WO2018142909A1 - Ball reduction gear - Google Patents

Ball reduction gear Download PDF

Info

Publication number
WO2018142909A1
WO2018142909A1 PCT/JP2018/000888 JP2018000888W WO2018142909A1 WO 2018142909 A1 WO2018142909 A1 WO 2018142909A1 JP 2018000888 W JP2018000888 W JP 2018000888W WO 2018142909 A1 WO2018142909 A1 WO 2018142909A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
rotating body
ball
groove
surface portion
Prior art date
Application number
PCT/JP2018/000888
Other languages
French (fr)
Japanese (ja)
Inventor
靖 梶原
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017159318A external-priority patent/JP2018159466A/en
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Priority to CN201880009572.2A priority Critical patent/CN110249157A/en
Priority to US16/482,472 priority patent/US20200011405A1/en
Publication of WO2018142909A1 publication Critical patent/WO2018142909A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/04Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying rotary motion
    • F16H25/06Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying rotary motion with intermediate members guided along tracks on both rotary members

Definitions

  • This invention relates to a ball speed reducer used for decelerating and transmitting rotation.
  • the ball speed reducer is smaller and has a larger speed reduction ratio than the gear speed reduction device, so that it can be used as a power transmission unit for various machines (for example, industrial robots, steering angle variable type steering devices, etc.). in use.
  • FIG. 35 is a diagram showing such a conventional ball speed reducer 100.
  • FIG. 35A is a longitudinal sectional view of a conventional ball reducer 100
  • FIG. 35B is a ball reducer 100 cut along line A18-A18 in FIG. 35A.
  • FIG. 35A is a longitudinal sectional view of a conventional ball reducer 100
  • FIG. 35B is a ball reducer 100 cut along line A18-A18 in FIG. 35A.
  • an eccentric rotating plate 104 is attached to the outer peripheral side of an eccentric cam 102 formed on the input shaft 101 via a bearing 103, and the eccentric rotating plate 104 is attached to the eccentric cam 102. Is driven eccentrically.
  • output side rotating bodies 105 connected to an output shaft are arranged on both sides on the radially inner side of the eccentric rotating plate 104, and the input shaft 101 is an output side rotating body. It is supported on the inner peripheral side of 105 through a bearing 106 so as to be relatively rotatable.
  • fixing members 107 fixed to a part of an industrial robot or the like are arranged on both sides on the radially outer side of the eccentric rotating plate 104 via balls 108, respectively.
  • a rotating body 105 is rotatably supported on the inner peripheral side of the fixed member 107 via a bearing 110.
  • the ball 108 sandwiched between the eccentric rotating plate 104 and the fixing member 107 is formed by a first corrugated groove (first cycloid groove formed by an outer cycloid curve) 111 formed on the side surface of the eccentric rotating plate 104 and the fixing member 107.
  • the eccentric rotating plate 104 is engaged with a second corrugated groove (second cycloid groove formed by an inner cycloid curve) 112 formed on the inner side surface (side surface facing the eccentric rotating plate 104) so as to roll. And the fixing member 107 are connected.
  • the wave number of the second corrugated groove 112 is formed so as to be two more than the wave number of the first corrugated groove 111.
  • the output-side rotator 105 is connected to the eccentric rotating plate 104 via the eccentric absorbing mechanism 113.
  • the eccentric absorbing mechanism 113 allows the eccentric rotating plate 104 to move eccentrically with respect to the output side rotating body 105 (absorbs the eccentricity of the eccentric rotating plate 104). The rotation is transmitted to the output side rotating body 105.
  • the eccentric absorbing mechanism 113 includes a plurality of balls 114 interposed between the eccentric rotating plate 104 and the output-side rotating body 105, and a driving annular groove 115 of the eccentric rotating plate 104 that accommodates the balls 114 in a rollable manner. And a driven annular groove 116 of the output side rotator 105.
  • the shape and size of the driving annular groove 115 and the driven annular groove 116 are determined in consideration of the amount of eccentricity of the eccentric cam 102, and the ball 114 when the eccentric rotating plate 104 rotates eccentrically with respect to the rotation center of the input shaft 101.
  • the output-side rotator 105 can rotate integrally with the eccentric rotating plate 104 via a ball 114 (see Patent Document 1).
  • the input shaft When 101 is rotationally driven by an electric motor (not shown) or the like, the eccentric rotating plate 104 is eccentrically driven by the eccentric cam 102 of the input shaft 101, and the output side rotating body 105 is integrated with the eccentric rotating plate 104 via the eccentric absorbing mechanism 113.
  • the output-side rotator 105 rotates -2 / (N-2) with respect to one rotation of the input shaft 101 (2 / (N- in the direction opposite to the rotation direction of the input shaft 101). 2) Rotate).
  • the reduction ratio is 2 / (N-2).
  • first corrugated grooves 111 are formed on both side surfaces of the eccentric rotating plate 104, and on the inner side surfaces of the fixing members 107 respectively disposed on both sides of the eccentric rotating plate 104. Since the second corrugated groove 112 is formed, the corrugated grooves 111, 111, 112, 112 must be formed with high accuracy on a total of four side surfaces (four locations), and the processing man-hours increase. It was.
  • the conventional ball speed reducer 100 shown in FIG. 35 rotates the eccentric rotating plate 104 and the output side rotating body 105 integrally, the output side rotating body 105 is eccentrically rotated via the eccentric absorbing mechanism 113.
  • the structure is complicated and the processing man-hours increase.
  • an object of the present invention is to provide a ball speed reducer with a simple structure and a small number of processing steps.
  • the present invention relates to a ball speed reducer 1 that decelerates and transmits the rotation of an input side rotating body (2, 3) to an output side rotating body 8.
  • a ball speed reducer 1 according to the present invention is fitted to an eccentric disk cam 4 that rotates integrally with the input side rotating body (2, 3), and an outer peripheral side of the eccentric disk cam 4 so as to be relatively rotatable.
  • the rocking body 5 swung by the eccentric disc cam 4, a plurality of balls 6 arranged along the outer peripheral surface 5 b of the rocking body 5, and the radially inward so that the rocking body 5 can be swung.
  • the fixed member 7 that is housed on the side and fixed to the fixed member, and is disposed so as to face one side surface of the rocking body 5 and the fixed member 7, and is disposed on the input side rotating body (2, 3).
  • the first output-side rotator 8A supported so as to be relatively rotatable, and disposed so as to oppose the other side surfaces of the swinging body 5 and the fixing member 7, and rotate integrally with the first output-side rotator 8A. It is fixed so as to be able to be supported and is supported by the input side rotating body (2, 3) so as to be relatively rotatable.
  • the outer peripheral surface 5 b of the rocking body 5 is a cylindrical surface concentric with the center 4 a of the eccentric disc cam 4.
  • the fixing member 7 is configured such that the radial direction of the radial direction from the rotation center 2a in the virtual plane orthogonal to the rotation center 2a of the input-side rotator (2, 3)
  • the number of radial grooves 38 that are slidably guided in the direction is formed in the same number as the number of the balls 6, and the radially inner end of the radial groove 38 is an open end that allows the balls 6 to enter and exit.
  • the first output side rotating body 8 ⁇ / b> A has a first side surface portion 32 that faces one side surface of the fixing member 7.
  • the second output side rotating body 8B has a second side surface portion 41 facing the other side surface of the fixing member 7.
  • the first side surface portion 32 and the second side surface portion 41 may be configured so that the ball 6 is rotated around the virtual plane when the direction along the outer edge of the virtual circle centered on the rotation center 2a is the circumferential direction.
  • Annular corrugated grooves 40, 56, and 60 are formed to guide in a wave shape along the direction.
  • the corrugated groove is formed only at two locations of the first side surface portion of the first output side rotating body and the second side surface portion of the second output side rotating body facing the rocking body and the fixing member. Therefore, the number of processing steps can be reduced as compared with the conventional example in which the corrugated grooves are formed on the four side surfaces.
  • the swinging body can swing independently with respect to the output side rotating body (first output side rotating body, second output side rotating body) and the fixed member. Therefore, a complicated mechanism for integrally rotating the output side rotating body and the swinging body is not required, the structure is simplified, and the number of processing steps can be reduced.
  • FIG. 1 is a longitudinal sectional view of a ball speed reducer according to a first embodiment of the present invention. It is a figure which shows the input shaft (input side rotary body) of the ball reducer which concerns on 1st Embodiment of this invention, Fig.2 (a) is a front view (figure which shows a front end surface) of an input shaft, FIG.2 (b) ) Is a side view of the input shaft, and FIG. 2C is a view showing a rear end surface of the input shaft.
  • FIG.3 (a) is a front view of a cap
  • FIG.3 (b) is A1 of Fig.3 (a).
  • FIG. 3C is a cross-sectional view of the cap cut along the line A1 and
  • FIG. 3C is a rear view of the cap.
  • Fig.4 (a) is a front view of a rocking body
  • FIG.4 (b) is the A2-A2 line
  • FIG.5 (a) is a front view of a fixing member
  • FIG.5 (b) is the A3-A3 line
  • FIG.6 (a) is a front view of a 1st output side rotary body
  • FIG.6 (b) is FIG.
  • FIG.7 (a) is a front view of a 2nd output side rotary body
  • FIG.7 (b) is FIG.
  • FIG.9 (a) is a top view of a ball rolling locus
  • FIG.9 (b) is FIG.9 (a).
  • FIG. 7 is a diagram showing a rolling locus wave projected onto a virtual cross section cut along the line A6-A6.
  • FIG. 10A is a diagram for explaining a first modified example of the corrugated groove
  • FIG. 10B is a diagram for explaining a second modified example of the corrugated groove. It is a longitudinal cross-sectional view of the ball reducer which concerns on 2nd Embodiment of this invention.
  • FIG. 12A is a front view of the first output-side rotator
  • FIG. 12B is a cross-sectional view of the first output-side rotator taken along line A7-A7 in FIG. 12A
  • FIG. 13A is a front view of the second output-side rotator
  • FIG. 13B is a cross-sectional view of the second output-side rotator taken along line A8-A8 in FIG. 13A.
  • It is a longitudinal cross-sectional view of the ball reducer which concerns on 3rd Embodiment of this invention.
  • It is a front view which removes and shows the cap and 2nd output side rotating body of the ball reducer concerning a 3rd embodiment of the present invention.
  • FIG.16 (a) is a front view (figure which shows a front end surface) of an input shaft
  • FIG.16 (b) Is a side view of the input shaft
  • FIG. 16C is a cross-sectional view taken along line A9-A9 in FIG.
  • Fig.17 (a) is a front view of a cap
  • FIG.17 (b) is a side view of a cap
  • FIG. 18C is a sectional view of the cap cut along the line A10-A10 in FIG. It is a figure which shows the rocking body of the ball reducer which concerns on 3rd Embodiment of this invention
  • FIG.18 (a) is a front view of a rocking body
  • FIG.18 (b) is the A11-A11 line
  • Fig.19 (a) is a front view of a fixing member
  • FIG.19 (b) is the A12-A12 line
  • FIG. 20 is a cross-sectional view of the first output-side rotator cut along the line A13-A13 in FIG. 20A.
  • FIG.21 (a) is a front view of a 2nd output side rotary body
  • FIG.21 (b) is a 2nd output.
  • FIG. 21C is a sectional view of the second output-side rotator cut along the line A14-A14 in FIG. 21A.
  • Fig.22 (a) is a top view of a ball rolling locus
  • FIG. 22B is a diagram showing the rolling locus wave projected on a virtual cross section cut along the line A15-A15 in FIG. 22A
  • FIG. 22C shows the ball in FIG. It is a figure which expands and shows the rolling locus
  • FIG.23 (a) is a figure which shows the state in which a ball
  • FIG. 24B is a cylindrical cross-sectional view of the ball speed reducer cut at a position corresponding to line A16-A16 in FIG.
  • FIG. 24B is a cylindrical cross-sectional view when the ball speed reducer is cut at a position corresponding to the line A17-A17 in FIG.
  • FIG. 25 (a) is a diagram (corresponding to FIG. 22 (c)) showing the rolling locus of the ball according to the first modification of the third embodiment of the present invention, and FIG. 25 (b) is the present invention.
  • FIG.26 (a) is a front view of a ball reducer
  • FIG.26 (b) is a side view of a ball reducer
  • FIG. 27 is a cross-sectional view of the ball speed reducer shown cut along line A18-A18 in FIG. It is a front view which removes and shows the cap and 2nd output side rotating body of the ball reducer concerning a 4th embodiment of the present invention.
  • FIG.29 (a) is a front view (figure which shows a front end surface) of an input shaft
  • FIG.29 (b) Is a side view of the input shaft
  • FIG. 29 (c) is a rear view of the input shaft (showing the rear end surface)
  • FIG. 29 (d) is cut along line A19-A19 in FIG. 29 (a). It is sectional drawing.
  • FIG.30 (a) is a front view of a cap
  • FIG.30 (b) is a side view of a cap
  • FIG. FIG. 30C is a rear view of the cap
  • FIG. 30D is a sectional view of the cap cut along the line A20-A20 in FIG. 30A.
  • FIG.31 (a) is a front view of a rocking body
  • FIG.31 (b) is a side view of a rocking body
  • FIG.31 (c) Is a rear view of the oscillating body
  • FIG. 31 (d) is a cross-sectional view of the oscillating body cut along the line A21-A21 in FIG. 31 (a)
  • FIG. 31 (e) is a section B1 in FIG. 31 (b).
  • FIG.32 (a) is a front view of a fixing member
  • FIG.32 (b) is a side view of a fixing member
  • FIG.32 (c) Is a rear view of the fixing member
  • FIG. 32D is a cross-sectional view of the fixing member cut along the line A22-A22 of FIG. 32A
  • FIG. 32E is a cross-sectional view of B2 portion of FIG.
  • FIG. 32 (f) is an enlarged view and a cross-sectional view taken along line A23-A23 of FIG. 32 (e).
  • FIG.33 (a) is a front view in which the waveform groove
  • FIG. b) is a side view of the first output-side rotating body
  • FIG. 33C is a cross-sectional view of the first output-side rotating body cut along the line A24-A24 in FIG. 33A
  • FIG. ) Is a rear view of the first output side rotator.
  • FIG.34 (a) is a front view in which the waveform groove
  • FIG. b) is a side view of the second output side rotator
  • FIG. 34C is a sectional view of the second output side rotator cut along the line A25-A25 in FIG. 34A
  • FIG. ) Is a rear view of the second output side rotator.
  • FIG. 35A is a view showing a conventional ball reducer
  • FIG. 35A is a longitudinal sectional view of the ball reducer
  • FIG. 35B is a sectional view taken along line A26-A26 of FIG. 35A. It is.
  • FIG. 1 is a longitudinal sectional view of a ball speed reducer 1 according to a first embodiment of the present invention.
  • a ball speed reducer 1 according to this embodiment includes an input shaft (input-side rotating body) 2, a cap (input-side rotating body) 3, an eccentric disk cam 4, an oscillating body 5, and a plurality of A ball (steel ball) 6, a fixing member 7, and an output side rotating body 8 (first output side rotating body 8 ⁇ / b> A, second output side rotating body 8 ⁇ / b> B) are configured.
  • the input shaft 2 rotatably supports the first output side rotating body 8 ⁇ / b> A via the first bearing 10 and is driven to rotate by an electric motor (not shown) or the like. It has become.
  • the input shaft 2 includes a shaft-shaped portion 12 having a diameter larger than that of the shaft main body portion 11, adjacent to the shaft main body portion 11, and a bearing support portion 13 formed adjacent to the shaft-shaped portion 12.
  • the first bearing 10 is attached to the support portion 13, and the first bearing 10 is held between the inner peripheral projection 15 of the bearing hole 14 of the first output side rotating body 8 ⁇ / b> A and the flange-shaped portion 12. .
  • the input shaft 2 has an eccentric disc cam 4 formed at a position closer to the shaft tip side than the bearing support portion 13 and adjacent to the bearing support portion 13.
  • the eccentric disc cam 4 is an eccentric shaft portion whose center 4a is eccentric with respect to the rotation center 2a of the input shaft 2 (the rotation center 11a of the shaft main body 11) by an eccentric amount (e). 2 is rotated together with the input shaft 2 around the rotation center 2a.
  • fluctuation body 5 is attached to the outer peripheral side of the eccentric disk cam 4 via the 2nd bearing 16 so that relative rotation is possible.
  • the input shaft 2 is formed with a tip shaft portion 17 to which the cap 3 is attached.
  • the distal end shaft portion 17 has a rotation center concentric with the rotation center 2 a of the shaft main body portion 2, is fitted into the shaft hole 18 of the cap 3, and a stopper whose distal end surface 17 a protrudes into the shaft hole 18 of the cap 3. It is abutted against the protrusion 20.
  • a screw hole (female screw) 22 that is screwed with a screw shaft portion 21 a of a bolt 21 for fixing the cap 3 is formed in the distal end shaft portion 17 of the input shaft 2.
  • the radial direction means a direction extending radially from the rotation center 2a on the virtual plane.
  • the circumferential direction refers to a direction along the outer edge of the virtual circle centered on the rotation center 2a of the input shaft 2.
  • the cap 3 is fixed to the distal end shaft portion 17 of the input shaft 2 with a bolt 21 and constitutes an input side rotating body together with the input shaft 2, and the rotation center 3 a is the rotation of the input shaft 2. It is formed so as to coincide with the center 2a.
  • the cap 3 has an axial hole 18 that opens to one end side along the rotation center 3a (the right end side in FIG. 3B) and the other end side along the rotation center 3a (the left end side in FIG. 3B). And a bolt head part insertion hole 24 that connects the bolt head part accommodation hole 23 and the shaft hole 18 to each other.
  • the cap 3 has a ring-shaped bearing stopper 25 formed on one end of the cylindrical outer peripheral surface 3b, and the side surface of the third bearing 26 attached to the outer peripheral surface 3b is abutted against the bearing stopper 25.
  • the third bearing 26 is held between the inner peripheral projection 28 and the bearing stopper 25 in the bearing hole 27 of the second output side rotating body 8B.
  • the rotation center of the shaft hole 18 and the rotation center of the outer peripheral surface 3 b are concentric with the rotation center 3 a of the cap 3.
  • the oscillating body 5 is formed in a disc shape so as to be oscillated by the eccentric disc cam 4, and the center bearing hole 30 is fitted to the outer peripheral surface of the second bearing 16.
  • the second bearing 16 supports the eccentric disc cam 4 so that it can rotate relative to the eccentric disc cam 4.
  • the oscillating body 5 is formed such that the center 5a is concentric with the center 4a of the eccentric disc cam 4, the outer peripheral surface 5b is a cylindrical surface concentric with the center 4a of the eccentric disc cam 4, and the outer peripheral surface 5b.
  • a plurality of balls 6 are supported so as to roll.
  • eight through holes 31 are formed at equal intervals along the circumferential direction on the radially outer side of the bearing hole 30.
  • the connecting projection 33 formed on the first side surface portion 32 of the first output side rotating body 8 ⁇ / b> A is engaged with a gap, and the rocking body 5 is rocked by the eccentric disc cam 4. It is formed in such a size that it does not come into contact with the connecting projection 33 even when it is applied.
  • the fixing member 7 has a substantially square shape on the front side, and a swinging body accommodation hole 34 is formed at the center.
  • the fixing member 7 has a fixed frame portion 35 formed along the outer edge, and a radial groove forming disk portion 36 formed on the radially inner side of the fixed frame portion 35. .
  • the fixing member 7 has bolt holes 37 formed at the four corners of the fixing frame portion 35, and fixing bolts (not shown) are inserted into the bolt holes 37 at the four locations. Frame or robot arm) with fixing bolts.
  • the fixing member 7 is fixed to the member to be fixed so that the center 34 a of the swinging body accommodation hole 34 is concentric with the rotation center 2 a of the input shaft 2.
  • the fixing member 7 includes a plurality of radial grooves 38 extending in the radial direction from the inner peripheral surface 34b of the oscillator housing hole 34 at equal intervals along the circumferential direction (assuming that the wave number of the corrugated groove 40 is N. (N + 1) / 3 locations).
  • the radial groove 38 is an open end that allows the ball 6 to enter and exit, and has a groove width slightly larger than the diameter of the ball 6, and has a groove length (radial length).
  • the fixing member 7 is formed such that the thickness of the radial groove forming disk portion 36 is smaller than the diameter of the ball 6, and the center of the ball 6 engaged with the radial groove 38 is formed in the radial groove.
  • the corrugated groove 40 formed is engaged so as to be able to roll.
  • a radial groove 30 of the fixing member 7 is such that when the eccentric disk cam 4 rotates once and the rocking body 5 is swung by one stroke, the ball 6 is divided according to the rocking amount of the rocking body 5. Can only roll in the radial direction.
  • the radial groove-forming disk portion 36 of the fixing member 7 has the same thickness as that of the oscillator 5.
  • the first output-side rotator 8 ⁇ / b> A includes one of the side surfaces 5 c of both the side surfaces 5 c and 5 d of the oscillating body 5 and the radial groove forming disk portion 36 of the fixing member 7. It has the 1st side part 32 located facing one side surface 36a of both side surfaces 36a and 36b.
  • the first output-side rotating body 8 ⁇ / b> A is formed with a bearing hole 14 that accommodates the first bearing 10 attached to the input shaft 2, and the side surface of the outer race of the first bearing 10 is formed at the end of the bearing hole 14. It is made to abut against the inner peripheral projection 15 made.
  • connection protrusions 33 for connecting and fixing the second output side rotator 8B are formed at equal intervals in the circumferential direction.
  • the connection protrusion 33 is adapted to be fitted into a connection protrusion receiving recess 42 formed in the second side surface portion 41 of the second output side rotating body 8B through the through hole 31 of the rocking body 5.
  • the connection protrusion 33 is formed with a screw hole (female screw) 44 for fixing the second output-side rotator 8B with the bolt 43.
  • first side surface portion 32 of the first output side rotating body 8A has a contact relief recess 45 formed between the adjacent connecting projections 33, 33, and a lubricant such as grease is appropriately placed in the contact relief recess 45. Be contained. Further, the first side surface portion 32 of the first output side rotating body 8A has a corrugated groove 40 formed on the radially outward side of the connecting projection 33 and the contact relief recess 45.
  • the second output-side rotating body 8 ⁇ / b> B includes the other side surface 5 d of the both side surfaces 5 c and 5 d of the rocking body 5 and the radial groove forming disk portion 36 of the fixing member 7. It has the 2nd side part 41 located facing the other side surface 36b of both side surfaces 36a and 36b.
  • the connecting projection receiving recess 42 fitted to the connecting projection 33 is located at a position facing the connecting projection 33 of the first output side rotating body 8A. The same number is formed.
  • the second side surface portion 41 of the second output side rotating body 8B has a contact relief recess 46 formed between the adjacent connection projection receiving recesses 42, 42, and a lubricant such as grease is formed in the contact relief recess 46.
  • a lubricant such as grease is formed in the contact relief recess 46.
  • the second output-side rotating body 8B is formed with a bearing hole 27 that accommodates the third bearing 26 attached to the cap 3, and the side surface of the outer race of the third bearing 26 is formed at the end of the bearing hole 27. Further, it is abutted against the inner peripheral projection 28.
  • the second output-side rotating body 8B is formed with a relief hole 47 that avoids contact with the second bearing 16 on the radially inner end side on the second side face portion 41 side.
  • the second side surface portion 41 of the second output side rotating body 8B is formed with a corrugated groove 40 on the radially outward side of the connecting projection receiving recess 42 and the contact relief recess 46.
  • the second output-side rotator 8B is a bolt head housing recess that opens to the side surface 48 located on the opposite side of the second side surface portion 41 at a position facing the connection protrusion 33 of the first output-side rotator 8A. 50 is formed, and a bolt hole 51 for communicating the bolt head receiving recess 50 and the connecting projection receiving recess 42 is formed.
  • the screw shaft portion 43a of the bolt 43 inserted into the bolt head accommodating recess 50 and the bolt hole 51 is formed in the screw hole 44 of the connecting projection 33 of the first output side rotating body 8A.
  • the output side rotating body 8 is constituted by being screwed together and fixed to the first output side rotating body 8A and integrally with the first output side rotating body 8A.
  • the second output-side rotator 8B is on the side surface 48 located on the opposite side of the second side surface portion 41, and along the circumferential direction at a position radially inward from the bolt head housing recess 50.
  • a plurality of screw holes 52 are formed, and a rotated member (not shown) rotated by the second output side rotating body 8B is fixed by a plurality of bolts (not shown) screwed into the plurality of screw holes 52.
  • the corrugated groove 40 is formed on the first side surface portion 32 of the first output side rotating body 8A and the second side surface portion 41 of the second output side rotating body 8B.
  • the ball 6 accommodated in the directional groove 38 is slidably engaged.
  • the corrugated groove 40 has a valley bottom 40a at a portion positioned at the radially inner end of the wave and a peak 40b at a portion positioned at the radially outer end of the wave.
  • first side surface portion 32 and the second side surface portion 41 of the second output-side rotator 8B It is formed across the first side surface portion 32 and the second side surface portion 41 of the second output-side rotator 8B, and the groove depth of the odd-numbered wave crest 40b is between the first side surface portion 32 and the second side surface portion 41.
  • the first side surface portion 32 and the second side surface portion 41 are formed deeper on either side of the first side surface portion 32 and the second side surface portion 41 than either one side, and the groove depths of the even-numbered wave peaks 40b are the same. These are formed deeper on either side of the first side surface portion 32 and the second side surface portion 41 than on the other side, and are formed such that the groove depth gradually increases from the valley bottom 40a toward the peak 40b.
  • the corrugated groove 40 has a shape similar to that of a saw “crest (tooth vibration)”.
  • the ball 6 that engages with the corrugated groove 40 of the first output side rotating body 8A, the corrugated groove 40 of the second output side rotating body 8B, and the radial groove 38 of the fixing member 7 passes through the radial groove 38.
  • the waveform groove 40 formed three-dimensionally also moves in the direction along the rotation center 2 a of the input shaft 2.
  • the corrugated groove 40 is formed across the first side surface portion 32 of the first output side rotating body 8A and the second side surface portion 41 of the second output side rotating body 8B.
  • the positioning groove 53 of the first output side rotating body 8A and the positioning groove 54 of the second output side rotating body 8B are aligned (
  • the first output-side rotator 8A and the second output-side rotator 8B are fixed in a state of being positioned with high accuracy, and therefore the first output-side rotator 8A side.
  • the corrugated groove 40 and the corrugated groove 40 on the second output side rotating body 8B side are not displaced, and are formed with high accuracy.
  • FIG. 9 is a diagram showing a rolling locus 55 of the ball 6 when the ball 6 is rolled in the corrugated groove 40.
  • 9A is a plan view of the rolling trajectory 55 of the ball 6 (the rolling trajectory 55 projected on a virtual plane orthogonal to the rotation center 2a of the input shaft 2).
  • FIG. 9B is a diagram showing the projection of the waves W1 and W2 of the adjacent rolling locus on the virtual cross section cut along the line A6-A6 of FIG. 9A.
  • the first wave W ⁇ b> 1 of the waves W ⁇ b> 1 and W ⁇ b> 2 of the adjacent rolling trajectory 55 is directed from the valley bottom 40 a of the corrugated groove 40 toward the mountain top 40 b. Therefore, it is inclined at a constant rate in the ⁇ Z direction.
  • the second wave W2 of the rolling locus 55 is inclined at a constant rate in the + Z direction as it goes from the valley bottom 40a to the peak 40b of the wave groove 40.
  • the amount of movement of the first wave W1 in the ⁇ Z direction is the same as the amount of movement of the second wave W2 in the + Z direction.
  • the corrugated groove 40 that forms the first wave W1 of the rolling trajectory 55 is formed so that the portion corresponding to the peak 40b is deeper on the first side surface portion 32 side of the first output side rotating body 8A. Yes.
  • the corrugated groove 40 that forms the second wave W2 of the rolling trajectory 55 with respect to the first wave W1 has a deeper portion corresponding to the peak 40b on the second side surface portion 41 side of the second output side rotating body 8B. It is formed as follows.
  • FIG. 10A is a view showing a first modification of the corrugated groove 40, and corresponds to FIG. 9B.
  • the first wave W1 of the waves W1 and W2 of the adjacent rolling trajectory 55 is directed from the valley bottom 40a of the corrugated groove 40 toward the peak 40b. Therefore, the moving rate in the ⁇ Z direction increases (as it goes from the radially inner side to the radially outer side).
  • the second wave W2 of the rolling trajectory 55 increases in the movement rate in the + Z direction as it goes from the valley bottom 40a of the corrugated groove 40 toward the peak 40b (from radially inward to radially outward). is doing.
  • the corrugated groove 40 may be formed so that a rolling locus 55 of the ball 6 shown in FIG.
  • FIG. 10B is a diagram illustrating a second modification of the corrugated groove 40, and corresponds to FIG. 9B.
  • the first wave W1 of the waves W1 and W2 of the adjacent rolling trajectories 55 is directed from the valley bottom 40a of the corrugated groove 40 toward the peak 40b. Therefore, the rate of movement in the ⁇ Z direction decreases (as it goes from radially inward to radially outward). Further, the second wave W2 of the rolling trajectory 55 decreases in the movement rate in the + Z direction as it goes from the valley bottom 40a of the corrugated groove 40 to the peak 40b (from radially inward to radially outward). is doing.
  • the corrugated groove 40 may be formed so that a rolling locus 55 of the ball 6 shown in FIG.
  • the oscillator 5 when the input shaft 2 and the eccentric disk cam 4 are integrated and rotated once, the oscillator 5 has an eccentric amount (e) of the eccentric disk cam 4.
  • the output side rotating body 8 the first output side rotating body 8A and the second output side rotating body 8B
  • the ball 6 passes through the radial groove 38 of the fixing member 7 in the first side surface portion 32 and the second side surface portion.
  • the wave number of the corrugated groove 40 is N
  • the number of grooves of the radial groove 38 is (N + 1) / 3.
  • the side rotator 8 rotates 1 / N in the opposite direction to the input shaft 2.
  • the wave number (N) of the corrugated groove 40 of the output side rotating body 8 is 50
  • the number of grooves (N + 1) / 3 is 17. Therefore, the ball speed reducer 1 according to the present embodiment reduces the rotation of the input shaft 2 to 1/50 (1 / N) and transmits it to the output side rotating body 8.
  • the ball speed reducer 1 configured as described above includes the first side surface portion 32 of the first output-side rotator 8A and the second output-side rotator 8B facing the rocking body 5 and the fixing member 7. Since the corrugated groove 40 is formed only in two places on the second side surface portion 41, the corrugated groove 111, 111, 112, 112 is compared with the conventional ball reducer 100 in which the corrugated grooves 111, 111, 112, 112 are formed in four places respectively ( The processing man-hour can be reduced.
  • the swinging body 5 swings independently of the fixed member 7 and the output side rotating body 8 (the first output side rotating body 8A and the second output side rotating body 8B).
  • the ball 108 is the first corrugated of the eccentric rotating plate 104.
  • the conventional ball reducer 100 configured to simultaneously contact the groove wall of the groove 111 and the groove wall of the second corrugated groove 112 of the fixing member 107 (see FIG. 35)
  • the radial groove 38 and the corrugated groove 40 And the assembly work of the oscillator 5, the fixing member 7, and the output side rotating body 8 (the first output side rotating body 8A and the second output side rotating body 8B) is facilitated.
  • the corrugated groove 40 has an equal groove depth in the first side surface portion 32 of the first output side rotating body 8A and the second side surface portion 41 of the second output side rotating body 8B. Since the groove depth at the peak 40b of the corrugated groove 40, which greatly contributes to torque transmission, is increased compared to the case where the ball 6 is formed, the engagement amount between the peak 6b of the corrugated groove 40 and its vicinity and the ball 6 is increased. The torque that can be increased can be increased.
  • the number of the radial grooves 38 is (N + 1) / 3 with respect to the wave number (N) of the corrugated grooves 40 and the balls 6 accommodated in the radial grooves 38 are accommodated. Since the number is (N + 1) / 3, the number of balls 6 in the radial groove 38 is (N + 1) and the number of balls accommodated in the radial groove 38 is (N + 1). Weight can be reduced by reducing the number.
  • the number of grooves in the radial groove 38 is (N + 1) / 3 with respect to the wave number (N) of the corrugated groove 40, and the ball 6 accommodated in the radial groove 38. Since the number of balls is (N + 1) / 3, the balls 6 can be enlarged, and a large torque can be transmitted even though the number of balls 6 is reduced.
  • the first output-side rotating body 8A and the second output-side rotating body 8B have contact relief recesses for reducing the contact resistance by reducing the contact area with the rocking body 5. Since a plurality of places 45 and 46 are formed, power transmission can be performed efficiently.
  • the ball speed reducer 1 according to the present embodiment is configured such that the grease is filled in the contact relief recess 45 of the first output-side rotator 8A and the contact escape recess 46 of the second output-side rotator 8B.
  • the reduction ratio is 1. / N, and the reduction ratio can be made larger than that of the conventional ball reducer 100 shown in FIG.
  • the wave number (N) of the wave groove 40 of the output side rotating body 8 (the first output side rotating body 8A and the second output side rotating body 8B) is 50 waves.
  • the number of balls 6 may be determined and the reduction ratio may be changed. Note that the number of balls 6 may be less than the number of radial grooves 40 as long as smooth rotation transmission of the ball reducer 1 is not impaired.
  • the wave number (N) of the wave groove 40 of the output side rotating body 8 (the first output side rotating body 8A and the second output side rotating body 8B) is 50 waves, and the fixed member
  • the number of grooves (N + 1) / 3 of the radial grooves 38 is 17 and the number of balls 6 is 17, the present invention is not limited to this, and the wave number (N) of the corrugated grooves 40 is an even number ( 2) and the number of radial grooves 38 ((N-1) / 3) is a natural number
  • the wave number (N) of the corrugated groove 40 and the number of grooves of the radial groove 38 (N- 1) / 3 and the number of balls 6 may be determined and the reduction ratio may be changed.
  • the wave number (N) of the corrugated groove 40 of the output side rotator 8 is 46
  • the groove number ((N ⁇ 1) / 3) of the radial groove 38 of the fixing member 7 is 15, and the number of balls 6 (( This can also be applied to the case where N-1) / 3) is 15.
  • the output side rotating body 8 rotates 1 / N in the same rotation direction as the input shaft 2 with respect to one rotation of the input shaft 2.
  • the number of balls 6 may be less than the number of radial grooves 38 as long as smooth rotation transmission of the ball reducer 1 is not impaired.
  • FIG. 11 to 13 are views for explaining a ball speed reducer 1 according to a second embodiment of the present invention.
  • FIG. 11 is a longitudinal sectional view of the ball speed reducer 1 according to the second embodiment of the present invention.
  • 12A is a front view of the first output-side rotator 8A
  • FIG. 12B is a cross-sectional view taken along the line A7-A7 of FIG. 12A, showing the first output-side rotator 8A.
  • 13 (a) is a front view of the second output side rotator 8B
  • FIG. 13 (b) is a view of the second output side rotator 8B cut along the line A8-A8 of FIG. 13 (a). It is sectional drawing.
  • the shape of the corrugated grooves 56 of the first output-side rotating body 8A and the second output-side rotating body 8B is the ball according to the first embodiment.
  • the same reference numerals are given to the same components as the ball speed reducer 1 according to the first embodiment, and the description of the ball speed reducer 1 according to the first embodiment overlaps. Description is omitted.
  • the corrugated groove 56 is formed across the first side surface portion 32 of the first output side rotating body 8A and the second side surface portion 41 of the second output side rotating body 8B.
  • the first corrugated groove portion 56A on the first output side rotating body 8A side and the second corrugated groove portion 56B on the second output side rotating body 8B side have the same planar shape and groove depth. Yes, it is shaped like one is transferred to the other. Further, the first corrugated groove portion 56A on the first output side rotating body 8A side and the second corrugated groove portion 56B on the second output side rotating body 8B side are formed with the corrugated groove 40 of the ball reducer 1 according to the first embodiment.
  • the ball speed reducer 1 according to the present embodiment is similar to the ball speed reducer 1 according to the first embodiment in that the wave number of the corrugated groove 56 (the first corrugated groove portion 56A and the second corrugated groove portion 56A of the first output-side rotating body 8A).
  • the wave number of the second corrugated groove portion 56B of the output side rotating body 8B is 50 waves
  • the number of grooves ((N + 1) / 3) of the radial grooves 38 of the fixing member 7 is 17 grooves
  • the number of balls 6 is The case of 17 is illustrated.
  • the ball speed reducer 1 according to the present embodiment is not limited to the wave number N of the corrugated groove 56, and the wave number N of the corrugated groove 56 is set to an odd number.
  • the number of radial grooves 38 may be (N + 1) grooves, (N ⁇ 1) grooves, ((N + 1) / 2) grooves, or ((N ⁇ 1) / 2) grooves.
  • the ball speed reducer 1 has a waveform only at two locations on the first side surface portion 32 of the first output side rotating body 8A and the second side surface portion of the second output side rotating body 8B.
  • Groove 56 is formed (first corrugated groove portion 56A of corrugated groove 56 is formed in first side surface portion 32 of first output side rotating body 8A, and second side surface portion of second output side rotating body 8B is formed. 41, the second corrugated groove portion 56B of the corrugated groove 56 is formed), so that the conventional ball speed reducer 100 in which the corrugated grooves 111, 111, 112, 112 are formed at four locations, respectively. (See FIG. 35), the number of processing steps can be reduced.
  • the swinging body 5 swings independently of the fixed member 7 and the output side rotating body 8 (the first output side rotating body 8A and the second output side rotating body 8B). Since it can move, it is a complicated mechanism for rotating the rocking body 5 and the output side rotating body 8 together (for example, the eccentric absorption mechanism of the ball reducer 100 according to the conventional example shown in FIG. 35). 113, 113) need not be provided, the structure is simplified, and the number of processing steps can be reduced.
  • the ball 108 is the first corrugated of the eccentric rotating plate 104.
  • the conventional ball reducer 100 configured to simultaneously contact the groove wall of the groove 111 and the groove wall of the second corrugated groove 112 of the fixing member 107 (see FIG. 35)
  • the radial groove 38 and the corrugated groove 56 And the assembly work of the oscillator 5, the fixing member 7, and the output side rotating body 8 (the first output side rotating body 8A and the second output side rotating body 8B) is facilitated.
  • FIG. 14 is a longitudinal sectional view of a ball speed reducer 1 according to the third embodiment of the present invention.
  • a ball speed reducer 1 according to this embodiment includes an input shaft (input-side rotating body) 2, a cap (input-side rotating body) 3, an eccentric disk cam 4, an oscillating body 5, and a plurality of A ball (steel ball) 6, a fixing member 7, and an output side rotating body 8 (first output side rotating body 8 ⁇ / b> A, second output side rotating body 8 ⁇ / b> B) are configured.
  • FIG. 15 is a front view of the ball speed reducer 1 with the cap 3, the second output side rotating body 8B, the swinging body 5 and the like removed.
  • the input shaft 2 rotatably supports the first output side rotating body 8 ⁇ / b> A via the first bearing 10 and is driven to rotate by an electric motor (not shown). It has become.
  • the input shaft 2 includes a shaft-shaped portion 12 having a diameter larger than that of the shaft main body portion 11, adjacent to the shaft main body portion 11, and a bearing support portion 13 formed adjacent to the shaft-shaped portion 12.
  • the first bearing 10 is attached to the support portion 13, and the first bearing 10 is held between the inner peripheral projection 15 of the bearing hole 14 of the first output side rotating body 8 ⁇ / b> A and the flange-shaped portion 12. .
  • the input shaft 2 has an eccentric disc cam 4 formed at a position closer to the shaft tip side than the bearing support portion 13 and adjacent to the bearing support portion 13.
  • the eccentric disc cam 4 is an eccentric shaft portion whose center 4a is eccentric with respect to the rotation center 2a of the input shaft 2 (the rotation center 11a of the shaft main body 11) by an eccentric amount (e). 2 is rotated together with the input shaft 2 around the rotation center 2a.
  • fluctuation body 5 is attached to the outer peripheral side of the eccentric disk cam 4 via the 2nd bearing 16 so that relative rotation is possible.
  • the input shaft 2 is formed with a tip shaft portion 17 to which the cap 3 is attached.
  • the distal end shaft portion 17 has a rotation center concentric with the rotation center 2 a of the shaft main body portion 2, is fitted into the shaft hole 18 of the cap 3, and a stopper whose distal end surface 17 a protrudes into the shaft hole 18 of the cap 3. It is abutted against the protrusion 20.
  • a screw hole (female screw) 22 that is screwed with a screw shaft portion 21 a of a bolt 21 for fixing the cap 3 is formed in the distal end shaft portion 17 of the input shaft 2.
  • the cap 3 is fixed to the distal end shaft portion 17 of the input shaft 2 with a bolt 21 and constitutes an input side rotating body together with the input shaft 2, and the rotation center 3 a is the rotation of the input shaft 2. It is formed so as to coincide with the center 2a.
  • the cap 3 has an axial hole 18 that opens to one end side along the rotation center 3a (the right end side in FIG. 17C) and the other end side along the rotation center 3a (the left end side in FIG. 17C). And a bolt head part insertion hole 24 that connects the bolt head part accommodation hole 23 and the shaft hole 18 to each other.
  • the cap 3 has a ring-shaped bearing stopper 25 formed on the left end side of the cylindrical outer peripheral surface 3b, and the side surface of the third bearing 26 attached to the outer peripheral surface 3b is abutted against the bearing stopper 25.
  • the third bearing 26 is held between the inner peripheral projection 28 and the bearing stopper 25 in the bearing hole 27 of the second output side rotating body 8B.
  • the rotation center of the shaft hole 18 and the rotation center of the outer peripheral surface 3 b are concentric with the rotation center 3 a of the cap 3.
  • the cap 3 is formed so that the outer diameter of the outer peripheral surface 3 b is the same as the outer diameter of the bearing support portion 13 of the input shaft 2.
  • the third bearing 26 attached to the outer peripheral surface 3 b of the cap 3 is the same as the first bearing 10 attached to the bearing support portion 13 of the input shaft 2.
  • the rocking body 5 is formed in a disk shape so as to be rocked by the eccentric disk cam 4, and the center bearing hole 30 is fitted to the outer peripheral surface of the second bearing 16.
  • the second bearing 16 supports the eccentric disc cam 4 so that it can rotate relative to the eccentric disc cam 4.
  • the oscillating body 5 is formed such that the center 5a is concentric with the center 4a of the eccentric disc cam 4, the outer peripheral surface 5b is a cylindrical surface concentric with the center 4a of the eccentric disc cam 4, and the outer peripheral surface 5b.
  • a plurality of balls 6 are supported so as to roll.
  • four first through holes 31 a are formed at equal intervals along the circumferential direction on the radially outer side of the bearing hole 30.
  • the connecting projection 33 a formed on the first side surface portion 32 of the first output side rotating body 8 A is engaged with a gap, and the swinging body 5 is formed by the eccentric disc cam 4. Even when it is swung, it is formed in such a size that it does not come into contact with the connecting projection 33a.
  • four second through holes 31 b are formed at equal intervals along the circumferential direction on the radially outer side of the bearing hole 30.
  • the second through hole 31b of the rocking body 5 is engaged with a connecting projection 33b formed on the second side surface portion 41 of the second output side rotating body 8B with a gap, and the rocking body 5 is formed by the eccentric disc cam 4. It is formed in such a size that it does not come into contact with the connecting projection 33b even when it is swung.
  • the first through holes 31a and the second through holes 31b are alternately arranged at equal intervals.
  • the fixing member 7 has a substantially quadrangular shape on the front side, and an oscillating body accommodation hole 34 is formed at the center.
  • the fixing member 7 has a fixed frame portion 35 formed along the outer edge, and a radial groove forming disk portion 36 formed on the radially inner side of the fixed frame portion 35. .
  • the fixing member 7 has bolt holes 37 formed at the four corners of the fixing frame portion 35, and fixing bolts (not shown) are inserted into the bolt holes 37 at the four locations. Frame or robot arm) with fixing bolts.
  • the fixing member 7 is fixed to the member to be fixed so that the center 34 a of the swinging body accommodation hole 34 is concentric with the rotation center 2 a of the input shaft 2.
  • the fixing member 7 includes a plurality of radial grooves 38 extending along the radial direction from the inner peripheral surface 34b of the oscillator housing hole 34 at equal intervals along the circumferential direction (assuming that the wave number of the corrugated groove 60 is N). (N + 1)).
  • the radial groove 38 is an open end that allows the ball 6 to enter and exit, and has a groove width slightly larger than the diameter of the ball 6, and has a groove length (radial length).
  • the fixing member 7 is formed such that the thickness of the radial groove forming disk portion 36 is smaller than the diameter of the ball 6, and the center of the ball 6 engaged with the radial groove 38 is formed in the radial groove.
  • the corrugated groove 60 formed is engaged so as to be able to roll.
  • a radial groove 30 of the fixing member 7 is such that when the eccentric disk cam 4 rotates once and the rocking body 5 is swung by one stroke, the ball 6 is divided according to the rocking amount of the rocking body 5. Can only roll in the radial direction.
  • the radial groove forming disc portion 36 of the fixing member 7 has the same thickness as the thickness of the ball support portion 5e located on the radially outer end side of the oscillator 5. ing.
  • the first output-side rotator 8 ⁇ / b> A includes one of the side surfaces 5 c of both the side surfaces 5 c and 5 d of the oscillating body 5 and the radial groove forming disk portion 36 of the fixing member 7. It has the 1st side part 32 located facing one side surface 36a of both side surfaces 36a and 36b.
  • the first output-side rotating body 8 ⁇ / b> A is formed with a bearing hole 14 that accommodates the first bearing 10 attached to the input shaft 2, and the side surface of the outer race of the first bearing 10 is formed at the end of the bearing hole 14. It is made to abut against the inner peripheral projection 15 made.
  • first side surface portion 32 of the first output side rotating body 8A a plurality (four places) of connecting projections 33a for connecting and fixing the second output side rotating body 8B are formed at equal intervals in the circumferential direction.
  • the connecting projection 33a is fitted into a connecting projection receiving recess 42b formed in the second side surface portion 41 of the second output side rotating body 8B through the through hole 31a of the rocking body 5.
  • the first side surface portion 32 of the first output side rotator 8A is formed with a plurality (four locations) of connection protrusion accommodating recesses 42a for connecting and fixing the second output side rotator 8B at equal intervals in the circumferential direction. ing.
  • connection projection receiving recess 42a is adapted to be fitted with a connection projection 33b formed on the second side surface portion 41 of the second output side rotating body 8B extending through the through hole 31b of the rocking body 5.
  • first side surface portion 32 of the first output-side rotating body 8A has a corrugated groove 60 formed on the radially outer side of the connecting projection 33a and the connecting projection receiving recess 42a.
  • the first output-side rotating body 8A has a screw hole 52 for fixing a member to be rotated on the back surface side (the surface side opposite to the first side surface portion 32) having a diameter larger than that of the connection protrusion 33a. Four points are formed at equal intervals along the circumferential direction of the inner side position.
  • first output-side rotator 8A has a positioning groove 53 for positioning and fixing the second output-side rotator 8B with high accuracy at one place on the radially outer end.
  • the structure of the connection protrusion 33a and the connection protrusion accommodating recess 42a and the structure for fixing the second output side rotating body 8B to the first output side rotating body 8A with bolts (not shown) are shown in FIGS. This is the same as the structure of the ball reducer 1 shown.
  • the second output-side rotator 8 ⁇ / b> B includes the other side surface 5 d of the side surfaces 5 c and 5 d of the oscillating body 5 and the radial groove forming disk portion 36 of the fixing member 7. It has the 2nd side part 41 located facing the other side surface 36b of both side surfaces 36a and 36b.
  • the second side surface portion 41 of the second output-side rotator 8B has a connection protrusion 33a at the position facing the connection protrusion 33a of the first output-side rotator 8A. The same number is formed.
  • the second side surface portion 41 of the second output side rotating body 8B is connected to the connecting projection receiving recess 42a at a position facing the connecting projection receiving recess 42a of the first output side rotating body 8A.
  • the second output-side rotating body 8B is formed with a bearing hole 27 that accommodates the third bearing 26 attached to the cap 3, and the side surface of the outer race of the third bearing 26 is formed at the end of the bearing hole 27. Further, it is abutted against the inner peripheral projection 28.
  • the second side surface portion 41 of the second output side rotating body 8B has a corrugated groove 60 formed on the radially outer side of the connecting projection 33b and the connecting projection receiving recess 42b.
  • the second output-side rotating body 8B has a screw hole 52 for fixing a member to be rotated on the back side thereof (the surface side opposite to the second side surface portion 41) having a diameter larger than that of the connecting projection 33b. Four points are formed at equal intervals along the circumferential direction of the inner side position.
  • the second output-side rotator 8B has a positioning groove 54 for positioning and fixing the first output-side rotator 8A with high accuracy at a position corresponding to the positioning groove 53 of the first output-side rotator 8A ( It is formed in one place on the radially outer end. In such a second output-side rotator 8B, the shape of the second side surface 41 viewed in plan (the shape shown in FIG.
  • FIG. 21A is the shape of the first output-side rotator 8A viewed in plan (FIG. 20A).
  • the second output-side rotator 8B has the same vertical cross-sectional shape (the cross-sectional shape shown in FIG. 20 (c)) as the vertical cross-sectional shape (the cross-sectional shape shown in FIG. 21 (c)) of the first output-side rotator 8A. It is.
  • the structure of the connection protrusion 33b and the connection protrusion accommodating recess 42b and the structure for fixing the second output-side rotating body 8B to the first output-side rotating body 8A with bolts (not shown) are shown in FIGS. This is the same as the structure of the ball reducer 1 shown.
  • the corrugated groove 60 is formed across the first side surface portion 32 of the first output side rotating body 8A and the second side surface portion 41 of the second output side rotating body 8B.
  • the corrugated groove 60 has a valley bottom 60a at a portion positioned at the radially inner end of the wave and a peak 60b at a portion positioned at the radially outer end of the wave.
  • the valley bottom 60a and the peak 60b are rotated on the first output side.
  • the corrugated groove 60 is formed from the valley bottom 60 a on the center line 61 to the mountain peak 60 b on the right when the first side surface portion 32 of the first output side rotating body 8 ⁇ / b> A is viewed.
  • the groove depth gradually increases as it goes, and then gradually increases, and the groove depth gradually increases and gradually decreases from the peak 60b to the right adjacent valley bottom 60a.
  • the corrugated groove 60 is obtained when the second side surface portion 41 of the second output-side rotating body 8B facing the first side surface portion 32 of the first output-side rotating body 8A is viewed.
  • the groove depth gradually increases from the valley bottom 60a on the center line 61 toward the left adjacent peak 60b, and then gradually decreases.
  • the groove depth decreases gradually from the peak 60b toward the left adjacent valley bottom 60a and then increases gradually. ing. That is, the corrugated groove 60 formed across the first side surface portion 32 of the first output-side rotating body 8A and the second side surface portion 41 of the second output-side rotating body 8B causes the ball 6 to move to the first output-side rotating body.
  • the corrugated groove 60 formed over the first output side rotating body 8A and the second output side rotating body 8B and the ball 6 engaged with the radial groove 38 of the fixing member 7 are in the radial direction.
  • the groove 38 formed in a three-dimensional manner also moves in the direction along the rotation center 2 a of the input shaft 2.
  • the corrugated groove 60 is formed across the first side surface portion 32 of the first output side rotating body 8A and the second side surface portion 41 of the second output side rotating body 8B.
  • the positioning groove 53 of the first output side rotating body 8A and the positioning groove 54 of the second output side rotating body 8B are aligned ( 14, 20, and 21), the first output-side rotator 8 ⁇ / b> A and the second output-side rotator 8 ⁇ / b> B are fixed in a highly accurately positioned state, and therefore the first output-side rotator 8 ⁇ / b> A side
  • the corrugated groove 60 and the corrugated groove 60 on the second output-side rotating body 8B side are not displaced, and are formed with high accuracy.
  • the corrugated groove 60 guides the ball 6 in a right-handed spiral shape along the circumferential direction of the first output-side rotator 8A and the second output-side rotator 8B or in a left-handed spiral shape. It only has to be.
  • FIG. 22 is a diagram showing a rolling locus 62 of the ball 6 when the ball 6 is rolled in the corrugated groove 60.
  • 22A is a plan view of the rolling trajectory 62 of the ball 6 (the rolling trajectory 62 projected on a virtual plane orthogonal to the rotation center 2a of the input shaft 2).
  • FIG. 22B is a diagram in which adjacent waves W1 and W2 of the rolling locus 62 are projected onto a virtual cross section cut along the line A15-A15 in FIG. .
  • FIG. 22 (c) is an enlarged view showing the rolling trajectory of the ball in FIG. 22 (b).
  • the rolling trajectory 62 of the ball 6 shown in FIG. 22 indicates the groove shape of the corrugated groove 60.
  • R represents a radial direction
  • Z represents a direction along the rotation center 2 a of the input shaft 2.
  • the rolling trajectory 62 of the ball 6 moving along the corrugated groove 60 has an elliptical shape with the R direction as the major axis, and the center of the ball 6 is the valley bottom 60a of the corrugated groove 60.
  • the summit 60b (the valley bottom 62a and the summit 62b of the rolling locus 62) are located between the first side face portion 32 and the second side face portion 41, and the first wave from the valley bottom 62a of the first wave W1.
  • the amount of movement in the + Z direction gradually increases after moving toward the peak 62b of W1, and then gradually decreases.
  • the amount of movement in the ⁇ Z direction decreases from the peak 62b of the first wave W1 toward the valley bottom 62a of the adjacent second wave W2.
  • the movement trajectory 62 of the ball 6 has the same amount of movement in the + Z direction and the amount of movement in the ⁇ Z direction.
  • Such a rolling trajectory 62 of the ball 6 is formed by the corrugated groove 60 formed across the first output side rotating body 8A and the second output side rotating body 8B.
  • FIG. 23A is a diagram (a partial plan view of the rolling trajectory 62) showing a state in which the ball 6 is located on the peak 62b of the rolling trajectory 62 of the ball 6, and FIG. FIG. 24 is a cylindrical cross-sectional view when the ball speed reducer 1 is cut at a position corresponding to the line A16-A16 in FIG.
  • FIG. 24A is a diagram (a partial plan view of the rolling trajectory 62) showing a state where the ball 6 is located at an intermediate position between the peak 62b and the valley bottom 62a of the rolling trajectory 62 of the ball 6.
  • FIG. 24B is a cylindrical cross-sectional view when the ball speed reducer 1 is cut at a position corresponding to the line A17-A17 in FIG.
  • the peak 62b of the rolling trajectory 62 of the ball 6 is located at one end of the long axis of the elliptical rolling trajectory 62 of FIG.
  • the corrugated groove 60 has the same groove depth in the first output side rotating body 8A and the second output side rotating body 8B (the groove depth from the first side surface portion 32 and the groove depth from the second side surface portion 41 are the same).
  • the ridge 63 having the same ridge height h1 is formed between the adjacent balls 6 and 6 in the first output-side rotator 8A and the second output-side rotator 8B.
  • the cylindrical cross-sectional view of the valley bottom 62a of the rolling locus 62 of the ball 6 is the same as that shown in FIG.
  • the intermediate position between the peak 62b and the valley bottom 62a of the rolling trajectory 62 of the ball 6 is an elliptical rolling trajectory shown in FIG.
  • the corrugated groove 60 has the same groove depth in the first output side rotating body 8A and the second output side rotating body 8B (the groove depth from the first side surface portion 32 and the second side surface). Ridges having the same ridge height h2 between the adjacent balls 6 and 6 in the first output side rotating body 8A and the second output side rotating body 8B. 63 is formed.
  • the corrugated groove 60 that engages with the ball 6 spirals between the first output side rotating body 8A and the second output side rotating body 8B. 22 (see FIG. 22), the corrugated groove 60 has a valley bottom 60a, an intermediate position between the valley bottom 60a and the peak 60b of the corrugated groove 60, and a position of the peak 60b of the corrugated groove 60.
  • the ridges 63 having sufficient ridge heights h1 and h2 that can prevent ratcheting between the adjacent balls 6 and 6 are formed.
  • the ball speed reducer 1 according to the present embodiment configured as described above has only two locations, the first side surface portion 32 of the first output side rotating body 8A and the second side surface portion 41 of the second output side rotating body 8B. Since the corrugated groove 60 is formed, compared with the conventional ball speed reducer 100 in which the corrugated grooves 111, 111, 112, 112 are formed at four locations, respectively (see FIG. 35), the number of processing steps can be reduced. Is possible.
  • the swinging body 5 swings independently of the fixed member 7 and the output side rotating body 8 (the first output side rotating body 8A and the second output side rotating body 8B).
  • the ball speed reducer 1 since the ball 6 is positioned at a location where the radial groove 38 and the corrugated groove 60 intersect, the ball 108 is the first corrugated of the eccentric rotating plate 104.
  • the conventional ball speed reducer 100 configured to simultaneously contact the groove wall of the groove 111 and the groove wall of the second corrugated groove 112 of the fixing member 107 (see FIG. 35), the radial groove 38 and the corrugated groove 60 And the assembly work of the oscillator 5, the fixing member 7, and the output side rotating body 8 (the first output side rotating body 8A and the second output side rotating body 8B) is facilitated.
  • the ball speed reducer 1 according to the present embodiment has the same shape for the first output side rotating body 8A and the second output side rotating body 8B.
  • the first output-side rotator 8A, the second output-side rotator 8B, the first bearing 10, and the third bearing 26) can be shared, and the component cost can be reduced.
  • the technical idea of the ball speed reducer 1 according to this embodiment can be applied to the ball speed reducer 1 according to the first embodiment and the ball speed reducer 1 according to the second embodiment.
  • the first output-side rotator 8A and the second output-side rotator 8B have the same shape, so that the components (first output-side rotator 8A, second The output side rotating body 8B, the first bearing 10, and the third bearing 26) can be made common to reduce the component cost.
  • the first output-side rotator 8A and the second output-side rotator 8B can have the same shape.
  • the ball speed reducer 1 is configured such that the first output-side rotator 8A and the second output-side rotator 8B have the same shape, so that the components (first output-side rotator 8A, second The output side rotating body 8B, the first bearing 10, and the third bearing 26) can be made common to reduce the component cost.
  • FIG. 25A is a diagram illustrating a first modification of the rolling locus 62 of the ball 6 and corresponds to FIG. 22C.
  • the rolling trajectory 62 of the ball 6 shown in FIG. 25 (a) is a substantially elliptical shape in which a pair of arcs 64, 64 face each other, and a center line 65 extending along the Z-axis direction is a symmetry axis. And a line-symmetric shape with a center line 66 extending along the R direction as the axis of symmetry.
  • the corrugated groove 60 of the ball speed reducer 1 according to the present embodiment may be formed so as to generate a rolling locus 62 of the ball 6 shown in FIG.
  • FIG. 25B is a diagram illustrating a second modification of the rolling locus 62 of the ball 6 and corresponds to FIG. 22C.
  • the rolling trajectory 62 of the ball 6 shown in FIG. 25 (b) is a substantially elliptical shape in which a pair of arc-like shapes in which both ends of the arc 64 in FIG. 25 (a) are straight lines 67 and 67 face each other. And a line-symmetric shape having a center line 65 extending along the Z-axis direction as a symmetry axis, and a line-symmetric shape having a center line 66 extending along the R-direction as a symmetry axis.
  • the corrugated groove 60 of the ball speed reducer 1 according to the present embodiment may be formed so as to generate a rolling locus 62 of the ball 6 shown in FIG.
  • FIGS. 26 and 27 are views showing a ball speed reducer 1 according to a fourth embodiment of the present invention.
  • 26A is a front view of the ball reducer 1
  • FIG. 26B is a side view of the ball reducer 1.
  • FIG. 27 is a sectional view of the ball speed reducer 1 cut along the line A18-A18 in FIG.
  • the ball speed reducer 1 includes an input shaft (input-side rotating body) 2, a cap (input-side rotating body) 3, an eccentric disc cam 4, and an oscillating body 5 ( First oscillating body 5A, second oscillating body 5B), a plurality of balls (steel balls) 6, a fixing member 7, an output side rotating body 8 (first output side rotating body 8A, second output side rotating body 8B), etc.
  • FIG. 27 is a front view of the ball speed reducer 1 with the cap 3, the second output side rotating body 8B, and the like removed.
  • the input shaft 2 rotatably supports the first output-side rotating body 8A via the first bearing 10, and is driven to rotate by an electric motor (not shown) or the like. It has become.
  • the input shaft 2 includes a shaft-shaped portion 12 having a diameter larger than that of the shaft main body portion 11, adjacent to the shaft main body portion 11, and a bearing support portion 13 formed adjacent to the shaft-shaped portion 12.
  • the first bearing 10 is attached to the support portion 13, and the first bearing 10 is held between the inner peripheral projection 15 of the bearing hole 14 of the first output side rotating body 8 ⁇ / b> A and the flange-shaped portion 12. .
  • the input shaft 2 has an eccentric disc cam 4 formed at a position closer to the shaft tip side than the bearing support portion 13 and adjacent to the bearing support portion 13.
  • the eccentric disc cam 4 is an eccentric shaft portion whose center 4a is eccentric with respect to the rotation center 2a of the input shaft 2 (the rotation center 11a of the shaft main body 11) by an eccentric amount (e). 2 is rotated together with the input shaft 2 around the rotation center 2a.
  • fluctuation body 5 is attached to the outer peripheral side of the eccentric disk cam 4 via the 2nd bearing 16 so that relative rotation is possible.
  • the input shaft 2 is formed with a tip shaft portion 17 to which the cap 3 is attached.
  • the distal end shaft portion 17 has a rotation center concentric with the rotation center 2 a of the shaft main body portion 2, is fitted into the shaft hole 18 of the cap 3, and a stopper whose distal end surface 17 a protrudes into the shaft hole 18 of the cap 3. It is abutted against the protrusion 20.
  • a screw hole (female screw) 22 that is screwed with a screw shaft portion 21 a of a bolt 21 for fixing the cap 3 is formed in the distal end shaft portion 17 of the input shaft 2.
  • cap As shown in FIGS. 26, 27, and 30, the cap 3 is fixed to the distal end shaft portion 17 of the input shaft 2 with a bolt 21, and constitutes an input side rotating body together with the input shaft 2, and the rotation center 3a is input. It is formed so as to coincide with the rotation center 2 a of the shaft 2.
  • the cap 3 has an axial hole 18 that opens to one end side along the rotation center 3a (the right end side in FIG. 30D) and the other end side along the rotation center 3a (the left end side in FIG. 30D). And a bolt head part insertion hole 24 that connects the bolt head part accommodation hole 23 and the shaft hole 18 to each other.
  • the cap 3 has a ring-shaped bearing stopper 25 formed on the left end side of the cylindrical outer peripheral surface 3b, and the side surface of the third bearing 26 attached to the outer peripheral surface 3b is abutted against the bearing stopper 25.
  • the third bearing 26 is held between the inner peripheral projection 28 and the bearing stopper 25 in the bearing hole 27 of the second output side rotating body 8B.
  • the rotation center of the shaft hole 18 and the rotation center of the outer peripheral surface 3 b are concentric with the rotation center 3 a of the cap 3.
  • the cap 3 is formed so that the outer diameter of the outer peripheral surface 3 b is the same as the outer diameter of the bearing support portion 13 of the input shaft 2.
  • the third bearing 26 attached to the outer peripheral surface 3 b of the cap 3 is the same as the first bearing 10 attached to the bearing support portion 13 of the input shaft 2.
  • the cap 3 holds the second bearing 16 in a state of being positioned between the bearing positioning step 3c and the bearing positioning step 2b of the input shaft 2.
  • the oscillating body 5 is configured by combining the first oscillating body 5A and the second oscillating body 5B having the same shape back to back.
  • the swinging body 5 is bifurcated into a first tip 5f (a tip on the outer periphery of the first swinging body 5A) and a second tip 5g (a tip on the outer periphery of the second swinging body 5B).
  • the first tip 5f is slidably engaged with one side of the fixing member 7, and the second tip 5g is slidably engaged with the other side of the fixing member 7. .
  • the first rocking body 5 ⁇ / b> A is formed in a disk shape so as to be rocked by the eccentric disk cam 4, and the center bearing hole 30 is fitted to the outer peripheral surface of the second bearing 16. It is supported by the second bearing 16 so as to be capable of relative rotation.
  • the first oscillating body 5A is formed so that its center 5a is concentric with the center 4a of the eccentric disc cam 4, and its outer peripheral surface 5b is a cylindrical surface concentric with the center 4a of the eccentric disc cam 4.
  • a plurality of balls 6 are supported by the surface 5b so as to be able to roll.
  • ten through holes 31 are formed at equal intervals along the circumferential direction on the radially outer side of the bearing hole 30.
  • the through hole 31 of the first oscillating body 5A is formed on the connection protrusion 33a formed on the first side surface portion 32 of the first output side rotating body 8A and the second side surface portion 41 of the second output side rotating body 8B.
  • the connection protrusion 33b is engaged with a gap, and is formed in a size that does not contact the connection protrusions 33a and 33b even when the first swinging body 5A is swung by the eccentric disc cam 4.
  • the outer peripheral surface 5b of the first tip 5f of the first rocking body 5A has an arcuate cross-sectional shape so as to be in line contact with the outer peripheral surface of the ball 5 (see FIG. 31F). Since the second oscillating body 5B has the same shape as the first oscillating body 5A, the description overlapping the description of the first oscillating body 5A is omitted.
  • the fixing member 7 has a substantially square shape on the front side, and a swinging body accommodation hole 34 is formed at the center.
  • the fixing member 7 has a fixed frame portion 35 formed along the outer edge, and a radial groove forming disk portion 36 formed on the radially inner side of the fixed frame portion 35. .
  • the fixing member 7 has bolt holes 37 formed at the four corners of the fixing frame portion 35, and fixing bolts (not shown) are inserted into the bolt holes 37 at the four locations. Frame or robot arm) with fixing bolts.
  • the fixing member 7 is fixed to the member to be fixed so that the center 34 a of the swinging body accommodation hole 34 is concentric with the rotation center 2 a of the input shaft 2.
  • the oscillating body 5 (the first oscillating body 5A and the second oscillating body 5B) is accommodated in the oscillating body accommodation hole 34 of the fixing member 7 so as to be able to oscillate.
  • a first tip portion 5f of the oscillating body 5 (an outer peripheral side tip portion of the first oscillating body 5A) is arranged to face.
  • the second tip portion 5g of the rocking body 5 (the outer circumferential side tip portion of the second rocking body 5B) is disposed so as to face the other side surface 36b of the fixing member 7.
  • first radial grooves 68 On one side surface 36a of the radial groove forming disk portion 36 of the fixing member 7, there are a plurality of elongated hole-shaped first radial grooves 68 extending along the radial direction (corrugated grooves) along the circumferential direction.
  • first radial grooves 68 When the wave number of 70 is N, (N + 1)) is formed.
  • second radial grooves 71 having a long hole shape extending along the radial direction are provided at equal intervals along the circumferential direction on the other side surface 36b of the radial groove forming disk portion 36 of the fixing member 7.
  • the wave number of the corrugated groove 70 is N, (N + 1)) is formed.
  • the second radial groove 71 has a pitch of 1/2 of the first radial groove 68 in the circumferential direction (when the angle between the adjacent first radial grooves 68 and 68 is ⁇ , ⁇ / 2
  • the first radial groove 68 is formed so as to be turned upside down at a position shifted by an angle of (1)), and is formed at the same radial position as the first radial groove 68.
  • the first radial groove 68 and the second radial groove 71 are formed so that the groove depth is smaller than the radius of the ball 6, and the groove cross-sectional shape is an arc shape having the same radius as the radius of the ball 6. It is formed so as to be in line contact with the ball 6.
  • the first radial groove 68 and the second radial groove 71 have a groove length (radial length) in consideration of the swing amount of the swing body 5 (the eccentric amount e of the eccentric disc cam 4).
  • a ball 6 formed in a length and supported on the outer peripheral surface 5b of the rocking body 5 is moved along the radial direction. Further, the ball 6 accommodated in the first radial groove 68 is engaged with the corrugated groove 70 of the first output-side rotating body 8A so as to be able to roll. Further, the ball 6 accommodated in the second radial groove 71 is engaged with the corrugated groove 70 of the second output side rotating body 8B so as to be able to roll.
  • the first radial groove 68 and the second radial groove 71 of the fixing member 7 are configured so that the eccentric disk cam 4 makes one rotation and the rocking body 5 is swung for one stroke. Can be rolled in the radial direction by an amount corresponding to the swinging amount of the swinging body 5.
  • the fixing member 7 having the above-described configuration includes a first radial groove 68 formed on the one side surface 36a side of the radial groove forming disk portion 36 and a second diameter formed on the other side surface 36b side. Since the directional groove 71 is shifted by a half pitch ( ⁇ / 2 angle) in the circumferential direction, the first radial groove 68 and the second radial groove 71 are formed at the same position in the circumferential direction. As compared with the case where the radial groove forming disk part 36 is not formed by being shifted in the circumferential direction, the thickness of the radial groove forming disk part 36 can be sufficiently secured and the strength of the radial groove forming disk part 36 can be increased.
  • the first radial groove 68 formed on the one side surface 36a side and the second radial groove 71 formed on the other side surface 36b side are shifted by a half pitch in the circumferential direction. Therefore, compared to the case where the first radial groove 68 and the second radial groove 71 are formed at the same position in the circumferential direction (when they are not formed shifted in the circumferential direction), the radial groove is formed. While maintaining the strength of the disk part 36 to be the same, the thickness of the radial groove forming disk part 36 can be reduced, and the weight can be reduced.
  • the first output-side rotator 8 ⁇ / b> A includes one side surface 5 c of the both side surfaces 5 c and 5 d of the oscillating body 5 and a radial groove forming circle of the fixing member 7. It has the 1st side part 32 located facing one side surface 36a of the both sides
  • the first output-side rotating body 8 ⁇ / b> A is formed with a bearing hole 14 that accommodates the first bearing 10 attached to the input shaft 2, and the side surface of the outer race of the first bearing 10 is formed at the end of the bearing hole 14. It is made to abut against the inner peripheral projection 15 made.
  • first side surface portion 32 of the first output side rotating body 8A a plurality of (5 places) connecting projections 33a for connecting and fixing the second output side rotating body 8B are formed at equal intervals in the circumferential direction.
  • the connection protrusion 33a is fitted into a connection protrusion receiving recess 42b formed in the second side surface portion 41 of the second output side rotating body 8B through the through hole 31 of the swinging body 5.
  • the first side surface portion 32 of the first output side rotator 8A is formed with a plurality (five places) of connecting projection receiving recesses 42a for connecting and fixing the second output side rotator 8B at equal intervals in the circumferential direction. ing.
  • the connecting projection receiving recess 42a is adapted to be fitted with a connecting projection 33b formed on the second side surface portion 41 of the second output side rotating body 8B extending through the through hole 31 of the rocking body 5. .
  • the connection protrusions 33a and the connection protrusion accommodating recesses 42a are alternately arranged at equal intervals around the center C1 of the first output-side rotating body 8A.
  • the first side surface portion 32 of the first output side rotating body 8A has a corrugated groove 70 formed on the radially outer side of the connection protrusion 33a and the connection protrusion accommodating recess 42a. As shown in FIG.
  • the corrugated groove 70 is formed of 50 waves continuously, where the radially inner end of the wave is a valley bottom and the radially outer end of the wave is a peak.
  • a wave peak is formed on a center line 72 that passes through the center C1 of the first output side rotating body 8A and is parallel to the x direction.
  • one of the connecting protrusions 33a and one of the connecting protrusions 33a and one of the connecting protrusion receiving recesses 42a that are in two-fold symmetry are center lines 73 (first output side rotating body 8A) orthogonal to the center line 72.
  • the first output-side rotating body 8A has a screw hole 52 for fixing a member to be rotated on the back surface side (the surface side opposite to the first side surface portion 32) having a diameter larger than that of the connection protrusion 33a.
  • Four points are formed at equal intervals along the circumferential direction of the inner side position.
  • a pair of screw holes 52 are formed on the center line 74, and a pair of screw holes 52 are formed on the center line 75 orthogonal to the center line 74.
  • the portion on the radially inner side from the corrugated groove 70 (more precisely, the region that allows the rocking body 5 to rock) is a fixing member. 7 and the second tip portion 5g of the oscillating body 5 are accommodated between the second side surface portion 41 of the second output side rotating body 8B. It is supposed to be.
  • a portion radially outward from the corrugated groove 70 (more precisely, a region where the outer peripheral end of the rocking body 5 does not reach) is fixed.
  • the corrugated groove 70 has a groove depth of the first radial groove 68 formed on the side surface 36a side of the fixing member 7 of the ball 6. Since it is smaller than the radius, the groove depth on the mountain top side can be made larger than the radius of the ball 6. As a result, the first output-side rotating body 8A can effectively prevent ratcheting in the vicinity of the peak of the corrugated groove 70 to which the largest rotational torque acts when the rotation of the ball speed reducer 1 is transmitted.
  • FIG. 34 is a diagram showing the second output-side rotator 8B.
  • the second output-side rotator 8B shown in FIG. 34 (a) reverses the first output-side rotator 8A around the center line (inversion reference center line) 72 in FIG. 33 (a), and then outputs the first output.
  • the side rotating body 8A is rotated 180 degrees around the center line 73, and then the first output side rotating body 8A is rotated clockwise about the center C1 of the first output side rotating body 8A in the second radial direction.
  • the groove 71 is rotated by an angle of 1/2 pitch ( ⁇ / 2 where the angle between adjacent radial grooves 71 and 71 is ⁇ ), and has the same shape as the first output-side rotating body Is used.
  • the second output-side rotator 8B includes the other side surface 5d of the side surfaces 5c and 5d of the rocking body 5 and the other side surface 36a and 36b of the radial groove forming disk portion 36 of the fixing member 7. It has the 2nd side part 41 located facing the side surface 36b.
  • the second side surface portion 41 of the second output side rotator 8B has a connection protrusion 33a at a position corresponding to the connection protrusion 33a of the first output side rotator 8a. The same number is formed.
  • the second side surface portion 41 of the second output side rotating body 8B is connected to the connecting projection receiving recess 42a at a position corresponding to the connecting projection receiving recess 42a of the first output side rotating body 8A.
  • the second output-side rotating body 8B is formed with a bearing hole 27 that accommodates the third bearing 26 attached to the cap 3, and the side surface of the outer race of the third bearing 26 is formed at the end of the bearing hole 27. Further, it is abutted against the inner peripheral projection 28.
  • the second output-side rotating body 8B has a screw hole 52 for fixing the member to be rotated on the back surface side (the surface side opposite to the second side surface portion 41). Four points are formed at equal intervals along the circumferential direction of the inner side position.
  • the second side surface portion 41 of the second output-side rotator 8B has a corrugated groove 70 formed on the radially outer side of the connection protrusion 33b and the connection protrusion accommodating recess 42b.
  • the corrugated groove 70 is formed of 50 waves continuously, and passes through the center C1 of the second output side rotating body 8B and is parallel to the center line 72 parallel to the x direction. It is formed so that the peak of the wave is located on the center line 76 rotated by ⁇ / 2 in the clockwise direction.
  • connection protrusions 33 b and one of the connection protrusion receiving recesses 42 b that are in a two-fold symmetry with the one of the connection protrusions 33 b are arranged on a center line 74 orthogonal to the center line 75.
  • the first output-side rotating body 8A and the second output-side rotating body 8B have shaft portions 78a of bolts 78 inserted into bolt holes 77 formed in the connecting projection receiving recesses 42b of the second output-side rotating body 8B.
  • a portion radially inward of the corrugated groove 70 (more precisely, a region in which the oscillating body 5 can be oscillated) is a fixing member. 7 the radial groove forming disk portion 36, the first tip portion 5 f of the rocking body 5, and the second tip portion 5 g of the rocking body 5 are accommodated between the first side surface portion 32 of the first output side rotating body 8 ⁇ / b> A. It is supposed to be.
  • the corrugated groove 70 has a groove depth of the second radial groove 71 formed on the other side surface 36b side of the fixing member 7 of the ball 6. Since it is smaller than the radius, the groove depth on the mountain top side can be made larger than the radius of the ball 6. As a result, the second output-side rotator 8B can effectively prevent ratcheting in the vicinity of the peak of the corrugated groove 70 to which the largest rotational torque acts when the rotation of the ball speed reducer 1 is transmitted.
  • the ball speed reducer 1 has the first output side rotating body 8A and the second output side rotating body 8B fixed in combination.
  • the corrugated groove 70 of the output-side rotator 8A and the corrugated groove 70 of the second output-side rotator 8B are the half pitch ( ⁇ / 2) of the first radial groove 68 (or the second radial groove 71). Since the first radial groove 68 and the second radial groove 71 of the fixing member 7 are formed so as to be shifted by a half pitch ( ⁇ / 2) in the circumferential direction because they are positioned in a state shifted in the circumferential direction.
  • the positional relationship of 70 matches, and rotation transmission can be performed smoothly.
  • the ball speed reducer 1 according to the present embodiment configured as described above has only two locations, the first side surface portion 32 of the first output side rotating body 8A and the second side surface portion 41 of the second output side rotating body 8B. Since the corrugated groove 70 is formed, compared with the conventional ball reducer 100 in which the corrugated grooves 111, 111, 112, 112 are formed at four locations, respectively (see FIG. 35), the number of processing steps is reduced. Is possible.
  • the swinging body 5 swings independently of the fixed member 7 and the output side rotating body 8 (the first output side rotating body 8A and the second output side rotating body 8B).
  • the ball speed reducer 1 has the ball 6 at the location where the first radial groove 68 and the corrugated groove 70 intersect, and at the location where the second radial groove 71 and the corrugated groove 70 intersect. Therefore, the ball 108 is configured to be in contact with the groove wall of the first corrugated groove 111 of the eccentric rotating plate 104 and the groove wall of the second corrugated groove 112 of the fixing member 107 at the same time. Compared to the ball reducer 100 (see FIG.
  • the first radial groove 68, the second radial groove 71, and the corrugated groove 70 can be easily processed, and the oscillator 5, the fixing member 7, and Assembling work such as the output side rotating body 8 (the first output side rotating body 8A and the second output side rotating body 8B) becomes easy.
  • bowl speed reducer 1 which concerns on this embodiment has components (1st output side rotary body 8A, 2nd output side).
  • the rotating body 8B, the first bearing 10, and the third bearing 26) can be shared, and the component cost can be reduced.
  • the ball speed reducer 1 is formed by shifting the first radial groove 68 and the second radial groove 71 of the fixing member 7 by a half pitch ( ⁇ / 2) along the circumferential direction.
  • the present invention is not limited to this, and the first radial groove 68 and the second radial groove 71 of the fixing member 7 may be formed at the same circumferential position.
  • one of the connection projections 33a of the first output side rotating body 8A and the connection projection receiving recess 42a at a position that is two-fold symmetrical with one of the connection projections 33a.
  • One is arranged on a center line 73 (a center line passing through the center C1 of the first output side rotating body 8A and parallel to the y direction).
  • the oscillating body 5 is configured by combining the first oscillating body 5A and the second oscillating body 5B having the same shape back to back. 5 may be formed integrally.
  • the ball speed reducer 1 according to the first to fourth embodiments of the present invention includes the whole (the input shaft 2, the cap 3, the rocking body 5, the fixing member 7, the first output side rotating body 8A, and the second output side).
  • the rotating body 8B, etc. is made of metal, a part of the whole is made of a synthetic resin material, or the whole other than the first to fourth bearings 10, 16, 26 and the ball 6 is made of a synthetic resin material.
  • the ball speed reducer 1 in which the entirety other than the first to third bearings 10, 16, 26 and the ball 6 is formed of a synthetic resin material can be reduced in weight and the product price can be reduced. .
  • the ball speed reducer 1 in which the entirety other than the first to third bearings 10, 16, 26 and the ball 6 is made of a synthetic resin material can reduce contact noise with the ball 6 (can be silenced) and can also vibrate vibration. It becomes possible to suppress.
  • the ball speed reducer 1 according to the third and fourth embodiments is formed entirely of a synthetic resin material other than the first to third bearings 10, 16, 26 and the ball 6, the first output side rotation Since the body 8A and the second output side rotating body 8B can be used in common, a single injection mold is sufficient, and the manufacturing cost can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Retarders (AREA)

Abstract

[Problem] To provide a ball reduction gear which has a simple structure and for which the machining workload is low. [Solution] A ball reduction gear 1 is provided with an eccentric disk cam 4 that rotates integrally with input-side rotating bodies 2, 3, a swinging body 5 that is swung by the eccentric disk cam 4, a plurality of balls 6 supported by the swinging body 5, a fixed member 7 positioned radially outward from the swinging body 5, a first output-side rotating body 8A that faces one side surface of the fixed member 7, and a second output-side rotating body 8B that faces the other side surface of the fixed member 7 and is fixed to the first output-side rotating body 8A. A plurality of radial grooves that guide the balls 6 along the radial direction are formed in the fixed member 7. A waveform groove 40 that guides the balls 6 in a waveform shape along the circumferential direction is formed so as to straddle the first output-side rotating body 8A and the second output-side rotating body 8B. The depth of the waveform groove 40 at the crest of the wave is greater than that at the trough of the wave, in an alternating manner on the first output-side rotating body 8A side and the second output-side rotating body 8B side.

Description

ボール減速機Ball reducer
 この発明は、回転を減速して伝達するために使用されるボール減速機に関するものである。 This invention relates to a ball speed reducer used for decelerating and transmitting rotation.
 従来から、ボール減速機は、歯車減速装置と比較して、小型で且つ大きな減速比を得られることから、各種機械(例えば、産業用ロボット、舵角可変式ステアリング装置等)の動力伝達部に使用されている。 Conventionally, the ball speed reducer is smaller and has a larger speed reduction ratio than the gear speed reduction device, so that it can be used as a power transmission unit for various machines (for example, industrial robots, steering angle variable type steering devices, etc.). in use.
 図35は、このような従来のボール減速機100を示す図である。なお、図35(a)は、従来のボール減速機100の縦断面図であり、図35(b)は、図35(a)のA18-A18線に沿って切断して示すボール減速機100の断面図である。 FIG. 35 is a diagram showing such a conventional ball speed reducer 100. FIG. 35A is a longitudinal sectional view of a conventional ball reducer 100, and FIG. 35B is a ball reducer 100 cut along line A18-A18 in FIG. 35A. FIG.
 図35に示すように、ボール減速機100は、入力軸101に形成された偏心カム102の外周側にベアリング103を介して偏心回転板104が取り付けられており、偏心回転板104が偏心カム102によって偏心駆動されるようになっている。また、このボール減速機100は、図示しない出力軸に連結される出力側回転体105が偏心回転板104の径方向内方側の両側にそれぞれ配置されており、入力軸101が出力側回転体105の内周側にベアリング106を介して相対回動できるように支持されている。また、このボール減速機100は、産業用ロボットの一部等に固定される固定部材107が偏心回転板104の径方向外方側の両側にボール108を介してそれぞれ配置されており、出力側回転体105が固定部材107の内周側にベアリング110を介して回動可能に支持されている。そして、偏心回転板104と固定部材107とに挟まれるボール108は、偏心回転板104の側面に形成された第1波形溝(外サイクロイド曲線で形作られる第1サイクロイド溝)111と固定部材107の内側面(偏心回転板104に対向する側面)に形成された第2波形溝(内サイクロイド曲線で形作られる第2サイクロイド溝)112とに転動できるように係合されており、偏心回転板104と固定部材107とを連結している。なお、第2波形溝112の波数は、第1波形溝111の波数よりも2波多くなるように形成されている。 As shown in FIG. 35, in the ball speed reducer 100, an eccentric rotating plate 104 is attached to the outer peripheral side of an eccentric cam 102 formed on the input shaft 101 via a bearing 103, and the eccentric rotating plate 104 is attached to the eccentric cam 102. Is driven eccentrically. Further, in this ball speed reducer 100, output side rotating bodies 105 connected to an output shaft (not shown) are arranged on both sides on the radially inner side of the eccentric rotating plate 104, and the input shaft 101 is an output side rotating body. It is supported on the inner peripheral side of 105 through a bearing 106 so as to be relatively rotatable. Further, in this ball speed reducer 100, fixing members 107 fixed to a part of an industrial robot or the like are arranged on both sides on the radially outer side of the eccentric rotating plate 104 via balls 108, respectively. A rotating body 105 is rotatably supported on the inner peripheral side of the fixed member 107 via a bearing 110. The ball 108 sandwiched between the eccentric rotating plate 104 and the fixing member 107 is formed by a first corrugated groove (first cycloid groove formed by an outer cycloid curve) 111 formed on the side surface of the eccentric rotating plate 104 and the fixing member 107. The eccentric rotating plate 104 is engaged with a second corrugated groove (second cycloid groove formed by an inner cycloid curve) 112 formed on the inner side surface (side surface facing the eccentric rotating plate 104) so as to roll. And the fixing member 107 are connected. The wave number of the second corrugated groove 112 is formed so as to be two more than the wave number of the first corrugated groove 111.
 また、出力側回転体105は、偏心吸収機構113を介して偏心回転板104に連結されている。偏心吸収機構113は、偏心回転板104が出力側回転体105に対して偏心運動するのを可能にするものであり(偏心回転板104の偏心を吸収するものであり)、偏心回転板104の回転を出力側回転体105に伝達するようになっている。この偏心吸収機構113は、偏心回転板104と出力側回転体105との間に介装された複数のボール114と、このボール114を転動可能に収容する偏心回転板104の駆動環状溝115と、出力側回転体105の従動環状溝116とによって構成されている。駆動環状溝115及び従動環状溝116は、偏心カム102の偏心量を考慮して形状及び大きさが決定され、偏心回転板104が入力軸101の回転中心に対して偏心回転する際のボール114の動きを許容し、出力側回転体105がボール114を介して偏心回転板104と一体に回動するのを可能にしている(特許文献1参照)。 Further, the output-side rotator 105 is connected to the eccentric rotating plate 104 via the eccentric absorbing mechanism 113. The eccentric absorbing mechanism 113 allows the eccentric rotating plate 104 to move eccentrically with respect to the output side rotating body 105 (absorbs the eccentricity of the eccentric rotating plate 104). The rotation is transmitted to the output side rotating body 105. The eccentric absorbing mechanism 113 includes a plurality of balls 114 interposed between the eccentric rotating plate 104 and the output-side rotating body 105, and a driving annular groove 115 of the eccentric rotating plate 104 that accommodates the balls 114 in a rollable manner. And a driven annular groove 116 of the output side rotator 105. The shape and size of the driving annular groove 115 and the driven annular groove 116 are determined in consideration of the amount of eccentricity of the eccentric cam 102, and the ball 114 when the eccentric rotating plate 104 rotates eccentrically with respect to the rotation center of the input shaft 101. The output-side rotator 105 can rotate integrally with the eccentric rotating plate 104 via a ball 114 (see Patent Document 1).
 このような従来のボール減速機100は、例えば、偏心回転板104の第1波形溝111の波数をN-2とし、固定部材107の第2波形溝112の波数をNとした場合、入力軸101が図示しない電動機等によって回転駆動されると、偏心回転板104が入力軸101の偏心カム102によって偏心駆動され、出力側回転体105が偏心吸収機構113を介して偏心回転板104と一体となって回転することになるが、出力側回転体105が入力軸101の1回転に対して-2/(N-2)回転(入力軸101の回転方向と逆の方向に2/(N-2)回転)することになる。すなわち、従来のボール減速機100は、偏心回転板104の第1波形溝111の波数をN-2とし、固定部材107の第2波形溝112の波数をNとした場合、減速比が2/(N-2)になる。 In such a conventional ball speed reducer 100, for example, when the wave number of the first wave groove 111 of the eccentric rotating plate 104 is N-2 and the wave number of the second wave groove 112 of the fixed member 107 is N, the input shaft When 101 is rotationally driven by an electric motor (not shown) or the like, the eccentric rotating plate 104 is eccentrically driven by the eccentric cam 102 of the input shaft 101, and the output side rotating body 105 is integrated with the eccentric rotating plate 104 via the eccentric absorbing mechanism 113. The output-side rotator 105 rotates -2 / (N-2) with respect to one rotation of the input shaft 101 (2 / (N- in the direction opposite to the rotation direction of the input shaft 101). 2) Rotate). That is, in the conventional ball speed reducer 100, when the wave number of the first corrugated groove 111 of the eccentric rotating plate 104 is N-2 and the wave number of the second corrugated groove 112 of the fixed member 107 is N, the reduction ratio is 2 / (N-2).
特開平5-10400号公報JP-A-5-10400
 しかしながら、図35に示す従来のボール減速機100は、偏心回転板104の両側面にそれぞれ第1波形溝111が形成され、偏心回転板104の両側にそれぞれ配置された固定部材107の内側面に第2波形溝112が形成されているため、合計4側面(4箇所)に波形溝111,111,112,112を高精度に形成しなければならず、加工工数が嵩むという問題を有していた。 However, in the conventional ball speed reducer 100 shown in FIG. 35, first corrugated grooves 111 are formed on both side surfaces of the eccentric rotating plate 104, and on the inner side surfaces of the fixing members 107 respectively disposed on both sides of the eccentric rotating plate 104. Since the second corrugated groove 112 is formed, the corrugated grooves 111, 111, 112, 112 must be formed with high accuracy on a total of four side surfaces (four locations), and the processing man-hours increase. It was.
 また、図35に示す従来のボール減速機100は、偏心回転板104と出力側回転体105とを一体に回動させるため、出力側回転体105が偏心吸収機構113を介して偏心回転板104に連結されており、構造が複雑であると共に、加工工数が嵩むという問題を有していた。 In addition, since the conventional ball speed reducer 100 shown in FIG. 35 rotates the eccentric rotating plate 104 and the output side rotating body 105 integrally, the output side rotating body 105 is eccentrically rotated via the eccentric absorbing mechanism 113. The structure is complicated and the processing man-hours increase.
 そこで、本発明は、構造が簡単で、加工工数が少ないボール減速機の提供を目的とする。 Therefore, an object of the present invention is to provide a ball speed reducer with a simple structure and a small number of processing steps.
 本発明は、入力側回転体(2,3)の回転を出力側回転体8に減速して伝達するボール減速機1に関するものである。本発明のボール減速機1は、前記入力側回転体(2,3)と一体に回動する偏心円板カム4と、前記偏心円板カム4の外周側に相対回動可能に嵌合され、前記偏心円板カム4によって揺動させられる揺動体5と、前記揺動体5の外周面5bに沿って複数配置されたボール6と、前記揺動体5を揺動できるように径方向内方側に収容すると共に、被固定部材に固定される固定部材7と、前記揺動体5及び前記固定部材7の一方の側面に対向するように配置され、前記入力側回転体(2,3)に相対回動可能に支持された第1出力側回転体8Aと、前記揺動体5及び前記固定部材7の他方の側面に対向するように配置され、前記第1出力側回転体8Aに一体回動できるように固定されると共に、前記入力側回転体(2,3)に相対回動可能に支持され、前記第1出力側回転体8Aと共に前記出力側回転体8を構成する第2出力側回転体8Bと、を備えている。そして、前記揺動体5の外周面5bは、前記偏心円板カム4の中心4aと同心の円筒面である。また、前記固定部材7は、前記入力側回転体(2,3)の回転中心2aに直交する仮想平面において、前記回転中心2aから放射状に延びる方向を径方向とすると、前記ボール6を前記径方向にスライド移動可能に案内する径方向溝38が前記ボール6の数と同数形成されると共に、前記径方向溝38の径方向内方端が前記ボール6の出入りを可能にする開口端になっている。また、前記第1出力側回転体8Aは、前記固定部材7の一方の側面に対向する第1側面部32を有している。また、前記第2出力側回転体8Bは、前記固定部材7の他方の側面に対向する第2側面部41を有している。また、前記第1側面部32及び前記第2側面部41は、前記仮想平面において、前記回転中心2aを中心とする仮想円の外縁に沿った方向を周方向とすると、前記ボール6を前記周方向に沿って波形状に案内する環状の波形溝40,56,60が形成されている。 The present invention relates to a ball speed reducer 1 that decelerates and transmits the rotation of an input side rotating body (2, 3) to an output side rotating body 8. A ball speed reducer 1 according to the present invention is fitted to an eccentric disk cam 4 that rotates integrally with the input side rotating body (2, 3), and an outer peripheral side of the eccentric disk cam 4 so as to be relatively rotatable. The rocking body 5 swung by the eccentric disc cam 4, a plurality of balls 6 arranged along the outer peripheral surface 5 b of the rocking body 5, and the radially inward so that the rocking body 5 can be swung. The fixed member 7 that is housed on the side and fixed to the fixed member, and is disposed so as to face one side surface of the rocking body 5 and the fixed member 7, and is disposed on the input side rotating body (2, 3). The first output-side rotator 8A supported so as to be relatively rotatable, and disposed so as to oppose the other side surfaces of the swinging body 5 and the fixing member 7, and rotate integrally with the first output-side rotator 8A. It is fixed so as to be able to be supported and is supported by the input side rotating body (2, 3) so as to be relatively rotatable. Is, a, a second output-side rotating body 8B constituting the output-side rotary member 8 together with the first output rotary member 8A. The outer peripheral surface 5 b of the rocking body 5 is a cylindrical surface concentric with the center 4 a of the eccentric disc cam 4. Further, the fixing member 7 is configured such that the radial direction of the radial direction from the rotation center 2a in the virtual plane orthogonal to the rotation center 2a of the input-side rotator (2, 3) The number of radial grooves 38 that are slidably guided in the direction is formed in the same number as the number of the balls 6, and the radially inner end of the radial groove 38 is an open end that allows the balls 6 to enter and exit. ing. Further, the first output side rotating body 8 </ b> A has a first side surface portion 32 that faces one side surface of the fixing member 7. Further, the second output side rotating body 8B has a second side surface portion 41 facing the other side surface of the fixing member 7. In addition, the first side surface portion 32 and the second side surface portion 41 may be configured so that the ball 6 is rotated around the virtual plane when the direction along the outer edge of the virtual circle centered on the rotation center 2a is the circumferential direction. Annular corrugated grooves 40, 56, and 60 are formed to guide in a wave shape along the direction.
 本発明に係るボール減速機は、揺動体及び固定部材に対向する第1出力側回転体の第1側面部と第2出力側回転体の第2側面部の2箇所にのみ波形溝を形成するようになっているため、波形溝を4側面にそれぞれ形成する従来例と比較し、加工工数の削減が可能になる。また、本発明に係るボール減速機は、揺動体が出力側回転体(第1出力側回転体、第2出力側回転体)及び固定部材に対して独立して揺動できるようになっているため、出力側回転体と揺動体とを一体に回動させるための複雑な機構が不要になり、構造が簡単化し、加工工数の削減が可能になる。 In the ball speed reducer according to the present invention, the corrugated groove is formed only at two locations of the first side surface portion of the first output side rotating body and the second side surface portion of the second output side rotating body facing the rocking body and the fixing member. Therefore, the number of processing steps can be reduced as compared with the conventional example in which the corrugated grooves are formed on the four side surfaces. In the ball speed reducer according to the present invention, the swinging body can swing independently with respect to the output side rotating body (first output side rotating body, second output side rotating body) and the fixed member. Therefore, a complicated mechanism for integrally rotating the output side rotating body and the swinging body is not required, the structure is simplified, and the number of processing steps can be reduced.
本発明の第1実施形態に係るボール減速機の縦断面図である。1 is a longitudinal sectional view of a ball speed reducer according to a first embodiment of the present invention. 本発明の第1実施形態に係るボール減速機の入力軸(入力側回転体)を示す図であり、図2(a)は入力軸の正面図(先端面を示す図)、図2(b)は入力軸の側面図、図2(c)は入力軸の後端面を示す図である。It is a figure which shows the input shaft (input side rotary body) of the ball reducer which concerns on 1st Embodiment of this invention, Fig.2 (a) is a front view (figure which shows a front end surface) of an input shaft, FIG.2 (b) ) Is a side view of the input shaft, and FIG. 2C is a view showing a rear end surface of the input shaft. 本発明の第1実施形態に係るボール減速機のキャップ(入力側回転体)を示す図であり、図3(a)はキャップの正面図、図3(b)は図3(a)のA1-A1線に沿って切断して示すキャップの断面図、図3(c)はキャップの背面図である。It is a figure which shows the cap (input side rotary body) of the ball reducer which concerns on 1st Embodiment of this invention, Fig.3 (a) is a front view of a cap, FIG.3 (b) is A1 of Fig.3 (a). FIG. 3C is a cross-sectional view of the cap cut along the line A1 and FIG. 3C is a rear view of the cap. 本発明の第1実施形態に係るボール減速機の揺動体を示す図であり、図4(a)は揺動体の正面図、図4(b)は図4(a)のA2-A2線に沿って切断して示す揺動体の断面図である。It is a figure which shows the rocking body of the ball | bowl speed reducer which concerns on 1st Embodiment of this invention, Fig.4 (a) is a front view of a rocking body, FIG.4 (b) is the A2-A2 line | wire of Fig.4 (a). It is sectional drawing of the rocking body cut | disconnected and shown along. 本発明の第1実施形態に係るボール減速機の固定部材を示す図であり、図5(a)は固定部材の正面図、図5(b)は図5(a)のA3-A3線に沿って切断して示す固定部材の断面図である。It is a figure which shows the fixing member of the ball | bowl speed reducer which concerns on 1st Embodiment of this invention, Fig.5 (a) is a front view of a fixing member, FIG.5 (b) is the A3-A3 line | wire of Fig.5 (a). It is sectional drawing of the fixing member cut | disconnected and shown along. 本発明の第1実施形態に係るボール減速機の第1出力側回転体を示す図であり、図6(a)は第1出力側回転体の正面図、図6(b)は図6(a)のA4-A4線に沿って切断して示す第1出力側回転体の断面図である。It is a figure which shows the 1st output side rotary body of the ball reducer which concerns on 1st Embodiment of this invention, Fig.6 (a) is a front view of a 1st output side rotary body, FIG.6 (b) is FIG. It is sectional drawing of the 1st output side rotary body cut | disconnected and shown along the A4-A4 line of a). 本発明の第1実施形態に係るボール減速機の第2出力側回転体を示す図であり、図7(a)は第2出力側回転体の正面図、図7(b)は図7(a)のA5-A5線に沿って切断して示す第2出力側回転体の断面図である。It is a figure which shows the 2nd output side rotary body of the ball reducer which concerns on 1st Embodiment of this invention, Fig.7 (a) is a front view of a 2nd output side rotary body, FIG.7 (b) is FIG. It is sectional drawing of the 2nd output side rotary body cut | disconnected and shown along the A5-A5 line of a). 本発明の第1実施形態に係るボール減速機の波形溝を簡略化して示す斜視図である。It is a perspective view which simplifies and shows the waveform groove | channel of the ball reducer which concerns on 1st Embodiment of this invention. ボールが波形溝内を転動させられた場合のボールの転動軌跡を示す図であり、図9(a)はボールの転動軌跡の平面図、図9(b)は図9(a)のA6-A6線に沿って切断して示す仮想断面上に転動軌跡の波を投影して示す図である。It is a figure which shows the rolling locus | trajectory of a ball | bowl when a ball is rolled in the waveform groove | channel, Fig.9 (a) is a top view of a ball rolling locus | trajectory, FIG.9 (b) is FIG.9 (a). FIG. 7 is a diagram showing a rolling locus wave projected onto a virtual cross section cut along the line A6-A6. 図10(a)は波形溝の第1変形例を説明するための図であり、図10(b)は波形溝の第2変形例を説明するための図である。FIG. 10A is a diagram for explaining a first modified example of the corrugated groove, and FIG. 10B is a diagram for explaining a second modified example of the corrugated groove. 本発明の第2実施形態に係るボール減速機の縦断面図である。It is a longitudinal cross-sectional view of the ball reducer which concerns on 2nd Embodiment of this invention. 図12(a)は第1出力側回転体の正面図であり、図12(b)は図12(a)のA7-A7線に沿って切断して示す第1出力側回転体の断面図である。12A is a front view of the first output-side rotator, and FIG. 12B is a cross-sectional view of the first output-side rotator taken along line A7-A7 in FIG. 12A. It is. 図13(a)は第2出力側回転体の正面図であり、図13(b)は図13(a)のA8-A8線に沿って切断して示す第2出力側回転体の断面図である。13A is a front view of the second output-side rotator, and FIG. 13B is a cross-sectional view of the second output-side rotator taken along line A8-A8 in FIG. 13A. It is. 本発明の第3実施形態に係るボール減速機の縦断面図である。It is a longitudinal cross-sectional view of the ball reducer which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係るボール減速機のキャップ及び第2出力側回転体を取り外して示す正面図である。It is a front view which removes and shows the cap and 2nd output side rotating body of the ball reducer concerning a 3rd embodiment of the present invention. 本発明の第3実施形態に係るボール減速機の入力軸(入力側回転体)を示す図であり、図16(a)は入力軸の正面図(先端面を示す図)、図16(b)は入力軸の側面図、図16(c)は図16(a)のA9-A9線に沿って切断して示す断面図である。It is a figure which shows the input shaft (input side rotary body) of the ball reducer which concerns on 3rd Embodiment of this invention, Fig.16 (a) is a front view (figure which shows a front end surface) of an input shaft, FIG.16 (b) ) Is a side view of the input shaft, and FIG. 16C is a cross-sectional view taken along line A9-A9 in FIG. 本発明の第3実施形態に係るボール減速機のキャップ(入力側回転体)を示す図であり、図17(a)はキャップの正面図、図17(b)はキャップの側面図、図17(c)は図17(a)のA10-A10線に沿って切断して示すキャップの断面図である。It is a figure which shows the cap (input side rotary body) of the ball reducer which concerns on 3rd Embodiment of this invention, Fig.17 (a) is a front view of a cap, FIG.17 (b) is a side view of a cap, FIG. FIG. 18C is a sectional view of the cap cut along the line A10-A10 in FIG. 本発明の第3実施形態に係るボール減速機の揺動体を示す図であり、図18(a)は揺動体の正面図、図18(b)は図18(a)のA11-A11線に沿って切断して示す揺動体の断面図である。It is a figure which shows the rocking body of the ball reducer which concerns on 3rd Embodiment of this invention, FIG.18 (a) is a front view of a rocking body, FIG.18 (b) is the A11-A11 line | wire of Fig.18 (a). It is sectional drawing of the rocking body cut | disconnected and shown along. 本発明の第3実施形態に係るボール減速機の固定部材を示す図であり、図19(a)は固定部材の正面図、図19(b)は図19(a)のA12-A12線に沿って切断して示す固定部材の断面図である。It is a figure which shows the fixing member of the ball reducer which concerns on 3rd Embodiment of this invention, Fig.19 (a) is a front view of a fixing member, FIG.19 (b) is the A12-A12 line | wire of Fig.19 (a). It is sectional drawing of the fixing member cut | disconnected and shown along. 本発明の第3実施形態に係るボール減速機の第1出力側回転体を示す図であり、図20(a)は第1出力側回転体の正面図、図20(b)は第1出力側回転体の側面図、図20(c)は図20(a)のA13-A13線に沿って切断して示す第1出力側回転体の断面図である。It is a figure which shows the 1st output side rotary body of the ball reducer which concerns on 3rd Embodiment of this invention, Fig.20 (a) is a front view of a 1st output side rotary body, FIG.20 (b) is a 1st output. FIG. 20C is a cross-sectional view of the first output-side rotator cut along the line A13-A13 in FIG. 20A. 本発明の第3実施形態に係るボール減速機の第2出力側回転体を示す図であり、図21(a)は第2出力側回転体の正面図、図21(b)は第2出力側回転体の側面図、図21(c)は図21(a)のA14-A14線に沿って切断して示す第2出力側回転体の断面図である。It is a figure which shows the 2nd output side rotary body of the ball reducer which concerns on 3rd Embodiment of this invention, Fig.21 (a) is a front view of a 2nd output side rotary body, FIG.21 (b) is a 2nd output. FIG. 21C is a sectional view of the second output-side rotator cut along the line A14-A14 in FIG. 21A. 本発明の第3実施形態に係るボール減速機の波形溝内を転動させられたボールの転動軌跡を示す図であり、図22(a)はボールの転動軌跡の平面図、図22(b)は図22(a)のA15-A15線に沿って切断して示す仮想断面上に転動軌跡の波を投影して示す図、図22(c)は図22(b)のボールの転動軌跡を拡大して示す図である。It is a figure which shows the rolling locus | trajectory of the ball rolled within the waveform groove | channel of the ball reducer which concerns on 3rd Embodiment of this invention, Fig.22 (a) is a top view of a ball rolling locus | trajectory, FIG. FIG. 22B is a diagram showing the rolling locus wave projected on a virtual cross section cut along the line A15-A15 in FIG. 22A, and FIG. 22C shows the ball in FIG. It is a figure which expands and shows the rolling locus | trajectory. 本発明の第3実施形態に係るボール減速機の波形溝の特徴を示す図であり、図23(a)はボールの転動軌跡のうちの山頂にボールが位置する状態を示す図、図23(b)はボール減速機を図23(a)のA16-A16線に対応する位置で切断した場合の円筒断面図である。It is a figure which shows the characteristic of the waveform groove | channel of the ball | bowl speed reducer which concerns on 3rd Embodiment of this invention, FIG.23 (a) is a figure which shows the state in which a ball | bowl is located in the peak of the rolling locus of a ball | bowl, FIG. 24B is a cylindrical cross-sectional view of the ball speed reducer cut at a position corresponding to line A16-A16 in FIG. 本発明の第3実施形態に係るボール減速機の波形溝の特徴を示す図であり、図24(a)はボールの転動軌跡のうちの山頂と谷底の中間位置にボールが位置する状態を示す図、図24(b)はボール減速機を図24(a)のA17-A17線に対応する位置で切断した場合の円筒断面図である。It is a figure which shows the characteristic of the waveform groove | channel of the ball | bowl speed reducer which concerns on 3rd Embodiment of this invention, and Fig.24 (a) shows the state which a ball | bowl is located in the intermediate position of the mountain peak and valley bottom of the rolling trajectory of a ball | bowl. FIG. 24B is a cylindrical cross-sectional view when the ball speed reducer is cut at a position corresponding to the line A17-A17 in FIG. 図25(a)は本発明の第3実施形態の第1変形例に係るボールの転動軌跡を示す図(図22(c)に対応する図)であり、図25(b)は本発明の第3実施形態の第2変形例に係るボールの転動軌跡を示す図(図22(c)に対応する図)である。FIG. 25 (a) is a diagram (corresponding to FIG. 22 (c)) showing the rolling locus of the ball according to the first modification of the third embodiment of the present invention, and FIG. 25 (b) is the present invention. It is a figure (figure corresponding to Drawing 22 (c)) showing a rolling locus of a ball concerning the 2nd modification of a 3rd embodiment. 本発明の第4実施形態に係るボール減速機を示す図であり、図26(a)はボール減速機の正面図、図26(b)はボール減速機の側面図である。It is a figure which shows the ball reducer which concerns on 4th Embodiment of this invention, Fig.26 (a) is a front view of a ball reducer, FIG.26 (b) is a side view of a ball reducer. 図26(a)のA18-A18線に沿って切断して示すボール減速機の断面図である。FIG. 27 is a cross-sectional view of the ball speed reducer shown cut along line A18-A18 in FIG. 本発明の第4実施形態に係るボール減速機のキャップ及び第2出力側回転体を取り外して示す正面図である。It is a front view which removes and shows the cap and 2nd output side rotating body of the ball reducer concerning a 4th embodiment of the present invention. 本発明の第4実施形態に係るボール減速機の入力軸(入力側回転体)を示す図であり、図29(a)は入力軸の正面図(先端面を示す図)、図29(b)は入力軸の側面図、図29(c)は入力軸の背面図(後端面を示す図)、図29(d)は図29(a)のA19-A19線に沿って切断して示す断面図である。It is a figure which shows the input shaft (input side rotary body) of the ball reducer which concerns on 4th Embodiment of this invention, Fig.29 (a) is a front view (figure which shows a front end surface) of an input shaft, FIG.29 (b) ) Is a side view of the input shaft, FIG. 29 (c) is a rear view of the input shaft (showing the rear end surface), and FIG. 29 (d) is cut along line A19-A19 in FIG. 29 (a). It is sectional drawing. 本発明の第4実施形態に係るボール減速機のキャップ(入力側回転体)を示す図であり、図30(a)はキャップの正面図、図30(b)はキャップの側面図、図30(c)はキャップの背面図、図30(d)は図30(a)のA20-A20線に沿って切断して示すキャップの断面図である。It is a figure which shows the cap (input side rotary body) of the ball reducer which concerns on 4th Embodiment of this invention, Fig.30 (a) is a front view of a cap, FIG.30 (b) is a side view of a cap, FIG. FIG. 30C is a rear view of the cap, and FIG. 30D is a sectional view of the cap cut along the line A20-A20 in FIG. 30A. 本発明の第4実施形態に係るボール減速機の揺動体を示す図であり、図31(a)は揺動体の正面図、図31(b)は揺動体の側面図、図31(c)は揺動体の背面図、図31(d)は図31(a)のA21-A21線に沿って切断して示す揺動体の断面図、図31(e)は図31(b)のB1部の拡大図である。It is a figure which shows the rocking body of the ball reducer which concerns on 4th Embodiment of this invention, Fig.31 (a) is a front view of a rocking body, FIG.31 (b) is a side view of a rocking body, FIG.31 (c) Is a rear view of the oscillating body, FIG. 31 (d) is a cross-sectional view of the oscillating body cut along the line A21-A21 in FIG. 31 (a), and FIG. 31 (e) is a section B1 in FIG. 31 (b). FIG. 本発明の第4実施形態に係るボール減速機の固定部材を示す図であり、図32(a)は固定部材の正面図、図32(b)は固定部材の側面図、図32(c)は固定部材の背面図、図32(d)は図32(a)のA22-A22線に沿って切断して示す固定部材の断面図、図32(e)図32(a)のB2部の拡大図、図32(f)は図32(e)のA23-A23線に沿って切断して示す断面図である。It is a figure which shows the fixing member of the ball reducer which concerns on 4th Embodiment of this invention, Fig.32 (a) is a front view of a fixing member, FIG.32 (b) is a side view of a fixing member, FIG.32 (c). Is a rear view of the fixing member, FIG. 32D is a cross-sectional view of the fixing member cut along the line A22-A22 of FIG. 32A, and FIG. 32E is a cross-sectional view of B2 portion of FIG. FIG. 32 (f) is an enlarged view and a cross-sectional view taken along line A23-A23 of FIG. 32 (e). 本発明の第4実施形態に係るボール減速機の第1出力側回転体を示す図であり、図33(a)は第1出力側回転体の波形溝が形成された正面図、図33(b)は第1出力側回転体の側面図、図33(c)は図33(a)のA24-A24線に沿って切断して示す第1出力側回転体の断面図、図33(d)は第1出力側回転体の背面図である。It is a figure which shows the 1st output side rotary body of the ball reducer which concerns on 4th Embodiment of this invention, FIG.33 (a) is a front view in which the waveform groove | channel of the 1st output side rotary body was formed, FIG. b) is a side view of the first output-side rotating body, FIG. 33C is a cross-sectional view of the first output-side rotating body cut along the line A24-A24 in FIG. 33A, and FIG. ) Is a rear view of the first output side rotator. 本発明の第4実施形態に係るボール減速機の第2出力側回転体を示す図であり、図34(a)は第2出力側回転体の波形溝が形成された正面図、図34(b)は第2出力側回転体の側面図、図34(c)は図34(a)のA25-A25線に沿って切断して示す第2出力側回転体の断面図、図34(d)は第2出力側回転体の背面図である。It is a figure which shows the 2nd output side rotary body of the ball reducer which concerns on 4th Embodiment of this invention, Fig.34 (a) is a front view in which the waveform groove | channel of the 2nd output side rotary body was formed, FIG. b) is a side view of the second output side rotator, FIG. 34C is a sectional view of the second output side rotator cut along the line A25-A25 in FIG. 34A, and FIG. ) Is a rear view of the second output side rotator. 従来のボール減速機を示す図であり、図35(a)はボール減速機の縦断面図、図35(b)は図35(a)のA26-A26線に沿って切断して示す断面図である。FIG. 35A is a view showing a conventional ball reducer, FIG. 35A is a longitudinal sectional view of the ball reducer, and FIG. 35B is a sectional view taken along line A26-A26 of FIG. 35A. It is.
 以下、本発明の実施形態を図面に基づき詳述する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 [第1実施形態]
 図1は、本発明の第1実施形態に係るボール減速機1の縦断面図である。この図1に示すように、本実施形態に係るボール減速機1は、入力軸(入力側回転体)2、キャップ(入力側回転体)3、偏心円板カム4、揺動体5、複数のボール(鋼球)6、固定部材7、及び出力側回転体8(第1出力側回転体8A、第2出力側回転体8B)等で構成されている。
[First embodiment]
FIG. 1 is a longitudinal sectional view of a ball speed reducer 1 according to a first embodiment of the present invention. As shown in FIG. 1, a ball speed reducer 1 according to this embodiment includes an input shaft (input-side rotating body) 2, a cap (input-side rotating body) 3, an eccentric disk cam 4, an oscillating body 5, and a plurality of A ball (steel ball) 6, a fixing member 7, and an output side rotating body 8 (first output side rotating body 8 </ b> A, second output side rotating body 8 </ b> B) are configured.
 図1及び図2に示すように、入力軸2は、第1ベアリング10を介して第1出力側回転体8Aを回動自在に支持しており、図示しない電動機等によって回転駆動されるようになっている。この入力軸2は、軸本体部11よりも大径の鍔状部12が軸本体部11に隣接して形成され、その鍔状部12に隣接して軸受支持部13が形成され、その軸受支持部13に第1ベアリング10が取り付けられ、第1ベアリング10を第1出力側回転体8Aの軸受穴14の内周側突起15と鍔状部12との間に保持するようになっている。また、この入力軸2は、軸受支持部13よりも軸先端側で且つ軸受支持部13に隣接する位置に偏心円板カム4が形成されている。この偏心円板カム4は、その中心4aが入力軸2の回転中心2a(軸本体部11の回転中心11a)に対して偏心量(e)だけ偏心して位置する偏心軸部であり、入力軸2の回転中心2aの回りに入力軸2と一体となって偏心回転する。そして、偏心円板カム4の外周側には、揺動体5が第2ベアリング16を介して相対回動可能に取り付けられている。また、入力軸2は、キャップ3を取り付ける先端軸部17が形成されている。この先端軸部17は、その回転中心が軸本体部2の回転中心2aと同心であり、キャップ3の軸穴18に嵌合され、先端面17aがキャップ3の軸穴18内に突出するストッパ突起20に突き当てられている。また、入力軸2の先端軸部17には、キャップ3を固定するためのボルト21のねじ軸部21aと螺合するねじ穴(雌ねじ)22が形成されている。なお、以下の説明において、入力軸2の回転中心2aに直交する仮想平面を考えた場合、径方向とは、その仮想平面上を回転中心2aから放射状に延びる方向をいうものとする。また、入力軸2の回転中心2aに直交する仮想平面を考えた場合、周方向とは、入力軸2の回転中心2aを中心とする仮想円の外縁に沿った方向をいうものとする。 As shown in FIGS. 1 and 2, the input shaft 2 rotatably supports the first output side rotating body 8 </ b> A via the first bearing 10 and is driven to rotate by an electric motor (not shown) or the like. It has become. The input shaft 2 includes a shaft-shaped portion 12 having a diameter larger than that of the shaft main body portion 11, adjacent to the shaft main body portion 11, and a bearing support portion 13 formed adjacent to the shaft-shaped portion 12. The first bearing 10 is attached to the support portion 13, and the first bearing 10 is held between the inner peripheral projection 15 of the bearing hole 14 of the first output side rotating body 8 </ b> A and the flange-shaped portion 12. . Further, the input shaft 2 has an eccentric disc cam 4 formed at a position closer to the shaft tip side than the bearing support portion 13 and adjacent to the bearing support portion 13. The eccentric disc cam 4 is an eccentric shaft portion whose center 4a is eccentric with respect to the rotation center 2a of the input shaft 2 (the rotation center 11a of the shaft main body 11) by an eccentric amount (e). 2 is rotated together with the input shaft 2 around the rotation center 2a. And the rocking | fluctuation body 5 is attached to the outer peripheral side of the eccentric disk cam 4 via the 2nd bearing 16 so that relative rotation is possible. Further, the input shaft 2 is formed with a tip shaft portion 17 to which the cap 3 is attached. The distal end shaft portion 17 has a rotation center concentric with the rotation center 2 a of the shaft main body portion 2, is fitted into the shaft hole 18 of the cap 3, and a stopper whose distal end surface 17 a protrudes into the shaft hole 18 of the cap 3. It is abutted against the protrusion 20. In addition, a screw hole (female screw) 22 that is screwed with a screw shaft portion 21 a of a bolt 21 for fixing the cap 3 is formed in the distal end shaft portion 17 of the input shaft 2. In the following description, when a virtual plane orthogonal to the rotation center 2a of the input shaft 2 is considered, the radial direction means a direction extending radially from the rotation center 2a on the virtual plane. When a virtual plane orthogonal to the rotation center 2a of the input shaft 2 is considered, the circumferential direction refers to a direction along the outer edge of the virtual circle centered on the rotation center 2a of the input shaft 2.
 図1及び図3に示すように、キャップ3は、入力軸2の先端軸部17にボルト21で固定され、入力軸2と共に入力側回転体を構成し、回転中心3aが入力軸2の回転中心2aと一致するように形成されている。このキャップ3は、回転中心3aに沿った一端側(図3(b)の右端側)に開口する軸穴18と、回転中心3aに沿った他端側(図3(b)の左端側)に開口するボルト頭部収容穴23と、ボルト頭部収容穴23と軸穴18とを連通するボルト軸部挿通穴24と、が形成されている。また、このキャップ3は、円筒状の外周面3bの一端側にリング状の軸受ストッパ25が形成され、外周面3bに取り付けられた第3ベアリング26の側面が軸受ストッパ25に突き当てられており、第2出力側回転体8Bの軸受穴27内の内周側突起28と軸受ストッパ25との間に第3ベアリング26を保持するようになっている。なお、キャップ3は、軸穴18の回転中心及び外周面3bの回転中心がキャップ3の回転中心3aと同心である。 As shown in FIGS. 1 and 3, the cap 3 is fixed to the distal end shaft portion 17 of the input shaft 2 with a bolt 21 and constitutes an input side rotating body together with the input shaft 2, and the rotation center 3 a is the rotation of the input shaft 2. It is formed so as to coincide with the center 2a. The cap 3 has an axial hole 18 that opens to one end side along the rotation center 3a (the right end side in FIG. 3B) and the other end side along the rotation center 3a (the left end side in FIG. 3B). And a bolt head part insertion hole 24 that connects the bolt head part accommodation hole 23 and the shaft hole 18 to each other. The cap 3 has a ring-shaped bearing stopper 25 formed on one end of the cylindrical outer peripheral surface 3b, and the side surface of the third bearing 26 attached to the outer peripheral surface 3b is abutted against the bearing stopper 25. The third bearing 26 is held between the inner peripheral projection 28 and the bearing stopper 25 in the bearing hole 27 of the second output side rotating body 8B. In the cap 3, the rotation center of the shaft hole 18 and the rotation center of the outer peripheral surface 3 b are concentric with the rotation center 3 a of the cap 3.
 図1及び図4に示すように、揺動体5は、偏心円板カム4によって揺動させられるように円板状に形成され、中心の軸受穴30が第2ベアリング16の外周面に嵌合され、偏心円板カム4と相対回動できるように第2ベアリング16で支持されている。この揺動体5は、その中心5aが偏心円板カム4の中心4aと同心となるように形成され、外周面5bが偏心円板カム4の中心4aと同心の円筒面であり、外周面5bで複数のボール6を転動可能に支持している。また、揺動体5は、軸受穴30の径方向外方側に、周方向に沿って8カ所の貫通穴31が等間隔で形成されている。この揺動体5の貫通穴31は、第1出力側回転体8Aの第1側面部32に形成された連結突起33が隙間をもって係合され、揺動体5が偏心円板カム4で揺動させられた際にも連結突起33に接触しない大きさに形成されている。 As shown in FIGS. 1 and 4, the oscillating body 5 is formed in a disc shape so as to be oscillated by the eccentric disc cam 4, and the center bearing hole 30 is fitted to the outer peripheral surface of the second bearing 16. The second bearing 16 supports the eccentric disc cam 4 so that it can rotate relative to the eccentric disc cam 4. The oscillating body 5 is formed such that the center 5a is concentric with the center 4a of the eccentric disc cam 4, the outer peripheral surface 5b is a cylindrical surface concentric with the center 4a of the eccentric disc cam 4, and the outer peripheral surface 5b. A plurality of balls 6 are supported so as to roll. Further, in the oscillator 5, eight through holes 31 are formed at equal intervals along the circumferential direction on the radially outer side of the bearing hole 30. In the through hole 31 of the rocking body 5, the connecting projection 33 formed on the first side surface portion 32 of the first output side rotating body 8 </ b> A is engaged with a gap, and the rocking body 5 is rocked by the eccentric disc cam 4. It is formed in such a size that it does not come into contact with the connecting projection 33 even when it is applied.
 図1及び図5に示すように、固定部材7は、正面側の形状が略四角形状であり、中心部に揺動体収容穴34が形成されている。この固定部材7は、外縁に沿うように形成された固定枠部35と、この固定枠部35の径方向内方側に形成された径方向溝形成円板部36と、を有している。そして、固定部材7は、固定枠部35の四隅にボルト穴37が形成され、この四箇所のボルト穴37に固定用ボルト(図示せず)が挿入され、図示しない被固定部材(例えば、機械のフレーム、又はロボットのアーム)に固定用ボルトで固定されるようになっている。この固定部材7は、揺動体収容穴34の中心34aが入力軸2の回転中心2aと同心となるように被固定部材に固定される。そして、固定部材7の揺動体収容穴34には、揺動体5が揺動できるように収容される。また、この固定部材7は、揺動体収容穴34の内周面34bから径方向に沿って延びる径方向溝38が周方向に沿って等間隔で複数(波形溝40の波数をNとすると、(N+1)/3箇所)形成されている。この径方向溝38は、径方向内方端がボール6の出入りを可能にする開口端であり、溝幅がボール6の直径よりも僅かに大きく形成され、溝長さ(径方向長さ)が揺動体5の揺動量(偏心円板カム4の偏心量e)を考慮した長さに形成され、揺動体5の外周面5bに支持されたボール6が径方向に沿ってスライド移動させられるようになっている。また、この固定部材7は、径方向溝形成円板部36の板厚がボール6の直径よりも小さく形成されており、径方向溝38に係合されたボール6の中心を径方向溝形成円板部36の板厚方向中心位置に合致させた場合、ボール6が径方向溝形成円板部36の両側に均等に出っ張り、その径方向溝38内のボール6が出力側回転体8に形成された波形溝40に転動可能に係合されるようになっている。このような固定部材7の径方向溝30は、偏心円板カム4が1回転し、揺動体5が1ストローク分だけ揺動させられると、ボール6を揺動体5の揺動量に応じた分だけ径方向に転動させることができる。なお、本実施形態において、固定部材7の径方向溝形成円板部36は、その板厚が揺動体5の板厚と同一寸法になっている。 As shown in FIGS. 1 and 5, the fixing member 7 has a substantially square shape on the front side, and a swinging body accommodation hole 34 is formed at the center. The fixing member 7 has a fixed frame portion 35 formed along the outer edge, and a radial groove forming disk portion 36 formed on the radially inner side of the fixed frame portion 35. . The fixing member 7 has bolt holes 37 formed at the four corners of the fixing frame portion 35, and fixing bolts (not shown) are inserted into the bolt holes 37 at the four locations. Frame or robot arm) with fixing bolts. The fixing member 7 is fixed to the member to be fixed so that the center 34 a of the swinging body accommodation hole 34 is concentric with the rotation center 2 a of the input shaft 2. Then, the oscillating body 5 is accommodated in the oscillating body accommodation hole 34 of the fixing member 7 so as to be able to oscillate. The fixing member 7 includes a plurality of radial grooves 38 extending in the radial direction from the inner peripheral surface 34b of the oscillator housing hole 34 at equal intervals along the circumferential direction (assuming that the wave number of the corrugated groove 40 is N. (N + 1) / 3 locations). The radial groove 38 is an open end that allows the ball 6 to enter and exit, and has a groove width slightly larger than the diameter of the ball 6, and has a groove length (radial length). Is formed in a length that takes into account the amount of oscillation of the oscillating body 5 (the amount of eccentricity e of the eccentric disc cam 4), and the ball 6 supported on the outer peripheral surface 5b of the oscillating body 5 is slid along the radial direction. It is like that. Further, the fixing member 7 is formed such that the thickness of the radial groove forming disk portion 36 is smaller than the diameter of the ball 6, and the center of the ball 6 engaged with the radial groove 38 is formed in the radial groove. When matched with the center position in the plate thickness direction of the disc portion 36, the balls 6 protrude evenly on both sides of the radial groove forming disc portion 36, and the balls 6 in the radial grooves 38 are directed to the output side rotating body 8. The corrugated groove 40 formed is engaged so as to be able to roll. Such a radial groove 30 of the fixing member 7 is such that when the eccentric disk cam 4 rotates once and the rocking body 5 is swung by one stroke, the ball 6 is divided according to the rocking amount of the rocking body 5. Can only roll in the radial direction. In the present embodiment, the radial groove-forming disk portion 36 of the fixing member 7 has the same thickness as that of the oscillator 5.
 図1及び図6に示すように、第1出力側回転体8Aは、揺動体5の両側面5c,5dのうちの一方の側面5c、及び固定部材7の径方向溝形成円板部36の両側面36a,36bのうちの一方の側面36aに対向して位置する第1側面部32を有している。また、第1出力側回転体8Aは、入力軸2に取り付けられた第1ベアリング10を収容する軸受穴14が形成され、第1ベアリング10のアウターレースの側面が軸受穴14の端部に形成された内周側突起15に突き当てられるようになっている。この第1出力側回転体8Aの第1側面部32は、第2出力側回転体8Bを連結固定するための連結突起33が周方向に等間隔で複数(8箇所)形成されている。この連結突起33は、揺動体5の貫通穴31を貫通して第2出力側回転体8Bの第2側面部41に形成された連結突起収容凹部42に嵌合されるようになっている。そして、この連結突起33には、第2出力側回転体8Bをボルト43で固定するためのねじ穴(雌ねじ)44が形成されている。また、第1出力側回転体8Aの第1側面部32は、隣り合う連結突起33,33間に接触逃がし凹所45が形成され、その接触逃がし凹所45内にグリース等の潤滑剤が適宜収容される。また、第1出力側回転体8Aの第1側面部32は、連結突起33及び接触逃がし凹所45の径方向外方側に波形溝40が形成されている。 As shown in FIGS. 1 and 6, the first output-side rotator 8 </ b> A includes one of the side surfaces 5 c of both the side surfaces 5 c and 5 d of the oscillating body 5 and the radial groove forming disk portion 36 of the fixing member 7. It has the 1st side part 32 located facing one side surface 36a of both side surfaces 36a and 36b. The first output-side rotating body 8 </ b> A is formed with a bearing hole 14 that accommodates the first bearing 10 attached to the input shaft 2, and the side surface of the outer race of the first bearing 10 is formed at the end of the bearing hole 14. It is made to abut against the inner peripheral projection 15 made. In the first side surface portion 32 of the first output side rotator 8A, a plurality (eight locations) of connection protrusions 33 for connecting and fixing the second output side rotator 8B are formed at equal intervals in the circumferential direction. The connection protrusion 33 is adapted to be fitted into a connection protrusion receiving recess 42 formed in the second side surface portion 41 of the second output side rotating body 8B through the through hole 31 of the rocking body 5. The connection protrusion 33 is formed with a screw hole (female screw) 44 for fixing the second output-side rotator 8B with the bolt 43. Further, the first side surface portion 32 of the first output side rotating body 8A has a contact relief recess 45 formed between the adjacent connecting projections 33, 33, and a lubricant such as grease is appropriately placed in the contact relief recess 45. Be contained. Further, the first side surface portion 32 of the first output side rotating body 8A has a corrugated groove 40 formed on the radially outward side of the connecting projection 33 and the contact relief recess 45.
 図1及び図7に示すように、第2出力側回転体8Bは、揺動体5の両側面5c、5dのうちの他方の側面5d、及び固定部材7の径方向溝形成円板部36の両側面36a,36bのうちの他方の側面36bに対向して位置する第2側面部41を有している。この第2出力側回転体8Bの第2側面部41は、第1出力側回転体8Aの連結突起33に対向する位置に、連結突起33に嵌合される連結突起収容凹部42が連結突起33と同数形成されている。また、第2出力側回転体8Bの第2側面部41は、隣り合う連結突起収容凹部42,42間に接触逃がし凹所46が形成され、その接触逃がし凹所46内にグリース等の潤滑剤が適宜収容される。また、第2出力側回転体8Bは、キャップ3に取り付けられた第3ベアリング26を収容する軸受穴27が形成され、第3ベアリング26のアウターレースの側面が軸受穴27の端部に形成された内周側突起28に突き当てられるようになっている。また、第2出力側回転体8Bは、第2側面部41側の径方向内方端側に、第2ベアリング16との接触を避ける逃がし穴47が形成されている。また、第2出力側回転体8Bの第2側面部41は、連結突起収容凹部42及び接触逃がし凹所46の径方向外方側に波形溝40が形成されている。また、第2出力側回転体8Bは、第1出力側回転体8Aの連結突起33に対向する位置に、第2側面部41の反対側に位置する側面48側に開口するボルトヘッド収容凹所50が形成されると共に、ボルトヘッド収容凹所50と連結突起収容凹部42とを連通するボルト穴51が形成されている。そして、この第2出力側回転体8Bは、ボルトヘッド収容凹所50及びボルト穴51に挿入されたボルト43のねじ軸部43aが第1出力側回転体8Aの連結突起33のねじ穴44に螺合され、第1出力側回転体8Aに固定され、第1出力側回転体8Aと一体となって出力側回転体8を構成する。なお、この第2出力側回転体8Bは、第2側面部41の反対側に位置する側面48側で、且つ、ボルトヘッド収容凹所50よりも径方向内方側の位置に周方向に沿って複数のねじ穴52が形成され、第2出力側回転体8Bによって回動させられる図示しない被回転部材が複数のねじ穴52に螺合される図示しない複数のボルトで固定される。 As shown in FIGS. 1 and 7, the second output-side rotating body 8 </ b> B includes the other side surface 5 d of the both side surfaces 5 c and 5 d of the rocking body 5 and the radial groove forming disk portion 36 of the fixing member 7. It has the 2nd side part 41 located facing the other side surface 36b of both side surfaces 36a and 36b. In the second side surface portion 41 of the second output side rotating body 8B, the connecting projection receiving recess 42 fitted to the connecting projection 33 is located at a position facing the connecting projection 33 of the first output side rotating body 8A. The same number is formed. Further, the second side surface portion 41 of the second output side rotating body 8B has a contact relief recess 46 formed between the adjacent connection projection receiving recesses 42, 42, and a lubricant such as grease is formed in the contact relief recess 46. Are accommodated as appropriate. Further, the second output-side rotating body 8B is formed with a bearing hole 27 that accommodates the third bearing 26 attached to the cap 3, and the side surface of the outer race of the third bearing 26 is formed at the end of the bearing hole 27. Further, it is abutted against the inner peripheral projection 28. Further, the second output-side rotating body 8B is formed with a relief hole 47 that avoids contact with the second bearing 16 on the radially inner end side on the second side face portion 41 side. Further, the second side surface portion 41 of the second output side rotating body 8B is formed with a corrugated groove 40 on the radially outward side of the connecting projection receiving recess 42 and the contact relief recess 46. Further, the second output-side rotator 8B is a bolt head housing recess that opens to the side surface 48 located on the opposite side of the second side surface portion 41 at a position facing the connection protrusion 33 of the first output-side rotator 8A. 50 is formed, and a bolt hole 51 for communicating the bolt head receiving recess 50 and the connecting projection receiving recess 42 is formed. In the second output side rotating body 8B, the screw shaft portion 43a of the bolt 43 inserted into the bolt head accommodating recess 50 and the bolt hole 51 is formed in the screw hole 44 of the connecting projection 33 of the first output side rotating body 8A. The output side rotating body 8 is constituted by being screwed together and fixed to the first output side rotating body 8A and integrally with the first output side rotating body 8A. The second output-side rotator 8B is on the side surface 48 located on the opposite side of the second side surface portion 41, and along the circumferential direction at a position radially inward from the bolt head housing recess 50. A plurality of screw holes 52 are formed, and a rotated member (not shown) rotated by the second output side rotating body 8B is fixed by a plurality of bolts (not shown) screwed into the plurality of screw holes 52.
 図1、図6、図7、及び図8に示すように、波形溝40は、第1出力側回転体8Aの第1側面部32と第2出力側回転体8Bの第2側面部41に跨って形成されており、偶数個(N=50)の波が入力軸2の回転中心2aの回りに連続して環状に形成され、固定部材の(N+1)/3箇所(17箇所)の径方向溝38に収容されたボール6と転動可能に係合するようになっている。この波形溝40は、波の径方向内方端に位置する部分を谷底40aとし、波の径方向外方端に位置する部分を山頂40bとすると、谷底40aが第1出力側回転体8Aの第1側面部32と第2出力側回転体8Bの第2側面部41とに跨って形成され、奇数番の波の山頂40bの溝深さが第1側面部32と第2側面部41のいずれか一方側よりも第1側面部32と第2側面部41のいずれか他方側に深く形成され、偶数番の波の山頂40bの溝深さが第1側面部32と第2側面部41のいずれか他方側よりも第1側面部32と第2側面部41のいずれか一方側に深く形成され、谷底40aから山頂40bに向かって溝深さが漸増するように形成されている。即ち、この波形溝40は、鋸の「あさり(歯振)」と類似した形状になっている。このような第1出力側回転体8Aの波形溝40と第2出力側回転体8Bの波形溝40、及び固定部材7の径方向溝38に係合するボール6は、径方向溝38内を径方向に沿って移動する際に、3次元的に形成された波形溝40によって入力軸2の回転中心2aに沿った方向にも移動する。なお、波形溝40は、上述のとおり、第1出力側回転体8Aの第1側面部32と第2出力側回転体8Bの第2側面部41に跨って形成されているが、第1出力側回転体8Aと第2出力側回転体8Bとを固定する際に、第1出力側回転体8Aの位置決め溝53と第2出力側回転体8Bの位置決め溝54とを位置合わせすることにより(図1、図6、及び図7参照)、第1出力側回転体8Aと第2出力側回転体8Bとが高精度に位置決めされた状態で固定されるため、第1出力側回転体8A側の波形溝40と第2出力側回転体8B側の波形溝40とでずれを生じることがなく、高精度に形作られる。 As shown in FIGS. 1, 6, 7, and 8, the corrugated groove 40 is formed on the first side surface portion 32 of the first output side rotating body 8A and the second side surface portion 41 of the second output side rotating body 8B. An even number (N = 50) of waves are formed in a ring shape continuously around the rotation center 2a of the input shaft 2 and have a diameter of (N + 1) / 3 locations (17 locations) of the fixed member. The ball 6 accommodated in the directional groove 38 is slidably engaged. The corrugated groove 40 has a valley bottom 40a at a portion positioned at the radially inner end of the wave and a peak 40b at a portion positioned at the radially outer end of the wave. It is formed across the first side surface portion 32 and the second side surface portion 41 of the second output-side rotator 8B, and the groove depth of the odd-numbered wave crest 40b is between the first side surface portion 32 and the second side surface portion 41. The first side surface portion 32 and the second side surface portion 41 are formed deeper on either side of the first side surface portion 32 and the second side surface portion 41 than either one side, and the groove depths of the even-numbered wave peaks 40b are the same. These are formed deeper on either side of the first side surface portion 32 and the second side surface portion 41 than on the other side, and are formed such that the groove depth gradually increases from the valley bottom 40a toward the peak 40b. That is, the corrugated groove 40 has a shape similar to that of a saw “crest (tooth vibration)”. The ball 6 that engages with the corrugated groove 40 of the first output side rotating body 8A, the corrugated groove 40 of the second output side rotating body 8B, and the radial groove 38 of the fixing member 7 passes through the radial groove 38. When moving along the radial direction, the waveform groove 40 formed three-dimensionally also moves in the direction along the rotation center 2 a of the input shaft 2. As described above, the corrugated groove 40 is formed across the first side surface portion 32 of the first output side rotating body 8A and the second side surface portion 41 of the second output side rotating body 8B. When the side rotating body 8A and the second output side rotating body 8B are fixed, the positioning groove 53 of the first output side rotating body 8A and the positioning groove 54 of the second output side rotating body 8B are aligned ( The first output-side rotator 8A and the second output-side rotator 8B are fixed in a state of being positioned with high accuracy, and therefore the first output-side rotator 8A side. The corrugated groove 40 and the corrugated groove 40 on the second output side rotating body 8B side are not displaced, and are formed with high accuracy.
 図9は、ボール6が波形溝40内を転動させられた場合のボール6の転動軌跡55を示す図である。なお、図9(a)は、ボール6の転動軌跡55の平面図(入力軸2の回転中心2aに直交する仮想平面に投影した転動軌跡55)である。また、図9(b)は、図9(a)のA6-A6線に沿って切断して示す仮想断面上に、隣り合う転動軌跡の波W1,W2を投影して示す図である。そして、この図9に示したボール6の転動軌跡55は、波形溝40の溝形状を示している。また、図9において、Rは径方向を表し、Zは入力軸2の回転中心2aに沿った方向を示している。 FIG. 9 is a diagram showing a rolling locus 55 of the ball 6 when the ball 6 is rolled in the corrugated groove 40. 9A is a plan view of the rolling trajectory 55 of the ball 6 (the rolling trajectory 55 projected on a virtual plane orthogonal to the rotation center 2a of the input shaft 2). FIG. 9B is a diagram showing the projection of the waves W1 and W2 of the adjacent rolling locus on the virtual cross section cut along the line A6-A6 of FIG. 9A. The rolling trajectory 55 of the ball 6 shown in FIG. In FIG. 9, R represents the radial direction, and Z represents the direction along the rotation center 2 a of the input shaft 2.
 この図9に示すように、ボール6の転動軌跡55において、隣り合う転動軌跡55の波W1,W2のうちの第1の波W1は、波形溝40の谷底40aから山頂40bに向かうにしたがって-Z方向に一定の割合で傾斜している。また、転動軌跡55の第2の波W2は、波形溝40の谷底40aから山頂40bに向かうにしたがって+Z方向に一定の割合で傾斜している。そして、第1の波W1の-Z方向への移動量は、第2の波W2の+Z方向への移動量と同一になっている。なお、例えば、転動軌跡55の第1の波W1を形作る波形溝40は、山頂40bに対応する部分が第1出力側回転体8Aの第1側面部32側で深くなるように形成されている。この第1の波W1に対し、転動軌跡55の第2の波W2を形作る波形溝40は、山頂40bに対応する部分が第2出力側回転体8Bの第2側面部41側で深くなるように形成されている。 As shown in FIG. 9, in the rolling trajectory 55 of the ball 6, the first wave W <b> 1 of the waves W <b> 1 and W <b> 2 of the adjacent rolling trajectory 55 is directed from the valley bottom 40 a of the corrugated groove 40 toward the mountain top 40 b. Therefore, it is inclined at a constant rate in the −Z direction. Further, the second wave W2 of the rolling locus 55 is inclined at a constant rate in the + Z direction as it goes from the valley bottom 40a to the peak 40b of the wave groove 40. The amount of movement of the first wave W1 in the −Z direction is the same as the amount of movement of the second wave W2 in the + Z direction. For example, the corrugated groove 40 that forms the first wave W1 of the rolling trajectory 55 is formed so that the portion corresponding to the peak 40b is deeper on the first side surface portion 32 side of the first output side rotating body 8A. Yes. The corrugated groove 40 that forms the second wave W2 of the rolling trajectory 55 with respect to the first wave W1 has a deeper portion corresponding to the peak 40b on the second side surface portion 41 side of the second output side rotating body 8B. It is formed as follows.
 図10(a)は、波形溝40の第1変形例を示す図であり、図9(b)に対応する図である。この図10(a)に示すボール6の転動軌跡55において、隣り合う転動軌跡55の波W1,W2のうちの第1の波W1は、波形溝40の谷底40aから山頂40bに向かうにしたがって(径方向内方から径方向外方へ向かうにしたがって)-Z方向への移動割合が増加している。また、転動軌跡55の第2の波W2は、波形溝40の谷底40aから山頂40bに向かうにしたがって(径方向内方から径方向外方へ向かうにしたがって)+Z方向への移動割合が増加している。波形溝40は、図10(a)に示すボール6の転動軌跡55が生じるように形成してもよい。 FIG. 10A is a view showing a first modification of the corrugated groove 40, and corresponds to FIG. 9B. In the rolling trajectory 55 of the ball 6 shown in FIG. 10A, the first wave W1 of the waves W1 and W2 of the adjacent rolling trajectory 55 is directed from the valley bottom 40a of the corrugated groove 40 toward the peak 40b. Therefore, the moving rate in the −Z direction increases (as it goes from the radially inner side to the radially outer side). Further, the second wave W2 of the rolling trajectory 55 increases in the movement rate in the + Z direction as it goes from the valley bottom 40a of the corrugated groove 40 toward the peak 40b (from radially inward to radially outward). is doing. The corrugated groove 40 may be formed so that a rolling locus 55 of the ball 6 shown in FIG.
 図10(b)は、波形溝40の第2変形例を示す図であり、図9(b)に対応する図である。この図10(b)に示すボール6の転動軌跡55において、隣り合う転動軌跡55の波W1,W2のうちの第1の波W1は、波形溝40の谷底40aから山頂40bに向かうにしたがって(径方向内方から径方向外方へ向かうにしたがって)-Z方向への移動割合が減少している。また、転動軌跡55の第2の波W2は、波形溝40の谷底40aから山頂40bに向かうにしたがって(径方向内方から径方向外方へ向かうにしたがって)+Z方向への移動割合が減少している。波形溝40は、図10(b)に示すボール6の転動軌跡55が生じるように形成してもよい。 FIG. 10B is a diagram illustrating a second modification of the corrugated groove 40, and corresponds to FIG. 9B. In the rolling trajectory 55 of the ball 6 shown in FIG. 10B, the first wave W1 of the waves W1 and W2 of the adjacent rolling trajectories 55 is directed from the valley bottom 40a of the corrugated groove 40 toward the peak 40b. Therefore, the rate of movement in the −Z direction decreases (as it goes from radially inward to radially outward). Further, the second wave W2 of the rolling trajectory 55 decreases in the movement rate in the + Z direction as it goes from the valley bottom 40a of the corrugated groove 40 to the peak 40b (from radially inward to radially outward). is doing. The corrugated groove 40 may be formed so that a rolling locus 55 of the ball 6 shown in FIG.
 以上のような本実施形態に係るボール減速機1は、入力軸2と偏心円板カム4とが一体になって1回転すると、揺動体5が偏心円板カム4の偏心量(e)の2倍の寸法(2e)だけ揺動させられ、揺動体5の外周面5bで支持されたボール6が固定部材7の径方向溝38内を1往復する。この際、出力側回転体8(第1出力側回転体8A及び第2出力側回転体8B)は、ボール6が固定部材7の径方向溝38内を第1側面部32及び第2側面部41の径方向に沿って移動するだけであるため、固定部材7に対して波形溝40の1波分だけ回動させられる。したがって、本実施形態に係るボール減速機1は、波形溝40の波数がNであり、径方向溝38の溝数が(N+1)/3であるため、入力軸2の1回転に対し、出力側回転体8が入力軸2と逆方向へ1/N回転することになる。なお、本実施形態に係るボール減速機1は、図5及び図8に示すように、出力側回転体8の波形溝40の波数(N)が50であり、固定部材7の径方向溝38の溝数(N+1)/3が17である場合を例示している。したがって、本実施形態に係るボール減速機1は、入力軸2の回転を1/50(1/N)に減速して出力側回転体8に伝達する。 In the ball speed reducer 1 according to the present embodiment as described above, when the input shaft 2 and the eccentric disk cam 4 are integrated and rotated once, the oscillator 5 has an eccentric amount (e) of the eccentric disk cam 4. The ball 6, which is swung by a double size (2 e) and supported by the outer peripheral surface 5 b of the rocking body 5, reciprocates once in the radial groove 38 of the fixing member 7. At this time, in the output side rotating body 8 (the first output side rotating body 8A and the second output side rotating body 8B), the ball 6 passes through the radial groove 38 of the fixing member 7 in the first side surface portion 32 and the second side surface portion. Since it only moves along the radial direction of 41, it is rotated by one wave of the wave groove 40 with respect to the fixing member 7. Therefore, in the ball speed reducer 1 according to the present embodiment, the wave number of the corrugated groove 40 is N, and the number of grooves of the radial groove 38 is (N + 1) / 3. The side rotator 8 rotates 1 / N in the opposite direction to the input shaft 2. In the ball speed reducer 1 according to this embodiment, as shown in FIGS. 5 and 8, the wave number (N) of the corrugated groove 40 of the output side rotating body 8 is 50, and the radial groove 38 of the fixing member 7. In this example, the number of grooves (N + 1) / 3 is 17. Therefore, the ball speed reducer 1 according to the present embodiment reduces the rotation of the input shaft 2 to 1/50 (1 / N) and transmits it to the output side rotating body 8.
 以上のように構成された本実施形態に係るボール減速機1は、揺動体5及び固定部材7に対向する第1出力側回転体8Aの第1側面部32及び第2出力側回転体8Bの第2側面部41の2箇所のみに波形溝40を形成するようになっているため、波形溝111,111,112,112を4箇所にそれぞれ形成する従来例のボール減速機100と比較し(図35参照)、加工工数の削減が可能になる。また、本実施形態に係るボール減速機1は、揺動体5が固定部材7及び出力側回転体8(第1出力側回転体8A及び第2出力側回転体8B)に対して独立して揺動できるようになっているため、揺動体5と出力側回転体8とを一体に回動させるための複雑な機構(例えば、図35に示した従来例に係るボール減速機100の偏心吸収機構113,113)を設ける必要がなく、構造が簡単化し、加工工数の削減が可能になる。 The ball speed reducer 1 according to the present embodiment configured as described above includes the first side surface portion 32 of the first output-side rotator 8A and the second output-side rotator 8B facing the rocking body 5 and the fixing member 7. Since the corrugated groove 40 is formed only in two places on the second side surface portion 41, the corrugated groove 111, 111, 112, 112 is compared with the conventional ball reducer 100 in which the corrugated grooves 111, 111, 112, 112 are formed in four places respectively ( The processing man-hour can be reduced. In the ball speed reducer 1 according to the present embodiment, the swinging body 5 swings independently of the fixed member 7 and the output side rotating body 8 (the first output side rotating body 8A and the second output side rotating body 8B). Since it can move, it is a complicated mechanism for rotating the rocking body 5 and the output side rotating body 8 together (for example, the eccentric absorption mechanism of the ball reducer 100 according to the conventional example shown in FIG. 35). 113, 113) need not be provided, the structure is simplified, and the number of processing steps can be reduced.
 また、本実施形態に係るボール減速機1は、径方向溝38と波形溝40との交差する箇所にボール6が位置するようになっているため、ボール108が偏心回転板104の第1波形溝111の溝壁と固定部材107の第2波形溝112の溝壁に同時に接触するように構成された従来のボール減速機100と比較し(図35参照)、径方向溝38及び波形溝40の加工が容易になると共に、揺動体5、固定部材7、及び出力側回転体8(第1出力側回転体8A及び第2出力側回転体8B)等の組立作業が容易になる。 Further, in the ball speed reducer 1 according to the present embodiment, since the ball 6 is positioned at a location where the radial groove 38 and the corrugated groove 40 intersect, the ball 108 is the first corrugated of the eccentric rotating plate 104. Compared to the conventional ball reducer 100 configured to simultaneously contact the groove wall of the groove 111 and the groove wall of the second corrugated groove 112 of the fixing member 107 (see FIG. 35), the radial groove 38 and the corrugated groove 40 And the assembly work of the oscillator 5, the fixing member 7, and the output side rotating body 8 (the first output side rotating body 8A and the second output side rotating body 8B) is facilitated.
 また、本実施形態に係るボール減速機1は、波形溝40を第1出力側回転体8Aの第1側面部32と第2出力側回転体8Bの第2側面部41とに均等の溝深さで形成する場合と比較し、トルク伝達に大きく寄与する波形溝40の山頂40bにおける溝深さを深くしてあるため、波形溝40の山頂40b及びその近傍とボール6との係合量が増大し、伝達可能なトルクを大きくすることができる。 Further, in the ball speed reducer 1 according to the present embodiment, the corrugated groove 40 has an equal groove depth in the first side surface portion 32 of the first output side rotating body 8A and the second side surface portion 41 of the second output side rotating body 8B. Since the groove depth at the peak 40b of the corrugated groove 40, which greatly contributes to torque transmission, is increased compared to the case where the ball 6 is formed, the engagement amount between the peak 6b of the corrugated groove 40 and its vicinity and the ball 6 is increased. The torque that can be increased can be increased.
 また、本実施形態に係るボール減速機1は、波形溝40の波数(N)に対し、径方向溝38の溝数が(N+1)/3で且つ径方向溝38に収容されるボール6の数が(N+1)/3になっているため、径方向溝38の溝数が(N+1)で且つ径方向溝38に収容されるボールの数が(N+1)の場合と比較し、ボール6の数を減少させた分だけ重量を軽減できる。 Further, in the ball speed reducer 1 according to the present embodiment, the number of the radial grooves 38 is (N + 1) / 3 with respect to the wave number (N) of the corrugated grooves 40 and the balls 6 accommodated in the radial grooves 38 are accommodated. Since the number is (N + 1) / 3, the number of balls 6 in the radial groove 38 is (N + 1) and the number of balls accommodated in the radial groove 38 is (N + 1). Weight can be reduced by reducing the number.
 また、本実施形態に係るボール減速機1は、波形溝40の波数(N)に対し、径方向溝38の溝数が(N+1)/3であり、径方向溝38に収容されるボール6の数が(N+1)/3になっているため、ボール6を大きくすることができ、ボール6の数を減少させたにもかかわらず、大きなトルクを伝達することができる。 Further, in the ball speed reducer 1 according to the present embodiment, the number of grooves in the radial groove 38 is (N + 1) / 3 with respect to the wave number (N) of the corrugated groove 40, and the ball 6 accommodated in the radial groove 38. Since the number of balls is (N + 1) / 3, the balls 6 can be enlarged, and a large torque can be transmitted even though the number of balls 6 is reduced.
 また、本実施形態に係るボール減速機1は、第1出力側回転体8A及び第2出力側回転体8Bに、揺動体5との接触面積を減らして接触抵抗を低減するための接触逃がし凹所45,46が複数形成されているため、動力伝達を効率的に行うことができる。なお、本実施形態に係るボール減速機1は、第1出力側回転体8Aの接触逃がし凹所45及び第2出力側回転体8Bの接触逃がし凹所46内にグリースを充填した場合、第1出力側回転体8A及び第2出力側回転体8Bと揺動体5との間に作用するグリースの粘性抵抗を低減できるため、グリースの粘性抵抗に起因するエネルギーロスを低減でき、動力伝達を効率的に行うことができる。 Further, in the ball speed reducer 1 according to the present embodiment, the first output-side rotating body 8A and the second output-side rotating body 8B have contact relief recesses for reducing the contact resistance by reducing the contact area with the rocking body 5. Since a plurality of places 45 and 46 are formed, power transmission can be performed efficiently. The ball speed reducer 1 according to the present embodiment is configured such that the grease is filled in the contact relief recess 45 of the first output-side rotator 8A and the contact escape recess 46 of the second output-side rotator 8B. Since the viscous resistance of the grease acting between the output-side rotating body 8A and the second output-side rotating body 8B and the rocking body 5 can be reduced, energy loss due to the grease's viscous resistance can be reduced, and power transmission can be efficiently performed. Can be done.
 また、本実施形態に係るボール減速機1は、出力側回転体8(第1出力側回転体8A及び第2出力側回転体8B)の波形溝40の波数がNの場合、減速比が1/Nになり、図35に示した従来例のボール減速機100よりも減速比を大きくすることができる。 In the ball speed reducer 1 according to the present embodiment, when the wave number of the wave groove 40 of the output side rotating body 8 (the first output side rotating body 8A and the second output side rotating body 8B) is N, the reduction ratio is 1. / N, and the reduction ratio can be made larger than that of the conventional ball reducer 100 shown in FIG.
  (第1実施形態の変形例1)
 本実施形態に係るボール減速機1は、出力側回転体8(第1出力側回転体8A及び第2出力側回転体8B)の波形溝40の波数(N)が50波、固定部材7の径方向溝38の溝数(N+1)/3が17溝、ボール5の数が17個の場合を例示しているが、これに限られず、波形溝40の波数(N)が偶数(2の倍数)で且つ径方向溝38の溝数((N+1)/3)が自然数であることを条件に、波形溝40の波数(N)、径方向溝38の溝数(N+1)/3、及びボール6の個数を決定し、減速比を変更してもよい。なお、ボール6は、ボール減速機1の円滑な回転伝達を損なわない限り、径方向溝40の溝数よりも少なく配置するようにしてもよい。
(Modification 1 of the first embodiment)
In the ball speed reducer 1 according to the present embodiment, the wave number (N) of the wave groove 40 of the output side rotating body 8 (the first output side rotating body 8A and the second output side rotating body 8B) is 50 waves. The case where the number (N + 1) / 3 of the radial grooves 38 is 17 and the number of the balls 5 is 17 is illustrated, but the present invention is not limited to this, and the wave number (N) of the corrugated grooves 40 is an even number (2 Multiple) and the number of radial grooves 38 ((N + 1) / 3) is a natural number, the wave number (N) of the corrugated groove 40, the number of grooves (N + 1) / 3 of the radial groove 38, and The number of balls 6 may be determined and the reduction ratio may be changed. Note that the number of balls 6 may be less than the number of radial grooves 40 as long as smooth rotation transmission of the ball reducer 1 is not impaired.
  (第1実施形態の変形例2)
 また、本実施形態に係るボール減速機1は、出力側回転体8(第1出力側回転体8A及び第2出力側回転体8B)の波形溝40の波数(N)が50波、固定部材7の径方向溝38の溝数(N+1)/3が17溝、ボール6の数が17個の場合を例示しているが、これに限られず、波形溝40の波数(N)が偶数(2の倍数)で且つ径方向溝38の溝数((N-1)/3)が自然数であることを条件に、波形溝40の波数(N)、径方向溝38の溝数(N-1)/3、及びボール6の個数を決定し、減速比を変更してもよい。例えば、出力側回転体8の波形溝40の波数(N)を46とし、固定部材7の径方向溝38の溝数((N-1)/3)を15とし、ボール6の個数((N-1)/3)を15とする場合にも適用できる。このような本変形例2に係るボール減速機1は、入力軸2の1回転に対し、出力側回転体8が入力軸2と同一の回転方向に1/N回転することになる。なお、ボール6は、ボール減速機1の円滑な回転伝達を損なわない限り、径方向溝38の溝数よりも少なく配置するようにしてもよい。
(Modification 2 of the first embodiment)
Further, in the ball speed reducer 1 according to the present embodiment, the wave number (N) of the wave groove 40 of the output side rotating body 8 (the first output side rotating body 8A and the second output side rotating body 8B) is 50 waves, and the fixed member Although the number of grooves (N + 1) / 3 of the radial grooves 38 is 17 and the number of balls 6 is 17, the present invention is not limited to this, and the wave number (N) of the corrugated grooves 40 is an even number ( 2) and the number of radial grooves 38 ((N-1) / 3) is a natural number, the wave number (N) of the corrugated groove 40 and the number of grooves of the radial groove 38 (N- 1) / 3 and the number of balls 6 may be determined and the reduction ratio may be changed. For example, the wave number (N) of the corrugated groove 40 of the output side rotator 8 is 46, the groove number ((N−1) / 3) of the radial groove 38 of the fixing member 7 is 15, and the number of balls 6 (( This can also be applied to the case where N-1) / 3) is 15. In such a ball speed reducer 1 according to the second modification, the output side rotating body 8 rotates 1 / N in the same rotation direction as the input shaft 2 with respect to one rotation of the input shaft 2. Note that the number of balls 6 may be less than the number of radial grooves 38 as long as smooth rotation transmission of the ball reducer 1 is not impaired.
 [第2実施形態]
 図11乃至図13は、本発明の第2実施形態に係るボール減速機1を説明するための図である。なお、図11は、本発明の第2実施形態に係るボール減速機1の縦断面図である。図12(a)は第1出力側回転体8Aの正面図であり、図12(b)は図12(a)のA7-A7線に沿って切断して示す第1出力側回転体8Aの断面図である。また、図13(a)は第2出力側回転体8Bの正面図、図13(b)は図13(a)のA8-A8線に沿って切断して示す第2出力側回転体8Bの断面図である。
[Second Embodiment]
11 to 13 are views for explaining a ball speed reducer 1 according to a second embodiment of the present invention. FIG. 11 is a longitudinal sectional view of the ball speed reducer 1 according to the second embodiment of the present invention. 12A is a front view of the first output-side rotator 8A, and FIG. 12B is a cross-sectional view taken along the line A7-A7 of FIG. 12A, showing the first output-side rotator 8A. It is sectional drawing. 13 (a) is a front view of the second output side rotator 8B, and FIG. 13 (b) is a view of the second output side rotator 8B cut along the line A8-A8 of FIG. 13 (a). It is sectional drawing.
 図11乃至図13に示すように、本実施形態に係るボール減速機1は、第1出力側回転体8A及び第2出力側回転体8Bの波形溝56の形状が第1実施形態に係るボール減速機1の第1出力側回転体8A及び第2出力側回転体8Bの波形溝40の溝形状と相違するが、他の構成が第1実施形態に係るボール減速機1と共通する。したがって、本実施形態に係るボール減速機1は、第1実施形態に係るボール減速機1と同一の構成部分に同一符号を付し、第1実施形態に係るボール減速機1の説明と重複する説明を省略する。 As shown in FIGS. 11 to 13, in the ball speed reducer 1 according to the present embodiment, the shape of the corrugated grooves 56 of the first output-side rotating body 8A and the second output-side rotating body 8B is the ball according to the first embodiment. Although different from the groove shape of the corrugated groove 40 of the first output-side rotator 8A and the second output-side rotator 8B of the speed reducer 1, other configurations are common to the ball speed reducer 1 according to the first embodiment. Accordingly, in the ball speed reducer 1 according to the present embodiment, the same reference numerals are given to the same components as the ball speed reducer 1 according to the first embodiment, and the description of the ball speed reducer 1 according to the first embodiment overlaps. Description is omitted.
 本実施形態に係るボール減速機1は、波形溝56が第1出力側回転体8Aの第1側面部32及び第2出力側回転体8Bの第2側面部41に跨って形成されている。そして、波形溝56のうちの第1出力側回転体8A側の第1波形溝部分56Aと第2出力側回転体8B側の第2波形溝部分56Bは、平面形状及び溝深さが同一であり、一方を他方に転写したような形状になっている。また、第1出力側回転体8A側の第1波形溝部分56Aと第2出力側回転体8B側の第2波形溝部分56Bは、第1実施形態に係るボール減速機1の波形溝40と異なり、溝深さが一定になるように形成されている。なお、本実施形態に係るボール減速機1は、第1実施形態に係るボール減速機1と同様に、波形溝56の波数(第1出力側回転体8Aの第1波形溝部分56A及び第2出力側回転体8Bの第2波形溝部分56Bの波数)が50波であり、固定部材7の径方向溝38の溝数((N+1)/3)が17溝であり、ボール6の数が17個の場合を例示している。しかしながら、本実施形態に係るボール減速機1は、第1実施形態に係るボール減速機1と異なり、波形溝56の波数Nが偶数に限定されず、波形溝56の波数Nを奇数にしてもよく、径方向溝38の溝数を(N+1)溝、(N-1)溝、((N+1)/2)溝、又は((N-1)/2)溝にしてもよい。 In the ball speed reducer 1 according to the present embodiment, the corrugated groove 56 is formed across the first side surface portion 32 of the first output side rotating body 8A and the second side surface portion 41 of the second output side rotating body 8B. In the corrugated groove 56, the first corrugated groove portion 56A on the first output side rotating body 8A side and the second corrugated groove portion 56B on the second output side rotating body 8B side have the same planar shape and groove depth. Yes, it is shaped like one is transferred to the other. Further, the first corrugated groove portion 56A on the first output side rotating body 8A side and the second corrugated groove portion 56B on the second output side rotating body 8B side are formed with the corrugated groove 40 of the ball reducer 1 according to the first embodiment. In contrast, the groove depth is constant. The ball speed reducer 1 according to the present embodiment is similar to the ball speed reducer 1 according to the first embodiment in that the wave number of the corrugated groove 56 (the first corrugated groove portion 56A and the second corrugated groove portion 56A of the first output-side rotating body 8A). The wave number of the second corrugated groove portion 56B of the output side rotating body 8B is 50 waves, the number of grooves ((N + 1) / 3) of the radial grooves 38 of the fixing member 7 is 17 grooves, and the number of balls 6 is The case of 17 is illustrated. However, unlike the ball speed reducer 1 according to the first embodiment, the ball speed reducer 1 according to the present embodiment is not limited to the wave number N of the corrugated groove 56, and the wave number N of the corrugated groove 56 is set to an odd number. The number of radial grooves 38 may be (N + 1) grooves, (N−1) grooves, ((N + 1) / 2) grooves, or ((N−1) / 2) grooves.
 以上のように構成された本実施形態に係るボール減速機1は、第1出力側回転体8Aの第1側面部32及び第2出力側回転体8Bの第2側面部の2箇所にのみ波形溝56が形成される(第1出力側回転体8Aの第1側面部32には波形溝56のうちの第1波形溝部分56Aが形成され、第2出力側回転体8Bの第2側面部41には波形溝56のうちの第2波形溝部分56Bが形成される)ようになっているため、波形溝111,111,112,112を4箇所にそれぞれ形成する従来例のボール減速機100と比較し(図35参照)、加工工数の削減が可能になる。また、本実施形態に係るボール減速機1は、揺動体5が固定部材7及び出力側回転体8(第1出力側回転体8A及び第2出力側回転体8B)に対して独立して揺動できるようになっているため、揺動体5と出力側回転体8とを一体に回動させるための複雑な機構(例えば、図35に示した従来例に係るボール減速機100の偏心吸収機構113,113)を設ける必要がなく、構造が簡単化し、加工工数の削減が可能になる。 The ball speed reducer 1 according to the present embodiment configured as described above has a waveform only at two locations on the first side surface portion 32 of the first output side rotating body 8A and the second side surface portion of the second output side rotating body 8B. Groove 56 is formed (first corrugated groove portion 56A of corrugated groove 56 is formed in first side surface portion 32 of first output side rotating body 8A, and second side surface portion of second output side rotating body 8B is formed. 41, the second corrugated groove portion 56B of the corrugated groove 56 is formed), so that the conventional ball speed reducer 100 in which the corrugated grooves 111, 111, 112, 112 are formed at four locations, respectively. (See FIG. 35), the number of processing steps can be reduced. In the ball speed reducer 1 according to the present embodiment, the swinging body 5 swings independently of the fixed member 7 and the output side rotating body 8 (the first output side rotating body 8A and the second output side rotating body 8B). Since it can move, it is a complicated mechanism for rotating the rocking body 5 and the output side rotating body 8 together (for example, the eccentric absorption mechanism of the ball reducer 100 according to the conventional example shown in FIG. 35). 113, 113) need not be provided, the structure is simplified, and the number of processing steps can be reduced.
 また、本実施形態に係るボール減速機1は、径方向溝38と波形溝56との交差する箇所にボール6が位置するようになっているため、ボール108が偏心回転板104の第1波形溝111の溝壁と固定部材107の第2波形溝112の溝壁に同時に接触するように構成された従来のボール減速機100と比較し(図35参照)、径方向溝38及び波形溝56の加工が容易になると共に、揺動体5、固定部材7、及び出力側回転体8(第1出力側回転体8A及び第2出力側回転体8B)等の組立作業が容易になる。 Further, in the ball speed reducer 1 according to the present embodiment, since the ball 6 is positioned at the intersection of the radial groove 38 and the corrugated groove 56, the ball 108 is the first corrugated of the eccentric rotating plate 104. Compared to the conventional ball reducer 100 configured to simultaneously contact the groove wall of the groove 111 and the groove wall of the second corrugated groove 112 of the fixing member 107 (see FIG. 35), the radial groove 38 and the corrugated groove 56 And the assembly work of the oscillator 5, the fixing member 7, and the output side rotating body 8 (the first output side rotating body 8A and the second output side rotating body 8B) is facilitated.
 [第3実施形態]
 図14は、本発明の第3実施形態に係るボール減速機1の縦断面図である。この図14に示すように、本実施形態に係るボール減速機1は、入力軸(入力側回転体)2、キャップ(入力側回転体)3、偏心円板カム4、揺動体5、複数のボール(鋼球)6、固定部材7、及び出力側回転体8(第1出力側回転体8A、第2出力側回転体8B)等で構成されている。また、図15は、キャップ3、第2出力側回転体8B、及び揺動体5等を取り外して示すボール減速機1の正面図である。
[Third Embodiment]
FIG. 14 is a longitudinal sectional view of a ball speed reducer 1 according to the third embodiment of the present invention. As shown in FIG. 14, a ball speed reducer 1 according to this embodiment includes an input shaft (input-side rotating body) 2, a cap (input-side rotating body) 3, an eccentric disk cam 4, an oscillating body 5, and a plurality of A ball (steel ball) 6, a fixing member 7, and an output side rotating body 8 (first output side rotating body 8 </ b> A, second output side rotating body 8 </ b> B) are configured. FIG. 15 is a front view of the ball speed reducer 1 with the cap 3, the second output side rotating body 8B, the swinging body 5 and the like removed.
 図14乃至図16に示すように、入力軸2は、第1ベアリング10を介して第1出力側回転体8Aを回動自在に支持しており、図示しない電動機等によって回転駆動されるようになっている。この入力軸2は、軸本体部11よりも大径の鍔状部12が軸本体部11に隣接して形成され、その鍔状部12に隣接して軸受支持部13が形成され、その軸受支持部13に第1ベアリング10が取り付けられ、第1ベアリング10を第1出力側回転体8Aの軸受穴14の内周側突起15と鍔状部12との間に保持するようになっている。また、この入力軸2は、軸受支持部13よりも軸先端側で且つ軸受支持部13に隣接する位置に偏心円板カム4が形成されている。この偏心円板カム4は、その中心4aが入力軸2の回転中心2a(軸本体部11の回転中心11a)に対して偏心量(e)だけ偏心して位置する偏心軸部であり、入力軸2の回転中心2aの回りに入力軸2と一体となって偏心回転する。そして、偏心円板カム4の外周側には、揺動体5が第2ベアリング16を介して相対回動可能に取り付けられている。また、入力軸2は、キャップ3を取り付ける先端軸部17が形成されている。この先端軸部17は、その回転中心が軸本体部2の回転中心2aと同心であり、キャップ3の軸穴18に嵌合され、先端面17aがキャップ3の軸穴18内に突出するストッパ突起20に突き当てられている。また、入力軸2の先端軸部17には、キャップ3を固定するためのボルト21のねじ軸部21aと螺合するねじ穴(雌ねじ)22が形成されている。 As shown in FIGS. 14 to 16, the input shaft 2 rotatably supports the first output side rotating body 8 </ b> A via the first bearing 10 and is driven to rotate by an electric motor (not shown). It has become. The input shaft 2 includes a shaft-shaped portion 12 having a diameter larger than that of the shaft main body portion 11, adjacent to the shaft main body portion 11, and a bearing support portion 13 formed adjacent to the shaft-shaped portion 12. The first bearing 10 is attached to the support portion 13, and the first bearing 10 is held between the inner peripheral projection 15 of the bearing hole 14 of the first output side rotating body 8 </ b> A and the flange-shaped portion 12. . Further, the input shaft 2 has an eccentric disc cam 4 formed at a position closer to the shaft tip side than the bearing support portion 13 and adjacent to the bearing support portion 13. The eccentric disc cam 4 is an eccentric shaft portion whose center 4a is eccentric with respect to the rotation center 2a of the input shaft 2 (the rotation center 11a of the shaft main body 11) by an eccentric amount (e). 2 is rotated together with the input shaft 2 around the rotation center 2a. And the rocking | fluctuation body 5 is attached to the outer peripheral side of the eccentric disk cam 4 via the 2nd bearing 16 so that relative rotation is possible. Further, the input shaft 2 is formed with a tip shaft portion 17 to which the cap 3 is attached. The distal end shaft portion 17 has a rotation center concentric with the rotation center 2 a of the shaft main body portion 2, is fitted into the shaft hole 18 of the cap 3, and a stopper whose distal end surface 17 a protrudes into the shaft hole 18 of the cap 3. It is abutted against the protrusion 20. In addition, a screw hole (female screw) 22 that is screwed with a screw shaft portion 21 a of a bolt 21 for fixing the cap 3 is formed in the distal end shaft portion 17 of the input shaft 2.
 図14及び図17に示すように、キャップ3は、入力軸2の先端軸部17にボルト21で固定され、入力軸2と共に入力側回転体を構成し、回転中心3aが入力軸2の回転中心2aと一致するように形成されている。このキャップ3は、回転中心3aに沿った一端側(図17(c)の右端側)に開口する軸穴18と、回転中心3aに沿った他端側(図17(c)の左端側)に開口するボルト頭部収容穴23と、ボルト頭部収容穴23と軸穴18とを連通するボルト軸部挿通穴24と、が形成されている。また、このキャップ3は、円筒状の外周面3bの左端側にリング状の軸受ストッパ25が形成され、外周面3bに取り付けられた第3ベアリング26の側面が軸受ストッパ25に突き当てられており、第2出力側回転体8Bの軸受穴27内の内周側突起28と軸受ストッパ25との間に第3ベアリング26を保持するようになっている。なお、キャップ3は、軸穴18の回転中心及び外周面3bの回転中心がキャップ3の回転中心3aと同心である。また、キャップ3は、外周面3bの外径が入力軸2の軸受支持部13の外径と同寸法に形成されている。そして、キャップ3の外周面3bに取り付けられた第3ベアリング26は、入力軸2の軸受支持部13に取り付けられた第1ベアリング10と同一のものが使用される。 As shown in FIGS. 14 and 17, the cap 3 is fixed to the distal end shaft portion 17 of the input shaft 2 with a bolt 21 and constitutes an input side rotating body together with the input shaft 2, and the rotation center 3 a is the rotation of the input shaft 2. It is formed so as to coincide with the center 2a. The cap 3 has an axial hole 18 that opens to one end side along the rotation center 3a (the right end side in FIG. 17C) and the other end side along the rotation center 3a (the left end side in FIG. 17C). And a bolt head part insertion hole 24 that connects the bolt head part accommodation hole 23 and the shaft hole 18 to each other. The cap 3 has a ring-shaped bearing stopper 25 formed on the left end side of the cylindrical outer peripheral surface 3b, and the side surface of the third bearing 26 attached to the outer peripheral surface 3b is abutted against the bearing stopper 25. The third bearing 26 is held between the inner peripheral projection 28 and the bearing stopper 25 in the bearing hole 27 of the second output side rotating body 8B. In the cap 3, the rotation center of the shaft hole 18 and the rotation center of the outer peripheral surface 3 b are concentric with the rotation center 3 a of the cap 3. The cap 3 is formed so that the outer diameter of the outer peripheral surface 3 b is the same as the outer diameter of the bearing support portion 13 of the input shaft 2. The third bearing 26 attached to the outer peripheral surface 3 b of the cap 3 is the same as the first bearing 10 attached to the bearing support portion 13 of the input shaft 2.
 図14及び図18に示すように、揺動体5は、偏心円板カム4によって揺動させられるように円板状に形成され、中心の軸受穴30が第2ベアリング16の外周面に嵌合され、偏心円板カム4と相対回動できるように第2ベアリング16で支持されている。この揺動体5は、その中心5aが偏心円板カム4の中心4aと同心となるように形成され、外周面5bが偏心円板カム4の中心4aと同心の円筒面であり、外周面5bで複数のボール6を転動可能に支持している。また、揺動体5は、軸受穴30の径方向外方側に、周方向に沿って4カ所の第1の貫通穴31aが等間隔で形成されている。この揺動体5の第1の貫通穴31aは、第1出力側回転体8Aの第1側面部32に形成された連結突起33aが隙間をもって係合され、揺動体5が偏心円板カム4で揺動させられた際にも連結突起33aに接触しない大きさに形成されている。また、揺動体5は、軸受穴30の径方向外方側に、周方向に沿って4箇所の第2の貫通穴31bが等間隔で形成されている。この揺動体5の第2の貫通穴31bは、第2出力側回転体8Bの第2側面部41に形成された連結突起33bが隙間をもって係合され、揺動体5が偏心円板カム4で揺動させられた際にも連結突起33bに接触しない大きさに形成されている。そして、第1の貫通穴31aと第2の貫通穴31bは、交互に且つ等間隔で配置されている。 As shown in FIGS. 14 and 18, the rocking body 5 is formed in a disk shape so as to be rocked by the eccentric disk cam 4, and the center bearing hole 30 is fitted to the outer peripheral surface of the second bearing 16. The second bearing 16 supports the eccentric disc cam 4 so that it can rotate relative to the eccentric disc cam 4. The oscillating body 5 is formed such that the center 5a is concentric with the center 4a of the eccentric disc cam 4, the outer peripheral surface 5b is a cylindrical surface concentric with the center 4a of the eccentric disc cam 4, and the outer peripheral surface 5b. A plurality of balls 6 are supported so as to roll. Further, in the oscillator 5, four first through holes 31 a are formed at equal intervals along the circumferential direction on the radially outer side of the bearing hole 30. In the first through hole 31 a of the swinging body 5, the connecting projection 33 a formed on the first side surface portion 32 of the first output side rotating body 8 A is engaged with a gap, and the swinging body 5 is formed by the eccentric disc cam 4. Even when it is swung, it is formed in such a size that it does not come into contact with the connecting projection 33a. Further, in the oscillator 5, four second through holes 31 b are formed at equal intervals along the circumferential direction on the radially outer side of the bearing hole 30. The second through hole 31b of the rocking body 5 is engaged with a connecting projection 33b formed on the second side surface portion 41 of the second output side rotating body 8B with a gap, and the rocking body 5 is formed by the eccentric disc cam 4. It is formed in such a size that it does not come into contact with the connecting projection 33b even when it is swung. The first through holes 31a and the second through holes 31b are alternately arranged at equal intervals.
 図14、図15、及び図19に示すように、固定部材7は、正面側の形状が略四角形状であり、中心部に揺動体収容穴34が形成されている。この固定部材7は、外縁に沿うように形成された固定枠部35と、この固定枠部35の径方向内方側に形成された径方向溝形成円板部36と、を有している。そして、固定部材7は、固定枠部35の四隅にボルト穴37が形成され、この四箇所のボルト穴37に固定用ボルト(図示せず)が挿入され、図示しない被固定部材(例えば、機械のフレーム、又はロボットのアーム)に固定用ボルトで固定されるようになっている。この固定部材7は、揺動体収容穴34の中心34aが入力軸2の回転中心2aと同心となるように被固定部材に固定される。そして、固定部材7の揺動体収容穴34には、揺動体5が揺動できるように収容される。また、この固定部材7は、揺動体収容穴34の内周面34bから径方向に沿って延びる径方向溝38が周方向に沿って等間隔で複数(波形溝60の波数をNとすると、(N+1))形成されている。この径方向溝38は、径方向内方端がボール6の出入りを可能にする開口端であり、溝幅がボール6の直径よりも僅かに大きく形成され、溝長さ(径方向長さ)が揺動体5の揺動量(偏心円板カム4の偏心量e)を考慮した長さに形成され、揺動体5の外周面5bに支持されたボール6が径方向に沿ってスライド移動させられるようになっている。また、この固定部材7は、径方向溝形成円板部36の板厚がボール6の直径よりも小さく形成されており、径方向溝38に係合されたボール6の中心を径方向溝形成円板部36の板厚方向中心位置に合致させた場合、ボール6が径方向溝形成円板部36の両側に均等に出っ張り、その径方向溝38内のボール6が出力側回転体8に形成された波形溝60に転動可能に係合されるようになっている。このような固定部材7の径方向溝30は、偏心円板カム4が1回転し、揺動体5が1ストローク分だけ揺動させられると、ボール6を揺動体5の揺動量に応じた分だけ径方向に転動させることができる。なお、本実施形態において、固定部材7の径方向溝形成円板部36は、その板厚が揺動体5の径方向外方端側に位置するボール支持部5eの板厚と同一寸法になっている。 As shown in FIGS. 14, 15, and 19, the fixing member 7 has a substantially quadrangular shape on the front side, and an oscillating body accommodation hole 34 is formed at the center. The fixing member 7 has a fixed frame portion 35 formed along the outer edge, and a radial groove forming disk portion 36 formed on the radially inner side of the fixed frame portion 35. . The fixing member 7 has bolt holes 37 formed at the four corners of the fixing frame portion 35, and fixing bolts (not shown) are inserted into the bolt holes 37 at the four locations. Frame or robot arm) with fixing bolts. The fixing member 7 is fixed to the member to be fixed so that the center 34 a of the swinging body accommodation hole 34 is concentric with the rotation center 2 a of the input shaft 2. Then, the oscillating body 5 is accommodated in the oscillating body accommodation hole 34 of the fixing member 7 so as to be able to oscillate. The fixing member 7 includes a plurality of radial grooves 38 extending along the radial direction from the inner peripheral surface 34b of the oscillator housing hole 34 at equal intervals along the circumferential direction (assuming that the wave number of the corrugated groove 60 is N). (N + 1)). The radial groove 38 is an open end that allows the ball 6 to enter and exit, and has a groove width slightly larger than the diameter of the ball 6, and has a groove length (radial length). Is formed in a length that takes into account the amount of oscillation of the oscillating body 5 (the amount of eccentricity e of the eccentric disc cam 4), and the ball 6 supported on the outer peripheral surface 5b of the oscillating body 5 is slid along the radial direction. It is like that. Further, the fixing member 7 is formed such that the thickness of the radial groove forming disk portion 36 is smaller than the diameter of the ball 6, and the center of the ball 6 engaged with the radial groove 38 is formed in the radial groove. When matched with the center position in the plate thickness direction of the disc portion 36, the balls 6 protrude evenly on both sides of the radial groove forming disc portion 36, and the balls 6 in the radial grooves 38 are directed to the output side rotating body 8. The corrugated groove 60 formed is engaged so as to be able to roll. Such a radial groove 30 of the fixing member 7 is such that when the eccentric disk cam 4 rotates once and the rocking body 5 is swung by one stroke, the ball 6 is divided according to the rocking amount of the rocking body 5. Can only roll in the radial direction. In the present embodiment, the radial groove forming disc portion 36 of the fixing member 7 has the same thickness as the thickness of the ball support portion 5e located on the radially outer end side of the oscillator 5. ing.
 図14及び図20に示すように、第1出力側回転体8Aは、揺動体5の両側面5c,5dのうちの一方の側面5c、及び固定部材7の径方向溝形成円板部36の両側面36a,36bのうちの一方の側面36aに対向して位置する第1側面部32を有している。また、第1出力側回転体8Aは、入力軸2に取り付けられた第1ベアリング10を収容する軸受穴14が形成され、第1ベアリング10のアウターレースの側面が軸受穴14の端部に形成された内周側突起15に突き当てられるようになっている。この第1出力側回転体8Aの第1側面部32は、第2出力側回転体8Bを連結固定するための連結突起33aが周方向に等間隔で複数(4箇所)形成されている。この連結突起33aは、揺動体5の貫通穴31aを貫通して第2出力側回転体8Bの第2側面部41に形成された連結突起収容凹部42bに嵌合されるようになっている。また、この第1出力側回転体8Aの第1側面部32は、第2出力側回転体8Bを連結固定するための連結突起収容凹部42aが周方向に等間隔で複数(4箇所)形成されている。この連結突起収容凹部42aは、揺動体5の貫通穴31bを貫通して延びる第2出力側回転体8Bの第2側面部41に形成された連結突起33bが嵌合されるようになっている。また、第1出力側回転体8Aの第1側面部32は、連結突起33a及び連結突起収容凹部42aの径方向外方側に波形溝60が形成されている。また、この第1出力側回転体8Aは、その背面側(第1側面部32の反対側に位置する面側)に、被回転部材を固定するためのねじ穴52が連結突起33aよりも径方向内方側位置の周方向に沿って等間隔で4箇所形成されている。また、第1出力側回転体8Aは、第2出力側回転体8Bを高精度に位置決めして固定するための位置決め溝53が径方向外方端の一箇所に形成されている。なお、連結突起33aと連結突起収容凹部42aの構造、及び第2出力側回転体8Bを第1出力側回転体8Aにボルト(図示せず)で固定するための構造が図1及び図11に示したボール減速機1の構造と同様である。 As shown in FIGS. 14 and 20, the first output-side rotator 8 </ b> A includes one of the side surfaces 5 c of both the side surfaces 5 c and 5 d of the oscillating body 5 and the radial groove forming disk portion 36 of the fixing member 7. It has the 1st side part 32 located facing one side surface 36a of both side surfaces 36a and 36b. The first output-side rotating body 8 </ b> A is formed with a bearing hole 14 that accommodates the first bearing 10 attached to the input shaft 2, and the side surface of the outer race of the first bearing 10 is formed at the end of the bearing hole 14. It is made to abut against the inner peripheral projection 15 made. In the first side surface portion 32 of the first output side rotating body 8A, a plurality (four places) of connecting projections 33a for connecting and fixing the second output side rotating body 8B are formed at equal intervals in the circumferential direction. The connecting projection 33a is fitted into a connecting projection receiving recess 42b formed in the second side surface portion 41 of the second output side rotating body 8B through the through hole 31a of the rocking body 5. In addition, the first side surface portion 32 of the first output side rotator 8A is formed with a plurality (four locations) of connection protrusion accommodating recesses 42a for connecting and fixing the second output side rotator 8B at equal intervals in the circumferential direction. ing. The connection projection receiving recess 42a is adapted to be fitted with a connection projection 33b formed on the second side surface portion 41 of the second output side rotating body 8B extending through the through hole 31b of the rocking body 5. . Further, the first side surface portion 32 of the first output-side rotating body 8A has a corrugated groove 60 formed on the radially outer side of the connecting projection 33a and the connecting projection receiving recess 42a. Further, the first output-side rotating body 8A has a screw hole 52 for fixing a member to be rotated on the back surface side (the surface side opposite to the first side surface portion 32) having a diameter larger than that of the connection protrusion 33a. Four points are formed at equal intervals along the circumferential direction of the inner side position. Further, the first output-side rotator 8A has a positioning groove 53 for positioning and fixing the second output-side rotator 8B with high accuracy at one place on the radially outer end. The structure of the connection protrusion 33a and the connection protrusion accommodating recess 42a and the structure for fixing the second output side rotating body 8B to the first output side rotating body 8A with bolts (not shown) are shown in FIGS. This is the same as the structure of the ball reducer 1 shown.
 図14及び図21に示すように、第2出力側回転体8Bは、揺動体5の両側面5c、5dのうちの他方の側面5d、及び固定部材7の径方向溝形成円板部36の両側面36a,36bのうちの他方の側面36bに対向して位置する第2側面部41を有している。この第2出力側回転体8Bの第2側面部41は、第1出力側回転体8Aの連結突起33aに対向する位置に、連結突起33aに嵌合される連結突起収容凹部42bが連結突起33aと同数形成されている。また、この第2出力側回転体8Bの第2側面部41は、第1出力側回転体8Aの連結突起収容凹部42aに対向する位置に、連結突起収容凹部42aに嵌合される連結突起33bが連結突起収容凹部42aと同数形成されている。また、第2出力側回転体8Bは、キャップ3に取り付けられた第3ベアリング26を収容する軸受穴27が形成され、第3ベアリング26のアウターレースの側面が軸受穴27の端部に形成された内周側突起28に突き当てられるようになっている。また、第2出力側回転体8Bの第2側面部41は、連結突起33b及び連結突起収容凹部42bの径方向外方側に波形溝60が形成されている。また、この第2出力側回転体8Bは、その背面側(第2側面部41と反対側に位置する面側)に、被回転部材を固定するためのねじ穴52が連結突起33bよりも径方向内方側位置の周方向に沿って等間隔で4箇所形成されている。また、第2出力側回転体8Bは、第1出力側回転体8Aを高精度に位置決めして固定するための位置決め溝54が第1出力側回転体8Aの位置決め溝53に対応する位置に(径方向外方端の一箇所に)形成されている。このような第2出力側回転体8Bは、第2側面部41を平面視した形状(図21(a)に示す形状)が第1出力側回転体8Aを平面視した形状(図20(a)に示す形状)と同一である。また、第2出力側回転体8Bは、縦断面形状(図20(c)に示す断面形状)が第1出力側回転体8Aの縦断面形状(図21(c)に示す断面形状)と同一である。なお、連結突起33bと連結突起収容凹部42bの構造、及び第2出力側回転体8Bを第1出力側回転体8Aにボルト(図示せず)で固定するための構造が図1及び図11に示したボール減速機1の構造と同様である。 As shown in FIGS. 14 and 21, the second output-side rotator 8 </ b> B includes the other side surface 5 d of the side surfaces 5 c and 5 d of the oscillating body 5 and the radial groove forming disk portion 36 of the fixing member 7. It has the 2nd side part 41 located facing the other side surface 36b of both side surfaces 36a and 36b. The second side surface portion 41 of the second output-side rotator 8B has a connection protrusion 33a at the position facing the connection protrusion 33a of the first output-side rotator 8A. The same number is formed. Further, the second side surface portion 41 of the second output side rotating body 8B is connected to the connecting projection receiving recess 42a at a position facing the connecting projection receiving recess 42a of the first output side rotating body 8A. Are formed in the same number as the connecting projection receiving recesses 42a. Further, the second output-side rotating body 8B is formed with a bearing hole 27 that accommodates the third bearing 26 attached to the cap 3, and the side surface of the outer race of the third bearing 26 is formed at the end of the bearing hole 27. Further, it is abutted against the inner peripheral projection 28. Further, the second side surface portion 41 of the second output side rotating body 8B has a corrugated groove 60 formed on the radially outer side of the connecting projection 33b and the connecting projection receiving recess 42b. Further, the second output-side rotating body 8B has a screw hole 52 for fixing a member to be rotated on the back side thereof (the surface side opposite to the second side surface portion 41) having a diameter larger than that of the connecting projection 33b. Four points are formed at equal intervals along the circumferential direction of the inner side position. Further, the second output-side rotator 8B has a positioning groove 54 for positioning and fixing the first output-side rotator 8A with high accuracy at a position corresponding to the positioning groove 53 of the first output-side rotator 8A ( It is formed in one place on the radially outer end. In such a second output-side rotator 8B, the shape of the second side surface 41 viewed in plan (the shape shown in FIG. 21A) is the shape of the first output-side rotator 8A viewed in plan (FIG. 20A). The shape shown in FIG. Further, the second output-side rotator 8B has the same vertical cross-sectional shape (the cross-sectional shape shown in FIG. 20 (c)) as the vertical cross-sectional shape (the cross-sectional shape shown in FIG. 21 (c)) of the first output-side rotator 8A. It is. The structure of the connection protrusion 33b and the connection protrusion accommodating recess 42b and the structure for fixing the second output-side rotating body 8B to the first output-side rotating body 8A with bolts (not shown) are shown in FIGS. This is the same as the structure of the ball reducer 1 shown.
 図14、図20、及び図21に示すように、波形溝60は、第1出力側回転体8Aの第1側面部32と第2出力側回転体8Bの第2側面部41に跨って形成されており、偶数個(N=50)の波が入力軸2の回転中心2aの回りに連続して環状に形成され、固定部材の(N+1)箇所(51箇所)の径方向溝38に収容されたボール6と転動可能に係合するようになっている。この波形溝60は、波の径方向内方端に位置する部分を谷底60aとし、波の径方向外方端に位置する部分を山頂60bとすると、谷底60a及び山頂60bが第1出力側回転体8Aの第1側面部32と第2出力側回転体8Bの第2側面部41とに均等に跨って形成され、第1側面部32と第2側面部41における谷底60a及び山頂60bの溝深さが同一になるように形成されている。また、この波形溝60は、図20(a)に示すように、第1出力側回転体8Aの第1側面部32を見た場合、中心線61上の谷底60aから右隣の山頂60bへ向かうに従って溝深さが漸減した後に漸増し、山頂60bから右隣の谷底60aへ向かうに従って溝深さが漸増した後に漸減するようになっている。また、波形溝60は、図21(a)に示すように、第1出力側回転体8Aの第1側面部32に対向する第2出力側回転体8Bの第2側面部41を見た場合、中心線61上の谷底60aから左隣の山頂60bへ向かうに従って溝深さが漸増した後に漸減し、山頂60bから左隣の谷底60aへ向かうに従って溝深さが漸減した後に漸増するようになっている。すなわち、第1出力側回転体8Aの第1側面部32と第2出力側回転体8Bの第2側面部41とに跨って形成された波形溝60は、ボール6を第1出力側回転体8A及び第2出力側回転体8Bの周方向に沿ってスパイラル状に案内するようになっている。したがって、このような第1出力側回転体8Aと第2出力側回転体8Bとに跨って形成される波形溝60、及び固定部材7の径方向溝38に係合するボール6は、径方向溝38内を径方向に沿って移動する際に、3次元的に形成された波形溝60によって入力軸2の回転中心2aに沿った方向にも移動する。なお、波形溝60は、上述のとおり、第1出力側回転体8Aの第1側面部32と第2出力側回転体8Bの第2側面部41に跨って形成されているが、第1出力側回転体8Aと第2出力側回転体8Bとを固定する際に、第1出力側回転体8Aの位置決め溝53と第2出力側回転体8Bの位置決め溝54とを位置合わせすることにより(図14、図20、及び図21参照)、第1出力側回転体8Aと第2出力側回転体8Bとが高精度に位置決めされた状態で固定されるため、第1出力側回転体8A側の波形溝60と第2出力側回転体8B側の波形溝60とでずれを生じることがなく、高精度に形作られる。また、波形溝60は、ボール6を第1出力側回転体8A及び第2出力側回転体8Bの周方向に沿って右巻きのスパイラル状に案内するか、又は左巻きのスパイラル状に案内するようになっていればよい。 As shown in FIGS. 14, 20, and 21, the corrugated groove 60 is formed across the first side surface portion 32 of the first output side rotating body 8A and the second side surface portion 41 of the second output side rotating body 8B. An even number (N = 50) of waves are continuously formed around the rotation center 2a of the input shaft 2 in an annular shape, and are accommodated in the radial grooves 38 at (N + 1) places (51 places) of the fixing member. It engages with the formed ball 6 in a rollable manner. The corrugated groove 60 has a valley bottom 60a at a portion positioned at the radially inner end of the wave and a peak 60b at a portion positioned at the radially outer end of the wave. The valley bottom 60a and the peak 60b are rotated on the first output side. A groove formed between the first side surface portion 32 of the body 8A and the second side surface portion 41 of the second output-side rotator 8B so as to extend equally between the first side surface portion 32 and the second side surface portion 41. It is formed to have the same depth. Further, as shown in FIG. 20A, the corrugated groove 60 is formed from the valley bottom 60 a on the center line 61 to the mountain peak 60 b on the right when the first side surface portion 32 of the first output side rotating body 8 </ b> A is viewed. The groove depth gradually increases as it goes, and then gradually increases, and the groove depth gradually increases and gradually decreases from the peak 60b to the right adjacent valley bottom 60a. Further, as shown in FIG. 21A, the corrugated groove 60 is obtained when the second side surface portion 41 of the second output-side rotating body 8B facing the first side surface portion 32 of the first output-side rotating body 8A is viewed. The groove depth gradually increases from the valley bottom 60a on the center line 61 toward the left adjacent peak 60b, and then gradually decreases. The groove depth decreases gradually from the peak 60b toward the left adjacent valley bottom 60a and then increases gradually. ing. That is, the corrugated groove 60 formed across the first side surface portion 32 of the first output-side rotating body 8A and the second side surface portion 41 of the second output-side rotating body 8B causes the ball 6 to move to the first output-side rotating body. 8A and the 2nd output side rotary body 8B are guided in the spiral shape along the circumferential direction. Accordingly, the corrugated groove 60 formed over the first output side rotating body 8A and the second output side rotating body 8B and the ball 6 engaged with the radial groove 38 of the fixing member 7 are in the radial direction. When moving along the radial direction in the groove 38, the groove 38 formed in a three-dimensional manner also moves in the direction along the rotation center 2 a of the input shaft 2. As described above, the corrugated groove 60 is formed across the first side surface portion 32 of the first output side rotating body 8A and the second side surface portion 41 of the second output side rotating body 8B. When the side rotating body 8A and the second output side rotating body 8B are fixed, the positioning groove 53 of the first output side rotating body 8A and the positioning groove 54 of the second output side rotating body 8B are aligned ( 14, 20, and 21), the first output-side rotator 8 </ b> A and the second output-side rotator 8 </ b> B are fixed in a highly accurately positioned state, and therefore the first output-side rotator 8 </ b> A side The corrugated groove 60 and the corrugated groove 60 on the second output-side rotating body 8B side are not displaced, and are formed with high accuracy. The corrugated groove 60 guides the ball 6 in a right-handed spiral shape along the circumferential direction of the first output-side rotator 8A and the second output-side rotator 8B or in a left-handed spiral shape. It only has to be.
 図22は、ボール6が波形溝60内を転動させられた場合のボール6の転動軌跡62を示す図である。なお、図22(a)は、ボール6の転動軌跡62の平面図(入力軸2の回転中心2aに直交する仮想平面に投影した転動軌跡62)である。また、図22(b)は、図22(a)のA15-A15線に沿って切断して示す仮想断面上に、転動軌跡62の隣り合う波W1,W2を投影して示す図である。また、図22(c)は、図22(b)のボールの転動軌跡を拡大して示す図である。そして、この図22に示したボール6の転動軌跡62は、波形溝60の溝形状を示している。また、図22において、Rは径方向を表し、Zは入力軸2の回転中心2aに沿った方向を示している。 FIG. 22 is a diagram showing a rolling locus 62 of the ball 6 when the ball 6 is rolled in the corrugated groove 60. 22A is a plan view of the rolling trajectory 62 of the ball 6 (the rolling trajectory 62 projected on a virtual plane orthogonal to the rotation center 2a of the input shaft 2). FIG. 22B is a diagram in which adjacent waves W1 and W2 of the rolling locus 62 are projected onto a virtual cross section cut along the line A15-A15 in FIG. . FIG. 22 (c) is an enlarged view showing the rolling trajectory of the ball in FIG. 22 (b). The rolling trajectory 62 of the ball 6 shown in FIG. 22 indicates the groove shape of the corrugated groove 60. In FIG. 22, R represents a radial direction, and Z represents a direction along the rotation center 2 a of the input shaft 2.
 この図22に示すように、波形溝60に沿って移動するボール6の転動軌跡62は、R方向を長軸とする楕円形状を描いており、ボール6の中心が波形溝60の谷底60aと山頂60b(転動軌跡62の谷底62aと山頂62b)とで第1側面部32と第2側面部41との間の中間に位置し、第1の波W1の谷底62aから第1の波W1の山頂62bに向かうに従って+Z方向への移動量を漸増した後に漸減し、第1の波W1の山頂62bから隣り合う第2の波W2の谷底62aへ向かうに従って-Z方向への移動量を漸増した後に漸減するようになっている。そして、ボール6の転動軌跡62は、+Z方向への移動量と-Z方向への移動量が同一になっている。このようなボール6の転動軌跡62は、第1出力側回転体8Aと第2出力側回転体8Bに跨って形成された波形溝60によって形作られる。 As shown in FIG. 22, the rolling trajectory 62 of the ball 6 moving along the corrugated groove 60 has an elliptical shape with the R direction as the major axis, and the center of the ball 6 is the valley bottom 60a of the corrugated groove 60. And the summit 60b (the valley bottom 62a and the summit 62b of the rolling locus 62) are located between the first side face portion 32 and the second side face portion 41, and the first wave from the valley bottom 62a of the first wave W1. The amount of movement in the + Z direction gradually increases after moving toward the peak 62b of W1, and then gradually decreases. The amount of movement in the −Z direction decreases from the peak 62b of the first wave W1 toward the valley bottom 62a of the adjacent second wave W2. After gradually increasing, it gradually decreases. The movement trajectory 62 of the ball 6 has the same amount of movement in the + Z direction and the amount of movement in the −Z direction. Such a rolling trajectory 62 of the ball 6 is formed by the corrugated groove 60 formed across the first output side rotating body 8A and the second output side rotating body 8B.
 図23及び図24は、本実施形態に係るボール減速機1の波形溝60の特徴を示す図である。なお、図23(a)はボール6の転動軌跡62のうちの山頂62bにボール6が位置する状態を示す図(転動軌跡62の一部平面図)であり、図23(b)はボール減速機1を図23(a)のA16-A16線に対応する位置で切断した場合の円筒断面図である。また、図24(a)はボール6の転動軌跡62のうちの山頂62bと谷底62aの中間位置にボール6が位置する状態を示す図(転動軌跡62の一部平面図)であり、図24(b)はボール減速機1を図24(a)のA17-A17線に対応する位置で切断した場合の円筒断面図である。 23 and 24 are views showing the characteristics of the corrugated groove 60 of the ball speed reducer 1 according to the present embodiment. FIG. 23A is a diagram (a partial plan view of the rolling trajectory 62) showing a state in which the ball 6 is located on the peak 62b of the rolling trajectory 62 of the ball 6, and FIG. FIG. 24 is a cylindrical cross-sectional view when the ball speed reducer 1 is cut at a position corresponding to the line A16-A16 in FIG. FIG. 24A is a diagram (a partial plan view of the rolling trajectory 62) showing a state where the ball 6 is located at an intermediate position between the peak 62b and the valley bottom 62a of the rolling trajectory 62 of the ball 6. FIG. 24B is a cylindrical cross-sectional view when the ball speed reducer 1 is cut at a position corresponding to the line A17-A17 in FIG.
 図23に示すように、本実施形態に係るボール減速機1は、ボール6の転動軌跡62の山頂62bが図22(c)の楕円形状の転動軌跡62の長軸の一端に位置し、波形溝60が第1出力側回転体8Aと第2出力側回転体8Bとで同一の溝深さ(第1側面部32からの溝深さと第2側面部41からの溝深さが同一)になっており、第1出力側回転体8Aと第2出力側回転体8Bとで隣り合うボール6,6間に同一の稜部高さh1の稜部63が形成されている。なお、本実施形態に係るボール減速機1は、ボール6の転動軌跡62の谷底62aにおける円筒断面図が図23(b)と同様になる。 As shown in FIG. 23, in the ball speed reducer 1 according to this embodiment, the peak 62b of the rolling trajectory 62 of the ball 6 is located at one end of the long axis of the elliptical rolling trajectory 62 of FIG. The corrugated groove 60 has the same groove depth in the first output side rotating body 8A and the second output side rotating body 8B (the groove depth from the first side surface portion 32 and the groove depth from the second side surface portion 41 are the same). The ridge 63 having the same ridge height h1 is formed between the adjacent balls 6 and 6 in the first output-side rotator 8A and the second output-side rotator 8B. In the ball speed reducer 1 according to the present embodiment, the cylindrical cross-sectional view of the valley bottom 62a of the rolling locus 62 of the ball 6 is the same as that shown in FIG.
 また、図24に示すように、本実施形態に係るボール減速機1は、ボール6の転動軌跡62の山頂62bと谷底62aとの中間位置が図22(c)の楕円形状の転動軌跡62の短軸の位置に対応し、波形溝60が第1出力側回転体8Aと第2出力側回転体8Bとで同一の溝深さ(第1側面部32からの溝深さと第2側面部41からの溝深さが同一)になっており、第1出力側回転体8Aと第2出力側回転体8Bとで隣り合うボール6,6間に同一の稜部高さh2の稜部63が形成されている。 Further, as shown in FIG. 24, in the ball speed reducer 1 according to this embodiment, the intermediate position between the peak 62b and the valley bottom 62a of the rolling trajectory 62 of the ball 6 is an elliptical rolling trajectory shown in FIG. Corresponding to the position of the minor axis 62, the corrugated groove 60 has the same groove depth in the first output side rotating body 8A and the second output side rotating body 8B (the groove depth from the first side surface portion 32 and the second side surface). Ridges having the same ridge height h2 between the adjacent balls 6 and 6 in the first output side rotating body 8A and the second output side rotating body 8B. 63 is formed.
 これら図23及び図24に示すように、本実施形態に係るボール減速機1は、ボール6に係合する波形溝60が第1出力側回転体8Aと第2出力側回転体8Bとにスパイラル状に形成されるため(図22参照)、波形溝60の谷底60aの位置、波形溝60の谷底60aと山頂60bとの中間位置、及び波形溝60の山頂60bの位置のいずれの位置においても、隣り合うボール6,6間にラチェッティングを防止し得る十分な稜部高さh1,h2の稜部63が形成される。 As shown in FIGS. 23 and 24, in the ball speed reducer 1 according to this embodiment, the corrugated groove 60 that engages with the ball 6 spirals between the first output side rotating body 8A and the second output side rotating body 8B. 22 (see FIG. 22), the corrugated groove 60 has a valley bottom 60a, an intermediate position between the valley bottom 60a and the peak 60b of the corrugated groove 60, and a position of the peak 60b of the corrugated groove 60. The ridges 63 having sufficient ridge heights h1 and h2 that can prevent ratcheting between the adjacent balls 6 and 6 are formed.
 以上のように構成された本実施形態に係るボール減速機1は、第1出力側回転体8Aの第1側面部32及び第2出力側回転体8Bの第2側面部41の2箇所にのみ波形溝60が形成されるようになっているため、波形溝111,111,112,112を4箇所にそれぞれ形成する従来例のボール減速機100と比較し(図35参照)、加工工数の削減が可能になる。また、本実施形態に係るボール減速機1は、揺動体5が固定部材7及び出力側回転体8(第1出力側回転体8A及び第2出力側回転体8B)に対して独立して揺動できるようになっているため、揺動体5と出力側回転体8とを一体に回動させるための複雑な機構(例えば、図35に示した従来例に係るボール減速機100の偏心吸収機構113,113)を設ける必要がなく、構造が簡単化し、加工工数の削減が可能になる。 The ball speed reducer 1 according to the present embodiment configured as described above has only two locations, the first side surface portion 32 of the first output side rotating body 8A and the second side surface portion 41 of the second output side rotating body 8B. Since the corrugated groove 60 is formed, compared with the conventional ball speed reducer 100 in which the corrugated grooves 111, 111, 112, 112 are formed at four locations, respectively (see FIG. 35), the number of processing steps can be reduced. Is possible. In the ball speed reducer 1 according to the present embodiment, the swinging body 5 swings independently of the fixed member 7 and the output side rotating body 8 (the first output side rotating body 8A and the second output side rotating body 8B). Since it can move, it is a complicated mechanism for rotating the rocking body 5 and the output side rotating body 8 together (for example, the eccentric absorption mechanism of the ball reducer 100 according to the conventional example shown in FIG. 35). 113, 113) need not be provided, the structure is simplified, and the number of processing steps can be reduced.
 また、本実施形態に係るボール減速機1は、径方向溝38と波形溝60との交差する箇所にボール6が位置するようになっているため、ボール108が偏心回転板104の第1波形溝111の溝壁と固定部材107の第2波形溝112の溝壁に同時に接触するように構成された従来のボール減速機100と比較し(図35参照)、径方向溝38及び波形溝60の加工が容易になると共に、揺動体5、固定部材7、及び出力側回転体8(第1出力側回転体8A及び第2出力側回転体8B)等の組立作業が容易になる。 Further, in the ball speed reducer 1 according to the present embodiment, since the ball 6 is positioned at a location where the radial groove 38 and the corrugated groove 60 intersect, the ball 108 is the first corrugated of the eccentric rotating plate 104. Compared to the conventional ball speed reducer 100 configured to simultaneously contact the groove wall of the groove 111 and the groove wall of the second corrugated groove 112 of the fixing member 107 (see FIG. 35), the radial groove 38 and the corrugated groove 60 And the assembly work of the oscillator 5, the fixing member 7, and the output side rotating body 8 (the first output side rotating body 8A and the second output side rotating body 8B) is facilitated.
 また、本実施形態に係るボール減速機1は、図14、図20、及び図21に示すように、第1出力側回転体8Aと第2出力側回転体8Bが同一形状であるため、部品(第1出力側回転体8A、第2出力側回転体8B、第1ベアリング10、及び第3ベアリング26)を共通化することができ、部品コストを低減できる。
 この本実施形態に係るボール減速機1の技術思想は、第1実施形態に係るボール減速機1及び第2実施形態に係るボール減速機1にも適用できる。
 すなわち、第1実施形態に係るボール減速機1は、第1出力側回転体8Aと第2出力側回転体8Bとを同一形状にすることにより、部品(第1出力側回転体8A、第2出力側回転体8B、第1ベアリング10、及び第3ベアリング26)を共通化して、部品コストを低減できる。なお、この場合、例えば、図6で示す第1実施形態に係る第1出力側回転体8Aの波形溝40の位置を、位置決め溝54に対して1/2波分の角度だけ回転させた位置にすることで、第1出力側回転体8Aと第2出力側回転体8Bとを同一形状とすることができる。
 また、第2実施形態に係るボール減速機1は、第1出力側回転体8Aと第2出力側回転体8Bとを同一形状にすることにより、部品(第1出力側回転体8A、第2出力側回転体8B、第1ベアリング10、及び第3ベアリング26)を共通化して、部品コストを低減できる。
Further, as shown in FIGS. 14, 20, and 21, the ball speed reducer 1 according to the present embodiment has the same shape for the first output side rotating body 8A and the second output side rotating body 8B. (The first output-side rotator 8A, the second output-side rotator 8B, the first bearing 10, and the third bearing 26) can be shared, and the component cost can be reduced.
The technical idea of the ball speed reducer 1 according to this embodiment can be applied to the ball speed reducer 1 according to the first embodiment and the ball speed reducer 1 according to the second embodiment.
That is, in the ball speed reducer 1 according to the first embodiment, the first output-side rotator 8A and the second output-side rotator 8B have the same shape, so that the components (first output-side rotator 8A, second The output side rotating body 8B, the first bearing 10, and the third bearing 26) can be made common to reduce the component cost. In this case, for example, a position obtained by rotating the position of the corrugated groove 40 of the first output-side rotating body 8A according to the first embodiment shown in FIG. Thus, the first output-side rotator 8A and the second output-side rotator 8B can have the same shape.
Further, the ball speed reducer 1 according to the second embodiment is configured such that the first output-side rotator 8A and the second output-side rotator 8B have the same shape, so that the components (first output-side rotator 8A, second The output side rotating body 8B, the first bearing 10, and the third bearing 26) can be made common to reduce the component cost.
  (第3実施形態の第1変形例)
 図25(a)は、ボール6の転動軌跡62の第1変形例を示す図であり、図22(c)に対応する図である。この図25(a)に示すボール6の転動軌跡62は、一対の円弧64,64を向かい合わせて略楕円形状としたものであり、Z軸方向に沿って延びる中心線65を対称軸とする線対称形状であり、且つR方向に沿って延びる中心線66を対称軸とする線対称形状である。本実施形態に係るボール減速機1の波形溝60は、図25(a)に示すボール6の転動軌跡62を生じさせるように形成してもよい。
(First Modification of Third Embodiment)
FIG. 25A is a diagram illustrating a first modification of the rolling locus 62 of the ball 6 and corresponds to FIG. 22C. The rolling trajectory 62 of the ball 6 shown in FIG. 25 (a) is a substantially elliptical shape in which a pair of arcs 64, 64 face each other, and a center line 65 extending along the Z-axis direction is a symmetry axis. And a line-symmetric shape with a center line 66 extending along the R direction as the axis of symmetry. The corrugated groove 60 of the ball speed reducer 1 according to the present embodiment may be formed so as to generate a rolling locus 62 of the ball 6 shown in FIG.
  (第3実施形態の第2変形例)
 図25(b)は、ボール6の転動軌跡62の第2変形例を示す図であり、図22(c)に対応する図である。この図25(b)に示すボール6の転動軌跡62は、図25(a)の円弧64の両端側を直線67,67にした円弧類似形状を一対だけ向かい合わせて略楕円形状としたものであり、Z軸方向に沿って延びる中心線65を対称軸とする線対称形状であり、且つ、R方向に沿って延びる中心線66を対称軸とする線対称形状である。本実施形態に係るボール減速機1の波形溝60は、図25(b)に示すボール6の転動軌跡62を生じさせるように形成してもよい。
(Second Modification of Third Embodiment)
FIG. 25B is a diagram illustrating a second modification of the rolling locus 62 of the ball 6 and corresponds to FIG. 22C. The rolling trajectory 62 of the ball 6 shown in FIG. 25 (b) is a substantially elliptical shape in which a pair of arc-like shapes in which both ends of the arc 64 in FIG. 25 (a) are straight lines 67 and 67 face each other. And a line-symmetric shape having a center line 65 extending along the Z-axis direction as a symmetry axis, and a line-symmetric shape having a center line 66 extending along the R-direction as a symmetry axis. The corrugated groove 60 of the ball speed reducer 1 according to the present embodiment may be formed so as to generate a rolling locus 62 of the ball 6 shown in FIG.
 [第4実施形態]
 図26及び図27は、本発明の第4実施形態に係るボール減速機1を示す図である。なお、図26(a)はボール減速機1の正面図であり、図26(b)はボール減速機1の側面図である。また、図27は図26(a)のA18-A18線に沿って切断して示すボール減速機1の断面図である。
[Fourth Embodiment]
26 and 27 are views showing a ball speed reducer 1 according to a fourth embodiment of the present invention. 26A is a front view of the ball reducer 1, and FIG. 26B is a side view of the ball reducer 1. FIG. 27 is a sectional view of the ball speed reducer 1 cut along the line A18-A18 in FIG.
  (全体構造)
 図26及び図27に示すように、本実施形態に係るボール減速機1は、入力軸(入力側回転体)2、キャップ(入力側回転体)3、偏心円板カム4、揺動体5(第1揺動体5A、第2揺動体5B)、複数のボール(鋼球)6、固定部材7、及び出力側回転体8(第1出力側回転体8A、第2出力側回転体8B)等で構成されている。また、図27は、キャップ3、及び第2出力側回転体8B等を取り外して示すボール減速機1の正面図である。
(Overall structure)
As shown in FIGS. 26 and 27, the ball speed reducer 1 according to the present embodiment includes an input shaft (input-side rotating body) 2, a cap (input-side rotating body) 3, an eccentric disc cam 4, and an oscillating body 5 ( First oscillating body 5A, second oscillating body 5B), a plurality of balls (steel balls) 6, a fixing member 7, an output side rotating body 8 (first output side rotating body 8A, second output side rotating body 8B), etc. It consists of FIG. 27 is a front view of the ball speed reducer 1 with the cap 3, the second output side rotating body 8B, and the like removed.
  (入力軸)
 図26乃至図29に示すように、入力軸2は、第1ベアリング10を介して第1出力側回転体8Aを回動自在に支持しており、図示しない電動機等によって回転駆動されるようになっている。この入力軸2は、軸本体部11よりも大径の鍔状部12が軸本体部11に隣接して形成され、その鍔状部12に隣接して軸受支持部13が形成され、その軸受支持部13に第1ベアリング10が取り付けられ、第1ベアリング10を第1出力側回転体8Aの軸受穴14の内周側突起15と鍔状部12との間に保持するようになっている。また、この入力軸2は、軸受支持部13よりも軸先端側で且つ軸受支持部13に隣接する位置に偏心円板カム4が形成されている。この偏心円板カム4は、その中心4aが入力軸2の回転中心2a(軸本体部11の回転中心11a)に対して偏心量(e)だけ偏心して位置する偏心軸部であり、入力軸2の回転中心2aの回りに入力軸2と一体となって偏心回転する。そして、偏心円板カム4の外周側には、揺動体5が第2ベアリング16を介して相対回動可能に取り付けられている。また、入力軸2は、キャップ3を取り付ける先端軸部17が形成されている。この先端軸部17は、その回転中心が軸本体部2の回転中心2aと同心であり、キャップ3の軸穴18に嵌合され、先端面17aがキャップ3の軸穴18内に突出するストッパ突起20に突き当てられている。また、入力軸2の先端軸部17には、キャップ3を固定するためのボルト21のねじ軸部21aと螺合するねじ穴(雌ねじ)22が形成されている。
(Input shaft)
As shown in FIGS. 26 to 29, the input shaft 2 rotatably supports the first output-side rotating body 8A via the first bearing 10, and is driven to rotate by an electric motor (not shown) or the like. It has become. The input shaft 2 includes a shaft-shaped portion 12 having a diameter larger than that of the shaft main body portion 11, adjacent to the shaft main body portion 11, and a bearing support portion 13 formed adjacent to the shaft-shaped portion 12. The first bearing 10 is attached to the support portion 13, and the first bearing 10 is held between the inner peripheral projection 15 of the bearing hole 14 of the first output side rotating body 8 </ b> A and the flange-shaped portion 12. . Further, the input shaft 2 has an eccentric disc cam 4 formed at a position closer to the shaft tip side than the bearing support portion 13 and adjacent to the bearing support portion 13. The eccentric disc cam 4 is an eccentric shaft portion whose center 4a is eccentric with respect to the rotation center 2a of the input shaft 2 (the rotation center 11a of the shaft main body 11) by an eccentric amount (e). 2 is rotated together with the input shaft 2 around the rotation center 2a. And the rocking | fluctuation body 5 is attached to the outer peripheral side of the eccentric disk cam 4 via the 2nd bearing 16 so that relative rotation is possible. Further, the input shaft 2 is formed with a tip shaft portion 17 to which the cap 3 is attached. The distal end shaft portion 17 has a rotation center concentric with the rotation center 2 a of the shaft main body portion 2, is fitted into the shaft hole 18 of the cap 3, and a stopper whose distal end surface 17 a protrudes into the shaft hole 18 of the cap 3. It is abutted against the protrusion 20. In addition, a screw hole (female screw) 22 that is screwed with a screw shaft portion 21 a of a bolt 21 for fixing the cap 3 is formed in the distal end shaft portion 17 of the input shaft 2.
  (キャップ)
 図26、図27、及び図30に示すように、キャップ3は、入力軸2の先端軸部17にボルト21で固定され、入力軸2と共に入力側回転体を構成し、回転中心3aが入力軸2の回転中心2aと一致するように形成されている。このキャップ3は、回転中心3aに沿った一端側(図30(d)の右端側)に開口する軸穴18と、回転中心3aに沿った他端側(図30(d)の左端側)に開口するボルト頭部収容穴23と、ボルト頭部収容穴23と軸穴18とを連通するボルト軸部挿通穴24と、が形成されている。また、このキャップ3は、円筒状の外周面3bの左端側にリング状の軸受ストッパ25が形成され、外周面3bに取り付けられた第3ベアリング26の側面が軸受ストッパ25に突き当てられており、第2出力側回転体8Bの軸受穴27内の内周側突起28と軸受ストッパ25との間に第3ベアリング26を保持するようになっている。なお、キャップ3は、軸穴18の回転中心及び外周面3bの回転中心がキャップ3の回転中心3aと同心である。また、キャップ3は、外周面3bの外径が入力軸2の軸受支持部13の外径と同寸法に形成されている。そして、キャップ3の外周面3bに取り付けられた第3ベアリング26は、入力軸2の軸受支持部13に取り付けられた第1ベアリング10と同一のものが使用される。また、このキャップ3は、軸受位置決め段部3cと入力軸2の軸受位置決め段部2bとの間に第2ベアリング16を位置決めした状態で保持するようになっている。
(cap)
As shown in FIGS. 26, 27, and 30, the cap 3 is fixed to the distal end shaft portion 17 of the input shaft 2 with a bolt 21, and constitutes an input side rotating body together with the input shaft 2, and the rotation center 3a is input. It is formed so as to coincide with the rotation center 2 a of the shaft 2. The cap 3 has an axial hole 18 that opens to one end side along the rotation center 3a (the right end side in FIG. 30D) and the other end side along the rotation center 3a (the left end side in FIG. 30D). And a bolt head part insertion hole 24 that connects the bolt head part accommodation hole 23 and the shaft hole 18 to each other. The cap 3 has a ring-shaped bearing stopper 25 formed on the left end side of the cylindrical outer peripheral surface 3b, and the side surface of the third bearing 26 attached to the outer peripheral surface 3b is abutted against the bearing stopper 25. The third bearing 26 is held between the inner peripheral projection 28 and the bearing stopper 25 in the bearing hole 27 of the second output side rotating body 8B. In the cap 3, the rotation center of the shaft hole 18 and the rotation center of the outer peripheral surface 3 b are concentric with the rotation center 3 a of the cap 3. The cap 3 is formed so that the outer diameter of the outer peripheral surface 3 b is the same as the outer diameter of the bearing support portion 13 of the input shaft 2. The third bearing 26 attached to the outer peripheral surface 3 b of the cap 3 is the same as the first bearing 10 attached to the bearing support portion 13 of the input shaft 2. The cap 3 holds the second bearing 16 in a state of being positioned between the bearing positioning step 3c and the bearing positioning step 2b of the input shaft 2.
  (揺動体)
 図27及び図31に示すように、揺動体5は、同一形状の第1揺動体5Aと第2揺動体5Bとが背中合わせで組み合わせて構成されている。そして、この揺動体5は、外周端側が第1先端部5f(第1揺動体5Aの外周側先端部)と第2先端部5g(第2揺動体5Bの外周側先端部)とに二股に分岐し、第1先端部5fが固定部材7の一方の側面側にスライド移動可能に係合し、第2先端部5gが固定部材7の他方の側面側にスライド移動可能に係合している。第1揺動体5Aは、偏心円板カム4によって揺動させられるように円板状に形成され、中心の軸受穴30が第2ベアリング16の外周面に嵌合され、偏心円板カム4と相対回動できるように第2ベアリング16で支持されている。この第1揺動体5Aは、その中心5aが偏心円板カム4の中心4aと同心となるように形成され、外周面5bが偏心円板カム4の中心4aと同心の円筒面であり、外周面5bで複数のボール6を転動可能に支持している。また、第1揺動体5Aは、軸受穴30の径方向外方側に、周方向に沿って10カ所の貫通穴31が等間隔で形成されている。この第1揺動体5Aの貫通穴31は、第1出力側回転体8Aの第1側面部32に形成された連結突起33a及び第2出力側回転体8Bの第2側面部41に形成された連結突起33bが隙間をもって係合され、第1揺動体5Aが偏心円板カム4で揺動させられた際にも連結突起33a,33bに接触しない大きさに形成されている。また、第1揺動体5Aの第1先端部5fの外周面5bは、ボール5の外周面と線接触できるような円弧状の断面形状になっている(図31(f)参照)。なお、第2揺動体5Bは、第1揺動体5Aと同一形状であるため、第1揺動体5Aの説明と重複する説明を省略する。
(Oscillator)
As shown in FIGS. 27 and 31, the oscillating body 5 is configured by combining the first oscillating body 5A and the second oscillating body 5B having the same shape back to back. The swinging body 5 is bifurcated into a first tip 5f (a tip on the outer periphery of the first swinging body 5A) and a second tip 5g (a tip on the outer periphery of the second swinging body 5B). The first tip 5f is slidably engaged with one side of the fixing member 7, and the second tip 5g is slidably engaged with the other side of the fixing member 7. . The first rocking body 5 </ b> A is formed in a disk shape so as to be rocked by the eccentric disk cam 4, and the center bearing hole 30 is fitted to the outer peripheral surface of the second bearing 16. It is supported by the second bearing 16 so as to be capable of relative rotation. The first oscillating body 5A is formed so that its center 5a is concentric with the center 4a of the eccentric disc cam 4, and its outer peripheral surface 5b is a cylindrical surface concentric with the center 4a of the eccentric disc cam 4. A plurality of balls 6 are supported by the surface 5b so as to be able to roll. Further, in the first oscillator 5A, ten through holes 31 are formed at equal intervals along the circumferential direction on the radially outer side of the bearing hole 30. The through hole 31 of the first oscillating body 5A is formed on the connection protrusion 33a formed on the first side surface portion 32 of the first output side rotating body 8A and the second side surface portion 41 of the second output side rotating body 8B. The connection protrusion 33b is engaged with a gap, and is formed in a size that does not contact the connection protrusions 33a and 33b even when the first swinging body 5A is swung by the eccentric disc cam 4. Further, the outer peripheral surface 5b of the first tip 5f of the first rocking body 5A has an arcuate cross-sectional shape so as to be in line contact with the outer peripheral surface of the ball 5 (see FIG. 31F). Since the second oscillating body 5B has the same shape as the first oscillating body 5A, the description overlapping the description of the first oscillating body 5A is omitted.
  (固定部材)
 図26,図27、図28、及び図32に示すように、固定部材7は、正面側の形状が略四角形状であり、中心部に揺動体収容穴34が形成されている。この固定部材7は、外縁に沿うように形成された固定枠部35と、この固定枠部35の径方向内方側に形成された径方向溝形成円板部36と、を有している。そして、固定部材7は、固定枠部35の四隅にボルト穴37が形成され、この四箇所のボルト穴37に固定用ボルト(図示せず)が挿入され、図示しない被固定部材(例えば、機械のフレーム、又はロボットのアーム)に固定用ボルトで固定されるようになっている。この固定部材7は、揺動体収容穴34の中心34aが入力軸2の回転中心2aと同心となるように被固定部材に固定される。そして、固定部材7の揺動体収容穴34には、揺動体5(第1揺動体5A及び第2揺動体5B)が揺動できるように収容される。この固定部材7の一方の側面36a側には、揺動体5の第1先端部5f(第1揺動体5Aの外周側先端部)が対向するように配置されている。また、固定部材7の他方の側面36b側には、揺動体5の第2先端部5g(第2揺動体5Bの外周側先端部)が対向するように配置されている。
(Fixing member)
As shown in FIGS. 26, 27, 28, and 32, the fixing member 7 has a substantially square shape on the front side, and a swinging body accommodation hole 34 is formed at the center. The fixing member 7 has a fixed frame portion 35 formed along the outer edge, and a radial groove forming disk portion 36 formed on the radially inner side of the fixed frame portion 35. . The fixing member 7 has bolt holes 37 formed at the four corners of the fixing frame portion 35, and fixing bolts (not shown) are inserted into the bolt holes 37 at the four locations. Frame or robot arm) with fixing bolts. The fixing member 7 is fixed to the member to be fixed so that the center 34 a of the swinging body accommodation hole 34 is concentric with the rotation center 2 a of the input shaft 2. Then, the oscillating body 5 (the first oscillating body 5A and the second oscillating body 5B) is accommodated in the oscillating body accommodation hole 34 of the fixing member 7 so as to be able to oscillate. On one side surface 36a side of the fixing member 7, a first tip portion 5f of the oscillating body 5 (an outer peripheral side tip portion of the first oscillating body 5A) is arranged to face. Further, the second tip portion 5g of the rocking body 5 (the outer circumferential side tip portion of the second rocking body 5B) is disposed so as to face the other side surface 36b of the fixing member 7.
 固定部材7の径方向溝形成円板部36の一方の側面36aには、径方向に沿って延びる長穴状の第1の径方向溝68が周方向に沿って等間隔で複数(波形溝70の波数をNとすると、(N+1))形成されている。また、固定部材7の径方向溝形成円板部36の他方の側面36bには、径方向に沿って延びる長穴状の第2の径方向溝71が周方向に沿って等間隔で複数(波形溝70の波数をNとすると、(N+1))形成されている。そして、この第2の径方向溝71は、第1の径方向溝68を周方向に1/2ピッチ(隣り合う第1の径方向溝68,68間の角度をθとすると、θ/2の角度)だけずらした位置に、第1の径方向溝68を表裏反転させたように形成されており、第1の径方向溝68と同一の径方向位置に形成されている。これら第1の径方向溝68及び第2の径方向溝71は、溝深さがボール6の半径よりも小さくなるように形成され、溝断面形状がボール6の半径と同一の半径の円弧形状であり、ボール6と線接触するように形成されている。また、これら第1の径方向溝68及び第2の径方向溝71は、溝長さ(径方向長さ)が揺動体5の揺動量(偏心円板カム4の偏心量e)を考慮した長さに形成され、揺動体5の外周面5bに支持されたボール6が径方向に沿って移動させられるようになっている。また、第1の径方向溝68に収容されたボール6は、第1出力側回転体8Aの波形溝70に転動可能に係合される。また、第2の径方向溝71に収容されたボール6は、第2出力側回転体8Bの波形溝70に転動可能に係合される。このような固定部材7の第1の径方向溝68及び第2の径方向溝71は、偏心円板カム4が1回転し、揺動体5が1ストローク分だけ揺動させられると、ボール6を揺動体5の揺動量に応じた分だけ径方向に転動させることができる。 On one side surface 36a of the radial groove forming disk portion 36 of the fixing member 7, there are a plurality of elongated hole-shaped first radial grooves 68 extending along the radial direction (corrugated grooves) along the circumferential direction. When the wave number of 70 is N, (N + 1)) is formed. In addition, a plurality of second radial grooves 71 having a long hole shape extending along the radial direction are provided at equal intervals along the circumferential direction on the other side surface 36b of the radial groove forming disk portion 36 of the fixing member 7. When the wave number of the corrugated groove 70 is N, (N + 1)) is formed. The second radial groove 71 has a pitch of 1/2 of the first radial groove 68 in the circumferential direction (when the angle between the adjacent first radial grooves 68 and 68 is θ, θ / 2 The first radial groove 68 is formed so as to be turned upside down at a position shifted by an angle of (1)), and is formed at the same radial position as the first radial groove 68. The first radial groove 68 and the second radial groove 71 are formed so that the groove depth is smaller than the radius of the ball 6, and the groove cross-sectional shape is an arc shape having the same radius as the radius of the ball 6. It is formed so as to be in line contact with the ball 6. The first radial groove 68 and the second radial groove 71 have a groove length (radial length) in consideration of the swing amount of the swing body 5 (the eccentric amount e of the eccentric disc cam 4). A ball 6 formed in a length and supported on the outer peripheral surface 5b of the rocking body 5 is moved along the radial direction. Further, the ball 6 accommodated in the first radial groove 68 is engaged with the corrugated groove 70 of the first output-side rotating body 8A so as to be able to roll. Further, the ball 6 accommodated in the second radial groove 71 is engaged with the corrugated groove 70 of the second output side rotating body 8B so as to be able to roll. The first radial groove 68 and the second radial groove 71 of the fixing member 7 are configured so that the eccentric disk cam 4 makes one rotation and the rocking body 5 is swung for one stroke. Can be rolled in the radial direction by an amount corresponding to the swinging amount of the swinging body 5.
 以上のような構成の固定部材7は、径方向溝形成円板部36の一方の側面36a側に形成された第1の径方向溝68と他方の側面36b側に形成された第2の径方向溝71が周方向に半ピッチ(θ/2の角度)分だけずれて位置しているため、第1の径方向溝68と第2の径方向溝71が周方向の同一位置に形成される場合(周方向にずらして形成されない場合)と比較し、径方向溝形成円板部36の肉厚を十分に確保し、径方向溝形成円板部36の強度を大きくすることができる。また、固定部材7は、一方の側面36a側に形成された第1の径方向溝68と他方の側面36b側に形成された第2の径方向溝71が周方向に半ピッチ分だけずれて位置しているため、第1の径方向溝68と第2の径方向溝71が周方向の同一位置に形成される場合(周方向にずらして形成されない場合)と比較し、径方向溝形成円板部36の強度を同一に維持しつつ、径方向溝形成円板部36の肉厚を薄くでき、軽量化を図ることができる。 The fixing member 7 having the above-described configuration includes a first radial groove 68 formed on the one side surface 36a side of the radial groove forming disk portion 36 and a second diameter formed on the other side surface 36b side. Since the directional groove 71 is shifted by a half pitch (θ / 2 angle) in the circumferential direction, the first radial groove 68 and the second radial groove 71 are formed at the same position in the circumferential direction. As compared with the case where the radial groove forming disk part 36 is not formed by being shifted in the circumferential direction, the thickness of the radial groove forming disk part 36 can be sufficiently secured and the strength of the radial groove forming disk part 36 can be increased. Further, in the fixing member 7, the first radial groove 68 formed on the one side surface 36a side and the second radial groove 71 formed on the other side surface 36b side are shifted by a half pitch in the circumferential direction. Therefore, compared to the case where the first radial groove 68 and the second radial groove 71 are formed at the same position in the circumferential direction (when they are not formed shifted in the circumferential direction), the radial groove is formed. While maintaining the strength of the disk part 36 to be the same, the thickness of the radial groove forming disk part 36 can be reduced, and the weight can be reduced.
  (第1出力側回転体)
 図26、図27、及び図33に示すように、第1出力側回転体8Aは、揺動体5の両側面5c,5dのうちの一方の側面5c、及び固定部材7の径方向溝形成円板部36の両側面36a,36bのうちの一方の側面36aに対向して位置する第1側面部32を有している。また、第1出力側回転体8Aは、入力軸2に取り付けられた第1ベアリング10を収容する軸受穴14が形成され、第1ベアリング10のアウターレースの側面が軸受穴14の端部に形成された内周側突起15に突き当てられるようになっている。この第1出力側回転体8Aの第1側面部32は、第2出力側回転体8Bを連結固定するための連結突起33aが周方向に等間隔で複数(5箇所)形成されている。この連結突起33aは、揺動体5の貫通穴31を貫通して第2出力側回転体8Bの第2側面部41に形成された連結突起収容凹部42bに嵌合されるようになっている。また、この第1出力側回転体8Aの第1側面部32は、第2出力側回転体8Bを連結固定するための連結突起収容凹部42aが周方向に等間隔で複数(5箇所)形成されている。この連結突起収容凹部42aは、揺動体5の貫通穴31を貫通して延びる第2出力側回転体8Bの第2側面部41に形成された連結突起33bが嵌合されるようになっている。連結突起33aと連結突起収容凹部42aは、第1出力側回転体8Aの中心C1の回りに交互に且つ等間隔で配置されている。
 また、第1出力側回転体8Aの第1側面部32は、連結突起33a及び連結突起収容凹部42aの径方向外方側に波形溝70が形成されている。この波形溝70は、図33(a)に示すように、50波が連続して形成されており、波の径方向内方端を谷底とし、波の径方向外方端を山頂とすると、第1出力側回転体8Aの中心C1を通り且つx方向に平行な中心線72上に波の山頂が位置するように形成されている。そして、連結突起33aの一つと、この連結突起33aの一つと2回対称の位置にある連結突起収容凹部42aの一つとが、中心線72と直交する中心線73(第1出力側回転体8Aの中心C1を通り且つy方向に平行な中心線)に対し、第1の径方向溝68の1/4ピッチ分(隣り合う第1の径方向溝68,68間の角度をθとすると、θ/4の角度)だけ左回り方向にずれて位置する中心線74上に配置されている。
(First output side rotating body)
As shown in FIGS. 26, 27, and 33, the first output-side rotator 8 </ b> A includes one side surface 5 c of the both side surfaces 5 c and 5 d of the oscillating body 5 and a radial groove forming circle of the fixing member 7. It has the 1st side part 32 located facing one side surface 36a of the both sides | surfaces 36a and 36b of the board part 36. As shown in FIG. The first output-side rotating body 8 </ b> A is formed with a bearing hole 14 that accommodates the first bearing 10 attached to the input shaft 2, and the side surface of the outer race of the first bearing 10 is formed at the end of the bearing hole 14. It is made to abut against the inner peripheral projection 15 made. In the first side surface portion 32 of the first output side rotating body 8A, a plurality of (5 places) connecting projections 33a for connecting and fixing the second output side rotating body 8B are formed at equal intervals in the circumferential direction. The connection protrusion 33a is fitted into a connection protrusion receiving recess 42b formed in the second side surface portion 41 of the second output side rotating body 8B through the through hole 31 of the swinging body 5. In addition, the first side surface portion 32 of the first output side rotator 8A is formed with a plurality (five places) of connecting projection receiving recesses 42a for connecting and fixing the second output side rotator 8B at equal intervals in the circumferential direction. ing. The connecting projection receiving recess 42a is adapted to be fitted with a connecting projection 33b formed on the second side surface portion 41 of the second output side rotating body 8B extending through the through hole 31 of the rocking body 5. . The connection protrusions 33a and the connection protrusion accommodating recesses 42a are alternately arranged at equal intervals around the center C1 of the first output-side rotating body 8A.
Further, the first side surface portion 32 of the first output side rotating body 8A has a corrugated groove 70 formed on the radially outer side of the connection protrusion 33a and the connection protrusion accommodating recess 42a. As shown in FIG. 33 (a), the corrugated groove 70 is formed of 50 waves continuously, where the radially inner end of the wave is a valley bottom and the radially outer end of the wave is a peak. A wave peak is formed on a center line 72 that passes through the center C1 of the first output side rotating body 8A and is parallel to the x direction. Then, one of the connecting protrusions 33a and one of the connecting protrusions 33a and one of the connecting protrusion receiving recesses 42a that are in two-fold symmetry are center lines 73 (first output side rotating body 8A) orthogonal to the center line 72. Is a quarter pitch of the first radial groove 68 (the angle between the adjacent first radial grooves 68 and 68 is θ) with respect to a center line parallel to the y direction). It is arranged on a center line 74 that is shifted counterclockwise by an angle of θ / 4.
 また、この第1出力側回転体8Aは、その背面側(第1側面部32の反対側に位置する面側)に、被回転部材を固定するためのねじ穴52が連結突起33aよりも径方向内方側位置の周方向に沿って等間隔で4箇所形成されている。このねじ穴52は、中心線74上に一対位置するように形成され、中心線74に直交する中心線75上に一対位置するように形成されている。 Further, the first output-side rotating body 8A has a screw hole 52 for fixing a member to be rotated on the back surface side (the surface side opposite to the first side surface portion 32) having a diameter larger than that of the connection protrusion 33a. Four points are formed at equal intervals along the circumferential direction of the inner side position. A pair of screw holes 52 are formed on the center line 74, and a pair of screw holes 52 are formed on the center line 75 orthogonal to the center line 74.
 また、第1出力側回転体8Aの第1側面部32において、波形溝70よりも径方向内方側の部分(正確には、揺動体5の揺動を可能にする領域)は、固定部材7の径方向溝形成円板部36、揺動体5の第1先端部5f、及び揺動体5の第2先端部5gを第2出力側回転体8Bの第2側面部41との間に収容するようになっている。これに対し、第1出力側回転体8Aの第1側面部32において、波形溝70よりも径方向外方側の部分(正確には、揺動体5の外周端が到達しない領域)は、固定部材7の径方向溝形成円板部36のみを第2出力側回転体8Bの第2側面部41との間に収容するようになっている。したがって、第1出力側回転体8Aの第1側面部32において、波形溝70は、固定部材7の一方の側面36a側に形成された第1の径方向溝68の溝深さがボール6の半径よりも小さくなっているため、山頂側の溝深さをボール6の半径よりも大きくすることができる。その結果、第1出力側回転体8Aは、ボール減速機1の回転伝達時に最も大きな回転トルクが作用する波形溝70の山頂付近のラチェッティングを効果的に防止できる。 Further, in the first side surface portion 32 of the first output-side rotating body 8A, the portion on the radially inner side from the corrugated groove 70 (more precisely, the region that allows the rocking body 5 to rock) is a fixing member. 7 and the second tip portion 5g of the oscillating body 5 are accommodated between the second side surface portion 41 of the second output side rotating body 8B. It is supposed to be. On the other hand, in the first side surface portion 32 of the first output side rotating body 8A, a portion radially outward from the corrugated groove 70 (more precisely, a region where the outer peripheral end of the rocking body 5 does not reach) is fixed. Only the radial groove forming disk part 36 of the member 7 is accommodated between the second side surface part 41 of the second output side rotating body 8B. Therefore, in the first side surface portion 32 of the first output side rotating body 8A, the corrugated groove 70 has a groove depth of the first radial groove 68 formed on the side surface 36a side of the fixing member 7 of the ball 6. Since it is smaller than the radius, the groove depth on the mountain top side can be made larger than the radius of the ball 6. As a result, the first output-side rotating body 8A can effectively prevent ratcheting in the vicinity of the peak of the corrugated groove 70 to which the largest rotational torque acts when the rotation of the ball speed reducer 1 is transmitted.
  (第2出力側回転体)
 図34は、第2出力側回転体8Bを示す図である。図34(a)に示す第2出力側回転体8Bは、第1出力側回転体8Aを図33(a)の中心線(反転基準中心線)72の周りに表裏反転した後、第1出力側回転体8Aを中心線73の周りに180度回転させ、次に第1出力側回転体8Aの中心C1を回転中心として、第1出力側回転体8Aを右回り方向に第2の径方向溝71の1/2ピッチ分(隣り合う径方向溝71,71間の角度をθとすると、θ/2)の角度だけ回転させたものであり、第1出力側回転体と同一形状のものが使用される。この第2出力側回転体8Bは、揺動体5の両側面5c,5dのうちの他方の側面5d、及び固定部材7の径方向溝形成円板部36の両側面36a,36bのうちの他方の側面36bに対向して位置する第2側面部41を有している。この第2出力側回転体8Bの第2側面部41は、第1出力側回転体8aの連結突起33aに対応する位置に、連結突起33aに嵌合される連結突起収容凹部42bが連結突起33aと同数形成されている。また、この第2出力側回転体8Bの第2側面部41は、第1出力側回転体8Aの連結突起収容凹部42aに対応する位置に、連結突起収容凹部42aに嵌合される連結突起33bが連結突起収容凹部42aと同数形成されている。また、第2出力側回転体8Bは、キャップ3に取り付けられた第3ベアリング26を収容する軸受穴27が形成され、第3ベアリング26のアウターレースの側面が軸受穴27の端部に形成された内周側突起28に突き当てられるようになっている。また、この第2出力側回転体8Bは、その背面側(第2側面部41の反対側に位置する面側)に、被回転部材を固定するためのねじ穴52が連結突起33bよりも径方向内方側位置の周方向に沿って等間隔で4箇所形成されている。
(Second output side rotating body)
FIG. 34 is a diagram showing the second output-side rotator 8B. The second output-side rotator 8B shown in FIG. 34 (a) reverses the first output-side rotator 8A around the center line (inversion reference center line) 72 in FIG. 33 (a), and then outputs the first output. The side rotating body 8A is rotated 180 degrees around the center line 73, and then the first output side rotating body 8A is rotated clockwise about the center C1 of the first output side rotating body 8A in the second radial direction. The groove 71 is rotated by an angle of 1/2 pitch (θ / 2 where the angle between adjacent radial grooves 71 and 71 is θ), and has the same shape as the first output-side rotating body Is used. The second output-side rotator 8B includes the other side surface 5d of the side surfaces 5c and 5d of the rocking body 5 and the other side surface 36a and 36b of the radial groove forming disk portion 36 of the fixing member 7. It has the 2nd side part 41 located facing the side surface 36b. The second side surface portion 41 of the second output side rotator 8B has a connection protrusion 33a at a position corresponding to the connection protrusion 33a of the first output side rotator 8a. The same number is formed. In addition, the second side surface portion 41 of the second output side rotating body 8B is connected to the connecting projection receiving recess 42a at a position corresponding to the connecting projection receiving recess 42a of the first output side rotating body 8A. Are formed in the same number as the connecting projection receiving recesses 42a. Further, the second output-side rotating body 8B is formed with a bearing hole 27 that accommodates the third bearing 26 attached to the cap 3, and the side surface of the outer race of the third bearing 26 is formed at the end of the bearing hole 27. Further, it is abutted against the inner peripheral projection 28. Further, the second output-side rotating body 8B has a screw hole 52 for fixing the member to be rotated on the back surface side (the surface side opposite to the second side surface portion 41). Four points are formed at equal intervals along the circumferential direction of the inner side position.
 また、第2出力側回転体8Bの第2側面部41は、連結突起33b及び連結突起収容凹部42bの径方向外方側に波形溝70が形成されている。この波形溝70は、図34(a)に示すように、50波が連続して形成されており、第2出力側回転体8Bの中心C1を通り且つx方向に平行な中心線72よりも右回り方向にθ/2だけ回転した中心線76上に波の山頂が位置するように形成されている。そして、連結突起33bの一つと、この連結突起33bの一つと2回対称の位置にある連結突起収容凹部42bの一つとが、中心線75と直交する中心線74上に配置されている。 Further, the second side surface portion 41 of the second output-side rotator 8B has a corrugated groove 70 formed on the radially outer side of the connection protrusion 33b and the connection protrusion accommodating recess 42b. As shown in FIG. 34A, the corrugated groove 70 is formed of 50 waves continuously, and passes through the center C1 of the second output side rotating body 8B and is parallel to the center line 72 parallel to the x direction. It is formed so that the peak of the wave is located on the center line 76 rotated by θ / 2 in the clockwise direction. One of the connection protrusions 33 b and one of the connection protrusion receiving recesses 42 b that are in a two-fold symmetry with the one of the connection protrusions 33 b are arranged on a center line 74 orthogonal to the center line 75.
 なお、第1出力側回転体8Aと第2出力側回転体8Bは、第2出力側回転体8Bの連結突起収容凹部42bに形成されたボルト穴77に挿入されたボルト78の軸部78aが第1出力側回転体8Aの連結突起33aの雌ねじ部80に螺合され、第1出力側回転体8Aの連結突起収容凹部42aに形成されたボルト穴77に挿入されたボルト78の軸部78aが第2出力側回転体8Bの連結突起33bの雌ねじ部80に螺合されることにより固定される。 The first output-side rotating body 8A and the second output-side rotating body 8B have shaft portions 78a of bolts 78 inserted into bolt holes 77 formed in the connecting projection receiving recesses 42b of the second output-side rotating body 8B. A shaft portion 78a of a bolt 78 that is screwed into the female thread portion 80 of the connecting projection 33a of the first output side rotating body 8A and is inserted into a bolt hole 77 formed in the connecting projection receiving recess 42a of the first output side rotating body 8A. Is fixed by being screwed into the female threaded portion 80 of the connecting projection 33b of the second output side rotating body 8B.
 また、第2出力側回転体8Bの第2側面部41において、波形溝70よりも径方向内方側の部分(正確には、揺動体5の揺動を可能にする領域)は、固定部材7の径方向溝形成円板部36、揺動体5の第1先端部5f、及び揺動体5の第2先端部5gを第1出力側回転体8Aの第1側面部32との間に収容するようになっている。これに対し、第2出力側回転体8Bの第2側面部41において、波形溝70よりも径方向外方側の部分(正確には、揺動体5の外周端が到達しない領域)は、固定部材7の径方向溝形成円板部36のみを第1出力側回転体8Aの第1側面部32との間に収容するようになっている。したがって、第2出力側回転体8Bの第2側面部41において、波形溝70は、固定部材7の他方の側面36b側に形成された第2の径方向溝71の溝深さがボール6の半径よりも小さくなっているため、山頂側の溝深さをボール6の半径よりも大きくすることができる。その結果、第2出力側回転体8Bは、ボール減速機1の回転伝達時に最も大きな回転トルクが作用する波形溝70の山頂付近のラチェッティングを効果的に防止できる。 Further, in the second side surface portion 41 of the second output-side rotator 8B, a portion radially inward of the corrugated groove 70 (more precisely, a region in which the oscillating body 5 can be oscillated) is a fixing member. 7, the radial groove forming disk portion 36, the first tip portion 5 f of the rocking body 5, and the second tip portion 5 g of the rocking body 5 are accommodated between the first side surface portion 32 of the first output side rotating body 8 </ b> A. It is supposed to be. On the other hand, in the second side surface portion 41 of the second output side rotating body 8B, the portion on the radially outer side from the corrugated groove 70 (more precisely, the region where the outer peripheral end of the rocking body 5 does not reach) is fixed. Only the radial groove forming disk part 36 of the member 7 is accommodated between the first side surface part 32 of the first output side rotating body 8A. Therefore, in the second side surface portion 41 of the second output side rotating body 8B, the corrugated groove 70 has a groove depth of the second radial groove 71 formed on the other side surface 36b side of the fixing member 7 of the ball 6. Since it is smaller than the radius, the groove depth on the mountain top side can be made larger than the radius of the ball 6. As a result, the second output-side rotator 8B can effectively prevent ratcheting in the vicinity of the peak of the corrugated groove 70 to which the largest rotational torque acts when the rotation of the ball speed reducer 1 is transmitted.
  (作動状態)
 図27,図33、及び図34に示すように、本実施形態に係るボール減速機1は、第1出力側回転体8Aと第2出力側回転体8Bとを組み合わせて固定した場合、第1出力側回転体8Aの波形溝70と第2出力側回転体8Bの波形溝70とが第1の径方向溝68(又は第2の径方向溝71)の半ピッチ(θ/2)分だけ周方向にずれた状態で位置するため、固定部材7の第1の径方向溝68と第2の径方向溝71とが周方向に半ピッチ(θ/2)分だけずらして形成されても、固定部材7の第1の径方向溝68と第1出力側回転体8Aの波形溝70の位置関係と固定部材7の第2の径方向溝71と第2出力側回転体8Bの波形溝70の位置関係とが合致し、回転伝達を円滑に行うことができる。
(Operating state)
As shown in FIG. 27, FIG. 33, and FIG. 34, the ball speed reducer 1 according to the present embodiment has the first output side rotating body 8A and the second output side rotating body 8B fixed in combination. The corrugated groove 70 of the output-side rotator 8A and the corrugated groove 70 of the second output-side rotator 8B are the half pitch (θ / 2) of the first radial groove 68 (or the second radial groove 71). Since the first radial groove 68 and the second radial groove 71 of the fixing member 7 are formed so as to be shifted by a half pitch (θ / 2) in the circumferential direction because they are positioned in a state shifted in the circumferential direction. The positional relationship between the first radial groove 68 of the fixing member 7 and the corrugated groove 70 of the first output side rotating body 8A, and the second radial groove 71 of the fixing member 7 and the corrugated groove of the second output side rotating body 8B. The positional relationship of 70 matches, and rotation transmission can be performed smoothly.
  (本実施形態の効果)
 以上のように構成された本実施形態に係るボール減速機1は、第1出力側回転体8Aの第1側面部32及び第2出力側回転体8Bの第2側面部41の2箇所にのみ波形溝70が形成されるようになっているため、波形溝111,111,112,112を4箇所にそれぞれ形成する従来例のボール減速機100と比較し(図35参照)、加工工数の削減が可能になる。また、本実施形態に係るボール減速機1は、揺動体5が固定部材7及び出力側回転体8(第1出力側回転体8A及び第2出力側回転体8B)に対して独立して揺動できるようになっているため、揺動体5と出力側回転体8とを一体に回動させるための複雑な機構(例えば、図35に示した従来例に係るボール減速機100の偏心吸収機構113,113)を設ける必要がなく、構造が簡単化し、加工工数の削減が可能になる。
(Effect of this embodiment)
The ball speed reducer 1 according to the present embodiment configured as described above has only two locations, the first side surface portion 32 of the first output side rotating body 8A and the second side surface portion 41 of the second output side rotating body 8B. Since the corrugated groove 70 is formed, compared with the conventional ball reducer 100 in which the corrugated grooves 111, 111, 112, 112 are formed at four locations, respectively (see FIG. 35), the number of processing steps is reduced. Is possible. In the ball speed reducer 1 according to the present embodiment, the swinging body 5 swings independently of the fixed member 7 and the output side rotating body 8 (the first output side rotating body 8A and the second output side rotating body 8B). Since it can move, it is a complicated mechanism for rotating the rocking body 5 and the output side rotating body 8 together (for example, the eccentric absorption mechanism of the ball reducer 100 according to the conventional example shown in FIG. 35). 113, 113) need not be provided, the structure is simplified, and the number of processing steps can be reduced.
 また、本実施形態に係るボール減速機1は、第1の径方向溝68と波形溝70との交差する箇所、及び第2の径方向溝71と波形溝70との交差する箇所にボール6が位置するようになっているため、ボール108が偏心回転板104の第1波形溝111の溝壁と固定部材107の第2波形溝112の溝壁に同時に接触するように構成された従来のボール減速機100と比較し(図35参照)、第1の径方向溝68、第2の径方向溝71、及び波形溝70の加工が容易になると共に、揺動体5、固定部材7、及び出力側回転体8(第1出力側回転体8A及び第2出力側回転体8B)等の組立作業が容易になる。 In addition, the ball speed reducer 1 according to the present embodiment has the ball 6 at the location where the first radial groove 68 and the corrugated groove 70 intersect, and at the location where the second radial groove 71 and the corrugated groove 70 intersect. Therefore, the ball 108 is configured to be in contact with the groove wall of the first corrugated groove 111 of the eccentric rotating plate 104 and the groove wall of the second corrugated groove 112 of the fixing member 107 at the same time. Compared to the ball reducer 100 (see FIG. 35), the first radial groove 68, the second radial groove 71, and the corrugated groove 70 can be easily processed, and the oscillator 5, the fixing member 7, and Assembling work such as the output side rotating body 8 (the first output side rotating body 8A and the second output side rotating body 8B) becomes easy.
 また、本実施形態に係るボール減速機1は、第1出力側回転体8Aと第2出力側回転体8Bとが同一形状であるため、部品(第1出力側回転体8A、第2出力側回転体8B、第1ベアリング10、及び第3ベアリング26)を共通化することができ、部品コストを低減できる。 Moreover, since the 1st output side rotary body 8A and the 2nd output side rotary body 8B are the same shapes, the ball | bowl speed reducer 1 which concerns on this embodiment has components (1st output side rotary body 8A, 2nd output side). The rotating body 8B, the first bearing 10, and the third bearing 26) can be shared, and the component cost can be reduced.
  (本実施形態の変形例)
 なお、本実施形態に係るボール減速機1は、固定部材7の第1の径方向溝68と第2の径方向溝71を周方向に沿って半ピッチ(θ/2)分だけずらして形成されているが、これに限られず、固定部材7の第1の径方向溝68と第2の径方向溝71を周方向の同一位置に形成してもよい。なお、このような固定部材7の構成の場合には、第1出力側回転体8Aの連結突起33aの一つと、この連結突起33aの一つと2回対称の位置にある連結突起収容凹部42aの一つとが、中心線73(第1出力側回転体8Aの中心C1を通り且つy方向に平行な中心線)上に配置される。
(Modification of this embodiment)
The ball speed reducer 1 according to the present embodiment is formed by shifting the first radial groove 68 and the second radial groove 71 of the fixing member 7 by a half pitch (θ / 2) along the circumferential direction. However, the present invention is not limited to this, and the first radial groove 68 and the second radial groove 71 of the fixing member 7 may be formed at the same circumferential position. In the case of such a configuration of the fixing member 7, one of the connection projections 33a of the first output side rotating body 8A and the connection projection receiving recess 42a at a position that is two-fold symmetrical with one of the connection projections 33a. One is arranged on a center line 73 (a center line passing through the center C1 of the first output side rotating body 8A and parallel to the y direction).
 また、本実施形態に係るボール減速機1は、同一形状の第1揺動体5Aと第2揺動体5Bとを背中合わせで組み合わせて揺動体5が構成されているが、これに限られず、揺動体5の全体を一体に形成するようにしてもよい。 In the ball speed reducer 1 according to this embodiment, the oscillating body 5 is configured by combining the first oscillating body 5A and the second oscillating body 5B having the same shape back to back. 5 may be formed integrally.
 [第1乃至第4実施形態の変形例]
 本発明の第1乃至第4実施形態に係るボール減速機1は、第1乃至第3ベアリング10,16,26として、ボールベアリング、ローラベアリング、ブッシュ等が使用される。
[Modifications of First to Fourth Embodiments]
In the ball speed reducer 1 according to the first to fourth embodiments of the present invention, ball bearings, roller bearings, bushes, and the like are used as the first to third bearings 10, 16, and 26.
 また、本発明の第1乃至第4実施形態に係るボール減速機1は、全体(入力軸2、キャップ3、揺動体5、固定部材7、第1出力側回転体8A、及び第2出力側回転体8B等)を金属で形成する場合、全体の一部を合成樹脂材料で形成する場合、又は第1乃至第4ベアリング10,16,26及びボール6以外の全体を合成樹脂材料で形成する場合が考えられる。特に、第1乃至第3ベアリング10,16,26及びボール6以外の全体を合成樹脂材料で形成するボール減速機1は、重量を軽量化することができ、製品価格を低廉化することができる。また、第1乃至第3ベアリング10,16,26及びボール6以外の全体を合成樹脂材料で形成するボール減速機1は、ボール6との接触音を低減できる(静音化できる)と共に、振動を抑えることが可能になる。加えて、第3及び第4実施形態に係るボール減速機1は、第1乃至第3ベアリング10,16,26及びボール6以外の全体を合成樹脂材料で形成する場合において、第1出力側回転体8Aと第2出力側回転体8Bを共通化することができるため、射出成形金型が一型で足り、製造コストを削減することができる。 In addition, the ball speed reducer 1 according to the first to fourth embodiments of the present invention includes the whole (the input shaft 2, the cap 3, the rocking body 5, the fixing member 7, the first output side rotating body 8A, and the second output side). The rotating body 8B, etc.) is made of metal, a part of the whole is made of a synthetic resin material, or the whole other than the first to fourth bearings 10, 16, 26 and the ball 6 is made of a synthetic resin material. There are cases. In particular, the ball speed reducer 1 in which the entirety other than the first to third bearings 10, 16, 26 and the ball 6 is formed of a synthetic resin material can be reduced in weight and the product price can be reduced. . In addition, the ball speed reducer 1 in which the entirety other than the first to third bearings 10, 16, 26 and the ball 6 is made of a synthetic resin material can reduce contact noise with the ball 6 (can be silenced) and can also vibrate vibration. It becomes possible to suppress. In addition, when the ball speed reducer 1 according to the third and fourth embodiments is formed entirely of a synthetic resin material other than the first to third bearings 10, 16, 26 and the ball 6, the first output side rotation Since the body 8A and the second output side rotating body 8B can be used in common, a single injection mold is sufficient, and the manufacturing cost can be reduced.
 1……ボール減速機、2……入力軸(入力側回転体)、2a……回転中心、3……キャップ(入力側回転体)、4……偏心円板カム、4a……中心、5……揺動体、5b……外周面、6……ボール、7……固定部材、8……出力側回転体、8A……第1出力側回転体、8B……第2出力側回転体、32……第1側面部、38……径方向溝、40,56,60……波形溝、40a,60a……谷底、40b,60b……山頂、41……第2側面部 DESCRIPTION OF SYMBOLS 1 ... Ball reducer, 2 ... Input shaft (input side rotary body), 2a ... Center of rotation, 3 ... Cap (input side rotary body), 4 ... Eccentric disk cam, 4a ... Center, 5 ...... Oscillator, 5b ... outer peripheral surface, 6 ... ball, 7 ... fixing member, 8 ... output-side rotator, 8A ... first output-side rotator, 8B ... second output-side rotator, 32... First side surface portion 38... Radial groove, 40, 56, 60... Corrugated groove, 40 a, 60 a .. Valley bottom, 40 b, 60 b.

Claims (9)

  1.   入力側回転体の回転を出力側回転体に減速して伝達するボール減速機において、
     前記入力側回転体と一体に回動する偏心円板カムと、
     前記偏心円板カムの外周側に相対回動可能に嵌合され、前記偏心円板カムによって揺動させられる揺動体と、
     前記揺動体の外周面に沿って複数配置されたボールと、
     前記揺動体を揺動できるように径方向内方側に収容すると共に、被固定部材に固定される固定部材と、
     前記揺動体及び前記固定部材の一方の側面に対向するように配置され、前記入力側回転体に相対回動可能に支持された第1出力側回転体と、
     前記揺動体及び前記固定部材の他方の側面に対向するように配置され、前記第1出力側回転体に一体回動できるように固定されると共に、前記入力側回転体に相対回動可能に支持され、前記第1出力側回転体と共に前記出力側回転体を構成する第2出力側回転体と、を備え、
     前記揺動体の外周面は、前記偏心円板カムの中心と同心の円筒面であり、
     前記固定部材は、前記入力側回転体の回転中心に直交する仮想平面において、前記回転中心から放射状に延びる方向を径方向とすると、前記ボールを前記径方向にスライド移動可能に案内する径方向溝が前記ボールの数と同数形成されると共に、前記径方向溝の径方向内方端が前記ボールの出入りを可能にする開口端になっており、
     前記第1出力側回転体は、前記固定部材の一方の側面に対向する第1側面部を有し、
     前記第2出力側回転体は、前記固定部材の他方の側面に対向する第2側面部を有し、
     前記第1側面部及び前記第2側面部は、前記仮想平面において、前記回転中心を中心とする仮想円の外縁に沿った方向を周方向とすると、前記ボールを前記周方向に沿って波形状に案内する環状の波形溝が形成された、
     ことを特徴とするボール減速機。
    In the ball reducer that decelerates and transmits the rotation of the input side rotator to the output side rotator,
    An eccentric disc cam that rotates integrally with the input side rotating body;
    An oscillating body that is fitted to the outer peripheral side of the eccentric disc cam so as to be relatively rotatable, and is oscillated by the eccentric disc cam;
    A plurality of balls arranged along the outer peripheral surface of the rocking body;
    A fixed member that is housed on the radially inner side so that the rocking body can be swung, and is fixed to a fixed member;
    A first output-side rotating body that is disposed so as to face one side surface of the rocking body and the fixing member, and is supported by the input-side rotating body so as to be relatively rotatable;
    The oscillating body and the fixing member are disposed so as to face the other side surface, and are fixed to the first output-side rotator so as to be integrally rotatable, and supported by the input-side rotator so as to be relatively rotatable. And a second output-side rotator that constitutes the output-side rotator together with the first output-side rotator,
    The outer peripheral surface of the rocking body is a cylindrical surface concentric with the center of the eccentric disc cam,
    The fixing member has a radial groove that guides the ball slidably in the radial direction when a radial direction extending from the rotation center is a radial direction in a virtual plane orthogonal to the rotation center of the input side rotating body. Are formed in the same number as the number of the balls, and the radially inner end of the radial groove is an open end that allows the ball to enter and exit,
    The first output-side rotating body has a first side surface portion that faces one side surface of the fixing member,
    The second output-side rotating body has a second side surface portion that faces the other side surface of the fixing member,
    The first side surface portion and the second side surface portion have a wave shape along the circumferential direction when a direction along an outer edge of a virtual circle centered on the rotation center is a circumferential direction in the virtual plane. An annular corrugated groove is formed to guide the
    A ball reducer characterized by that.
  2.  前記波形溝は、偶数の波が連続して形成され、波の径方向内方端を谷底とし、波の径方向外方端を山頂とすると、前記谷底が前記第1側面部と前記第2側面部とに跨って位置し、奇数番の波の山頂の溝深さが前記第1側面部と前記第2側面部のいずれか一方側よりも前記第1側面部と前記第2側面部のいずれか他方側に深く形成され、偶数番の波の前記山頂が前記第1側面部と前記第2側面部のいずれか他方側よりも前記第1側面部と前記第2側面部のいずれか一方側に深く形成され、前記谷底から前記山頂に向けて溝深さが漸増するように形成された、
     ことを特徴とする請求項1に記載のボール減速機。
    The corrugated groove is formed with an even number of waves continuously, and when the radially inner end of the wave is a valley bottom and the radially outer end of the wave is a mountain top, the valley bottom is the first side surface portion and the second side. The groove depth at the peak of the odd-numbered wave is located between the first side surface portion and the second side surface portion rather than either one of the first side surface portion and the second side surface portion. Either of the first side surface portion and the second side surface portion is formed deeper on the other side, and the peak of the even-numbered wave is on the other side of the first side surface portion and the second side surface portion. Deeply formed on the side, and formed so that the groove depth gradually increases from the valley bottom toward the peak,
    The ball speed reducer according to claim 1.
  3.  前記径方向溝は、前記波形溝の波の数をNとすると、溝数が(N+1)/3であり、Nが偶数で且つ(N+1)/3が自然数である、
     ことを特徴とする請求項2に記載のボール減速機。
    The number of grooves in the radial groove is (N + 1) / 3, N is an even number, and (N + 1) / 3 is a natural number, where N is the number of waves in the corrugated groove.
    The ball speed reducer according to claim 2.
  4.   前記径方向溝は、前記波形溝の波の数をNとすると、溝数が(N-1)/3であり、Nが偶数で且つ(N-1)/3が自然数である、
     ことを特徴とする請求項2に記載のボール減速機。
    The number of grooves in the radial groove is (N-1) / 3, where N is an even number and (N-1) / 3 is a natural number, where N is the number of waves in the corrugated groove.
    The ball speed reducer according to claim 2.
  5.  前記波形溝は、波の径方向内方端を谷底とし、波の径方向外方端を山頂とすると、前記谷底と前記山頂における前記第1側面部と前記第2側面部の溝深さが等しく、前記谷底から前記山頂に向かうに従って前記第1側面部と前記第2側面部のいずれか一方の溝深さが漸増した後に漸減し、且つ、前記谷底から前記山頂に向かうに従って前記第1側面部と前記第2側面部のいずれか他方の溝深さが漸減した後に漸増し、前記山頂から前記谷底に向かうに従って前記第1側面部と前記第2側面部のいずれか一方の溝深さが漸減した後に漸増し、且つ、前記山頂から前記谷底に向かうに従って前記第1側面部と前記第2側面部のいずれか他方の溝深さが漸増した後に漸減するように形成された、
     ことを特徴とする請求項1に記載のボール減速機。
    The corrugated groove has a trough at the radially inner end of the wave and a peak at the radially outer end of the wave. The groove depths of the first side surface portion and the second side surface portion at the bottom of the valley and the top of the peak are as follows. Equally, the groove depth of one of the first side surface portion and the second side surface portion gradually increases after going from the valley bottom to the mountain top, and then gradually decreases, and the first side surface goes from the valley bottom to the mountain top. The groove depth of either the first side surface portion or the second side surface portion gradually increases after the groove depth of the other of the first side surface portion and the second side surface portion gradually decreases. It was formed so as to gradually increase after gradually decreasing, and gradually decrease after the groove depth of one of the first side surface portion and the second side surface portion gradually increased from the peak to the bottom of the valley,
    The ball speed reducer according to claim 1.
  6.  前記波形溝は、前記仮想平面に直交し且つ前記入力側回転体の回転中心を含む仮想断面に投影した形状が楕円形状又は略楕円形状である、
     ことを特徴とする請求項5に記載のボール減速機。
    In the corrugated groove, the shape projected on a virtual cross section that is orthogonal to the virtual plane and includes the rotation center of the input-side rotating body is an elliptical shape or a substantially elliptical shape.
    The ball speed reducer according to claim 5.
  7.   入力側回転体の回転を出力側回転体に減速して伝達するボール減速機において、
     前記入力側回転体と一体に回動する偏心円板カムと、
     前記偏心円板カムの外周側に相対回動可能に嵌合され、前記偏心円板カムによって揺動させられる揺動体と、
     前記揺動体の外周面に沿って複数配置されたボールと、
     前記揺動体を揺動できるように径方向内方側に収容すると共に、被固定部材に固定される固定部材と、
     前記揺動体及び前記固定部材の一方の側面に対向するように配置され、前記入力側回転体に相対回動可能に支持された第1出力側回転体と、
     前記揺動体及び前記固定部材の他方の側面に対向するように配置され、前記第1出力側回転体に一体回動できるように固定されると共に、前記入力側回転体に相対回動可能に支持され、前記第1出力側回転体と共に前記出力側回転体を構成する第2出力側回転体と、を備え、
     前記揺動体の外周面は、前記偏心円板カムの中心と同心の円筒面であり、
     前記固定部材は、前記入力側回転体の回転中心に直交する仮想平面において、前記回転中心から放射状に延びる方向を径方向とすると、前記ボールを前記径方向にスライド移動可能に案内する径方向溝が前記一方の側面と前記他方の側面とに前記ボールの数と同数形成され、
     前記第1出力側回転体は、前記固定部材の一方の側面に対向する第1側面部を有し、
     前記第2出力側回転体は、前記固定部材の他方の側面に対向する第2側面部を有し、
     前記第1側面部及び前記第2側面部は、前記仮想平面において、前記回転中心を中心とする仮想円の外縁に沿った方向を周方向とすると、前記ボールを前記周方向に沿って波形状に案内する環状の波形溝が形成された、
     ことを特徴とするボール減速機。
    In the ball reducer that decelerates and transmits the rotation of the input side rotator to the output side rotator,
    An eccentric disc cam that rotates integrally with the input side rotating body;
    An oscillating body that is fitted to the outer peripheral side of the eccentric disc cam so as to be relatively rotatable, and is oscillated by the eccentric disc cam;
    A plurality of balls arranged along the outer peripheral surface of the rocking body;
    A fixed member that is housed on the radially inner side so that the rocking body can be swung, and is fixed to a fixed member;
    A first output-side rotating body that is disposed so as to face one side surface of the rocking body and the fixing member, and is supported by the input-side rotating body so as to be relatively rotatable;
    The oscillating body and the fixing member are disposed so as to face the other side surface, and are fixed to the first output-side rotator so as to be integrally rotatable, and supported by the input-side rotator so as to be relatively rotatable. And a second output-side rotator that constitutes the output-side rotator together with the first output-side rotator,
    The outer peripheral surface of the rocking body is a cylindrical surface concentric with the center of the eccentric disc cam,
    The fixing member has a radial groove that guides the ball slidably in the radial direction when a radial direction extending from the rotation center is a radial direction in a virtual plane orthogonal to the rotation center of the input side rotating body. Is formed in the same number as the number of the balls on the one side surface and the other side surface,
    The first output-side rotating body has a first side surface portion that faces one side surface of the fixing member,
    The second output-side rotating body has a second side surface portion that faces the other side surface of the fixing member,
    The first side surface portion and the second side surface portion have a wave shape along the circumferential direction when a direction along an outer edge of a virtual circle centered on the rotation center is a circumferential direction in the virtual plane. An annular corrugated groove is formed to guide the
    A ball reducer characterized by that.
  8.  前記固定部材の一方の側面に形成された前記径方向溝に収容された前記ボールは、前記第1出力側回転体の第1側面部に形成された前記波形溝に係合し、
     前記固定部材の他方の側面に形成された前記径方向溝に収容された前記ボールは、前記第2出力側回転体の第2側面部に形成された前記波形溝に係合し、
     前記波形溝は、波の径方向内方端を谷底とし、波の径方向外方端を山頂とすると、前記山頂の溝深さが前記ボールの半径よりも大きい、
     ことを特徴とする請求項7に記載のボール減速機。
    The ball accommodated in the radial groove formed on one side surface of the fixing member engages with the corrugated groove formed on the first side surface portion of the first output side rotating body,
    The ball accommodated in the radial groove formed on the other side surface of the fixing member engages with the corrugated groove formed on the second side surface portion of the second output side rotating body,
    The corrugated groove has a wave radially inner end as a valley bottom and a wave radially outer end as a peak, and the groove depth of the peak is larger than the radius of the ball.
    The ball speed reducer according to claim 7.
  9.  前記揺動体は、外周端が第1先端部と第2先端部とに二股に分岐し、
     前記第1先端部は、前記固定部材の一方の側面側にスライド可能に係合し、
     前記第2先端部は、前記固定部材の他方の側面側にスライド可能に係合している、
     ことを特徴とする請求項7又は8に記載のボール減速機。
    The rocking body has an outer peripheral end bifurcated into a first tip portion and a second tip portion,
    The first tip is slidably engaged with one side surface of the fixing member,
    The second tip is slidably engaged with the other side surface of the fixing member.
    The ball speed reducer according to claim 7 or 8, wherein
PCT/JP2018/000888 2017-02-01 2018-01-16 Ball reduction gear WO2018142909A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880009572.2A CN110249157A (en) 2017-02-01 2018-01-16 Ball reducer
US16/482,472 US20200011405A1 (en) 2017-02-01 2018-01-16 Ball type speed reducer

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-016770 2017-02-01
JP2017016770 2017-02-01
JP2017-074304 2017-04-04
JP2017074304 2017-04-04
JP2017159318A JP2018159466A (en) 2017-02-01 2017-08-22 Ball speed reducer
JP2017-159318 2017-08-22

Publications (1)

Publication Number Publication Date
WO2018142909A1 true WO2018142909A1 (en) 2018-08-09

Family

ID=63039646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000888 WO2018142909A1 (en) 2017-02-01 2018-01-16 Ball reduction gear

Country Status (1)

Country Link
WO (1) WO2018142909A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108843759A (en) * 2018-09-11 2018-11-20 李桂君 A kind of Eccentrically rocking type reduction gear
JP2020051572A (en) * 2018-09-28 2020-04-02 Ntn株式会社 Power transmission device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355706A (en) * 2000-06-14 2001-12-26 Showa Corp Differential device
JP2006077833A (en) * 2004-09-08 2006-03-23 Honda Motor Co Ltd Rolling ball type differential reduction gear
JP2009024765A (en) * 2007-07-19 2009-02-05 Nsk Ltd Ball type reduction gear
JP2009275739A (en) * 2008-05-13 2009-11-26 Nsk Ltd Ball reduction gear

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355706A (en) * 2000-06-14 2001-12-26 Showa Corp Differential device
JP2006077833A (en) * 2004-09-08 2006-03-23 Honda Motor Co Ltd Rolling ball type differential reduction gear
JP2009024765A (en) * 2007-07-19 2009-02-05 Nsk Ltd Ball type reduction gear
JP2009275739A (en) * 2008-05-13 2009-11-26 Nsk Ltd Ball reduction gear

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108843759A (en) * 2018-09-11 2018-11-20 李桂君 A kind of Eccentrically rocking type reduction gear
JP2020051572A (en) * 2018-09-28 2020-04-02 Ntn株式会社 Power transmission device
JP7021043B2 (en) 2018-09-28 2022-02-16 Ntn株式会社 Power transmission device

Similar Documents

Publication Publication Date Title
US8460146B2 (en) Roller type transmission device
JPH04272552A (en) Differential reduction gear of rolling ball type
WO2018142909A1 (en) Ball reduction gear
JP6917685B2 (en) Decelerator
JP2018159466A (en) Ball speed reducer
KR101583023B1 (en) Harmonic drive
TWI548823B (en) Deceleration machine
KR101947216B1 (en) Gear transmission device
JP6563778B2 (en) Planetary gear set
WO2020017312A1 (en) Reduction gear
JP6767244B2 (en) Ball reducer
JP5887955B2 (en) Reducer and robot
WO2018207625A1 (en) Ball reduction gear
JP2000097295A (en) Inscribed type epicyclic reduction gear
JP2018071577A (en) Speed reducer
JP4726219B2 (en) Constant velocity joint
JP2018115715A (en) Ball speed reducer
WO2019212001A1 (en) Reducer
KR102465194B1 (en) Cycloidal reducer
KR20000020021A (en) Decelerator for inscribed planetary gear
JP6812163B2 (en) Decelerator
JP2022190916A (en) power transmission device
JP2020143773A (en) Speed reducer
JP2022186256A (en) Speed reducer
JP2016211644A (en) Speed reducer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18747179

Country of ref document: EP

Kind code of ref document: A1