WO2018207840A1 - Learning device and learning method - Google Patents

Learning device and learning method Download PDF

Info

Publication number
WO2018207840A1
WO2018207840A1 PCT/JP2018/017979 JP2018017979W WO2018207840A1 WO 2018207840 A1 WO2018207840 A1 WO 2018207840A1 JP 2018017979 W JP2018017979 W JP 2018017979W WO 2018207840 A1 WO2018207840 A1 WO 2018207840A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pressure sensor
detected
difference
exhaust
Prior art date
Application number
PCT/JP2018/017979
Other languages
French (fr)
Japanese (ja)
Inventor
裕貴 川▲崎▼
ワサンタ 大下
佑樹 菅谷
哲史 塙
良文 花村
佐藤 淳一
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201880030877.1A priority Critical patent/CN110621867B/en
Publication of WO2018207840A1 publication Critical patent/WO2018207840A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • the present disclosure relates to a learning apparatus and a learning method for learning the magnitude of individual variation of an intake pressure sensor and an exhaust pressure sensor of a vehicle.
  • Patent Document 1 discloses a method of storing atmospheric pressure measured under a predetermined condition and correcting a measured value of exhaust pressure based on a difference between the stored atmospheric pressure and the measured atmospheric pressure. Yes.
  • the correction value varies depending on the temperature when the conventional method is used. Therefore, when the conventional method is used, the correction value for correcting the influence of individual variation of the sensor is affected by the temperature characteristic of the atmospheric pressure sensor, and the accuracy of the correction value is low.
  • An object of the present disclosure is to provide a learning device and a learning method capable of improving the correction accuracy of the pressure by the atmospheric pressure sensor by the intake pressure sensor and the exhaust pressure sensor in the vehicle.
  • a learning device is a learning device that learns an error of an intake pressure sensor that detects an intake pressure of a vehicle and an exhaust pressure sensor that detects an exhaust pressure of the vehicle, and is an atmospheric pressure provided in the vehicle
  • a pressure acquisition unit that acquires the atmospheric pressure detected by the sensor in the predetermined temperature range, the intake pressure detected by the intake pressure sensor in the predetermined temperature range, and the exhaust pressure detected by the exhaust pressure sensor in the predetermined temperature range.
  • a second pressure difference that is a difference between the exhaust pressure detected by the exhaust pressure sensor and the atmospheric pressure detected by the atmospheric pressure sensor in the predetermined temperature range in the predetermined temperature range is stored in the storage unit.
  • a learning unit that stores the first pressure difference and the second pressure difference in the storage unit, and then corrects the intake pressure detected by the intake pressure sensor based on the first pressure difference.
  • a correction unit that corrects the exhaust pressure detected by the exhaust pressure sensor based on the second pressure difference.
  • the learning unit starts the engine of the vehicle when a temperature detected by a temperature sensor provided in the vehicle is less than a lower limit value of the predetermined temperature range, and the temperature detected by the temperature sensor is the predetermined temperature.
  • the first pressure difference and the second pressure difference when the engine is stopped after reaching the temperature range may be stored in the storage unit.
  • the learning unit waits until a predetermined time elapses after energization of the atmospheric pressure sensor, the intake pressure sensor, and the exhaust pressure sensor, and then the first pressure difference and the second pressure.
  • the difference may be stored in the storage unit.
  • the learning unit stores the first pressure difference and the second pressure difference in the storage unit after confirming that the intake pressure sensor, the exhaust pressure sensor, and the atmospheric pressure sensor have not failed. May be.
  • the learning unit smoothes the smoothed intake pressure obtained by smoothing the intake pressure detected by the intake pressure sensor within the predetermined time and the atmospheric pressure detected by the atmospheric pressure sensor within the predetermined time.
  • the difference between the smoothed exhaust pressure and the smoothed atmospheric pressure which is obtained by calculating the difference from the smoothed atmospheric pressure as the first pressure difference and smoothing the exhaust pressure detected by the exhaust pressure sensor within the predetermined time. May be calculated as the second pressure difference.
  • a learning method of the present disclosure is a learning method for learning an error of an intake pressure sensor that detects an intake pressure of a vehicle and an exhaust pressure sensor that detects an exhaust pressure of the vehicle, which is executed by a computer, and is provided in the vehicle
  • the atmospheric pressure detected by the atmospheric pressure sensor in a predetermined temperature range, the intake pressure detected by the intake pressure sensor in the predetermined temperature range, and the exhaust pressure detected by the exhaust pressure sensor in the predetermined temperature range.
  • a first pressure difference that is a difference between an intake pressure detected by the intake pressure sensor and an atmospheric pressure detected by the atmospheric pressure sensor in the predetermined temperature range in a state where the engine of the vehicle is stopped; and The difference between the exhaust pressure detected by the exhaust pressure sensor and the atmospheric pressure detected by the atmospheric pressure sensor in the predetermined temperature range with the engine stopped.
  • the learning device and the learning method of the present disclosure it is possible to improve the correction accuracy of the pressure by the atmospheric pressure sensor by the intake pressure sensor and the exhaust pressure sensor in the vehicle.
  • FIG. 1 is a diagram showing the configuration of an intake system and an exhaust system in a vehicle.
  • FIG. 2 is a diagram illustrating a configuration of the ECM.
  • FIG. 3 is a flowchart showing the procedure of ECM processing.
  • FIG. 4 is a sequence diagram illustrating a flow when learning by ECM is performed using a tool.
  • FIG. 1 is a diagram illustrating a configuration of an intake system and an exhaust system in the vehicle 1 of the present embodiment.
  • the vehicle 1 can be connected to a tool 2 configured by a computer or the like used by the manufacturer or dealer of the vehicle 1, and the manufacturer or dealer can use the tool 2 for the intake pressure sensor and the exhaust pressure sensor of the vehicle 1.
  • Information for correcting individual variation can be transmitted to the vehicle 1.
  • the vehicle 1 includes an ECM (Engine Control Module) 10, an engine 11, an EGR (Exhaust Gas Recirculation) cooler 12, an EGR valve 13, a temperature sensor 14, an atmospheric pressure sensor 15, an intake pressure sensor 16, an exhaust pressure sensor 16. And an atmospheric pressure sensor 17.
  • the ECM 10 is a module that controls the engine 11 and peripheral components of the engine 11, and includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), an EEPROM (Electrically, Erasable Programmable, Read Only Memory), and the like.
  • the ECM 10 can send and receive various data to and from the tool 2.
  • the ECM 10 may transmit and receive data via the tool 2 and a cable, or may transmit and receive data via radio waves.
  • the ECM 10 calculates the EGR flow rate based on the ratio between the exhaust pressure detected by the exhaust pressure sensor 17 and the intake pressure detected by the intake pressure sensor 16. Further, the ECM 10 controls the EGR valve 13 so that the oxygen concentration corresponding to the calculated EGR flow rate is within a predetermined range. Although details will be described later, the ECM 10 controls the atmospheric pressure sensor 15, the intake pressure sensor 16, and the Based on the atmospheric pressure detected by the exhaust pressure sensor 17, it functions as a learning device that learns a correction value for correcting the intake pressure detected by the intake pressure sensor 16 and the exhaust pressure detected by the exhaust pressure sensor 17.
  • the engine 11 generates power for driving the vehicle 1. Part of the exhaust discharged from the engine 11 is sent to the EGR cooler 12. The EGR cooler 12 cools the exhaust sent from the engine 11 and then returns it to the engine 11.
  • the EGR valve 13 is a valve for adjusting the amount of exhaust sent from the engine 11 to the EGR cooler 12.
  • the EGR valve 13 adjusts the amount of exhaust sent from the engine 11 to the EGR cooler 12 based on the control of the ECM 10.
  • the temperature sensor 14 is a temperature detection unit that detects the temperature around the intake pressure sensor 16 and the exhaust pressure sensor 17 (hereinafter also referred to as ambient temperature). The temperature sensor 14 notifies the detected temperature to the ECM 10.
  • FIG. 1 shows an example in which the vehicle 1 has one temperature sensor 14, the vehicle 1 has a plurality of temperature sensors 14 provided in the vicinity of the intake pressure sensor 16 and the exhaust pressure sensor 17. May be.
  • the atmospheric pressure sensor 15 is a pressure sensor that detects atmospheric pressure.
  • the atmospheric pressure sensor 15 may be provided at an arbitrary location of the vehicle, for example, in the vicinity of the engine 11.
  • the atmospheric pressure sensor 15 notifies the ECM 10 of the detected atmospheric pressure.
  • the intake pressure sensor 16 is a pressure sensor that detects the pressure of air flowing into the engine 11 via an intercooler (not shown).
  • the intake pressure sensor 16 detects, for example, a boost pressure, which is a pressure of compressed air sent to the engine 11 by a supercharger (not shown), as the intake pressure.
  • the intake pressure sensor 16 is provided in a pipe between the intercooler and the engine 11. The intake pressure sensor 16 notifies the ECM 10 of the detected intake pressure.
  • the exhaust pressure sensor 17 is a pressure sensor that detects the pressure of exhaust gas sent from the engine 11 to the EGR cooler 12.
  • the exhaust pressure sensor 17 is provided in a pipe between the engine 11 and the EGR cooler 12. The exhaust pressure sensor 17 notifies the detected exhaust pressure to the ECM 10.
  • the ECM 10 includes the intake pressure sensor 16 based on the pressure detected by the atmospheric pressure sensor 15 in the temperature range where the individual variation widths of the atmospheric pressure sensor 15, the intake pressure sensor 16, and the exhaust pressure sensor 17 are small. And the deviation of the pressure detected by the exhaust pressure sensor 17 is learned. After the learning is completed, the ECM 10 corrects the pressure detected by the intake pressure sensor 16 and the exhaust pressure sensor 17 using the learned deviation, thereby suppressing the influence of variations in the intake pressure sensor 16 and the exhaust pressure sensor 17. .
  • FIG. 2 is a diagram illustrating the configuration of the ECM 10.
  • the ECM 10 includes a storage unit 101 and a control unit 102.
  • the storage unit 101 includes an EEPROM and a RAM.
  • the storage unit 101 stores a program executed by the control unit 102. Further, the storage unit 101 uses, as a learning value, a correction value corresponding to a deviation between the intake pressure detected by the intake pressure sensor 16 and the exhaust pressure detected by the exhaust pressure sensor 17 determined by learning by the learning unit 112 described later.
  • a learning value a correction value corresponding to a deviation between the intake pressure detected by the intake pressure sensor 16 and the exhaust pressure detected by the exhaust pressure sensor 17 determined by learning by the learning unit 112 described later.
  • the control unit 102 functions as a pressure acquisition unit 111, a learning unit 112, and a correction unit 113 by executing a program stored in the storage unit 101.
  • the pressure acquisition unit 111 includes an atmospheric pressure detected by the atmospheric pressure sensor 15 provided in the vehicle 1 in a predetermined temperature range, an intake pressure detected by the intake pressure sensor 16 in a predetermined temperature range, and an exhaust pressure sensor 17 determined by the predetermined pressure range.
  • the exhaust pressure detected in the temperature range is acquired.
  • the predetermined temperature range is a temperature range in which the variation ranges of the atmospheric pressure sensor 15, the intake pressure sensor 16, and the exhaust pressure sensor 17 are relatively small.
  • the pressure acquisition unit 111 notifies the learning unit 112 of the acquired atmospheric pressure, intake pressure, and exhaust pressure. Further, the pressure acquisition unit 111 notifies the correction unit 113 of the acquired intake pressure and exhaust pressure.
  • the learning unit 112 obtains a first pressure difference that is a difference between the intake pressure detected by the intake pressure sensor 16 and the atmospheric pressure detected by the atmospheric pressure sensor 15 in a predetermined temperature range with the engine 11 stopped.
  • the stored value is stored in the storage unit 101 as a learning value corresponding to the deviation of the intake pressure detected by 16.
  • the learning unit 112 also discharges a second pressure difference, which is a difference between the exhaust pressure detected by the exhaust pressure sensor 17 and the atmospheric pressure detected by the atmospheric pressure sensor 15 in a predetermined temperature range with the engine 11 stopped.
  • the learning unit 101 stores the learned value corresponding to the deviation of the exhaust pressure detected by the atmospheric pressure sensor 17.
  • the pressures detected by the atmospheric pressure sensor 15, the intake pressure sensor 16, and the exhaust pressure sensor 17 are all the same.
  • the first pressure difference calculated by the learning unit 112 is not 0, it is considered that the first pressure difference is caused by variations in the intake pressure sensor 16 on the assumption that the deviation of the atmospheric pressure sensor 15 is sufficiently small.
  • the second pressure difference calculated by the learning unit 112 is not zero, it is considered that the second pressure difference is caused by variations in the exhaust pressure sensor 17 on the assumption that the deviation of the atmospheric pressure sensor 15 is sufficiently small.
  • the learning unit 112 starts the engine 11 of the vehicle 1 when the temperature detected by the temperature sensor 14 provided in the vehicle 1 is less than the lower limit value of the predetermined temperature range in order to perform learning in the predetermined temperature range. . Thereafter, the learning unit 112 causes the storage unit 101 to store the first pressure difference and the second pressure difference in a state where the engine 11 is stopped after the temperature detected by the temperature sensor 14 has reached a predetermined temperature range. By doing so, the learning unit 112 can compare the atmospheric pressure detected by the atmospheric pressure sensor 15 with high accuracy with the atmospheric pressure detected by the intake pressure sensor 16 and the atmospheric pressure detected by the exhaust pressure sensor 17. The deviation between the intake pressure sensor 16 and the exhaust pressure sensor 17 can be learned with high accuracy.
  • the learning unit 112 when the atmospheric pressure detected by the atmospheric pressure sensor 15 is 101.33 kPa and the atmospheric pressure detected by the intake pressure sensor 16 is 103.50 kPa, the learning unit 112 has a first pressure difference of 2.17 kPa. And When the atmospheric pressure detected by the exhaust pressure sensor 17 is 100.20 kPa, the learning unit 112 assumes that the second pressure difference is ⁇ 1.13 kPa.
  • the correction unit 113 corrects the intake pressure detected by the intake pressure sensor 16 based on the first pressure difference after the learning unit 112 stores the first pressure difference and the second pressure difference in the storage unit 101. Further, the correction unit 113 corrects the exhaust pressure detected by the exhaust pressure sensor 17 based on the second pressure difference. For example, when the first pressure difference is 2.17 kPa and the intake pressure detected by the intake pressure sensor 16 is 120.0 kPa, the correction unit 113 calculates the corrected intake pressure as 117.83 kPa. When the second pressure difference is ⁇ 1.13 kPa and the exhaust pressure detected by the exhaust pressure sensor 17 is 100.0 kPa, the correction unit 113 calculates the corrected exhaust pressure as 101.13 kPa.
  • FIG. 3 is a flowchart showing the processing procedure of the ECM 10.
  • the learning unit 112 refers to the storage unit 101 to check whether learning has already been performed (S11). If the learning unit 112 determines that learning has already been performed (Yes in S11), the process of the flowchart illustrated in FIG.
  • step S12 the learning unit 112 determines whether or not the temperature detected by the temperature sensor 14 is within a predetermined temperature range (S12). If the temperature is lower than the predetermined temperature range (No in S12), the learning unit 112 starts the engine 11 based on, for example, an operator's operation and starts warming up (S13). The learning unit 112 waits until the temperature detected by the temperature sensor 14 enters a predetermined temperature range.
  • the learning unit 112 determines that the temperature detected by the temperature sensor 14 is within the predetermined temperature range (Yes in S12), the learning unit 112 stops the engine 11 based on the operator's operation (S14). In addition, the learning part 112 advances a process to step S15, without performing step S14, when the engine 11 has stopped.
  • step S15 the learning unit 112 determines whether or not the ignition key is turned on (S15). If the ignition key is not turned on (No in S15), the ignition key is turned on. Wait until. If the learning unit 112 determines that the ignition key has been turned on (Yes in S15), the learning unit 112 monitors whether a predetermined time (for example, 6 seconds) has elapsed (S16).
  • a predetermined time for example, 6 seconds
  • the learning unit 112 is connected to the atmospheric pressure sensor 15, the intake pressure sensor 16, and the exhaust pressure sensor 17 through the pressure acquisition unit 111 while waiting for a predetermined time after starting energization. Then, the atmospheric pressure, the intake pressure and the exhaust pressure detected by the atmospheric pressure sensor 15, the intake pressure sensor 16 and the exhaust pressure sensor 17 are acquired (S17). The learning unit 112 smoothes the atmospheric pressure, the intake pressure, and the exhaust pressure acquired within a predetermined time. The learning unit 112 calculates, for example, the average values of the atmospheric pressure, the intake pressure, and the exhaust pressure acquired by the pressure acquisition unit 111 from the atmospheric pressure sensor 15, the intake pressure sensor 16, and the exhaust pressure sensor 17 within a predetermined time. Thus, the smoothed atmospheric pressure, the smoothed intake pressure and the smoothed exhaust pressure are calculated.
  • the learning unit 112 determines whether any one of the atmospheric pressure sensor 15, the intake pressure sensor 16, and the exhaust pressure sensor 17 has failed (S18).
  • the learning unit 112 for example, has a fluctuation amount of any one of the atmospheric pressure, the intake pressure, and the exhaust pressure acquired by the pressure acquisition unit 111 larger than a predetermined threshold value, or any value of the atmospheric pressure, the intake pressure, and the exhaust pressure. Is an abnormal value, it is determined that any one of the atmospheric pressure sensor 15, the intake pressure sensor 16, and the exhaust pressure sensor 17 has failed.
  • the learning unit 112 calculates the first pressure difference and the second pressure difference (difference value) after confirming that no failure has occurred in step S18. That is, the learning unit 112 determines that no failure has occurred in any of the atmospheric pressure sensor 15, the intake pressure sensor 16, and the exhaust pressure sensor 17 (No in S18), and then proceeds to step S19 to determine the intake pressure. A difference value between a smoothed intake pressure obtained by smoothing the intake pressure detected by the sensor 16 and a smoothed atmospheric pressure obtained by smoothing the atmospheric pressure detected by the atmospheric pressure sensor 15 is calculated as a first pressure difference. Further, the learning unit 112 calculates a difference value between the smoothed exhaust pressure obtained by smoothing the exhaust pressure detected by the exhaust pressure sensor 17 and the smoothed atmospheric pressure as the second pressure difference.
  • the learning unit 112 causes the storage unit 101 to store the calculated first pressure difference and second pressure difference as learning values (S20). Thereby, the learning unit 112 completes the learning and notifies the tool 2 that the learning is completed.
  • step S18 when the learning unit 112 determines that any one of the atmospheric pressure sensor 15, the intake pressure sensor 16, and the exhaust pressure sensor 17 has failed (Yes in S18), the learning unit 112 sets the tool 2 to An error message notifying that a failure has occurred is output (S21).
  • FIG. 4 is a sequence diagram illustrating a flow when learning by the ECM 10 is performed using the tool 2.
  • the ECM 10 checks whether or not the conditions for learning are satisfied (S42). .
  • the ECM 10 checks whether or not the ambient temperature of the sensor is within a predetermined range.
  • step S42 If the ECM 10 determines in step S42 that the conditions are not met, the ECM 10 notifies the tool 2 to that effect, and the tool 2 displays NG items for which the conditions are not met on the screen (S31). When the NG item is displayed on the screen, the operator responds to adjust the condition.
  • step S42 If the ECM 10 determines that the condition is satisfied in step S42, the ECM 10 starts learning (S43) and executes the processing described in FIG. When learning is completed (S44), the ECM 10 notifies the tool 2 that learning has been completed, and the tool 2 displays a screen for confirming that learning has been completed (S32).
  • the ECM 10 stores the first pressure difference and the second pressure difference as learning values and a flag indicating that learning is completed in the EEPROM (S46). Thereafter, the ECM 10 enters a learning prohibited state (S47).
  • the tool 2 transmits an instruction to permit learning to the ECM 10. To do.
  • the ECM 10 transitions to a state in which learning is permitted (S48), and returns to the state in step S41.
  • the learning unit 112 is the difference between the intake pressure detected by the intake pressure sensor 16 and the atmospheric pressure detected by the atmospheric pressure sensor 15 in a predetermined temperature range with the engine 11 of the vehicle 1 stopped.
  • a first pressure difference and a second pressure difference that is a difference between the exhaust pressure detected by the exhaust pressure sensor 17 and the atmospheric pressure detected by the atmospheric pressure sensor 15 in a predetermined temperature range with the engine 11 of the vehicle 1 stopped.
  • the correction unit 113 corrects the intake pressure detected by the intake pressure sensor 16 based on the first pressure difference after the learning unit 112 stores the first pressure difference and the second pressure difference in the storage unit 101. Further, the exhaust pressure detected by the exhaust pressure sensor 17 is corrected based on the second pressure difference.
  • the ECM 10 is used when the accuracy of the intake pressure detected by the intake pressure sensor 16 and the exhaust pressure detected by the exhaust pressure sensor 17 is low due to individual variations of the intake pressure sensor 16 and the exhaust pressure sensor 17. However, it is possible to correct the deviation of the intake pressure and the exhaust pressure caused by the individual variations of the intake pressure sensor 16 and the exhaust pressure sensor 17. As a result, the ECM 10 can calculate the EGR flow rate using highly accurate intake pressure and exhaust pressure, so that appropriate EGR control is realized and deterioration of the NOx value can be suppressed in advance.
  • the learning unit 112 calculates the first pressure difference and the second pressure difference while the ambient temperature of the sensor is in a temperature range in which the accuracy of each sensor is relatively high. In this way, the learning unit 112 can improve the accuracy of detecting individual variations of the intake pressure sensor 16 and the exhaust pressure sensor 17.
  • the learning unit 112 waits until a predetermined time elapses after energization of the atmospheric pressure sensor 15, the intake pressure sensor 16, and the exhaust pressure sensor 17, and then calculates the first pressure difference and the second pressure difference. Store in the storage unit 101. By doing in this way, the learning part 112 can learn using the pressure value after the operation
  • the present disclosure has been described using the embodiment, the technical scope of the present disclosure is not limited to the scope described in the embodiment, and various modifications and changes can be made within the scope of the gist. is there.
  • the specific embodiments of device distribution / integration are not limited to the above-described embodiments, and all or a part of them may be configured to be functionally or physically distributed / integrated in arbitrary units. Can do.
  • new embodiments generated by any combination of a plurality of embodiments are also included in the embodiments of the present disclosure. The effect of the new embodiment produced by the combination has the effect of the original embodiment.
  • the learning device and the learning method of the present disclosure are useful in terms of improving the correction accuracy by the atmospheric pressure sensor of the pressure by the intake pressure sensor and the exhaust pressure sensor in the vehicle.

Abstract

A learning device for learning the error in an intake pressure sensor for detecting the intake pressure of a vehicle and an exhaust pressure sensor for detecting the exhaust pressure of the vehicle, said learning device being equipped with: a pressure acquisition unit for acquiring an atmospheric pressure detected in a prescribed temperature range by an atmospheric pressure sensor, an intake pressure detected in the prescribed temperature range by the intake pressure sensor, and an exhaust pressure detected in the prescribed temperature range by the exhaust pressure sensor, said sensors being provided in the vehicle; and a learning unit for storing, in a storage unit, a first pressure difference, which is a difference between the intake pressure detected by the intake pressure sensor and the atmospheric pressure detected by the atmospheric pressure sensor in the prescribed temperature range while the vehicle engine is stopped, and a second pressure difference, which is a difference between the exhaust pressure detected by the exhaust pressure sensor and the atmospheric pressure detected by the atmospheric pressure sensor in the prescribed temperature range while the vehicle engine is stopped.

Description

学習装置及び学習方法Learning apparatus and learning method
 本開示は、車両の吸気圧センサ及び排気圧センサの個体ばらつきの大きさを学習するための学習装置及び学習方法に関する。 The present disclosure relates to a learning apparatus and a learning method for learning the magnitude of individual variation of an intake pressure sensor and an exhaust pressure sensor of a vehicle.
 従来、大気圧を用いて車両の排気圧の測定値を補正する方法が知られている。特許文献1には、所定の条件下で測定した大気圧を記憶しておき、記憶した大気圧と測定した大気圧との差に基づいて、排気圧の測定値を補正する方法が開示されている。 Conventionally, a method for correcting the measured value of the exhaust pressure of the vehicle using the atmospheric pressure is known. Patent Document 1 discloses a method of storing atmospheric pressure measured under a predetermined condition and correcting a measured value of exhaust pressure based on a difference between the stored atmospheric pressure and the measured atmospheric pressure. Yes.
日本国特開2006-161626号公報Japanese Unexamined Patent Publication No. 2006-161626
 従来の方法では、圧力センサの特性が温度によって変化することが考慮されていなかった。大気圧センサの温度特性と排気圧センサの温度特性は異なるので、従来の方法を用いる場合、温度によって補正値が変化する。したがって、従来の方法を用いる場合には、センサの個体ばらつきの影響を補正するための補正値に大気圧センサの温度特性の影響が及んでしまうため、当該補正値の精度は低かった。 In the conventional method, it has not been considered that the characteristics of the pressure sensor change with temperature. Since the temperature characteristic of the atmospheric pressure sensor and the temperature characteristic of the exhaust pressure sensor are different, the correction value varies depending on the temperature when the conventional method is used. Therefore, when the conventional method is used, the correction value for correcting the influence of individual variation of the sensor is affected by the temperature characteristic of the atmospheric pressure sensor, and the accuracy of the correction value is low.
 本開示の目的は、車両における吸気圧センサ及び排気圧センサによる圧力の大気圧センサによる補正精度を向上可能な学習装置及び学習方法を提供することである。 An object of the present disclosure is to provide a learning device and a learning method capable of improving the correction accuracy of the pressure by the atmospheric pressure sensor by the intake pressure sensor and the exhaust pressure sensor in the vehicle.
 本開示の学習装置は、車両の吸気圧を検出する吸気圧センサ、及び前記車両の排気圧を検出する排気圧センサの誤差を学習する学習装置であって、前記車両に設けられている大気圧センサが所定の温度範囲において検出した大気圧、前記吸気圧センサが前記所定の温度範囲において検出した吸気圧、及び前記排気圧センサが前記所定の温度範囲において検出した排気圧を取得する圧力取得部と、前記車両のエンジンが停止した状態で前記所定の温度範囲において前記吸気圧センサが検出した吸気圧と前記大気圧センサが検出した大気圧との差である第1圧力差、及び前記エンジンが停止した状態で前記所定の温度範囲において前記排気圧センサが検出した排気圧と前記大気圧センサが検出した大気圧との差である第2圧力差を記憶部に記憶させる学習部と、前記学習部が前記第1圧力差及び前記第2圧力差を前記記憶部に記憶させた後に、前記吸気圧センサが検出した吸気圧を前記第1圧力差に基づいて補正し、かつ前記排気圧センサが検出した排気圧を前記第2圧力差に基づいて補正する補正部と、を備える。 A learning device according to the present disclosure is a learning device that learns an error of an intake pressure sensor that detects an intake pressure of a vehicle and an exhaust pressure sensor that detects an exhaust pressure of the vehicle, and is an atmospheric pressure provided in the vehicle A pressure acquisition unit that acquires the atmospheric pressure detected by the sensor in the predetermined temperature range, the intake pressure detected by the intake pressure sensor in the predetermined temperature range, and the exhaust pressure detected by the exhaust pressure sensor in the predetermined temperature range. A first pressure difference that is a difference between an intake pressure detected by the intake pressure sensor and an atmospheric pressure detected by the atmospheric pressure sensor in the predetermined temperature range in a state where the engine of the vehicle is stopped, and the engine A second pressure difference that is a difference between the exhaust pressure detected by the exhaust pressure sensor and the atmospheric pressure detected by the atmospheric pressure sensor in the predetermined temperature range in the predetermined temperature range is stored in the storage unit. And a learning unit that stores the first pressure difference and the second pressure difference in the storage unit, and then corrects the intake pressure detected by the intake pressure sensor based on the first pressure difference. And a correction unit that corrects the exhaust pressure detected by the exhaust pressure sensor based on the second pressure difference.
 前記学習部は、前記車両に設けられた温度センサが検出した温度が前記所定の温度範囲の下限値未満である場合に前記車両の前記エンジンを始動させ、前記温度センサが検出した温度が前記所定の温度範囲内に達した後に前記エンジンを停止させた状態での前記第1圧力差及び前記第2圧力差を前記記憶部に記憶させてもよい。 The learning unit starts the engine of the vehicle when a temperature detected by a temperature sensor provided in the vehicle is less than a lower limit value of the predetermined temperature range, and the temperature detected by the temperature sensor is the predetermined temperature. The first pressure difference and the second pressure difference when the engine is stopped after reaching the temperature range may be stored in the storage unit.
 また、前記学習部は、前記大気圧センサ、前記吸気圧センサ及び前記排気圧センサに通電を開始してから、所定の時間が経過するまで待機した後に、前記第1圧力差及び前記第2圧力差を前記記憶部に記憶させてもよい。 The learning unit waits until a predetermined time elapses after energization of the atmospheric pressure sensor, the intake pressure sensor, and the exhaust pressure sensor, and then the first pressure difference and the second pressure. The difference may be stored in the storage unit.
 また、前記学習部は、前記吸気圧センサ、前記排気圧センサ及び前記大気圧センサが故障していないことを確認した後に、前記第1圧力差及び前記第2圧力差を前記記憶部に記憶させてもよい。 In addition, the learning unit stores the first pressure difference and the second pressure difference in the storage unit after confirming that the intake pressure sensor, the exhaust pressure sensor, and the atmospheric pressure sensor have not failed. May be.
 また、前記学習部は、前記所定の時間内に前記吸気圧センサが検出した吸気圧を平滑化した平滑化吸気圧と前記所定の時間内に前記大気圧センサが検出した大気圧を平滑化した平滑化大気圧との差を前記第1圧力差として算出し、かつ前記所定の時間内に前記排気圧センサが検出した排気圧を平滑化した平滑化排気圧と前記平滑化大気圧との差を前記第2圧力差として算出してもよい。 Further, the learning unit smoothes the smoothed intake pressure obtained by smoothing the intake pressure detected by the intake pressure sensor within the predetermined time and the atmospheric pressure detected by the atmospheric pressure sensor within the predetermined time. The difference between the smoothed exhaust pressure and the smoothed atmospheric pressure, which is obtained by calculating the difference from the smoothed atmospheric pressure as the first pressure difference and smoothing the exhaust pressure detected by the exhaust pressure sensor within the predetermined time. May be calculated as the second pressure difference.
 本開示の学習方法は、コンピュータが実行する、車両の吸気圧を検出する吸気圧センサ、及び前記車両の排気圧を検出する排気圧センサの誤差を学習する学習方法であって、前記車両に設けられている大気圧センサが所定の温度範囲において検出した大気圧、前記吸気圧センサが前記所定の温度範囲において検出した吸気圧、及び前記排気圧センサが前記所定の温度範囲において検出した排気圧を取得するステップと、前記車両のエンジンが停止した状態で前記所定の温度範囲において前記吸気圧センサが検出した吸気圧と前記大気圧センサが検出した大気圧との差である第1圧力差、及び前記エンジンが停止した状態で前記所定の温度範囲において前記排気圧センサが検出した排気圧と前記大気圧センサが検出した大気圧との差である第2圧力差を記憶部に記憶させるステップと、前記第1圧力差及び前記第2圧力差を前記記憶部に記憶させた後に、前記吸気圧センサが検出した吸気圧を前記第1圧力差に基づいて補正し、かつ前記排気圧センサが検出した排気圧を前記第2圧力差に基づいて補正するステップと、を備える。 A learning method of the present disclosure is a learning method for learning an error of an intake pressure sensor that detects an intake pressure of a vehicle and an exhaust pressure sensor that detects an exhaust pressure of the vehicle, which is executed by a computer, and is provided in the vehicle The atmospheric pressure detected by the atmospheric pressure sensor in a predetermined temperature range, the intake pressure detected by the intake pressure sensor in the predetermined temperature range, and the exhaust pressure detected by the exhaust pressure sensor in the predetermined temperature range. A first pressure difference that is a difference between an intake pressure detected by the intake pressure sensor and an atmospheric pressure detected by the atmospheric pressure sensor in the predetermined temperature range in a state where the engine of the vehicle is stopped; and The difference between the exhaust pressure detected by the exhaust pressure sensor and the atmospheric pressure detected by the atmospheric pressure sensor in the predetermined temperature range with the engine stopped. Based on the first pressure difference, the step of storing the pressure difference in the storage unit and the intake pressure detected by the intake pressure sensor after storing the first pressure difference and the second pressure difference in the storage unit And correcting the exhaust pressure detected by the exhaust pressure sensor based on the second pressure difference.
 本開示の学習装置及び学習方法によれば、車両における吸気圧センサ及び排気圧センサによる圧力の大気圧センサによる補正精度を向上させることができる。 According to the learning device and the learning method of the present disclosure, it is possible to improve the correction accuracy of the pressure by the atmospheric pressure sensor by the intake pressure sensor and the exhaust pressure sensor in the vehicle.
図1は、車両における吸気系及び排気系の構成を示す図である。FIG. 1 is a diagram showing the configuration of an intake system and an exhaust system in a vehicle. 図2は、ECMの構成を示す図である。FIG. 2 is a diagram illustrating a configuration of the ECM. 図3は、ECMの処理の手順を示すフローチャートである。FIG. 3 is a flowchart showing the procedure of ECM processing. 図4は、ツールを用いてECMによる学習を実施する際の流れを示すシーケンス図である。FIG. 4 is a sequence diagram illustrating a flow when learning by ECM is performed using a tool.
[車両1の概要]
 図1は、本実施形態の車両1における吸気系及び排気系の構成を示す図である。車両1は、車両1の製造者又はディーラーが用いるコンピュータ等により構成されるツール2に接続可能であり、製造者又はディーラーは、ツール2を用いて車両1が有する吸気圧センサ及び排気圧センサの個体ばらつきを補正するための情報を車両1に送信することができる。
[Outline of vehicle 1]
FIG. 1 is a diagram illustrating a configuration of an intake system and an exhaust system in the vehicle 1 of the present embodiment. The vehicle 1 can be connected to a tool 2 configured by a computer or the like used by the manufacturer or dealer of the vehicle 1, and the manufacturer or dealer can use the tool 2 for the intake pressure sensor and the exhaust pressure sensor of the vehicle 1. Information for correcting individual variation can be transmitted to the vehicle 1.
 車両1は、ECM(Engine Control Module)10と、エンジン11と、EGR(Exhaust Gas Recirculation)クーラー12と、EGRバルブ13と、温度センサ14と、大気圧センサ15と、吸気圧センサ16と、排気圧センサ17とを有する。ECM10は、エンジン11及びエンジン11の周辺部品を制御するモジュールであり、例えばCPU(Central Processing Unit)、RAM(Random Access Memory)及びEEPROM(Electrically Erasable Programmable Read Only Memory)等を有する。ECM10は、ツール2との間で各種のデータを送受信することができる。ECM10は、ツール2とケーブルを介してデータを送受信してもよく、電波を介してデータを送受信してもよい。 The vehicle 1 includes an ECM (Engine Control Module) 10, an engine 11, an EGR (Exhaust Gas Recirculation) cooler 12, an EGR valve 13, a temperature sensor 14, an atmospheric pressure sensor 15, an intake pressure sensor 16, an exhaust pressure sensor 16. And an atmospheric pressure sensor 17. The ECM 10 is a module that controls the engine 11 and peripheral components of the engine 11, and includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), an EEPROM (Electrically, Erasable Programmable, Read Only Memory), and the like. The ECM 10 can send and receive various data to and from the tool 2. The ECM 10 may transmit and receive data via the tool 2 and a cable, or may transmit and receive data via radio waves.
 ECM10は、排気圧センサ17が検出した排気圧と吸気圧センサ16が検出した吸気圧との比に基づいてEGR流量を算出する。また、ECM10は、算出したEGR流量に対応する酸素濃度が所定の範囲内になるようにEGRバルブ13を制御する。詳細については後述するが、ECM10は、吸気圧センサ16及び排気圧センサ17の個体ばらつきにより生じるEGR流量の算出誤差を抑制するために、所定の温度範囲において大気圧センサ15、吸気圧センサ16及び排気圧センサ17が検出した大気圧に基づいて、吸気圧センサ16が検出した吸気圧及び排気圧センサ17が検出した排気圧を補正するための補正値を学習する学習装置として機能する。 The ECM 10 calculates the EGR flow rate based on the ratio between the exhaust pressure detected by the exhaust pressure sensor 17 and the intake pressure detected by the intake pressure sensor 16. Further, the ECM 10 controls the EGR valve 13 so that the oxygen concentration corresponding to the calculated EGR flow rate is within a predetermined range. Although details will be described later, the ECM 10 controls the atmospheric pressure sensor 15, the intake pressure sensor 16, and the Based on the atmospheric pressure detected by the exhaust pressure sensor 17, it functions as a learning device that learns a correction value for correcting the intake pressure detected by the intake pressure sensor 16 and the exhaust pressure detected by the exhaust pressure sensor 17.
 エンジン11は、車両1を駆動するための動力を発生する。エンジン11から排出される排気の一部はEGRクーラー12へと送られる。EGRクーラー12は、エンジン11から送られた排気を冷却してからエンジン11に戻す。 The engine 11 generates power for driving the vehicle 1. Part of the exhaust discharged from the engine 11 is sent to the EGR cooler 12. The EGR cooler 12 cools the exhaust sent from the engine 11 and then returns it to the engine 11.
 EGRバルブ13は、エンジン11からEGRクーラー12に送られる排気の量を調整するためのバルブである。EGRバルブ13は、ECM10の制御に基づいて、エンジン11からEGRクーラー12に送られる排気の量を調整する。 The EGR valve 13 is a valve for adjusting the amount of exhaust sent from the engine 11 to the EGR cooler 12. The EGR valve 13 adjusts the amount of exhaust sent from the engine 11 to the EGR cooler 12 based on the control of the ECM 10.
 温度センサ14は、吸気圧センサ16及び排気圧センサ17の周辺の温度(以下、周辺温度という場合がある)を検出する温度検出部である。温度センサ14は、検出した温度をECM10に通知する。図1においては車両1が1個の温度センサ14を有する例を示しているが、車両1は、吸気圧センサ16及び排気圧センサ17の近傍に設けられた複数の温度センサ14を有していてもよい。 The temperature sensor 14 is a temperature detection unit that detects the temperature around the intake pressure sensor 16 and the exhaust pressure sensor 17 (hereinafter also referred to as ambient temperature). The temperature sensor 14 notifies the detected temperature to the ECM 10. Although FIG. 1 shows an example in which the vehicle 1 has one temperature sensor 14, the vehicle 1 has a plurality of temperature sensors 14 provided in the vicinity of the intake pressure sensor 16 and the exhaust pressure sensor 17. May be.
 大気圧センサ15は、大気圧を検出する圧力センサである。大気圧センサ15は車両の任意の場所に設けられていてよく、例えばエンジン11の近傍に設けられている。大気圧センサ15は、検出した大気圧をECM10に通知する。 The atmospheric pressure sensor 15 is a pressure sensor that detects atmospheric pressure. The atmospheric pressure sensor 15 may be provided at an arbitrary location of the vehicle, for example, in the vicinity of the engine 11. The atmospheric pressure sensor 15 notifies the ECM 10 of the detected atmospheric pressure.
 吸気圧センサ16は、インタークーラー(不図示)を介してエンジン11に流入する空気の圧力を検出する圧力センサである。吸気圧センサ16は、例えば過給機(不図示)によりエンジン11に送り込まれる圧縮空気の圧力であるブースト圧を吸気圧として検出する。吸気圧センサ16は、インタークーラーとエンジン11との間の配管に設けられている。吸気圧センサ16は、検出した吸気圧をECM10に通知する。 The intake pressure sensor 16 is a pressure sensor that detects the pressure of air flowing into the engine 11 via an intercooler (not shown). The intake pressure sensor 16 detects, for example, a boost pressure, which is a pressure of compressed air sent to the engine 11 by a supercharger (not shown), as the intake pressure. The intake pressure sensor 16 is provided in a pipe between the intercooler and the engine 11. The intake pressure sensor 16 notifies the ECM 10 of the detected intake pressure.
 排気圧センサ17は、エンジン11からEGRクーラー12へと送られる排気の圧力を検出する圧力センサである。排気圧センサ17は、エンジン11とEGRクーラー12との間の配管に設けられている。排気圧センサ17は、検出した排気圧をECM10に通知する。 The exhaust pressure sensor 17 is a pressure sensor that detects the pressure of exhaust gas sent from the engine 11 to the EGR cooler 12. The exhaust pressure sensor 17 is provided in a pipe between the engine 11 and the EGR cooler 12. The exhaust pressure sensor 17 notifies the detected exhaust pressure to the ECM 10.
[センサの精度特性]
 大気圧センサ15、吸気圧センサ16及び排気圧センサ17は、それぞれ圧力及び周辺温度によってばらつき幅が異なる場合があることが想定される。そこで、本実施の形態に係るECM10は、大気圧センサ15、吸気圧センサ16及び排気圧センサ17の個体バラつき幅が小さい温度の範囲において大気圧センサ15が検出した圧力に基づいて吸気圧センサ16及び排気圧センサ17が検出した圧力の偏差を学習する。ECM10は、学習が完了した後に、学習した偏差を用いて吸気圧センサ16及び排気圧センサ17が検出した圧力を補正することにより、吸気圧センサ16及び排気圧センサ17のばらつきの影響を抑制する。
[Accuracy characteristics of sensor]
It is assumed that the variation ranges of the atmospheric pressure sensor 15, the intake pressure sensor 16, and the exhaust pressure sensor 17 may vary depending on the pressure and the ambient temperature. Therefore, the ECM 10 according to the present embodiment includes the intake pressure sensor 16 based on the pressure detected by the atmospheric pressure sensor 15 in the temperature range where the individual variation widths of the atmospheric pressure sensor 15, the intake pressure sensor 16, and the exhaust pressure sensor 17 are small. And the deviation of the pressure detected by the exhaust pressure sensor 17 is learned. After the learning is completed, the ECM 10 corrects the pressure detected by the intake pressure sensor 16 and the exhaust pressure sensor 17 using the learned deviation, thereby suppressing the influence of variations in the intake pressure sensor 16 and the exhaust pressure sensor 17. .
[ECM10の構成]
 図2は、ECM10の構成を示す図である。ECM10は、記憶部101及び制御部102を有する。
[Configuration of ECM10]
FIG. 2 is a diagram illustrating the configuration of the ECM 10. The ECM 10 includes a storage unit 101 and a control unit 102.
 記憶部101は、EEPROM及びRAMを有する。記憶部101は、制御部102が実行するプログラムを記憶する。また、記憶部101は、後述する学習部112が学習することにより決定した、吸気圧センサ16が検出した吸気圧及び排気圧センサ17が検出した排気圧の偏差に対応する補正値を学習値として記憶する。 The storage unit 101 includes an EEPROM and a RAM. The storage unit 101 stores a program executed by the control unit 102. Further, the storage unit 101 uses, as a learning value, a correction value corresponding to a deviation between the intake pressure detected by the intake pressure sensor 16 and the exhaust pressure detected by the exhaust pressure sensor 17 determined by learning by the learning unit 112 described later. Remember.
 制御部102は、記憶部101に記憶されたプログラムを実行することにより、圧力取得部111、学習部112及び補正部113として機能する。 The control unit 102 functions as a pressure acquisition unit 111, a learning unit 112, and a correction unit 113 by executing a program stored in the storage unit 101.
 圧力取得部111は、車両1に設けられている大気圧センサ15が所定の温度範囲において検出した大気圧、吸気圧センサ16が所定の温度範囲において検出した吸気圧、及び排気圧センサ17が所定の温度範囲において検出した排気圧を取得する。所定の温度範囲は、大気圧センサ15、吸気圧センサ16及び排気圧センサ17のばらつき幅が比較的小さい温度範囲である。圧力取得部111は、取得した大気圧、吸気圧及び排気圧を学習部112に通知する。また、圧力取得部111は、取得した吸気圧及び排気圧を補正部113に通知する。 The pressure acquisition unit 111 includes an atmospheric pressure detected by the atmospheric pressure sensor 15 provided in the vehicle 1 in a predetermined temperature range, an intake pressure detected by the intake pressure sensor 16 in a predetermined temperature range, and an exhaust pressure sensor 17 determined by the predetermined pressure range. The exhaust pressure detected in the temperature range is acquired. The predetermined temperature range is a temperature range in which the variation ranges of the atmospheric pressure sensor 15, the intake pressure sensor 16, and the exhaust pressure sensor 17 are relatively small. The pressure acquisition unit 111 notifies the learning unit 112 of the acquired atmospheric pressure, intake pressure, and exhaust pressure. Further, the pressure acquisition unit 111 notifies the correction unit 113 of the acquired intake pressure and exhaust pressure.
 学習部112は、エンジン11が停止した状態で所定の温度範囲において吸気圧センサ16が検出した吸気圧と大気圧センサ15が検出した大気圧との差である第1圧力差を、吸気圧センサ16が検出する吸気圧の偏差に対応する学習値として記憶部101に記憶させる。また、学習部112は、エンジン11が停止した状態で所定の温度範囲において排気圧センサ17が検出した排気圧と大気圧センサ15が検出した大気圧との差である第2圧力差を、排気圧センサ17が検出する排気圧の偏差に対応する学習値として記憶部101に記憶させる。 The learning unit 112 obtains a first pressure difference that is a difference between the intake pressure detected by the intake pressure sensor 16 and the atmospheric pressure detected by the atmospheric pressure sensor 15 in a predetermined temperature range with the engine 11 stopped. The stored value is stored in the storage unit 101 as a learning value corresponding to the deviation of the intake pressure detected by 16. The learning unit 112 also discharges a second pressure difference, which is a difference between the exhaust pressure detected by the exhaust pressure sensor 17 and the atmospheric pressure detected by the atmospheric pressure sensor 15 in a predetermined temperature range with the engine 11 stopped. The learning unit 101 stores the learned value corresponding to the deviation of the exhaust pressure detected by the atmospheric pressure sensor 17.
 エンジン11が停止した状態では、理想的には、大気圧センサ15、吸気圧センサ16及び排気圧センサ17が検出する圧力は、全て同一である。学習部112が算出した第1圧力差が0でない場合、大気圧センサ15の偏差が十分に小さいと仮定すると、第1圧力差は吸気圧センサ16のばらつきに起因すると考えられる。同様に、学習部112が算出した第2圧力差が0でない場合、大気圧センサ15の偏差が十分に小さいと仮定すると、第2圧力差は排気圧センサ17のばらつきに起因すると考えられる。 In a state where the engine 11 is stopped, ideally, the pressures detected by the atmospheric pressure sensor 15, the intake pressure sensor 16, and the exhaust pressure sensor 17 are all the same. When the first pressure difference calculated by the learning unit 112 is not 0, it is considered that the first pressure difference is caused by variations in the intake pressure sensor 16 on the assumption that the deviation of the atmospheric pressure sensor 15 is sufficiently small. Similarly, when the second pressure difference calculated by the learning unit 112 is not zero, it is considered that the second pressure difference is caused by variations in the exhaust pressure sensor 17 on the assumption that the deviation of the atmospheric pressure sensor 15 is sufficiently small.
 学習部112は、所定の温度範囲で学習を行うために、車両1に設けられた温度センサ14が検出した温度が所定の温度範囲の下限値未満である場合に車両1のエンジン11を始動させる。その後、学習部112は、温度センサ14が検出した温度が所定の温度範囲内に達した後にエンジン11を停止させた状態での第1圧力差及び第2圧力差を記憶部101に記憶させる。このようにすることで、学習部112は、大気圧センサ15が高い精度で検出した大気圧と、吸気圧センサ16が検出した大気圧及び排気圧センサ17が検出した大気圧とを比較できるので、吸気圧センサ16及び排気圧センサ17の偏差を高い精度で学習できる。 The learning unit 112 starts the engine 11 of the vehicle 1 when the temperature detected by the temperature sensor 14 provided in the vehicle 1 is less than the lower limit value of the predetermined temperature range in order to perform learning in the predetermined temperature range. . Thereafter, the learning unit 112 causes the storage unit 101 to store the first pressure difference and the second pressure difference in a state where the engine 11 is stopped after the temperature detected by the temperature sensor 14 has reached a predetermined temperature range. By doing so, the learning unit 112 can compare the atmospheric pressure detected by the atmospheric pressure sensor 15 with high accuracy with the atmospheric pressure detected by the intake pressure sensor 16 and the atmospheric pressure detected by the exhaust pressure sensor 17. The deviation between the intake pressure sensor 16 and the exhaust pressure sensor 17 can be learned with high accuracy.
 例えば、大気圧センサ15が検出した大気圧が101.33kPaであり、吸気圧センサ16が検出した大気圧が103.50kPaである場合、学習部112は、第1圧力差が2.17kPaであるとする。また、排気圧センサ17が検出した大気圧が100.20kPaである場合、学習部112は、第2圧力差が-1.13kPaであるとする。 For example, when the atmospheric pressure detected by the atmospheric pressure sensor 15 is 101.33 kPa and the atmospheric pressure detected by the intake pressure sensor 16 is 103.50 kPa, the learning unit 112 has a first pressure difference of 2.17 kPa. And When the atmospheric pressure detected by the exhaust pressure sensor 17 is 100.20 kPa, the learning unit 112 assumes that the second pressure difference is −1.13 kPa.
 補正部113は、学習部112が第1圧力差及び第2圧力差を記憶部101に記憶させた後に、吸気圧センサ16が検出した吸気圧を第1圧力差に基づいて補正する。また、補正部113は、排気圧センサ17が検出した排気圧を第2圧力差に基づいて補正する。例えば、第1圧力差が2.17kPaであり、吸気圧センサ16が検出した吸気圧が120.0kPaである場合、補正部113は、補正後の吸気圧を117.83kPaと算出する。第2圧力差が-1.13kPaであり、排気圧センサ17が検出した排気圧が100.0kPaである場合、補正部113は、補正後の排気圧を101.13kPaと算出する。 The correction unit 113 corrects the intake pressure detected by the intake pressure sensor 16 based on the first pressure difference after the learning unit 112 stores the first pressure difference and the second pressure difference in the storage unit 101. Further, the correction unit 113 corrects the exhaust pressure detected by the exhaust pressure sensor 17 based on the second pressure difference. For example, when the first pressure difference is 2.17 kPa and the intake pressure detected by the intake pressure sensor 16 is 120.0 kPa, the correction unit 113 calculates the corrected intake pressure as 117.83 kPa. When the second pressure difference is −1.13 kPa and the exhaust pressure detected by the exhaust pressure sensor 17 is 100.0 kPa, the correction unit 113 calculates the corrected exhaust pressure as 101.13 kPa.
[ECM10の処理フローチャート]
 図3は、ECM10の処理の手順を示すフローチャートである。図3に示すフローチャートはまず、学習部112は記憶部101を参照し、既に学習が行われているかどうかを確認する(S11)。学習部112は、既に学習が行われていると判定すると(S11においてYes)、図3に示すフローチャートの処理を終了する。
[Processing flowchart of ECM10]
FIG. 3 is a flowchart showing the processing procedure of the ECM 10. In the flowchart shown in FIG. 3, first, the learning unit 112 refers to the storage unit 101 to check whether learning has already been performed (S11). If the learning unit 112 determines that learning has already been performed (Yes in S11), the process of the flowchart illustrated in FIG.
 学習部112は、学習が行われていないと判定すると(S11においてNo)、学習の処理を開始してステップS12に進む。ステップS12において、学習部112は、温度センサ14が検出した温度が所定の温度範囲に入っているか否かを判定する(S12)。学習部112は、温度が所定の温度範囲よりも低い場合(S12においてNo)、例えば作業者の操作に基づいてエンジン11を始動して暖機を開始する(S13)。学習部112は、温度センサ14が検出した温度が所定の温度範囲に入るまで待機する。 If the learning unit 112 determines that learning has not been performed (No in S11), the learning unit 112 starts learning processing and proceeds to step S12. In step S12, the learning unit 112 determines whether or not the temperature detected by the temperature sensor 14 is within a predetermined temperature range (S12). If the temperature is lower than the predetermined temperature range (No in S12), the learning unit 112 starts the engine 11 based on, for example, an operator's operation and starts warming up (S13). The learning unit 112 waits until the temperature detected by the temperature sensor 14 enters a predetermined temperature range.
 学習部112は、温度センサ14が検出した温度が所定の温度範囲に入っていると判定すると(S12においてYes)、作業者の操作に基づいて、エンジン11を停止する(S14)。なお、学習部112は、エンジン11が停止している場合、ステップS14を実行することなくステップS15に処理を進める。 If the learning unit 112 determines that the temperature detected by the temperature sensor 14 is within the predetermined temperature range (Yes in S12), the learning unit 112 stops the engine 11 based on the operator's operation (S14). In addition, the learning part 112 advances a process to step S15, without performing step S14, when the engine 11 has stopped.
 ステップS15において、学習部112は、イグニッションキーがオン状態になっているか否かを判定し(S15)、イグニッションキーがオン状態になっていない場合(S15においてNo)、イグニッションキーがオン状態になるまで待機する。学習部112は、イグニッションキーがオン状態になったと判定すると(S15においてYes)、所定の時間(例えば6秒間)が経過したかどうかを監視する(S16)。 In step S15, the learning unit 112 determines whether or not the ignition key is turned on (S15). If the ignition key is not turned on (No in S15), the ignition key is turned on. Wait until. If the learning unit 112 determines that the ignition key has been turned on (Yes in S15), the learning unit 112 monitors whether a predetermined time (for example, 6 seconds) has elapsed (S16).
 このように、学習部112は、大気圧センサ15、吸気圧センサ16及び排気圧センサ17に通電を開始してから所定の時間が経過するまで待機している間に、圧力取得部111を介して大気圧センサ15、吸気圧センサ16及び排気圧センサ17が検出した大気圧、吸気圧及び排気圧を取得する(S17)。学習部112は、所定の時間内に取得した大気圧、吸気圧及び排気圧をそれぞれ平滑化する。学習部112は、例えば、所定の時間内に圧力取得部111が大気圧センサ15、吸気圧センサ16及び排気圧センサ17から取得した大気圧、吸気圧及び排気圧のそれぞれの平均値を算出することにより、平滑化大気圧、平滑化吸気圧及び平滑化排気圧を算出する。 As described above, the learning unit 112 is connected to the atmospheric pressure sensor 15, the intake pressure sensor 16, and the exhaust pressure sensor 17 through the pressure acquisition unit 111 while waiting for a predetermined time after starting energization. Then, the atmospheric pressure, the intake pressure and the exhaust pressure detected by the atmospheric pressure sensor 15, the intake pressure sensor 16 and the exhaust pressure sensor 17 are acquired (S17). The learning unit 112 smoothes the atmospheric pressure, the intake pressure, and the exhaust pressure acquired within a predetermined time. The learning unit 112 calculates, for example, the average values of the atmospheric pressure, the intake pressure, and the exhaust pressure acquired by the pressure acquisition unit 111 from the atmospheric pressure sensor 15, the intake pressure sensor 16, and the exhaust pressure sensor 17 within a predetermined time. Thus, the smoothed atmospheric pressure, the smoothed intake pressure and the smoothed exhaust pressure are calculated.
 また、学習部112は、大気圧センサ15、吸気圧センサ16及び排気圧センサ17のいずれかが故障していないか否かを判定する(S18)。学習部112は、例えば圧力取得部111が取得した大気圧、吸気圧及び排気圧のいずれかの値の変動量が所定の閾値より大きかったり、大気圧、吸気圧及び排気圧のいずれかの値が異常値を示していたりする場合に、大気圧センサ15、吸気圧センサ16及び排気圧センサ17のいずれかが故障していると判定する。 Further, the learning unit 112 determines whether any one of the atmospheric pressure sensor 15, the intake pressure sensor 16, and the exhaust pressure sensor 17 has failed (S18). The learning unit 112, for example, has a fluctuation amount of any one of the atmospheric pressure, the intake pressure, and the exhaust pressure acquired by the pressure acquisition unit 111 larger than a predetermined threshold value, or any value of the atmospheric pressure, the intake pressure, and the exhaust pressure. Is an abnormal value, it is determined that any one of the atmospheric pressure sensor 15, the intake pressure sensor 16, and the exhaust pressure sensor 17 has failed.
 学習部112は、ステップS18において故障が発生していないことを確認してから、第1圧力差及び第2圧力差(差分値)を算出する。すなわち、学習部112は、大気圧センサ15、吸気圧センサ16及び排気圧センサ17のいずれにも故障が発生していないと判定してから(S18においてNo)、ステップS19に進んで、吸気圧センサ16が検出した吸気圧を平滑化した平滑化吸気圧と大気圧センサ15が検出した大気圧を平滑化した平滑化大気圧との差分値を第1圧力差として算出する。また、学習部112は、排気圧センサ17が検出した排気圧を平滑化した平滑化排気圧と平滑化大気圧との差分値を第2圧力差として算出する。 The learning unit 112 calculates the first pressure difference and the second pressure difference (difference value) after confirming that no failure has occurred in step S18. That is, the learning unit 112 determines that no failure has occurred in any of the atmospheric pressure sensor 15, the intake pressure sensor 16, and the exhaust pressure sensor 17 (No in S18), and then proceeds to step S19 to determine the intake pressure. A difference value between a smoothed intake pressure obtained by smoothing the intake pressure detected by the sensor 16 and a smoothed atmospheric pressure obtained by smoothing the atmospheric pressure detected by the atmospheric pressure sensor 15 is calculated as a first pressure difference. Further, the learning unit 112 calculates a difference value between the smoothed exhaust pressure obtained by smoothing the exhaust pressure detected by the exhaust pressure sensor 17 and the smoothed atmospheric pressure as the second pressure difference.
 続いて、学習部112は、算出した第1圧力差及び第2圧力差を学習値として記憶部101に記憶させる(S20)。これにより、学習部112は学習を完了し、学習が完了したことをツール2に通知する。
 なお、ステップS18において、学習部112が大気圧センサ15、吸気圧センサ16及び排気圧センサ17のいずれかが故障していると判定した場合(S18においてYes)、学習部112は、ツール2に故障が発生したことを通知するエラーメッセージを出力する(S21)。
Subsequently, the learning unit 112 causes the storage unit 101 to store the calculated first pressure difference and second pressure difference as learning values (S20). Thereby, the learning unit 112 completes the learning and notifies the tool 2 that the learning is completed.
In step S18, when the learning unit 112 determines that any one of the atmospheric pressure sensor 15, the intake pressure sensor 16, and the exhaust pressure sensor 17 has failed (Yes in S18), the learning unit 112 sets the tool 2 to An error message notifying that a failure has occurred is output (S21).
[ツール2による学習制御]
 図4は、ツール2を用いてECM10による学習を実施する際の流れを示すシーケンス図である。
 学習が完了していない状態でイグニッションキーがオン状態になり車両1の各部への通電が開始すると(S41)、ECM10においては、学習のための条件が整っているか否かを確認する(S42)。ECM10は、例えば学習のための条件として、センサの周辺温度が所定の範囲内であるか否かを確認する。
[Learning control by Tool 2]
FIG. 4 is a sequence diagram illustrating a flow when learning by the ECM 10 is performed using the tool 2.
When the ignition key is turned on in a state where learning is not completed and energization of each part of the vehicle 1 is started (S41), the ECM 10 checks whether or not the conditions for learning are satisfied (S42). . For example, as a condition for learning, the ECM 10 checks whether or not the ambient temperature of the sensor is within a predetermined range.
 ECM10は、ステップS42において条件が整っていないと判定した場合、その旨をツール2に通知し、ツール2は、条件が整っていないNG項目を画面に表示する(S31)。作業者は、NG項目が画面に表示された場合、条件を整えるべく対応する。 If the ECM 10 determines in step S42 that the conditions are not met, the ECM 10 notifies the tool 2 to that effect, and the tool 2 displays NG items for which the conditions are not met on the screen (S31). When the NG item is displayed on the screen, the operator responds to adjust the condition.
 ECM10は、ステップS42において条件が整っていると判定した場合、学習を開始し(S43)、図3において説明した処理を実行する。ECM10は、学習が完了すると(S44)、ツール2に対して学習が完了したことを通知し、ツール2は、学習が完了したことを確認するための画面を表示する(S32)。 If the ECM 10 determines that the condition is satisfied in step S42, the ECM 10 starts learning (S43) and executes the processing described in FIG. When learning is completed (S44), the ECM 10 notifies the tool 2 that learning has been completed, and the tool 2 displays a screen for confirming that learning has been completed (S32).
 続いて、イグニッションキーがオフ状態になると(S45)、ECM10は、第1圧力差及び第2圧力差を学習値、並びに学習が完了したことを示すフラグをEEPROMに記憶させる(S46)。その後、ECM10は、学習禁止状態となる(S47)。 Subsequently, when the ignition key is turned off (S45), the ECM 10 stores the first pressure difference and the second pressure difference as learning values and a flag indicating that learning is completed in the EEPROM (S46). Thereafter, the ECM 10 enters a learning prohibited state (S47).
 学習禁止状態になっている間であっても、作業者が、ツール2において学習禁止状態を解除するための指示を入力すると(S33)、ツール2はECM10に対して学習を許可する指示を送信する。ECM10は、指示を受信すると学習を許可する状態に遷移し(S48)、ステップS41の状態に戻る。 Even during the learning prohibited state, when the operator inputs an instruction for canceling the learning prohibited state in the tool 2 (S33), the tool 2 transmits an instruction to permit learning to the ECM 10. To do. When receiving the instruction, the ECM 10 transitions to a state in which learning is permitted (S48), and returns to the state in step S41.
[本実施形態のECM10による効果]
 以上説明したように、学習部112は、車両1のエンジン11が停止した状態で所定の温度範囲において吸気圧センサ16が検出した吸気圧と大気圧センサ15が検出した大気圧との差である第1圧力差、及び車両1のエンジン11が停止した状態で所定の温度範囲において排気圧センサ17が検出した排気圧と大気圧センサ15が検出した大気圧との差である第2圧力差を記憶部101に記憶させる。その後、補正部113は、学習部112が第1圧力差及び第2圧力差を記憶部101に記憶させた後に、吸気圧センサ16が検出した吸気圧を第1圧力差に基づいて補正し、かつ排気圧センサ17が検出した排気圧を第2圧力差に基づいて補正する。
[Effects of ECM 10 of this embodiment]
As described above, the learning unit 112 is the difference between the intake pressure detected by the intake pressure sensor 16 and the atmospheric pressure detected by the atmospheric pressure sensor 15 in a predetermined temperature range with the engine 11 of the vehicle 1 stopped. A first pressure difference and a second pressure difference that is a difference between the exhaust pressure detected by the exhaust pressure sensor 17 and the atmospheric pressure detected by the atmospheric pressure sensor 15 in a predetermined temperature range with the engine 11 of the vehicle 1 stopped. Store in the storage unit 101. Thereafter, the correction unit 113 corrects the intake pressure detected by the intake pressure sensor 16 based on the first pressure difference after the learning unit 112 stores the first pressure difference and the second pressure difference in the storage unit 101. Further, the exhaust pressure detected by the exhaust pressure sensor 17 is corrected based on the second pressure difference.
 このようにすることで、ECM10は、吸気圧センサ16及び排気圧センサ17の個体ばらつきにより吸気圧センサ16が検出する吸気圧、及び排気圧センサ17が検出する排気圧の精度が低い場合であっても、吸気圧センサ16及び排気圧センサ17の個体ばらつきの影響で生じる吸気圧及び排気圧の偏差を補正することができる。その結果、ECM10は、高い精度の吸気圧及び排気圧を用いてEGR流量を算出できるので適切なEGR制御が実現され、NOx値の悪化を未然に抑制することができる。 By doing so, the ECM 10 is used when the accuracy of the intake pressure detected by the intake pressure sensor 16 and the exhaust pressure detected by the exhaust pressure sensor 17 is low due to individual variations of the intake pressure sensor 16 and the exhaust pressure sensor 17. However, it is possible to correct the deviation of the intake pressure and the exhaust pressure caused by the individual variations of the intake pressure sensor 16 and the exhaust pressure sensor 17. As a result, the ECM 10 can calculate the EGR flow rate using highly accurate intake pressure and exhaust pressure, so that appropriate EGR control is realized and deterioration of the NOx value can be suppressed in advance.
 また、学習部112は、センサの周辺温度が、各センサの精度が比較的高い温度範囲である間に第1圧力差及び第2圧力差を算出する。このようにすることで、学習部112は、吸気圧センサ16及び排気圧センサ17の個体ばらつきの検出精度を向上させることができる。 Also, the learning unit 112 calculates the first pressure difference and the second pressure difference while the ambient temperature of the sensor is in a temperature range in which the accuracy of each sensor is relatively high. In this way, the learning unit 112 can improve the accuracy of detecting individual variations of the intake pressure sensor 16 and the exhaust pressure sensor 17.
 また、学習部112は、大気圧センサ15、吸気圧センサ16及び排気圧センサ17に通電を開始してから、所定の時間が経過するまで待機した後に、第1圧力差及び第2圧力差を記憶部101に記憶させる。このようにすることで、学習部112は、各センサの動作が安定した後の圧力値を用いて学習することができる。また、学習部112は、待機している間の圧力値を平滑化することもできる。このようにすることで、学習部112は、吸気圧センサ16及び排気圧センサ17の個体ばらつきの検出精度をさらに向上させることができる。 In addition, the learning unit 112 waits until a predetermined time elapses after energization of the atmospheric pressure sensor 15, the intake pressure sensor 16, and the exhaust pressure sensor 17, and then calculates the first pressure difference and the second pressure difference. Store in the storage unit 101. By doing in this way, the learning part 112 can learn using the pressure value after the operation | movement of each sensor was stabilized. The learning unit 112 can also smooth the pressure value during standby. By doing so, the learning unit 112 can further improve the detection accuracy of the individual variations of the intake pressure sensor 16 and the exhaust pressure sensor 17.
 以上、本開示を実施の形態を用いて説明したが、本開示の技術的範囲は上記実施の形態に記載の範囲には限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、装置の分散・統合の具体的な実施の形態は、以上の実施の形態に限られず、その全部又は一部について、任意の単位で機能的又は物理的に分散・統合して構成することができる。また、複数の実施の形態の任意の組み合わせによって生じる新たな実施の形態も、本開示の実施の形態に含まれる。組み合わせによって生じる新たな実施の形態の効果は、もとの実施の形態の効果を合わせ持つ。 Although the present disclosure has been described using the embodiment, the technical scope of the present disclosure is not limited to the scope described in the embodiment, and various modifications and changes can be made within the scope of the gist. is there. For example, the specific embodiments of device distribution / integration are not limited to the above-described embodiments, and all or a part of them may be configured to be functionally or physically distributed / integrated in arbitrary units. Can do. In addition, new embodiments generated by any combination of a plurality of embodiments are also included in the embodiments of the present disclosure. The effect of the new embodiment produced by the combination has the effect of the original embodiment.
 本出願は、2017年5月11日付で出願された日本国特許出願(特願2017-094513)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on May 11, 2017 (Japanese Patent Application No. 2017-094513), the contents of which are incorporated herein by reference.
 本開示の学習装置及び学習方法は、車両における吸気圧センサ及び排気圧センサによる圧力の大気圧センサによる補正精度の向上という点において有用である。 The learning device and the learning method of the present disclosure are useful in terms of improving the correction accuracy by the atmospheric pressure sensor of the pressure by the intake pressure sensor and the exhaust pressure sensor in the vehicle.
1 車両
2 ツール
11 エンジン
12 EGRクーラー
13 EGRバルブ
14 温度センサ
15 大気圧センサ
16 吸気圧センサ
17 排気圧センサ
101 記憶部
102 制御部
111 圧力取得部
112 学習部
113 補正部
DESCRIPTION OF SYMBOLS 1 Vehicle 2 Tool 11 Engine 12 EGR cooler 13 EGR valve 14 Temperature sensor 15 Atmospheric pressure sensor 16 Intake pressure sensor 17 Exhaust pressure sensor 101 Storage part 102 Control part 111 Pressure acquisition part 112 Learning part 113 Correction part

Claims (6)

  1.  車両の吸気圧を検出する吸気圧センサ、及び前記車両の排気圧を検出する排気圧センサの誤差を学習する学習装置であって、
     前記車両に設けられている大気圧センサが所定の温度範囲において検出した大気圧、前記吸気圧センサが前記所定の温度範囲において検出した吸気圧、及び前記排気圧センサが前記所定の温度範囲において検出した排気圧を取得する圧力取得部と、
     前記車両のエンジンが停止した状態で前記所定の温度範囲において前記吸気圧センサが検出した吸気圧と前記大気圧センサが検出した大気圧との差である第1圧力差、及び前記エンジンが停止した状態で前記所定の温度範囲において前記排気圧センサが検出した排気圧と前記大気圧センサが検出した大気圧との差である第2圧力差を記憶部に記憶させる学習部と、
     前記学習部が前記第1圧力差及び前記第2圧力差を前記記憶部に記憶させた後に、前記吸気圧センサが検出した吸気圧を前記第1圧力差に基づいて補正し、かつ前記排気圧センサが検出した排気圧を前記第2圧力差に基づいて補正する補正部と、
     を備える学習装置。
    A learning device for learning an error of an intake pressure sensor for detecting an intake pressure of a vehicle and an exhaust pressure sensor for detecting an exhaust pressure of the vehicle,
    The atmospheric pressure detected by the atmospheric pressure sensor provided in the vehicle in a predetermined temperature range, the intake pressure detected by the intake pressure sensor in the predetermined temperature range, and the exhaust pressure sensor detected in the predetermined temperature range A pressure acquisition unit for acquiring the exhaust pressure,
    A first pressure difference that is a difference between an intake pressure detected by the intake pressure sensor and an atmospheric pressure detected by the atmospheric pressure sensor in the predetermined temperature range with the vehicle engine stopped, and the engine stopped A learning unit that stores a second pressure difference, which is a difference between the exhaust pressure detected by the exhaust pressure sensor and the atmospheric pressure detected by the atmospheric pressure sensor in the predetermined temperature range in a state, in a storage unit;
    After the learning unit stores the first pressure difference and the second pressure difference in the storage unit, the intake pressure detected by the intake pressure sensor is corrected based on the first pressure difference, and the exhaust pressure is increased. A correction unit for correcting the exhaust pressure detected by the sensor based on the second pressure difference;
    A learning apparatus comprising:
  2.  前記学習部は、前記車両に設けられた温度センサが検出した温度が前記所定の温度範囲の下限値未満である場合に前記車両の前記エンジンを始動させ、前記温度センサが検出した温度が前記所定の温度範囲内に達した後に前記エンジンを停止させた状態での前記第1圧力差及び前記第2圧力差を前記記憶部に記憶させる、
     請求項1に記載の学習装置。
    The learning unit starts the engine of the vehicle when a temperature detected by a temperature sensor provided in the vehicle is less than a lower limit value of the predetermined temperature range, and the temperature detected by the temperature sensor is the predetermined temperature. Storing the first pressure difference and the second pressure difference in a state where the engine is stopped after reaching the temperature range in the storage unit,
    The learning device according to claim 1.
  3.  前記学習部は、前記大気圧センサ、前記吸気圧センサ及び前記排気圧センサに通電を開始してから、所定の時間が経過するまで待機した後に、前記第1圧力差及び前記第2圧力差を前記記憶部に記憶させる、
     請求項1又は2に記載の学習装置。
    The learning unit waits until a predetermined time elapses after energization of the atmospheric pressure sensor, the intake pressure sensor, and the exhaust pressure sensor, and then calculates the first pressure difference and the second pressure difference. Storing in the storage unit;
    The learning device according to claim 1 or 2.
  4.  前記学習部は、前記吸気圧センサ、前記排気圧センサ及び前記大気圧センサが故障していないことを確認した後に、前記第1圧力差及び前記第2圧力差を前記記憶部に記憶させる、
     請求項1から3のいずれか一項に記載の学習装置。
    The learning unit stores the first pressure difference and the second pressure difference in the storage unit after confirming that the intake pressure sensor, the exhaust pressure sensor, and the atmospheric pressure sensor have not failed.
    The learning device according to any one of claims 1 to 3.
  5.  前記学習部は、前記所定の時間内に前記吸気圧センサが検出した吸気圧を平滑化した平滑化吸気圧と前記所定の時間内に前記大気圧センサが検出した大気圧を平滑化した平滑化大気圧との差を前記第1圧力差として算出し、かつ前記所定の時間内に前記排気圧センサが検出した排気圧を平滑化した平滑化排気圧と前記平滑化大気圧との差を前記第2圧力差として算出する、
     請求項3に記載の学習装置。
    The learning unit smoothes a smoothed intake pressure obtained by smoothing the intake pressure detected by the intake pressure sensor within the predetermined time and a smoothed pressure obtained by smoothing the atmospheric pressure detected by the atmospheric pressure sensor within the predetermined time. The difference between the atmospheric pressure is calculated as the first pressure difference, and the difference between the smoothed exhaust pressure obtained by smoothing the exhaust pressure detected by the exhaust pressure sensor within the predetermined time and the smoothed atmospheric pressure is Calculating as the second pressure difference,
    The learning device according to claim 3.
  6.  コンピュータが実行する、車両の吸気圧を検出する吸気圧センサ、及び前記車両の排気圧を検出する排気圧センサの誤差を学習する学習方法であって、
     前記車両に設けられている大気圧センサが所定の温度範囲において検出した大気圧、前記吸気圧センサが前記所定の温度範囲において検出した吸気圧、及び前記排気圧センサが前記所定の温度範囲において検出した排気圧を取得するステップと、
     前記車両のエンジンが停止した状態で前記所定の温度範囲において前記吸気圧センサが検出した吸気圧と前記大気圧センサが検出した大気圧との差である第1圧力差、及び前記エンジンが停止した状態で前記所定の温度範囲において前記排気圧センサが検出した排気圧と前記大気圧センサが検出した大気圧との差である第2圧力差を記憶部に記憶させるステップと、
     前記第1圧力差及び前記第2圧力差を前記記憶部に記憶させた後に、前記吸気圧センサが検出した吸気圧を前記第1圧力差に基づいて補正し、かつ前記排気圧センサが検出した排気圧を前記第2圧力差に基づいて補正するステップと、
     を備える学習方法。
    A learning method for learning an error of an intake pressure sensor for detecting an intake pressure of a vehicle and an exhaust pressure sensor for detecting an exhaust pressure of the vehicle, which is executed by a computer,
    The atmospheric pressure detected by the atmospheric pressure sensor provided in the vehicle in a predetermined temperature range, the intake pressure detected by the intake pressure sensor in the predetermined temperature range, and the exhaust pressure sensor detected in the predetermined temperature range Obtaining the exhaust pressure
    A first pressure difference that is a difference between an intake pressure detected by the intake pressure sensor and an atmospheric pressure detected by the atmospheric pressure sensor in the predetermined temperature range with the vehicle engine stopped, and the engine stopped Storing a second pressure difference, which is a difference between the exhaust pressure detected by the exhaust pressure sensor and the atmospheric pressure detected by the atmospheric pressure sensor in the predetermined temperature range in a state, in a storage unit;
    After the first pressure difference and the second pressure difference are stored in the storage unit, the intake pressure detected by the intake pressure sensor is corrected based on the first pressure difference, and the exhaust pressure sensor detects Correcting the exhaust pressure based on the second pressure difference;
    A learning method comprising:
PCT/JP2018/017979 2017-05-11 2018-05-09 Learning device and learning method WO2018207840A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880030877.1A CN110621867B (en) 2017-05-11 2018-05-09 Learning device and learning method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-094513 2017-05-11
JP2017094513A JP6946726B2 (en) 2017-05-11 2017-05-11 Learning device and learning method

Publications (1)

Publication Number Publication Date
WO2018207840A1 true WO2018207840A1 (en) 2018-11-15

Family

ID=64105161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017979 WO2018207840A1 (en) 2017-05-11 2018-05-09 Learning device and learning method

Country Status (3)

Country Link
JP (1) JP6946726B2 (en)
CN (1) CN110621867B (en)
WO (1) WO2018207840A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114563126B (en) * 2022-03-03 2023-06-16 东风商用车有限公司 Air system pressure signal filtering self-learning method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003328835A (en) * 2002-05-14 2003-11-19 Mitsubishi Electric Corp Fuel pressure sensor device for internal combustion engine control system
JP2005002879A (en) * 2003-06-11 2005-01-06 Toyota Motor Corp Air supply device
JP2017015040A (en) * 2015-07-06 2017-01-19 ヤンマー株式会社 engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003138977A (en) * 2001-10-29 2003-05-14 Hitachi Unisia Automotive Ltd Cylinder pressure detecting device of engine
US7668687B2 (en) * 2008-02-29 2010-02-23 Gm Global Technology Operations, Inc. Systems and methods for compensating pressure sensor errors
US8205601B2 (en) * 2009-03-16 2012-06-26 GM Global Technology Operations LLC Systems and methods for measuring engine boost pressure
JP6209471B2 (en) * 2014-03-20 2017-10-04 ヤンマー株式会社 engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003328835A (en) * 2002-05-14 2003-11-19 Mitsubishi Electric Corp Fuel pressure sensor device for internal combustion engine control system
JP2005002879A (en) * 2003-06-11 2005-01-06 Toyota Motor Corp Air supply device
JP2017015040A (en) * 2015-07-06 2017-01-19 ヤンマー株式会社 engine

Also Published As

Publication number Publication date
CN110621867B (en) 2022-05-24
CN110621867A (en) 2019-12-27
JP2018189064A (en) 2018-11-29
JP6946726B2 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
WO2016155222A1 (en) Accelerator response method and apparatus
JP2020184320A5 (en) System, storage medium and method for error detection and correction
JP4930389B2 (en) Air-fuel ratio control device and air-fuel ratio control method
US8428361B2 (en) Image processing apparatus for detecting a face
CN110608106B (en) Temperature processing method and device
US20150107587A1 (en) Zero point calibration method and apparatus for pressure sensor of anesthesia machine
JP2009167887A (en) Control device of internal combustion engine
CN105319009A (en) System and method for correcting offset of pressure sensor
WO2018207840A1 (en) Learning device and learning method
JP2012085944A5 (en)
WO2016027408A1 (en) Image processing apparatus, and failure diagnosis method for image processing apparatus
CN104964652B (en) A kind of battery winding production detection method and equipment based on machine vision
US20090101108A1 (en) Method and device for monitoring control and regulating loops in an engine system
US20150361911A1 (en) Control apparatus for internal combustion engine
JP6613612B2 (en) Engine control device
JP2019188627A (en) Image formation apparatus
US20190120182A1 (en) Abnormality detection device, abnormality detection method, and abnormality detection system
US8781993B2 (en) Nearly orthogonal latin hypercubes for optimization algorithms
KR101028024B1 (en) System and method for sensing and calibrating inverter voltage of electric vehicle
CN113513397B (en) Method for controlling thermal management system based on environmental change and engine controller
US8411148B2 (en) Auto iris lens calibration device and method
JP2005076568A (en) Fuel supply device for internal combustion engine
CN109469553B (en) Method for correcting air-fuel ratio deviation of each cylinder of engine
KR20140048565A (en) Method and apparatus for controlling pressure sensor of vehicle
TW200614803A (en) Image sensing device with pixel correction function and method for correcting pixel sensing-information in an image sensing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18798524

Country of ref document: EP

Kind code of ref document: A1