WO2018207625A1 - Ball reduction gear - Google Patents

Ball reduction gear Download PDF

Info

Publication number
WO2018207625A1
WO2018207625A1 PCT/JP2018/016820 JP2018016820W WO2018207625A1 WO 2018207625 A1 WO2018207625 A1 WO 2018207625A1 JP 2018016820 W JP2018016820 W JP 2018016820W WO 2018207625 A1 WO2018207625 A1 WO 2018207625A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball
surface portion
output
rotation
rotating body
Prior art date
Application number
PCT/JP2018/016820
Other languages
French (fr)
Japanese (ja)
Inventor
靖 梶原
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Publication of WO2018207625A1 publication Critical patent/WO2018207625A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear

Definitions

  • This invention relates to a ball speed reducer used for decelerating and transmitting rotation.
  • the ball speed reducer is smaller and has a larger speed reduction ratio than the gear speed reduction device, so that it can be used as a power transmission unit for various machines (for example, industrial robots, steering angle variable type steering devices, etc.). in use.
  • FIG. 23 is a diagram showing such a conventional ball speed reducer 200.
  • FIG. 23A is a longitudinal sectional view of a conventional ball speed reducer 200
  • FIG. 23B is a ball speed reducer 200 cut along line A16-A16 in FIG. 23A.
  • FIG. 23A is a longitudinal sectional view of a conventional ball speed reducer 200
  • FIG. 23B is a ball speed reducer 200 cut along line A16-A16 in FIG. 23A.
  • an eccentric rotating plate 204 is attached to the outer peripheral side of an eccentric cam 202 formed on the input shaft 201 via a bearing 203, and the eccentric rotating plate 204 is attached to the eccentric cam 202. Is driven eccentrically.
  • output side rotating bodies 205 connected to an output shaft are arranged on both sides on the radially inner side of the eccentric rotating plate 204, and the input shaft 201 is an output side rotating body. It is supported on the inner peripheral side of 205 so as to be relatively rotatable via a bearing 206.
  • fixing members 207 fixed to a part of an industrial robot or the like are disposed on both sides on the radially outer side of the eccentric rotating plate 204 via balls 208, respectively.
  • a rotating body 205 is rotatably supported on the inner peripheral side of the fixed member 207 via a bearing 210.
  • the ball 208 sandwiched between the eccentric rotating plate 204 and the fixing member 207 has a first corrugated groove (first cycloid groove formed by an outer cycloid curve) 211 formed on the side surface of the eccentric rotating plate 204 and the fixing member 207.
  • the eccentric rotating plate 204 is engaged with a second corrugated groove (second cycloid groove formed by an inner cycloid curve) 212 formed on the inner side surface (side surface facing the eccentric rotating plate 204). And the fixing member 207 are connected.
  • the wave number of the second corrugated groove 212 is formed so as to be two more than the wave number of the first corrugated groove 211.
  • the output side rotating body 205 is connected to the eccentric rotating plate 204 via the eccentric absorption mechanism 213.
  • the eccentric absorption mechanism 213 allows the eccentric rotating plate 204 to move eccentrically with respect to the output side rotating body 205 (absorbs the eccentricity of the eccentric rotating plate 204). The rotation is transmitted to the output side rotating body 205.
  • the eccentric absorbing mechanism 213 includes a plurality of balls 214 interposed between the eccentric rotating plate 204 and the output-side rotating body 205, and a drive annular groove 215 of the eccentric rotating plate 204 that accommodates the balls 214 in a rollable manner. And a driven annular groove 216 of the output-side rotator 205.
  • the shape and size of the driving annular groove 215 and the driven annular groove 216 are determined in consideration of the amount of eccentricity of the eccentric cam 202, and the ball 214 when the eccentric rotating plate 204 rotates eccentrically with respect to the rotation center of the input shaft 201.
  • the output-side rotating body 205 can rotate integrally with the eccentric rotating plate 204 via the ball 214 (see Patent Document 1).
  • the input shaft When 201 is rotationally driven by an electric motor (not shown) or the like, the eccentric rotating plate 204 is eccentrically driven by the eccentric cam 202 of the input shaft 201, and the output side rotating body 205 is integrated with the eccentric rotating plate 204 via the eccentric absorbing mechanism 213.
  • the output-side rotator 205 rotates -2 / (N-2) with respect to one rotation of the input shaft 201 (2 / (N- in the direction opposite to the rotation direction of the input shaft 201). 2) Rotate).
  • the reduction ratio is 2 / (N-2).
  • the first corrugated grooves 211 are formed on both side surfaces of the eccentric rotating plate 204, respectively, and the inner surfaces of the fixing members 207 disposed on both sides of the eccentric rotating plate 204 are formed. Since the second corrugated groove 212 is formed, the corrugated grooves 211, 211, 212, and 212 must be formed with high accuracy on a total of four side surfaces (four locations), and the processing man-hours increase. It was.
  • an object of the present invention is to provide a ball speed reducer with a simple structure and a small number of processing steps.
  • the invention according to claim 1 relates to a ball speed reducer 1 that decelerates and transmits the rotation of the input side rotator 2 to the output side rotator 8.
  • a ball speed reducer 1 according to the present invention is fitted to an eccentric disk cam 3 that rotates together with an input-side rotator 2 and an outer peripheral side of the eccentric disk cam 3 so as to be relatively rotatable. 1 is located opposite to one of the side surfaces 4 a and 4 b of the rocking body 4, the rocking body 4 rocked by the rocking body 3, a plurality of balls 5 disposed along the outer peripheral surface 25 of the rocking body 4.
  • a fixing member 7 having a side surface 20 and fixed to a fixed member.
  • the output-side rotator 8 has a second side surface portion 21 that faces the other of the two side surfaces 4a and 4b of the oscillating body 4, and the axis as the rotation center 43a is the input-side rotator 2.
  • the first side surface portion 20 and the second side surface portion 21 are arranged so as to be coaxial with the rotation center 2a.
  • any one of the first side surface portion 20 and the second side surface portion 21 is a ball in a virtual plane perpendicular to the rotation center 2a of the input-side rotator 2 when the radial direction extends from the rotation center 2a.
  • a plurality of radial grooves 32 are formed around the rotation center 2a of the input-side rotator 2 so as to be able to roll along the radial direction of one of the first side surface portion 20 and the second side surface portion 21. Yes.
  • the other of the first side surface portion 20 and the second side surface portion 21 causes the ball 5 to be the first when the direction along the outer edge of the virtual circle centered on the rotation center 2a is the circumferential direction in the virtual plane.
  • An annular corrugated groove 33 that is guided in a wave shape along the circumferential direction of the other of the side surface portion 20 and the second side surface portion 21 is formed.
  • the ball 5 is movably engaged with the radial groove 32 and the corrugated groove 33, and when the rocking body 4 is swung by the eccentric disk cam 3, the ball 5 rolls within the radial groove 32 and the corrugated groove 33. Be moved.
  • the rocking body 4 is formed with a rotation suppression hole 24 that engages with a rotation suppression boss 23 protruding from one of the first side surface portion 20 and the second side surface portion 21.
  • the rotation suppression hole 24 of the rocking body 4 has a gap (2e) twice the eccentric amount (e) of the eccentric disk cam 3 with respect to the rotation center 2a of the input side rotary body 2 between the rotation suppression boss 23 and the rotation suppression hole 24. It is formed. Further, curved surface portions 26, 57, and 61 that are in line contact with the ball 5 are formed on the outer peripheral surface 25 of the rocking body 4.
  • the invention according to claim 2 relates to a ball speed reducer 101 that decelerates and transmits the rotation of the input side rotating bodies 102 and 103 to the output side rotating body 108.
  • a ball speed reducer 101 according to the present invention is fitted to an eccentric disc cam 104 that rotates integrally with input-side rotators 102 and 103, and to the outer peripheral side of the eccentric disc cam 104 so as to be capable of relative rotation.
  • the swinging body 105 swung by the plate cam 104, a plurality of balls 106 arranged along the outer peripheral surface 105b of the swinging body 105, and the swinging body 105 are accommodated radially inward so as to be swung.
  • the fixed member 107 fixed to the fixed member is disposed so as to face the side surfaces 105c and 136a of the rocking body 105 and the fixed member 107, and is supported by the input side rotating bodies 102 and 103 so as to be relatively rotatable.
  • the first output-side rotator 108A is disposed so as to face the other side surfaces 105d and 136b of the oscillating body 105 and the fixing member 107, and can rotate integrally with the first output-side rotator 108A.
  • a second output-side rotating body 108B that is supported by the input-side rotating bodies 102 and 103 so as to be relatively rotatable and constitutes the output-side rotating body 108 together with the first output-side rotating body 108A. Yes.
  • the fixing member 107 has the radial direction extending from the rotation centers 102 and 103 in the imaginary plane orthogonal to the rotation centers 102a and 103a of the input side rotating bodies 102 and 103.
  • the same number of radial grooves 138 that are slidably guided as the number of balls 106 are formed, and the radially inner ends of the radial grooves 138 are open ends that allow the balls 106 to enter and exit.
  • the first output-side rotating body 108 ⁇ / b> A has a first side surface portion 132 that faces one side surface 136 a of the fixing member 107.
  • the second output side rotating body 108 ⁇ / b> B includes a second side surface portion 141 that faces the other side surface 136 b of the fixing member 107.
  • the first side surface portion 132 and the second side surface portion 141 are configured so that, in the virtual plane, the direction along the outer edge of the virtual circle centering on the rotation centers 102a and 103a is the circumferential direction.
  • An annular corrugated groove 140 that is guided along a wave shape is formed.
  • the rocking body 105 is formed with a rotation suppression hole 131 that engages with the rotation suppression boss 132 protruding from one of the first side surface portion 132 and the second side surface portion 141.
  • the rotation suppression hole 131 of the rocking body 105 has a rotation suppression boss 132 having a gap (2e) twice as large as the eccentric amount (e) of the eccentric disk cam 104 with respect to the rotation centers 102a and 103a of the input side rotation bodies 102 and 103. Formed between.
  • a curved surface portion 129 that is in line contact with the ball 106 is formed on the outer peripheral surface 105 b of the rocking body 105.
  • the corrugated groove is formed only on one of the side surfaces of the output side rotating body and the fixed member facing the rocking body. Compared with the conventional example in which the structure to be formed is complicated, the structure can be simplified and the number of processing steps can be reduced.
  • the ball speed reducer has corrugated grooves only at two locations, the first side surface portion of the first output side rotating body and the second side surface portion of the second output side rotating body facing the rocking body and the fixed member. Therefore, the structure can be simplified and the number of processing steps can be reduced as compared with the conventional example in which the structure in which the corrugated grooves are formed on the four side surfaces is complicated.
  • FIG. 1 is a longitudinal sectional view of a ball speed reducer according to a first embodiment of the present invention. It is a figure which shows the input shaft (input side rotary body) of the ball reducer which concerns on 1st Embodiment of this invention, Fig.2 (a) is a front view (figure which shows a front end surface) of an input shaft, FIG.2 (b) ) Is a side view of the input shaft.
  • FIGS. 3A and 3B are diagrams showing a rocking body of the ball speed reducer according to the first embodiment of the present invention, in which FIG. 3A is a front view of the rocking body, and FIG. 3B is a line A1-A1 in FIG. FIG.
  • FIG. 3C is a side view of the oscillating body
  • FIG. 3D is a rear view of the oscillating body
  • 4A is an enlarged view of the B1 portion of FIG. 3B
  • FIG. 4B is an enlarged view of the B2 portion of FIG. 3C.
  • FIG. 5A is a view showing an outer rocking ring of the ball reducer according to the first embodiment of the present invention
  • FIG. 5A is a longitudinal sectional view of the outer rocking ring (along line A2-A2 in FIG. 5B).
  • FIG. 5B is a front view of the outer rocking ring.
  • FIG.6 (a) is a front view of a fixing member
  • FIG.6 (b) is a side view of a fixing member
  • FIG.6 (c) is a cross-sectional view of the fixing member cut along the line A3-A3 in FIG.
  • Fig.7 (a) is a side view of an output side rotary body
  • FIG.7 (b) is a longitudinal cross-section of an output side rotary body.
  • FIG. 7 is a cross-sectional view taken along line A4-A4 of FIG.
  • FIG. 7C is a front view of the output side rotating body.
  • Fig.8 (a) is a front view of a cover
  • FIG.8 (b) is a side view of a cover
  • FIG.8 (c) is a cover of a cover.
  • a longitudinal sectional view (a sectional view taken along line A5-A5 in FIG. 8A) and FIG. 8D are rear views of the cover.
  • FIGS. 9A and 9B are diagrams showing a first modification of the rocking body
  • FIG. 9A is a front view of the rocking body
  • FIG. 9B is a rocking body cut along the line A6-A6 in FIG.
  • FIGS. 10A and 10B are diagrams showing a second modification of the oscillating body, in which FIG. 10A is a front view of the oscillating body, FIG. 10B is a side view of the oscillating body, and FIG. 10 (d) is a cross-sectional view of the oscillator that is cut along the line A7-A7 of FIG. 10 (a). It is a longitudinal cross-sectional view of the ball reducer which concerns on 2nd Embodiment of this invention.
  • FIG.12 (a) is a front view of a rocking body
  • FIG.12 (b) is a side view of a rocking body
  • FIG.12 (c) is a front view of a rocking body
  • FIG.12 (b) is a side view of a rocking body
  • FIG.12 (c) is a front view of a rocking body
  • FIG.12 (c) is a side view of a rocking body
  • FIG. 12B is an enlarged view of a portion B4 in FIG. 12B
  • FIG. 12D is a cross-sectional view of the oscillating body cut along the line A8-A8 in FIG.
  • FIG. 13 (a) is a side view of a 2nd output side rotary body
  • FIG.13 (b) is a 2nd output
  • FIG. 13C is a front view of the second output-side rotating body.
  • FIG. 13C is a longitudinal sectional view of the side-rotating body (cross-sectional view cut along line A9-A9 in FIG. 13C). It is a longitudinal cross-sectional view of the ball reducer which concerns on 3rd Embodiment of this invention.
  • FIG.15 (a) is a front view (figure which shows a front end surface) of an input shaft
  • FIG.15 (b) Is a side view of the input shaft
  • FIG. 15C is a view showing a rear end surface of the input shaft.
  • Fig.16 (a) is a front view of a cap
  • FIG.16 (b) is A10 of Fig.16 (a).
  • FIG. 16C is a sectional view of the cap cut along the line A10, and FIG. 16C is a rear view of the cap. It is a figure which shows the rocking body of the ball
  • Fig.17 (a) is a front view of a rocking body
  • FIG.17 (b) is a side view of a rocking body
  • FIG. 18 is a cross-sectional view of an oscillating body cut along the line A11-A11 in FIG.
  • FIG.18 (a) is a front view of a fixing member
  • FIG.18 (b) is the A12-A12 line
  • Fig.19 (a) is a front view of a 1st output side rotary body
  • FIG.19 (b) is FIG.
  • FIG. 6 is a cross-sectional view of the first output-side rotator cut along the line A13-A13 in a).
  • FIG.20 (a) is a front view of a 2nd output side rotary body
  • FIG.20 (b) is FIG.
  • FIG. 6 is a cross-sectional view of a second output side rotating body cut along the line A14-A14 in a). It is a perspective view which simplifies and shows the waveform groove
  • FIG. 22 (a) is a plane of the rolling locus
  • FIGS. 22B and 22B are diagrams showing the rolling trajectory wave projected onto a virtual cross section cut along the line A15-A15 in FIG. 22A.
  • FIG. 23A is a view showing a conventional ball reducer
  • FIG. 23A is a longitudinal sectional view of the ball reducer
  • FIG. 23B is a sectional view taken along line A16-A16 in FIG. 23A. It is.
  • FIG. 1 is a longitudinal sectional view of a ball speed reducer 1 according to a first embodiment of the present invention.
  • a ball speed reducer 1 according to this embodiment includes an input shaft (input-side rotating body) 2, an eccentric disk cam 3, a rocking body 4, a plurality of balls (steel balls) 5, an external rocking body.
  • the moving ring 6, the fixing member 7, the output side rotating body 8, the cover 10, and the like are included.
  • the input shaft 2 is configured such that the shaft main body 11 is rotatably supported by a fixing member 7 via a first bearing 12 and is driven to rotate by an electric motor (not shown) or the like. It has become.
  • the input shaft 2 has a hook-shaped portion 13 having a diameter larger than that of the shaft main body portion 11 adjacent to the shaft main body portion 11, the side surface of the first bearing 12 is abutted against the side surface of the hook-shaped portion 13, One bearing 12 is held between the inner peripheral projection 15 of the boss portion 14 of the fixing member 7 and the flange portion 13.
  • the input shaft 2 has an eccentric disc cam 3 formed at a position closer to the shaft tip than the flange 13 and adjacent to the flange 13.
  • the eccentric disc cam 3 is a disc whose center 3a is eccentric with respect to the rotation center 2a of the input shaft 2 (the rotation center 11a of the shaft body 11) by an eccentric amount (e). And the input shaft 2 are rotated eccentrically around the rotation center 2a. And the rocking body 4 is attached to the outer peripheral side of the eccentric disk cam 3 via the 2nd bearing 16 so that relative rotation is possible. Further, the input shaft 2 is formed with a tip shaft portion 18 to which the third bearing 17 is attached. The tip shaft 18 has a rotation center 18 a concentric with the rotation center 2 a of the input shaft 2 (the rotation center 11 a of the shaft main body 11), and the output-side rotating body 8 can be rotated via the third bearing 17. It comes to support.
  • the radial direction means a direction extending radially from the rotation center 2a on the virtual plane.
  • the circumferential direction refers to a direction along the outer edge of the virtual circle centered on the rotation center 2a of the input shaft 2.
  • the oscillating body 4 is disposed between the fixed member 7 and the output side rotating body 8 and is oscillated by the eccentric disc cam 3.
  • the oscillating body 4 is positioned such that one side surface 4 a faces the first side surface portion 20 of the fixing member 7 and the other side surface 4 b faces the second side surface portion 21 of the output side rotating body 8. Yes.
  • the oscillator 4 has a bearing hole 22 into which the second bearing 16 is fitted in the center portion in the radial direction, and the rotation suppressing hole 24 into which the rotation suppressing boss 23 of the fixing member 7 is fitted. There are a plurality around 22.
  • the rotation restraint hole 24 of the rocking body 4 is formed so that the clearance with the rotation restraining boss 23 which is a round bar-like protrusion is twice (2e) the eccentric amount (e) of the eccentric disc cam 3.
  • the moving body 4 can be swung by the eccentric disc cam 3.
  • the rocking body 4 supports a plurality of balls 5 on the outer peripheral surface 25 so as to be able to roll.
  • the outer peripheral surface 25 of the rocking body 4 has a circular shape concentric with the bearing hole 22, and the curved surface portion 26 (rolling groove on the rocking body side) in line contact with the ball 5 The same number is formed.
  • the curved surface portion 26 of the oscillator 4 analyzes the rolling trajectory of the ball 5 with respect to the oscillator 4 with simulation software (for example, ANSYS), and analyzes the analysis data, the ball diameter, and the like.
  • the machining tool such as a ball end mill mounted on the machining center is moved along the rolling trajectory of the ball 5 for machining.
  • the curved surface portion 26 of the oscillating body 4 analyzes the rolling trajectory of the ball 5 relative to the oscillating body 4 with simulation software (for example, ANSYS), and the analysis data and the ball diameter, etc.
  • the tool of the mold processing machine is moved based on the input data, the curved surface forming surface is processed in the mold cavity, and the curved surface forming surface in the cavity is formed during injection molding. Formed by transcription.
  • the oscillating body 4 formed in this way rolls in a state where the ball 5 is in line contact with the curved surface portion 26 (in a line contact state as indicated by a thick line 29 in FIG. 4B).
  • deformation plastic deformation, wear
  • the curved surface portion has an undercut shape, but can be smoothly separated from the mold by molding shrinkage.
  • the outer rocking ring 6 is formed in an annular shape, and is on the radially outer side of the rocking body 4 and the first side surface portion 20 of the fixing member 7 and the output side rotation. It is disposed between the second side surface portion 21 of the body 8.
  • the outer rocking ring 6 can accommodate the rocking body 4 and a plurality of balls 5 supported by the outer peripheral surface 25 (curved surface portion 26) of the rocking body 4 in the rocking body engaging hole 27.
  • the outer rocking ring 6 holds a plurality of balls 5 between the inner circumferential surface 28 and the outer circumferential surface 25 (curved surface portion 26) of the rocking body 4.
  • the fixing member 7 is fixed to a fixed member (not shown) (for example, a frame of a machine or an arm of a robot), and the shaft main body 11 of the input shaft 2 is placed inside the boss 14.
  • the first bearing 12 attached to the peripheral surface is rotatably supported.
  • the fixing member 7 has a ball support protrusion 30 formed on the inner side surface 20a of the first side surface portion 20 facing the one side surface 4a of the rocking body 4 (side surface facing the one side surface 4a).
  • the ball support protrusion 30 is a trapezoidal annular body having a tapered cross section, and is an annular body formed concentrically with the center 31 a of the bearing mounting hole 31 of the boss portion 14.
  • the ball support protrusions 30 are formed with a plurality of radial grooves 32 that are engaged with the balls 5 supported by the curved surface portion 26 of the rocking body 4 at equal intervals along the circumferential direction.
  • the radial groove 32 is formed so as to cut out the ball support protrusion 30 in the radial direction, and the cross-sectional shape orthogonal to the radial direction is an arc shape having the same radius of curvature as the radius of the ball 5.
  • the groove depth at the radial intermediate position of the moving trajectory of the ball 5 is the deepest in accordance with the moving trajectory in the radial direction of the ball 5 rolling in the corrugated groove 33, and the inner radius of the moving trajectory from the radial intermediate position.
  • the groove has a substantially arcuate cross-sectional shape from the radially inner side toward the radially outer side so that the groove depth gradually decreases gradually toward the outer end and the radially outer end.
  • the radial groove 32 of the fixing member 7 is formed at (N + 1) locations when the wave number of the waved groove 33 of the output side rotating body 8 is N wave, and rolls (N + 1) balls 5 one by one. Accommodate as possible.
  • Such a radial groove 32 of the fixing member 7 is such that when the eccentric disk cam 3 rotates once and the rocking body 4 is rocked by one stroke, the ball 5 is divided according to the rocking amount of the rocking body 4. Can only roll in the radial direction.
  • the fixing member 7 reduces the contact area between the first side surface portion 20 and the rocking body 4 to reduce the contact resistance, so that the first side surface portion 20 and the ball support on the radially inner side from the ball support protrusion 30 are reduced.
  • a plurality of contact relief recesses 34 and 35 are formed along the circumferential direction on the first side surface portion 20 radially outward from the protrusion 30.
  • the fixing member 7 has a cover attachment portion 36 formed on the radially outer end side thereof. And inside this cover attaching part 36, while the rocking body 4 is accommodated so that rocking is possible, the output side rotary body 8 is accommodated so that rotation is possible.
  • the cover mounting portion 36 of the fixing member 7 has a substantially rectangular outer shape when viewed from the front side, and includes a positioning pin mounting hole 37, an assembly screw hole 38, and a fixing bolt insertion hole 40 at each corner. It is formed in the part (4 corners).
  • a positioning pin (not shown) that engages with the positioning pin engaging hole 41 of the cover 10 is press-fitted into the positioning pin mounting hole 37. Thereby, the cover 10 is fixed in a state of being positioned on the fixing member 7.
  • a screw portion (not shown) of an assembly bolt for fixing the cover 10 to the fixing member 7 is screwed into the assembly screw hole 38.
  • a shaft portion (not shown) of a fixing bolt for integrally attaching the cover 10 and the fixing member 7 to a fixed member (not shown) is inserted into the fixing bolt insertion hole 40.
  • a lubricant such as grease is appropriately stored in the contact relief recesses 34 and 35 of the fixing member 7.
  • the output-side rotator 8 includes a second side surface portion 21 that faces the other side surface 4 b of the both side surfaces 4 a and 4 b of the oscillator 4, and the second side surface. It has a bearing cylindrical portion 42 that is integrally formed on the radially inner side of the portion 21, and an output shaft portion 43 that is integrally formed with the bearing cylindrical portion 42.
  • the output side rotating body 8 includes a bearing hole 44 positioned on the radially inner side of the bearing cylindrical portion 42 and rotatably supported by the tip shaft portion 18 of the input shaft 2 via the third bearing 17.
  • the outer peripheral side of the bearing cylindrical portion 42 is rotatably supported by the cover 10 via the fourth bearing 45, and the output shaft portion 43 rotates concentrically with the rotation center 2 a of the input shaft 2.
  • the inner side surface 21 a of the second side surface portion 21 (the side surface facing the other side surface 4 b of the rocking body 4) engages with the ball 5 supported by the outer peripheral surface 25 (curved surface portion 26) of the rocking body 4.
  • the corrugated groove 33 is formed in an annular shape (endless shape) around the rotation center (axial center) 43 a of the output shaft portion 43.
  • the corrugated groove 33 guides the ball 5 in a wave shape along the circumferential direction of the second side surface portion 21, and the radially inner end is a valley bottom 33 a and the radially outer end is a peak 33 b. If the intermediate position in the radial direction between the valley bottom 33a and the peak 33b is the center of the wave height, the groove depth is such that the groove depth of the valley bottom 33a and the groove depth of the peak 33b are deeper than the groove depth at the center of the wave height. Is changing smoothly.
  • the radial groove 32 has a radial intermediate position corresponding to the center position of the wave height of the corrugated groove 33, and the groove depth at the radial intermediate position is the deepest.
  • the groove depth becomes shallower toward the radial position corresponding to the valley bottom 33a and the radial position corresponding to the peak 33b of the corrugated groove 33.
  • the output shaft portion 43 is disposed such that its rotation center 43a is concentric with the rotation center 2a of the input shaft 2, and is connected to a driven member (not shown). Further, the output-side rotator 8 reduces the contact area between the second side surface portion 21 and the rocking body 4 to reduce the contact resistance, so that the second side surface portion 21 radially inward from the corrugated groove 33 A contact relief recess 46 is formed, and a plurality of lightening holes 47 are formed along the circumferential direction. Note that a lubricant such as grease is appropriately stored in the contact relief recess 46.
  • the cover 10 integrally includes a flange portion 48 and a cylindrical portion 50, and a space for rotatably accommodating the output side rotating body 8 is formed radially inward.
  • the flange portion 48 has a substantially rectangular shape that is the same as the outer shape of the cover mounting portion 36 of the fixing member 7 when viewed from the front side, and includes a positioning pin engaging hole 41, an assembly bolt mounting hole 51, and Fixing bolt insertion holes 52 are formed at each corner (four corners).
  • the positioning pin engaging hole 41, the assembly bolt mounting hole 51, and the fixing bolt insertion hole 52 of the cover 10 are in one-to-one correspondence with the positioning pin mounting hole 37, the assembly screw hole 38, and the fixing bolt insertion hole 40 of the fixing member 7. It is formed to correspond.
  • a positioning pin (not shown) fixed to the fixing member 7 is inserted into the positioning pin engaging hole 41 of the cover 10.
  • the assembly bolt mounting hole 51 is engaged with an assembly bolt (not shown) that fastens and fixes the fixing member 7 and the cover 10.
  • the fixing bolt insertion hole 52 is engaged with a fixing bolt (not shown) for attaching the cover 10 and the fixing member 7 together to an object to be attached that is not shown.
  • the flange portion 48 of the cover 10 is disposed such that a gap is formed between the side surface 48 a facing the output side rotating body 8 and the second side surface portion 21 of the output side rotating body 8.
  • the cylindrical portion 50 of the cover 10 has an inner peripheral surface of the bearing fitting hole 53 fitted to an outer peripheral surface of the fourth bearing 45, and the bearing cylindrical portion 42 of the output-side rotator 8 is interposed via the fourth bearing 45. Is supported rotatably.
  • a bearing positioning projection 54 is formed at the axial end of the cylindrical portion 50 and is positioned on the side of the outer race of the fourth bearing 45.
  • the bearing positioning protrusion 54 accommodates the fourth bearing 45 between the bearing positioning step portion 55 of the output side rotating body 8 and prevents the fourth bearing 45 from coming out between the output side rotating body 8 and the cover 10. It is preventing.
  • the wave number of the wave groove 33 is N, and the number of the radial grooves 32 is (N + 1).
  • the body 8 rotates 1 / N in the opposite direction to the input shaft 2.
  • the wave number (N) of the wave groove 33 of the output side rotating body 8 is 51, and the radial groove 32 of the fixing member 7.
  • the number of grooves (N + 1) is 52. Therefore, the ball speed reducer 1 according to the present embodiment reduces the rotation of the input shaft 2 to 1/51 (1 / N) and transmits it to the output side rotating body 8.
  • the ball 5 is positioned at a location where the radial groove 32 and the corrugated groove 33 intersect, so the ball 208 is the first corrugated of the eccentric rotating plate 204.
  • the structure is simplified and the radial direction The machining of the groove 32 and the corrugated groove 33 is facilitated, and the assembling work of the oscillating body 4, the fixing member 7, the output side rotating body 8 and the like is facilitated.
  • FIG. 9 is a view showing a first modification of the oscillator 4.
  • 9A is a front view of the oscillating body 4
  • FIG. 9B is a sectional view of the oscillating body 4 cut along the line A6-A6 of FIG. 9A.
  • 9 (c) is a side view of the oscillating body 4
  • FIG. 9 (d) is a rear view of the oscillating body 4
  • FIG. 9 (e) is an enlarged view of a portion B3 in FIG. 9 (b).
  • the oscillating body 4 according to this modification uses a machining tool 56 as shown in FIG. 9E and moves the machining tool 56 along the rolling trajectory of the ball 5 so that the curved surface has no undercut portion.
  • the portion 57 (rolling groove on the rocking body side) can be formed on the outer peripheral surface 25.
  • the curved surface portion 57 of the oscillating body 4 according to this modification is about half of the curved surface portion 26 of the oscillating body 4 according to the above-described embodiment, and the length of line contact with the ball 5 is also the curved surface of the oscillating body 4 according to the above-described embodiment.
  • the assembly order of the ball reducer 1 is not limited, and the mold can be released without using molding shrinkage at the time of injection molding.
  • the oscillating body 4 according to the present modification can reduce the restrictions on the part design by the amount that does not require the mold release due to molding shrinkage, and the highly accurate curved surface portion 57 (on the oscillating body side). Rolling groove) is formed.
  • FIG. 10 is a diagram illustrating a second modification of the oscillator 4.
  • 10A is a front view of the oscillating body 4
  • FIG. 10B is a side view of the oscillating body 4
  • FIG. 10C is a rear view of the oscillating body 4
  • FIG. 10D is a cross-sectional view of the oscillator 4 cut along the line A7-A7 in FIG.
  • the oscillating body 4 is used in a state where the ball 5 is reduced to half of the ball speed reducer 1 according to the first embodiment.
  • rotation suppression protrusions 58 that protrude radially outward from the outer peripheral surface 25 are formed in the same number as the number of balls 5, and the rotation suppression protrusions 58 are adjacent to the radial grooves 32, 32 of the fixing member 7.
  • the rocking body 4 has an undercut curved surface portion 26 (rolling groove on the rocking body side) shown in FIG. 4B on the outer peripheral surface 25 between a pair of adjacent rotation suppression protrusions 58 and 58.
  • the curved surface portion 57 (rolling groove on the swinging body side) having no undercut shape as shown in FIG. 9E is formed.
  • the oscillating body 4 according to this modification example since the rotation suppression protrusion 58 exhibits a function of stopping rotation, the plurality of rotation suppression holes 24 of the oscillating body 4 according to the first embodiment may not be formed. For this reason, variations in molding shrinkage hardly occur, and manufacturing can be performed with high accuracy. As a result, the oscillating body 4 according to the present modified example accurately molds the curved surface portion 26 (the rolling groove on the oscillating body side) of the outer peripheral surface 25 even when the oscillating body 4 is released from the mold using molding shrinkage. it can.
  • rocking body 4 according to this modification does not need to form the plurality of rotation suppression holes 24 of the rocking body 4 according to the first embodiment, it is difficult for weld lines to occur during injection molding, and the first embodiment.
  • the strength can be made larger than that of the rocking body 4 according to the embodiment.
  • FIG. 11 is a longitudinal sectional view of a ball reducer 1 according to the second embodiment of the present invention.
  • a plurality of rotation suppression bosses 60 are formed on the output-side rotator 8, and the rotation suppression bosses 60 are engaged with the rotation suppression holes 24 of the rocking body 4.
  • the ball speed reducer 1 according to the present embodiment has a first configuration other than the shape on the outer peripheral surface 25 side of the rocking body 4 described later and a part of the output side rotating body 8 (rotation suppression boss 60). This is the same as the ball speed reducer 1 according to the embodiment. Therefore, the description of the ball speed reducer 1 according to the present embodiment will not be repeated with the description of the ball speed reducer 1 according to the first embodiment.
  • the clearance between the rotation suppression boss 60 of the output-side rotator 8 and the rotation suppression hole 24 of the swinging body 4 is the clearance of the fixing member 7 in the ball speed reducer 1 according to the first embodiment.
  • the size (2e) is twice the eccentric amount (e) of the eccentric disc cam 3.
  • the rotating body 4 is rotated around the rotation center 43 a of the output shaft portion 43 together with the output-side rotating body 8 while being swung by the eccentric disc cam 3. It is done.
  • FIG. 12 is a view showing the rocking body 4 of the ball speed reducer 1 according to the present embodiment.
  • 12A is a front view of the oscillating body 4
  • FIG. 12B is a side view of the oscillating body 4
  • FIG. 12C is an enlarged view of a portion B4 in FIG. 12B.
  • FIG. 12D is a cross-sectional view of the oscillating body 4 cut along the line A8-A8 in FIG.
  • the oscillating body 4 rotates with the output-side rotator 8 while being oscillated by the eccentric disc cam 3.
  • the ball 5 supported so as to be able to roll by the rocking body 4 rolls in the radial groove 32 of the fixing member 7 and rolls in the corrugated groove 33 of the output side rotating member 8. Yes.
  • the ball 5 relatively rotates along the outer peripheral surface 25 of the rocking body 4.
  • the outer peripheral surface 25 of the rocking body 4 has a circular shape concentric with the bearing hole 22, and a curved surface portion 61 (rolling groove on the rocking body side) in line contact with the ball 5 is continuously provided along the circumferential direction. Is formed.
  • the curved surface portion 61 of the oscillating body 4 has the same wave number as the corrugated groove 33 of the output side rotating body 8.
  • a machining tool such as a ball end mill mounted on the machining center is moved along the rolling trajectory of the ball 5 for machining.
  • the curved surface portion 61 of the oscillating body 4 analyzes the rolling trajectory of the ball 5 with respect to the oscillating body 4 using simulation software (for example, ANSYS), and the analysis data, the ball diameter, etc.
  • simulation software for example, ANSYS
  • the tool of the mold processing machine is moved based on the input data, the curved surface forming surface is processed in the mold cavity, and the curved surface forming surface in the cavity is formed during injection molding. Formed by transcription.
  • the rolling locus 62 of the ball 5 has a complicated continuous shape as represented by a two-dot chain line on the curved surface portion 61.
  • the curved surface portion 61 is formed in an undercut shape like the curved surface portion 26 of the rocking body 4 according to the first embodiment (see FIG. 4A).
  • the curved surface portion 61 having no undercut shape may be used (see FIG. 9E).
  • FIG. 13 is a view showing the output side rotating body 8 of the ball speed reducer 1 according to the present embodiment.
  • 13A is a side view of the output-side rotator 8
  • FIG. 13B is a longitudinal sectional view of the output-side rotator 8 (cut along the line A9-A9 in FIG. 13C).
  • FIG. 13C is a front view of the output-side rotator 8.
  • the output side rotator 8 of the ball speed reducer 1 according to the present embodiment is different except that the rotation suppressing boss 60 engaged with the rotation suppressing hole 24 of the rocking body 4 is formed on the second side surface portion 21. Is the same as that of the output side rotating body 8 of the ball speed reducer 1 according to the first embodiment.
  • the rotation suppression boss 60 of the output side rotating body 8 is an oscillating body similar to the rotation suppression boss 23 of the fixing member 7 of the ball speed reducer 1 according to the first embodiment. 4 and the rotation suppression hole 24 and the eccentric disk cam 3 are engaged with a gap twice as large as the eccentric amount e (2e). Thereby, the output side rotator 8 in the present embodiment can rotate the oscillating body 4 oscillated by the eccentric disc cam 3 around the rotation center 43 a of the output shaft portion 43.
  • the ball speed reducer 1 according to the present embodiment as described above can obtain the same effects as the first to third effects of the ball speed reducer 1 according to the first embodiment.
  • FIG. 14 is a longitudinal sectional view of a ball reducer 101 according to the third embodiment of the present invention.
  • a ball speed reducer 101 includes an input shaft (input-side rotating body) 102, a cap (input-side rotating body) 103, an eccentric disk cam 104, a rocking body 105, and a plurality of A ball (steel ball) 106, a fixing member 107, an output side rotating body 108 (first output side rotating body 108A, second output side rotating body 108B), and the like.
  • the input shaft 102 rotatably supports the first output-side rotating body 108 ⁇ / b> A via the first bearing 110 so as to be driven to rotate by an electric motor (not shown) or the like. It has become.
  • the input shaft 102 has a hook-shaped portion 112 having a diameter larger than that of the shaft main body portion 111 adjacent to the shaft main body portion 111, and a bearing support portion 113 formed adjacent to the hook-shaped portion 112.
  • the first bearing 110 is attached to the support portion 113, and the first bearing 110 is held between the inner peripheral projection 115 of the bearing hole 114 of the first output-side rotating body 108A and the flange portion 112. .
  • the input shaft 102 has an eccentric disc cam 104 formed at a position closer to the shaft tip side than the bearing support portion 113 and adjacent to the bearing support portion 113.
  • the eccentric disc cam 104 is an eccentric shaft portion whose center 104a is eccentric with respect to the rotation center 102a of the input shaft 102 (the rotation center 111a of the shaft main body 111) by an eccentric amount (e).
  • the input shaft 102 and the input shaft 102 are rotated eccentrically around a rotation center 102a of the 102.
  • An oscillating body 105 is attached to the outer peripheral side of the eccentric disc cam 104 via a second bearing 116 so as to be relatively rotatable.
  • the input shaft 102 is formed with a tip shaft portion 117 to which the cap 103 is attached.
  • the distal end shaft portion 117 is concentric with the rotation center 102 a of the shaft main body portion 102, is fitted into the shaft hole 118 of the cap 103, and a stopper whose front end surface 117 a protrudes into the shaft hole 118 of the cap 103. It is abutted against the protrusion 120.
  • a screw hole (female screw) 122 that engages with a screw shaft portion 121 a of a bolt 121 for fixing the cap 103 is formed in the distal end shaft portion 117 of the input shaft 102.
  • the radial direction means a direction extending radially from the rotation center 102a on the virtual plane.
  • the circumferential direction refers to a direction along the outer edge of a virtual circle centered on the rotation center 102 a of the input shaft 102.
  • the cap 103 is fixed to the distal end shaft portion 117 of the input shaft 102 with a bolt 121 and constitutes an input side rotating body together with the input shaft 102, and the rotation center 103 a is the rotation of the input shaft 102. It is formed so as to coincide with the center 102a.
  • This cap 103 has an axial hole 118 that opens to one end side along the rotation center 103a (the right end side in FIG. 16B) and the other end side along the rotation center 103a (the left end side in FIG. 16B). And a bolt head part insertion hole 124 that connects the bolt head part reception hole 123 and the shaft hole 118 to each other.
  • the cap 103 has a ring-shaped bearing stopper 125 formed on one end of the cylindrical outer peripheral surface 103b, and the side surface of the third bearing 126 attached to the outer peripheral surface 103b is abutted against the bearing stopper 125.
  • the third bearing 126 is held between the inner peripheral projection 128 in the bearing hole 127 of the second output side rotating body 108B and the bearing stopper 125.
  • the rotation center of the shaft hole 118 and the rotation center of the outer peripheral surface 103 b are concentric with the rotation center 103 a of the cap 103.
  • the rocking body 105 is formed in a disk shape so as to be rocked by the eccentric disk cam 104, and the center bearing hole 130 is fitted to the outer peripheral surface of the second bearing 116.
  • the second bearing 116 supports the eccentric disc cam 104 so that it can rotate relative to the eccentric disc cam 104.
  • the oscillator 105 is formed such that its center 105a is concentric with the center 104a of the eccentric disk cam 104, its outer peripheral surface 105b is a cylindrical surface concentric with the center 104a of the eccentric disk cam 104, and the outer peripheral surface 105b.
  • a plurality of balls 106 are supported by the curved surface portion 129 (rolling groove on the rocking body side) formed so as to be able to roll while maintaining a line contact state.
  • eight rotation suppression holes 131 are formed at equal intervals along the circumferential direction on the radially outer side of the bearing hole 130.
  • the rotation restraining hole 131 of the swinging body 105 has a clearance 2e that is a gap between the rotation restraining boss 133 formed on the first side surface portion 132 of the first output side rotating body 108A (a gap 2e that is twice the eccentric amount e of the eccentric disc cam 104). ) So that the rocking body 105 can be smoothly rocked by the eccentric disk cam 104.
  • the oscillating body 105 rotates together with the output-side rotator 108, a curved surface portion 129 that is in line contact with the ball 106 is continuously formed along the circumferential direction.
  • the number of grooves is the same as the number of grooves.
  • the curved surface portion 129 of the oscillating body 105 has the corrugated groove 140 of the output-side rotator 108 in the axial direction (direction along the center 105a) between the first output-side rotator 108A and the second output-side rotator 108B. Is reversed (see FIGS. 21 and 22), the displacement direction in the axial direction is reversed following the displacement of the corrugated groove 140 (see FIG. 17B).
  • the shape (cross-sectional shape) of the curved surface portion 129 shown in FIG. 17C is formed in an undercut shape like the curved surface portion 26 of the oscillator 4 according to the first embodiment (FIG. 4A).
  • Reference the combined force of the components in the axial direction (direction along the center 105a) of the force acting on the contact portion with the ball 106 cancels out, and the thrust force acting on the rocking body 105 can be suppressed, which is preferable.
  • it may be the same shape as the curved surface portion 61 having no undercut shape, similar to the curved surface portion 57 of the oscillator 4 according to the first modification of the first embodiment (see FIG. 9E).
  • the curved surface portion 129 of the oscillator 105 analyzes the rolling trajectory of the ball 106 with respect to the oscillator 105 using simulation software (for example, ANSYS), and analyzes the analysis data, the ball diameter, and the like. Then, a processing tool such as a ball end mill mounted on the machining center is moved along the rolling trajectory of the ball 106 for processing. Further, the curved surface portion 129 of the rocking body 105 analyzes the rolling trajectory of the ball 106 with respect to the rocking body 105 by simulation software (for example, ANSYS) when the rocking body 105 is injection-molded, and the analysis data, the ball diameter, etc. Is input to the mold processing machine, the tool of the mold processing machine is moved based on the input data, the curved surface forming surface is processed in the mold cavity, and the curved surface forming surface in the cavity is formed during injection molding. Formed by transcription.
  • simulation software for example, ANSYS
  • the fixing member 107 has a substantially quadrangular shape on the front side, and an oscillating body accommodation hole 134 is formed at the center.
  • the fixing member 107 has a fixed frame portion 135 formed along the outer edge, and a radial groove forming disk portion 136 formed on the radially inner side of the fixed frame portion 135. .
  • the fixing member 107 has bolt holes 137 formed at the four corners of the fixing frame portion 135, and fixing bolts (not shown) are inserted into the bolt holes 137 at the four locations. Frame or robot arm) with fixing bolts.
  • the fixing member 107 is fixed to the member to be fixed so that the center 134 a of the swinging body accommodation hole 134 is concentric with the rotation center 102 a of the input shaft 102. Then, the oscillating body 105 is accommodated in the oscillating body accommodation hole 134 of the fixing member 107 so as to be able to oscillate.
  • the fixing member 107 includes a plurality of radial grooves 138 extending in the radial direction from the inner peripheral surface 134b of the oscillator housing hole 134 at equal intervals in the circumferential direction (assuming that the wave number of the corrugated groove 140 is N). (N + 1) / 3 locations).
  • the radial groove 138 is an open end that allows the ball 106 to enter and exit, and has a groove width slightly larger than the diameter of the ball 106 and has a groove length (radial length). Is formed in a length that takes into account the amount of swing of the swing body 105 (the amount of eccentricity e of the eccentric disc cam 104), and the ball 106 supported by the outer peripheral surface 105b of the swing body 105 is slid along the radial direction. It is like that. Further, the fixing member 107 is formed such that the thickness of the radial groove forming disk portion 136 is smaller than the diameter of the ball 106, and the center of the ball 106 engaged with the radial groove 138 is formed in the radial groove.
  • the balls 106 When matched with the central position in the plate thickness direction of the disc portion 136, the balls 106 protrude evenly on both sides of the radial groove forming disc portion 136, and the balls 106 in the radial grooves 138 are directed to the output side rotating body 108.
  • the corrugated groove 140 formed is engaged so as to be able to roll.
  • Such a radial groove 138 of the fixing member 107 is configured such that when the eccentric disk cam 104 rotates once and the rocking body 105 is swung by one stroke, the ball 106 is divided according to the rocking amount of the rocking body 105. Can only roll in the radial direction.
  • the radial groove forming disk portion 136 of the fixing member 107 has the same thickness as that of the oscillator 105.
  • the first output-side rotating body 108 ⁇ / b> A includes one of the side surfaces 105 c of the both side surfaces 105 c and 105 d of the rocking body 105 and the radial groove forming disk portion 136 of the fixing member 107. It has the 1st side surface part 132 located facing one side surface 136a of both side surfaces 136a and 136b. Further, the first output-side rotating body 108 ⁇ / b> A is formed with a bearing hole 114 that accommodates the first bearing 110 attached to the input shaft 102, and the side surface of the outer race of the first bearing 110 is formed at the end of the bearing hole 114.
  • the inner peripheral projection 115 is made to abut against the inner peripheral projection 115.
  • a plurality (eight places) of rotation suppression bosses 133 for connecting and fixing the second output side rotator 108B are formed at equal intervals in the circumferential direction.
  • the rotation suppression boss 133 is inserted into the rotation suppression boss accommodating recess 142 formed in the second side surface portion 141 of the second output side rotation body 108B through the rotation suppression hole 131 of the rocking body 105. ing.
  • the rotation suppression boss 133 is formed with a screw hole (female screw) 144 for fixing the second output side rotating body 108B with the bolt 143.
  • first side surface portion 132 of the first output side rotating body 108A has a contact relief recess 145 formed between the adjacent rotation suppression bosses 133 and 133, and a lubricant such as grease is placed in the contact relief recess 145. Accommodated as appropriate. Further, the first side surface portion 132 of the first output side rotating body 108 ⁇ / b> A has a corrugated groove 140 formed on the radially outward side of the rotation suppression boss 133 and the contact relief recess 145.
  • the second output-side rotating body 108 ⁇ / b> B includes the other side surface 105 d of the both side surfaces 105 c and 105 d of the rocking body 105 and the radial groove forming disk portion 136 of the fixing member 107. It has the 2nd side part 141 located facing the other side surface 136b of the both side surfaces 136a and 136b.
  • the second side surface portion 141 of the second output side rotator 108B has a rotation suppression boss housing recess 142 fitted to the rotation suppression boss 133 at a position facing the rotation suppression boss 133 of the first output side rotator 108A. The same number of rotation suppression bosses 133 are formed.
  • the second side surface portion 141 of the second output side rotating body 108B has a contact escape recess 146 formed between the adjacent rotation suppression boss accommodating recesses 142, 142, and lubrication such as grease is provided in the contact escape recess 146. Agents are stored as appropriate.
  • the second output-side rotating body 108B is formed with a bearing hole 127 that accommodates the third bearing 126 attached to the cap 103, and the side surface of the outer race of the third bearing 126 is formed at the end of the bearing hole 127. Further, it is abutted against the inner peripheral projection 128.
  • the second output-side rotating body 108B has a relief hole 147 that avoids contact with the second bearing 116 on the radially inner end side on the second side surface portion 141 side.
  • the second side surface portion 141 of the second output side rotating body 108 ⁇ / b> B has a corrugated groove 140 formed on the radially outward side of the rotation suppression boss accommodating recess 142 and the contact relief recess 146.
  • the second output-side rotating body 108B is a bolt head receiving recess that opens on the side surface 148 located opposite to the second side surface portion 141 at a position facing the rotation suppression boss 133 of the first output-side rotating body 108A.
  • a bolt hole 151 for communicating the bolt head receiving recess 150 and the rotation restraining boss receiving recess 142 is formed.
  • the screw head portion 143a of the bolt 143 inserted into the bolt head receiving recess 150 and the bolt hole 151 has the screw hole 144 of the rotation suppression boss 133 of the first output-side rotating body 108A.
  • the second output side rotating body 108B is on the side surface 148 located on the opposite side of the second side surface portion 141 and along the circumferential direction at a position radially inward from the bolt head housing recess 150.
  • a plurality of screw holes 152 are formed, and a rotated member (not shown) that is rotated by the second output side rotating body 108B is fixed by a plurality of bolts (not shown) that are screwed into the plurality of screw holes 152.
  • the corrugated groove 140 is formed on the first side surface portion 132 of the first output side rotating body 108A and the second side surface portion 141 of the second output side rotating body 108B.
  • the ball 106 accommodated in the directional groove 138 is slidably engaged.
  • the corrugated groove 140 has a valley bottom 140a at a portion positioned at the radially inner end of the wave and a peak 140b at a portion positioned at the radially outer end of the wave.
  • the groove is formed between the first side surface portion 132 and the second side surface portion 141 of the second output side rotating body 108B.
  • the first side surface portion 132 and the second side surface portion 141 are formed deeper on either side of the first side surface portion 132 and the second side surface portion 141 than the first side surface portion. These are formed deeper on either side of the first side surface portion 132 and the second side surface portion 141 than on the other side, and are formed so that the groove depth gradually increases from the valley bottom 140a toward the mountain top 140b. That is, the corrugated groove 140 has a shape similar to that of a saw “crest (tooth vibration)”.
  • the ball 106 engaged with the corrugated groove 140 of the first output-side rotating body 108A, the corrugated groove 140 of the second output-side rotating body 108B, and the radial groove 138 of the fixing member 107 passes through the radial groove 138.
  • the waveform groove 140 formed three-dimensionally also moves in the direction along the rotation center 102 a of the input shaft 102.
  • the corrugated groove 140 is formed across the first side surface portion 132 of the first output side rotating body 108A and the second side surface portion 141 of the second output side rotating body 108B.
  • the positioning groove 153 of the first output side rotating body 108A and the positioning groove 154 of the second output side rotating body 108B are aligned ( 14, 19, and 20), the first output-side rotator 108 ⁇ / b> A and the second output-side rotator 108 ⁇ / b> B are fixed in a state of being positioned with high accuracy, and therefore the first output-side rotator 108 ⁇ / b> A side
  • the corrugated groove 140 and the corrugated groove 140 on the second output-side rotating body 108B side are not displaced, and are formed with high accuracy.
  • FIG. 22 is a diagram showing a rolling locus 155 of the ball 106 when the ball 106 is rolled in the corrugated groove 140.
  • 22A is a plan view of the rolling trajectory 155 of the ball 106 (the rolling trajectory 155 projected onto a virtual plane orthogonal to the rotation center 102a of the input shaft 102).
  • FIG. 22B is a diagram in which waves W1 and W2 of adjacent rolling trajectories are projected onto a virtual cross section cut along the line A15-A15 in FIG. 22A.
  • the rolling trajectory 155 of the ball 106 shown in FIG. 22 indicates the groove shape of the corrugated groove 140.
  • R represents the radial direction
  • Z represents the direction along the rotation center 102 a of the input shaft 102.
  • the first wave W1 of the waves W1 and W2 of the adjacent rolling trajectory 155 is directed from the valley bottom 140a of the corrugated groove 140 toward the mountain top 140b. Therefore, it is inclined at a constant rate in the ⁇ Z direction. Further, the second wave W2 of the rolling locus 155 is inclined at a constant rate in the + Z direction as it goes from the valley bottom 140a of the wave groove 140 to the mountain top 140b.
  • the amount of movement of the first wave W1 in the ⁇ Z direction is the same as the amount of movement of the second wave W2 in the + Z direction.
  • the corrugated groove 140 that forms the first wave W1 of the rolling locus 155 is formed so that a portion corresponding to the peak 140b is deeper on the first side surface portion 132 side of the first output-side rotating body 108A. Yes.
  • the corrugated groove 140 forming the second wave W2 of the rolling locus 155 with respect to the first wave W1 has a deeper portion corresponding to the peak 140b on the second side surface portion 141 side of the second output side rotating body 108B. It is formed as follows.
  • the wave number of the corrugated groove 140 is N
  • the number of the radial grooves 138 is (N + 1) / 3.
  • the side rotating body 108 rotates 1 / N in the opposite direction to the input shaft 102.
  • the wave number (N) of the corrugated groove 140 of the output side rotating body 108 is 50
  • the radial groove 138 of the fixing member 107 is 17. Therefore, the ball speed reducer 101 according to the present embodiment reduces the rotation of the input shaft 102 to 1/50 (1 / N) and transmits it to the output side rotating body 108.
  • the ball speed reducer 101 includes the first side surface portion 132 of the first output-side rotating body 108A and the second output-side rotating body 108B facing the swinging body 105 and the fixing member 107. Since the corrugated groove 140 is formed only in two places on the second side surface portion 141, the corrugated groove 211, 2111, 212, 212 is formed in four places, compared with the ball reducer 200 of the conventional example ( The processing man-hour can be reduced.
  • the ball 106 is positioned at a location where the radial groove 138 and the corrugated groove 140 intersect, so that the ball 208 is the first corrugated of the eccentric rotating plate 204.
  • the conventional ball speed reducer 200 configured to simultaneously contact the groove wall of the groove 211 and the groove wall of the second corrugated groove 212 of the fixing member 207 (see FIG. 23), the radial groove 138 and the corrugated groove 140.
  • the assembling work of the rocking body 105, the fixing member 107, the output side rotating body 108 (the first output side rotating body 108A and the second output side rotating body 108B) and the like become easy.
  • a rotation suppression boss 133 is formed on the first side surface portion 132 of the first output side rotating body 108A, and rotation suppression is performed on the second side surface portion 141 of the second output side rotating body 108B.
  • the boss housing recess 142 is formed, but the rotation suppression boss housing recess 142 is formed in the first side surface 132 of the first output side rotating body 108A, and the second side surface portion of the second output side rotating body 108B.
  • 141 may be formed with a rotation suppression boss 133.
  • the ball speed reducer 1 is the whole (the input shaft 2, the oscillating body 4, the outer oscillating ring 6, the fixing member 7, the output side rotating body 8, and the cover 10). Is formed of a metal, a part of the whole is formed of a synthetic resin material, or the whole other than the first to fourth bearings 12, 16, 17, 45 and the ball 5 is formed of a synthetic resin material. It is done.
  • the ball reducer 101 according to the third embodiment of the present invention is formed entirely of metal (the input shaft 102, the cap 103, the rocking body 105, the fixing member 107, and the output side rotating body 108), A case where a part is formed of a synthetic resin material, or a case where the entirety other than the first to third bearings 110, 116, 126 and the ball 106 is formed of a synthetic resin material can be considered.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)
  • Transmission Devices (AREA)

Abstract

[Problem] To provide a ball reduction gear which has a simple structure and for which the machining workload is low. [Solution] A ball reduction gear 1 equipped with: an eccentric disc cam 3 that rotates integrally with an input-side rotating body 2; an oscillating body 4 that is oscillated by the eccentric disc cam 3; multiple balls 5 arranged along an outer circumferential surface 25 of the oscillating body 4; a fixed member 7 having a first side-surface part 20 positioned facing one side surface 4a of the oscillating body 4; and an output-side rotating body 8 having a second side-surface part 21 positioned facing the other side surface 4b of the oscillating body 4. Multiple radial grooves 32 for guiding the balls 5 along the radial direction are formed in the first side-surface part 20, and an undulating groove 33 for guiding the balls 5 in an undulating fashion along the circumferential direction is formed in the second side-surface part 21. Rotation suppression holes 24 in the oscillating body 4 are provided with a gap defined relative to rotation suppression bosses 23 of the first side-surface portion 20, said gap being twice the amount of eccentricity of the eccentric disc cam 3. Curved-surface sections 26 that make linear contact with the balls 5 are formed in the outer circumferential surface 25 of the oscillating body 4.

Description

ボール減速機Ball reducer
 この発明は、回転を減速して伝達するために使用されるボール減速機に関するものである。 This invention relates to a ball speed reducer used for decelerating and transmitting rotation.
 従来から、ボール減速機は、歯車減速装置と比較して、小型で且つ大きな減速比を得られることから、各種機械(例えば、産業用ロボット、舵角可変式ステアリング装置等)の動力伝達部に使用されている。 Conventionally, the ball speed reducer is smaller and has a larger speed reduction ratio than the gear speed reduction device, so that it can be used as a power transmission unit for various machines (for example, industrial robots, steering angle variable type steering devices, etc.). in use.
 図23は、このような従来のボール減速機200を示す図である。なお、図23(a)は、従来のボール減速機200の縦断面図であり、図23(b)は、図23(a)のA16-A16線に沿って切断して示すボール減速機200の断面図である。 FIG. 23 is a diagram showing such a conventional ball speed reducer 200. FIG. 23A is a longitudinal sectional view of a conventional ball speed reducer 200, and FIG. 23B is a ball speed reducer 200 cut along line A16-A16 in FIG. 23A. FIG.
 図23に示すように、ボール減速機200は、入力軸201に形成された偏心カム202の外周側にベアリング203を介して偏心回転板204が取り付けられており、偏心回転板204が偏心カム202によって偏心駆動されるようになっている。また、このボール減速機200は、図示しない出力軸に連結される出力側回転体205が偏心回転板204の径方向内方側の両側にそれぞれ配置されており、入力軸201が出力側回転体205の内周側にベアリング206を介して相対回動できるように支持されている。また、このボール減速機200は、産業用ロボットの一部等に固定される固定部材207が偏心回転板204の径方向外方側の両側にボール208を介してそれぞれ配置されており、出力側回転体205が固定部材207の内周側にベアリング210を介して回動可能に支持されている。そして、偏心回転板204と固定部材207とに挟まれるボール208は、偏心回転板204の側面に形成された第1波形溝(外サイクロイド曲線で形作られる第1サイクロイド溝)211と固定部材207の内側面(偏心回転板204に対向する側面)に形成された第2波形溝(内サイクロイド曲線で形作られる第2サイクロイド溝)212とに転動できるように係合されており、偏心回転板204と固定部材207とを連結している。なお、第2波形溝212の波数は、第1波形溝211の波数よりも2波多くなるように形成されている。 As shown in FIG. 23, in the ball speed reducer 200, an eccentric rotating plate 204 is attached to the outer peripheral side of an eccentric cam 202 formed on the input shaft 201 via a bearing 203, and the eccentric rotating plate 204 is attached to the eccentric cam 202. Is driven eccentrically. Further, in this ball speed reducer 200, output side rotating bodies 205 connected to an output shaft (not shown) are arranged on both sides on the radially inner side of the eccentric rotating plate 204, and the input shaft 201 is an output side rotating body. It is supported on the inner peripheral side of 205 so as to be relatively rotatable via a bearing 206. Further, in this ball speed reducer 200, fixing members 207 fixed to a part of an industrial robot or the like are disposed on both sides on the radially outer side of the eccentric rotating plate 204 via balls 208, respectively. A rotating body 205 is rotatably supported on the inner peripheral side of the fixed member 207 via a bearing 210. Then, the ball 208 sandwiched between the eccentric rotating plate 204 and the fixing member 207 has a first corrugated groove (first cycloid groove formed by an outer cycloid curve) 211 formed on the side surface of the eccentric rotating plate 204 and the fixing member 207. The eccentric rotating plate 204 is engaged with a second corrugated groove (second cycloid groove formed by an inner cycloid curve) 212 formed on the inner side surface (side surface facing the eccentric rotating plate 204). And the fixing member 207 are connected. The wave number of the second corrugated groove 212 is formed so as to be two more than the wave number of the first corrugated groove 211.
 また、出力側回転体205は、偏心吸収機構213を介して偏心回転板204に連結されている。偏心吸収機構213は、偏心回転板204が出力側回転体205に対して偏心運動するのを可能にするものであり(偏心回転板204の偏心を吸収するものであり)、偏心回転板204の回転を出力側回転体205に伝達するようになっている。この偏心吸収機構213は、偏心回転板204と出力側回転体205との間に介装された複数のボール214と、このボール214を転動可能に収容する偏心回転板204の駆動環状溝215と、出力側回転体205の従動環状溝216とによって構成されている。駆動環状溝215及び従動環状溝216は、偏心カム202の偏心量を考慮して形状及び大きさが決定され、偏心回転板204が入力軸201の回転中心に対して偏心回転する際のボール214の動きを許容し、出力側回転体205がボール214を介して偏心回転板204と一体に回動するのを可能にしている(特許文献1参照)。 Further, the output side rotating body 205 is connected to the eccentric rotating plate 204 via the eccentric absorption mechanism 213. The eccentric absorption mechanism 213 allows the eccentric rotating plate 204 to move eccentrically with respect to the output side rotating body 205 (absorbs the eccentricity of the eccentric rotating plate 204). The rotation is transmitted to the output side rotating body 205. The eccentric absorbing mechanism 213 includes a plurality of balls 214 interposed between the eccentric rotating plate 204 and the output-side rotating body 205, and a drive annular groove 215 of the eccentric rotating plate 204 that accommodates the balls 214 in a rollable manner. And a driven annular groove 216 of the output-side rotator 205. The shape and size of the driving annular groove 215 and the driven annular groove 216 are determined in consideration of the amount of eccentricity of the eccentric cam 202, and the ball 214 when the eccentric rotating plate 204 rotates eccentrically with respect to the rotation center of the input shaft 201. The output-side rotating body 205 can rotate integrally with the eccentric rotating plate 204 via the ball 214 (see Patent Document 1).
 このような従来のボール減速機200は、例えば、偏心回転板204の第1波形溝211の波数をN-2とし、固定部材207の第2波形溝212の波数をNとした場合、入力軸201が図示しない電動機等によって回転駆動されると、偏心回転板204が入力軸201の偏心カム202によって偏心駆動され、出力側回転体205が偏心吸収機構213を介して偏心回転板204と一体となって回転することになるが、出力側回転体205が入力軸201の1回転に対して-2/(N-2)回転(入力軸201の回転方向と逆の方向に2/(N-2)回転)することになる。すなわち、従来のボール減速機200は、偏心回転板204の第1波形溝211の波数をN-2とし、固定部材207の第2波形溝212の波数をNとした場合、減速比が2/(N-2)になる。 In such a conventional ball speed reducer 200, for example, when the wave number of the first wave groove 211 of the eccentric rotating plate 204 is N-2 and the wave number of the second wave groove 212 of the fixed member 207 is N, the input shaft When 201 is rotationally driven by an electric motor (not shown) or the like, the eccentric rotating plate 204 is eccentrically driven by the eccentric cam 202 of the input shaft 201, and the output side rotating body 205 is integrated with the eccentric rotating plate 204 via the eccentric absorbing mechanism 213. The output-side rotator 205 rotates -2 / (N-2) with respect to one rotation of the input shaft 201 (2 / (N- in the direction opposite to the rotation direction of the input shaft 201). 2) Rotate). That is, in the conventional ball speed reducer 200, when the wave number of the first corrugated groove 211 of the eccentric rotating plate 204 is N-2 and the wave number of the second corrugated groove 212 of the fixed member 207 is N, the reduction ratio is 2 / (N-2).
特開平5-10400号公報JP-A-5-10400
 しかしながら、図23に示す従来のボール減速機200は、偏心回転板204の両側面にそれぞれ第1波形溝211が形成され、偏心回転板204の両側にそれぞれ配置された固定部材207の内側面に第2波形溝212が形成されているため、合計4側面(4箇所)に波形溝211,211,212,212を高精度に形成しなければならず、加工工数が嵩むという問題を有していた。 However, in the conventional ball speed reducer 200 shown in FIG. 23, the first corrugated grooves 211 are formed on both side surfaces of the eccentric rotating plate 204, respectively, and the inner surfaces of the fixing members 207 disposed on both sides of the eccentric rotating plate 204 are formed. Since the second corrugated groove 212 is formed, the corrugated grooves 211, 211, 212, and 212 must be formed with high accuracy on a total of four side surfaces (four locations), and the processing man-hours increase. It was.
 そこで、本発明は、構造が簡単で、加工工数が少ないボール減速機の提供を目的とする。 Therefore, an object of the present invention is to provide a ball speed reducer with a simple structure and a small number of processing steps.
 請求項1に係る発明は、入力側回転体2の回転を出力側回転体8に減速して伝達するボール減速機1に関するものである。この発明に係るボール減速機1は、入力側回転体2と一体に回動する偏心円板カム3と、偏心円板カム3の外周側に相対回動可能に嵌合され、偏心円板カム3によって揺動させられる揺動体4と、揺動体4の外周面25に沿って複数配置されたボール5と、揺動体4の両側面4a,4bのうちの一方に対向して位置する第1側面部20を有し、被固定部材に固定される固定部材7と、を備えている。そして、出力側回転体8は、揺動体4の両側面4a,4bのうちの他方に対向して位置する第2側面部21を有し、回転中心43aとしての軸心が入力側回転体2の回転中心2aと同軸上に位置するように配置されている。また、第1側面部20と第2側面部21のいずれか一方は、入力側回転体2の回転中心2aに直交する仮想平面において、回転中心2aから放射状に延びる方向を径方向とすると、ボール5を第1側面部20と第2側面部21のいずれか一方の径方向に沿って転動可能に案内する径方向溝32が入力側回転体2の回転中心2aの回りに複数形成されている。また、第1側面部20と第2側面部21のいずれか他方は、前記仮想平面において、回転中心2aを中心とする仮想円の外縁に沿った方向を周方向とすると、ボール5を第1側面部20と第2側面部21のいずれか他方の前記周方向に沿って波形状に案内する環状の波形溝33が形成されている。また、ボール5は、径方向溝32及び波形溝33に転動可能に係合され、揺動体4が偏心円板カム3によって揺動させられると、径方向溝32及び波形溝33内を転動させられる。また、揺動体4は、第1側面部20と第2側面部21のいずれか一方から突出する回転抑制ボス23に係合する回転抑制穴24が形成されている。また、揺動体4の回転抑制穴24は、入力側回転体2の回転中心2aに対する偏心円板カム3の偏心量(e)の2倍の隙間(2e)が回転抑制ボス23との間に形成される。また、揺動体4の外周面25には、ボール5と線接触する曲面部26,57,61が形成されている。 The invention according to claim 1 relates to a ball speed reducer 1 that decelerates and transmits the rotation of the input side rotator 2 to the output side rotator 8. A ball speed reducer 1 according to the present invention is fitted to an eccentric disk cam 3 that rotates together with an input-side rotator 2 and an outer peripheral side of the eccentric disk cam 3 so as to be relatively rotatable. 1 is located opposite to one of the side surfaces 4 a and 4 b of the rocking body 4, the rocking body 4 rocked by the rocking body 3, a plurality of balls 5 disposed along the outer peripheral surface 25 of the rocking body 4. A fixing member 7 having a side surface 20 and fixed to a fixed member. The output-side rotator 8 has a second side surface portion 21 that faces the other of the two side surfaces 4a and 4b of the oscillating body 4, and the axis as the rotation center 43a is the input-side rotator 2. Are arranged so as to be coaxial with the rotation center 2a. In addition, any one of the first side surface portion 20 and the second side surface portion 21 is a ball in a virtual plane perpendicular to the rotation center 2a of the input-side rotator 2 when the radial direction extends from the rotation center 2a. A plurality of radial grooves 32 are formed around the rotation center 2a of the input-side rotator 2 so as to be able to roll along the radial direction of one of the first side surface portion 20 and the second side surface portion 21. Yes. In addition, the other of the first side surface portion 20 and the second side surface portion 21 causes the ball 5 to be the first when the direction along the outer edge of the virtual circle centered on the rotation center 2a is the circumferential direction in the virtual plane. An annular corrugated groove 33 that is guided in a wave shape along the circumferential direction of the other of the side surface portion 20 and the second side surface portion 21 is formed. The ball 5 is movably engaged with the radial groove 32 and the corrugated groove 33, and when the rocking body 4 is swung by the eccentric disk cam 3, the ball 5 rolls within the radial groove 32 and the corrugated groove 33. Be moved. Further, the rocking body 4 is formed with a rotation suppression hole 24 that engages with a rotation suppression boss 23 protruding from one of the first side surface portion 20 and the second side surface portion 21. Further, the rotation suppression hole 24 of the rocking body 4 has a gap (2e) twice the eccentric amount (e) of the eccentric disk cam 3 with respect to the rotation center 2a of the input side rotary body 2 between the rotation suppression boss 23 and the rotation suppression hole 24. It is formed. Further, curved surface portions 26, 57, and 61 that are in line contact with the ball 5 are formed on the outer peripheral surface 25 of the rocking body 4.
 請求項2に係る発明は、入力側回転体102,103の回転を出力側回転体108に減速して伝達するボール減速機101に関するものである。この発明に係るボール減速機101は、入力側回転体102,103と一体に回動する偏心円板カム104と、偏心円板カム104の外周側に相対回動可能に嵌合され、偏心円板カム104によって揺動させられる揺動体105と、揺動体105の外周面105bに沿って複数配置されたボール106と、揺動体105を揺動できるように径方向内方側に収容すると共に、被固定部材に固定される固定部材107と、揺動体105及び固定部材107の一方の側面105c,136aに対向するように配置され、入力側回転体102,103に相対回動可能に支持された第1出力側回転体108Aと、揺動体105及び固定部材107の他方の側面105d,136bに対向するように配置され、第1出力側回転体108Aに一体回動できるように固定されると共に、入力側回転体102,103に相対回動可能に支持され、第1出力側回転体108Aと共に出力側回転体108を構成する第2出力側回転体108Bと、を備えている。そして、固定部材107は、入力側回転体102,103の回転中心102a,103aに直交する仮想平面において、回転中心102,103から放射状に延びる方向を径方向とすると、ボール106を前記径方向にスライド移動可能に案内する径方向溝138がボール106の数と同数形成されると共に、径方向溝138の径方向内方端がボール106の出入りを可能にする開口端になっている。また、第1出力側回転体108Aは、固定部材107の一方の側面136aに対向する第1側面部132を有している。また、第2出力側回転体108Bは、固定部材107の他方の側面136bに対向する第2側面部141を有している。また、第1側面部132及び第2側面部141は、前記仮想平面において、回転中心102a,103aを中心とする仮想円の外縁に沿った方向を周方向とすると、ボール106を前記周方向に沿って波形状に案内する環状の波形溝140が形成されている。また、揺動体105は、第1側面部132と第2側面部141のいずれか一方から突出する回転抑制ボス132に係合する回転抑制穴131が形成されている。また、揺動体105の回転抑制穴131は、入力側回転体102,103の回転中心102a,103aに対する偏心円板カム104の偏心量(e)の2倍の隙間(2e)が回転抑制ボス132との間に形成される。また、揺動体105の外周面105bには、ボール106と線接触する曲面部129が形成されている。 The invention according to claim 2 relates to a ball speed reducer 101 that decelerates and transmits the rotation of the input side rotating bodies 102 and 103 to the output side rotating body 108. A ball speed reducer 101 according to the present invention is fitted to an eccentric disc cam 104 that rotates integrally with input- side rotators 102 and 103, and to the outer peripheral side of the eccentric disc cam 104 so as to be capable of relative rotation. The swinging body 105 swung by the plate cam 104, a plurality of balls 106 arranged along the outer peripheral surface 105b of the swinging body 105, and the swinging body 105 are accommodated radially inward so as to be swung. The fixed member 107 fixed to the fixed member is disposed so as to face the side surfaces 105c and 136a of the rocking body 105 and the fixed member 107, and is supported by the input side rotating bodies 102 and 103 so as to be relatively rotatable. The first output-side rotator 108A is disposed so as to face the other side surfaces 105d and 136b of the oscillating body 105 and the fixing member 107, and can rotate integrally with the first output-side rotator 108A. And a second output-side rotating body 108B that is supported by the input-side rotating bodies 102 and 103 so as to be relatively rotatable and constitutes the output-side rotating body 108 together with the first output-side rotating body 108A. Yes. Then, the fixing member 107 has the radial direction extending from the rotation centers 102 and 103 in the imaginary plane orthogonal to the rotation centers 102a and 103a of the input side rotating bodies 102 and 103. The same number of radial grooves 138 that are slidably guided as the number of balls 106 are formed, and the radially inner ends of the radial grooves 138 are open ends that allow the balls 106 to enter and exit. The first output-side rotating body 108 </ b> A has a first side surface portion 132 that faces one side surface 136 a of the fixing member 107. Further, the second output side rotating body 108 </ b> B includes a second side surface portion 141 that faces the other side surface 136 b of the fixing member 107. In addition, the first side surface portion 132 and the second side surface portion 141 are configured so that, in the virtual plane, the direction along the outer edge of the virtual circle centering on the rotation centers 102a and 103a is the circumferential direction. An annular corrugated groove 140 that is guided along a wave shape is formed. Further, the rocking body 105 is formed with a rotation suppression hole 131 that engages with the rotation suppression boss 132 protruding from one of the first side surface portion 132 and the second side surface portion 141. Further, the rotation suppression hole 131 of the rocking body 105 has a rotation suppression boss 132 having a gap (2e) twice as large as the eccentric amount (e) of the eccentric disk cam 104 with respect to the rotation centers 102a and 103a of the input side rotation bodies 102 and 103. Formed between. A curved surface portion 129 that is in line contact with the ball 106 is formed on the outer peripheral surface 105 b of the rocking body 105.
 請求項1の発明に係るボール減速機は、揺動体に対向する出力側回転体と固定部材のうちの一方の側面部にのみ波形溝を形成するようになっているため、波形溝を4側面にそれぞれ形成する構造が複雑な従来例と比較し、構造を簡単化することができ、加工工数を削減することができる。 In the ball speed reducer according to the first aspect of the present invention, the corrugated groove is formed only on one of the side surfaces of the output side rotating body and the fixed member facing the rocking body. Compared with the conventional example in which the structure to be formed is complicated, the structure can be simplified and the number of processing steps can be reduced.
 請求項2の発明に係るボール減速機は、揺動体及び固定部材に対向する第1出力側回転体の第1側面部と第2出力側回転体の第2側面部の2箇所にのみ波形溝を形成するようになっているため、波形溝を4側面にそれぞれ形成する構造が複雑な従来例と比較し、構造を簡単化することができ、加工工数を削減することができる。 According to a second aspect of the present invention, the ball speed reducer has corrugated grooves only at two locations, the first side surface portion of the first output side rotating body and the second side surface portion of the second output side rotating body facing the rocking body and the fixed member. Therefore, the structure can be simplified and the number of processing steps can be reduced as compared with the conventional example in which the structure in which the corrugated grooves are formed on the four side surfaces is complicated.
本発明の第1実施形態に係るボール減速機の縦断面図である。1 is a longitudinal sectional view of a ball speed reducer according to a first embodiment of the present invention. 本発明の第1実施形態に係るボール減速機の入力軸(入力側回転体)を示す図であり、図2(a)は入力軸の正面図(先端面を示す図)、図2(b)は入力軸の側面図である。It is a figure which shows the input shaft (input side rotary body) of the ball reducer which concerns on 1st Embodiment of this invention, Fig.2 (a) is a front view (figure which shows a front end surface) of an input shaft, FIG.2 (b) ) Is a side view of the input shaft. 本発明の第1実施形態に係るボール減速機の揺動体を示す図であり、図3(a)は揺動体の正面図、図3(b)は図3(a)のA1-A1線に沿って切断して示す揺動体の断面図、図3(c)は揺動体の側面図、図3(d)は揺動体の背面図である。FIGS. 3A and 3B are diagrams showing a rocking body of the ball speed reducer according to the first embodiment of the present invention, in which FIG. 3A is a front view of the rocking body, and FIG. 3B is a line A1-A1 in FIG. FIG. 3C is a side view of the oscillating body, and FIG. 3D is a rear view of the oscillating body. 図4(a)は図3(b)のB1部の拡大図、図4(b)は図3(c)のB2部の拡大図である。4A is an enlarged view of the B1 portion of FIG. 3B, and FIG. 4B is an enlarged view of the B2 portion of FIG. 3C. 本発明の第1実施形態に係るボール減速機の外側揺動リングを示す図であり、図5(a)は外側揺動リングの縦断面図(図5(b)のA2-A2線に沿って切断して示す断面図)、図5(b)は外側揺動リングの正面図である。FIG. 5A is a view showing an outer rocking ring of the ball reducer according to the first embodiment of the present invention, and FIG. 5A is a longitudinal sectional view of the outer rocking ring (along line A2-A2 in FIG. 5B). FIG. 5B is a front view of the outer rocking ring. 本発明の第1実施形態に係るボール減速機の固定部材を示す図であり、図6(a)は固定部材の正面図、図6(b)は固定部材の側面図、図6(c)は図6(a)のA3-A3線に沿って切断して示す固定部材の断面図である。It is a figure which shows the fixing member of the ball reducer which concerns on 1st Embodiment of this invention, Fig.6 (a) is a front view of a fixing member, FIG.6 (b) is a side view of a fixing member, FIG.6 (c). FIG. 7 is a cross-sectional view of the fixing member cut along the line A3-A3 in FIG. 本発明の第1実施形態に係るボール減速機の出力側回転体を示す図であり、図7(a)は出力側回転体の側面図、図7(b)は出力側回転体の縦断面図(図7(c)のA4-A4線に沿って切断して示す断面図)、図7(c)は出力側回転体の正面図である。It is a figure which shows the output side rotary body of the ball reducer which concerns on 1st Embodiment of this invention, Fig.7 (a) is a side view of an output side rotary body, FIG.7 (b) is a longitudinal cross-section of an output side rotary body. FIG. 7 is a cross-sectional view taken along line A4-A4 of FIG. 7C, and FIG. 7C is a front view of the output side rotating body. 本発明の第1実施形態に係るボール減速機のカバーを示す図であり、図8(a)はカバーの正面図、図8(b)はカバーの側面図、図8(c)はカバーの縦断面図(図8(a)のA5-A5線に沿って切断して示す断面図)、図8(d)はカバーの背面図である。It is a figure which shows the cover of the ball reducer which concerns on 1st Embodiment of this invention, Fig.8 (a) is a front view of a cover, FIG.8 (b) is a side view of a cover, FIG.8 (c) is a cover of a cover. A longitudinal sectional view (a sectional view taken along line A5-A5 in FIG. 8A) and FIG. 8D are rear views of the cover. 揺動体の第1変形例を示す図であり、図9(a)は揺動体の正面図、図9(b)は図9(a)のA6-A6線に沿って切断して示す揺動体の断面図、図9(c)は揺動体の側面図、図9(d)は揺動体の背面図、図9(e)は図9(b)のB3部の拡大図である。FIGS. 9A and 9B are diagrams showing a first modification of the rocking body, FIG. 9A is a front view of the rocking body, and FIG. 9B is a rocking body cut along the line A6-A6 in FIG. 9A. 9C is a side view of the oscillating body, FIG. 9D is a rear view of the oscillating body, and FIG. 9E is an enlarged view of a portion B3 in FIG. 9B. 揺動体の第2変形例を示す図であり、図10(a)は揺動体の正面図、図10(b)は揺動体の側面図、図10(c)は揺動体の背面図、図10(d)は図10(a)のA7-A7線に沿って切断して示す揺動体の断面図である。FIGS. 10A and 10B are diagrams showing a second modification of the oscillating body, in which FIG. 10A is a front view of the oscillating body, FIG. 10B is a side view of the oscillating body, and FIG. 10 (d) is a cross-sectional view of the oscillator that is cut along the line A7-A7 of FIG. 10 (a). 本発明の第2実施形態に係るボール減速機の縦断面図である。It is a longitudinal cross-sectional view of the ball reducer which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係るボール減速機の揺動体を示す図であり、図12(a)は揺動体の正面図、図12(b)は揺動体の側面図、図12(c)は図12(b)のB4部の拡大図、図12(d)は図12(a)のA8-A8線に沿って切断して示す揺動体の断面図である。It is a figure which shows the rocking body of the ball | bowl speed reducer which concerns on 2nd Embodiment of this invention, Fig.12 (a) is a front view of a rocking body, FIG.12 (b) is a side view of a rocking body, FIG.12 (c). FIG. 12B is an enlarged view of a portion B4 in FIG. 12B, and FIG. 12D is a cross-sectional view of the oscillating body cut along the line A8-A8 in FIG. 本発明の第2実施形態に係るボール減速機の第2出力側回転体を示す図であり、図13(a)は第2出力側回転体の側面図、図13(b)は第2出力側回転体の縦断面図(図13(c)のA9-A9線に沿って切断して示す断面図)、図13(c)は第2出力側回転体の正面図である。It is a figure which shows the 2nd output side rotary body of the ball reducer which concerns on 2nd Embodiment of this invention, Fig.13 (a) is a side view of a 2nd output side rotary body, FIG.13 (b) is a 2nd output. FIG. 13C is a front view of the second output-side rotating body. FIG. 13C is a longitudinal sectional view of the side-rotating body (cross-sectional view cut along line A9-A9 in FIG. 13C). 本発明の第3実施形態に係るボール減速機の縦断面図である。It is a longitudinal cross-sectional view of the ball reducer which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係るボール減速機の入力軸(入力側回転体)を示す図であり、図15(a)は入力軸の正面図(先端面を示す図)、図15(b)は入力軸の側面図、15(c)は入力軸の後端面を示す図である。It is a figure which shows the input shaft (input side rotary body) of the ball reducer which concerns on 3rd Embodiment of this invention, Fig.15 (a) is a front view (figure which shows a front end surface) of an input shaft, FIG.15 (b) ) Is a side view of the input shaft, and FIG. 15C is a view showing a rear end surface of the input shaft. 本発明の第3実施形態に係るボール減速機のキャップ(入力側回転体)を示す図であり、図16(a)はキャップの正面図、図16(b)は図16(a)のA10-A10線に沿って切断して示すキャップの断面図、図16(c)はキャップの背面図である。It is a figure which shows the cap (input side rotary body) of the ball reducer which concerns on 3rd Embodiment of this invention, Fig.16 (a) is a front view of a cap, FIG.16 (b) is A10 of Fig.16 (a). FIG. 16C is a sectional view of the cap cut along the line A10, and FIG. 16C is a rear view of the cap. 本発明の第3実施形態に係るボール減速機の揺動体を示す図であり、図17(a)は揺動体の正面図、図17(b)は揺動体の側面図、図17(c)は図17(a)のA11-A11線に沿って切断して示す揺動体の断面図である。It is a figure which shows the rocking body of the ball | bowl speed reducer which concerns on 3rd Embodiment of this invention, Fig.17 (a) is a front view of a rocking body, FIG.17 (b) is a side view of a rocking body, FIG.17 (c). FIG. 18 is a cross-sectional view of an oscillating body cut along the line A11-A11 in FIG. 本発明の第3実施形態に係るボール減速機の固定部材を示す図であり、図18(a)は固定部材の正面図、図18(b)は図18(a)のA12-A12線に沿って切断して示す固定部材の断面図である。It is a figure which shows the fixing member of the ball reducer which concerns on 3rd Embodiment of this invention, Fig.18 (a) is a front view of a fixing member, FIG.18 (b) is the A12-A12 line | wire of Fig.18 (a). It is sectional drawing of the fixing member cut | disconnected and shown along. 本発明の第3実施形態に係るボール減速機の第1出力側回転体を示す図であり、図19(a)は第1出力側回転体の正面図、図19(b)は図19(a)のA13-A13線に沿って切断して示す第1出力側回転体の断面図である。It is a figure which shows the 1st output side rotary body of the ball reducer which concerns on 3rd Embodiment of this invention, Fig.19 (a) is a front view of a 1st output side rotary body, FIG.19 (b) is FIG. FIG. 6 is a cross-sectional view of the first output-side rotator cut along the line A13-A13 in a). 本発明の第3実施形態に係るボール減速機の第2出力側回転体を示す図であり、図20(a)は第2出力側回転体の正面図、図20(b)は図20(a)のA14-A14線に沿って切断して示す第2出力側回転体の断面図である。It is a figure which shows the 2nd output side rotary body of the ball reducer which concerns on 3rd Embodiment of this invention, Fig.20 (a) is a front view of a 2nd output side rotary body, FIG.20 (b) is FIG. FIG. 6 is a cross-sectional view of a second output side rotating body cut along the line A14-A14 in a). 本発明の第3実施形態に係るボール減速機の波形溝を簡略化して示す斜視図である。It is a perspective view which simplifies and shows the waveform groove | channel of the ball reducer which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係るボール減速機のボールが波形溝内を転動させられた場合のボールの転動軌跡を示す図であり、図22(a)はボールの転動軌跡の平面図、図22(b)は図22(a)のA15-A15線に沿って切断して示す仮想断面上に転動軌跡の波を投影して示す図である。It is a figure which shows the rolling locus | trajectory of a ball | bowl when the ball | bowl of the ball reducer which concerns on 3rd Embodiment of this invention is rolled in the inside of a waveform groove, FIG.22 (a) is a plane of the rolling locus | trajectory of a ball | bowl. FIGS. 22B and 22B are diagrams showing the rolling trajectory wave projected onto a virtual cross section cut along the line A15-A15 in FIG. 22A. 従来のボール減速機を示す図であり、図23(a)はボール減速機の縦断面図、図23(b)は図23(a)のA16-A16線に沿って切断して示す断面図である。FIG. 23A is a view showing a conventional ball reducer, FIG. 23A is a longitudinal sectional view of the ball reducer, and FIG. 23B is a sectional view taken along line A16-A16 in FIG. 23A. It is.
 以下、本発明の実施形態を図面に基づき詳述する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 [第1実施形態]
  (全体構造)
 図1は、本発明の第1実施形態に係るボール減速機1の縦断面図である。この図1に示すように、本実施形態に係るボール減速機1は、入力軸(入力側回転体)2、偏心円板カム3、揺動体4、複数のボール(鋼球)5、外側揺動リング6、固定部材7、出力側回転体8、及びカバー10等で構成されている。
[First Embodiment]
(Overall structure)
FIG. 1 is a longitudinal sectional view of a ball speed reducer 1 according to a first embodiment of the present invention. As shown in FIG. 1, a ball speed reducer 1 according to this embodiment includes an input shaft (input-side rotating body) 2, an eccentric disk cam 3, a rocking body 4, a plurality of balls (steel balls) 5, an external rocking body. The moving ring 6, the fixing member 7, the output side rotating body 8, the cover 10, and the like are included.
  (入力軸)
 図1及び図2に示すように、入力軸2は、軸本体部11が第1ベアリング12を介して固定部材7によって回動自在に支持されており、図示しない電動機等によって回転駆動されるようになっている。この入力軸2は、軸本体部11よりも大径の鍔状部13が軸本体部11に隣接して形成され、第1ベアリング12の側面が鍔状部13の側面に突き当てられ、第1ベアリング12を固定部材7のボス部14の内周側突起15と鍔状部13との間に保持するようになっている。また、この入力軸2は、鍔状部13よりも軸先端側で且つ鍔状部13に隣接する位置に偏心円板カム3が形成されている。この偏心円板カム3は、その中心3aが入力軸2の回転中心2a(軸本体部11の回転中心11a)に対して偏心量(e)だけ偏心して位置する円板であり、入力軸2の回転中心2aの回りに入力軸2と一体となって偏心回転する。そして、偏心円板カム3の外周側には、揺動体4が第2ベアリング16を介して相対回動可能に取り付けられている。また、入力軸2は、第3ベアリング17を取り付ける先端軸部18が形成されている。この先端軸部18は、その回転中心18aが入力軸2の回転中心2a(軸本体部11の回転中心11a)と同心であり、出力側回転体8を第3ベアリング17を介して回動可能に支持するようになっている。なお、以下の説明において、入力軸2の回転中心2aに直交する仮想平面を考えた場合、径方向とは、その仮想平面上を回転中心2aから放射状に延びる方向をいうものとする。また、入力軸2の回転中心2aに直交する仮想平面を考えた場合、周方向とは、入力軸2の回転中心2aを中心とする仮想円の外縁に沿った方向をいうものとする。
(Input shaft)
As shown in FIGS. 1 and 2, the input shaft 2 is configured such that the shaft main body 11 is rotatably supported by a fixing member 7 via a first bearing 12 and is driven to rotate by an electric motor (not shown) or the like. It has become. The input shaft 2 has a hook-shaped portion 13 having a diameter larger than that of the shaft main body portion 11 adjacent to the shaft main body portion 11, the side surface of the first bearing 12 is abutted against the side surface of the hook-shaped portion 13, One bearing 12 is held between the inner peripheral projection 15 of the boss portion 14 of the fixing member 7 and the flange portion 13. The input shaft 2 has an eccentric disc cam 3 formed at a position closer to the shaft tip than the flange 13 and adjacent to the flange 13. The eccentric disc cam 3 is a disc whose center 3a is eccentric with respect to the rotation center 2a of the input shaft 2 (the rotation center 11a of the shaft body 11) by an eccentric amount (e). And the input shaft 2 are rotated eccentrically around the rotation center 2a. And the rocking body 4 is attached to the outer peripheral side of the eccentric disk cam 3 via the 2nd bearing 16 so that relative rotation is possible. Further, the input shaft 2 is formed with a tip shaft portion 18 to which the third bearing 17 is attached. The tip shaft 18 has a rotation center 18 a concentric with the rotation center 2 a of the input shaft 2 (the rotation center 11 a of the shaft main body 11), and the output-side rotating body 8 can be rotated via the third bearing 17. It comes to support. In the following description, when a virtual plane orthogonal to the rotation center 2a of the input shaft 2 is considered, the radial direction means a direction extending radially from the rotation center 2a on the virtual plane. When a virtual plane orthogonal to the rotation center 2a of the input shaft 2 is considered, the circumferential direction refers to a direction along the outer edge of the virtual circle centered on the rotation center 2a of the input shaft 2.
  (揺動体)
 図1、図3及び図4に示すように、揺動体4は、固定部材7と出力側回転体8との間に配置され、偏心円板カム3によって揺動させられるようになっている。そして、この揺動体4は、一方の側面4aが固定部材7の第1側面部20に対向し、他方の側面4bが出力側回転体8の第2側面部21に対向するように位置している。また、この揺動体4は、第2ベアリング16が嵌合される軸受け穴22を径方向の中心部に有し、固定部材7の回転抑制ボス23が嵌合される回転抑制穴24を軸受け穴22の周囲に複数有している。揺動体4の回転抑制穴24は、丸棒状突起である回転抑制ボス23との隙間が偏心円板カム3の偏心量(e)の2倍(2e)になるように形成されており、揺動体4が偏心円板カム3によって揺動させられるのを可能にしている。また、この揺動体4は、複数のボール5を外周面25で転動可能に支持するようになっている。揺動体4の外周面25は、図3(a)に示すように軸受け穴22と同心の円形状であり、ボール5と線接触する曲面部26(揺動体側の転動溝)がボール5と同数形成されている。この揺動体4の曲面部26は、揺動体4を機械加工する場合、揺動体4に対するボール5の転動軌跡をシミュレーションソフト(例えば、ANSYS)で解析し、その解析データとボール径等をマシニングセンタに入力し、マシニングセンタに装着したボールエンドミル等の加工工具をボール5の転動軌跡に沿うように動かして加工する。また、この揺動体4の曲面部26は、揺動体4を射出成形する場合、揺動体4に対するボール5の転動軌跡をシミュレーションソフト(例えば、ANSYS)で解析し、その解析データとボール径等を金型加工機械に入力し、金型加工機械の加工具を入力データに基づいて動かし、金型のキャビティ内に曲面部形成面を加工して、射出成形時にキャビティ内の曲面部形成面を転写することにより形作られる。
(Oscillator)
As shown in FIGS. 1, 3 and 4, the oscillating body 4 is disposed between the fixed member 7 and the output side rotating body 8 and is oscillated by the eccentric disc cam 3. The oscillating body 4 is positioned such that one side surface 4 a faces the first side surface portion 20 of the fixing member 7 and the other side surface 4 b faces the second side surface portion 21 of the output side rotating body 8. Yes. Further, the oscillator 4 has a bearing hole 22 into which the second bearing 16 is fitted in the center portion in the radial direction, and the rotation suppressing hole 24 into which the rotation suppressing boss 23 of the fixing member 7 is fitted. There are a plurality around 22. The rotation restraint hole 24 of the rocking body 4 is formed so that the clearance with the rotation restraining boss 23 which is a round bar-like protrusion is twice (2e) the eccentric amount (e) of the eccentric disc cam 3. The moving body 4 can be swung by the eccentric disc cam 3. Further, the rocking body 4 supports a plurality of balls 5 on the outer peripheral surface 25 so as to be able to roll. As shown in FIG. 3A, the outer peripheral surface 25 of the rocking body 4 has a circular shape concentric with the bearing hole 22, and the curved surface portion 26 (rolling groove on the rocking body side) in line contact with the ball 5 The same number is formed. When the oscillator 4 is machined, the curved surface portion 26 of the oscillator 4 analyzes the rolling trajectory of the ball 5 with respect to the oscillator 4 with simulation software (for example, ANSYS), and analyzes the analysis data, the ball diameter, and the like. The machining tool such as a ball end mill mounted on the machining center is moved along the rolling trajectory of the ball 5 for machining. Further, when the oscillating body 4 is injection-molded, the curved surface portion 26 of the oscillating body 4 analyzes the rolling trajectory of the ball 5 relative to the oscillating body 4 with simulation software (for example, ANSYS), and the analysis data and the ball diameter, etc. Is input to the mold processing machine, the tool of the mold processing machine is moved based on the input data, the curved surface forming surface is processed in the mold cavity, and the curved surface forming surface in the cavity is formed during injection molding. Formed by transcription.
 このようにして形成された揺動体4は、ボール5が曲面部26に線接触した状態(図4(b)の太線29で示すような線接触状態)で転動するため、ボール5が平坦な外周面25に点接触した状態で転動する場合と比較し、ボール5との接触部の変形(塑性変形、摩耗)が生じ難く、耐久性が向上する。なお、本実施形態に係る揺動体は、射出成形で形作る場合、曲面部がアンダーカット形状になるが、成形収縮によって円滑に金型から分離できるようになっている。 The oscillating body 4 formed in this way rolls in a state where the ball 5 is in line contact with the curved surface portion 26 (in a line contact state as indicated by a thick line 29 in FIG. 4B). Compared with the case of rolling in a state of point contact with the outer peripheral surface 25, deformation (plastic deformation, wear) of the contact portion with the ball 5 is less likely to occur, and durability is improved. In addition, when the rocking body according to the present embodiment is formed by injection molding, the curved surface portion has an undercut shape, but can be smoothly separated from the mold by molding shrinkage.
  (外側揺動リング)
 図1及び図5に示すように、外側揺動リング6は、円環状に形成されており、揺動体4の径方向外方側で、且つ固定部材7の第1側面部20と出力側回転体8の第2側面部21との間に配置されている。この外側揺動リング6は、揺動体4、及び揺動体4の外周面25(曲面部26)で支持された複数のボール5を揺動体係合穴27内に収容できるようになっている。そして、この外側揺動リング6は、その内周面28と揺動体4の外周面25(曲面部26)との間に複数のボール5を保持するようになっている。
(Outside rocking ring)
As shown in FIGS. 1 and 5, the outer rocking ring 6 is formed in an annular shape, and is on the radially outer side of the rocking body 4 and the first side surface portion 20 of the fixing member 7 and the output side rotation. It is disposed between the second side surface portion 21 of the body 8. The outer rocking ring 6 can accommodate the rocking body 4 and a plurality of balls 5 supported by the outer peripheral surface 25 (curved surface portion 26) of the rocking body 4 in the rocking body engaging hole 27. The outer rocking ring 6 holds a plurality of balls 5 between the inner circumferential surface 28 and the outer circumferential surface 25 (curved surface portion 26) of the rocking body 4.
  (固定部材)
 図1及び図6に示すように、固定部材7は、図示しない被固定部材(例えば、機械のフレーム、又はロボットのアーム)に固定され、入力軸2の軸本体部11をボス部14の内周面に取り付けられた第1ベアリング12によって回転自在に支持するようになっている。また、この固定部材7は、揺動体4の一方の側面4aに対向する第1側面部20の内側面20a(一方の側面4aに対向する側面)にボール支持突起30が形成されている。このボール支持突起30は、断面形状が先細の台形形状の環状体であり、ボス部14のベアリング取付穴31の中心31aと同心に形成された環状体である。そして、このボール支持突起30は、揺動体4の曲面部26で支持されたボール5に係合する径方向溝32が周方向に沿って等間隔で複数形成されている。この径方向溝32は、ボール支持突起30を径方向に切り欠くように形成され、径方向に直交する断面形状がボール5の半径と同様の曲率半径の円弧形状であり、出力側回転体8の波形溝33内を転動するボール5の径方向での移動軌跡に合わせ、ボール5の移動軌跡の径方向中間位置における溝深さが最も深く、移動軌跡の径方向中間位置から径方向内方端及び径方向外方端へ向かうに従って溝深さが滑らかに漸減するように、径方向内方側から径方向外方側へ向かって略円弧状の断面形状になっている。また、固定部材7の径方向溝32は、出力側回転体8の波形溝33の波数をN波とすると、(N+1)箇所に形成され、(N+1)個のボール5を1個ずつ転動可能に収容する。このような固定部材7の径方向溝32は、偏心円板カム3が1回転し、揺動体4が1ストローク分だけ揺動させられると、ボール5を揺動体4の揺動量に応じた分だけ径方向に転動させることができる。また、固定部材7は、第1側面部20と揺動体4との接触面積を減らして接触抵抗を低減するため、ボール支持突起30よりも径方向内方側の第1側面部20及びボール支持突起30よりも径方向外方側の第1側面部20に、接触逃がし凹所34,35が周方向に沿って複数形成されている。また、固定部材7は、その径方向外方端側にカバー取付部36が形成されている。そして、このカバー取付部36の内側には、揺動体4が揺動可能に収容されると共に、出力側回転体8が回動可能に収容されるようになっている。また、この固定部材7のカバー取付部36は、正面側から見た外形形状が略矩形形状になっており、位置決めピン取付穴37、組立用ねじ穴38、及び固定ボルト挿入穴40が各コーナー部(4隅)に形成されている。位置決めピン取付穴37には、カバー10の位置決めピン係合穴41に係合する位置決めピン(図示せず)が圧入されるようになっている。これにより、カバー10は、固定部材7に位置決めされた状態で固定される。また、組立用ねじ穴38には、カバー10を固定部材7に固定する組立用ボルトのねじ部(図示せず)が螺合されるようになっている。また、固定ボルト挿入穴40には、図外の被固定部材にカバー10及び固定部材7を一体として取り付けるための固定ボルトの軸部(図示せず)が挿入される。なお、固定部材7の接触逃がし凹所34,35には、グリース等の潤滑剤が適宜収容される。
(Fixing member)
As shown in FIGS. 1 and 6, the fixing member 7 is fixed to a fixed member (not shown) (for example, a frame of a machine or an arm of a robot), and the shaft main body 11 of the input shaft 2 is placed inside the boss 14. The first bearing 12 attached to the peripheral surface is rotatably supported. The fixing member 7 has a ball support protrusion 30 formed on the inner side surface 20a of the first side surface portion 20 facing the one side surface 4a of the rocking body 4 (side surface facing the one side surface 4a). The ball support protrusion 30 is a trapezoidal annular body having a tapered cross section, and is an annular body formed concentrically with the center 31 a of the bearing mounting hole 31 of the boss portion 14. The ball support protrusions 30 are formed with a plurality of radial grooves 32 that are engaged with the balls 5 supported by the curved surface portion 26 of the rocking body 4 at equal intervals along the circumferential direction. The radial groove 32 is formed so as to cut out the ball support protrusion 30 in the radial direction, and the cross-sectional shape orthogonal to the radial direction is an arc shape having the same radius of curvature as the radius of the ball 5. The groove depth at the radial intermediate position of the moving trajectory of the ball 5 is the deepest in accordance with the moving trajectory in the radial direction of the ball 5 rolling in the corrugated groove 33, and the inner radius of the moving trajectory from the radial intermediate position. The groove has a substantially arcuate cross-sectional shape from the radially inner side toward the radially outer side so that the groove depth gradually decreases gradually toward the outer end and the radially outer end. Further, the radial groove 32 of the fixing member 7 is formed at (N + 1) locations when the wave number of the waved groove 33 of the output side rotating body 8 is N wave, and rolls (N + 1) balls 5 one by one. Accommodate as possible. Such a radial groove 32 of the fixing member 7 is such that when the eccentric disk cam 3 rotates once and the rocking body 4 is rocked by one stroke, the ball 5 is divided according to the rocking amount of the rocking body 4. Can only roll in the radial direction. In addition, the fixing member 7 reduces the contact area between the first side surface portion 20 and the rocking body 4 to reduce the contact resistance, so that the first side surface portion 20 and the ball support on the radially inner side from the ball support protrusion 30 are reduced. A plurality of contact relief recesses 34 and 35 are formed along the circumferential direction on the first side surface portion 20 radially outward from the protrusion 30. The fixing member 7 has a cover attachment portion 36 formed on the radially outer end side thereof. And inside this cover attaching part 36, while the rocking body 4 is accommodated so that rocking is possible, the output side rotary body 8 is accommodated so that rotation is possible. The cover mounting portion 36 of the fixing member 7 has a substantially rectangular outer shape when viewed from the front side, and includes a positioning pin mounting hole 37, an assembly screw hole 38, and a fixing bolt insertion hole 40 at each corner. It is formed in the part (4 corners). A positioning pin (not shown) that engages with the positioning pin engaging hole 41 of the cover 10 is press-fitted into the positioning pin mounting hole 37. Thereby, the cover 10 is fixed in a state of being positioned on the fixing member 7. In addition, a screw portion (not shown) of an assembly bolt for fixing the cover 10 to the fixing member 7 is screwed into the assembly screw hole 38. Further, a shaft portion (not shown) of a fixing bolt for integrally attaching the cover 10 and the fixing member 7 to a fixed member (not shown) is inserted into the fixing bolt insertion hole 40. A lubricant such as grease is appropriately stored in the contact relief recesses 34 and 35 of the fixing member 7.
  (出力側回転体)
 図1及び図7に示すように、出力側回転体8は、揺動体4の両側面4a,4bのうちの他方の側面4bに対向して位置する第2側面部21と、この第2側面部21の径方向内方側に一体に形成された軸受用円筒部42と、この軸受用円筒部42と一体に形成された出力軸部43と、を有している。この出力側回転体8は、軸受用円筒部42の径方向内方側に位置する軸受け穴44が第3ベアリング17を介して入力軸2の先端軸部18で回動自在に支持されると共に、軸受用円筒部42の外周側が第4ベアリング45を介してカバー10で回動自在に支持され、出力軸部43が入力軸2の回転中心2aと同心で回転するようになっている。そして、第2側面部21の内側面21a(揺動体4の他方の側面4bに対向する側面)には、揺動体4の外周面25(曲面部26)によって支持されたボール5に係合する波形溝33が出力軸部43の回転中心(軸心)43aを中心として環状(無端状)に形成されている。この波形溝33は、ボール5を第2側面部21の周方向に沿って波形状に案内するようになっており、径方向内方端を谷底33aとし、径方向外方端を山頂33bとし、谷底33aと山頂33bとの径方向中間位置を波高さ中央位置とすると、谷底33aの溝深さ及び山頂33bの溝深さが波高さ中央位置の溝深さよりも深くなるように、溝深さが滑らかに変化している。このような形状の波形溝33に対し、径方向溝32は、径方向中間位置が波形溝33の波高さ中央位置に対応し、この径方向中間位置における溝深さが最も深く、波形溝33の谷底33aに対応する径方向位置及び波形溝33の山頂33bに対応する径方向位置に向かうにしたがって溝深さが浅くなるように形成されている。そして、出力側回転体8は、偏心円板カム3が1回転し、揺動体4が1ストローク分だけ揺動させられ、ボール5が固定部材7の径方向溝32内を径方向に1往復すると、波形溝33の1波分だけ回動する。出力軸部43は、その回転中心43aが入力軸2の回転中心2aと同心となるように配置され、図示しない被駆動部材に接続される。また、出力側回転体8は、第2側面部21と揺動体4との接触面積を減らして接触抵抗を低減するため、波形溝33よりも径方向内方側の第2側面部21に、接触逃がし凹所46が形成されると共に、肉抜き穴47が周方向に沿って複数形成されている。なお、接触逃がし凹所46には、グリース等の潤滑剤が適宜収容される。
(Output side rotating body)
As shown in FIGS. 1 and 7, the output-side rotator 8 includes a second side surface portion 21 that faces the other side surface 4 b of the both side surfaces 4 a and 4 b of the oscillator 4, and the second side surface. It has a bearing cylindrical portion 42 that is integrally formed on the radially inner side of the portion 21, and an output shaft portion 43 that is integrally formed with the bearing cylindrical portion 42. The output side rotating body 8 includes a bearing hole 44 positioned on the radially inner side of the bearing cylindrical portion 42 and rotatably supported by the tip shaft portion 18 of the input shaft 2 via the third bearing 17. The outer peripheral side of the bearing cylindrical portion 42 is rotatably supported by the cover 10 via the fourth bearing 45, and the output shaft portion 43 rotates concentrically with the rotation center 2 a of the input shaft 2. The inner side surface 21 a of the second side surface portion 21 (the side surface facing the other side surface 4 b of the rocking body 4) engages with the ball 5 supported by the outer peripheral surface 25 (curved surface portion 26) of the rocking body 4. The corrugated groove 33 is formed in an annular shape (endless shape) around the rotation center (axial center) 43 a of the output shaft portion 43. The corrugated groove 33 guides the ball 5 in a wave shape along the circumferential direction of the second side surface portion 21, and the radially inner end is a valley bottom 33 a and the radially outer end is a peak 33 b. If the intermediate position in the radial direction between the valley bottom 33a and the peak 33b is the center of the wave height, the groove depth is such that the groove depth of the valley bottom 33a and the groove depth of the peak 33b are deeper than the groove depth at the center of the wave height. Is changing smoothly. In contrast to the corrugated groove 33 having such a shape, the radial groove 32 has a radial intermediate position corresponding to the center position of the wave height of the corrugated groove 33, and the groove depth at the radial intermediate position is the deepest. The groove depth becomes shallower toward the radial position corresponding to the valley bottom 33a and the radial position corresponding to the peak 33b of the corrugated groove 33. In the output-side rotating body 8, the eccentric disk cam 3 rotates once, the swinging body 4 is swung by one stroke, and the ball 5 reciprocates in the radial groove 32 of the fixing member 7 once in the radial direction. Then, the wave groove 33 rotates by one wave. The output shaft portion 43 is disposed such that its rotation center 43a is concentric with the rotation center 2a of the input shaft 2, and is connected to a driven member (not shown). Further, the output-side rotator 8 reduces the contact area between the second side surface portion 21 and the rocking body 4 to reduce the contact resistance, so that the second side surface portion 21 radially inward from the corrugated groove 33 A contact relief recess 46 is formed, and a plurality of lightening holes 47 are formed along the circumferential direction. Note that a lubricant such as grease is appropriately stored in the contact relief recess 46.
  (カバー)
 図1及び図8に示すように、カバー10は、フランジ部48と円筒部50とを一体に有しており、径方向内方に出力側回転体8を回動可能に収容する空間が形成されている。フランジ部48は、正面側から見た外形形状が固定部材7のカバー取付部36の外形形状と同様の略矩形形状になっており、位置決めピン係合穴41、組立用ボルト取付穴51、及び固定ボルト挿入穴52が各コーナー部(4隅)に形成されている。このカバー10の位置決めピン係合穴41、組立用ボルト取付穴51、固定ボルト挿入穴52は、固定部材7の位置決めピン取付穴37、組立用ねじ穴38、及び固定ボルト挿入穴40に一対一で対応するように形成されている。そして、カバー10の位置決めピン係合穴41には、固定部材7に固定された位置決めピン(図示せず)が挿入される。また、組立用ボルト取付穴51には、固定部材7とカバー10を締め付け固定する組立用ボルト(図示せず)が係合される。また、固定ボルト挿入穴52には、図外の被取付物にカバー10及び固定部材7を一体として取り付けるための固定ボルト(図示せず)が係合される。カバー10のフランジ部48は、出力側回転体8に対向する側面48aが出力側回転体8の第2側面部21との間に隙間が生じるように配置されている。また、カバー10の円筒部50は、軸受嵌合穴53の内周面が第4ベアリング45の外周面に嵌合され、第4ベアリング45を介して出力側回転体8の軸受用円筒部42を回転自在に支持している。また、円筒部50の軸方向端部には、第4ベアリング45のアウターレースの側面側に位置するベアリング位置決め突起54が形成されている。このベアリング位置決め突起54は、出力側回転体8のベアリング位置決め段部55との間に第4ベアリング45を収容し、第4ベアリング45が出力側回転体8とカバー10との間から抜け出すのを防止している。
(cover)
As shown in FIGS. 1 and 8, the cover 10 integrally includes a flange portion 48 and a cylindrical portion 50, and a space for rotatably accommodating the output side rotating body 8 is formed radially inward. Has been. The flange portion 48 has a substantially rectangular shape that is the same as the outer shape of the cover mounting portion 36 of the fixing member 7 when viewed from the front side, and includes a positioning pin engaging hole 41, an assembly bolt mounting hole 51, and Fixing bolt insertion holes 52 are formed at each corner (four corners). The positioning pin engaging hole 41, the assembly bolt mounting hole 51, and the fixing bolt insertion hole 52 of the cover 10 are in one-to-one correspondence with the positioning pin mounting hole 37, the assembly screw hole 38, and the fixing bolt insertion hole 40 of the fixing member 7. It is formed to correspond. A positioning pin (not shown) fixed to the fixing member 7 is inserted into the positioning pin engaging hole 41 of the cover 10. The assembly bolt mounting hole 51 is engaged with an assembly bolt (not shown) that fastens and fixes the fixing member 7 and the cover 10. The fixing bolt insertion hole 52 is engaged with a fixing bolt (not shown) for attaching the cover 10 and the fixing member 7 together to an object to be attached that is not shown. The flange portion 48 of the cover 10 is disposed such that a gap is formed between the side surface 48 a facing the output side rotating body 8 and the second side surface portion 21 of the output side rotating body 8. Further, the cylindrical portion 50 of the cover 10 has an inner peripheral surface of the bearing fitting hole 53 fitted to an outer peripheral surface of the fourth bearing 45, and the bearing cylindrical portion 42 of the output-side rotator 8 is interposed via the fourth bearing 45. Is supported rotatably. A bearing positioning projection 54 is formed at the axial end of the cylindrical portion 50 and is positioned on the side of the outer race of the fourth bearing 45. The bearing positioning protrusion 54 accommodates the fourth bearing 45 between the bearing positioning step portion 55 of the output side rotating body 8 and prevents the fourth bearing 45 from coming out between the output side rotating body 8 and the cover 10. It is preventing.
  (本実施形態に係るボール減速機の作動)
 以上のような本実施形態に係るボール減速機1は、入力軸2と偏心円板カム3とが一体になって1回転すると、揺動体4が偏心円板カム3の偏心量(e)の2倍の寸法(2e)だけ揺動させられ、揺動体4の外周面25(曲面部26)によって支持されたボール5が固定部材7の径方向溝32内を1往復する。この際、出力側回転体8は、ボール5が固定部材7の径方向溝32内を第1側面部20の径方向に沿って移動するだけであるため、固定部材7に対して波形溝33の1波分だけ回動させられる。したがって、本実施形態に係るボール減速機1は、波形溝33の波数がNであり、径方向溝32の溝数が(N+1)であるため、入力軸2の1回転に対し、出力側回転体8が入力軸2と逆方向へ1/N回転することになる。なお、本実施形態に係るボール減速機1は、図6及び図7に示すように、出力側回転体8の波形溝33の波数(N)が51であり、固定部材7の径方向溝32の溝数(N+1)が52である場合を例示している。したがって、本実施形態に係るボール減速機1は、入力軸2の回転を1/51(1/N)に減速して出力側回転体8に伝達する。
(Operation of the ball speed reducer according to this embodiment)
In the ball speed reducer 1 according to the present embodiment as described above, when the input shaft 2 and the eccentric disc cam 3 are integrated and rotated once, the oscillator 4 has an eccentric amount (e) of the eccentric disc cam 3. The ball 5 oscillated by a double size (2e) and supported by the outer peripheral surface 25 (curved surface portion 26) of the oscillating body 4 reciprocates once in the radial groove 32 of the fixing member 7. At this time, the output-side rotator 8 only moves the ball 5 in the radial groove 32 of the fixing member 7 along the radial direction of the first side surface portion 20. Is rotated by one wave. Therefore, in the ball speed reducer 1 according to the present embodiment, the wave number of the wave groove 33 is N, and the number of the radial grooves 32 is (N + 1). The body 8 rotates 1 / N in the opposite direction to the input shaft 2. In the ball speed reducer 1 according to this embodiment, as shown in FIGS. 6 and 7, the wave number (N) of the wave groove 33 of the output side rotating body 8 is 51, and the radial groove 32 of the fixing member 7. In this example, the number of grooves (N + 1) is 52. Therefore, the ball speed reducer 1 according to the present embodiment reduces the rotation of the input shaft 2 to 1/51 (1 / N) and transmits it to the output side rotating body 8.
  (本実施形態に係るボール減速機の第1の効果)
 以上のように構成された本実施形態に係るボール減速機1は、揺動体4に対向する出力側回転体8の第2側面部21にのみ波形溝33を形成するようになっているため、波形溝211,211,212,212を4箇所にそれぞれ形成する従来例のボール減速機200と比較し(図23参照)、構造が簡単であり、加工工数の削減が可能になる。
(First effect of the ball speed reducer according to the present embodiment)
Since the ball speed reducer 1 according to the present embodiment configured as described above is configured to form the corrugated groove 33 only in the second side surface portion 21 of the output side rotating body 8 facing the rocking body 4. Compared with the conventional ball speed reducer 200 in which the corrugated grooves 211, 211, 212, and 212 are formed at four locations, respectively (see FIG. 23), the structure is simple and the number of processing steps can be reduced.
  (本実施形態に係るボール減速機の第2の効果)
 また、本実施形態に係るボール減速機1は、径方向溝32と波形溝33との交差する箇所にボール5が位置するようになっているため、ボール208が偏心回転板204の第1波形溝211の溝壁と固定部材207の第2波形溝212の溝壁に同時に接触するように構成された従来のボール減速機200と比較し(図23参照)、構造が簡単になり、径方向溝32及び波形溝33の加工が容易になると共に、揺動体4、固定部材7、及び出力側回転体8等の組立作業が容易になる。
(Second effect of the ball speed reducer according to the present embodiment)
In the ball speed reducer 1 according to the present embodiment, the ball 5 is positioned at a location where the radial groove 32 and the corrugated groove 33 intersect, so the ball 208 is the first corrugated of the eccentric rotating plate 204. Compared to the conventional ball speed reducer 200 configured to simultaneously contact the groove wall of the groove 211 and the groove wall of the second corrugated groove 212 of the fixing member 207 (see FIG. 23), the structure is simplified and the radial direction The machining of the groove 32 and the corrugated groove 33 is facilitated, and the assembling work of the oscillating body 4, the fixing member 7, the output side rotating body 8 and the like is facilitated.
  (本実施形態に係るボール減速機の第3の効果)
 また、本実施形態に係るボール減速機1は、ボール5が揺動体4の曲面部26に線接触した状態で転動するため、ボール5が平坦な外周面25に点接触した状態で転動する場合と比較し、ボール5との接触部の変形(塑性変形、摩耗)が生じ難く、耐久性が向上する。
(Third effect of the ball speed reducer according to the present embodiment)
In addition, since the ball speed reducer 1 according to the present embodiment rolls in a state where the ball 5 is in line contact with the curved surface portion 26 of the rocking body 4, the ball 5 rolls in a state where the ball 5 is in point contact with the flat outer peripheral surface 25. Compared with the case where it does, a deformation | transformation (plastic deformation, abrasion) of a contact part with the ball | bowl 5 does not produce easily, and durability improves.
  (揺動体の第1変形例)
 図9は、揺動体4の第1変形例を示す図である。なお、図9(a)は揺動体4の正面図であり、図9(b)は図9(a)のA6-A6線に沿って切断して示す揺動体4の断面図であり、図9(c)は揺動体4の側面図であり、図9(d)は揺動体4の背面図であり、図9(e)は図9(b)のB3部の拡大図である。
(First modification of oscillator)
FIG. 9 is a view showing a first modification of the oscillator 4. 9A is a front view of the oscillating body 4, and FIG. 9B is a sectional view of the oscillating body 4 cut along the line A6-A6 of FIG. 9A. 9 (c) is a side view of the oscillating body 4, FIG. 9 (d) is a rear view of the oscillating body 4, and FIG. 9 (e) is an enlarged view of a portion B3 in FIG. 9 (b).
 本変形例に係る揺動体4は、図9(e)に示すような加工工具56を使用し、その加工工具56をボール5の転動軌跡に沿って動かすことによって、アンダーカット部分の無い曲面部57(揺動体側の転動溝)を外周面25に形成することができる。本変形例に係る揺動体4の曲面部57は、上記実施形態に係る揺動体4の曲面部26の約半分になり、ボール5と線接触する長さも上記実施形態に係る揺動体4の曲面部26の約半分になるが、アンダーカット部分が無いため、ボール減速機1の組立順序の制限がなく、また、射出成形時における成形収縮を利用せずに離型できる。その結果、本変形例に係る揺動体4は、成形収縮による離型を考慮しなくてもよい分だけ部品設計上の制限を少なくすることができ、高精度の曲面部57(揺動体側の転動溝)が形作られる。 The oscillating body 4 according to this modification uses a machining tool 56 as shown in FIG. 9E and moves the machining tool 56 along the rolling trajectory of the ball 5 so that the curved surface has no undercut portion. The portion 57 (rolling groove on the rocking body side) can be formed on the outer peripheral surface 25. The curved surface portion 57 of the oscillating body 4 according to this modification is about half of the curved surface portion 26 of the oscillating body 4 according to the above-described embodiment, and the length of line contact with the ball 5 is also the curved surface of the oscillating body 4 according to the above-described embodiment. Although it is about half of the portion 26, since there is no undercut portion, the assembly order of the ball reducer 1 is not limited, and the mold can be released without using molding shrinkage at the time of injection molding. As a result, the oscillating body 4 according to the present modification can reduce the restrictions on the part design by the amount that does not require the mold release due to molding shrinkage, and the highly accurate curved surface portion 57 (on the oscillating body side). Rolling groove) is formed.
  (揺動体の第2変形例)
 図10は、揺動体4の第2変形例を示す図である。なお、図10(a)は揺動体4の正面図であり、図10(b)は揺動体4の側面図であり、図10(c)は揺動体4の背面図であり、図10(d)は図10(a)のA7-A7線に沿って切断して示す揺動体4の断面図である。
(Second modification of oscillator)
FIG. 10 is a diagram illustrating a second modification of the oscillator 4. 10A is a front view of the oscillating body 4, FIG. 10B is a side view of the oscillating body 4, FIG. 10C is a rear view of the oscillating body 4, and FIG. FIG. 10D is a cross-sectional view of the oscillator 4 cut along the line A7-A7 in FIG.
 本変形例に係る揺動体4は、ボール5が第1実施形態に係るボール減速機1の半分に削減された状態で使用されるものである。この揺動体4は、外周面25から径方向外方へ向かって突出する回転抑制突起58がボール5の数と同数形成され、回転抑制突起58が固定部材7の隣り合う径方向溝32,32に沿って転動するボール5,5の間に位置し、偏心円板カム3によって円滑に揺動させられるものの、偏心円板カム3の周りを回転するのが抑えられる。また、この揺動体4は、隣り合う一対の回転抑制突起58,58の間の外周面25に、図4(b)に示すアンダーカット形状の曲面部26(揺動体側の転動溝)が形成されるか、又は、図9(e)に示すアンダーカット形状の無い曲面部57(揺動体側の転動溝)が形成される。 The oscillating body 4 according to this modification is used in a state where the ball 5 is reduced to half of the ball speed reducer 1 according to the first embodiment. In this oscillating body 4, rotation suppression protrusions 58 that protrude radially outward from the outer peripheral surface 25 are formed in the same number as the number of balls 5, and the rotation suppression protrusions 58 are adjacent to the radial grooves 32, 32 of the fixing member 7. , And is smoothly swung by the eccentric disc cam 3, but is prevented from rotating around the eccentric disc cam 3. In addition, the rocking body 4 has an undercut curved surface portion 26 (rolling groove on the rocking body side) shown in FIG. 4B on the outer peripheral surface 25 between a pair of adjacent rotation suppression protrusions 58 and 58. The curved surface portion 57 (rolling groove on the swinging body side) having no undercut shape as shown in FIG. 9E is formed.
 このような本変形例に係る揺動体4は、回転抑制突起58が周り止めの機能を発揮するため、第1実施形態に係る揺動体4の複数の回転抑制穴24を形成しなくてもよいため、成形収縮のばらつきを生じにくく、高精度に製造できる。その結果、本変形例に係る揺動体4は、成形収縮を利用して金型から離型する場合においても、外周面25の曲面部26(揺動体側の転動溝)を高精度に成形できる。また、本変形例に係る揺動体4は、第1実施形態に係る揺動体4の複数の回転抑制穴24を形成しなくてもよいため、射出成形時におけるウェルドラインが生じにくく、第1実施形態に係る揺動体4よりも強度を大きくできる。 In the oscillating body 4 according to this modification example, since the rotation suppression protrusion 58 exhibits a function of stopping rotation, the plurality of rotation suppression holes 24 of the oscillating body 4 according to the first embodiment may not be formed. For this reason, variations in molding shrinkage hardly occur, and manufacturing can be performed with high accuracy. As a result, the oscillating body 4 according to the present modified example accurately molds the curved surface portion 26 (the rolling groove on the oscillating body side) of the outer peripheral surface 25 even when the oscillating body 4 is released from the mold using molding shrinkage. it can. Moreover, since the rocking body 4 according to this modification does not need to form the plurality of rotation suppression holes 24 of the rocking body 4 according to the first embodiment, it is difficult for weld lines to occur during injection molding, and the first embodiment. The strength can be made larger than that of the rocking body 4 according to the embodiment.
 [第2実施形態]
  (全体構造)
 図11は、本発明の第2実施形態に係るボール減速機1の縦断面図である。本実施形態に係るボール減速機1は、出力側回転体8に回転抑制ボス60を複数形成し、その回転抑制ボス60を揺動体4の回転抑制穴24に係合するようになっている点が第1実施形態に係るボール減速機1と相違する。そして、本実施形態に係るボール減速機1は、後述する揺動体4の外周面25側の形状、及び出力側回転体8の一部(回転抑制ボス60)を除き、その他の構成が第1実施形態に係るボール減速機1と同様である。したがって、本実施形態に係るボール減速機1の説明は、第1実施形態に係るボール減速機1の説明と重複する説明を省略する。
[Second Embodiment]
(Overall structure)
FIG. 11 is a longitudinal sectional view of a ball reducer 1 according to the second embodiment of the present invention. In the ball speed reducer 1 according to the present embodiment, a plurality of rotation suppression bosses 60 are formed on the output-side rotator 8, and the rotation suppression bosses 60 are engaged with the rotation suppression holes 24 of the rocking body 4. Is different from the ball reducer 1 according to the first embodiment. The ball speed reducer 1 according to the present embodiment has a first configuration other than the shape on the outer peripheral surface 25 side of the rocking body 4 described later and a part of the output side rotating body 8 (rotation suppression boss 60). This is the same as the ball speed reducer 1 according to the embodiment. Therefore, the description of the ball speed reducer 1 according to the present embodiment will not be repeated with the description of the ball speed reducer 1 according to the first embodiment.
 本実施形態に係るボール減速機1において、出力側回転体8の回転抑制ボス60と揺動体4の回転抑制穴24との隙間は、第1実施形態に係るボール減速機1における固定部材7の回転抑制ボス23と揺動体4の回転抑制穴24との隙間と同様に、偏心円板カム3の偏心量(e)の2倍の寸法(2e)である。そして、このような本実施形態に係るボール減速機1は、揺動体4が偏心円板カム3によって揺動させられながら出力側回転体8と共に出力軸部43の回転中心43aの周りを回転させられる。 In the ball speed reducer 1 according to the present embodiment, the clearance between the rotation suppression boss 60 of the output-side rotator 8 and the rotation suppression hole 24 of the swinging body 4 is the clearance of the fixing member 7 in the ball speed reducer 1 according to the first embodiment. Similar to the clearance between the rotation suppression boss 23 and the rotation suppression hole 24 of the rocking body 4, the size (2e) is twice the eccentric amount (e) of the eccentric disc cam 3. In the ball speed reducer 1 according to the present embodiment, the rotating body 4 is rotated around the rotation center 43 a of the output shaft portion 43 together with the output-side rotating body 8 while being swung by the eccentric disc cam 3. It is done.
  (揺動体)
 図12は、本実施形態に係るボール減速機1の揺動体4を示す図である。なお、図12(a)は揺動体4の正面図であり、図12(b)は揺動体4の側面図であり、図12(c)は図12(b)のB4部の拡大図であり、図12(d)は図12(a)のA8-A8線に沿って切断して示す揺動体4の断面図である。
(Oscillator)
FIG. 12 is a view showing the rocking body 4 of the ball speed reducer 1 according to the present embodiment. 12A is a front view of the oscillating body 4, FIG. 12B is a side view of the oscillating body 4, and FIG. 12C is an enlarged view of a portion B4 in FIG. 12B. FIG. 12D is a cross-sectional view of the oscillating body 4 cut along the line A8-A8 in FIG.
 揺動体4は、上述のとおり、偏心円板カム3によって揺動させられながら出力側回転体8と共に回転する。そして、この揺動体4によって転動可能に支持されるボール5は、固定部材7の径方向溝32内を転動すると共に出力側回転部材8の波形溝33内を転動するようになっている。その結果、本実施形態に係るボール減速機1は、ボール5が揺動体4の外周面25に沿って相対回動することになる。 As described above, the oscillating body 4 rotates with the output-side rotator 8 while being oscillated by the eccentric disc cam 3. The ball 5 supported so as to be able to roll by the rocking body 4 rolls in the radial groove 32 of the fixing member 7 and rolls in the corrugated groove 33 of the output side rotating member 8. Yes. As a result, in the ball speed reducer 1 according to the present embodiment, the ball 5 relatively rotates along the outer peripheral surface 25 of the rocking body 4.
 このような揺動体4の外周面25は、軸受け穴22と同心の円形状であり、ボール5と線接触する曲面部61(揺動体側の転動溝)が周方向に沿って連続して形成されている。この揺動体4の曲面部61は、出力側回転体8の波形溝33と同じ波数になる。そして、この揺動体4の曲面部61は、揺動体4を機械加工する場合、揺動体4に対するボール5の転動軌跡をシミュレーションソフト(例えば、ANSYS)で解析し、その解析データとボール径等をマシニングセンタに入力し、マシニングセンタに装着したボールエンドミル等の加工工具をボール5の転動軌跡に沿うように動かして加工する。また、この揺動体4の曲面部61は、揺動体4を射出成形する場合、揺動体4に対するボール5の転動軌跡をシミュレーションソフト(例えば、ANSYS)で解析し、その解析データとボール径等を金型加工機械に入力し、金型加工機械の加工具を入力データに基づいて動かし、金型のキャビティ内に曲面部形成面を加工して、射出成形時にキャビティ内の曲面部形成面を転写することにより形作られる。なお、図12(c)において、ボール5の転動軌跡62は、曲面部61に2点鎖線で表したように、複雑な連続した形状になっている。また、本実施形態に係る揺動体4は、曲面部61が第1実施形態に係る揺動体4の曲面部26と同様にアンダーカット形状に形成されているが(図4(a)参照)、第1実施形態の第1変形例に係る揺動体4の曲面部57と同様にアンダーカット形状の無い曲面部61にしてもよい(図9(e)参照)。 The outer peripheral surface 25 of the rocking body 4 has a circular shape concentric with the bearing hole 22, and a curved surface portion 61 (rolling groove on the rocking body side) in line contact with the ball 5 is continuously provided along the circumferential direction. Is formed. The curved surface portion 61 of the oscillating body 4 has the same wave number as the corrugated groove 33 of the output side rotating body 8. When the oscillator 4 is machined, the curved surface portion 61 of the oscillator 4 analyzes the rolling trajectory of the ball 5 with respect to the oscillator 4 with simulation software (for example, ANSYS), the analysis data, the ball diameter, etc. Is input to the machining center, and a machining tool such as a ball end mill mounted on the machining center is moved along the rolling trajectory of the ball 5 for machining. Further, when the oscillating body 4 is injection-molded, the curved surface portion 61 of the oscillating body 4 analyzes the rolling trajectory of the ball 5 with respect to the oscillating body 4 using simulation software (for example, ANSYS), and the analysis data, the ball diameter, etc. Is input to the mold processing machine, the tool of the mold processing machine is moved based on the input data, the curved surface forming surface is processed in the mold cavity, and the curved surface forming surface in the cavity is formed during injection molding. Formed by transcription. In FIG. 12C, the rolling locus 62 of the ball 5 has a complicated continuous shape as represented by a two-dot chain line on the curved surface portion 61. Further, in the rocking body 4 according to the present embodiment, the curved surface portion 61 is formed in an undercut shape like the curved surface portion 26 of the rocking body 4 according to the first embodiment (see FIG. 4A). Similarly to the curved surface portion 57 of the oscillator 4 according to the first modification of the first embodiment, the curved surface portion 61 having no undercut shape may be used (see FIG. 9E).
  (出力側回転体)
 図13は、本実施形態に係るボール減速機1の出力側回転体8を示す図である。なお、図13(a)は出力側回転体8の側面図であり、図13(b)は出力側回転体8の縦断面図(図13(c)のA9-A9線に沿って切断して示す断面図)であり、図13(c)は出力側回転体8の正面図である。
(Output side rotating body)
FIG. 13 is a view showing the output side rotating body 8 of the ball speed reducer 1 according to the present embodiment. 13A is a side view of the output-side rotator 8, and FIG. 13B is a longitudinal sectional view of the output-side rotator 8 (cut along the line A9-A9 in FIG. 13C). FIG. 13C is a front view of the output-side rotator 8.
 本実施形態に係るボール減速機1の出力側回転体8は、揺動体4の回転抑制穴24に係合される回転抑制ボス60が第2側面部21に形成されている点を除き、他の構成が第1実施形態に係るボール減速機1の出力側回転体8と同様である。なお、本実施形態に係るボール減速機1において、出力側回転体8の回転抑制ボス60は、第1実施形態に係るボール減速機1の固定部材7の回転抑制ボス23と同様に、揺動体4の回転抑制穴24と偏心円板カム3の偏心量eの2倍(2e)の隙間をもって係合する。これにより、本実施形態における出力側回転体8は、偏心円板カム3によって揺動させられる揺動体4を出力軸部43の回転中心43aの周りに回転させることができる。 The output side rotator 8 of the ball speed reducer 1 according to the present embodiment is different except that the rotation suppressing boss 60 engaged with the rotation suppressing hole 24 of the rocking body 4 is formed on the second side surface portion 21. Is the same as that of the output side rotating body 8 of the ball speed reducer 1 according to the first embodiment. In the ball speed reducer 1 according to the present embodiment, the rotation suppression boss 60 of the output side rotating body 8 is an oscillating body similar to the rotation suppression boss 23 of the fixing member 7 of the ball speed reducer 1 according to the first embodiment. 4 and the rotation suppression hole 24 and the eccentric disk cam 3 are engaged with a gap twice as large as the eccentric amount e (2e). Thereby, the output side rotator 8 in the present embodiment can rotate the oscillating body 4 oscillated by the eccentric disc cam 3 around the rotation center 43 a of the output shaft portion 43.
 以上のような本実施形態に係るボール減速機1は、第1実施形態に係るボール減速機1の第1乃至第3の効果と同様の効果を得ることができる。 The ball speed reducer 1 according to the present embodiment as described above can obtain the same effects as the first to third effects of the ball speed reducer 1 according to the first embodiment.
 [第3実施形態]
  (全体構造)
 図14は、本発明の第3実施形態に係るボール減速機101の縦断面図である。この図14に示すように、本実施形態に係るボール減速機101は、入力軸(入力側回転体)102、キャップ(入力側回転体)103、偏心円板カム104、揺動体105、複数のボール(鋼球)106、固定部材107、及び出力側回転体108(第1出力側回転体108A、第2出力側回転体108B)等で構成されている。
[Third Embodiment]
(Overall structure)
FIG. 14 is a longitudinal sectional view of a ball reducer 101 according to the third embodiment of the present invention. As shown in FIG. 14, a ball speed reducer 101 according to this embodiment includes an input shaft (input-side rotating body) 102, a cap (input-side rotating body) 103, an eccentric disk cam 104, a rocking body 105, and a plurality of A ball (steel ball) 106, a fixing member 107, an output side rotating body 108 (first output side rotating body 108A, second output side rotating body 108B), and the like.
  (入力軸)
 図14及び図15に示すように、入力軸102は、第1ベアリング110を介して第1出力側回転体108Aを回動自在に支持しており、図示しない電動機等によって回転駆動されるようになっている。この入力軸102は、軸本体部111よりも大径の鍔状部112が軸本体部111に隣接して形成され、その鍔状部112に隣接して軸受支持部113が形成され、その軸受支持部113に第1ベアリング110が取り付けられ、第1ベアリング110を第1出力側回転体108Aの軸受穴114の内周側突起115と鍔状部112との間に保持するようになっている。また、この入力軸102は、軸受支持部113よりも軸先端側で且つ軸受支持部113に隣接する位置に偏心円板カム104が形成されている。この偏心円板カム104は、その中心104aが入力軸102の回転中心102a(軸本体部111の回転中心111a)に対して偏心量(e)だけ偏心して位置する偏心軸部であり、入力軸102の回転中心102aの回りに入力軸102と一体となって偏心回転する。そして、偏心円板カム104の外周側には、揺動体105が第2ベアリング116を介して相対回動可能に取り付けられている。また、入力軸102は、キャップ103を取り付ける先端軸部117が形成されている。この先端軸部117は、その回転中心が軸本体部102の回転中心102aと同心であり、キャップ103の軸穴118に嵌合され、先端面117aがキャップ103の軸穴118内に突出するストッパ突起120に突き当てられている。また、入力軸102の先端軸部117には、キャップ103を固定するためのボルト121のねじ軸部121aと螺合するねじ穴(雌ねじ)122が形成されている。なお、以下の説明において、入力軸102の回転中心102aに直交する仮想平面を考えた場合、径方向とは、その仮想平面上を回転中心102aから放射状に延びる方向を言うものとする。また、入力軸102の回転中心102aに直交する仮想平面を考えた場合、周方向とは、入力軸102の回転中心102aを中心とする仮想円の外縁に沿った方向を言うものとする。
(Input shaft)
As shown in FIGS. 14 and 15, the input shaft 102 rotatably supports the first output-side rotating body 108 </ b> A via the first bearing 110 so as to be driven to rotate by an electric motor (not shown) or the like. It has become. The input shaft 102 has a hook-shaped portion 112 having a diameter larger than that of the shaft main body portion 111 adjacent to the shaft main body portion 111, and a bearing support portion 113 formed adjacent to the hook-shaped portion 112. The first bearing 110 is attached to the support portion 113, and the first bearing 110 is held between the inner peripheral projection 115 of the bearing hole 114 of the first output-side rotating body 108A and the flange portion 112. . Further, the input shaft 102 has an eccentric disc cam 104 formed at a position closer to the shaft tip side than the bearing support portion 113 and adjacent to the bearing support portion 113. The eccentric disc cam 104 is an eccentric shaft portion whose center 104a is eccentric with respect to the rotation center 102a of the input shaft 102 (the rotation center 111a of the shaft main body 111) by an eccentric amount (e). The input shaft 102 and the input shaft 102 are rotated eccentrically around a rotation center 102a of the 102. An oscillating body 105 is attached to the outer peripheral side of the eccentric disc cam 104 via a second bearing 116 so as to be relatively rotatable. Further, the input shaft 102 is formed with a tip shaft portion 117 to which the cap 103 is attached. The distal end shaft portion 117 is concentric with the rotation center 102 a of the shaft main body portion 102, is fitted into the shaft hole 118 of the cap 103, and a stopper whose front end surface 117 a protrudes into the shaft hole 118 of the cap 103. It is abutted against the protrusion 120. In addition, a screw hole (female screw) 122 that engages with a screw shaft portion 121 a of a bolt 121 for fixing the cap 103 is formed in the distal end shaft portion 117 of the input shaft 102. In the following description, when a virtual plane orthogonal to the rotation center 102a of the input shaft 102 is considered, the radial direction means a direction extending radially from the rotation center 102a on the virtual plane. Further, when considering a virtual plane orthogonal to the rotation center 102 a of the input shaft 102, the circumferential direction refers to a direction along the outer edge of a virtual circle centered on the rotation center 102 a of the input shaft 102.
  (キャップ)
 図14及び図16に示すように、キャップ103は、入力軸102の先端軸部117にボルト121で固定され、入力軸102と共に入力側回転体を構成し、回転中心103aが入力軸102の回転中心102aと一致するように形成されている。このキャップ103は、回転中心103aに沿った一端側(図16(b)の右端側)に開口する軸穴118と、回転中心103aに沿った他端側(図16(b)の左端側)に開口するボルト頭部収容穴123と、ボルト頭部収容穴123と軸穴118とを連通するボルト軸部挿通穴124と、が形成されている。また、このキャップ103は、円筒状の外周面103bの一端側にリング状の軸受ストッパ125が形成され、外周面103bに取り付けられた第3ベアリング126の側面が軸受ストッパ125に突き当てられており、第2出力側回転体108Bの軸受穴127内の内周側突起128と軸受ストッパ125との間に第3ベアリング126を保持するようになっている。なお、キャップ103は、軸穴118の回転中心及び外周面103bの回転中心がキャップ103の回転中心103aと同心である。
(cap)
As shown in FIGS. 14 and 16, the cap 103 is fixed to the distal end shaft portion 117 of the input shaft 102 with a bolt 121 and constitutes an input side rotating body together with the input shaft 102, and the rotation center 103 a is the rotation of the input shaft 102. It is formed so as to coincide with the center 102a. This cap 103 has an axial hole 118 that opens to one end side along the rotation center 103a (the right end side in FIG. 16B) and the other end side along the rotation center 103a (the left end side in FIG. 16B). And a bolt head part insertion hole 124 that connects the bolt head part reception hole 123 and the shaft hole 118 to each other. The cap 103 has a ring-shaped bearing stopper 125 formed on one end of the cylindrical outer peripheral surface 103b, and the side surface of the third bearing 126 attached to the outer peripheral surface 103b is abutted against the bearing stopper 125. The third bearing 126 is held between the inner peripheral projection 128 in the bearing hole 127 of the second output side rotating body 108B and the bearing stopper 125. In the cap 103, the rotation center of the shaft hole 118 and the rotation center of the outer peripheral surface 103 b are concentric with the rotation center 103 a of the cap 103.
  (揺動体)
 図14及び図17に示すように、揺動体105は、偏心円板カム104によって揺動させられるように円板状に形成され、中心の軸受穴130が第2ベアリング116の外周面に嵌合され、偏心円板カム104と相対回動できるように第2ベアリング116で支持されている。この揺動体105は、その中心105aが偏心円板カム104の中心104aと同心となるように形成され、外周面105bが偏心円板カム104の中心104aと同心の円筒面であり、外周面105bに形成した曲面部129(揺動体側の転動溝)で複数のボール106を線接触状態を保ちながら転動可能に支持している。また、揺動体105は、軸受穴130の径方向外方側に、周方向に沿って8カ所の回転抑制穴131が等間隔で形成されている。この揺動体105の回転抑制穴131は、第1出力側回転体108Aの第1側面部132に形成された回転抑制ボス133が隙間(偏心円板カム104の偏心量eの2倍の隙間2e)をもって係合され、揺動体105が偏心円板カム104で円滑に揺動させられるようになっている。そして、この揺動体105は、出力側回転体108と共に回動するようになっているため、ボール106と線接触する曲面部129が周方向に沿って連続して形成されており、波形溝140の溝数と同数の波数となるように形成されている。また、この揺動体105の曲面部129は、出力側回転体108の波形溝140が第1出力側回転体108Aと第2出力側回転体108Bとで軸方向(中心105aに沿った方向)への変位方向が逆転するため(図21及び図22参照)、その波形溝140の変位に倣って軸方向への変位方向が逆転する(図17(b)参照)。そして、図17(c)に示す曲面部129の形状(断面形状)は、第1実施形態に係る揺動体4の曲面部26と同様にアンダーカット形状に形成されると(図4(a)参照)、ボール106との接触部分に作用する力の軸方向(中心105aに沿った方向)成分の合成力が打ち消し合うことになり、揺動体105に作用するスラスト力を抑えることができるので好ましいが、第1実施形態の第1変形例に係る揺動体4の曲面部57と同様のアンダーカット形状の無い曲面部61と同様の形状にしてもよい(図9(e)参照)。この揺動体105の曲面部129は、揺動体105を機械加工する場合、揺動体105に対するボール106の転動軌跡をシミュレーションソフト(例えば、ANSYS)で解析し、その解析データとボール径等をマシニングセンタに入力し、マシニングセンタに装着したボールエンドミル等の加工工具をボール106の転動軌跡に沿うように動かして加工する。また、この揺動体105の曲面部129は、揺動体105を射出成形する場合、揺動体105に対するボール106の転動軌跡をシミュレーションソフト(例えば、ANSYS)で解析し、その解析データとボール径等を金型加工機械に入力し、金型加工機械の加工具を入力データに基づいて動かし、金型のキャビティ内に曲面部形成面を加工して、射出成形時にキャビティ内の曲面部形成面を転写することにより形作られる。
(Oscillator)
As shown in FIGS. 14 and 17, the rocking body 105 is formed in a disk shape so as to be rocked by the eccentric disk cam 104, and the center bearing hole 130 is fitted to the outer peripheral surface of the second bearing 116. The second bearing 116 supports the eccentric disc cam 104 so that it can rotate relative to the eccentric disc cam 104. The oscillator 105 is formed such that its center 105a is concentric with the center 104a of the eccentric disk cam 104, its outer peripheral surface 105b is a cylindrical surface concentric with the center 104a of the eccentric disk cam 104, and the outer peripheral surface 105b. A plurality of balls 106 are supported by the curved surface portion 129 (rolling groove on the rocking body side) formed so as to be able to roll while maintaining a line contact state. Further, in the oscillating body 105, eight rotation suppression holes 131 are formed at equal intervals along the circumferential direction on the radially outer side of the bearing hole 130. The rotation restraining hole 131 of the swinging body 105 has a clearance 2e that is a gap between the rotation restraining boss 133 formed on the first side surface portion 132 of the first output side rotating body 108A (a gap 2e that is twice the eccentric amount e of the eccentric disc cam 104). ) So that the rocking body 105 can be smoothly rocked by the eccentric disk cam 104. Since the oscillating body 105 rotates together with the output-side rotator 108, a curved surface portion 129 that is in line contact with the ball 106 is continuously formed along the circumferential direction. The number of grooves is the same as the number of grooves. Further, the curved surface portion 129 of the oscillating body 105 has the corrugated groove 140 of the output-side rotator 108 in the axial direction (direction along the center 105a) between the first output-side rotator 108A and the second output-side rotator 108B. Is reversed (see FIGS. 21 and 22), the displacement direction in the axial direction is reversed following the displacement of the corrugated groove 140 (see FIG. 17B). Then, the shape (cross-sectional shape) of the curved surface portion 129 shown in FIG. 17C is formed in an undercut shape like the curved surface portion 26 of the oscillator 4 according to the first embodiment (FIG. 4A). Reference), the combined force of the components in the axial direction (direction along the center 105a) of the force acting on the contact portion with the ball 106 cancels out, and the thrust force acting on the rocking body 105 can be suppressed, which is preferable. However, it may be the same shape as the curved surface portion 61 having no undercut shape, similar to the curved surface portion 57 of the oscillator 4 according to the first modification of the first embodiment (see FIG. 9E). When the oscillator 105 is machined, the curved surface portion 129 of the oscillator 105 analyzes the rolling trajectory of the ball 106 with respect to the oscillator 105 using simulation software (for example, ANSYS), and analyzes the analysis data, the ball diameter, and the like. Then, a processing tool such as a ball end mill mounted on the machining center is moved along the rolling trajectory of the ball 106 for processing. Further, the curved surface portion 129 of the rocking body 105 analyzes the rolling trajectory of the ball 106 with respect to the rocking body 105 by simulation software (for example, ANSYS) when the rocking body 105 is injection-molded, and the analysis data, the ball diameter, etc. Is input to the mold processing machine, the tool of the mold processing machine is moved based on the input data, the curved surface forming surface is processed in the mold cavity, and the curved surface forming surface in the cavity is formed during injection molding. Formed by transcription.
  (固定部材)
 図14及び図18に示すように、固定部材107は、正面側の形状が略四角形状であり、中心部に揺動体収容穴134が形成されている。この固定部材107は、外縁に沿うように形成された固定枠部135と、この固定枠部135の径方向内方側に形成された径方向溝形成円板部136と、を有している。そして、固定部材107は、固定枠部135の四隅にボルト穴137が形成され、この四箇所のボルト穴137に固定用ボルト(図示せず)が挿入され、図示しない被固定部材(例えば、機械のフレーム、又はロボットのアーム)に固定用ボルトで固定されるようになっている。この固定部材107は、揺動体収容穴134の中心134aが入力軸102の回転中心102aと同心となるように被固定部材に固定される。そして、固定部材107の揺動体収容穴134には、揺動体105が揺動できるように収容される。また、この固定部材107は、揺動体収容穴134の内周面134bから径方向に沿って延びる径方向溝138が周方向に沿って等間隔で複数(波形溝140の波数をNとすると、(N+1)/3箇所)形成されている。この径方向溝138は、径方向内方端がボール106の出入りを可能にする開口端であり、溝幅がボール106の直径よりも僅かに大きく形成され、溝長さ(径方向長さ)が揺動体105の揺動量(偏心円板カム104の偏心量e)を考慮した長さに形成され、揺動体105の外周面105bに支持されたボール106が径方向に沿ってスライド移動させられるようになっている。また、この固定部材107は、径方向溝形成円板部136の板厚がボール106の直径よりも小さく形成されており、径方向溝138に係合されたボール106の中心を径方向溝形成円板部136の板厚方向中心位置に合致させた場合、ボール106が径方向溝形成円板部136の両側に均等に出っ張り、その径方向溝138内のボール106が出力側回転体108に形成された波形溝140に転動可能に係合されるようになっている。このような固定部材107の径方向溝138は、偏心円板カム104が1回転し、揺動体105が1ストローク分だけ揺動させられると、ボール106を揺動体105の揺動量に応じた分だけ径方向に転動させることができる。なお、本実施形態において、固定部材107の径方向溝形成円板部136は、その板厚が揺動体105の板厚と同一寸法になっている。
(Fixing member)
As shown in FIGS. 14 and 18, the fixing member 107 has a substantially quadrangular shape on the front side, and an oscillating body accommodation hole 134 is formed at the center. The fixing member 107 has a fixed frame portion 135 formed along the outer edge, and a radial groove forming disk portion 136 formed on the radially inner side of the fixed frame portion 135. . The fixing member 107 has bolt holes 137 formed at the four corners of the fixing frame portion 135, and fixing bolts (not shown) are inserted into the bolt holes 137 at the four locations. Frame or robot arm) with fixing bolts. The fixing member 107 is fixed to the member to be fixed so that the center 134 a of the swinging body accommodation hole 134 is concentric with the rotation center 102 a of the input shaft 102. Then, the oscillating body 105 is accommodated in the oscillating body accommodation hole 134 of the fixing member 107 so as to be able to oscillate. The fixing member 107 includes a plurality of radial grooves 138 extending in the radial direction from the inner peripheral surface 134b of the oscillator housing hole 134 at equal intervals in the circumferential direction (assuming that the wave number of the corrugated groove 140 is N). (N + 1) / 3 locations). The radial groove 138 is an open end that allows the ball 106 to enter and exit, and has a groove width slightly larger than the diameter of the ball 106 and has a groove length (radial length). Is formed in a length that takes into account the amount of swing of the swing body 105 (the amount of eccentricity e of the eccentric disc cam 104), and the ball 106 supported by the outer peripheral surface 105b of the swing body 105 is slid along the radial direction. It is like that. Further, the fixing member 107 is formed such that the thickness of the radial groove forming disk portion 136 is smaller than the diameter of the ball 106, and the center of the ball 106 engaged with the radial groove 138 is formed in the radial groove. When matched with the central position in the plate thickness direction of the disc portion 136, the balls 106 protrude evenly on both sides of the radial groove forming disc portion 136, and the balls 106 in the radial grooves 138 are directed to the output side rotating body 108. The corrugated groove 140 formed is engaged so as to be able to roll. Such a radial groove 138 of the fixing member 107 is configured such that when the eccentric disk cam 104 rotates once and the rocking body 105 is swung by one stroke, the ball 106 is divided according to the rocking amount of the rocking body 105. Can only roll in the radial direction. In the present embodiment, the radial groove forming disk portion 136 of the fixing member 107 has the same thickness as that of the oscillator 105.
  (第1出力側回転体)
 図14及び図19に示すように、第1出力側回転体108Aは、揺動体105の両側面105c,105dのうちの一方の側面105c、及び固定部材107の径方向溝形成円板部136の両側面136a,136bのうちの一方の側面136aに対向して位置する第1側面部132を有している。また、第1出力側回転体108Aは、入力軸102に取り付けられた第1ベアリング110を収容する軸受穴114が形成され、第1ベアリング110のアウターレースの側面が軸受穴114の端部に形成された内周側突起115に突き当てられるようになっている。この第1出力側回転体108Aの第1側面部132は、第2出力側回転体108Bを連結固定するための回転抑制ボス133が周方向に等間隔で複数(8箇所)形成されている。この回転抑制ボス133は、揺動体105の回転抑制穴131を貫通して第2出力側回転体108Bの第2側面部141に形成された回転抑制ボス収容凹部142に嵌合されるようになっている。そして、この回転抑制ボス133には、第2出力側回転体108Bをボルト143で固定するためのねじ穴(雌ねじ)144が形成されている。また、第1出力側回転体108Aの第1側面部132は、隣り合う回転抑制ボス133,133間に接触逃がし凹所145が形成され、その接触逃がし凹所145内にグリース等の潤滑剤が適宜収容される。また、第1出力側回転体108Aの第1側面部132は、回転抑制ボス133及び接触逃がし凹所145の径方向外方側に波形溝140が形成されている。
(First output side rotating body)
As shown in FIGS. 14 and 19, the first output-side rotating body 108 </ b> A includes one of the side surfaces 105 c of the both side surfaces 105 c and 105 d of the rocking body 105 and the radial groove forming disk portion 136 of the fixing member 107. It has the 1st side surface part 132 located facing one side surface 136a of both side surfaces 136a and 136b. Further, the first output-side rotating body 108 </ b> A is formed with a bearing hole 114 that accommodates the first bearing 110 attached to the input shaft 102, and the side surface of the outer race of the first bearing 110 is formed at the end of the bearing hole 114. The inner peripheral projection 115 is made to abut against the inner peripheral projection 115. In the first side surface portion 132 of the first output side rotator 108A, a plurality (eight places) of rotation suppression bosses 133 for connecting and fixing the second output side rotator 108B are formed at equal intervals in the circumferential direction. The rotation suppression boss 133 is inserted into the rotation suppression boss accommodating recess 142 formed in the second side surface portion 141 of the second output side rotation body 108B through the rotation suppression hole 131 of the rocking body 105. ing. The rotation suppression boss 133 is formed with a screw hole (female screw) 144 for fixing the second output side rotating body 108B with the bolt 143. Further, the first side surface portion 132 of the first output side rotating body 108A has a contact relief recess 145 formed between the adjacent rotation suppression bosses 133 and 133, and a lubricant such as grease is placed in the contact relief recess 145. Accommodated as appropriate. Further, the first side surface portion 132 of the first output side rotating body 108 </ b> A has a corrugated groove 140 formed on the radially outward side of the rotation suppression boss 133 and the contact relief recess 145.
  (第2出力側回転体)
 図14及び図20に示すように、第2出力側回転体108Bは、揺動体105の両側面105c、105dのうちの他方の側面105d、及び固定部材107の径方向溝形成円板部136の両側面136a,136bのうちの他方の側面136bに対向して位置する第2側面部141を有している。この第2出力側回転体108Bの第2側面部141は、第1出力側回転体108Aの回転抑制ボス133に対向する位置に、回転抑制ボス133に嵌合される回転抑制ボス収容凹部142が回転抑制ボス133と同数形成されている。また、第2出力側回転体108Bの第2側面部141は、隣り合う回転抑制ボス収容凹部142,142間に接触逃がし凹所146が形成され、その接触逃がし凹所146内にグリース等の潤滑剤が適宜収容される。また、第2出力側回転体108Bは、キャップ103に取り付けられた第3ベアリング126を収容する軸受穴127が形成され、第3ベアリング126のアウターレースの側面が軸受穴127の端部に形成された内周側突起128に突き当てられるようになっている。また、第2出力側回転体108Bは、第2側面部141側の径方向内方端側に、第2ベアリング116との接触を避ける逃がし穴147が形成されている。また、第2出力側回転体108Bの第2側面部141は、回転抑制ボス収容凹部142及び接触逃がし凹所146の径方向外方側に波形溝140が形成されている。また、第2出力側回転体108Bは、第1出力側回転体108Aの回転抑制ボス133に対向する位置に、第2側面部141の反対側に位置する側面148側に開口するボルトヘッド収容凹所150が形成されると共に、ボルトヘッド収容凹所150と回転抑制ボス収容凹部142とを連通するボルト穴151が形成されている。そして、この第2出力側回転体108Bは、ボルトヘッド収容凹所150及びボルト穴151に挿入されたボルト143のねじ軸部143aが第1出力側回転体108Aの回転抑制ボス133のねじ穴144に螺合され、第1出力側回転体108Aに固定され、第1出力側回転体108Aと一体となって出力側回転体108を構成する。なお、この第2出力側回転体108Bは、第2側面部141の反対側に位置する側面148側で、且つ、ボルトヘッド収容凹所150よりも径方向内方側の位置に周方向に沿って複数のねじ穴152が形成され、第2出力側回転体108Bによって回動させられる図示しない被回転部材が複数のねじ穴152に螺合される図示しない複数のボルトで固定される。
(Second output side rotating body)
As shown in FIGS. 14 and 20, the second output-side rotating body 108 </ b> B includes the other side surface 105 d of the both side surfaces 105 c and 105 d of the rocking body 105 and the radial groove forming disk portion 136 of the fixing member 107. It has the 2nd side part 141 located facing the other side surface 136b of the both side surfaces 136a and 136b. The second side surface portion 141 of the second output side rotator 108B has a rotation suppression boss housing recess 142 fitted to the rotation suppression boss 133 at a position facing the rotation suppression boss 133 of the first output side rotator 108A. The same number of rotation suppression bosses 133 are formed. Further, the second side surface portion 141 of the second output side rotating body 108B has a contact escape recess 146 formed between the adjacent rotation suppression boss accommodating recesses 142, 142, and lubrication such as grease is provided in the contact escape recess 146. Agents are stored as appropriate. Further, the second output-side rotating body 108B is formed with a bearing hole 127 that accommodates the third bearing 126 attached to the cap 103, and the side surface of the outer race of the third bearing 126 is formed at the end of the bearing hole 127. Further, it is abutted against the inner peripheral projection 128. Further, the second output-side rotating body 108B has a relief hole 147 that avoids contact with the second bearing 116 on the radially inner end side on the second side surface portion 141 side. Further, the second side surface portion 141 of the second output side rotating body 108 </ b> B has a corrugated groove 140 formed on the radially outward side of the rotation suppression boss accommodating recess 142 and the contact relief recess 146. Further, the second output-side rotating body 108B is a bolt head receiving recess that opens on the side surface 148 located opposite to the second side surface portion 141 at a position facing the rotation suppression boss 133 of the first output-side rotating body 108A. A bolt hole 151 for communicating the bolt head receiving recess 150 and the rotation restraining boss receiving recess 142 is formed. In the second output-side rotating body 108B, the screw head portion 143a of the bolt 143 inserted into the bolt head receiving recess 150 and the bolt hole 151 has the screw hole 144 of the rotation suppression boss 133 of the first output-side rotating body 108A. And is fixed to the first output-side rotating body 108A, and constitutes the output-side rotating body 108 together with the first output-side rotating body 108A. The second output side rotating body 108B is on the side surface 148 located on the opposite side of the second side surface portion 141 and along the circumferential direction at a position radially inward from the bolt head housing recess 150. A plurality of screw holes 152 are formed, and a rotated member (not shown) that is rotated by the second output side rotating body 108B is fixed by a plurality of bolts (not shown) that are screwed into the plurality of screw holes 152.
  (波形溝)
 図14、図19、図20、及び図21に示すように、波形溝140は、第1出力側回転体108Aの第1側面部132と第2出力側回転体108Bの第2側面部141に跨って形成されており、偶数個(N=50)の波が入力軸102の回転中心102aの回りに連続して環状に形成され、固定部材の(N+1)/3箇所(17箇所)の径方向溝138に収容されたボール106と転動可能に係合するようになっている。この波形溝140は、波の径方向内方端に位置する部分を谷底140aとし、波の径方向外方端に位置する部分を山頂140bとすると、谷底140aが第1出力側回転体108Aの第1側面部132と第2出力側回転体108Bの第2側面部141とに跨って形成され、奇数番の波の山頂140bの溝深さが第1側面部132と第2側面部141のいずれか一方側よりも第1側面部132と第2側面部141のいずれか他方側に深く形成され、偶数番の波の山頂140bの溝深さが第1側面部132と第2側面部141のいずれか他方側よりも第1側面部132と第2側面部141のいずれか一方側に深く形成され、谷底140aから山頂140bに向かって溝深さが漸増するように形成されている。即ち、この波形溝140は、鋸の「あさり(歯振)」と類似した形状になっている。このような第1出力側回転体108Aの波形溝140と第2出力側回転体108Bの波形溝140、及び固定部材107の径方向溝138に係合するボール106は、径方向溝138内を径方向に沿って移動する際に、3次元的に形成された波形溝140によって入力軸102の回転中心102aに沿った方向にも移動する。なお、波形溝140は、上述のとおり、第1出力側回転体108Aの第1側面部132と第2出力側回転体108Bの第2側面部141に跨って形成されているが、第1出力側回転体108Aと第2出力側回転体108Bとを固定する際に、第1出力側回転体108Aの位置決め溝153と第2出力側回転体108Bの位置決め溝154とを位置合わせすることにより(図14、図19、及び図20参照)、第1出力側回転体108Aと第2出力側回転体108Bとが高精度に位置決めされた状態で固定されるため、第1出力側回転体108A側の波形溝140と第2出力側回転体108B側の波形溝140とでずれを生じることがなく、高精度に形作られる。
(Wave groove)
As shown in FIGS. 14, 19, 20, and 21, the corrugated groove 140 is formed on the first side surface portion 132 of the first output side rotating body 108A and the second side surface portion 141 of the second output side rotating body 108B. An even number (N = 50) of waves are formed in a loop continuously around the rotation center 102a of the input shaft 102, and the diameter of the fixed member is (N + 1) / 3 locations (17 locations). The ball 106 accommodated in the directional groove 138 is slidably engaged. The corrugated groove 140 has a valley bottom 140a at a portion positioned at the radially inner end of the wave and a peak 140b at a portion positioned at the radially outer end of the wave. The groove is formed between the first side surface portion 132 and the second side surface portion 141 of the second output side rotating body 108B. The first side surface portion 132 and the second side surface portion 141 are formed deeper on either side of the first side surface portion 132 and the second side surface portion 141 than the first side surface portion. These are formed deeper on either side of the first side surface portion 132 and the second side surface portion 141 than on the other side, and are formed so that the groove depth gradually increases from the valley bottom 140a toward the mountain top 140b. That is, the corrugated groove 140 has a shape similar to that of a saw “crest (tooth vibration)”. The ball 106 engaged with the corrugated groove 140 of the first output-side rotating body 108A, the corrugated groove 140 of the second output-side rotating body 108B, and the radial groove 138 of the fixing member 107 passes through the radial groove 138. When moving along the radial direction, the waveform groove 140 formed three-dimensionally also moves in the direction along the rotation center 102 a of the input shaft 102. As described above, the corrugated groove 140 is formed across the first side surface portion 132 of the first output side rotating body 108A and the second side surface portion 141 of the second output side rotating body 108B. When the side rotating body 108A and the second output side rotating body 108B are fixed, the positioning groove 153 of the first output side rotating body 108A and the positioning groove 154 of the second output side rotating body 108B are aligned ( 14, 19, and 20), the first output-side rotator 108 </ b> A and the second output-side rotator 108 </ b> B are fixed in a state of being positioned with high accuracy, and therefore the first output-side rotator 108 </ b> A side The corrugated groove 140 and the corrugated groove 140 on the second output-side rotating body 108B side are not displaced, and are formed with high accuracy.
 図22は、ボール106が波形溝140内を転動させられた場合のボール106の転動軌跡155を示す図である。なお、図22(a)は、ボール106の転動軌跡155の平面図(入力軸102の回転中心102aに直交する仮想平面に投影した転動軌跡155)である。また、図22(b)は、図22(a)のA15-A15線に沿って切断して示す仮想断面上に、隣り合う転動軌跡の波W1,W2を投影して示す図である。そして、この図22に示したボール106の転動軌跡155は、波形溝140の溝形状を示している。また、図22において、Rは径方向を表し、Zは入力軸102の回転中心102aに沿った方向を示している。 FIG. 22 is a diagram showing a rolling locus 155 of the ball 106 when the ball 106 is rolled in the corrugated groove 140. 22A is a plan view of the rolling trajectory 155 of the ball 106 (the rolling trajectory 155 projected onto a virtual plane orthogonal to the rotation center 102a of the input shaft 102). Further, FIG. 22B is a diagram in which waves W1 and W2 of adjacent rolling trajectories are projected onto a virtual cross section cut along the line A15-A15 in FIG. 22A. The rolling trajectory 155 of the ball 106 shown in FIG. 22 indicates the groove shape of the corrugated groove 140. In FIG. 22, R represents the radial direction, and Z represents the direction along the rotation center 102 a of the input shaft 102.
 この図22に示すように、ボール106の転動軌跡155において、隣り合う転動軌跡155の波W1,W2のうちの第1の波W1は、波形溝140の谷底140aから山頂140bに向かうにしたがって-Z方向に一定の割合で傾斜している。また、転動軌跡155の第2の波W2は、波形溝140の谷底140aから山頂140bに向かうにしたがって+Z方向に一定の割合で傾斜している。そして、第1の波W1の-Z方向への移動量は、第2の波W2の+Z方向への移動量と同一になっている。なお、例えば、転動軌跡155の第1の波W1を形作る波形溝140は、山頂140bに対応する部分が第1出力側回転体108Aの第1側面部132側で深くなるように形成されている。この第1の波W1に対し、転動軌跡155の第2の波W2を形作る波形溝140は、山頂140bに対応する部分が第2出力側回転体108Bの第2側面部141側で深くなるように形成されている。 As shown in FIG. 22, in the rolling trajectory 155 of the ball 106, the first wave W1 of the waves W1 and W2 of the adjacent rolling trajectory 155 is directed from the valley bottom 140a of the corrugated groove 140 toward the mountain top 140b. Therefore, it is inclined at a constant rate in the −Z direction. Further, the second wave W2 of the rolling locus 155 is inclined at a constant rate in the + Z direction as it goes from the valley bottom 140a of the wave groove 140 to the mountain top 140b. The amount of movement of the first wave W1 in the −Z direction is the same as the amount of movement of the second wave W2 in the + Z direction. For example, the corrugated groove 140 that forms the first wave W1 of the rolling locus 155 is formed so that a portion corresponding to the peak 140b is deeper on the first side surface portion 132 side of the first output-side rotating body 108A. Yes. The corrugated groove 140 forming the second wave W2 of the rolling locus 155 with respect to the first wave W1 has a deeper portion corresponding to the peak 140b on the second side surface portion 141 side of the second output side rotating body 108B. It is formed as follows.
  (本実施形態に係るボール減速機の作動)
 以上のような本実施形態に係るボール減速機101は、入力軸102と偏心円板カム104とが一体になって1回転すると、揺動体105が偏心円板カム104の偏心量(e)の2倍の寸法(2e)だけ揺動させられ、揺動体105の外周面105bで支持されたボール106が固定部材107の径方向溝138内を1往復する。この際、出力側回転体108(第1出力側回転体108A及び第2出力側回転体108B)は、ボール106が固定部材107の径方向溝138内を第1側面部132及び第2側面部141の径方向に沿って移動するだけであるため、固定部材107に対して波形溝140の1波分だけ回動させられる。したがって、本実施形態に係るボール減速機101は、波形溝140の波数がNであり、径方向溝138の溝数が(N+1)/3であるため、入力軸102の1回転に対し、出力側回転体108が入力軸102と逆方向へ1/N回転することになる。なお、本実施形態に係るボール減速機101は、図18及び図21に示すように、出力側回転体108の波形溝140の波数(N)が50であり、固定部材107の径方向溝138の溝数(N+1)/3が17である場合を例示している。したがって、本実施形態に係るボール減速機101は、入力軸102の回転を1/50(1/N)に減速して出力側回転体108に伝達する。
(Operation of the ball speed reducer according to this embodiment)
In the ball speed reducer 101 according to the present embodiment as described above, when the input shaft 102 and the eccentric disk cam 104 are integrated and rotated once, the swinging body 105 has an eccentric amount (e) of the eccentric disk cam 104. The ball 106 oscillated by twice the dimension (2e) and supported by the outer peripheral surface 105b of the oscillating body 105 reciprocates once in the radial groove 138 of the fixing member 107. At this time, in the output side rotating body 108 (the first output side rotating body 108A and the second output side rotating body 108B), the ball 106 passes through the radial groove 138 of the fixing member 107 in the first side surface portion 132 and the second side surface portion. Since it only moves along the radial direction of 141, it is rotated by one wave of the corrugated groove 140 with respect to the fixing member 107. Therefore, in the ball speed reducer 101 according to the present embodiment, the wave number of the corrugated groove 140 is N, and the number of the radial grooves 138 is (N + 1) / 3. The side rotating body 108 rotates 1 / N in the opposite direction to the input shaft 102. In the ball speed reducer 101 according to the present embodiment, as shown in FIGS. 18 and 21, the wave number (N) of the corrugated groove 140 of the output side rotating body 108 is 50, and the radial groove 138 of the fixing member 107. In this example, the number of grooves (N + 1) / 3 is 17. Therefore, the ball speed reducer 101 according to the present embodiment reduces the rotation of the input shaft 102 to 1/50 (1 / N) and transmits it to the output side rotating body 108.
  (本実施形態に係るボール減速機の第1の効果)
 以上のように構成された本実施形態に係るボール減速機101は、揺動体105及び固定部材107に対向する第1出力側回転体108Aの第1側面部132及び第2出力側回転体108Bの第2側面部141の2箇所のみに波形溝140を形成するようになっているため、波形溝211,211,212,212を4箇所にそれぞれ形成する従来例のボール減速機200と比較し(図23参照)、加工工数の削減が可能になる。
(First effect of the ball speed reducer according to the present embodiment)
The ball speed reducer 101 according to the present embodiment configured as described above includes the first side surface portion 132 of the first output-side rotating body 108A and the second output-side rotating body 108B facing the swinging body 105 and the fixing member 107. Since the corrugated groove 140 is formed only in two places on the second side surface portion 141, the corrugated groove 211, 2111, 212, 212 is formed in four places, compared with the ball reducer 200 of the conventional example ( The processing man-hour can be reduced.
  (本実施形態に係るボール減速機の第2の効果)
 また、本実施形態に係るボール減速機101は、径方向溝138と波形溝140との交差する箇所にボール106が位置するようになっているため、ボール208が偏心回転板204の第1波形溝211の溝壁と固定部材207の第2波形溝212の溝壁に同時に接触するように構成された従来のボール減速機200と比較し(図23参照)、径方向溝138及び波形溝140の加工が容易になると共に、揺動体105、固定部材107、及び出力側回転体108(第1出力側回転体108A及び第2出力側回転体108B)等の組立作業が容易になる。
(Second effect of the ball speed reducer according to the present embodiment)
Further, in the ball speed reducer 101 according to the present embodiment, the ball 106 is positioned at a location where the radial groove 138 and the corrugated groove 140 intersect, so that the ball 208 is the first corrugated of the eccentric rotating plate 204. Compared to the conventional ball speed reducer 200 configured to simultaneously contact the groove wall of the groove 211 and the groove wall of the second corrugated groove 212 of the fixing member 207 (see FIG. 23), the radial groove 138 and the corrugated groove 140. And the assembling work of the rocking body 105, the fixing member 107, the output side rotating body 108 (the first output side rotating body 108A and the second output side rotating body 108B) and the like become easy.
  (本実施形態に係るボール減速機の第3の効果)
 また、本実施形態に係るボール減速機1は、ボール106が揺動体105の曲面部129に線接触した状態で転動するため、ボール106が平坦な外周面105bに点接触した状態で転動する場合と比較し、ボール106との接触部の変形(塑性変形、摩耗)が生じ難く、耐久性が向上する。
(Third effect of the ball speed reducer according to the present embodiment)
In addition, since the ball speed reducer 1 according to the present embodiment rolls in a state where the ball 106 is in line contact with the curved surface portion 129 of the rocking body 105, the ball 106 rolls in a state where the ball 106 is in point contact with the flat outer peripheral surface 105b. Compared with the case where it does, a deformation | transformation (plastic deformation, abrasion) of a contact part with the ball | bowl 106 does not produce easily, and durability improves.
 なお、本実施形態のボール減速機101は、第1出力側回転体108Aの第1側面部132に回転抑制ボス133を形成し、第2出力側回転体108Bの第2側面部141に回転抑制ボス収容凹部142を形成するようになっているが、第1出力側回転体108Aの第1側面部132に回転抑制ボス収容凹部142を形成し、第2出力側回転体108Bの第2側面部141に回転抑制ボス133を形成するようにしてもよい。 In the ball speed reducer 101 of the present embodiment, a rotation suppression boss 133 is formed on the first side surface portion 132 of the first output side rotating body 108A, and rotation suppression is performed on the second side surface portion 141 of the second output side rotating body 108B. The boss housing recess 142 is formed, but the rotation suppression boss housing recess 142 is formed in the first side surface 132 of the first output side rotating body 108A, and the second side surface portion of the second output side rotating body 108B. 141 may be formed with a rotation suppression boss 133.
 [第1乃至第3実施形態の変形例]
 本発明の第1及び第2実施形態に係るボール減速機1は、第1乃至第4ベアリング12,16,17,45として、ボールベアリング、ローラベアリング、ブッシュ等が使用される。また、本発明の第3実施形態に係るボール減速機101は、第1乃至第3ベアリング110,116,126として、ボールベアリング、ローラベアリング、ブッシュ等が使用される。
[Modifications of First to Third Embodiments]
In the ball speed reducer 1 according to the first and second embodiments of the present invention, ball bearings, roller bearings, bushes or the like are used as the first to fourth bearings 12, 16, 17, 45. In the ball speed reducer 101 according to the third embodiment of the present invention, a ball bearing, a roller bearing, a bush, or the like is used as the first to third bearings 110, 116, and 126.
 また、本発明の第1及び第2実施形態に係るボール減速機1は、全体(入力軸2、揺動体4、外側揺動リング6、固定部材7、出力側回転体8、及びカバー10)を金属で形成する場合、全体の一部を合成樹脂材料で形成する場合、又は第1乃至第4ベアリング12,16,17,45及びボール5以外の全体を合成樹脂材料で形成する場合が考えられる。また、本発明の第3実施形態に係るボール減速機101は、全体(入力軸102、キャップ103、揺動体105、固定部材107、及び出力側回転体108)を金属で形成する場合、全体の一部を合成樹脂材料で形成する場合、又は第1乃至第3ベアリング110,116,126及びボール106以外の全体を合成樹脂材料で形成する場合が考えられる。 Further, the ball speed reducer 1 according to the first and second embodiments of the present invention is the whole (the input shaft 2, the oscillating body 4, the outer oscillating ring 6, the fixing member 7, the output side rotating body 8, and the cover 10). Is formed of a metal, a part of the whole is formed of a synthetic resin material, or the whole other than the first to fourth bearings 12, 16, 17, 45 and the ball 5 is formed of a synthetic resin material. It is done. In addition, when the ball reducer 101 according to the third embodiment of the present invention is formed entirely of metal (the input shaft 102, the cap 103, the rocking body 105, the fixing member 107, and the output side rotating body 108), A case where a part is formed of a synthetic resin material, or a case where the entirety other than the first to third bearings 110, 116, 126 and the ball 106 is formed of a synthetic resin material can be considered.
 1,101……ボール減速機、2,102……入力軸(入力側回転体)、2a,102a……回転中心、3,104……偏心円板カム、4,105……揺動体、4a,105c,136a……一方の側面、4b,105d,136b……他方の側面、5,106……ボール、7,107……固定部材、8,108……出力側回転体、20,132……第1側面部、21,141……第2側面部、23,60,133……回転抑制ボス、24,131……回転抑制穴、25,105b……外周面、26,57,61,129……曲面部、32,138……径方向溝、33,140……波形溝、43a……回転中心、108A……第1出力側回転体、108B……第2出力側回転体 DESCRIPTION OF SYMBOLS 1,101 ... Ball speed reducer, 2,102 ... Input shaft (input side rotary body), 2a, 102a ... Center of rotation, 3,104 ... Eccentric disk cam, 4,105 ... Oscillator, 4a 105c, 136a... One side surface, 4b, 105d, 136b... The other side surface, 5,106... Ball, 7, 107. ... 1st side surface part, 21, 141 ... 2nd side surface part, 23, 60, 133 ... rotation suppression boss, 24, 131 ... rotation suppression hole, 25, 105b ... outer peripheral surface, 26, 57, 61, 129 ... Curved surface portion, 32, 138 ... Radial groove, 33, 140 ... Corrugated groove, 43a ... Center of rotation, 108A ... First output side rotor, 108B ... Second output side rotor

Claims (2)

  1.  入力側回転体の回転を出力側回転体に減速して伝達するボール減速機において、
     前記入力側回転体と一体に回動する偏心円板カムと、
     前記偏心円板カムの外周側に相対回動可能に嵌合され、前記偏心円板カムによって揺動させられる揺動体と、
     前記揺動体の外周面に沿って複数配置されたボールと、
     前記揺動体の両側面のうちの一方に対向して位置する第1側面部を有し、被固定部材に固定される固定部材と、を備え、
     前記出力側回転体は、前記揺動体の両側面のうちの他方に対向して位置する第2側面部を有し、回転中心としての軸心が前記入力側回転体の回転中心と同軸上に位置するように配置され、
     前記第1側面部と前記第2側面部のいずれか一方は、前記入力側回転体の回転中心に直交する仮想平面において、前記回転中心から放射状に延びる方向を径方向とすると、前記ボールを前記第1側面部と前記第2側面部のいずれか一方の前記径方向に沿って転動可能に案内する径方向溝が前記入力側回転体の回転中心の回りに複数形成され、
     前記第1側面部と前記第2側面部のいずれか他方は、前記仮想平面において、前記回転中心を中心とする仮想円の外縁に沿った方向を周方向とすると、前記ボールを前記第1側面部と前記第2側面部のいずれか他方の前記周方向に沿って波形状に案内する環状の波形溝が形成され、
     前記ボールは、前記径方向溝及び前記波形溝に転動可能に係合され、前記揺動体が前記偏心円板カムによって揺動させられると、前記径方向溝及び前記波形溝内を転動させられ、
     前記揺動体は、前記第1側面部と前記第2側面部のいずれか一方から突出する回転抑制ボスに係合する回転抑制穴が形成され、
     前記揺動体の前記回転抑制穴は、前記入力側回転体の回転中心に対する前記偏心円板カムの偏心量の2倍の隙間が前記回転抑制ボスとの間に形成され、
     前記揺動体の外周面には、前記ボールと線接触する曲面部が形成された、
     ことを特徴とするボール減速機。
    In the ball reducer that decelerates and transmits the rotation of the input side rotator to the output side rotator,
    An eccentric disc cam that rotates integrally with the input side rotating body;
    An oscillating body that is fitted to the outer peripheral side of the eccentric disc cam so as to be relatively rotatable, and is oscillated by the eccentric disc cam;
    A plurality of balls arranged along the outer peripheral surface of the rocking body;
    A first member having a first side surface located opposite to one of the two side surfaces of the oscillator, and a fixing member fixed to the member to be fixed,
    The output-side rotator has a second side surface portion facing the other of the two side surfaces of the oscillating body, and an axis as a rotation center is coaxial with the rotation center of the input-side rotator. Arranged to be located,
    When one of the first side surface portion and the second side surface portion is a virtual plane orthogonal to the rotation center of the input-side rotator and the direction radially extending from the rotation center is a radial direction, the ball is A plurality of radial grooves that are rotatably guided along the radial direction of either the first side surface portion or the second side surface portion are formed around the rotation center of the input side rotating body,
    When the other side of the first side surface portion and the second side surface portion has a circumferential direction in the virtual plane along the outer edge of a virtual circle centered on the rotation center, the ball is moved to the first side surface. An annular corrugated groove is formed that guides in a wave shape along the circumferential direction of the other of the portion and the second side surface portion,
    The ball is slidably engaged with the radial groove and the corrugated groove, and when the swinging body is swung by the eccentric disk cam, the ball rolls within the radial groove and the corrugated groove. And
    The rocking body has a rotation suppression hole that engages with a rotation suppression boss protruding from one of the first side surface portion and the second side surface portion.
    The rotation suppression hole of the rocking body is formed between the rotation suppression boss and a gap that is twice as much as the eccentric amount of the eccentric disk cam with respect to the rotation center of the input side rotation body.
    A curved surface portion in line contact with the ball is formed on the outer peripheral surface of the rocking body.
    A ball reducer characterized by that.
  2.  入力側回転体の回転を出力側回転体に減速して伝達するボール減速機において、
     前記入力側回転体と一体に回動する偏心円板カムと、
     前記偏心円板カムの外周側に相対回動可能に嵌合され、前記偏心円板カムによって揺動させられる揺動体と、
     前記揺動体の外周面に沿って複数配置されたボールと、
     前記揺動体を揺動できるように径方向内方側に収容すると共に、被固定部材に固定される固定部材と、
     前記揺動体及び前記固定部材の一方の側面に対向するように配置され、前記入力側回転体に相対回動可能に支持された第1出力側回転体と、
     前記揺動体及び前記固定部材の他方の側面に対向するように配置され、前記第1出力側回転体に一体回動できるように固定されると共に、前記入力側回転体に相対回動可能に支持され、前記第1出力側回転体と共に前記出力側回転体を構成する第2出力側回転体と、を備え、
     前記固定部材は、前記入力側回転体の回転中心に直交する仮想平面において、前記回転中心から放射状に延びる方向を径方向とすると、前記ボールを前記径方向にスライド移動可能に案内する径方向溝が前記ボールの数と同数形成されると共に、前記径方向溝の径方向内方端が前記ボールの出入りを可能にする開口端になっており、
     前記第1出力側回転体は、前記固定部材の一方の側面に対向する第1側面部を有し、
     前記第2出力側回転体は、前記固定部材の他方の側面に対向する第2側面部を有し、
     前記第1側面部及び前記第2側面部は、前記仮想平面において、前記回転中心を中心とする仮想円の外縁に沿った方向を周方向とすると、前記ボールを前記周方向に沿って波形状に案内する環状の波形溝が形成され、
     前記揺動体は、前記第1側面部と前記第2側面部のいずれか一方から突出する回転抑制ボスに係合する回転抑制穴が形成され、
     前記揺動体の前記回転抑制穴は、前記入力側回転体の回転中心に対する前記偏心円板カムの偏心量の2倍の隙間が前記回転抑制ボスとの間に形成され、
     前記揺動体の外周面には、前記ボールと線接触する曲面部が形成された、
     ことを特徴とするボール減速機。
    In the ball reducer that decelerates and transmits the rotation of the input side rotator to the output side rotator,
    An eccentric disc cam that rotates integrally with the input side rotating body;
    An oscillating body that is fitted to the outer peripheral side of the eccentric disc cam so as to be relatively rotatable, and is oscillated by the eccentric disc cam;
    A plurality of balls arranged along the outer peripheral surface of the rocking body;
    A fixed member that is housed on the radially inner side so that the rocking body can be swung, and is fixed to a fixed member;
    A first output-side rotating body that is disposed so as to face one side surface of the rocking body and the fixing member, and is supported by the input-side rotating body so as to be relatively rotatable;
    The oscillating body and the fixing member are disposed so as to face the other side surface, and are fixed to the first output-side rotator so as to be integrally rotatable, and supported by the input-side rotator so as to be relatively rotatable. And a second output-side rotator that constitutes the output-side rotator together with the first output-side rotator,
    The fixing member has a radial groove that guides the ball slidably in the radial direction when a radial direction extending from the rotation center is a radial direction in a virtual plane orthogonal to the rotation center of the input side rotating body. Are formed in the same number as the number of the balls, and the radially inner end of the radial groove is an open end that allows the ball to enter and exit,
    The first output-side rotating body has a first side surface portion that faces one side surface of the fixing member,
    The second output-side rotating body has a second side surface portion that faces the other side surface of the fixing member,
    The first side surface portion and the second side surface portion have a wave shape along the circumferential direction when a direction along an outer edge of a virtual circle centered on the rotation center is a circumferential direction in the virtual plane. An annular corrugated groove is formed to guide the
    The rocking body has a rotation suppression hole that engages with a rotation suppression boss protruding from one of the first side surface portion and the second side surface portion.
    The rotation suppression hole of the rocking body is formed between the rotation suppression boss and a gap that is twice as much as the eccentric amount of the eccentric disk cam with respect to the rotation center of the input side rotation body.
    A curved surface portion in line contact with the ball is formed on the outer peripheral surface of the rocking body.
    A ball reducer characterized by that.
PCT/JP2018/016820 2017-05-11 2018-04-25 Ball reduction gear WO2018207625A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017094866A JP6744253B2 (en) 2017-05-11 2017-05-11 Ball reducer
JP2017-094866 2017-05-11

Publications (1)

Publication Number Publication Date
WO2018207625A1 true WO2018207625A1 (en) 2018-11-15

Family

ID=64105221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016820 WO2018207625A1 (en) 2017-05-11 2018-04-25 Ball reduction gear

Country Status (2)

Country Link
JP (1) JP6744253B2 (en)
WO (1) WO2018207625A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071523A1 (en) 2018-10-04 2020-04-09 日本製鉄株式会社 Alloyed hot-dipped galvanized steel sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61112854A (en) * 1984-11-05 1986-05-30 Shinko Seisakusho:Kk Speed reduction device with end face can
JP2000199559A (en) * 1999-01-07 2000-07-18 Hitachi Metals Ltd Differential device and manufacture thereof
JP2016098943A (en) * 2014-11-25 2016-05-30 武蔵精密工業株式会社 Power transmission device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61112854A (en) * 1984-11-05 1986-05-30 Shinko Seisakusho:Kk Speed reduction device with end face can
JP2000199559A (en) * 1999-01-07 2000-07-18 Hitachi Metals Ltd Differential device and manufacture thereof
JP2016098943A (en) * 2014-11-25 2016-05-30 武蔵精密工業株式会社 Power transmission device

Also Published As

Publication number Publication date
JP2018189222A (en) 2018-11-29
JP6744253B2 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
EP3211265B1 (en) Torsional vibration reducing device
US8460146B2 (en) Roller type transmission device
JP6613437B2 (en) Decelerator
JP7294297B2 (en) Pendulum type torsional vibration reducing device and manufacturing method thereof
WO2018207625A1 (en) Ball reduction gear
JP2017214947A (en) Gear reducer
EP3270003A1 (en) Gear device
US11168764B2 (en) Planetary gearbox and associated robot joint and robot
JP4954209B2 (en) Gear device
WO2018142909A1 (en) Ball reduction gear
WO2018211997A1 (en) Wave gear device
JP6767244B2 (en) Ball reducer
JP2000355278A (en) Ball screw for steering and power steering device using the same
JP2023140752A (en) Rotation mechanism and robot
JP2018159466A (en) Ball speed reducer
WO2018211998A1 (en) Wave gear device
US6652406B2 (en) Transmission
WO2020017312A1 (en) Reduction gear
KR100800956B1 (en) A gear and thereof use a planertary gear device
JP2018115715A (en) Ball speed reducer
JP2018119649A (en) Speed change gear
JP2019194486A (en) Speed reducer
JP2013002504A (en) Shaft coupling
JP2007078053A (en) Differential gear and final reduction gear
WO2019102777A1 (en) Strain wave gearing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18798728

Country of ref document: EP

Kind code of ref document: A1