WO2018207415A1 - トルクセンサ - Google Patents

トルクセンサ Download PDF

Info

Publication number
WO2018207415A1
WO2018207415A1 PCT/JP2018/004199 JP2018004199W WO2018207415A1 WO 2018207415 A1 WO2018207415 A1 WO 2018207415A1 JP 2018004199 W JP2018004199 W JP 2018004199W WO 2018207415 A1 WO2018207415 A1 WO 2018207415A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor pattern
rotation angle
shaft
input
acquisition unit
Prior art date
Application number
PCT/JP2018/004199
Other languages
English (en)
French (fr)
Inventor
佳和 古山
和仁 若菜
塁 鎌田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2018207415A1 publication Critical patent/WO2018207415A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating

Definitions

  • a plurality of constituent elements having substantially the same functional configuration may be distinguished by adding different alphabets after the same reference numeral.
  • a plurality of components having substantially the same functional configuration are distinguished as necessary, such as an input side signal acquisition unit 20a and an input side signal acquisition unit 20b.
  • input side signal acquisition unit 20a and the input side signal acquisition unit 20b are simply referred to as the input side signal acquisition unit 20.
  • the output side signal acquisition unit 22 is an example of a second acquisition unit according to the present disclosure.
  • the output-side signal acquisition unit 22 may be configured to include a coil (for example, a thin coil created using a printed board).
  • the coil is an example of a second coil according to the present disclosure.
  • the output-side signal acquisition unit 22 is arranged with an interval with respect to the output-side rotator 52.
  • the output-side signal acquisition unit 22 is disposed at a position close to the output-side conductor pattern 42 (fixed to the output-side rotator 52).
  • the measurement unit 100 may be configured to include a processing circuit such as a CPU (Central Processing Unit).
  • the measurement unit 100 may be configured by an IC (Integrated Circuit).
  • the measurement unit 100 includes a rotation angle measurement unit 102 and a torque measurement unit 104.
  • Rotation angle measurement unit 102 measures the rotation angle of the input shaft 30 based on the first signal received from the input side signal acquisition unit 20. Further, the rotation angle measurement unit 102 measures the rotation angle of the output shaft 32 based on the second signal received from the output side signal acquisition unit 22.
  • the entire measuring unit 100 or only the torque measuring unit 104 is not included in the torque sensor 10-1, but can be another device that can communicate with the torque sensor 10-1 by wired communication or wireless communication (for example, the torque). It may be included in another device in the robot including the sensor 10-1, a general-purpose PC (Personal Computer), or a server.
  • a general-purpose PC Personal Computer
  • the torque measurement unit 104 calculates the difference between the rotation angle of the input shaft 30 measured in S105 and the rotation angle of the output shaft 32 measured in S107, and based on the calculated difference, Torque between the input shaft 30 and the output shaft 32 at the timing is measured (S109).
  • the input-side conductor pattern 40 and the output-side conductor pattern 42 may be produced using, for example, a conductive sheet or a printed board, and the input-side signal acquisition unit 20 and the output side
  • the side signal acquisition unit 22 may be configured by a thin coil created using a printed circuit board, for example. Therefore, the torque sensor 10-1 can be manufactured inexpensively and thinly (or thinly).
  • the torque sensor 10-1 is easy to process. For example, the user can easily design a torque sensor 10-1 having a size and shape suitable for the motor 90 (connected to the torque sensor 10-1).
  • the input-side signal acquisition unit 20 may include an electrode (first electrode).
  • the electrostatic capacitance between the input side conductor pattern 40 and the electrode can be changed according to the overlapping area between the input side conductor pattern 40 and the electrode. That is, the electrostatic capacitance can change according to the rotation position of the input-side conductor pattern 40 (for example, the rotation angle of the input shaft 30).
  • the input side signal acquisition unit 20 may acquire a signal corresponding to the capacitance between the input side conductor pattern 40 and the electrode as the first signal.
  • the first signal indicates a capacitance value corresponding to the rotational position of the input-side conductor pattern 40.
  • the rotation angle measurement part 102 can measure the rotation angle of the input shaft 30 based on the said 1st signal.
  • the value of the capacitance may be measured based on a current measurement result (current value or current frequency change) at the electrode when a predetermined voltage is applied to the electrode.
  • the value of the capacitance may be measured based on a measurement result (voltage value or voltage frequency change) at the electrode when a predetermined current is passed through the electrode.
  • the same effect as that described in section 1-4 can be obtained. Furthermore, according to the application example 1, since the input side signal acquisition unit 20 and the output side signal acquisition unit 22 do not generate magnetism, there is an advantage that the magnetic field for rotating the motor 90 is not affected.
  • the input side conductor pattern 40 shows an example of a pattern in which the number of periods corresponding to the rotation angle range (0 degrees to 360 degrees) is 1.
  • the present invention is not limited to this example.
  • the input-side conductor pattern 40 has a rotation angle range (0 degrees).
  • a pattern having a plurality of periods corresponding to ( ⁇ 360 degrees) may be used.
  • the larger the number of periods the greater the change in overlap area for the same angle change. Therefore, according to the application example 3, the rotation angle of the input shaft 30 can be measured with higher accuracy.
  • the output-side conductor pattern 42 may be a pattern having a plurality of periods corresponding to the rotation angle range (0 degree to 360 degrees).
  • Second Embodiment >> The first embodiment has been described above. As described above, in the torque sensor 10-1 according to the first embodiment, the input-side conductor pattern 40 and the output-side conductor pattern 42 are arranged in parallel with the axial direction of the input shaft 30. Next, the configuration of the torque sensor 10-2 according to the second embodiment will be described. As will be described later, in the torque sensor 10-2, the input-side conductor pattern 40 and the output-side conductor pattern 42 are arranged in a direction orthogonal to the axial direction of the input shaft 30.
  • the input-side conductor pattern 40 and the output-side conductor pattern 42 are arranged in a direction orthogonal to the axial direction of the input shaft 30.
  • the input shaft 30 rotates together with the output shaft 92, and the rotational torque of the input shaft 30 passes through the individual strain generating portions 34.
  • the output shaft 32 can rotate. 6 shows an example in which the input shaft 30 is arranged on the inner side of the output shaft 32, but the present invention is not limited to this example, and the input shaft 30 may be arranged on the outer side of the output shaft 32. .
  • the input-side conductor pattern 40 according to the second embodiment is fixed to a surface of the input shaft 30 that is orthogonal to the axial direction.
  • the output-side conductor pattern 42 is fixed to a surface of the output shaft 32 that is orthogonal to the axial direction.
  • the input-side signal acquisition unit 20 is spaced from the input-side conductor pattern 40 and is parallel to a surface of the input shaft 30 that is orthogonal to the axial direction. Be placed.
  • the output-side signal acquisition unit 22 is disposed so as to be spaced from the output-side conductor pattern 42 and to be parallel to a surface of the output shaft 32 that is orthogonal to the axial direction.
  • the input-side conductor pattern 40 and the output-side conductor pattern 42 are not curved, and the input shaft 30 or the output shaft 32 is not bent. On the other hand, it is fixed flat. For this reason, for example, the input side conductor pattern 40 and the output side conductor pattern 42 can be easily produced by cutting out from a flat conductor (for example, metal sheet etc.). Accordingly, it is easier to process the conductor pattern than in the first embodiment.
  • FIG. 7 is a diagram schematically showing the appearance of the torque sensor 10-3 according to the third embodiment.
  • two types of input-side conductor patterns 40 (input-side conductor pattern 40a and input-side conductor pattern 40b) are fixed on the outer peripheral surface of the input-side rotating body 50 of the torque sensor 10-3. Yes.
  • the input-side conductor pattern 40a is an example of a first conductor pattern according to the present disclosure.
  • the input-side conductor pattern 40b is an example of a third conductor pattern according to the present disclosure.
  • Input side conductor pattern 40a, input side conductor pattern 40b ⁇ The input-side conductor pattern 40a and the input-side conductor pattern 40b are periodic patterns having different widths and / or heights depending on the position with respect to the rotation center. For example, the number of periods of the input side conductor pattern 40b is larger than the number of periods of the input side conductor pattern 40a. In addition, the change amount of the width and / or height with respect to the unit change of the position with respect to the rotation center is larger in the input side conductor pattern 40b than in the input side conductor pattern 40a. For example, as shown in FIG. 7, the input-side conductor pattern 40a is a triangular wave pattern, and the input-side conductor pattern 40b is a pattern having a plurality of periods (for example, 10 periods) that change in a sine wave shape. May be.
  • the output-side conductor pattern 42 may be a pattern in which the amount of change in width and / or height with respect to a unit change in position with respect to the rotation center is larger than that of the input-side conductor pattern 40a. Furthermore, the period number of the output side conductor pattern 42 may be larger than the period number of the input side conductor pattern 40a. For example, as shown in FIG. 7, the output side conductor pattern 42 may be the same pattern as the input side conductor pattern 40b.
  • the torque sensor 10-3 includes two input-side signal acquisition units 20 (an input-side signal acquisition unit 20a and an input-side signal acquisition unit 20b).
  • the input-side signal acquisition unit 20a is arranged with a gap with respect to the input-side conductor pattern 40a.
  • the input side signal acquisition part 20b is arrange
  • the input side signal acquisition unit 20a is disposed so as to face the input side conductor pattern 40a
  • the input side signal acquisition unit 20b is disposed so as to face the input side conductor pattern 40b.
  • the input-side signal acquisition unit 20a is an example of a first acquisition unit according to the present disclosure.
  • the input side signal acquisition unit 20b is an example of a third acquisition unit according to the present disclosure.
  • the input signal acquisition unit 20a acquires a first signal corresponding to the rotational position of the input conductor pattern 40a.
  • the input side signal acquisition unit 20b acquires a third signal corresponding to the rotational position of the input side conductor pattern 40b.
  • the third signal may be the same type of signal as the first signal.
  • the first signal indicates an impedance value corresponding to the rotational position of the input-side conductor pattern 40a
  • the third signal indicates an impedance value corresponding to the rotational position of the input-side conductor pattern 40b. Also good.
  • the first signal indicates the value of the current measured in the coil in the input side signal acquisition unit 20a while a predetermined voltage is applied to the input side signal acquisition unit 20a
  • the third signal May indicate the value of the current measured in the coil in the input side signal acquisition unit 20b while a predetermined voltage is applied to the input side signal acquisition unit 20b.
  • the input-side signal acquisition unit 20a can transmit the acquired first signal to the measurement unit 100. Further, the input side signal acquisition unit 20 b can transmit the acquired third signal to the measurement unit 100. Thereby, as will be described later, the measurement unit 100 can measure the rotation angle of the input shaft 30 based on the first signal and the third signal.
  • the rotation angle measurement unit 102 includes an input shaft based on the first signal received from the input side signal acquisition unit 20a and the third signal received from the input side signal acquisition unit 20b. 30 rotation angles are measured.
  • the rotation angle measurement unit 102 includes a first rotation angle corresponding to the received first signal (hereinafter referred to as a provisional angle) among at least one rotation angle corresponding to the received third signal. Is measured as the rotation angle of the input shaft 30.
  • FIG. 8 shows a method of measuring the rotation angles of the input shaft 30 and the output shaft 32 based on the signals acquired by the input-side signal acquisition unit 20a, the input-side signal acquisition unit 20b, and the output-side signal acquisition unit 22, respectively. It is the figure which showed the example.
  • a straight line A indicates the correspondence between the value (sensor value) indicated by the first signal acquired by the input-side signal acquisition unit 20a and the rotation angle of the input shaft 30, and the input-side signal acquisition unit 20b.
  • the curve B shows the correspondence between the value (sensor value) indicated by the third signal acquired by (3) and the rotation angle of the input shaft 30, and the second signal acquired by the output-side signal acquisition unit 22
  • a curve C indicates a correspondence relationship between the value (sensor value) indicated by and the rotation angle of the output shaft 32.
  • a predetermined torque is applied to the output shaft 32 from the outside.
  • the rotation angle measurement unit 102 determines the value (sensor value) “Z1” indicated by the first signal acquired by the input-side signal acquisition unit 20a at a certain timing and the straight line A. Based on this, the provisional angle is specified (estimated). Next, the rotation angle measurement unit 102 sets “Z2” based on the value (sensor value) “Z2” and the curve B indicated by the third signal acquired by the input side signal acquisition unit 20b at the timing. Identify (estimate) all corresponding rotation angles. Then, the rotation angle measurement unit 102 measures “X1” that is the rotation angle closest to the specified provisional angle value among all the specified rotation angles as the rotation angle of the input shaft 30.
  • the rotation angle measurement unit 102 outputs the output shaft 32 based on the specified provisional angle (that is, the rotation angle corresponding to the first signal) and the second signal received from the output side signal acquisition unit 22. Measure the rotation angle. For example, the rotation angle measurement unit 102 measures, as the rotation angle of the output shaft 32, the rotation angle closest to the temporary angle value among at least one rotation angle corresponding to the received second signal.
  • the first conductor pattern in the example shown in FIG. 7 used for measuring the absolute angle of the input shaft 30 (or the output shaft 32).
  • the input side conductor pattern 40a) and the second conductor pattern (input side conductor pattern 40b in the example shown in FIG. 7) used for measuring the relative angle of the input shaft 30 (or the output shaft 32) are connected to the input shaft 30 ( Alternatively, it can be rotatably fixed together with the output shaft 32). For this reason, the resolution of the rotation angle of the input shaft 30 (or the output shaft 32) can be improved.
  • the torque sensor 10-3 acquires a first signal corresponding to the rotational position of the input-side conductor pattern 40a and a third signal corresponding to the rotational position of the input-side conductor pattern 40b, and the first signal Among all the rotation angles corresponding to the signal 3, the rotation angle closest to the value of the first rotation angle corresponding to the first signal is measured as the rotation angle of the input shaft 30. For this reason, the rotation angle of the input shaft 30 can be measured with higher accuracy.
  • the torque sensor 10-3 is based on the angle difference.
  • the torque can be measured with high accuracy.
  • the first conductor pattern (input side conductor pattern 40a in the example shown in FIG. 7) used for measuring the absolute angle of the input shaft 30 or the output shaft 32 is replaced with the input shaft 30.
  • FIG. 9 is a diagram schematically illustrating the appearance of a torque sensor 10-4 according to the fourth embodiment.
  • a concentric circle centered on a predetermined position (for example, the axis center of the input shaft 30) in a plane orthogonal to the axial direction of the input shaft 30 of the input side rotating body 50.
  • Two types of input-side conductor patterns 40 are fixed to the input-side rotating body 50.
  • output side conductor patterns 42 (output side) concentrically around a predetermined position (for example, the axis center of the output shaft 32) in a plane orthogonal to the axial direction of the output shaft 32 of the output side rotating body 52.
  • the conductor pattern 42 a and the output side conductor pattern 42 b) are fixed to the output side rotating body 52.
  • FIG. 10 is a diagram showing two types of input-side conductor patterns 40 fixed to the input-side rotator 50.
  • the input-side conductor pattern 40a is a periodic pattern in which the width continuously changes according to the position with respect to the rotation center.
  • the input-side conductor pattern 40b is a pattern in which a plurality of rectangular conductors are arranged in a ring shape.
  • the output side conductor pattern 42a may be the same pattern as the input side conductor pattern 40a, and the output side conductor pattern 42b may be the same pattern as the input side conductor pattern 40b.
  • Input side signal acquisition unit 20, output side signal acquisition unit 22 ⁇ As shown in FIG. 9, with respect to each input-side conductor pattern 40, the input-side signal acquisition unit 20 has an interval with respect to the input-side conductor pattern 40 and faces the input-side conductor pattern 40. Are arranged one by one. Similarly, with respect to each output side conductor pattern 42, the output side signal acquisition units 22 are arranged one by one so as to be spaced apart from the output side conductor pattern 42 and to face the output side conductor pattern 42. Is done.
  • the rotation angle measurement unit 102 includes an input shaft based on the first signal received from the input side signal acquisition unit 20a and the third signal received from the input side signal acquisition unit 20b. 30 rotation angles are measured. Further, the rotation angle measurement unit 102 determines the rotation angle of the output shaft 32 based on the second signal received from the output side signal acquisition unit 22a and the fourth signal received from the output side signal acquisition unit 22b. measure.
  • FIG. 11 shows a method for measuring the rotation angle of the output shaft 32 (or the input shaft 30) based on the signals acquired by the two output-side signal acquisition units 22 (or the two input-side signal acquisition units 20). It is the figure which showed the example of. Below, with reference to FIG. 11, the measuring method of the rotation angle of the output shaft 32 by the rotation angle measurement part 102 is demonstrated concretely. Note that the rotation angle measurement unit 102 can also measure the rotation angle of the input shaft 30 by a method substantially similar to the measurement method described below.
  • the curve D shows the correspondence between the value (sensor value) indicated by the second signal acquired by the output-side signal acquisition unit 22a and the rotation angle of the output shaft 32, which is acquired by the output-side signal acquisition unit 22b.
  • the curve E indicates the correspondence between the value (sensor value) indicated by the fourth signal to be output and the rotation angle of the output shaft 32, and the output shaft 32 is finally measured (estimated) by the rotation angle measuring unit 102.
  • the rotation angle is indicated by a straight line F.
  • the rotation angle measurement unit 102 is based on the value (sensor value) indicated by the second signal acquired by the output-side signal acquisition unit 22a at a certain timing and the curve D.
  • a rotation angle (hereinafter referred to as a provisional angle) corresponding to the second signal is specified (estimated).
  • the rotation angle measurement unit 102 responds to the fourth signal based on the value (sensor value) indicated by the fourth signal acquired by the output-side signal acquisition unit 22b at the timing and the curve E. Identify (estimate) all rotation angles.
  • the rotation angle measuring unit 102 measures the rotation angle closest to the specified provisional angle value among all the specified rotation angles as the rotation angle of the output shaft 32.
  • the first conductor pattern that is fixed to the first shaft so as to be rotatable and has a width and / or height that differs depending on the position with respect to the center of rotation is spaced from the first conductor pattern.
  • the second conductor pattern is arranged so as to be rotatable together with the second shaft and is spaced from the second conductor pattern having a different width and / or height depending on the position with respect to the center of rotation.
  • a second acquisition unit that acquires a second signal corresponding to the rotational position of the conductor pattern;
  • a transmission unit configured to transmit torque while twisting between the first shaft and the second shaft;
  • a torque sensor (2) Based on the first signal acquired by the first acquisition unit and the second signal acquired by the second acquisition unit, the first axis and the second axis The torque sensor according to (1), wherein a torque between the two is measured. (3) A rotation angle of the first shaft is measured based on the first signal, The torque sensor according to (2), wherein a rotation angle of the second shaft is measured based on the second signal. (4) Based on the difference between the measured rotation angle of the first axis and the measured rotation angle of the second axis, the torque between the first axis and the second axis is measured.
  • a predetermined voltage is applied to the first acquisition unit,
  • the first signal indicates a measured value of current in the first acquisition unit while the predetermined voltage is applied,
  • a predetermined voltage is applied to the second acquisition unit,
  • the first conductor pattern is fixed to the outer peripheral surface of the first shaft or the outer peripheral surface of the first rotating body fixed to the first shaft
  • the second conductor pattern is fixed to the outer peripheral surface of the second shaft or the outer peripheral surface of the second rotating body fixed to the second shaft.
  • the first acquisition unit includes the first coil and acquires the first signal corresponding to a change in magnetism generated between the first conductor pattern and the first coil
  • the second acquisition unit includes a second coil, and acquires the second signal according to a change in magnetism generated between the second conductor pattern and the second coil
  • the torque sensor according to (4) or (5).
  • the first acquisition unit includes the first electrode, and acquires the first signal corresponding to a capacitance between the first conductor pattern and the first electrode
  • the second acquisition unit includes a second electrode, and acquires the second signal according to a capacitance between the second conductor pattern and the second electrode
  • the first signal indicates a capacitance value corresponding to a rotational position of the first conductor pattern
  • the torque sensor according to (4) or (5), wherein the second signal indicates a capacitance value corresponding to a rotational position of the second conductor pattern.
  • the third conductor pattern fixed to be rotatable with the first shaft and having a width and / or height depending on the position with respect to the rotation center is arranged with an interval, and the third A third acquisition unit for acquiring a third signal corresponding to the rotational position of the conductor pattern of The first conductor pattern and the third conductor pattern are periodic patterns;
  • the third conductor pattern is different from the first conductor pattern in the amount of change in width and / or height with respect to a unit change in position with respect to the rotation center.
  • a rotation angle of the first shaft is measured.
  • the torque sensor according to any one of (4) to (11).
  • the number of periods of the third conductor pattern is greater than the number of periods of the first conductor pattern, Of the at least one rotation angle corresponding to the third signal, the rotation angle closest to the value of the first rotation angle corresponding to the first signal is measured as the rotation angle of the first axis.
  • the second conductor pattern is a periodic pattern; Based on the first signal acquired by the first acquisition unit and the second signal acquired by the second acquisition unit, a rotation angle of the second shaft is measured.
  • the number of periods of the second conductor pattern is greater than the number of periods of the first conductor pattern,
  • the rotation angle closest to the value of the first rotation angle among at least one rotation angle corresponding to the second signal is measured as the rotation angle of the second axis.
  • the first shaft is one of an input shaft and an output shaft of the torque sensor,
  • the torque sensor according to any one of (4) to (15), wherein the second shaft is one of an input shaft and an output shaft of the torque sensor.
  • the torque sensor according to (16), wherein the first axis and the second axis are coaxial.
  • a motor is connected to the torque sensor,
  • the torque sensor according to (17), wherein the first shaft is an input shaft of the torque sensor and is connected to an output shaft of the motor.
  • a rotation angle measuring unit that measures the rotation angle of the first axis based on the first signal and that measures the rotation angle of the second axis based on the second signal;
  • a torque measuring unit that measures torque between the first axis and the second axis based on a difference between a rotation angle of the first axis and a rotation angle of the second axis;

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

【課題】小型化を実現可能な、トルクセンサを提案する。 【解決手段】第1の軸とともに回転可能に固定されている、回転中心に対する位置に応じて幅および/または高さが異なる第1の導体パターンに対して間隔を有して配置されるとともに、前記第1の導体パターンの回転位置に応じた第1の信号を取得する第1の取得部と、第2の軸とともに回転可能に固定されている、回転中心に対する位置に応じて幅および/または高さが異なる第2の導体パターンに対して間隔を有して配置されるとともに、前記第2の導体パターンの回転位置に応じた第2の信号を取得する第2の取得部と、前記第1の軸と前記第2の軸との間において、ねじれを生じながらトルクを伝達する伝達部と、を備える、トルクセンサ。

Description

トルクセンサ
 本開示は、トルクセンサに関する。
 従来、例えばモータの出力軸などの回転体のトルクを検出する方法が各種提案されている。
 例えば、下記特許文献1には、反射部を有する入力軸および出力軸に対して発光部から光を照射し、そして、入力軸および出力軸からの反射光を受光した受光部からの出力値に基づいてトルクを算出するトルクセンサが開示されている。
特許第5177800号公報
 しかしながら、特許文献1に記載の技術では、トルクを算出するために発光部および受光部が必要となる。このため、トルクセンサが大型になり得る。
 そこで、本開示では、小型化を実現可能な、新規かつ改良されたトルクセンサを提案する。
 本開示によれば、第1の軸とともに回転可能に固定されている、回転中心に対する位置に応じて幅および/または高さが異なる第1の導体パターンに対して間隔を有して配置されるとともに、前記第1の導体パターンの回転位置に応じた第1の信号を取得する第1の取得部と、第2の軸とともに回転可能に固定されている、回転中心に対する位置に応じて幅および/または高さが異なる第2の導体パターンに対して間隔を有して配置されるとともに、前記第2の導体パターンの回転位置に応じた第2の信号を取得する第2の取得部と、前記第1の軸と前記第2の軸との間において、ねじれを生じながらトルクを伝達する伝達部と、を備える、トルクセンサが提供される。
 以上説明したように本開示によれば、トルクセンサの小型化を実現することができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本開示の第1の実施形態に係るトルクセンサ10‐1の外観を概略的に示した図である。 入力側導体パターン40の一例を示した図である。 第1の実施形態に係るトルクセンサ10‐1の機能構成を示した機能ブロック図である。 第1の実施形態に係る処理の流れを示したフローチャートである。 第1の実施形態の応用例2に係る入力側回転体50の、入力軸30の軸方向に直交する方向における断面を示した図である。 第2の実施形態に係るトルクセンサ10‐2の外観を概略的に示した図である。 第3の実施形態に係るトルクセンサ10‐3の外観を概略的に示した図である。 第3の実施形態に係る入力軸30および出力軸32の回転角度の計測方法の例を示した図である。 第4の実施形態に係るトルクセンサ10‐4の外観を概略的に示した図である。 第4の実施形態に係る入力側回転体50に固定されている二つの入力側導体パターン40と、二つの入力側信号取得部20との位置関係を示した図である。 第4の実施形態に係る入力軸30および出力軸32の回転角度の計測方法の例を示した図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 また、本明細書及び図面において、実質的に同一の機能構成を有する複数の構成要素を、同一の符号の後に異なるアルファベットを付して区別する場合もある。例えば、実質的に同一の機能構成を有する複数の構成要素を、必要に応じて入力側信号取得部20aおよび入力側信号取得部20bのように区別する。ただし、実質的に同一の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、入力側信号取得部20aおよび入力側信号取得部20bを特に区別する必要が無い場合には、単に入力側信号取得部20と称する。
 また、以下に示す項目順序に従って当該「発明を実施するための形態」を説明する。
 1.第1の実施形態
 2.第2の実施形態
 3.第3の実施形態
 4.第4の実施形態
 5.むすび
<<1.第1の実施形態>>
 <1-1.外観構成>
 まず、第1の実施形態に係るトルクセンサ10‐1の外観構成について、図1を参照して説明する。図1は、トルクセンサ10‐1の外観を概略的に示した図である。図1に示したように、トルクセンサ10‐1は、固定部12、回転部14、および、計測部100から構成され得る。
 {1-1-1.回転部14}
 (1-1-1-1.入力軸30)
 回転部14は、一体的に回転するユニットであり得る。図1に示したように、回転部14は、入力軸30、入力側回転体50、起歪部34、出力側回転体52、および、出力軸32を有する。入力軸30は、本開示に係る第1の軸の一例である。入力軸30は、トルクセンサ10‐1の外部に配置されるモータ90(図1では図示せず)の出力軸92に結合され得る。例えば、入力軸30は、(モータ90の)出力軸92と同軸である。
 (1-1-1-2.入力側回転体50)
 入力側回転体50は、本開示に係る第1の回転体の一例である。入力側回転体50は、入力軸30とともに回転可能なように入力軸30に固定されている。
 (1-1-1-3.入力側導体パターン40)
 図1に示したように、入力側回転体50の外周面には、入力側導体パターン40が固定されている。つまり、入力側導体パターン40は、入力軸30とともに回転可能なように入力側回転体50に固定されている。入力側導体パターン40は、本開示に係る第1の導体パターンの一例である。
 入力側導体パターン40は、回転中心に対する位置に応じて幅が異なるような周期的なパターンであり得る。例えば、入力側導体パターン40の形状は、三角波、正弦波、のこぎり波、または、矩形波などの形状であってもよい。このため、入力側導体パターン40と、後述する(固定部12の)入力側信号取得部20との重畳面積は、入力側導体パターン40の回転位置(つまり、入力軸30の回転角度)に応じて変化し得る。図2は、図1に示した入力側導体パターン40を拡大して示した図である。図1および図2に示した例では、入力側導体パターン40は、三角波状のパターンであり、かつ、入力側導体パターン40は、入力側回転体50の外周面の全周に渡って入力側回転体50を覆うように入力側回転体50に固定されている。
 (1-1-1-4.起歪部34)
 起歪部34は、本開示に係る伝達部の一例である。起歪部34は、入力軸30と出力軸32との間において、ねじれを生じながらトルクを伝達する。起歪部34は、入力軸30および出力軸32に連結され得る。例えば、起歪部34は、入力軸30および出力軸32と同軸である。また、図1に示したように、起歪部34は、入力側回転体50と出力側回転体52との間に位置する。
 かかる構成によれば、出力軸32に対して外力が加えられた場合には、当該外力に応じて出力軸32が回転し、そして、出力軸32の回転に応じて起歪部34がねじれを生じながら回転し得る。これにより、当該外力のトルクが入力軸30へ伝達され得る。例えば、モータ90が駆動していない間に外部からトルクが印加された場合には、起歪部34は、当該トルクを出力軸32から入力軸30へ伝達する。また、モータ90が駆動している間に外部からトルクが印加された場合には、起歪部34は、モータ90の出力軸92から伝達される回転トルクと、当該外部から印加されたトルクとの差分を、入力軸30と出力軸32との間で伝達する。
 (1-1-1-5.出力側回転体52)
 出力側回転体52は、本開示に係る第2の回転体の一例である。出力側回転体52は、出力軸32とともに回転可能なように出力軸32に固定されている。
 (1-1-1-6.出力側導体パターン42)
 図1に示したように、出力側回転体52の外周面には、出力側導体パターン42が固定されている。つまり、出力側導体パターン42は、出力軸32とともに回転可能なように出力側回転体52に固定されている。出力側導体パターン42は、本開示に係る第2の導体パターンの一例である。
 出力側導体パターン42は、回転中心に対する位置に応じて幅が異なるような周期的なパターンであり得る。例えば、出力側導体パターン42の形状は、三角波、正弦波、のこぎり波、または、矩形波などの形状であってもよい。これにより、出力側導体パターン42と、後述する(固定部12の)出力側信号取得部22との重畳面積は、出力側導体パターン42の回転位置(つまり、出力軸32の回転角度)に応じて変化し得る。
 入力側導体パターン40と出力側導体パターン42とは同一のパターンであってもよいし、異なるパターンであってもよい。さらに、図1に示したように、入力側回転体50と入力側導体パターン40との位置関係と、出力側回転体52と出力側導体パターン42との位置関係とは同一になるように定められてもよい。
 なお、入力側導体パターン40および出力側導体パターン42は、例えば導電シートやプリント基板などがユーザの所望の形状に加工されることにより作製され得る。
 (1-1-1-7.出力軸32)
 出力軸32は、本開示に係る第2の軸の一例である。出力軸32は、トルクセンサ10‐1の外部に配置される負荷(図示せず)に結合され得る。例えば、モータ90が駆動することにより入力軸30が回転すると、入力軸30の回転に応じたトルクが起歪部34から出力軸32へ伝達されることにより出力軸32が回転するとともに、出力軸32は当該トルクを当該負荷へ伝達し得る。
 {1-1-2.固定部12}
 固定部12は、回転部14に対して間隔を有して配置されている。例えば、固定部12は、トルクセンサ10‐1の外部の部材(トルクセンサ10‐1を覆う筐体の内壁など)に固定されている。図1に示したように、固定部12は、入力側信号取得部20、および、出力側信号取得部22を有する。
 (1-1-2-1.入力側信号取得部20)
 入力側信号取得部20は、本開示に係る第1の取得部の一例である。入力側信号取得部20は、コイル(例えばプリント基板を用いて作成された薄型コイルなど)を含んで構成され得る。当該コイルは、本開示に係る第1のコイルの一例である。入力側信号取得部20は、入力側回転体50に対して間隔を有して配置されている。例えば、(入力側回転体50に固定されている)入力側導体パターン40に近接する位置に入力側信号取得部20は配置されている。
 かかる構成によれば、入力側信号取得部20内のコイルと入力側導体パターン40との重畳面積(より詳細には、入力側導体パターン40のうち、当該コイルが作る磁界が通過する領域の面積)に応じて当該コイルのインピーダンスの値が変化し得る。例えば、まず、当該コイルを共振させると、当該コイルに磁界が発生し得る。これにより、発生した磁界により、入力側導体パターン40のうち入力側信号取得部20に対向する領域の表面に渦電流が流れ得る。そして、当該渦電流が生じる磁界により、当該コイルから生じている磁界の強さが弱くなるので、当該コイルのインピーダンスの値が減少し得る。また、当該渦電流が生じる磁界の強さは、当該コイルと入力側導体パターン40との重畳面積に応じて変化し得る。従って、当該コイルと入力側導体パターン40との重畳面積に応じて当該コイルのインピーダンスの値が変化し得る。
 ‐第1の信号の取得
 入力側信号取得部20は、入力側導体パターン40の回転位置に応じた第1の信号を取得する。ここで、第1の信号は、入力側信号取得部20内のコイルと入力側導体パターン40との間に生じる磁気の変化に応じた信号であり得る。例えば、第1の信号は、入力側導体パターン40の回転位置(例えば入力軸30の回転角度)に応じたインピーダンスの値を示し得る。または、第1の信号は、入力側信号取得部20内のコイルに所定の電圧が印加されている間の当該コイルにおいて測定された電流の値を示してもよい。または、第1の信号は、入力側導体パターン40の回転位置(例えば入力軸30の回転角度)に応じたインダクタンスの値を示してもよい。なお、当該コイルのインダクタンスの値は、当該コイルに所定の電圧が印加された際の当該コイルにおける電流の測定結果(電流値または電流の周波数変化)に基づいて計測されてもよい。あるいは、当該インダクタンスの値は、当該コイルに所定の電流を流した際の当該コイルにおける電圧の測定結果(電圧値または電圧の周波数変化)に基づいて計測されてもよい。
 さらに、入力側信号取得部20は、取得した第1の信号を計測部100へ伝達し得る。これにより、後述するように、計測部100は、当該第1の信号に基づいて入力軸30の回転角度を計測(推定)し得る。
 (1-1-2-2.出力側信号取得部22)
 出力側信号取得部22は、本開示に係る第2の取得部の一例である。出力側信号取得部22は、コイル(例えばプリント基板を用いて作成された薄型コイルなど)を含んで構成され得る。当該コイルは、本開示に係る第2のコイルの一例である。出力側信号取得部22は、出力側回転体52に対して間隔を有して配置されている。例えば、(出力側回転体52に固定されている)出力側導体パターン42に近接する位置に出力側信号取得部22は配置されている。
 ‐第2の信号の取得
 出力側信号取得部22は、出力側導体パターン42の回転位置に応じた第2の信号を取得する。ここで、第2の信号は、出力側信号取得部22内のコイルと出力側導体パターン42との間に生じる磁気の変化に応じた信号であり得る。例えば、第2の信号は、出力側導体パターン42の回転位置(例えば出力軸32の回転角度)に応じたインピーダンスの値を示し得る。または、第2の信号は、出力側導体パターン42の回転位置(例えば出力軸32の回転角度)に応じたインダクタンスの値を示してもよい。なお、当該インダクタンスの値の計測方法は、上記の入力側信号取得部20内のコイルのインダクタンスの値の計測方法と同様であってもよい。または、第2の信号は、出力側信号取得部22内のコイルに所定の電圧が印加されている間の当該コイルにおいて測定された電流の値を示してもよい。
 さらに、出力側信号取得部22は、取得した第2の信号を計測部100へ伝達し得る。これにより、後述するように、計測部100は、当該第2の信号に基づいて出力軸32の回転角度を計測(推定)し得る。
 なお、入力側信号取得部20(例えば、入力側信号取得部20内のコイル)の幅の長さは、入力側導体パターン40の幅の長さよりも長くなるように作製されることが望ましい。かかる構成によれば、仮に入力側信号取得部20と入力側導体パターン40とが相対的に多少ずれたとしても、SN比(signal‐to‐noise ratio)がほとんど低下することなく、後述する計測部100により入力軸30の回転角度が計測され得る。同様に、出力側信号取得部22の幅の長さは、出力側導体パターン42の幅の長さよりも長くなるように作製されることが望ましい。
 <1-2.機能構成>
 次に、第1の実施形態に係るトルクセンサ10‐1の機能構成について、図3を参照して説明する。図3は、トルクセンサ10‐1の機能構成を示した機能ブロック図である。以下では、前述した説明と重複する内容については説明を省略する。
 {1-2-1.計測部100}
 計測部100は、例えばCPU(Central Processing Unit)などの処理回路を含んで構成され得る。例えば、計測部100は、IC(Integrated Circuit)で構成されてもよい。図3に示したように、計測部100は、回転角度計測部102、および、トルク計測部104を有する。
 計測部100は、入力側信号取得部20から第1の信号を受信する。また、計測部100は、出力側信号取得部22から第2の信号を受信する。
 {1-2-2.回転角度計測部102}
 回転角度計測部102は、入力側信号取得部20から受信される第1の信号に基づいて入力軸30の回転角度を計測する。さらに、回転角度計測部102は、出力側信号取得部22から受信される第2の信号に基づいて出力軸32の回転角度を計測する。
 例えば、入力軸30の回転角度(例えば0度~360度)と、第1の信号が示す値(例えば入力側信号取得部20内のコイルのインピーダンス値など)との関係性が例えばトルクセンサ10‐1の設計時などに予め特定され、かつ、トルクセンサ10‐1は当該関係性を示すデータを予め記憶し得る。この場合、回転角度計測部102は、入力側信号取得部20から受信された第1の信号と、当該関係性を示すデータとに基づいて、入力軸30の回転角度を計測し得る。
 あるいは、第1の信号は、入力側信号取得部20内のコイルにおいて測定された電流の値を示す信号であり、かつ、トルクセンサ10‐1は、入力軸30の回転角度と入力側信号取得部20内のコイルのインピーダンス値との関係性を示すデータを予め記憶してもよい。この場合、回転角度計測部102は、まず、入力側信号取得部20から受信された第1の信号と、入力側信号取得部20に印加されている電圧の値を示すデータ(設定データなど)とに基づいて、入力側信号取得部20内のコイルのインピーダンス値を算出し得る。そして、回転角度計測部102は、算出したインピーダンス値と、当該関係性を示すデータとに基づいて、入力軸30の回転角度を計測し得る。
 なお、出力軸32の回転角度と第2の信号が示す値との関係性は、入力軸30の回転角度と第1の信号が示す値との関係性と同一であってもよいし、異なっていてもよい。前者の場合、回転角度計測部102は、出力側信号取得部22から受信された第2の信号と、当該関係性を示すデータとに基づいて、出力軸32の回転角度を計測し得る。後者の場合、トルクセンサ10‐1は、出力軸32の回転角度と第2の信号が示す値との関係性を示すデータ(以下、第2の関係性を示すデータと称する)をさらに記憶し得る。そして、回転角度計測部102は、出力側信号取得部22から受信された第2の信号と、当該第2の関係性を示すデータとに基づいて、出力軸32の回転角度を計測し得る。
 {1-2-3.トルク計測部104}
 トルク計測部104は、回転角度計測部102により計測された(同一のタイミングにおける)入力軸30の回転角度と出力軸32の回転角度との差に基づいて、入力軸30と出力軸32との間のトルクを計測する。
 例えば、入力軸30の回転角度と出力軸32の回転角度との差(角度差)と、入力軸30と出力軸32との間のトルクとの関係性が例えばトルクセンサ10‐1の設計時などに予め特定され、かつ、トルクセンサ10‐1は当該関係性を示すデータを予め記憶し得る。この場合、トルク計測部104は、回転角度計測部102により計測された(同一のタイミングにおける)入力軸30の回転角度と出力軸32の回転角度との差と、当該関係性を示すデータとに基づいて、入力軸30と出力軸32との間のトルクを計測し得る。
 {1-2-4.変形例}
 第1の実施形態に係るトルクセンサ10‐1の機能構成は、前述した例に限定されない。例えば、回転角度計測部102は、(一つの構成要素である代わりに)入力軸30の回転角度を計測する第1の回転角度計測部102aと、出力軸32の回転角度を計測する第2の回転角度計測部102bとに分かれて設けられてもよい。この場合、さらに、入力側信号取得部20と第1の回転角度計測部102aとが一体的に構成され、かつ、出力側信号取得部22と第2の回転角度計測部102bとが一体的に構成されていてもよい。
 または、計測部100全体、または、トルク計測部104のみは、トルクセンサ10‐1に含まれる代わりに、有線通信または無線通信によりトルクセンサ10‐1と通信可能な他のデバイス(例えば、当該トルクセンサ10‐1を備えるロボット内の別のデバイス、汎用PC(Personal Computer)、または、サーバなど)に含まれてもよい。
 <1-3.処理の流れ>
 以上、第1の実施形態に係るトルクセンサ10‐1の構成について説明した。次に、第1の実施形態に係る処理の流れについて、図4を参照して説明する。図4は、第1の実施形態に係る処理の流れの一例を示したフローチャートである。
 図4に示したように、まず、トルクセンサ10‐1の入力側信号取得部20は、入力側信号取得部20内のコイルの電流値を測定し、そして、測定結果を回転角度計測部102へ送信する(S101)。また、同じタイミングにおいて、出力側信号取得部22は、出力側信号取得部22内のコイルの電流値を測定し、そして、測定結果を回転角度計測部102へ送信する(S103)。
 その後、回転角度計測部102は、S101で受信された電流の測定値に基づいて、該当のタイミングにおける入力軸30の回転角度を計測する(S105)。続いて、回転角度計測部102は、S103で受信された電流の測定値に基づいて、該当のタイミングにおける出力軸32の回転角度を計測する(S107)。
 その後、トルク計測部104は、S105で計測された入力軸30の回転角度と、S107で計測された出力軸32の回転角度との差分を算出し、そして、算出した差分に基づいて、該当のタイミングにおける入力軸30と出力軸32との間のトルクを計測する(S109)。
 <1-4.効果>
 {1-4-1.効果1}
 以上説明したように、第1の実施形態によれば、入力側信号取得部20は、入力軸30とともに回転可能に固定されている入力側導体パターン40の回転位置に応じた第1の信号を取得し、そして、当該第1の信号に基づいて入力軸30の回転角度が計測される。さらに、出力側信号取得部22は、出力軸32とともに回転可能に固定されている出力側導体パターン42の回転位置に応じた第2の信号を取得し、そして、当該第2の信号に基づいて出力軸32の回転角度が計測される。このため、例えば、入力軸30の回転角度と出力軸32の回転角度とを例えば一つの素子(励起と計測が同一の素子など)でそれぞれ計測することも可能となるので、トルクセンサ10‐1の小型化を実現することができる。また、トルクセンサ10‐1は、入力側導体パターン40および出力側導体パターン42に接触することなく、入力軸30の回転角度および出力軸32の回転角度を計測することができる。
 さらに、トルクセンサ10‐1は、入力軸30の回転角度と出力軸32の回転角度との差に基づいて、入力軸30と出力軸32との間のトルクを計測することが可能である。このため、入力側導体パターン40および出力側導体パターン42に接触することなく、入力軸30と出力軸32との間のトルクを計測することができる。その結果、入力軸30および出力軸32の回転可能範囲が制限されない。例えば、入力側回転体50および出力側回転体52の無限回転を実現することができる。
 {1-4-2.効果2}
 同様の理由により、入力側導体パターン40と入力側信号取得部20との間、および、出力側導体パターン42と出力側信号取得部22との間において絶縁体(例えば空気中のごみなど)の影響を受けることなく、入力軸30および出力軸32の回転角度や、入力軸30と出力軸32との間のトルクを計測することができる。従って、劣悪な環境内でもトルクセンサ10‐1は正常に機能し得る。
 {1-4-3.効果3}
 さらに、第1の実施形態によれば、入力側導体パターン40および出力側導体パターン42は、例えば導電シートやプリント基板などを用いて作製されてもよく、そして、入力側信号取得部20および出力側信号取得部22は、例えばプリント基板を用いて作成された薄型コイルなどで構成されてもよい。従って、安価で、かつ、薄型(あるいは細形)にトルクセンサ10‐1を作製可能である。また、トルクセンサ10‐1は、加工がしやすい。例えば、(トルクセンサ10‐1に連結される)モータ90に適した大きさや形状のトルクセンサ10‐1をユーザは容易に設計することができる。
 <1-5.応用例>
 なお、第1の実施形態は、上記の説明に限定されず、以下の「応用例1」~「応用例4」が適用可能である。
 {1-5-1.応用例1}
 例えば、上記の説明では、入力側信号取得部20および/または出力側信号取得部22がコイルを含んで構成される例について説明したが、かかる例に限定されない。応用例1として、入力側信号取得部20は、電極(第1の電極)を含んで構成されてもよい。この場合、入力側導体パターン40と当該電極との間の静電容量は、入力側導体パターン40と当該電極との間の重畳面積に応じて変化し得る。つまり、当該静電容量は、入力側導体パターン40の回転位置(例えば入力軸30の回転角度)に応じて変化し得る。そこで、入力側信号取得部20は、入力側導体パターン40と当該電極との間の静電容量に応じた信号を第1の信号として取得してもよい。例えば、当該第1の信号は、入力側導体パターン40の回転位置に応じた静電容量の値を示す。これにより、回転角度計測部102は、当該第1の信号に基づいて入力軸30の回転角度を計測することができる。なお、当該静電容量の値は、当該電極に所定の電圧が印加された際の当該電極における電流の測定結果(電流値または電流の周波数変化)に基づいて計測されてもよい。あるいは、当該静電容量の値は、当該電極に所定の電流を流した際の当該電極における電圧の測定結果(電圧値または電圧の周波数変化)に基づいて計測されてもよい。
 同様に、出力側信号取得部22は、電極(第2の電極)を含んで構成されてもよい。そして、出力側信号取得部22は、出力側導体パターン42と当該電極との間の静電容量に応じた信号を第2の信号として取得してもよい。例えば、当該第2の信号は、出力側導体パターン42の回転位置に応じた静電容量の値を示す。これにより、回転角度計測部102は、当該第2の信号に基づいて出力軸32の回転角度を計測することができる。なお、当該静電容量の値の計測方法は、上記の入力側信号取得部20における静電容量の値の計測方法と同様であってもよい。
 この応用例1によれば、1-4節で述べた効果と概略同様の効果が得られる。さらに、応用例1によれば、入力側信号取得部20および出力側信号取得部22が磁気を生じないので、モータ90を回転させるための磁界に影響を与えないという利点もある。
 {1-5-2.応用例2}
 上記の説明では、入力側導体パターン40および出力側導体パターン42が、回転中心に対する位置に応じて幅が異なるパターンである例について説明したが、かかる例に限定されない。応用例2として、入力側導体パターン40および/または出力側導体パターン42は、回転中心に対する位置に応じて高さが異なるパターンであってもよい。
 図5は、応用例2に係る入力側回転体50の、入力軸30の軸方向に直交する方向における断面を示した図である。図5に示したように、入力側導体パターン40および/または出力側導体パターン42は、回転中心に対する位置(例えば入力軸30または出力軸32の回転角度)に応じて高さが異なるパターンであってもよい。例えば、入力側導体パターン40は、入力軸30の回転角度が大きくなるほど高さがより高くなるようなパターンであってもよい。あるいは、入力側導体パターン40は、入力軸30の回転角度が大きくなるほど入力側回転体50の外周面の高さがより低くなる(例えば当該外周面の凹み量がより大きくなる)ようなパターンであってもよい。つまり、入力側導体パターン40は、入力側導体パターン40と入力側信号取得部20との間の距離が入力軸30の回転角度に応じて変化するようなパターンであり得る。また、出力側導体パターン42に関しても同様であり得る。
 あるいは、入力側導体パターン40および/または出力側導体パターン42は、回転中心に対する位置に応じて、幅および高さの両方が変化するパターンであってもよい。
 {1-5-3.応用例3}
 図2では、入力側導体パターン40が、回転角度の範囲(0度~360度)に対応する周期の数が1であるパターンの例を示しているが、かかる例に限定されない。応用例3として、入力側信号取得部20の個数と配置とが適切に選択されることにより絶対角度が一意に決定されるのであれば、入力側導体パターン40は、回転角度の範囲(0度~360度)に対応する周期の数が複数であるパターンであってもよい。一般的に、周期の数が多くなるほど、同一の角度変化に対する重畳面積の変化が大きくなる。従って、応用例3によれば、入力軸30の回転角度は、より精度高く計測され得る。
 同様に、出力側導体パターン42に関しても、回転角度の範囲(0度~360度)に対応する周期の数が複数であるパターンであってもよい。
 {1-5-4.応用例4}
 上記の説明では、入力側導体パターン40が入力側回転体50に固定され、かつ、出力側導体パターン42が出力側回転体52に固定される例について説明したが、かかる例に限定されない。応用例4として、入力側導体パターン40は入力軸30の外周面に固定され、かつ、出力側導体パターン42は出力軸32の外周面に固定されてもよい。この場合、トルクセンサ10‐1は、入力側回転体50および出力側回転体52を有しなくてもよい。
<<2.第2の実施形態>>
 以上、第1の実施形態について説明した。前述したように、第1の実施形態に係るトルクセンサ10‐1では、入力側導体パターン40および出力側導体パターン42が入力軸30の軸方向と平行に配置される。次に、第2の実施形態に係るトルクセンサ10‐2の構成について説明する。後述するように、トルクセンサ10‐2では、入力側導体パターン40および出力側導体パターン42が入力軸30の軸方向に対して直交する方向に配置される。以下では、第1の実施形態と異なる構成についてのみ説明を行い、同一の内容については説明を省略する。
 <2-1.構成>
 図6は、第2の実施形態に係るトルクセンサ10‐2の外観を概略的に示した図である。図6に示したように、トルクセンサ10‐2の回転部14では、所定の位置(例えば入力軸30の軸中心)を中心として同心円状に入力軸30および出力軸32が位置しており、かつ、入力軸30と出力軸32との間に複数(例えば4個)の起歪部34が位置している。入力軸30の軸中心には開口部が設けられており、そして、モータ90の出力軸92が当該開口部に嵌合され得る。かかる構成によれば、モータ90が駆動してモータ90の出力軸92が回転すると、出力軸92とともに入力軸30が回転し、そして、入力軸30の回転トルクが個々の起歪部34を介して出力軸32へ伝達されることにより、出力軸32が回転し得る。なお、図6では、入力軸30が出力軸32よりも内側に配置される例を示しているが、かかる例に限定されず、入力軸30は出力軸32よりも外側に配置されてもよい。
 図6に示したように、第2の実施形態に係る入力側導体パターン40は、入力軸30のうち軸方向に直交する面に固定されている。同様に、出力側導体パターン42は、出力軸32のうち軸方向に直交する面に固定されている。
 さらに、図6に示したように、入力側信号取得部20は、入力側導体パターン40に対して間隔を有し、かつ、入力軸30のうち軸方向に直交する面と平行になるように配置される。同様に、出力側信号取得部22は、出力側導体パターン42に対して間隔を有し、かつ、出力軸32のうち軸方向に直交する面と平行になるように配置される。
 なお、図6では、入力側導体パターン40および出力側導体パターン42がそれぞれ、入力軸30または出力軸32の同じ側の面(つまり、図6の上側の面)に固定される例を示しているが、かかる例に限定されない。例えば、入力側導体パターン40は、入力軸30の軸方向に直交する面のうち第1の方向の面(例えば図6の上側の面)に固定され、かつ、出力側導体パターン42は、出力軸32の軸方向に直交する面のうち、当該第1の方向とは反対の方向の面(例えば図6の下側の面)に固定されてもよい。
 <2-2.効果>
 第2の実施形態によれば、第1の実施形態と概略同様の効果が得られる。
 さらに、第2の実施形態に係るトルクセンサ10‐2では、第1の実施形態とは異なり、入力側導体パターン40および出力側導体パターン42が湾曲せずに、入力軸30または出力軸32に対して平らに固定される。このため、例えば平面の導体(例えば金属シートなど)から切り出すことにより、入力側導体パターン40および出力側導体パターン42を容易に作製することができる。従って、第1の実施形態よりも導体パターンの加工が容易である。
<<3.第3の実施形態>>
 以上、第2の実施形態について説明した。次に、第3の実施形態に係るトルクセンサ10‐3の構成について説明する。以下では、第1の実施形態および第2の実施形態とは異なる構成についてのみ説明を行い、同一の内容については説明を省略する。
 <3-1.外観構成>
 図7は、第3の実施形態に係るトルクセンサ10‐3の外観を概略的に示した図である。図7に示したように、トルクセンサ10‐3の入力側回転体50の外周面には、二種類の入力側導体パターン40(入力側導体パターン40aおよび入力側導体パターン40b)が固定されている。入力側導体パターン40aは、本開示に係る第1の導体パターンの一例である。また、入力側導体パターン40bは、本開示に係る第3の導体パターンの一例である。
 {3-1-1.入力側導体パターン40a、入力側導体パターン40b}
 入力側導体パターン40aおよび入力側導体パターン40bは、回転中心に対する位置に応じて幅および/または高さが異なるような周期的なパターンである。例えば、入力側導体パターン40bの周期数は、入力側導体パターン40aの周期数よりも大きい。また、回転中心に対する位置の単位変化に対する幅および/または高さの変化量は、入力側導体パターン40aよりも入力側導体パターン40bの方が大きい。例えば、図7に示したように、入力側導体パターン40aは、三角波状のパターンであり、かつ、入力側導体パターン40bは、正弦波状に変化する複数の周期(例えば10周期)のパターンであってもよい。
 {3-1-2.出力側導体パターン42}
 第3の実施形態に係る出力側導体パターン42は、回転中心に対する位置の単位変化に対する幅および/または高さの変化量が入力側導体パターン40aよりも大きいパターンであり得る。さらに、出力側導体パターン42の周期数は、入力側導体パターン40aの周期数よりも大きくてもよい。例えば、図7に示したように、出力側導体パターン42は、入力側導体パターン40bと同一のパターンであってもよい。
 {3-1-3.入力側信号取得部20a、入力側信号取得部20b}
 図7に示したように、トルクセンサ10‐3は、二つの入力側信号取得部20(入力側信号取得部20aおよび入力側信号取得部20b)を有する。入力側信号取得部20aは、入力側導体パターン40aに対して間隔を有して配置される。また、入力側信号取得部20bは、入力側導体パターン40bに対して間隔を有して配置される。例えば、入力側導体パターン40aに対向するように入力側信号取得部20aが配置され、かつ、入力側導体パターン40bに対向するように入力側信号取得部20bが配置される。ここで、入力側信号取得部20aは、本開示に係る第1の取得部の一例である。また、入力側信号取得部20bは、本開示に係る第3の取得部の一例である。
 入力側信号取得部20aは、入力側導体パターン40aの回転位置に応じた第1の信号を取得する。また、入力側信号取得部20bは、入力側導体パターン40bの回転位置に応じた第3の信号を取得する。ここで、第3の信号は、第1の信号と同じ種類の信号であり得る。例えば、第1の信号は、入力側導体パターン40aの回転位置に応じたインピーダンスの値を示し、かつ、第3の信号は、入力側導体パターン40bの回転位置に応じたインピーダンスの値を示してもよい。または、第1の信号は、入力側信号取得部20aに所定の電圧が印加されている間の入力側信号取得部20a内のコイルにおいて測定された電流の値を示し、かつ、第3の信号は、入力側信号取得部20bに所定の電圧が印加されている間の入力側信号取得部20b内のコイルにおいて測定された電流の値を示してもよい。
 さらに、入力側信号取得部20aは、取得した第1の信号を計測部100へ伝達し得る。また、入力側信号取得部20bは、取得した第3の信号を計測部100へ伝達し得る。これにより、後述するように、計測部100は、当該第1の信号および当該第3の信号に基づいて入力軸30の回転角度を計測し得る。
 <3-2.機能構成>
 以上、トルクセンサ10‐3の外観構成について説明した。次に、第3の実施形態に係るトルクセンサ10‐3の機能構成について説明する。
 {3-2-1.回転角度計測部102}
 (3-2-1-1.入力軸30の回転角度の計測)
 第3の実施形態に係る回転角度計測部102は、入力側信号取得部20aから受信される第1の信号と、入力側信号取得部20bから受信される第3の信号とに基づいて入力軸30の回転角度を計測する。例えば、回転角度計測部102は、受信された第3の信号に対応する少なくとも一つの回転角度のうち、受信された第1の信号に対応する第1の回転角度(以下、暫定角度と称する)の値に最も近い回転角度を、入力軸30の回転角度として計測する。
 図8は、入力側信号取得部20a、入力側信号取得部20b、および、出力側信号取得部22によりそれぞれ取得された信号に基づいた、入力軸30および出力軸32の回転角度の計測方法の例を示した図である。図8では、入力側信号取得部20aにより取得される第1の信号が示す値(センサ値)と入力軸30の回転角度との対応関係を直線Aが示しており、入力側信号取得部20bにより取得される第3の信号が示す値(センサ値)と入力軸30の回転角度との対応関係を曲線Bが示しており、そして、出力側信号取得部22により取得される第2の信号が示す値(センサ値)と出力軸32の回転角度との対応関係を曲線Cが示している。図8では、出力軸32に対して外部から所定のトルクが印加されていることを前提としている。
 図8に示した例では、まず、回転角度計測部102は、あるタイミングにおいて入力側信号取得部20aにより取得された第1の信号が示す値(センサ値)“Z1”と、直線Aとに基づいて、暫定角度を特定(推定)する。次に、回転角度計測部102は、当該タイミングにおいて入力側信号取得部20bにより取得された第3の信号が示す値(センサ値)“Z2”と、曲線Bとに基づいて、“Z2”に対応する全ての回転角度を特定(推定)する。そして、回転角度計測部102は、特定した全ての回転角度のうち、特定した暫定角度の値に最も近い回転角度である“X1”を入力軸30の回転角度として計測する。
 (3-2-1-2.出力軸32の回転角度の計測)
 さらに、回転角度計測部102は、特定した暫定角度(つまり、第1の信号に対応する回転角度)と、出力側信号取得部22から受信された第2の信号とに基づいて、出力軸32の回転角度を計測する。例えば、回転角度計測部102は、受信された第2の信号に対応する少なくとも一つの回転角度のうち当該暫定角度の値に最も近い回転角度を、出力軸32の回転角度として計測する。
 図8に示した例では、まず、出力側信号取得部22により取得された第2の信号が示す値(センサ値)“Z3”と、曲線Cとに基づいて、“Z3”に対応する全ての回転角度を特定(推定)する。そして、回転角度計測部102は、特定した全ての回転角度のうち、当該暫定角度に最も近い回転角度である“X3”を、出力軸32の回転角度として計測する。さらに、トルク計測部104は、計測された入力軸30の回転角度と、計測された出力軸32の回転角度との差(“X1-X3”)に基づいて、入力軸30と出力軸32との間のトルクを計測する。
 <3-3.効果>
 {3-3-1.効果1}
 以上説明したように、第3の実施形態に係るトルクセンサ10‐3では、入力軸30(または出力軸32)の絶対角度の計測に用いられる第1の導体パターン(図7に示した例では入力側導体パターン40a)と、入力軸30(または出力軸32)の相対角度の計測に用いられる第2の導体パターン(図7に示した例では入力側導体パターン40b)とが入力軸30(または出力軸32)とともに回転可能に固定され得る。このため、入力軸30(または出力軸32)の回転角度の分解能を向上させることができる。
 例えば、トルクセンサ10‐3は、入力側導体パターン40aの回転位置に応じた第1の信号と、入力側導体パターン40bの回転位置に応じた第3の信号とを取得し、そして、当該第3の信号に対応する全ての回転角度のうち、当該第1の信号に対応する第1の回転角度の値に最も近い回転角度を入力軸30の回転角度として計測する。このため、入力軸30の回転角度をより精度高く計測することができる。
 さらに、例えば、外部からトルクが印加され、かつ、入力軸30と出力軸32との間で微小の角度差が生じた場合であっても、トルクセンサ10‐3は、当該角度差に基づいて当該トルクを精度高く計測することができる。
 {3-3-2.効果2}
 さらに、第3の実施形態によれば、入力軸30または出力軸32の絶対角度の計測に用いられる第1の導体パターン(図7に示した例では入力側導体パターン40a)を、入力軸30の回転角度の計測と、出力軸32の回転角度の計測との両方に利用することができる。従って、センサの数やスペースを削減することができる。
 <3-4.変形例>
 {3-4-1.変形例1}
 なお、正弦波状の導体パターン(図7に示した入力側導体パターン40bなど)では、当該導体パターンのうち山や谷の部分では角度変化が小さい。このため、仮に当該山や谷の部分に対応する位置に入力側信号取得部20または出力側信号取得部22が配置されると、入力軸30または出力軸32の回転角度の計測精度が低くなり得る。そこで、(入力側導体パターン40や出力側導体パターン42として)正弦波状の導体パターンが用いられる場合には、当該正弦波状の導体パターンのうちの山と谷との中間部分(傾斜部分)に対応する位置に入力側信号取得部20または出力側信号取得部22が配置されることが望ましい。これにより、入力軸30または出力軸32の回転角度の計測精度を向上させることができる。
 {3-4-2.変形例2}
 上記の説明では、入力側回転体50に二種類の導体パターンが固定され、かつ、出力側回転体52には導体パターンが一つだけ固定される例について説明したが、かかる例に限定されない。出力側回転体52に二種類の導体パターン(出力側導体パターン42aおよび出力側導体パターン42b)が固定され、かつ、入力側回転体50には導体パターンが一つだけ固定されてもよい。
<<4.第4の実施形態>>
 以上、第3の実施形態について説明した。次に、第4の実施形態に係るトルクセンサ10‐4の構成について説明する。以下では、第1の実施形態~第3の実施形態とは異なる構成についてのみ説明を行い、同一の内容については説明を省略する。
 <4-1.外観構成>
 {4-1-1.入力側導体パターン40、出力側導体パターン42}
 図9は、第4の実施形態に係るトルクセンサ10‐4の外観を概略的に示した図である。図9に示したように、トルクセンサ10‐4では、入力側回転体50のうち、入力軸30の軸方向に直交する面における所定の位置(例えば入力軸30の軸中心)を中心として同心円状に二種類の入力側導体パターン40(入力側導体パターン40aおよび入力側導体パターン40b)が入力側回転体50に固定されている。さらに、出力側回転体52のうち、出力軸32の軸方向に直交する面における所定の位置(例えば出力軸32の軸中心)を中心として同心円状に二種類の出力側導体パターン42(出力側導体パターン42aおよび出力側導体パターン42b)が出力側回転体52に固定されている。
 図10は、入力側回転体50に固定されている二種類の入力側導体パターン40を示した図である。図10に示したように、入力側導体パターン40aは、回転中心に対する位置に応じて幅が連続的に変化するような周期的なパターンである。また、入力側導体パターン40bは、複数の矩形の導体が環状に配置されたパターンである。なお、出力側導体パターン42aは、入力側導体パターン40aと同一のパターンであり、かつ、出力側導体パターン42bは、入力側導体パターン40bと同一のパターンであってもよい。
 {4-1-2.入力側信号取得部20、出力側信号取得部22}
 図9に示したように、個々の入力側導体パターン40に関して、当該入力側導体パターン40に対して間隔を有し、かつ、当該入力側導体パターン40に対向するように入力側信号取得部20が一つずつ配置される。同様に、個々の出力側導体パターン42に関して、当該出力側導体パターン42に対して間隔を有し、かつ、当該出力側導体パターン42に対向するように出力側信号取得部22が一つずつ配置される。
 <4-2.機能構成>
 {4-2-1.回転角度計測部102}
 次に、第4の実施形態に係るトルクセンサ10‐4の機能構成について説明する。第4の実施形態に係る回転角度計測部102は、入力側信号取得部20aから受信される第1の信号と、入力側信号取得部20bから受信される第3の信号とに基づいて入力軸30の回転角度を計測する。さらに、回転角度計測部102は、出力側信号取得部22aから受信される第2の信号と、出力側信号取得部22bから受信される第4の信号とに基づいて出力軸32の回転角度を計測する。
 図11は、二つの出力側信号取得部22(または、二つの入力側信号取得部20)の各々により取得された信号に基づいた、出力軸32(または入力軸30)の回転角度の計測方法の例を示した図である。以下では、図11を参照して、回転角度計測部102による出力軸32の回転角度の計測方法について具体的に説明する。なお、回転角度計測部102は、入力軸30の回転角度に関しても、以下で述べる計測方法と概略同様の方法で計測し得る。
 図11では、出力側信号取得部22aにより取得される第2の信号が示す値(センサ値)と出力軸32の回転角度との対応関係を曲線Dが示し、出力側信号取得部22bにより取得される第4の信号が示す値(センサ値)と出力軸32の回転角度との対応関係を曲線Eが示し、かつ、回転角度計測部102により最終的に計測(推定)される出力軸32の回転角度を直線Fが示している。
 図11に示した例では、まず、回転角度計測部102は、あるタイミングにおいて出力側信号取得部22aにより取得された第2の信号が示す値(センサ値)と、曲線Dとに基づいて、当該第2の信号に対応する回転角度(以下、暫定角度と称する)を特定(推定)する。次に、回転角度計測部102は、当該タイミングにおいて出力側信号取得部22bにより取得された第4の信号が示す値(センサ値)と、曲線Eとに基づいて、当該第4の信号に対応する全ての回転角度を特定(推定)する。そして、回転角度計測部102は、特定した全ての回転角度のうち、特定した暫定角度の値に最も近い回転角度を出力軸32の回転角度として計測する。
 <4-3.効果>
 第4の実施形態によれば、第3の実施形態と概略同様の効果が得られる。
<<5.むすび>>
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示はかかる例に限定されない。本開示の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 第1の軸とともに回転可能に固定されている、回転中心に対する位置に応じて幅および/または高さが異なる第1の導体パターンに対して間隔を有して配置されるとともに、前記第1の導体パターンの回転位置に応じた第1の信号を取得する第1の取得部と、
 第2の軸とともに回転可能に固定されている、回転中心に対する位置に応じて幅および/または高さが異なる第2の導体パターンに対して間隔を有して配置されるとともに、前記第2の導体パターンの回転位置に応じた第2の信号を取得する第2の取得部と、
 前記第1の軸と前記第2の軸との間において、ねじれを生じながらトルクを伝達する伝達部と、
を備える、トルクセンサ。
(2)
 前記第1の取得部により取得された前記第1の信号と、前記第2の取得部により取得された前記第2の信号とに基づいて、前記第1の軸と前記第2の軸との間のトルクが計測される、前記(1)に記載のトルクセンサ。
(3)
 前記第1の信号に基づいて前記第1の軸の回転角度が計測され、
 前記第2の信号に基づいて前記第2の軸の回転角度が計測される、前記(2)に記載のトルクセンサ。
(4)
 計測された前記第1の軸の回転角度と、計測された前記第2の軸の回転角度との差に基づいて、前記第1の軸と前記第2の軸との間のトルクが計測される、前記(3)に記載のトルクセンサ。
(5)
 計測された前記第1の軸の回転角度と、計測された前記第2の軸の回転角度との差、および、前記第1の軸と前記第2の軸との角度差とトルクとの関係性に基づいて、前記第1の軸と前記第2の軸との間のトルクが計測される、前記(4)に記載のトルクセンサ。
(6)
 前記第1の信号は、前記第1の導体パターンの回転位置に応じたインピーダンスの値を示し、
 前記第2の信号は、前記第2の導体パターンの回転位置に応じたインピーダンスの値を示す、前記(4)または(5)に記載のトルクセンサ。
(7)
 前記第1の取得部には、所定の電圧が印加されており、
 前記第1の信号は、前記所定の電圧が印加されている間の前記第1の取得部における電流の測定値を示し、
 前記第2の取得部には、所定の電圧が印加されており、
 前記第2の信号は、前記所定の電圧が印加されている間の前記第2の取得部における電流の測定値を示す、前記(4)または(5)に記載のトルクセンサ。
(8)
 前記第1の軸の外周面、または、前記第1の軸に固定される第1の回転体の外周面に前記第1の導体パターンは固定されており、
 前記第2の軸の外周面、または、前記第2の軸に固定される第2の回転体の外周面に前記第2の導体パターンは固定されている、前記(4)または(5)に記載のトルクセンサ。
(9)
 前記第1の軸の軸方向に直交する面、または、前記第1の軸に固定される第1の回転体の、前記第1の軸の軸方向に直交する面に前記第1の導体パターンは固定されており、
 前記第2の軸の軸方向に直交する面、または、前記第2の軸に固定される第2の回転体の、前記第2の軸の軸方向に直交する面に前記第2の導体パターンは固定されている、前記(4)または(5)に記載のトルクセンサ。
(10)
 前記第1の取得部は、第1のコイルを含み、かつ、前記第1の導体パターンと前記第1のコイルとの間に生じる磁気の変化に応じた前記第1の信号を取得し、
 前記第2の取得部は、第2のコイルを含み、かつ、前記第2の導体パターンと前記第2のコイルとの間に生じる磁気の変化に応じた前記第2の信号を取得する、前記(4)または(5)に記載のトルクセンサ。
(11)
 前記第1の取得部は、第1の電極を含み、かつ、前記第1の導体パターンと前記第1の電極との間の静電容量に応じた前記第1の信号を取得し、
 前記第2の取得部は、第2の電極を含み、かつ、前記第2の導体パターンと前記第2の電極との間の静電容量に応じた前記第2の信号を取得し、
 前記第1の信号は、前記第1の導体パターンの回転位置に応じた静電容量の値を示し、
 前記第2の信号は、前記第2の導体パターンの回転位置に応じた静電容量の値を示す、前記(4)または(5)に記載のトルクセンサ。
(12)
 前記第1の軸とともに回転可能に固定されている、回転中心に対する位置に応じて幅および/または高さが異なる第3の導体パターンに対して間隔を有して配置されるとともに、前記第3の導体パターンの回転位置に応じた第3の信号を取得する第3の取得部をさらに備え、
 前記第1の導体パターンおよび前記第3の導体パターンは、周期的なパターンであり、
 前記第3の導体パターンは、回転中心に対する位置の単位変化に対する幅および/または高さの変化量は前記第1の導体パターンとは異なり、
 前記第1の取得部により取得された前記第1の信号と、前記第3の取得部により取得された前記第3の信号とに基づいて、前記第1の軸の回転角度が計測される、前記(4)~(11)のいずれか一項に記載のトルクセンサ。
(13)
 前記第3の導体パターンの周期数は、前記第1の導体パターンの周期数よりも大きく、
 前記第3の信号に対応する少なくとも一つの回転角度のうち、前記第1の信号に対応する第1の回転角度の値に最も近い回転角度が、前記第1の軸の回転角度として計測される、前記(12)に記載のトルクセンサ。
(14)
 前記第2の導体パターンは、周期的なパターンであり、
 前記第1の取得部により取得された前記第1の信号と、前記第2の取得部により取得された前記第2の信号とに基づいて、前記第2の軸の回転角度が計測される、前記(13)に記載のトルクセンサ。
(15)
 前記第2の導体パターンの周期数は、前記第1の導体パターンの周期数よりも大きく、
 前記第2の信号に対応する少なくとも一つの回転角度のうち前記第1の回転角度の値に最も近い回転角度が、前記第2の軸の回転角度として計測される、前記(14)に記載のトルクセンサ。
(16)
 前記第1の軸は、前記トルクセンサの入力軸および出力軸のいずれか一方であり、
 前記第2の軸は、前記トルクセンサの入力軸および出力軸のいずれか他方である、前記(4)~(15)のいずれか一項に記載のトルクセンサ。
(17)
 前記第1の軸と前記第2の軸とは同軸である、前記(16)に記載のトルクセンサ。
(18)
 前記トルクセンサには、モータが連結されており、
 前記第1の軸は、前記トルクセンサの入力軸であり、かつ、前記モータの出力軸に連結されている、前記(17)に記載のトルクセンサ。
(19)
 前記第1の軸、前記第2の軸、前記第1の導体パターン、および、前記第2の導体パターンをさらに備える、前記(18)に記載のトルクセンサ。
(20)
 前記第1の信号に基づいて前記第1の軸の回転角度を計測し、かつ、前記第2の信号に基づいて前記第2の軸の回転角度を計測する回転角度計測部と、
 前記第1の軸の回転角度と前記第2の軸の回転角度との差に基づいて、前記第1の軸と前記第2の軸との間のトルクを計測するトルク計測部と、をさらに備える、前記(4)~(19)のいずれか一項に記載のトルクセンサ。
10‐1、10‐2、10‐3、10‐4 トルクセンサ
12 固定部
14 回転部
20 入力側信号取得部
22 出力側信号取得部
30 入力軸
32、92 出力軸
34 起歪部
40 入力側導体パターン
42 出力側導体パターン
50 入力側回転体
52 出力側回転体
100 計測部
102 回転角度計測部
102 トルク計測部
104 トルク計測部

Claims (20)

  1.  第1の軸とともに回転可能に固定されている、回転中心に対する位置に応じて幅および/または高さが異なる第1の導体パターンに対して間隔を有して配置されるとともに、前記第1の導体パターンの回転位置に応じた第1の信号を取得する第1の取得部と、
     第2の軸とともに回転可能に固定されている、回転中心に対する位置に応じて幅および/または高さが異なる第2の導体パターンに対して間隔を有して配置されるとともに、前記第2の導体パターンの回転位置に応じた第2の信号を取得する第2の取得部と、
     前記第1の軸と前記第2の軸との間において、ねじれを生じながらトルクを伝達する伝達部と、
    を備える、トルクセンサ。
  2.  前記第1の取得部により取得された前記第1の信号と、前記第2の取得部により取得された前記第2の信号とに基づいて、前記第1の軸と前記第2の軸との間のトルクが計測される、請求項1に記載のトルクセンサ。
  3.  前記第1の信号に基づいて前記第1の軸の回転角度が計測され、
     前記第2の信号に基づいて前記第2の軸の回転角度が計測される、請求項2に記載のトルクセンサ。
  4.  計測された前記第1の軸の回転角度と、計測された前記第2の軸の回転角度との差に基づいて、前記第1の軸と前記第2の軸との間のトルクが計測される、請求項3に記載のトルクセンサ。
  5.  計測された前記第1の軸の回転角度と、計測された前記第2の軸の回転角度との差、および、前記第1の軸と前記第2の軸との角度差とトルクとの関係性に基づいて、前記第1の軸と前記第2の軸との間のトルクが計測される、請求項4に記載のトルクセンサ。
  6.  前記第1の信号は、前記第1の導体パターンの回転位置に応じたインピーダンスの値を示し、
     前記第2の信号は、前記第2の導体パターンの回転位置に応じたインピーダンスの値を示す、請求項4に記載のトルクセンサ。
  7.  前記第1の取得部には、所定の電圧が印加されており、
     前記第1の信号は、前記所定の電圧が印加されている間の前記第1の取得部における電流の測定値を示し、
     前記第2の取得部には、所定の電圧が印加されており、
     前記第2の信号は、前記所定の電圧が印加されている間の前記第2の取得部における電流の測定値を示す、請求項4に記載のトルクセンサ。
  8.  前記第1の軸の外周面、または、前記第1の軸に固定される第1の回転体の外周面に前記第1の導体パターンは固定されており、
     前記第2の軸の外周面、または、前記第2の軸に固定される第2の回転体の外周面に前記第2の導体パターンは固定されている、請求項4に記載のトルクセンサ。
  9.  前記第1の軸の軸方向に直交する面、または、前記第1の軸に固定される第1の回転体の、前記第1の軸の軸方向に直交する面に前記第1の導体パターンは固定されており、
     前記第2の軸の軸方向に直交する面、または、前記第2の軸に固定される第2の回転体の、前記第2の軸の軸方向に直交する面に前記第2の導体パターンは固定されている、請求項4に記載のトルクセンサ。
  10.  前記第1の取得部は、第1のコイルを含み、かつ、前記第1の導体パターンと前記第1のコイルとの間に生じる磁気の変化に応じた前記第1の信号を取得し、
     前記第2の取得部は、第2のコイルを含み、かつ、前記第2の導体パターンと前記第2のコイルとの間に生じる磁気の変化に応じた前記第2の信号を取得する、請求項4に記載のトルクセンサ。
  11.  前記第1の取得部は、第1の電極を含み、かつ、前記第1の導体パターンと前記第1の電極との間の静電容量に応じた前記第1の信号を取得し、
     前記第2の取得部は、第2の電極を含み、かつ、前記第2の導体パターンと前記第2の電極との間の静電容量に応じた前記第2の信号を取得し、
     前記第1の信号は、前記第1の導体パターンの回転位置に応じた静電容量の値を示し、
     前記第2の信号は、前記第2の導体パターンの回転位置に応じた静電容量の値を示す、請求項4に記載のトルクセンサ。
  12.  前記第1の軸とともに回転可能に固定されている、回転中心に対する位置に応じて幅および/または高さが異なる第3の導体パターンに対して間隔を有して配置されるとともに、前記第3の導体パターンの回転位置に応じた第3の信号を取得する第3の取得部をさらに備え、
     前記第1の導体パターンおよび前記第3の導体パターンは、周期的なパターンであり、
     前記第3の導体パターンは、回転中心に対する位置の単位変化に対する幅および/または高さの変化量は前記第1の導体パターンとは異なり、
     前記第1の取得部により取得された前記第1の信号と、前記第3の取得部により取得された前記第3の信号とに基づいて、前記第1の軸の回転角度が計測される、請求項4に記載のトルクセンサ。
  13.  前記第3の導体パターンの周期数は、前記第1の導体パターンの周期数よりも大きく、
     前記第3の信号に対応する少なくとも一つの回転角度のうち、前記第1の信号に対応する第1の回転角度の値に最も近い回転角度が、前記第1の軸の回転角度として計測される、請求項12に記載のトルクセンサ。
  14.  前記第2の導体パターンは、周期的なパターンであり、
     前記第1の取得部により取得された前記第1の信号と、前記第2の取得部により取得された前記第2の信号とに基づいて、前記第2の軸の回転角度が計測される、請求項13に記載のトルクセンサ。
  15.  前記第2の導体パターンの周期数は、前記第1の導体パターンの周期数よりも大きく、
     前記第2の信号に対応する少なくとも一つの回転角度のうち前記第1の回転角度の値に最も近い回転角度が、前記第2の軸の回転角度として計測される、請求項14に記載のトルクセンサ。
  16.  前記第1の軸は、前記トルクセンサの入力軸および出力軸のいずれか一方であり、
     前記第2の軸は、前記トルクセンサの入力軸および出力軸のいずれか他方である、請求項4に記載のトルクセンサ。
  17.  前記第1の軸と前記第2の軸とは同軸である、請求項16に記載のトルクセンサ。
  18.  前記トルクセンサには、モータが連結されており、
     前記第1の軸は、前記トルクセンサの入力軸であり、かつ、前記モータの出力軸に連結されている、請求項17に記載のトルクセンサ。
  19.  前記第1の軸、前記第2の軸、前記第1の導体パターン、および、前記第2の導体パターンをさらに備える、請求項18に記載のトルクセンサ。
  20.  前記第1の信号に基づいて前記第1の軸の回転角度を計測し、かつ、前記第2の信号に基づいて前記第2の軸の回転角度を計測する回転角度計測部と、
     前記第1の軸の回転角度と前記第2の軸の回転角度との差に基づいて、前記第1の軸と前記第2の軸との間のトルクを計測するトルク計測部と、をさらに備える、請求項4に記載のトルクセンサ。
PCT/JP2018/004199 2017-05-09 2018-02-07 トルクセンサ WO2018207415A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-092792 2017-05-09
JP2017092792 2017-05-09

Publications (1)

Publication Number Publication Date
WO2018207415A1 true WO2018207415A1 (ja) 2018-11-15

Family

ID=64104616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004199 WO2018207415A1 (ja) 2017-05-09 2018-02-07 トルクセンサ

Country Status (1)

Country Link
WO (1) WO2018207415A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280973A (ja) * 1996-04-17 1997-10-31 Shuhei Takasu トルクセンサ
JP2005265830A (ja) * 2004-02-20 2005-09-29 Furukawa Electric Co Ltd:The 回転センサ
US20070000336A1 (en) * 2005-06-29 2007-01-04 Freudenberg-Nok General Partnership Torque cell
JP2011503558A (ja) * 2007-11-09 2011-01-27 フォクト エレクトロニック コンポーネント ゲーエムベーハー プラスチック要素を含む位置エンコーダ
JP2012247256A (ja) * 2011-05-26 2012-12-13 Nsk Ltd トルクセンサ及びこれを備えた電動パワーステアリング装置
JP2017044683A (ja) * 2015-08-26 2017-03-02 日本精工株式会社 相対角度検出装置、トルクセンサ、電動パワーステアリング装置及び車両

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280973A (ja) * 1996-04-17 1997-10-31 Shuhei Takasu トルクセンサ
JP2005265830A (ja) * 2004-02-20 2005-09-29 Furukawa Electric Co Ltd:The 回転センサ
US20070000336A1 (en) * 2005-06-29 2007-01-04 Freudenberg-Nok General Partnership Torque cell
JP2011503558A (ja) * 2007-11-09 2011-01-27 フォクト エレクトロニック コンポーネント ゲーエムベーハー プラスチック要素を含む位置エンコーダ
JP2012247256A (ja) * 2011-05-26 2012-12-13 Nsk Ltd トルクセンサ及びこれを備えた電動パワーステアリング装置
JP2017044683A (ja) * 2015-08-26 2017-03-02 日本精工株式会社 相対角度検出装置、トルクセンサ、電動パワーステアリング装置及び車両

Similar Documents

Publication Publication Date Title
JP6389001B2 (ja) 回転する構成部材の回転角度を非接触式に検出するためのセンサ装置
US10330498B2 (en) Sensor arrangement for the contactless sensing of angles of rotation on a rotating part
JP7338099B2 (ja) 誘導センサを用いるマルチレベル回転リゾルバー
JP6204813B2 (ja) インダクティブ位置測定装置
KR102477526B1 (ko) 지터 극을 갖는 자석 링
JP5189510B2 (ja) 位置センサ
US6661220B1 (en) Antenna transponder configuration for angle measurement and data transmission
US8847611B2 (en) Capacitive differential quadrature rotary position sensor
CN102445146A (zh) 轴扭转角和/或者轴扭矩检测装置以及运行该装置的方法
CN109211096B (zh) 基于交变电场的反射型绝对式时栅角位移传感器
KR20180115705A (ko) 회전 각 센서
CN109211095B (zh) 一种基于交变电场的绝对式时栅角位移传感器
US9587963B2 (en) Brushless linear rotary transformer
US20100222967A1 (en) Multiturn rotational sensor
CN109297517A (zh) 一种基于组合调制原理的绝对式时栅角位移传感器
JP2011174743A (ja) 検出装置用巻線の正弦波巻線方法
CN208887655U (zh) 基于组合调制原理的绝对式时栅角位移传感器
WO2018207415A1 (ja) トルクセンサ
CN202816634U (zh) 一种无刷线性旋转变压器
CN109211094B (zh) 一种基于交变电场的反射型绝对式时栅角位移传感器
US11761794B2 (en) Proximity sensor to sense rotating shaft position and velocity
JP6507347B2 (ja) 静電容量式角度検出装置
CN109211093B (zh) 基于交变电场的反射型绝对式时栅角位移传感器
JP4047947B2 (ja) 誘導型直線位置検出装置
JP7079917B2 (ja) 静電容量測定によるモータの位置決め

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18799103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18799103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP