,这些虚线仅用于说明,并不一定真实存在于VCSEL阵列中。
基于结构光深度相机特别是基于斑点图案的结构光而言,三角法测量深度的关键步骤是要计算斑点图像与参考斑点图案之间的像素偏离值,这一计算的步骤由深度处理器(或专用处理芯片)来执行,计算的执行过程中最重要的一步是要根据匹配算法寻找斑点图像与参考斑点图像中相同的子区域,这里的子区域指的是图像中一个固定大小的像素区域,比如7x7、11x11像素。匹配算法要求斑点图像中沿基线方向上的各个子区域内的图案均不相同,即要求斑点图像具有高度 的局部不相关性,这里的基线指的是激光投影模组104与采集模组105的连线。
为了满足局部不相关性这一要求,一般地,VCSEL阵列中光源202的排列要求不规则排列,一种常用的方案是在设计时在衬底201上随机生成光源202的位置信息,这一方案的优点在于设计思路清晰,设计执行起来较为简单;缺点在于光源202排列图案的不可控性较强,要想生成一个比较好的不相关图案往往需要经过大量的实验和验证,另一方面在芯片制造过程中对每个斑点的定位精度难以把握,往往具有一些规则排列或者对称特性的VCSEL芯片在制作时精度、效率等方面会更好。
本发明采取的设计方案可以解决上述存在的缺点或问题。图3中,多个光源202排列在衬底201上形成一个二维的图案阵列,就图案阵列的特征而言,可以被分成4个子阵列301、302、303以及304,在图3中用虚线305分开。子阵列301中光源不规则排布在衬底上,具有高度的不相关性,子阵列302、303、304中光源排列图案与子阵列301相同。因此,可以看成是将子阵列通过平移的方式形成其他三个子阵列,最终4个子阵列共同组成VCSEL光源阵列。具体地,子阵列302可以看成是将子阵列301沿横向平移直到二者边界重合而形成的,子阵列303则可以看成是将子阵列301纵向平移形成的,而子阵列304则可以看成是子阵列301沿顺时针45度斜向平移形成的。由于子阵列301的不相关性,从而导致整体VCSEL阵列在各个子阵列上是不相关的,然而相邻的子阵列却是高度相关的,这种二维图案最终形成的结构光图案的不相关性将较低,在后面的实施例中将给出几种更优的VCSEL阵列排布方案。
对于图3所示的VCSEL阵列,在设计时仅需要生成一个子阵列的图案即可,通过平移的方式就可以快速生成整个VCSEL阵列图案。另外,图3中子阵列303、304也可以看成是子阵列302通过平移形成的,但由于子阵列302是由子阵列301形成,因而本质上整个VCSEL阵列都是由一个子阵列通过平移的方式产生的。
图4所示的VCSEL阵列的另一实施例中,VCSEL阵列由4个子阵列401、402、403以及404组成。其中子阵列402是由子阵列401沿其右侧边线(虚线405)通过镜像形成;子阵列403是由子阵列401沿其下侧边线(虚线406)通过镜像形成,子阵列404是由子阵列401通过虚线407镜像而成。
图5所示的VCSEL阵列的另一实施例中,VCSEL阵列同样由4个子阵列501、 502、503以及504组成。其中子阵列502是由子阵列501沿其几何中心顺时针旋转90度后平移形成的,也可以由子阵列501沿右下侧点顺时针旋转90度形成,图5中在每个子阵列中添加了虚线以便于清晰地表明各子阵列之间的相对方向。同样地,子阵列503及504可以通过子阵列501经旋转和/或平移的方式形成。
图6是VCSEL阵列的又一实施例,不同的是子阵列602是由子阵列601沿横向及纵向将体积缩小到原本的四分之一,在其他的实施例中也可以通过沿不同的方向(比如可以是沿横向x方向和/或纵向y方向)将子阵列缩小或放大(缩小或放大可统称为缩放)不同的倍数以获取不同的子阵列,因此子阵列602中光源的排列密度要高于子阵列601,其他子阵列则全是由子阵列601通过平移和/或缩放的方式形成。这种VCSEL阵列中光源的排列密度不同,好处在于,可以将不同密度的VCSEL光源分组控制,从而可以形成不同密度的结构光图案以应对不同的应用场景。
图7是根据本发明又一实施例的示意图,VCSEL阵列是由一个子阵列301通过平移形成的。与前面几个实施例不同的是,平移后的子阵列与平移前的子阵列之间有重叠,在本实施例中重叠的区域为整个子阵列区域的一半。举例来说,图中7001所表示的区域是由子阵列301向左平移一定距离而形成的,该距离为子阵列301底部宽度的一半。区域7002则是由子阵列301向右平移该距离而形成。换句话说,图中各个区域7001、7002、7003、7004以及示标出的区域中的二维阵列均是由子阵列301的左半侧阵列与右半侧阵列组合而成。这种平移的方式可以增加阵列图案的密度,一般地,平移的距离越小,密度越大。
图8是根据本发明又一实施例的示意图,VCSEL阵列是由子阵列801通过平移(上下平移,斜向平移)形成的,这里的子阵列801的形状为正六边形,需要注意的是,若整个VCSEL阵列为方形时,其边缘区域的子阵列仅仅是子阵列801的一部分,例如子阵列802。
图9是根据本明又一实施例的示意图,与前面实施例不同的是,这里的子阵列有两个,分别是子阵列901与子阵列903。对于VCSEL阵列中的其他子阵列来说,子阵列902是由子阵列901平移形成,子阵列904是由子阵列903镜像形成,子阵列905是由子阵列903顺时针旋转90度后平移形成,子阵列906则是由子阵列903逆时针旋转90度后平移形成。
上述几种实施例的用来以变换方式产生二维阵列的子阵列的数量为1或2,但实际上并不局限于上述列举的实施例,子阵列还可以为其他的数量,当子阵列的数量不小于2时,这些子阵列的大小、分布形状、光源数量中的至少一个方面不同,这些子阵列通过变换的方式产生不相关性高的二维阵列。
另外根据本发明的另一实施例中,可以直接由多个不同的子阵列组合而成,这里所说的不同可以有多种方式,比如子阵列的整体形状、分布形状、大小或者光源分布、形状、数量、发光特性如波长等至少一个方面不同。这种方式下,可以通过对不同子阵列进行分组或整体控制来实现多种不同的应用情景。
以上实施例是根据本发明思想而举例出的几种代表性的示例,并不能完全代表本发明思想的所有内容。VCSEL阵列可以由一个或多个子阵列通过各种变换方式形成更多个子阵列,然后由这些子阵列共同构成VCSEL阵列,变换方式除了以上实施例中所述的平移、旋转、缩放、镜像之外,也可以由其他形式,比如单方向的拉伸、压缩或者其他变形等形式。在同一个VCSEL阵列中,允许有多种变换方式存在,同一个VCSEL阵列包括多个子阵列,所述子阵列相互之间至少存在平移、旋转、镜像、缩放关系中的一种或多种。另外,子阵列之间可以有部分重叠,但一般地,重叠的区域以不超过一半为宜,同时子阵列之间还可以存在无VCSEL光源的间隔区域、边缘重合,因此子阵列之间可以存在所述三种情况的任意一种或多种。可以明显意识到,变换方式种类的增加将有助于提升VCSEL阵列的整体不相关性。
子阵列的形状及内部VCSEL光源的排布方式、数量均是决定最终VCSEL阵列好坏的关键因素。子阵列的形状一般为规则形状,比如正方形、六边形等多边形形状,也可以是圆形,或者其他不规则形状等等。子阵列的数量不仅限于本发明提供的实施例中的数量情况,还可以存在多种形式的变换,例如方形二维阵列中的子阵列的数量可以为n 2(n为大于等于2的整数)个子阵列组成,也可以为其他的子阵列数量,例如8个、12个等。
需要注意的是这里所说的形状是对子阵列中VCSEL光源排列的抽象概括,在VCSEL阵列上一般是看不出该形状的存在的,即虚线一般不会被标在VCSEL阵列上。但凡是VCSEL阵列中图案的排列形状符合本发明的思想,应落入到本发明的保护范围内。
此外,本发明中所述的衬底201被默认为单个衬底,实际上也可以有多个衬底,在一种实施例中,每个衬底上独立形成一个子阵列的图案。这种方式的优点在于,通过制造一种或几种子阵列,通过对子阵列进行旋转和/或平移等变换在物理上进行拼接就可以产生具有较高不相关度的VCSEL阵列光源。
在本发明中,通过一个或多个子阵列通过变换形成多个子阵列,由形成的多个子阵列共同组成VCSEL阵列光源,即保证了VCSEL阵列光源的排列容易被实现,同时又保证了较高的不相关性,同时由于是少数几个子阵列的变换,也大大降低了VCSEL阵列芯片的制造难度,以提高制造效率与质量。
在本发明中,图3~图9所示的实施例中VCSEL芯片中光源的排列图案应理解为是对类似图案的一种描述,同时相应给出了一种生成该图案的设计方法,即首先生成一个或多个子阵列,然后对这些子阵列进行变换最终生成整幅图案(即二维阵列图案)。不排除有其他设计方法来达到与利用子阵列变换同等的效果,即产生与变换具有相同特征的图案,可以理解的是,其他任何设计方法所达到与变换同等效果的VCSEL图案也属于本发明的保护范围内。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。

Claims (12)

  1. 一种VCSEL阵列光源,其特征在于,包括:
    半导体衬底;
    多个VCSEL光源以二维阵列的形式排列在所述半导体衬底上;
    所述二维阵列由至少一个子阵列通过变换的方式产生。
  2. 如权利要求1所述的VCSEL阵列光源,其特征在于,所述子阵列分布在规则区域和/或不规则区域内。
  3. 如权利要求2所述的VCSEL阵列光源,其特征在于,所述规则区域包括多边形区域或圆形区域。
  4. 如权利要求1所述的VCSEL阵列光源,其特征在于,所述变换的方式包括:平移、旋转、镜像、缩放中的一种或多种的组合。
  5. 如权利要求1所述的VCSEL阵列光源,其特征在于,构成所述二维阵列的相邻的两个所述子阵列之间会有:部分相互重叠、存在无VCSEL光源的间隔区域、边缘重合的一种或多种情况。
  6. 如权利要求1所述的VCSEL阵列光源,其特征在于,当所述子阵列数量不小于2时,所述子阵列的大小、分布形状、光源数量中的至少一个方面不同。
  7. 如权利要求1所述的VCSEL阵列光源,其特征在于,所述子阵列中所述VCSEL光源以不规则二维图案排列在所述半导体衬底上。
  8. 如权利要求1所述的VCSEL阵列光源,其特征在于,所述半导体衬底由多个子衬底组成,所述子衬底上相应的排列了所述VCSEL光源的所述子阵列。
  9. 一种如权利要求1-8任一所述VCSEL阵列光源的图案设计方法,其特征在于,包括:生成排列不规则的子阵列图案;变换所述子阵列图案获取所述二维阵列的图案。
  10. 一种VCSEL阵列光源,其特征在于,包括:
    半导体衬底;
    多个VCSEL光源以二维阵列的形式排列在所述半导体衬底上;
    所述二维阵列由至少两个子阵列组合而成;
    所述子阵列的大小、分布形状、光源数量中的至少一个方面不同。
  11. 一种激光投影装置,其特征在于,包括:
    权利要求1~8、10任一所述的VCSEL阵列光源;
    至少一个透镜,用于接收且汇聚由所述VCSEL阵列光源发射的光束;
    斑点图案生成器,用于将所述光束进行扩束后向空间中发射斑点图案光束;
    所述透镜为单个透镜、微透镜阵列中的一种或组合;
    所述斑点图案生成器为微透镜阵列、DOE、光栅中的一种或多种组合。
  12. 一种3D成像设备,其特征在于,包括:
    权利要求11所述的激光投影装置,用于向空间中发射结构光图案光束;
    图像采集装置,用于采集由所述结构光图案光束照射在目标物体上所形成的结构光图像;
    处理器,接收所述结构光图像并根据三角法原理计算出所述目标物体的深度图像。
PCT/CN2018/071986 2017-05-15 2018-01-09 Vcsel阵列光源 WO2018209987A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/415,307 US10958893B2 (en) 2017-05-15 2019-05-17 VCSEL array light source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710340137.5 2017-05-15
CN201710340137.5A CN107026392B (zh) 2017-05-15 2017-05-15 Vcsel阵列光源

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/415,307 Continuation US10958893B2 (en) 2017-05-15 2019-05-17 VCSEL array light source

Publications (1)

Publication Number Publication Date
WO2018209987A1 true WO2018209987A1 (zh) 2018-11-22

Family

ID=59528652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071986 WO2018209987A1 (zh) 2017-05-15 2018-01-09 Vcsel阵列光源

Country Status (3)

Country Link
US (1) US10958893B2 (zh)
CN (1) CN107026392B (zh)
WO (1) WO2018209987A1 (zh)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106972347B (zh) * 2017-05-04 2019-04-09 深圳奥比中光科技有限公司 用于3d成像的激光阵列
CN107026392B (zh) * 2017-05-15 2022-12-09 奥比中光科技集团股份有限公司 Vcsel阵列光源
CN111295614A (zh) * 2017-08-28 2020-06-16 赫普塔冈微光有限公司 结构化光投射
CN109521578B (zh) * 2017-09-19 2021-02-26 奥比中光科技集团股份有限公司 深度相机
US10666020B2 (en) * 2017-09-20 2020-05-26 Lumentum Operations Llc Reconfigurable emitter array
CN107748475A (zh) 2017-11-06 2018-03-02 深圳奥比中光科技有限公司 结构光投影模组、深度相机及制造结构光投影模组的方法
CN107908064A (zh) * 2017-11-06 2018-04-13 深圳奥比中光科技有限公司 结构光投影模组、深度相机及制造结构光投影模组的方法
CN109884849B (zh) * 2017-12-06 2024-05-10 宁波舜宇光电信息有限公司 结构光投影装置及其制造方法
CN108107663A (zh) * 2018-01-23 2018-06-01 广东欧珀移动通信有限公司 激光发射器、光电设备、深度相机和电子装置
CN110161786B (zh) 2018-02-12 2021-08-31 深圳富泰宏精密工业有限公司 光投射模块、三维影像感测装置及其感测方法
TWI671550B (zh) * 2018-02-12 2019-09-11 群邁通訊股份有限公司 光投射模組、三維影像感測裝置及其感測方法
CN110196527A (zh) * 2018-02-26 2019-09-03 光宝光电(常州)有限公司 微型化结构光投射模块
CN108493767B (zh) 2018-03-12 2019-09-27 Oppo广东移动通信有限公司 激光发生器、结构光投射器、图像获取结构和电子装置
CN108594455B (zh) * 2018-03-23 2019-12-13 深圳奥比中光科技有限公司 一种结构光投影模组和深度相机
CN108594453B (zh) * 2018-03-23 2019-12-13 深圳奥比中光科技有限公司 一种结构光投影模组和深度相机
CN108490635B (zh) * 2018-03-23 2019-12-13 深圳奥比中光科技有限公司 一种结构光投影模组和深度相机
CN108594454B (zh) 2018-03-23 2019-12-13 深圳奥比中光科技有限公司 一种结构光投影模组和深度相机
CN108828887B (zh) * 2018-06-05 2023-10-24 奥比中光科技集团股份有限公司 投影仪及深度相机
TWM566819U (zh) * 2018-06-12 2018-09-11 迪鵬光電科技股份有限公司 結構光圖案投射器
CN108710215A (zh) * 2018-06-20 2018-10-26 深圳阜时科技有限公司 一种光源模组、3d成像装置、身份识别装置及电子设备
JP7118776B2 (ja) 2018-06-29 2022-08-16 キヤノン株式会社 撮像装置、画像処理方法、画像処理プログラムおよび記録媒体
CN109445239B (zh) * 2018-11-19 2024-05-24 深圳阜时科技有限公司 一种光学投影模组、感测装置及设备
CN109471323A (zh) * 2018-11-24 2019-03-15 深圳阜时科技有限公司 投影装置及其光源和设备
CN109541875B (zh) * 2018-11-24 2024-02-13 深圳阜时科技有限公司 一种光源结构、光学投影模组、感测装置及设备
CN109471322A (zh) * 2018-11-24 2019-03-15 深圳阜时科技有限公司 投影装置及其光源和设备
CN109613792A (zh) * 2018-11-24 2019-04-12 深圳阜时科技有限公司 投影装置及其光源和设备
WO2020103166A1 (zh) * 2018-11-24 2020-05-28 深圳阜时科技有限公司 一种光源结构、光学投影模组、感测装置及设备
WO2020103165A1 (zh) * 2018-11-24 2020-05-28 深圳阜时科技有限公司 一种光源结构、光学投影模组、感测装置及设备
CN109613791A (zh) * 2018-11-24 2019-04-12 深圳阜时科技有限公司 投影装置及其光源和设备
CN109541877A (zh) * 2018-11-24 2019-03-29 深圳阜时科技有限公司 一种光源结构、光学投影模组、感测装置及设备
CN109471320B (zh) * 2018-11-24 2024-04-30 深圳阜时科技有限公司 一种光源结构、光学投影模组、感测装置及设备
CN109471321A (zh) * 2018-11-24 2019-03-15 深圳阜时科技有限公司 一种光源结构、光学投影模组、感测装置及设备
CN109683440B (zh) * 2018-12-13 2024-03-29 深圳阜时科技有限公司 光学投影模组、感测装置、设备及光学投影模组组装方法
CN109683439B (zh) * 2018-12-13 2024-03-29 深圳阜时科技有限公司 光学投影模组、感测装置、设备及光学投影模组组装方法
CN113075690B (zh) * 2020-01-03 2023-04-28 华为技术有限公司 一种tof深度传感模组和图像生成方法
CN112379530B (zh) * 2020-11-24 2022-06-10 北京华捷艾米科技有限公司 深度相机的光源装置和深度相机
CN112234432B (zh) * 2020-12-09 2021-11-23 常州纵慧芯光半导体科技有限公司 一种多芯片可寻址的tof发射模组及激光器
CN113791397B (zh) * 2021-08-06 2024-04-26 Oppo广东移动通信有限公司 光发射模组、深度相机及终端
CN114371554A (zh) * 2021-12-31 2022-04-19 嘉兴驭光光电科技有限公司 用于分束的衍射光学元件及其设计方法、结构光投射器
CN116667155A (zh) * 2023-07-24 2023-08-29 深圳市速腾聚创科技有限公司 发射模组、激光发射模块和激光雷达设备
CN116774190A (zh) * 2023-08-17 2023-09-19 深圳市速腾聚创科技有限公司 发射模组、激光发射模块和激光雷达设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102494609A (zh) * 2011-11-18 2012-06-13 李志扬 一种基于激光探针阵列的三维摄影方法及装置
CN104798271A (zh) * 2012-11-29 2015-07-22 皇家飞利浦有限公司 用于向场景上投射结构化光图案的激光设备
WO2016122404A1 (en) * 2015-01-29 2016-08-04 Heptagon Micro Optics Pte. Ltd. Apparatus for producing patterned illumination
CN106406002A (zh) * 2016-10-28 2017-02-15 深圳奥比中光科技有限公司 面阵投影装置及深度相机
CN106972347A (zh) * 2017-05-04 2017-07-21 深圳奥比中光科技有限公司 用于3d成像的激光阵列
CN107026392A (zh) * 2017-05-15 2017-08-08 深圳奥比中光科技有限公司 Vcsel阵列光源
CN107039885A (zh) * 2017-05-04 2017-08-11 深圳奥比中光科技有限公司 应用于3d成像的激光阵列
CN107424188A (zh) * 2017-05-19 2017-12-01 深圳奥比中光科技有限公司 基于vcsel阵列光源的结构光投影模组
CN206908092U (zh) * 2017-05-15 2018-01-19 深圳奥比中光科技有限公司 Vcsel阵列光源、激光投影装置及3d成像设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160025993A1 (en) 2014-07-28 2016-01-28 Apple Inc. Overlapping pattern projector
CN102683337A (zh) * 2012-06-05 2012-09-19 江苏彤明车灯有限公司 大功率led阵列集成方法
WO2014102341A1 (en) * 2012-12-31 2014-07-03 Iee International Electronics & Engineering S.A. Optical system generating a structured light field from an array of light sources by meand of a refracting or reflecting light structuring element
US9268012B2 (en) * 2013-07-12 2016-02-23 Princeton Optronics Inc. 2-D planar VCSEL source for 3-D imaging
JP6180331B2 (ja) * 2013-09-06 2017-08-16 本田技研工業株式会社 燃料電池スタック
US20160072258A1 (en) * 2014-09-10 2016-03-10 Princeton Optronics Inc. High Resolution Structured Light Source
US9503708B2 (en) * 2014-11-03 2016-11-22 Aquifi, Inc. Systems and methods for reducing z-thickness and zero-order effects in depth cameras
US20160182891A1 (en) * 2014-12-22 2016-06-23 Google Inc. Integrated Camera System Having Two Dimensional Image Capture and Three Dimensional Time-of-Flight Capture With A Partitioned Field of View
CN106568396A (zh) * 2016-10-26 2017-04-19 深圳奥比中光科技有限公司 一种激光投影仪及其深度相机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102494609A (zh) * 2011-11-18 2012-06-13 李志扬 一种基于激光探针阵列的三维摄影方法及装置
CN104798271A (zh) * 2012-11-29 2015-07-22 皇家飞利浦有限公司 用于向场景上投射结构化光图案的激光设备
WO2016122404A1 (en) * 2015-01-29 2016-08-04 Heptagon Micro Optics Pte. Ltd. Apparatus for producing patterned illumination
CN106406002A (zh) * 2016-10-28 2017-02-15 深圳奥比中光科技有限公司 面阵投影装置及深度相机
CN106972347A (zh) * 2017-05-04 2017-07-21 深圳奥比中光科技有限公司 用于3d成像的激光阵列
CN107039885A (zh) * 2017-05-04 2017-08-11 深圳奥比中光科技有限公司 应用于3d成像的激光阵列
CN107026392A (zh) * 2017-05-15 2017-08-08 深圳奥比中光科技有限公司 Vcsel阵列光源
CN206908092U (zh) * 2017-05-15 2018-01-19 深圳奥比中光科技有限公司 Vcsel阵列光源、激光投影装置及3d成像设备
CN107424188A (zh) * 2017-05-19 2017-12-01 深圳奥比中光科技有限公司 基于vcsel阵列光源的结构光投影模组

Also Published As

Publication number Publication date
CN107026392B (zh) 2022-12-09
CN107026392A (zh) 2017-08-08
US10958893B2 (en) 2021-03-23
US20190273905A1 (en) 2019-09-05

Similar Documents

Publication Publication Date Title
WO2018209987A1 (zh) Vcsel阵列光源
WO2019086004A1 (zh) 结构光投影模组、深度相机及制造结构光投影模组的方法
CN107450190B (zh) 一种衍射光学元件及配制方法
CN107039885B (zh) 应用于3d成像的激光阵列
WO2018201585A1 (zh) 用于3d成像的激光阵列
US11445164B2 (en) Structured light projection module based on VCSEL array light source
US10551178B2 (en) Overlapping pattern projector
WO2019178970A1 (zh) 一种结构光投影模组和深度相机
CN107561837B (zh) 重叠图案投影仪
WO2019086003A1 (zh) 结构光投影模组、深度相机及制造结构光投影模组的方法
WO2018205355A1 (zh) 阵列激光投影装置及深度相机
CN107703641B (zh) 一种结构光投影模组和深度相机
US11543671B2 (en) Structured light projection module and depth camera
CN206908092U (zh) Vcsel阵列光源、激光投影装置及3d成像设备
CN108828887B (zh) 投影仪及深度相机
TWI756546B (zh) 結構光發射模組及應用其的深度感測設備
CN108594453B (zh) 一种结构光投影模组和深度相机
CN217085782U (zh) 一种结构光三维成像模块及深度相机
CN113950638A (zh) 基于vcsel的图案投影仪
CN216390033U (zh) 漫射照明系统以及照明系统
CN210090898U (zh) 结构光投影模组和深度相机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18801264

Country of ref document: EP

Kind code of ref document: A1