WO2019086004A1 - 结构光投影模组、深度相机及制造结构光投影模组的方法 - Google Patents

结构光投影模组、深度相机及制造结构光投影模组的方法 Download PDF

Info

Publication number
WO2019086004A1
WO2019086004A1 PCT/CN2018/113780 CN2018113780W WO2019086004A1 WO 2019086004 A1 WO2019086004 A1 WO 2019086004A1 CN 2018113780 W CN2018113780 W CN 2018113780W WO 2019086004 A1 WO2019086004 A1 WO 2019086004A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
dimensional
projection module
structured light
image
Prior art date
Application number
PCT/CN2018/113780
Other languages
English (en)
French (fr)
Inventor
黄源浩
王兆民
闫敏
许星
Original Assignee
深圳奥比中光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳奥比中光科技有限公司 filed Critical 深圳奥比中光科技有限公司
Publication of WO2019086004A1 publication Critical patent/WO2019086004A1/zh
Priority to US16/867,457 priority Critical patent/US11194171B2/en
Priority to US17/518,076 priority patent/US11828954B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/254Image signal generators using stereoscopic image cameras in combination with electromagnetic radiation sources for illuminating objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means

Definitions

  • the present application relates to a structured light projection module, a depth camera, and a method of fabricating a structured light projection module.
  • the structured light projection module is a core device in a depth camera based on structured light technology, and its main components are a light source and a diffractive optical element (DOE).
  • DOE diffractive optical element
  • a diffractive optical element (DOE) has the effect of modulating a beam of light, such as splitting an incident beam of light to produce an exit beam of a particular structured pattern.
  • a typical solution is to emit a single beam through a laser emitter and then emit a laser spot pattern through a collimating lens and a diffractive optical element. The spot pattern is collected by a corresponding camera and used to calculate a depth image of the object.
  • the intensity and distribution of the laser spot pattern affect the calculation accuracy of the depth image.
  • the zero-order diffraction problem of the diffractive optical element requires that the intensity should not be too high to avoid the laser safety problem.
  • the patent document CN2008801199119 proposes to solve the zero-order diffraction problem by using the two-piece DOE. .
  • the distribution density and uncorrelation of the laser spot pattern also affect the calculation accuracy.
  • the uncorrelation of the speckle pattern can be improved by unifying the DOE by projecting an irregular speckle pattern. For the distribution density of the speckle pattern, the density will affect the calculation accuracy and resolution.
  • the traditional edge-emitting light source can provide sufficient optical power, it is difficult to be applied to the micro-structured light projection module due to its large divergence angle, large volume, high power consumption, and vertical cavity surface laser emitter (VCSEL). Due to its small size, small divergence angle, and low power consumption, it will become the main choice for light sources in micro-structured light projection modules.
  • VCSEL vertical cavity surface laser emitter
  • a VCSEL array chip composed of a plurality of VCSELs is used as a light source, which is projected by a DOE diffusion to a target space to form a structured light pattern, such as a speckle pattern, requiring randomness (irrelation) of the speckle pattern while at the same time
  • the distribution is uniform, that is, the spot density distribution is uniform to improve the calculation accuracy of the depth image.
  • the uneven distribution of the density of the speckle pattern There are various reasons for the uneven distribution of the density of the speckle pattern.
  • One is due to the diffraction property of the DOE itself, that is, as the diffraction angle increases (or the diffraction order increases), the distribution density of the speckle gradually decreases;
  • One is that when the light source is composed of a plurality of sub-light sources, when the DOE performs synchronous diffraction on the plurality of sub-light sources, the arrangement of the sub-spot patterns formed by the respective sub-light sources is likely to cause uneven density distribution.
  • the VCSEL array chip has many advantages, the disadvantage is that the speckle pattern projected by the structured light projection module can be regarded as a combination of sub-spot patterns projected by each VCSEL, and the combined form is formed by the VCSEL array chip.
  • the arrangement of each sub-light source is determined. Therefore, the arrangement of the VCSEL array chip and the sub-spot pattern are designed to be randomly arranged to ensure that the final speckle pattern is irrelevant.
  • the arrangement of the VCSEL array chip and the randomness of the sub-spot pattern all reduce the uniformity of the final projected speckle pattern.
  • the main purpose of the present application is to provide a structured light projection module, a depth camera having the structured light projection module, and a method of manufacturing the structured light projection module.
  • a structured light projection module comprising: a light source comprising a plurality of sub-light sources arranged in a two-dimensional array for emitting a two-dimensional patterned light beam corresponding to the two-dimensional array; and a lens for receiving and concentrating the two-dimensional pattern a diffractive optical element that receives the two-dimensionally patterned light beam that is emitted after being concentrated by the lens, and projects a speckle patterned beam;
  • the speckle pattern includes a plurality of image patterns corresponding to the two-dimensional pattern, The relationship between adjacent ones of the plurality of image patterns includes at least two of overlap, contiguous, and spaced relationship.
  • the spacing relationship refers to an average spacing between adjacent image patterns that is greater than or equal to an average spacing between spots in the image pattern.
  • the average pitch between adjacent image patterns is 1 to 3 times the average pitch between the spots in the image pattern.
  • the light source is a VCSEL array light source.
  • the two-dimensional pattern is an irregularly distributed pattern.
  • the image pattern is in a centrally symmetric relationship with the two-dimensional pattern.
  • the speckle pattern is composed of a plurality of image patterns corresponding to the two-dimensional pattern in an irregular arrangement.
  • the present application further provides a depth camera, comprising: the structured light projection module as described above, for projecting a speckled patterned light beam to a target; and an acquisition module for collecting the speckle pattern on the target;
  • the processor receives the speckle pattern and performs a depth calculation to obtain a depth image of the target.
  • the matching window size selected in the speckle pattern in the depth calculation is not less than the gap size.
  • the baseline between the structural projection module and the acquisition module is not parallel to either of the image pattern and/or the speckle pattern.
  • the present application also provides a method of fabricating a structured light projection module, comprising: providing a substrate, the material of which is copper or ceramic; and providing a light source above the substrate, the light source comprising a plurality of sub-arrays arranged in a two-dimensional array a light source for emitting a two-dimensional patterned beam corresponding to the two-dimensional array; a lens disposed above the substrate to receive and converge the two-dimensional patterned beam; and a diffractive optical element disposed above the substrate to Receiving the two-dimensional patterned light beam emitted after being concentrated by the lens, and projecting a speckle patterned light beam; wherein the speckle pattern includes a plurality of image patterns corresponding to the two-dimensional pattern, the plurality of image patterns
  • the relationship between adjacent image patterns in at least includes two of overlap, contiguous, and spaced relationship.
  • the spacing relationship refers to an average spacing between adjacent image patterns that is greater than or equal to an average spacing between spots in the image pattern.
  • the average spacing between the adjacent image patterns is between 1 and 3 times the average spacing between the spots in the image pattern.
  • the light source is a vertical cavity surface emitting laser VCSEL array light source.
  • the two-dimensional pattern is an irregularly distributed pattern.
  • the image pattern is in a centrally symmetric relationship with the two-dimensional pattern.
  • the speckle pattern is composed of a plurality of image patterns corresponding to the two-dimensional pattern in an irregular arrangement.
  • the present application provides a structured light projection module that projects a speckle pattern including a plurality of image patterns corresponding to a pattern of light source arrays, and at least two of the adjacent image patterns have a gap, a contiguous, and an overlap. .
  • the speckle pattern distribution projected by the present application has higher irrelevance, and the depth camera based on the structured light projection module can realize high-precision three-dimensional measurement.
  • Figure 1 is a schematic diagram of a depth camera based on structured light technology.
  • FIG. 2 is a schematic diagram of a single beam forming a speckle pattern after passing through a DOE.
  • FIG. 3 is a schematic diagram of a structured light projection module in accordance with an embodiment of the present application, with no overlap between image patterns 361, 362, and 363.
  • FIG. 4 is a schematic diagram of a structured light projection module in accordance with an embodiment of the present application, with overlapping patterns 461, 462, and 463.
  • FIG. 5 is a schematic diagram of a structured light projection module according to an embodiment of the present application, and the lens 51 is a microlens array.
  • FIG. 6 is a schematic diagram of an image pattern in which an image pattern is composed of spots of the same diffraction order corresponding to a plurality of sub-light sources, in accordance with an embodiment of the present application.
  • FIG. 7 is a speckle pattern formed on a plane of distance D after a single beam of light is incident on a DOE, the different spots representing different diffraction orders, in accordance with an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the center of an image pattern corresponding to different diffraction orders being coincident with each spot in FIG. 7 to thereby form a final spot pattern, in accordance with an embodiment of the present application.
  • FIG 9 is a speckle pattern formed on a plane of distance D after a single beam of light is incident on a DOE according to an embodiment of the present application, the speckle pattern having a certain random arrangement.
  • Figure 10 is a schematic diagram of the center of the image pattern corresponding to different diffraction orders being coincident with the respective spots in Figure 9, in accordance with one embodiment of the present application, thereby forming a final spot pattern.
  • Figure 11 is a schematic illustration of a speckle pattern with regular gaps in accordance with one embodiment of the present application.
  • Figure 12 is a schematic illustration of a speckle pattern having irregular gaps in accordance with one embodiment of the present application.
  • Figure 13 is a schematic illustration of a rotating speckle pattern in accordance with one embodiment of the present application.
  • FIG. 14 is a schematic flow chart of a method of fabricating a structured light projection module according to an embodiment of the present application.
  • Figure 1 is a schematic diagram of a depth camera based on structured light technology.
  • the depth camera comprises a structured light projection module 11 and an acquisition module 12, wherein the structured light projection module is configured to project a structured light pattern into the space projection area A, and the acquisition module is configured to collect the structured light image on the object in the collection area B.
  • the projection area A is not lower than the collection area B, thereby ensuring that objects in the collection area corresponding to the acquisition module can be covered by the structured light pattern.
  • the depth camera further includes a processor for receiving the structured light image collected by the acquisition module and performing depth calculation thereon to obtain the depth image.
  • the depth calculation generally calculates the deviation between the acquired current structured light image and the pre-acquired and saved reference structured light image to obtain the deviation value of the pixel in the current structured light image relative to the corresponding pixel in the reference structured light image, based on the deviation value. It is possible to calculate the depth value.
  • the depth values of a plurality of pixels constitute a depth image.
  • the deviation value here generally refers to the deviation value along the baseline direction. Therefore, it is generally required that the structured light image has a very high irrelevance along the baseline direction to prevent mismatching.
  • the structured light projection module is used to project an infrared speckle pattern
  • the acquisition module is a corresponding infrared camera
  • the processor is a dedicated SOC chip.
  • a depth camera is integrated as an embedded device to other computing terminals, such as computers, tablets, mobile phones, televisions, game consoles, IoT devices, etc.
  • the functions implemented by the processors described above may be implemented by processors or applications within the terminals.
  • the depth calculation function is stored in the memory in the form of a software module, and is called by a processor in the terminal to implement depth calculation.
  • the structured light projection module is mainly composed of a VCSEL array chip, a lens and a DOE.
  • the light source chip is condensed by the lens and modulated by the DOE to emit a structured light pattern, such as a speckle pattern, into the space.
  • Figure 2 is a schematic illustration of the formation of a speckle pattern after a single beam passes through the DOE.
  • the beam 21 is perpendicularly incident on the DOE 22, and after diffraction, the speckle pattern 24 is projected onto the plane of the distance D, so that the plane where the DOE is located is the xoy plane, and the direction of the optical axis is the z-direction.
  • the structured light projection module 11 is assumed.
  • the direction of the connection between the acquisition modules 12 is parallel to the x-direction, and in some embodiments, the baseline direction can be any other direction.
  • the area formed by the speckle pattern is 23, which refers to the smallest rectangular area 23 which may contain all the spots 24, and the adjacent sides of the rectangular area 23 are respectively parallel to the x and y axes, and each side has at least one spot, generally Ground, the diffraction order of the spot is the highest number along the direction.
  • the angles formed by the four sides of the rectangular region are ⁇ xa , ⁇ xb , ⁇ ya , ⁇ yb , centered on the optical axis, and the four angles can be used to represent the DOE 22
  • the diffraction divergence angle also defines the angular extent of the diffraction spot pattern region 23 after the beam 21 passes through the DOE 22.
  • each spot 24 within the spotted area 24 is determined by the diffraction equation:
  • ⁇ x and ⁇ y respectively represent diffraction angles in the x and y directions
  • m x and m x respectively represent diffraction orders in the x and y directions
  • refers to the wavelength of the light beam 21
  • P x P y refers to the period of the DOE 22 in the x, y direction, that is, the size of the basic unit.
  • the arrangement of the speckle patterns 24 depends on the diffraction angle of the various diffraction order beams of the DOE, which is determined by the performance of the DOE itself.
  • Figure 2 shows the situation when the beam is incident perpendicularly to the DOE. It can be understood that when the beam is incident at an angle, the diffraction region 23 is offset from normal incidence; in addition, when the single source uses multiple sub-sources In the case of substitution, if a VCSEL array chip is used, the formed diffraction region can be regarded as a combination of sub-diffraction regions formed by individual single beams.
  • the structured light projection module includes an array 31 (such as a VCSEL array chip) composed of a plurality of light sources, a lens 32, and a DOE 33.
  • an array 31 such as a VCSEL array chip
  • sub-light sources sub-light source 1, sub-light source 2 and sub-light source 3 from bottom to top in the figure
  • the light source The number can reach tens or even tens of thousands.
  • the light source can also be arranged in two dimensions. The arrangement can be regular or irregular. In the following description, only the one-dimensional rule arrangement is described. Other cases are also applicable to the following. instruction of.
  • the light beam emitted by the array of light sources 31 may form a patterned light beam corresponding to the light source arrangement.
  • the patterned light beam is concentrated by the lens 32 and then incident on the DOE 33.
  • the DOE 33 projects a spot patterned light beam into the space, and the patterned light beam is incident on the DOE 33.
  • a speckle pattern will be projected on the plane of distance D. Convergence here refers to the fact that the incident beam of a certain divergence angle of the lens is concentrated and then emitted at a smaller divergence angle.
  • the sub-light source 31 has a pitch of n x , and the sub-light source has a size of s x .
  • the pitch can be represented by n(n x , n y ).
  • the size of the sub-light source is s. (s x , s y ), the distance between the source 31 and the DOE 33 is d, and in some embodiments, d is approximately equal to the focal length of the lens 32.
  • Lens 32 may be a single lens or a combination of lenses comprising a plurality of lenses, in some embodiments for collimating the beam emitted by source 31.
  • the respective sub-light sources can adopt non-correlated light sources, in this case, the interference effects of the respective sub-light sources can be neglected, so that the beams emitted by the sub-light sources 1, 2, 3 form the sub-spot patterns 351, 352 respectively after passing through the DOE 33.
  • the final speckle pattern is formed by combining the sub-spot patterns 351, 352, and 353.
  • each The sub-spot patterns overlap each other.
  • the diffraction divergence angle of the DOE 33 may be set to adjust the degree of overlap.
  • each sub-spot pattern is composed of three spots (only for illustrative purposes, and may actually have any number of spots, and may be two-dimensionally distributed), corresponding to -1, 0, and 1 order diffracted beams, respectively.
  • the spot will move with the following relationship:
  • the spot pattern formed by a certain sub-light source can be regarded as a speckle pattern formed by the translation of other sub-light sources, and the relationship between the distance between the diffraction spots of the corresponding series in the two sub-spot patterns and the distance between the two sub-light sources. Determined by the above formula.
  • the size of the regions (361, 362, and 363, which are represented by rectangular dashed lines in the figure) in which the spots of the same diffraction order corresponding to the plurality of sub-light sources are combined, and the pitch of the spots in the region can be calculated by the following formula:
  • N x n x D/d (4)
  • S x and N x respectively represent the size of the region composed of the same series of spots and the pitch of the spots in the region. It can be seen from the above formula that the relationship between the size of the region and the distance between the spots in the region and the size of the light source 31 and the pitch of the sub-light sources is consistent with the lens pinhole imaging model. Therefore, the regions 361, 362, and 363 can be regarded as the light source 31.
  • the image that is made. That is, the finally projected diffracted beam is a combination of patterned beams emitted by a plurality of light sources.
  • the speckle pattern finally formed on the plane 34 is a combination of image patterns of a plurality of light source array patterns.
  • there may be overlap between image patterns such as in the embodiment shown in FIG. 4, there is an overlap between image patterns 461, 462, and 463.
  • One of the factors that distinguish whether the patterns overlap is the spacing M x between the diffraction spots of adjacent series, which is determined by the performance of the DOE itself.
  • the image pattern and the light source array pattern can be either a centrally symmetric imaging relationship, or other imaging relationships can be realized by designing the lens, such as the same (for example, a replica between the patterns is formed). Relationship), mirroring (for example, the relationship between mirrors that form an axisymmetric mirror), and rotation (for example, there is a certain angle of rotation between patterns, such as 30 degrees, 45 degrees, 60 degrees, or other suitable Angle) and so on.
  • the light source is distributed near the optical axis of the lens. Therefore, the center of the beam after the sub-light source far from the optical axis is concentrated by the lens will no longer be parallel to the optical axis. This deviation will cause the image pattern away from the optical axis to be distorted, making the overall spot pattern density uneven. Therefore, on the one hand, the unevenness can be eliminated as much as possible by making the size of the light source small, and on the other hand, by changing the lens form, for example, in the embodiment shown in FIG. 5, the lens 51 is a microlens array, This also reduces the distortion of the image pattern. It is to be noted that although the distortion is small in the embodiment shown in Fig. 5, the diffraction angle of the whole is smaller than that of the examples of Figs. 3 and 4.
  • the more important influencing factors are the arrangement spacing of the light sources and the performance of the DOE (the spacing between the different diffraction level spots). Only when certain mutual constraints are met can the final result be made.
  • the spot pattern has a uniform density distribution. The details will be described below.
  • the speckle pattern projected by the structured light projection module can be regarded as a combination of sub-spot patterns formed by diffraction of a plurality of sub-light sources respectively, or can be regarded as It is a combination of image patterns in which a plurality of light sources are arranged in a pattern.
  • the present application will adopt the latter to explain.
  • the description is continued by selecting a plane that is far from the DOE distance D and a two-dimensional light source that is regularly arranged.
  • the size of the light source array is s(s x , s y ), and the spacing of the sub-light sources is n(n x , n y ), so the image pattern size formed on the plane of distance D is S(S x , S y )
  • the spot spacing in the pattern is N(N x , N y ), as shown in Figure 6, and has the following relationship:
  • the speckle pattern finally formed on the plane of the distance D is formed by arranging a plurality of image patterns at a certain pitch, where the pitch refers to the spacing between the different diffraction order spots after DOE diffraction, and thus the density distribution of the speckle pattern. It is determined by the spot distribution and spacing of the image.
  • Figure 6 is a schematic diagram of a pattern, the size of which is S(S x , S y ), and the average spot spacing in the pattern is N(N x , N y ). It can be understood that in the present embodiment, the light source is two.
  • the dimensional arrangement may be an irregular two-dimensional arrangement; FIG.
  • the spot pattern finally formed by the structured light projection module can be regarded as being combined by the image pattern shown in FIG. 6 according to the arrangement shown in FIG. 7.
  • One combination method is to center the image pattern and each of FIG. The spots are coincident, thereby forming a final speckle pattern, as shown in the combined schematic shown in FIG.
  • Fig. 7 corresponds to the DOE diffraction performance.
  • the arrangement in Fig. 7 is regularly arranged, and the resulting speckle pattern as shown in Fig. 8 is in a partial region (single The image pattern area has a higher randomness, but if the image pattern is regarded as a unit, the overall spot pattern can still be regarded as a regular arrangement. It can be understood that the overall speckle pattern is less correlated, because any small area in a single copy area can find multiple spot arrangements in the x direction or other directions.
  • FIG. 9 is a schematic diagram of a pattern generated by a single beam via DOE in accordance with an embodiment of the present application.
  • the arrangement here adds some randomness to the rules, thereby increasing the degree of irrelevance.
  • the average spot spacing in Figure 9 is nearly constant relative to the embodiment shown in Figure 7.
  • Fig. 10 is a speckle pattern formed by combining the image patterns shown in Fig. 6 in the manner shown in Fig. 9.
  • the degree of irrelevance of the speckle pattern in the present embodiment is improved.
  • the distribution of spots in the pattern is dense, and the random arrangement is such that there are gaps (gap), contiguous or overlapping between adjacent image patterns. Since there are three connection modes at the same time, the distribution density of the speckle pattern is lowered with respect to the uniformity shown in FIG. 8, and the problem of spot coincidence is likely to occur. It can be understood that increasing the randomness can increase the gap or overlap between adjacent image patterns, and the unevenness is also increased. In addition, due to randomness, there may be only two of the three cases of gaps, contiguous or overlapping between adjacent image patterns.
  • FIG. 11 is a schematic diagram of a regular gap speckle pattern according to an embodiment of the present application. Compared with FIG. 8 , there is a significant spacing between adjacent image patterns in the speckle pattern provided in FIG. 11 , thereby increasing the area of the speckle pattern. That is to raise the angle of view.
  • FIG. 12 is a schematic diagram of a speckle pattern having irregular gaps according to an embodiment of the present application.
  • the average spacing between adjacent image patterns is larger and the randomness is higher, so that adjacent image patterns have a spacing relationship (or The adjacent pattern is said to be in a spaced state, whereby the degree of disassociation can be further improved, and in addition, the spot coincidence problem is solved and the angle of view is improved as compared with the embodiment of FIGS. 8 and 10.
  • adjacent image patterns have a spacing relationship
  • the boundary of the adjacent image pattern in other words, the spacing relationship is the design goal of the projection module, and is intended to make adjacent image patterns not adjacent to each other (adjacent means that the gap between the image patterns is not obvious, such as phase
  • adjacent means that the gap between the image patterns is not obvious, such as phase
  • the edge spots of the adjacent image pattern overlap, or the edge spot pitch between adjacent image patterns is similar to the internal spot pitch of the image pattern, or there is partial overlap between adjacent image patterns. In general, due to the existence of randomness, the spacing between image patterns cannot be equal.
  • the average value of the image pattern spacing is not less than the average spacing of the spots in the image pattern, as shown in FIG. 11 or FIG.
  • the illustrated speckle pattern with significant gaps ie G > N.
  • a small amount of adjacent image patterns may deviate from the design target and cause a small amount of overlap or abutment. This process error is within the scope of the present application. Permitted, it does not mean that the technical solution of the present application must unconditionally exclude such errors, as long as the overall image pattern can have a sufficiently clear gap from the overall global.
  • the selection of the matching window generally requires consideration of the size of the gap when performing depth calculation based on the speckle pattern. Theoretically, the size of the matching window in the same direction is not less than the size of the gap.
  • the square shape of the pattern and the overall shape of the finally formed speckle pattern are substantially aligned with the x and y axes, respectively (ie, the two sides of the square are parallel to the x and y axes, respectively), and the structured light
  • the baseline of the projection module and the acquisition module is the x direction.
  • the shape of the speckle pattern may be rotated such that the baseline is not parallel to either side of the speckle pattern and/or the image pattern, ie, such that the speckle pattern and/or the image pattern A certain angle is formed between the edge parallel to the baseline direction and the baseline, thereby further improving the degree of uncorrelation of the speckle pattern along the baseline direction to improve the accuracy of the depth calculation.
  • Fig. 13 is a schematic view showing the rotation of the speckle pattern. It has been verified that in order to ensure that the speckle pattern is to fill the field of view of the entire acquisition module, the angle should not be too large, preferably, the angle is 2 to 10 degrees.
  • the side of the speckle pattern referred to herein is not a straight side, and it can be understood as a general direction of the pattern arrangement in the speckle pattern. It will also be appreciated that the manner of rotation herein is applicable to the context of all of the foregoing embodiments of the present application.
  • the present application also provides a method of fabricating a structured light projection module. As shown in FIG. 14, the method includes steps 1410 - 1440.
  • a substrate is provided.
  • the material of the substrate is copper or ceramic.
  • a light source is placed over the substrate.
  • the light source includes a plurality of sub-light sources arranged in a two-dimensional array for emitting a two-dimensional patterned beam corresponding to the two-dimensional array.
  • step 1430 a lens is placed over the substrate to receive and converge the two-dimensional patterned beam.
  • a diffractive optical element is disposed over the substrate to receive the two-dimensionally patterned beam emerging after convergence of the lens and to project a speckle patterned beam.
  • the spot pattern includes a plurality of image patterns corresponding to the two-dimensional pattern, and a relationship between adjacent ones of the plurality of image patterns includes at least two of overlapping, adjoining, and spaced relationship.
  • the structured light projection module manufactured by the embodiment of the present application can project a speckle pattern including a plurality of image patterns corresponding to the light source array pattern, and the adjacent image patterns are spaced apart from each other.
  • the speckle pattern distribution projected by the structured light projection module manufactured by the embodiment of the present application has higher irrelevance, and the depth camera based on the structured light projection module can realize high precision three-dimensional measuring.
  • the substrate of the structured light projection module does not use a conventional semiconductor substrate, but uses a copper or ceramic substrate, which can improve the heat dissipation performance of the entire structured light projection module compared with the semiconductor substrate.
  • the spacing relationship refers to an average spacing between adjacent image patterns that is greater than or equal to an average spacing between spots in the image pattern.
  • the average spacing between the adjacent image patterns is between 1 and 3 times the average spacing between the spots in the image pattern.
  • the light source is a vertical cavity surface emitting laser VCSEL array light source.
  • the two-dimensional pattern is an irregularly distributed pattern.
  • the image pattern is in a centrally symmetric relationship with the two-dimensional pattern.
  • the speckle pattern is composed of a plurality of image patterns corresponding to the two-dimensional pattern in an irregular arrangement.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Projection Apparatus (AREA)

Abstract

一种结构光投影模组、深度相机以及制造结构光投影模组的方法,结构光投影模组包括:光源(31),包括布置成二维阵列的多个子光源,用于发射与二维阵列对应的二维图案化光束;透镜(32),接收并汇聚二维图案化光束;衍射光学元件(33),接收经透镜(32)汇聚后出射的二维图案化光束,并投射出斑点图案化光束;斑点图案包括与二维图案对应的多个像图案,多个像图案中的相邻的像图案之间的关系至少包括重叠、毗连以及间隔关系中的两种。结构光投影模组能够投影出具有较高不相关度的斑点图案。

Description

结构光投影模组、深度相机及制造结构光投影模组的方法 技术领域
本申请涉及一种结构光投影模组、深度相机以及制造结构光投影模组的方法。
背景技术
3D成像技术是新一代人机交互技术的核心,随着移动终端设备对3D成像技术的硬性需求,深度相机将会被广泛应用于移动终端设备中,这也使得深度相机正朝着低功耗、高性能、小体积的方向发展。结构光投影模组是基于结构光技术的深度相机中的核心设备,其主要组成部分为光源以及衍射光学元件(DOE)。衍射光学元件(DOE)具有对光束进行调制的作用,比如将入射的光束进行分束以产生特定结构化图案的出射光束。一种典型的方案是通过激光发射器发射出单光束后经准直透镜以及衍射光学元件从而向外发射出激光斑点图案,该斑点图案被相应的相机采集后用来计算物体的深度图像。
激光斑点图案的强度、分布等因素会影响到深度图像的计算精度。强度越高会提高图案的对比度从而提高计算精度,然而衍射光学元件的零级衍射问题要求强度不能过高以避免发生激光安全问题,专利文献CN2008801199119中提出了利用双片DOE来解决零级衍射问题。激光斑点图案的分布密度以及不相关度也会影响到计算精度,斑点图案的不相关度可以通过对DOE进行设计以投影出不规则斑点图案来提高其不相关度。对于斑点图案的分布密度而言,密度的大小会影响到计算精度以及分辨率,更为重要的是,密度分布是否均匀将直接影响到整个视场中各个点的深度计算是否具有较为统一的精度,对于密度分布不均匀的斑点图案而言,在被空间中三维物体进一步调制后其分布不均匀程度将为加剧,导致最终的深度计算精度下降。
传统的边发射光源尽管能提供足够的光功率,但由于其发散角大、体积大、功耗高等特点,难以被应用到微型结构光投影模组中,而垂直腔面激光发射器(VCSEL)由于其体积小、发散角小、功耗低等特点将成为微型结构光投影模组中光源的主要选择。一般地,采用由多个VCSEL组成的VCSEL阵列芯片作为光源,其通过DOE扩散投影至目标空间以形成结构光图案,比如斑 点图案,要求斑点图案具备随机性(不相关性),同时尽可能的分布均匀,即斑点密度分布均匀以提高深度图像的计算精度。
导致斑点图案密度分布不均的原因有多种,一种是由于DOE自身衍射性质决定,即随着其衍射角度的增大(或者说衍射级的增加),光斑的分布密度会逐渐降低;另一种是当光源由多个子光源组成时,DOE在将多个子光源进行同步衍射时,各个子光源所形成的子斑点图案共同排列容易导致密度分布不均。
采用VCSEL阵列芯片虽然有诸多好处,但不利之处在于,结构光投影模组投影出的斑点图案可以看成是每个VCSEL所投影的子斑点图案组合而成,组合的形式由VCSEL阵列芯片上各个子光源的排列方式决定,因此将VCSEL阵列芯片的排列以及子斑点图案都设计成随机排列即能保证最终的斑点图案具备不相关性。然而,要想提高计算精度,即保证斑点密度分布均匀这方面而言,VCSEL阵列芯片的排列以及子斑点图案的随机性都会降低最终投影的斑点图案的均匀性。
因此,如何既能保证斑点图案具备高度不相关性,同时保证斑点密度分布尽可能均匀是目前微型结构光投影模组设计所面临的问题。
发明内容
本申请的主要目的在于针对现有技术的不足,提供一种结构光投影模组、具有该结构光投影模组的深度相机以及制造该结构光投影模组的方法。
为实现上述目的,本申请采用以下技术方案:
一种结构光投影模组,包括:光源,包括布置成二维阵列的多个子光源,用于发射与所述二维阵列对应的二维图案化光束;透镜,接收并汇聚所述二维图案化光束;衍射光学元件,接收经所述透镜汇聚后出射的所述二维图案化光束,并投射出斑点图案化光束;所述斑点图案包括与所述二维图案对应的多个像图案,所述多个像图案中的相邻的像图案之间的关系至少包括重叠、毗连以及间隔关系中的两种。
在一些实施例中,所述间隔关系指的是相邻的所述像图案之间的平均间距大于或等于所述像图案中斑点之间的平均间距。相邻的所述像图案之间的平均间距是所述像图案中斑点之间平均间距的1至3倍。
在一些实施例中,所述光源为VCSEL阵列光源。
在一些实施例中,所述二维图案为不规则分布图案。
在一些实施例中,所述像图案与所述二维图案为中心对称关系。
在一些实施例中,所述斑点图案由与所述二维图案对应的多个像图案以不规则排列方式组成。
本申请还提供一种深度相机,包括:如上述所述的结构光投影模组,用于向目标投影出斑点图案化光束;采集模组,用于采集所述目标上的所述斑点图案;处理器,接收所述斑点图案并进行深度计算以获取所述目标的深度图像。
在一些实施例中,所述深度计算中在所述斑点图案中选取的匹配窗口尺寸不小于所述间隙尺寸。
在一些实施例中,所述结构投影模组与所述采集模组间的基线与所述像图案和/或所述斑点图案的任一边均不平行。
本申请还提供一种制造结构光投影模组的方法,包括:提供基板,所述基板的材料为铜或陶瓷;在所述基板上方设置光源,所述光源包括布置成二维阵列的多个子光源,用于发射与所述二维阵列对应的二维图案化光束;在所述基板上方设置透镜,以接收并汇聚所述二维图案化光束;在所述基板上方设置衍射光学元件,以接收经所述透镜汇聚后出射的所述二维图案化光束,并投射出斑点图案化光束;其中所述斑点图案包括与所述二维图案对应的多个像图案,所述多个像图案中的相邻的像图案之间的关系至少包括重叠、毗连以及间隔关系中的两种。
在一些实施例中,所述间隔关系指的是相邻的所述像图案之间的平均间距大于或等于所述像图案中斑点之间的平均间距。
在一些实施例中,所述相邻的所述像图案之间的平均间距是所述像图案中斑点之间平均间距的1至3倍。
在一些实施例中,所述光源为垂直腔面发射激光器VCSEL阵列光源。
在一些实施例中,所述二维图案为不规则分布图案。
在一些实施例中,所述像图案与所述二维图案为中心对称关系。
在一些实施例中,所述斑点图案由与所述二维图案对应的多个像图案以 不规则排列方式组成。
本申请提供了一种结构光投影模组,投影出包括与其光源排列图案对应的多个像图案的斑点图案,相邻的像图案之间存在间隔、毗连以及重叠三种方式中的至少两种。与已有技术相比,本申请所投影出的斑点图案分布具有更高的不相关性,基于该结构光投影模组的深度相机可以实现高精度的三维测量。
附图说明
图1是基于结构光技术的深度相机的原理图。
图2是单光束经由DOE后形成斑点图案的示意图。
图3是根据本申请一个实施例的结构光投影模组的示意图,像图案361、362以及363之间没有重叠。
图4是根据本申请一个实施例的结构光投影模组的示意图,像图案461、462以及463之间有重叠。
图5是根据本申请一个实施例的结构光投影模组的示意图,透镜51为微透镜阵列。
图6是根据本申请一个实施例的像图案示意图,一个像图案由多个子光源对应的相同衍射级数的光斑构成。
图7是根据本申请一个实施例的由单束光入射到DOE后在距离为D的平面上形成的斑点图案,不同斑点代表不同的衍射级数。
图8是根据本申请一个实施例的将对应不同衍射级数的像图案的中心与图7中的各个斑点重合,由此形成最终斑点图案的示意图。
图9是根据本申请一个实施例的由单束光入射到DOE后在距离为D的平面上形成的斑点图案,斑点图案带有一定的随机性排列。
图10根据本申请一个实施例的将对应不同衍射级数的像图案的中心与图9中的各个斑点重合,由此形成最终斑点图案的示意图。
图11根据本申请一个实施例的具有规则间隙的斑点图案示意图。
图12根据本申请一个实施例的具有不规则间隙的斑点图案示意图。
图13根据本申请一个实施例的旋转斑点图案示意图。
图14是根据本申请实施例的制造结构光投影模组的方法的示意性流程图。
具体实施方式
以下对本申请的实施方式作详细说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本申请的范围及其应用。
图1是基于结构光技术的深度相机的原理图。深度相机包括结构光投影模组11以及采集模组12,结构光投影模组用于向空间投影区域A中投影结构光图案,采集模组用于采集其采集区域B内物体上的结构光图像,一般投影区域A不低于采集区域B,由此来保证采集模组对应的采集区域中的物体都能被结构光图案所覆盖。另外,深度相机还包括有处理器,用于接收由采集模组采集到的结构光图像,并对其进行深度计算以获取深度图像。
深度计算一般是将采集到的当前结构光图像与预先采集并保存的参考结构光图像进行匹配计算,以获取当前结构光图像中像素相对于参考结构光图像中对应像素的偏离值,基于偏离值就可以计算出深度值。多个像素的深度值就构成了深度图像。这里的偏离值一般指的是沿基线方向上的偏离值。因此一般要求结构光图像沿基线方向上有非常高的不相关性,防止出现误匹配现象。
在一个实施例中,结构光投影模组用于投影红外斑点图案,采集模组为对应的红外相机,处理器为专用的SOC芯片。当深度相机作为嵌入式装置集成到其他计算终端时,如电脑、平板、手机、电视、游戏机、物联网设备等,上面所述的处理器所实现的功能可以由终端内的处理器或应用来完成,比如将深度计算功能以软件模块形式存储在存储器中,被终端内的处理器调用从而实现深度计算。
结构光投影模组主要由VCSEL阵列芯片、透镜以及DOE组成,光源芯片被透镜汇聚后经由DOE调制后,向空间中发射结构光图案,比如斑点图案。
图2所示的是单光束经由DOE后形成斑点图案的示意图。光束21垂直入射到DOE22上,经衍射后向距离为D的平面上投射出斑点图案24,令DOE所在的平面为xoy平面,光轴所在方向为z向,这里假定结构光投影模组11与采集模组12之间的连线方向与x方向平行,在一些实施例中,基线方向可以为任意其他方向。斑点图案所形成的区域为23,该区域指的是可以包含所有斑点24的最小矩形区域23,矩形区域23的相邻边分别平行于x、y轴,每条边上至少有一个斑点,一般地,该斑点的衍射级数是沿着该方向的最高 级数。以光轴所在的z轴为起点,分别与矩形区域四条边所成的夹角为θ xa、θ xb、θ ya、θ yb,以光轴为中心,这四个夹角可以用来表示DOE22的衍射发散角度,也定义了光束21通过DOE22后的衍射斑点图案区域23的角度范围。
斑点区域24内的各个斑点24的位置由衍射方程确定:
sinθ x=m xλ/P x     (1)
sinθ y=m xλ/P y     (2)
上述方程中,θ x、θ y分别指沿x、y方向上的衍射角度,m x、m x分别指沿x、y方向上的衍射级数,λ指光束21的波长,P x、P y分别指DOE22沿x、y方向上的周期,即基本单元的尺寸。
斑点图案24的排列方式取决于DOE各个衍射级光束的衍射角度,而衍射角度则由DOE本身的性能决定。
图2所示的是当光束垂直入射到DOE的情形,可以理解的是当光束以一定的角度入射时,衍射区域23会相对垂直入射时有所偏移;此外,当单光源用多个子光源取代时,如采用VCSEL阵列芯片时,所形成的衍射区域可以看成是由各个单光束所形成的子衍射区域的组合。
图3是根据本申请一个实施例的结构光投影模组的示意图。结构光投影模组包括由多个光源组成的阵列31(比如VCSEL阵列芯片)、透镜32以及DOE33。为了以示便利,在图中仅在一维x方向上画出了3个子光源(从图中自下向上分别为子光源1,子光源2和子光源3),在实际的实施例中,光源数量可以达到几十甚至上万个,光源也可以以二维排列,排列形式可以为规则,也可以不规则,在以下的说明中,仅说明一维规则排列的情形,其他情形也适用于以下的说明。
光源31阵列发射出的光束可以形成与光源排列对应的图案化光束,该图案化光束经透镜32汇聚后入射到DOE33上,由DOE33向空间中投射斑点图案化光束,所述图案化光束入射到距离为D的平面上将会投影出斑点图案。这里的汇聚指的是透镜将一定发散角的入射光束经汇聚后以更小发散角的出射光束进行出射。子光源31的间距为n x,子光源所在的区域大小为s x,若为二维排列,则间距可以用n(n x,n y)来表示,同样地,子光源所在区域大小为s(s x,s y),光源31与DOE33之间的距离为d,在一些实施例中,d近似等于透镜32的焦距。
透镜32可以是单透镜,也可以多个透镜组成的透镜组合,在一些实施例 中用于准直光源31所发射的光束。
由于各个子光源可以采用非相关光源,在这种情况下,各个子光源相互之间干涉效应可以忽略,因此子光源1、2、3发射的光束经DOE33后分别形成了子斑点图案351、352以及353(图中以椭圆形虚线表示),最终的斑点图案则由子斑点图案351、352以及353组合而成,在图3所示的实施例中,由于DOE33的衍射发散角较大,因此各个子斑点图案之间相互重叠,在一些实施例中,可以设置DOE33的衍射发散角来调整重叠程度,在图4所示的实施例中,各个子斑点图案451、452、453之间没有重叠。
在图3中,各个子斑点图案分别由3个斑点组成(仅作示意作用,实际可以有任意数量的斑点,且可以是二维分布),分别对应-1、0、1级衍射光束。对于光栅衍射,当光源沿与光栅平面平行的方向移动时,其衍射光束也会随之移动,即光斑随之移动,且有如下关系:
T=tD/d      (3)
式中,t、T分别表示光源与衍射光斑的平移量。因此,某个子光源所形成的斑点图案可以看成是其他子光源经平移后形成的斑点图案,两个子斑点图案中对应级数的衍射光斑间的距离与这两个子光源的距离之间的关系由上式决定。
因此,多个子光源对应的相同衍射级数的光斑共同组成的区域(361、362以及363,图中以矩形虚线表示)的大小、区域内斑点的间距均可以通过下式计算出:
N x=n xD/d       (4)
S x=s xD/d       (5)
式中,S x、N x分别表示相同级数光斑组成的区域大小以及区域中斑点的间距。通过以上公式可知,该区域大小以及区域内斑点间距与光源31的大小及子光源的间距之间的关系与透镜针孔成像模型一致,因此,可以将区域361、362以及363看成是光源31所成的像。即,最终投影出的衍射光束是由多个光源发射的图案化光束组合而成,换句话说,最终在平面34上形成的斑点图案,是由多个光源排列图案的像图案组合而成。在图3中,像图案361、362以及363之间没有重叠。而在一些实施例中,像图案之间可以有重叠,比如图4所示的实施例中,像图案461、462以及463之间有重叠。像图案之间是否重叠的取决要素之一是相邻级数的衍射斑点之间的间距M x,这 一距离则由DOE本身的性能决定。可以理解的是,像图案与光源排列图案之间既可以是中心对称的成像关系,也可以通过对透镜的设计实现其他方式的成像关系,比如相同(例如像图案之间构成复制品(replica)的关系)、镜像(例如像图案之间构成轴对称的镜像品(mirror)的关系)、旋转(例如像图案之间有一定的旋转角度,如30度、45度、60度或者其他合适的角度)等。
在图3、图4所示的实施例中,光源分布在透镜光轴附近,因此,远离光轴的子光源经透镜汇聚后其光束中心将不再与光轴平行。这一偏离将会使得远离光轴的像图案发生畸变,使得整体斑点图案密度不均匀。因此,一方面可以通过让光源的尺寸变小来尽可能消除这种不均匀现象,另一方面也可以通过改变透镜形式,比如图5所示的实施例中,透镜51为微透镜阵列,由此也可以减小像图案的畸变现象。需要注意的是,图5所示的实施例中虽然畸变变小,但其整体的衍射角度相比图3、4中实施例的衍射角度而言也会变小。
除了上述畸变会影响密度分布之外,更为重要的影响因素是光源的排列间距以及DOE的性能(不同衍射级斑点之间的间距),二者之间只有满足一定的相互约束条件才能使得最终的斑点图案密度分布均匀。以下将进行详细说明。
根据前面对图3所示实施例的分析可知,结构光投影模组所投影出的斑点图案既可以看成是由多个子光源分别衍射所形成的子斑点图案组合而成,也可以看成是由多个光源排列图案的像图案组合而成。在以下的说明中,本申请将采取后者来进行阐述。
依旧选取远离DOE距离为D的平面以及规则排列的二维光源来进行说明。光源阵列的大小为s(s x,s y),子光源的间距为n(n x,n y),因此在距离为D的平面上形成的像图案大小为S(S x,S y),图案中斑点间距为N(N x,N y),如图6所示,并有以下关系:
N=nD/d       (6)
S=sD/d      (7)
在距离为D的平面上最终形成的斑点图案是由多个像图案按一定的间距排列而成,这里的间距指的是DOE衍射后不同衍射级斑点之间的间距,因此斑点图案的密度分布则由像图案的斑点分布以及间距决定。图6所示的是像 图案示意图,尺寸大小为S(S x,S y),图案中平均斑点间距为N(N x,N y),可以理解的是,在本实施例中光源的二维排列可以为不规则二维排列;图7所示的是由单束光入射到DOE后在距离为D的平面上形成的斑点图案,不同斑点代表不同的衍射级数,相邻衍射级数的间距为M(M x,M y)。结构光投影模组最终形成的斑点图案则可以看成是由图6所示的像图案按照图7所示的排列形式进行组合,一种组合方式即是将像图案的中心与图7中各个斑点重合,由此形成最终的斑点图案,如图8所示的组合示意图。
图8所示的投影模组所形成的斑点图案中,M=S,((M x=S x)&(M y=S y)),邻近的像图案之间毗连,即边缘刚好重叠,之间的间距G(G x,G y)=M-S=0。由于每个像图案的边缘一般会有高阶的衍射斑点,因此当边缘重合时,相邻图案中的高阶斑点可能会出现重叠或靠近的情形,由此会导致斑点数量减少、个别斑点区域变大或部分区域密度变大的问题。
图7对应的是DOE衍射性能,在本实施例中,为了产生密度相对均匀的斑点图案,图7中的排列为规则排列,最终产生的如图8所示的斑点图案虽然在局部区域(单个像图案区域)中具有较高的随机性,但将像图案看成单元的话,整体的斑点图案仍可以看成是规则排列。可以理解的是,整体斑点图案的不相关度较低,因为单个复制区域中任一小区域沿x方向或其他方向都能找到多个与该小区域相同的斑点排布。
因此如何解决密度分布均匀以及高不相关度的矛盾是斑点图案设计的重要问题。
图9是根据本申请实施例的单光束经DOE所生成的图案示意图。与图7所示图案相关,这里的排列在规则的基础上加了一些随机,由此来提高不相关度。图9中的平均斑点间距相对图7所示实施例几乎不变。图10是图6所示的像图案按照图9所示的方式进行组合后形成的斑点图案。与图8相比,本实施例中的斑点图案的不相关度得到提高。例如,由于随机产生的像图案的交错,使得任意选取的子区域沿基线x方向上的不相关度得以提高。图10与图8类似,整体上看图案中斑点的分布较为密集,随机性排列使得邻近的像图案之间存在间隔(间隙)、毗连或者重叠三种情形。由于同时存在三种连接方式,导致斑点图案的分布密度相对图8所示的均匀性降低,并且容易产生斑点重合的问题。可以理解的是,加大随机性可以使得邻近的像图案之间的间隙或者重叠的幅度加大,不均匀性也会加大。另外,由于随机性,邻近 的像图案之间可以仅存在间隙、毗连或重叠三种情形中的任意两种。
图11是根据本申请实施例的规则间隙斑点图案示意图,与图8相比,图11提供的斑点图案中的邻近的像图案之间存在明显的间距,由此可以提升斑点图案的面积,亦即提升视场角。
图12是根据本申请实施例的具有不规则间隙的斑点图案示意图,与图10相比,邻近像图案之间的平均间距更大,随机性更高,使得邻近的像图案具有间隔关系(或称邻近的图案处于间隔状态),由此可以进一步提高不相关度,另外,相比于图8及图10的实施例,斑点重合问题得以解决,且视场角也得到了提升。
需要说明的是,上文描述的“邻近的像图案具有间隔关系”指的是邻近的像图案之间具有明显的间隙(并非由误差导致的间隙),即能够从斑点图案中能轻易地分辨出邻近的像图案的界限;换句话说,这种间隔关系是投影模组的设计目标,意图使得相邻的像图案之间不彼此邻接(邻接是指像图案之间间隙不明显,如相邻像图案的边缘斑点重叠,或相邻像图案之间的边缘斑点间距与像图案内部斑点间距相近,或相邻像图案之间有部分重叠)。一般而言,由于随机性的存在,使得像图案之间的间距不可能相等,总的来说,像图案间距的平均值不小于像图案中斑点的平均间距就会产生如图11或图12所示的具有明显间隙的斑点图案,即G>N。而且,不排除由于局部加工精度或元件安装精度等工艺原因,导致很少量的相邻像图案之间可能会偏离设计目标而产生少量重叠或邻接,这种工艺误差在本申请保护范围内是允许的,不意味着本申请技术方案必须无条件地排除此类误差,只要从整体全局而言,大部分的相邻像图案能够有足够明显的间隙即可。
由于有明显间隙的存在,在基于此斑点图案进行深度计算时,匹配窗口的选取一般需要考虑间隙的大小,理论上来说在相同方向上匹配窗口的尺寸不小于间隙的尺寸。
在以上的描述中,像图案的方形形状以及最终所形成的斑点图案的整体形状大体上是分别与x、y轴对齐(即方形的两条边分别与x、y轴平行),且结构光投影模组与采集模组的基线为x方向。在一些实施例中,为了进一步提高不相关度,可以将斑点图案的形状进行旋转,使得基线与斑点图案和/或像图案的任一边均不平行,即,使得斑点图案和/或像图案的原本与基线方向平行的边与基线之间产生了一定的夹角,由此可以进一步提升斑点图案 沿基线方向上的不相关度,以提高深度计算精度。图13为将斑点图案进行旋转后的示意图。经验证,为了保证斑点图案要填充满整个采集模组的视场区域,夹角不宜过大,优选地,夹角为2至10度。可以理解的是,由于随机性,这里所说的斑点图案的边并非直边,可以将其理解成斑点图案中像图案排列的大致方向。同样可以理解的是,这里的旋转方式适用于本申请前述所有实施例的情形。
本申请还提供一种制造结构光投影模组的方法。如图14所示,该方法包括步骤1410-步骤1440。
在步骤1410中,提供基板。所述基板的材料为铜或陶瓷。
在步骤1420中,在所述基板上方设置光源。所述光源包括布置成二维阵列的多个子光源,用于发射与所述二维阵列对应的二维图案化光束。
在步骤1430中,在所述基板上方设置透镜,以接收并汇聚所述二维图案化光束。
在步骤1440中,在所述基板上方设置衍射光学元件,以接收经所述透镜汇聚后出射的所述二维图案化光束,并投射出斑点图案化光束。其中所述斑点图案包括与所述二维图案对应的多个像图案,所述多个像图案中的相邻的像图案之间的关系至少包括重叠、毗连以及间隔关系中的两种。
本申请实施例制造出的结构光投影模组可以投影出包括与其光源排列图案对应的多个像图案的斑点图案,相邻的像图案彼此处于间隔状态。与已有技术相比,本申请实施例制造出的结构光投影模组所投影出的斑点图案分布具有更高的不相关性,基于该结构光投影模组的深度相机可以实现高精度的三维测量。
进一步地,本申请实施例提供的结构光投影模组的基板并未采用传统的半导体基板,而是采用铜或陶瓷基板,与半导体基板相比,能够提高整个结构光投影模组的散热性能。
在一些实施例中,所述间隔关系指的是相邻的所述像图案之间的平均间距大于或等于所述像图案中斑点之间的平均间距。
在一些实施例中,所述相邻的所述像图案之间的平均间距是所述像图案中斑点之间平均间距的1至3倍。
在一些实施例中,所述光源为垂直腔面发射激光器VCSEL阵列光源。
在一些实施例中,所述二维图案为不规则分布图案。
在一些实施例中,所述像图案与所述二维图案为中心对称关系。
在一些实施例中,所述斑点图案由与所述二维图案对应的多个像图案以不规则排列方式组成。
以上内容是结合具体/优选的实施方式对本申请所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,其还可以对这些已描述的实施方式做出若干替代或变型,而这些替代或变型方式都应当视为属于本申请的保护范围。

Claims (17)

  1. 一种结构光投影模组,其特征在于,包括:
    光源,包括布置成二维阵列的多个子光源,用于发射与所述二维阵列对应的二维图案化光束;
    透镜,接收并汇聚所述二维图案化光束;
    衍射光学元件,接收经所述透镜汇聚后出射的所述二维图案化光束,并投射出斑点图案化光束;
    所述斑点图案包括与所述二维图案对应的多个像图案,所述多个像图案中的相邻的像图案之间的关系至少包括重叠、毗连以及间隔关系中的两种。
  2. 如权利要求1所述的结构光投影模组,其特征在于,所述间隔关系指的是相邻的所述像图案之间的平均间距大于或等于所述像图案中斑点之间的平均间距。
  3. 如权利要求2所述的结构光投影模组,其特征在于,所述相邻的所述像图案之间的平均间距是所述像图案中斑点之间平均间距的1至3倍。
  4. 如权利要求1所述的结构光投影模组,其特征在于,所述光源为垂直腔面发射激光器VCSEL阵列光源。
  5. 如权利要求1所述的结构光投影模组,其特征在于,所述二维图案为不规则分布图案。
  6. 如权利要求1所述的结构光投影模组,其特征在于,所述像图案与所述二维图案为中心对称关系。
  7. 如权利要求1所述的结构光投影模组,其特征在于,所述斑点图案由与所述二维图案对应的多个像图案以不规则排列方式组成。
  8. 一种深度相机,其特征在于,包括:
    如权利要求1至7任一项所述的结构光投影模组,用于向目标投影出斑点图案化光束;
    采集模组,用于采集所述目标上的所述斑点图案;
    处理器,接收所述斑点图案并进行深度计算以获取所述目标的深度图像。
  9. 如权利要求8所述的深度相机,其特征在于,所述深度计算中在所述斑点图案中选取的匹配窗口尺寸不小于所述间隙尺寸。
  10. 如权利要求8所述的深度相机,其特征在于,所述结构投影模组与所述采集模组间的基线与所述像图案和/或所述斑点图案的任一边均不平行。
  11. 一种制造结构光投影模组的方法,其特征在于,包括:
    提供基板,所述基板的材料为铜或陶瓷;
    在所述基板上方设置光源,所述光源包括布置成二维阵列的多个子光源,用于发射与所述二维阵列对应的二维图案化光束;
    在所述基板上方设置透镜,以接收并汇聚所述二维图案化光束;
    在所述基板上方设置衍射光学元件,以接收经所述透镜汇聚后出射的所述二维图案化光束,并投射出斑点图案化光束;
    其中所述斑点图案包括与所述二维图案对应的多个像图案,所述多个像图案中的相邻的像图案之间的关系至少包括重叠、毗连以及间隔关系中的两种。
  12. 如权利要求11所述的方法,其特征在于,所述间隔关系指的是相邻的所述像图案之间的平均间距大于或等于所述像图案中斑点之间的平均间距。
  13. 如权利要求12所述的方法,其特征在于,所述相邻的所述像图案之间的平均间距是所述像图案中斑点之间平均间距的1至3倍。
  14. 如权利要求11所述的方法,其特征在于,所述光源为垂直腔面发射激光器VCSEL阵列光源。
  15. 如权利要求11所述的方法,其特征在于,所述二维图案为不规则分布图案。
  16. 如权利要求11所述的方法,其特征在于,所述像图案与所述二维图案为中心对称关系。
  17. 如权利要求11所述的方法,其特征在于,所述斑点图案由与所述二维图案对应的多个像图案以不规则排列方式组成。
PCT/CN2018/113780 2017-11-06 2018-11-02 结构光投影模组、深度相机及制造结构光投影模组的方法 WO2019086004A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/867,457 US11194171B2 (en) 2017-11-06 2020-05-05 Structured light projection module, depth camera, and method for manufacturing structured light projection module
US17/518,076 US11828954B2 (en) 2017-11-06 2021-11-03 Structured light projection module, depth camera, and method for manufacturing structured light projection module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711080702.5 2017-11-06
CN201711080702.5A CN107748475A (zh) 2017-11-06 2017-11-06 结构光投影模组、深度相机及制造结构光投影模组的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/867,457 Continuation US11194171B2 (en) 2017-11-06 2020-05-05 Structured light projection module, depth camera, and method for manufacturing structured light projection module

Publications (1)

Publication Number Publication Date
WO2019086004A1 true WO2019086004A1 (zh) 2019-05-09

Family

ID=61250555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113780 WO2019086004A1 (zh) 2017-11-06 2018-11-02 结构光投影模组、深度相机及制造结构光投影模组的方法

Country Status (3)

Country Link
US (2) US11194171B2 (zh)
CN (1) CN107748475A (zh)
WO (1) WO2019086004A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020201099A (ja) * 2019-06-07 2020-12-17 パナソニックIpマネジメント株式会社 距離測定装置、距離測定システム、距離測定方法
CN113793339A (zh) * 2021-11-18 2021-12-14 北京的卢深视科技有限公司 Doe脱落程度检测方法、电子设备和存储介质
US20220290976A1 (en) * 2019-09-04 2022-09-15 ams Sensors Singapore Pte. Ltd Designing and constructing dot projectors for three-dimensional sensor modules
CN115421349A (zh) * 2022-11-02 2022-12-02 四川川大智胜软件股份有限公司 非数字光机结构光投射模组、采集装置及三维测量系统
JP2023004830A (ja) * 2021-06-25 2023-01-17 奇景光電股▲ふん▼有限公司 三次元距離測定システムで使用するドットパターンプロジェクタ

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107748475A (zh) 2017-11-06 2018-03-02 深圳奥比中光科技有限公司 结构光投影模组、深度相机及制造结构光投影模组的方法
CN107908064A (zh) * 2017-11-06 2018-04-13 深圳奥比中光科技有限公司 结构光投影模组、深度相机及制造结构光投影模组的方法
KR20200123849A (ko) * 2018-03-20 2020-10-30 매직 아이 인코포레이티드 가변 밀도들의 투영 패턴을 사용하는 거리 측정
CN108490634B (zh) * 2018-03-23 2019-12-13 深圳奥比中光科技有限公司 一种结构光投影模组和深度相机
CN108594453B (zh) * 2018-03-23 2019-12-13 深圳奥比中光科技有限公司 一种结构光投影模组和深度相机
CN108594455B (zh) * 2018-03-23 2019-12-13 深圳奥比中光科技有限公司 一种结构光投影模组和深度相机
CN108594454B (zh) 2018-03-23 2019-12-13 深圳奥比中光科技有限公司 一种结构光投影模组和深度相机
CN108490635B (zh) * 2018-03-23 2019-12-13 深圳奥比中光科技有限公司 一种结构光投影模组和深度相机
CN108710215A (zh) * 2018-06-20 2018-10-26 深圳阜时科技有限公司 一种光源模组、3d成像装置、身份识别装置及电子设备
CN109194780B (zh) * 2018-08-15 2020-08-25 信利光电股份有限公司 一种结构光模组的旋转纠正方法、装置及可读存储介质
CN108957911B (zh) * 2018-08-22 2021-04-16 北京华捷艾米科技有限公司 散斑结构光投影模组及3d深度相机
CN108761827A (zh) * 2018-08-24 2018-11-06 昂红科技(深圳)有限公司 一种结构光投影装置及深度相机
CN110941132B (zh) * 2018-09-21 2022-07-26 深圳阜时科技有限公司 一种光源结构、光学投影模组、感测装置及设备
CN110941131B (zh) * 2018-09-21 2023-03-14 深圳阜时科技有限公司 一种光源结构、光学投影模组、感测装置及设备
CN109212773B (zh) * 2018-09-30 2021-04-16 北京华捷艾米科技有限公司 紧凑式散斑投影模组及深度相机
CN109643051B (zh) * 2018-11-24 2022-03-11 深圳阜时科技有限公司 一种光源结构、光学投影模组、感测装置及设备
CN109541877A (zh) * 2018-11-24 2019-03-29 深圳阜时科技有限公司 一种光源结构、光学投影模组、感测装置及设备
CN109541875B (zh) * 2018-11-24 2024-02-13 深圳阜时科技有限公司 一种光源结构、光学投影模组、感测装置及设备
CN109643053B (zh) * 2018-11-24 2021-06-29 深圳阜时科技有限公司 投影装置及其光源和设备
CN109471320B (zh) * 2018-11-24 2024-04-30 深圳阜时科技有限公司 一种光源结构、光学投影模组、感测装置及设备
WO2020103166A1 (zh) * 2018-11-24 2020-05-28 深圳阜时科技有限公司 一种光源结构、光学投影模组、感测装置及设备
CN109471321A (zh) * 2018-11-24 2019-03-15 深圳阜时科技有限公司 一种光源结构、光学投影模组、感测装置及设备
CN111338161B (zh) * 2018-12-18 2022-04-12 深圳光峰科技股份有限公司 投影装置
CN111352181A (zh) * 2018-12-21 2020-06-30 余姚舜宇智能光学技术有限公司 一种二元光学元件及其制造方法和投射模组
CN109974611B (zh) * 2019-03-23 2023-07-21 柳州阜民科技有限公司 深度检测系统及其支架和电子装置
CN112394605B (zh) * 2019-08-14 2021-10-29 成都理想境界科技有限公司 一种扫描投影方法、拼接式的扫描投影装置及设备
CN110954029B (zh) * 2019-11-04 2022-11-18 奥比中光科技集团股份有限公司 一种屏下三维测量系统
US11357594B2 (en) * 2020-08-07 2022-06-14 Johnson & Johnson Surgical Vision, Inc. Jig assembled on stereoscopic surgical microscope for applying augmented reality techniques to surgical procedures
WO2022061160A1 (en) 2020-09-18 2022-03-24 Nubis Communications Inc. Data processing systems including optical communication modules
CN114545618B (zh) * 2020-11-25 2023-09-05 成都极米科技股份有限公司 一种显示设备
CN115735151A (zh) * 2021-06-08 2023-03-03 深圳市汇顶科技股份有限公司 光发射模组、摄像模组及电子设备
WO2022266376A1 (en) * 2021-06-17 2022-12-22 Nubis Communications, Inc. Communication systems having pluggable modules
CN113720275A (zh) * 2021-08-11 2021-11-30 江西联创电子有限公司 三维形貌的测量方法、测量系统及建立深度信息标定表的方法
CN114002698A (zh) * 2021-10-28 2022-02-01 Oppo广东移动通信有限公司 深度相机、制造光发射模组的方法和终端
CN114413787B (zh) * 2022-01-21 2024-04-19 西安知微传感技术有限公司 基于结构光的三维测量方法及大景深三维深度相机系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105319811A (zh) * 2014-07-28 2016-02-10 苹果公司 重叠图案投影仪
US20160127713A1 (en) * 2014-11-03 2016-05-05 Aquifi, Inc. 3d depth sensor and projection system and methods of operating thereof
CN205350880U (zh) * 2015-11-27 2016-06-29 高准精密工业股份有限公司 发光装置
CN106406002A (zh) * 2016-10-28 2017-02-15 深圳奥比中光科技有限公司 面阵投影装置及深度相机
CN106569330A (zh) * 2016-10-28 2017-04-19 深圳奥比中光科技有限公司 一种光学图案的设计方法、面阵投影装置及一种深度相机
CN107748475A (zh) * 2017-11-06 2018-03-02 深圳奥比中光科技有限公司 结构光投影模组、深度相机及制造结构光投影模组的方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8493496B2 (en) * 2007-04-02 2013-07-23 Primesense Ltd. Depth mapping using projected patterns
US8150142B2 (en) * 2007-04-02 2012-04-03 Prime Sense Ltd. Depth mapping using projected patterns
US8384997B2 (en) * 2008-01-21 2013-02-26 Primesense Ltd Optical pattern projection
EP2235584B1 (en) * 2008-01-21 2020-09-16 Apple Inc. Optical designs for zero order reduction
US8456517B2 (en) * 2008-07-09 2013-06-04 Primesense Ltd. Integrated processor for 3D mapping
US20110188054A1 (en) * 2010-02-02 2011-08-04 Primesense Ltd Integrated photonics module for optical projection
US9170098B2 (en) * 2011-07-13 2015-10-27 Faro Technologies, Inc. Device and method using a spatial light modulator to find 3D coordinates of an object
US8749796B2 (en) * 2011-08-09 2014-06-10 Primesense Ltd. Projectors of structured light
CN104730825B (zh) 2012-03-15 2019-04-02 苹果公司 光电投影设备
US9562760B2 (en) * 2014-03-10 2017-02-07 Cognex Corporation Spatially self-similar patterned illumination for depth imaging
US20150347833A1 (en) * 2014-06-03 2015-12-03 Mark Ries Robinson Noncontact Biometrics with Small Footprint
US20160377414A1 (en) 2015-06-23 2016-12-29 Hand Held Products, Inc. Optical pattern projector
CN106990660A (zh) 2017-05-09 2017-07-28 深圳奥比中光科技有限公司 结构光投影模组
CN106990548A (zh) * 2017-05-09 2017-07-28 深圳奥比中光科技有限公司 阵列激光投影装置及深度相机
CN107026392B (zh) * 2017-05-15 2022-12-09 奥比中光科技集团股份有限公司 Vcsel阵列光源
WO2019027506A1 (en) * 2017-08-01 2019-02-07 Apple Inc. DETERMINATION OF CLEAR-PATTERN LIGHTING VERSUS DENSE
CN107908064A (zh) 2017-11-06 2018-04-13 深圳奥比中光科技有限公司 结构光投影模组、深度相机及制造结构光投影模组的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105319811A (zh) * 2014-07-28 2016-02-10 苹果公司 重叠图案投影仪
US20160127713A1 (en) * 2014-11-03 2016-05-05 Aquifi, Inc. 3d depth sensor and projection system and methods of operating thereof
CN205350880U (zh) * 2015-11-27 2016-06-29 高准精密工业股份有限公司 发光装置
CN106406002A (zh) * 2016-10-28 2017-02-15 深圳奥比中光科技有限公司 面阵投影装置及深度相机
CN106569330A (zh) * 2016-10-28 2017-04-19 深圳奥比中光科技有限公司 一种光学图案的设计方法、面阵投影装置及一种深度相机
CN107748475A (zh) * 2017-11-06 2018-03-02 深圳奥比中光科技有限公司 结构光投影模组、深度相机及制造结构光投影模组的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020201099A (ja) * 2019-06-07 2020-12-17 パナソニックIpマネジメント株式会社 距離測定装置、距離測定システム、距離測定方法
US20220290976A1 (en) * 2019-09-04 2022-09-15 ams Sensors Singapore Pte. Ltd Designing and constructing dot projectors for three-dimensional sensor modules
JP2023004830A (ja) * 2021-06-25 2023-01-17 奇景光電股▲ふん▼有限公司 三次元距離測定システムで使用するドットパターンプロジェクタ
JP7374165B2 (ja) 2021-06-25 2023-11-06 奇景光電股▲ふん▼有限公司 三次元距離測定システムで使用するドットパターンプロジェクタ
CN113793339A (zh) * 2021-11-18 2021-12-14 北京的卢深视科技有限公司 Doe脱落程度检测方法、电子设备和存储介质
CN113793339B (zh) * 2021-11-18 2022-08-26 合肥的卢深视科技有限公司 Doe脱落程度检测方法、电子设备和存储介质
CN115421349A (zh) * 2022-11-02 2022-12-02 四川川大智胜软件股份有限公司 非数字光机结构光投射模组、采集装置及三维测量系统

Also Published As

Publication number Publication date
US20200278562A1 (en) 2020-09-03
US20220057645A1 (en) 2022-02-24
CN107748475A (zh) 2018-03-02
US11828954B2 (en) 2023-11-28
US11194171B2 (en) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2019086004A1 (zh) 结构光投影模组、深度相机及制造结构光投影模组的方法
WO2019086003A1 (zh) 结构光投影模组、深度相机及制造结构光投影模组的方法
CN107450190B (zh) 一种衍射光学元件及配制方法
US10958893B2 (en) VCSEL array light source
CN106972347B (zh) 用于3d成像的激光阵列
CN107039885B (zh) 应用于3d成像的激光阵列
CN107703641B (zh) 一种结构光投影模组和深度相机
WO2019178970A1 (zh) 一种结构光投影模组和深度相机
CN108957911B (zh) 散斑结构光投影模组及3d深度相机
US20190226838A1 (en) Overlapping pattern projector
US20160025993A1 (en) Overlapping pattern projector
US11543671B2 (en) Structured light projection module and depth camera
US20220385042A1 (en) Single Element Dot Pattern Projector
CN108761827A (zh) 一种结构光投影装置及深度相机
CN210090898U (zh) 结构光投影模组和深度相机
KR102673806B1 (ko) 3차원 거리 측정 시스템에서의 사용을 위한 선 패턴 프로젝터
WO2023071650A1 (zh) 深度相机、制造光发射模组的方法和终端
CN207134607U (zh) 应用于3d成像的激光阵列及其激光投影装置和3d成像设备
CN209343054U (zh) 一种结构光投影装置及深度相机
JP7374165B2 (ja) 三次元距離測定システムで使用するドットパターンプロジェクタ
CN207134608U (zh) 用于3d成像的激光阵列、设备及激光投影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873214

Country of ref document: EP

Kind code of ref document: A1