WO2018209615A1 - 通信控制方法、通信主设备和通信系统 - Google Patents

通信控制方法、通信主设备和通信系统 Download PDF

Info

Publication number
WO2018209615A1
WO2018209615A1 PCT/CN2017/084772 CN2017084772W WO2018209615A1 WO 2018209615 A1 WO2018209615 A1 WO 2018209615A1 CN 2017084772 W CN2017084772 W CN 2017084772W WO 2018209615 A1 WO2018209615 A1 WO 2018209615A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
level
master device
predetermined
line
Prior art date
Application number
PCT/CN2017/084772
Other languages
English (en)
French (fr)
Inventor
张国富
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/084772 priority Critical patent/WO2018209615A1/zh
Priority to CN201780005406.0A priority patent/CN108521854A/zh
Publication of WO2018209615A1 publication Critical patent/WO2018209615A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0817Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking functioning

Definitions

  • the present invention relates to the field of battery component communication technologies, and in particular, to a communication control method, a communication master device, and a communication system.
  • Embodiments of the present invention provide a communication control method, a communication master device, and a communication system.
  • the communication control method of the embodiment of the present invention is for controlling communication of a communication master device with a battery component.
  • the battery assembly is communicatively coupled to at least two of the communication masters via a first communication line, the level of the first communication line changing when the battery component is in communication with any one of the communication masters.
  • the communication control method includes the following steps:
  • the communication master device is controlled to communicate with the battery component when a level of the first communication line is maintained at the predetermined level for the predetermined time period.
  • the communication master device of an embodiment of the present invention is for communicating with a battery component.
  • the battery assembly is coupled to at least two of the communication masters via a first communication line, the level of the first communication line changing when the battery component is in communication with any of the communication masters.
  • the communication master device includes a controller, and the controller is configured to:
  • the communication master device is controlled to communicate with the battery component when a level of the first communication line is maintained at the predetermined level for the predetermined time period.
  • a communication system includes a battery assembly and the above-described communication master device, and the battery component is communicated with at least two of the communication master devices via a first communication line.
  • the communication control method, the communication master device, and the communication system of the embodiment of the present invention determine whether the battery component is in an idle state by detecting whether the level of the first communication line in which the communication master device is in communication connection with the battery component is maintained at a predetermined level for a predetermined period of time.
  • the battery component is in an idle state, communication with the battery component is performed, so that communication communication between the plurality of communication master devices and the battery component can be ensured stably without causing communication failure due to mutual interference.
  • FIG. 1 is a flow chart of a control method of some embodiments of the present invention.
  • FIG. 2 is a block diagram of a communication system in accordance with some embodiments of the present invention.
  • FIG. 3 is a flow chart of a control method of some embodiments of the present invention.
  • FIG. 4 is a schematic diagram of the state of a control method in accordance with some embodiments of the present invention.
  • Figure 5 is a timing diagram of the clock signal line and data signal line of the I2C.
  • FIG. 6 is a schematic diagram of the principle of a control method in accordance with some embodiments of the present invention.
  • the communication control method of the embodiment of the present invention is for controlling the communication master device 100 to communicate with the battery component 200.
  • the battery component 200 is communicably connected to at least two communication master devices 100 through the first communication line 300.
  • the level of the first communication line 300 changes as the battery assembly 200 communicates with any of the communication masters 100.
  • the communication control method includes the following steps:
  • S12 detecting whether the level of the first communication line 300 is maintained at a predetermined level for a predetermined period of time;
  • the communication master device 100 is controlled to communicate with the battery pack 200 when the level of the first communication line 300 is maintained at a predetermined level for a predetermined period of time.
  • the communication control method of the embodiment of the present invention can be applied to the communication master device 100 of the embodiment of the present invention.
  • the communication master device 100 of the embodiment of the present invention is for communicating with the battery pack 200.
  • the battery pack 200 is connected to at least two communication masters 100 through a first communication line 300.
  • the communication master device 100 includes a controller 10. Step S11, step S12, step S13, and step S14 can all be implemented by the controller 10.
  • controller 10 can be used to:
  • the communication master device 100 is controlled to communicate with the battery pack 200 when the level of the first communication line 300 is maintained at a predetermined level for a predetermined period of time.
  • the communication master device 100 of the embodiment of the present invention can be applied to the communication system 1000 of the embodiment of the present invention. That is, the communication system 1000 of the embodiment of the present invention includes the communication master device 100 of the embodiment of the present invention.
  • the communication system 1000 of an embodiment of the present invention further includes a battery assembly 200 and at least two communication masters 100 communicatively coupled to the battery assembly 200 via the first communication line 300.
  • the communication master device 100 includes a drone or a charger.
  • communication system 1000 includes two communication masters 100: a drone and a charger, and communication system 100 further includes a battery assembly 200.
  • the battery assembly 200 usually has only a single communication interface due to factors such as cost and power consumption, and thus the battery assembly 200 often cannot simultaneously communicate with multiple communication master devices 100 at the same time. However, in some cases it is again desirable to communicate with multiple communication masters 100 at the same time.
  • the battery pack 200 is charged while the drone is turned on, at which time the drone needs to know the status of the battery pack 200, such as power, etc., and the charger also needs to know the battery pack 200. Information such as the temperature of the battery pack 200 and the like. As such, only the battery pack 200 having a single communication interface cannot communicate with the drone and the charger at the same time.
  • the communication control method of the embodiment of the present invention connects the battery pack 200 to the plurality of communication masters 100 through the first communication line 300.
  • the battery component operates in the slave mode
  • the communication master device 100 operates in the master mode
  • the communication master device 100 actively transmits data to the battery component 200.
  • the communication master device 100 starts the control request process and detects whether the level of the first communication line 300 is maintained at a predetermined level for a predetermined period of time to determine whether the battery pack 200 is in an idle state. If the battery assembly 200 is in an idle state, the communication master device 100 can communicate with the battery assembly 200. If the battery pack 200 is in a busy state, the control request process of the communication master device 100 is interrupted.
  • the battery assembly 200 can implement a communication connection with the plurality of communication master devices 100, and the plurality of communication master devices 100 can realize communication avoidance by detecting the state of the first communication line 300, thereby avoiding transmission data due to the plurality of communication master devices 100. Interference with each other leads to communication failure.
  • the communication control method can be independently executed on any one of the communication master devices 100 for detecting and obtaining communication control rights.
  • the controller 10 can initiate the control request process according to the request of the I/O peripheral component or the timing mechanism, for example, when the communication master device 100 is a drone, the I/O peripheral
  • the component may be an input component (eg, a remote control) and trigger a query command to read the amount of power of the battery component 200 during charging, and the controller 10 initiates the control request process upon receiving the query command.
  • control request process is a process performed by the controller 10 to detect and obtain control of communication with the battery pack 200, before the communication master device 10 and the battery pack 200 implement a communication handshake.
  • the communication master device 100 includes a timer 20, and detecting whether the level of the first communication line 300 is maintained at a predetermined level for a predetermined period of time includes the following steps:
  • S121 determining whether the level of the first communication line 300 is a predetermined level when the control request process is started;
  • S122 Start timer 20 timing when the level of the first communication line 300 is a predetermined level
  • S124 It is determined that the level of the first communication line 300 is maintained at a predetermined level for a predetermined period of time when the timer 20 is clocked for a predetermined period or longer.
  • step S121, step S122, step S123, and step S124 may each be implemented by a controller.
  • controller 10 can be further used to:
  • the timer 20 is started when the level of the first communication line 300 is a predetermined level
  • the timer 20 is reset when the level of the first communication line 300 changes to a predetermined level
  • the level of the first communication line 300 is maintained at a predetermined level for a predetermined period of time when the timer 20 is clocked for a predetermined period or longer.
  • the communication master device 100 and the battery component 200 communicate using an I2C communication protocol.
  • the first communication line 300 is a clock signal line SCL.
  • the communication master device 100 is also in communication connection with the battery pack 200 via the second communication line 400, at which time the second communication line 400 is the data signal line SDA.
  • a GPIO that supports an external interrupt is connected to the clock signal line (SCL) of the I2C bus for monitoring the clock signal line (SCL).
  • SCL clock signal line
  • the trigger mode of the external interrupt of GPIO can be set to rising edge and/or falling edge trigger. In this way, during the communication process, this external interrupt will be triggered continuously as the SCL signal fluctuates.
  • timer 20 can be used to record the interval between two adjacent external interrupts of this GPIO, so that the clock signal line (SCL) can be monitored. Current level state and duration on.
  • the I2C communication protocol is a communication protocol with a two-wire serial bus, and uses a clock synchronous communication method for data transmission.
  • the I2C bus includes a clock signal line SCL and a data signal line SDA, the clock signal line SCL is used to ensure clock synchronization, and the data signal line SDA is used for transmitting data.
  • the start signal for data transmission between the communication master device 100 and the battery pack 200 is that the level on the data signal line SDA is pulled low while the clock signal line SCL is held high.
  • the level of the data signal line SDA is changed from the high level to the low level to mark the start of the data transmission; the stop signal is the level on the data signal line SDA while the clock signal line SCL is held high.
  • the transition from low to high marks the end of the data transfer.
  • each bit of data transmitted on the I2C bus corresponds to one clock pulse for synchronous control. Since the communication master device 100 operates in the host mode, that is, the I2C clock signal line SCL is controlled by the communication master device 100. Therefore, the communication master device 100 controls the level of the clock signal line SCL to continuously change between high and low levels. If the data transfer of the communication master device 100 and the battery pack 200 is completed, the level of the clock signal line SCL is maintained at a high level. The communication master device 100 is to communicate with the battery pack 200, and it is judged whether or not the battery pack 200 is in an idle state by detecting whether the level of the clock signal line SCL is in a state of high or low level change.
  • the communication master device 100 is a drone and a charger, and the current time the drone is transmitting data 0x55 to the battery component 200 as an example.
  • the predetermined level is a high level.
  • each binary digit transmitted corresponds to a complete cycle of the clock pulse, so the drone controls the clock signal line SCL level from the high level. It goes low or changes from low to high.
  • the charger 400 first starts the control request process, and detects whether the level of the clock signal line SCL is high while the control request process is started.
  • the timer 20 that simultaneously triggers the charger starts timing.
  • the timer 20 is always timed less than a predetermined period of time.
  • the level of the clock signal line SCL changes, and the clock pulse change undergoes a full cycle causes the level of the clock signal line SCL to return to the high level again, and thus the timer 20 is reset, the time of the timer is cleared, and at the same time, the control request process of the charger is interrupted.
  • the level of the clock signal line SCL is maintained at a high level, and the timer 20 is not reset so that the timer 20 is clocked for a predetermined period or longer, at which time it is determined that the battery pack 200 is in an idle state.
  • the control request process of the charger continues to execute, thereby obtaining communication control to implement a communication connection between the charger and the battery assembly 200.
  • the charger first starts the control request process, and starts the timer 20 while the control request process is started. Timing. Since the battery pack 200 is in an idle state, the level of the clock signal line SCL is always maintained. It is high, therefore, the timer 20 will not be reset, and the timer 20 timing will be greater than or equal to the predetermined time period. As described above, in a state where the battery pack 200 is idle, the communication master device 100 can also detect and acquire the communication control right by using the communication control method of the embodiment of the present invention.
  • the level of the clock signal line SCL since the level of the clock signal line SCL may be slightly fluctuated due to factors such as pulse instability in the low level or high level state, the level of the clock signal line SCL is kept at a high level. It is understood that the level of the clock signal line SCL is greater than or equal to a certain preset value, that is, the level of the clock signal line SCL is continuously maintained at a high level. For example, if the high level of the clock signal line SCL is 5V in the absence of fluctuation, the preset value can be set to 4.5V. Therefore, as long as the communication master device 100 detects that the level value of the clock signal line SCL is greater than or equal to 4.5 V, the level of the clock signal line SCL is considered to be in a high level state. Thus, even in the case where the high level of the clock signal line SCL has a fluctuation error of -0.5 V to 0.5 V, the operational state of the battery pack 200 can be accurately determined.
  • the predetermined time period is between 1 and 3 ms. That is to say, the value of the predetermined time period may be 1ms, 1.5ms, 2ms, 2.3ms, 3ms, and the like. If the value of the predetermined time period is too small, such as less than 1 ms, there may be a case where the duration of a certain high level is greater than 1 ms when the level of the clock signal line SCL is changing, which may result in the battery assembly 200. Misjudgment of work status. If the value of the predetermined time period is too large, such as greater than 3 ms, the speed of realizing the communication connection between the communication master device 100 and the battery component 200 is affected. Setting the value range of the predetermined time period to 1 to 3 ms can ensure accurate judgment of the operating state of the battery pack 200 on the one hand, and does not affect the speed of the communication connection between the communication master device 100 and the battery pack 200 on the other hand.
  • communication master 100 and battery assembly 200 communicate using a UART asynchronous serial data transmission protocol, at which time first communication line 300 is a transmit signal line.
  • the communication master device 100 is also in communication connection with the battery pack 200 via the second communication line 400, at which time the second communication line 400 is a receive signal line.
  • the UART asynchronous serial data transmission protocol uses asynchronous communication for data transmission.
  • the bus of the UART asynchronous serial data transmission mode includes a transmission signal line and a reception signal line, and the transmission signal line and the reception signal line respectively control the transmission or reception process of data by using respective clocks, thereby realizing full-duplex communication.
  • the communication master device 100 is a drone and a charger, and the current time that the drone is transmitting data 0x55 to the battery pack 200 will be described as an example.
  • the predetermined level is a high level.
  • each binary digit transmitted on the transmission signal line corresponds to a complete cycle of the clock pulse, so the power of the signal line is transmitted when the drone is controlled.
  • the level changes continuously from high level to low level or low level to high level.
  • the charger 400 first starts the control request process, and detects whether the level of the transmission signal line is high while the control request process is started. If it is detected that the level of the transmission signal line is high, the timer 20 that simultaneously triggers the charger starts timing.
  • the timer 20 is always timed less than a predetermined period of time. Wherein, the timer 20 is less than the predetermined period of time.
  • the timer 20 is reset, and the time of the timing is cleared, and at the same time, The charger's control request process was interrupted.
  • the dot level of the transmission signal line is maintained at a high level, and the timer 20 is not reset so that the timer 20 is clocked for a predetermined period or longer, at which time it is determined that the battery pack 200 is in an idle state.
  • the control request process of the charger continues to execute, thereby obtaining communication control to implement a communication connection between the charger and the battery assembly 200.
  • the charger first starts the control request process, and starts the timer 20 timing while the control request process is started. Since the battery pack 200 is in an idle state, the level of the transmission signal line is always maintained at a high level, so the timer 20 is not reset, and the timer 20 timing is greater than or equal to a predetermined period of time. As described above, in a state where the battery pack 200 is idle, the communication master device 100 can also detect and acquire the communication control right by using the above-described homologous control method.
  • the level of the transmission signal line may be slightly fluctuated due to factors such as pulse instability in a low level or a high level state, the level of the transmission signal line is kept at a high level to indicate a transmission signal.
  • the level of the line is greater than or equal to a certain preset value, that is, the level of the transmission signal line is continuously maintained at a high level.
  • the communication master device 100 communicates with the battery component 200 using a UART asynchronous serial data transmission protocol, and other communication master devices 100 other than the communication master device 100 are used in the communication master device 100 and the battery component.
  • the data transmitted by the battery pack 200 is discarded when the communication is 200.
  • the UART adopts an asynchronous communication mode, and when the communication master device 100 that starts the control request process confirms that the battery component 200 is in an idle state, the battery component 200 transmits a response signal to the communication master device 100 that initiates the control request process. And the response signal sent by the battery component 200 is received by the communication master device 100 that starts the control request process and the other communication master device 100 that does not start the control request process, for example, the charger initiates the control request process, and the drone does not start the control. Request process. When the charger confirms that the battery pack 200 is in an idle state, the battery pack 200 replies with a response signal to the control request process of the charger. The response signal is received by both the drone and the charger.
  • the drone that has not initiated the control request signal does not discard the response signal, it will cause a problem of logic confusion. Because the drone that has not initiated the control request signal may start the control request process at some time after receiving the response signal, the received response signal may be mistaken for the battery component 200 to respond to the control request process.
  • the response signal is such that the drone is in communication with the battery assembly 200. At this time, if the communication connection between the charger and the battery pack 200 is not completed, communication between the two communication masters 100 and the battery pack 200 is simultaneously performed, that is, a problem of logical confusion occurs.
  • the communication master device 100 communicates with the battery component 200 using the UART asynchronous serial data transmission protocol. After the communication master device 100 confirms that the battery component 200 is in an idle state, it still needs to wait for a period of time before the battery communication master device 100 can The communication connection of the battery assembly 200. Because the UART is using asynchronous communication, in the electricity When the pool component 200 receives the control request sent by the communication master device 100, it needs to process the control request before feeding back a response signal. Therefore, the communication master device 100 needs to wait for a period of time to initiate the next communication to the battery assembly 200.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be performed by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if executed in hardware, as in another embodiment, it can be performed by any one of the following techniques or combinations thereof known in the art: having logic gates for performing logic functions on data signals Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be executed in the form of hardware or in the form of software functional modules.
  • the integrated modules, if executed in the form of software functional modules and sold or used as separate products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种通信控制方法,用于控制通信主设备(100)与电池组件(200)通信。电池组件(200)通过第一通信线路(300)与至少两个通信主设备(100)通信连接。第一通信线路(300)的电平在电池组件(200)与任一通信主设备(100)通信时发生变化。通信控制方法包括:开启控制请求进程;检测第一通信线路(300)的电平是否在预定时段维持为预定电平;在第一通信线路(300)的电平在预定时段不为预定电平时中断控制请求进程;在第一通信线路(300)的电平在预定时段维持为预定电平时控制通信主设备(100)与电池组件(200)通信。本发明还公开了一种通信主设备(100)和通信系统(1000)。

Description

通信控制方法、通信主设备和通信系统 技术领域
本发明涉及电池组件通信技术领域,特别涉及一种通信控制方法、通信主设备和通信系统。
背景技术
为节约成本和降低功耗,目前的电池一般只有一个串行接口。然而,在某些场合下,例如无人机在开机的情况下充电,电池需要同时跟无人机还有充电器通信,电池作为通信从设备,而无人机和充电器作为通信主设备。但是电池难以通过单一串行接口同时与无人机和充电器通信,容易引起逻辑混乱。
发明内容
本发明的实施例提供一种通信控制方法、通信主设备和通信系统。
本发明实施方式的通信控制方法用于控制通信主设备与电池组件通信。所述电池组件通过第一通信线路与至少两个所述通信主设备通信连接,所述第一通信线路的电平在所述电池组件与任何一个所述通信主设备通信时发生变化。所述通信控制方法包括以下步骤:
开启控制请求进程;
检测所述第一通信线路的电平是否在预定时段维持为预定电平;
在所述第一通信线路的电平在所述预定时段不为所述预定电平时中断所述控制请求信号;和
在所述第一通信线路的电平在所述预定时段维持为所述预定电平时控制所述通信主设备与所述电池组件通信。
本发明实施方式的通信主设备用于与电池组件通信。所述电池组件通过第一通信线路与至少两个所述通信主设备连接,所述第一通信线路的电平在所述电池组件与任一所述通信主设备通信时发生变化。所述通信主设备包括控制器,所述控制器用于:
开启控制请求进程;
检测所述第一通信线路的电平是否在预定时段维持为预定电平;
在所述第一通信线路的电平在所述预定时段不为所述预定电平时中断所述控制请求信号;和
在所述第一通信线路的电平在所述预定时段维持为所述预定电平时控制所述通信主设备与所述电池组件通信。
本发明实施方式的通信系统包括电池组件和上述的通信主设备,所诉电池组件通过第一通信线路与至少两个所述通信主设备通信连接。
本发明实施方式的通信控制方法、通信主设备和通信系统通过检测通信主设备与电池组件通信连接的第一通信线路的电平在预定时段是否维持为预定电平来判断电池组件是否处于空闲状态,在电池组件处于空闲状态时才与电池组件进行通信,如此,可以保证多个通信主设备与电池组件之间通信传输稳定,而不会出现因互相干扰而导致通信失败的问题。
本发明的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实施方式的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明某些实施方式的控制方法的流程示意图。
图2是本发明某些实施方式的通信系统的模块示意图。
图3是本发明某些实施方式的控制方法的流程示意图。
图4是本发明某些实施方式的控制方法的状态示意图。
图5是I2C的时钟信号线路和数据信号线路的时序图。
图6是本发明某些实施方式的控制方法的原理示意图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
请一并参阅图1至2,本发明实施方式的通信控制方法用于控制通信主设备100与电池组件200通信,电池组件200通过第一通信线路300与至少两个通信主设备100通信连接。第一通信线路300的电平在电池组件200与任一通信主设备100通信时发生变化。通信控制方法包括以下步骤:
S11:开启控制请求进程;
S12:检测第一通信线路300的电平是否在预定时段维持为预定电平;
S13:在第一通信线路300的电平在预定时段不为预定电平时中断控制请求进程;和
S14:在第一通信线路300的电平在预定时段维持为预定电平时控制通信主设备100与电池组件200通信。
本发明实施方式的通信控制方法可以应用于本发明实施方式的通信主设备100。本发明实施方式的通信主设备100用于与电池组件200通信。电池组件200通过第一通信线路300与至少两个通信主设备100连接。通信主设备100包括控制器10。步骤S11、步骤S12、步骤S13和步骤S14均可以由控制器10实现。
也即是说,控制器10可以用于:
开启控制请求进程;
检测第一通信线路300的电平是否在预定时段维持为预定电平;
在第一通信线路300的电平在预定时段不为预定电平时中断控制请求进程;和
在第一通信线路300的电平在预定时段维持为预定电平时控制通信主设备100与电池组件200通信。
本发明实施方式的通信主设备100可以应用于本发明实施方式的通信系统1000。也即是说,本发明实施方式的通信系统1000包括本发明实施方式的通信主设备100。本发明实施方式的通信系统1000还包括电池组件200以及通过第一通信线路300与电池组件200通信连接的至少两个通信主设备100。
在某些实施方式中,通信主设备100包括无人机或充电器。例如,在某些实施方式中,通信系统1000包括两个通信主设备100:无人机和充电器,通信系统100还包括电池组件200。
可以理解,电池组件200由于成本及功耗等因素的限制,通常仅具有单一的通信接口,因此电池组件200往往不能同时与多个通信主设备100同时通信。然而,在某些场合中又需要同时与多个通信主设备100通信。例如,在某些实施例中,在无人机开机的情况下给电池组件200充电,此时无人机需要时刻了解电池组件200的状态,如电量等,而充电器也需要了解电池组件200的信息,如电池组件200的温度等。如此,仅具备单一通信接口的电池组件200无法同时与无人机及充电器进行通信。
本发明实施方式的通信控制方法将电池组件200通过第一通信线路300连接至多个通信主设备100。其中,电池组件工作于从机模式,通信主设备100工作于主机模式,由通信主设备100主动向电池组件200发送数据。通信主设备100要同电池组件200通信时,通信主设备100启动控制请求进程并检测第一通信线路300的电平在预定时段是否维持为预定电平来判断电池组件200是否处于空闲状态。若电池组件200处于空闲状态,则通信主设备100可与电池组件200进行通信。若电池组件200处于繁忙状态,则通信主设备100的控制请求进程被中断。如此,电池组件200可以与多个通信主设备100实现通信连接,多个通信主设备100通过检测第一通信线路300的状态即可实现通信避让,避免出现因多个通信主设备100的传输数据互相干扰而导致通信失败的问题。
可以理解,通信控制方法可以在任意一个通信主设备100上独立执行,用于侦测并取得通信控制权。
对于执行通信控制方法的当前的通信主设备100,控制器10可以根据I/O外围部件的请求或者定时机制启动控制请求进程,例如,当通信主设备100是无人机时,I/O外围部件可以是输入部件(例如遥控器)并在充电的过程中触发一个读取电池组件200的电量的查询命令,控制器10接收到查询命令后启动控制请求进程。
可以理解,控制请求进程是控制器10进行的一个检测并取得与电池组件200通信控制权的过程,发生在通信主设备10与电池组件200实现通信握手之前。
请一并参阅图2至图3,在某些实施方式中,通信主设备100包括定时器20,步骤S12检测第一通信线路300的电平是否在预定时段维持为预定电平包括以下步骤:
S121:在启动控制请求进程时判断第一通信线路300的电平是否为预定电平;
S122:在第一通信线路300的电平为预定电平时启动定时器20计时;
S123:在第一通信线路300的电平变化为预定电平时重置定时器20计时;和
S124:在定时器20计时大于等于预定时段时确定第一通信线路300的电平在预定时段维持为预定电平。
在某些实施方式中,步骤S121、步骤S122、步骤S123和步骤S124均可以由控制器实现。
也即是说,控制器10可以进一步用于:
在启动控制请求进程时判断第一通信线路300的电平是否为预定电平;
在第一通信线路300的电平为预定电平时启动定时器20计时;
在第一通信线路300的电平变化为预定电平时重置定时器20计时;和
在定时器20计时大于等于预定时段时确定第一通信线路300的电平在预定时段维持为预定电平。
请参阅图4,在某些实施方式中,通信主设备100与电池组件200采用I2C通信协议进行通信,此时,第一通信线路300为时钟信号线路SCL。另外,通信主设备100还通过第二通信线路400与电池组件200进行通信连接,此时第二通信线路400为数据信号线路SDA。
在某些实施例中,采用一个支持外部中断的GPIO,即图示中的“GPIO(EXTI)”,连接在I2C总线的时钟信号线路(SCL)上,用于监测时钟信号线路(SCL)上的高低电平情况。例如,GPIO的外部中断的触发方式可以设定为上升沿和/或下降沿触发,这样,在通信过程中,随着SCL信号的波动,这个外部中断会不断的被触发。另外,可以采用定时器20记录这个GPIO的两次相邻的外部中断之间的间隔时间,从而可以监控时钟信号线路(SCL) 上的当前电平状态以及持续时间。
请一并参阅4和图5,I2C通信协议是具有两线式串行总线的通信协议,采用时钟同步的通信方式进行数据传输。其中I2C总线包括时钟信号线路SCL和数据信号线路SDA,时钟信号线路SCL用于保证时钟同步,数据信号线路SDA用于传输数据。由图5所示的时序图可以看出,通信主设备100与电池组件200进行数据传输的起始信号是在时钟信号线路SCL保持高电平期间,数据信号线路SDA上的电平被拉低即数据信号线路SDA上的电平由高电平到低电平进行跳变即标志着数据传输的开始;停止信号是在时钟信号线路SCL保持高电平期间,数据信号线路SDA上的电平由低电平向高电平跳变即标志着数据传输的结束。而在数据传输期间,在I2C总线上传送的每一位数据都与一个时钟脉冲相对应以进行同步控制,由于通信主设备100工作于主机模式即I2C时钟信号线路SCL由通信主设备100控制,因此,通信主设备100会控制时钟信号线路SCL的电平进行高低电平的持续变化。若通信主设备100与电池组件200的数据传输结束,则时钟信号线路SCL的电平会保持为高电平。通信主设备100要与电池组件200通信,即可通过检测时钟信号线路SCL的电平是否处于高低电平变化的状态来判断电池组件200是否处于空闲状态。
请参阅图6,具体地,以通信主设备100为无人机和充电器且当前时刻无人机正发送数据0x55至电池组件200为例进行说明。其中,预定电平为高电平。在无人机发送数据0x55即01010101至电池组件200的数据传输期间,发送的每一位二进制数都对应一个完整周期的时钟脉冲,因此无人机控制时钟信号线路SCL的电平从高电平至低电平或从低电平至高电平持续变化。此时,充电器若要与电池组件400进行通信,则充电器400首先启动控制请求进程,在控制请求进程启动的同时检测时钟信号线路SCL的电平是否为高电平。若检测到时钟信号线路SCL的电平为高电平则同时触发充电器的定时器20开始计时。在数据传输期间,由于时钟信号线路SCL的电平持续变化,定时器20的计时时间总小于预定时段。其中,在定时器20计时小于预定时段的期间,由于时钟信号线路SCL的电平出现变化,并且经历一个完整周期的时钟脉冲变化使得时钟信号线路SCL的电平又返回至高电平,因而定时器20被重置,计时的时间清零,同时,充电器的控制请求进程被中断。在数据传输结束后,时钟信号线路SCL的电平维持为高电平,定时器20未被重置从而使得定时器20计时大于等于预定时段,此时则可确定电池组件200处于空闲状态。如此,充电器的控制请求进程会继续执行,从而获取通信控制权以实现充电器与电池组件200之间的通信连接。
此外,若某一时刻电池组件200处于空闲状态,此时如果充电器要同电池组件200通信连接,则同样地,充电器首先启动控制请求进程,并在控制请求进程启动的同时启动定时器20计时。由于电池组件200处于空闲状态,因此时钟信号线路SCL的电平始终维持 为高电平,因此,定时器20不会被重置,定时器20计时会大于等于预定时段。如此,在电池组件200闲置的状态下,通信主设备100也可利用本发明实施方式的通信控制方法检测并取得通信控制权。
需要说明的是,由于时钟信号线路SCL的电平在低电平或高电平状态时可能由于脉冲不稳定等因素而出现些许波动,因此,时钟信号线路SCL的电平保持为高电平表示的是时钟信号线路SCL的电平大于等于某一预设值即理解为时钟信号线SCL路的电平持续保持为高电平状态。比如,时钟信号线路SCL的高电平在不存在波动的情况下的值为5V,则可将预设值设为4.5V。因此,只要通信主设备100检测到时钟信号线路SCL的电平值大于等于4.5V,即认为时钟信号线路SCL的电平处于高电平状态。如此,即使时钟信号线路SCL的高电平存在-0.5V~0.5V波动误差的情况下,也可对电池组件200的工作状态进行准确判断。
在某些实施方式中,预定时段为1~3ms。也即是说,预定时段的取值可为1ms、1.5ms、2ms、2.3ms、3ms等值。若预定时段的取值过小,如小于1ms,则可能出现在时钟信号线路SCL的电平处于变化状态时,某一高电平的持续时间大于1ms的情况,此时会导致电池组件200的工作状态的误判。若预定时段的取值过大,如大于3ms,则会影响通信主设备100和电池组件200之间的实现通信连接的速度。将预定时段的取值范围设置在1~3ms中,一方面可以保证电池组件200的工作状态的准确判断,另一方面不会影响通信主设备100和电池组件200之间的通信连接的速度。
在某些实施方式中,通信主设备100与电池组件200采用UART异步串行数据传输协议进行通信,此时,第一通信线路300为发送信号线路。另外,通信主设备100还通过第二通信线路400与电池组件200进行通信连接,此时第二通信线路400为接收信号线路。
UART异步串行数据传输协议采用异步通信方式进行数据传输。UART异步串行数据传输方式的总线包括发送信号线路和接收信号线路,发送信号线路和接收信号线路使用各自的时钟分别控制数据的发送或接收过程,可实现全双工通信。同样地,以通信主设备100为无人机和充电器且当前时刻无人机正发送数据0x55至电池组件200为例进行说明。其中,预定电平为高电平。在无人机发送数据0x55即01010101至电池组件200的数据传输期间,在发送信号线路上发送的每一位二进制数都对应一个完整周期的时钟脉冲,因此无人机控制时发送信号线路的电平从高电平至低电平或从低电平至高电平持续变化。此时,充电器若要与电池组件400进行通信,则充电器400首先启动控制请求进程,在控制请求进程启动的同时检测发送信号线路的电平是否为高电平。若检测到发送信号线路的电平为高电平则同时触发充电器的定时器20开始计时。在数据传输期间,由于发送信号线路的电平持续变化,定时器20的计时时间总小于预定时段。其中,在定时器20计时小于预定时段的期 间,由于发送信号线路的电平出现变化,并且经历一个完整周期的时钟脉冲变化使得发送信号线路的电平又返回至高电平,因而定时器20被重置,计时的时间清零,同时,充电器的控制请求进程被中断。在数据传输结束后,发送信号线路的点电平维持为高电平,定时器20未被重置从而使得定时器20计时大于等于预定时段,此时则可确定电池组件200处于空闲状态。如此,充电器的控制请求进程会继续执行,从而获取通信控制权以实现充电器与电池组件200之间的通信连接。
此外,若某一时刻电池组件200处于空闲状态,此时若充电器要同电池组件200通信联机,则充电器首先启动控制请求进程,并在控制请求进程启动的同时启动定时器20计时。由于电池组件200处于空闲状态,因此发送信号线路的电平始终维持为高电平,因此定时器20不会被重置,定时器20计时会大于等于预定时段。如此,在电池组件200闲置的状态下,通信主设备100也可利用上述的同系控制方法检测并取得通信控制权。
同样地,由于发送信号线路的电平在低电平或高电平状态时可能由于脉冲不稳定等因素而出现些许波动,因此,发送信号线路的电平保持为高电平表示的是发送信号线路的电平大于等于某一预设值即理解为发送信号线路的电平持续保持为高电平状态。
在某些实施方式中,通信主设备100与电池组件200采用UART异步串行数据传输协议进行通信,除通信主设备100外的其他通信主设备100用于在通信主设备100与所述电池组件200通信时丢弃电池组件200发送的数据。
可以理解,UART采用的是异步通信方式,启动控制请求进程的通信主设备100在确认电池组件200处于空闲状态时,电池组件200会向启动控制请求进程的通信主设备100发送响应信号。而电池组件200发送的响应信号会被启动控制请求进程的通信主设备100和未启动控制请求进程的其他通信主设备100接收到,例如,充电器启动控制请求进程,而无人机未启动控制请求进程。充电器确认电池组件200处于空闲状态时,电池组件200会对充电器的控制请求进程回复一个响应信号。该响应信号会被无人机和充电器同时接收到。如果未发起控制请求信号的无人机未将响应信号丢弃掉,则会引起逻辑混乱的问题。因为未发起控制请求信号的无人机可能在接收到响应信号后的某一时刻启动控制请求进程,此时可能会将已接受到的响应信号误认为是电池组件200针对此次控制请求进程回馈的响应信号,从而无人机与电池组件200进行通信连接。此时,若充电器与电池组件200的通信连接还未结束,则两个通信主设备100与电池组件200之间的通信同时进行,即发生逻辑混乱的问题。
此外,通信主设备100与电池组件200采用UART异步串行数据传输协议进行通信,在通信主设备100确认电池组件200处于空闲状态后,还需等待一段时间才可进行与电池通信主设备100与电池组件200的通信连接。因为UART是采用的是异步通信方式,在电 池组件200接收到通信主设备100发送的控制请求时需要处理该控制请求后才回馈一个响应信号。因此,通信主设备100需要等待一段时间才能向电池组件200发起下一次的通信。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于执行特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的执行,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于执行逻辑功能的可执行指令的定序列表,可以具体执行在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来执行。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来执行。例如,如果用硬件来执行,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来执行:具有用于对数据信号执行逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解执行上述实施方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该 程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式执行,也可以采用软件功能模块的形式执行。所述集成的模块如果以软件功能模块的形式执行并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (14)

  1. 一种通信控制方法,用于控制通信主设备与电池组件通信,其特征在于,所述电池组件通过第一通信线路与至少两个所述通信主设备通信连接,所述第一通信线路的电平在所述电池组件与任何一个所述通信主设备通信时发生变化,所述通信控制方法包括以下步骤:
    开启控制请求进程;
    检测所述第一通信线路的电平是否在预定时段维持为预定电平;
    在所述第一通信线路的电平在所述预定时段不为所述预定电平时中断所述控制请求进程;和
    在所述第一通信线路的电平在所述预定时段维持为所述预定电平时控制所述通信主设备与所述电池组件通信。
  2. 根据权利要求1所述的通信控制方法,其特征在于,所述通信主设备包括无人机或充电器。
  3. 根据权利要求1所述的通信控制方法,其特征在于,所述通信主设备与所述电池组件采用I2C通信协议进行通信,所述第一通信线路为时钟信号线路。
  4. 根据权利要求1所述的通信控制方法,其特征在于,所述通信主设备与所述电池组件采用UART异步串行数据传输协议进行通信,所述第一通信线路为发送信号线路。
  5. 根据权利要求1所述的通信控制方法,其特征在于,所述通信主设备包括定时器,所述检测所述第一通信线路的电平是否在预定时段维持为预定电平的步骤包括以下步骤:
    在启动所述控制请求进程时判断所述第一通信线路的电平是否为所述预定电平;
    在所述第一通信线路的电平为所述预定电平时启动所述定时器计时;
    在所述第一通信线路的电平变化为所述预定电平时重置所述定时器计时;和
    在所述定时器计时大于等于预定时段时确定所述第一通信线路的电平在所述预定时段维持为所述预定电平。
  6. 根据权利要求1所述的通信控制方法,其特征在于,所述预定时段为1~3ms。
  7. 一种通信主设备,用于与电池组件通信,其特征在于,所述电池组件通过第一通信 线路与至少两个所述通信主设备连接,所述第一通信线路的电平在所述电池组件与任何一个所述通信主设备通信时发生变化,所述通信主设备包括控制器,所述控制器用于:
    开启控制请求进程;
    检测所述第一通信线路的电平是否在预定时段维持为预定电平;
    在所述第一通信线路的电平在所述预定时段不为所述预定电平时中断所述控制请求进程;和
    在所述第一通信线路的电平在所述预定时段维持为所述预定电平时控制所述通信主设备与所述电池组件通信。
  8. 根据权利要求7所述的通信主设备,其特征在于,所述通信主设备包括无人机或充电器。
  9. 根据权利要求7所述的通信主设备,其特征在于,所述通信主设备与所述电池组件采用I2C通信协议进行通信,所述第一通信线路为时钟信号线路。
  10. 根据权利要求7所述的通信主设备,其特征在于,所述通信主设备与所述电池组件采用UART异步串行数据传输协议进行通信,所述第一通信线路为发送信号线路。
  11. 根据权利要求7所述的通信主设备,其特征在于,所述通信主设备包括定时器,所述控制器进一步用于:
    在启动所述控制请求进程时判断所述第一通信线路的电平是否为所述预定电平;
    在所述第一通信线路的电平为所述预定电平时启动所述定时器计时;
    在所述第一通信线路的电平变化为所述预定电平时重置所述定时器计时;和
    在所述定时器计时大于等于预定时段时确定所述第一通信线路的电平在所述预定时段维持为所述预定电平。
  12. 根据权利要求1所述的通信主设备,其特征在于,所述预定时段为1~3ms。
  13. 一种通信系统,其特征在于,包括:
    电池组件;和
    权利要求7至12任意一项所述通信主设备,所述电池组件通过第一通信线路与至少两个所述通信主设备通信连接。
  14. 根据权利要求13所述的通信系统,其特征在于,所述通信主设备与所述电池组件采用UART异步串行数据传输协议进行通信,除所述通信主设备外的其他所述通信主设备用于在所述通信主设备与所述电池组件通信时丢弃所述电池组件发送的数据。
PCT/CN2017/084772 2017-05-17 2017-05-17 通信控制方法、通信主设备和通信系统 WO2018209615A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/084772 WO2018209615A1 (zh) 2017-05-17 2017-05-17 通信控制方法、通信主设备和通信系统
CN201780005406.0A CN108521854A (zh) 2017-05-17 2017-05-17 通信控制方法、通信主设备和通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/084772 WO2018209615A1 (zh) 2017-05-17 2017-05-17 通信控制方法、通信主设备和通信系统

Publications (1)

Publication Number Publication Date
WO2018209615A1 true WO2018209615A1 (zh) 2018-11-22

Family

ID=63434408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084772 WO2018209615A1 (zh) 2017-05-17 2017-05-17 通信控制方法、通信主设备和通信系统

Country Status (2)

Country Link
CN (1) CN108521854A (zh)
WO (1) WO2018209615A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741403A (zh) * 2008-11-10 2010-06-16 索尼爱立信移动通信日本株式会社 无线通信装置及电源装置
US20120200251A1 (en) * 2011-02-07 2012-08-09 Canon Kabushiki Kaisha Charging apparatus
CN103855780A (zh) * 2012-11-28 2014-06-11 瑞萨电子株式会社 半导体集成电路及其操作方法
CN203859558U (zh) * 2014-04-25 2014-10-01 Tcl通力电子(惠州)有限公司 电子设备及其对外充电电路

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100496048C (zh) * 2005-02-28 2009-06-03 邹润民 多主通信系统
CN101499043A (zh) * 2009-03-12 2009-08-05 杭州士兰微电子股份有限公司 单线总线系统和通信方法
CN101639819A (zh) * 2009-08-27 2010-02-03 罗建华 采用脉冲间隔进行串行通信以及二芯带供电的总线系统
CN202018576U (zh) * 2011-04-19 2011-10-26 杭州华光电气有限公司 单片机通信模块
CN103116561A (zh) * 2011-11-17 2013-05-22 凹凸电子(武汉)有限公司 数字信号收发装置和方法以及电动车系统
CN103116563B (zh) * 2012-11-09 2015-08-05 瑞斯康达科技发展股份有限公司 一种主机通信方法、一种主机及通信系统
CN103839388A (zh) * 2012-11-26 2014-06-04 富盛科技股份有限公司 多主机rs485周界报警方法
CN203180949U (zh) * 2013-03-27 2013-09-04 郑军 基于uart的总线型通讯系统
CN103617138A (zh) * 2013-12-16 2014-03-05 深圳市兴威帆电子技术有限公司 多主机仲裁方法及多主机通信系统
CN105072007B (zh) * 2015-07-21 2019-02-22 电子科技大学 一种石油测井总线的数据传输方法
CN106502936B (zh) * 2016-10-26 2020-02-04 海信(山东)空调有限公司 一种多主总线的冲突避让方法及节点设备
CN106453383B (zh) * 2016-11-07 2019-12-24 深圳拓邦股份有限公司 一种基于uart的主从多机通讯系统及方法
CN106953787B (zh) * 2017-03-28 2022-09-20 华南理工大学 一种基于电平迁移的电池管理系统多主机通信方法及装置
CN107329919B (zh) * 2017-07-05 2019-06-11 福州福大海矽微电子有限公司 单线通信方法及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741403A (zh) * 2008-11-10 2010-06-16 索尼爱立信移动通信日本株式会社 无线通信装置及电源装置
US20120200251A1 (en) * 2011-02-07 2012-08-09 Canon Kabushiki Kaisha Charging apparatus
CN103855780A (zh) * 2012-11-28 2014-06-11 瑞萨电子株式会社 半导体集成电路及其操作方法
CN203859558U (zh) * 2014-04-25 2014-10-01 Tcl通力电子(惠州)有限公司 电子设备及其对外充电电路

Also Published As

Publication number Publication date
CN108521854A (zh) 2018-09-11

Similar Documents

Publication Publication Date Title
US20080177918A1 (en) Method and apparatus for controlling timing of state transition of serial data line in 12c controller
US6904479B2 (en) Method for transmitting data over a data bus with minimized digital inter-symbol interference
RU2571583C2 (ru) Устройство и способ опроса адресов одного или более подчиненных устройств в системе связи
US20150074304A1 (en) Apparatus and method for polling addresses of one or more slave devices in a communications system
US7193442B2 (en) USB 1.1 for USB OTG implementation
JP6936543B2 (ja) Usbインターフェース回路および低電力動作のための方法
WO2019104947A1 (zh) 系统级芯片、通用串行总线主设备、系统及唤醒方法
US20140122752A1 (en) USB 3.0 Link Layer Timer Adjustment to Extend Distance
US20160026233A1 (en) Communication apparatus transmitting and receiving data through data bus, and method of reducing a consumed power in such
TWI459205B (zh) 通訊介面的電源管理方法與具有通訊介面之電源管理能力的裝置
US10942885B2 (en) Communicating apparatus, communication method, program, and communication system
JP2001067156A (ja) コンピュータ周辺機器及びその制御方法、撮像装置並びに記憶媒体
US20170123485A1 (en) Device, operation-mode control method, and recording medium
WO2018209615A1 (zh) 通信控制方法、通信主设备和通信系统
US10831257B2 (en) Storage device having a serial communication port
WO2020233250A1 (zh) 伺服电机驱动电路及3d打印装置
TWI741417B (zh) 積體電路匯流排即時偵測連接狀態的裝置及方法
WO2018005516A1 (en) Accelerated i3c master stop
JP2000293485A (ja) 通信インターフェース
US20090265573A1 (en) Data transmission/reception circuit
US9645621B2 (en) Single-pin command technique for mode selection and internal data access
US20140095739A1 (en) Communication device, communication method and computer-readable recording medium
JP2009122844A (ja) 通信制御装置及びプログラム
US9747958B2 (en) Device soft-start management for enumeration problems with USB hosts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910017

Country of ref document: EP

Kind code of ref document: A1