WO2018207294A1 - Positive-type photosensitive resin composition, thermal crosslinking agent for positive-type photosensitive resins, patterned cured film and method for producing same, semiconductor element, and electronic device - Google Patents

Positive-type photosensitive resin composition, thermal crosslinking agent for positive-type photosensitive resins, patterned cured film and method for producing same, semiconductor element, and electronic device Download PDF

Info

Publication number
WO2018207294A1
WO2018207294A1 PCT/JP2017/017754 JP2017017754W WO2018207294A1 WO 2018207294 A1 WO2018207294 A1 WO 2018207294A1 JP 2017017754 W JP2017017754 W JP 2017017754W WO 2018207294 A1 WO2018207294 A1 WO 2018207294A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
photosensitive resin
group
resin composition
positive photosensitive
Prior art date
Application number
PCT/JP2017/017754
Other languages
French (fr)
Japanese (ja)
Inventor
優 青木
政弘 橋本
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to KR1020197029304A priority Critical patent/KR102425708B1/en
Priority to CN201780090330.6A priority patent/CN110582726B/en
Priority to SG11201909393S priority patent/SG11201909393SA/en
Priority to JP2019516802A priority patent/JP7092121B2/en
Priority to PCT/JP2017/017754 priority patent/WO2018207294A1/en
Priority to TW107115716A priority patent/TWI781171B/en
Publication of WO2018207294A1 publication Critical patent/WO2018207294A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31058After-treatment of organic layers

Definitions

  • the present invention relates to a positive photosensitive resin composition, a thermal crosslinking agent for positive photosensitive resin, a pattern cured film and a method for producing the same, a semiconductor element, and an electronic device.
  • insulating layers such as interlayer insulating layers and surface protective layers of semiconductor elements have better heat resistance (thermal expansion coefficient, etc.) and mechanical properties (breaking strength, breaking elongation). Etc.).
  • a positive photosensitive resin composition containing an alkali-soluble resin has been developed as a material for forming an insulating layer having such characteristics (see, for example, Patent Documents 1, 2, and 3). These positive photosensitive resin compositions are applied onto a substrate and dried to form a resin film, and the resin film is exposed and developed to obtain a patterned resin film (patterned resin film).
  • a patterned cured film (patterned cured film) can be formed by heat curing the patterned resin film, and the patterned cured film can be used as an insulating layer.
  • these photosensitive resin compositions have an advantage that they can be cured by heating at a low temperature in the step of forming the pattern cured film.
  • the warpage of the package due to the residual stress of the pattern cured film used for the insulating layer becomes a problem. Therefore, the material used is required to reduce the residual stress of the formed pattern cured film.
  • the present invention has been made in view of such circumstances, and is a positive photosensitive resin composition capable of forming a cured film having low residual stress, excellent chemical resistance, and excellent adhesion to a substrate.
  • the main purpose is to provide goods.
  • the present inventors have found that, in combination with a specific compound in the positive photosensitive resin composition, a cured film having low residual stress and excellent chemical resistance can be formed. I found it. Furthermore, the obtained cured film was found to have excellent adhesion to the substrate, and the present invention was completed.
  • One aspect of the present invention includes (A) an alkali-soluble resin, (B) a compound represented by the following general formula (1) or a compound represented by the following general formula (2), and (C) two or more Provided is a positive photosensitive resin composition containing an epoxy group-containing compound. According to such a positive photosensitive resin composition, it is possible to form a patterned cured film having low residual stress, excellent chemical resistance, and excellent adhesion to the substrate.
  • R 1 to R 6 each independently represents an alkyl group having 1 to 10 carbon atoms.
  • R 7 to R 12 each independently represents an alkyl group having 1 to 10 carbon atoms.
  • the molar ratio of the component (C) to the component (B) may be 1.0 or less. When the molar ratio is in such a range, chemical resistance and breaking strength tend to be more excellent.
  • the component (C) may be a compound having an aromatic ring or a heterocyclic ring. Further, the component (C) may be a compound represented by the following general formula (3). When the component (C) is such a compound, the chemical resistance of the formed pattern cured film tends to be more excellent.
  • R 13 to R 15 each independently represents an alkylene group having 1 to 10 carbon atoms.
  • the positive photosensitive resin composition may further contain (D) an elastomer.
  • the positive photosensitive resin composition may further contain (E) a compound that generates an acid by light.
  • a thermal crosslinking agent for a positive photosensitive resin comprising a compound represented by the following general formula (1) or a compound represented by the following general formula (2), and a compound having two or more epoxy groups I will provide a.
  • a thermal crosslinking agent for a positive photosensitive resin a positive photosensitive resin composition capable of forming a cured pattern film having low residual stress, excellent chemical resistance, and excellent adhesion to a substrate Can be easily prepared.
  • R 1 to R 6 each independently represents an alkyl group having 1 to 10 carbon atoms.
  • R 7 to R 12 each independently represents an alkyl group having 1 to 10 carbon atoms.
  • a pattern cured film having a pattern wherein the pattern includes a cured product of a resin film made of the positive photosensitive resin composition described above.
  • a step of applying and drying the positive photosensitive resin composition to a part or the whole of the substrate to form a resin film, a step of exposing a part or the whole of the resin film, and a step after the exposure A method for producing a cured pattern film comprising: a step of developing the resin film with an alkaline aqueous solution to form a pattern resin film; and a step of heating the pattern resin film.
  • a semiconductor device comprising the above-described pattern cured film as an interlayer insulating layer or a surface protective layer.
  • an electronic device comprising the above semiconductor element is provided.
  • a positive photosensitive resin composition capable of forming a cured film having low residual stress, excellent chemical resistance, and excellent adhesion to a substrate.
  • the thermal crosslinking agent for positive photosensitive resins which can prepare such a positive photosensitive resin composition easily can be provided.
  • the pattern cured film using such a positive photosensitive resin composition, its manufacturing method, a semiconductor element, and an electronic device can be provided.
  • (meth) acrylic acid means “acrylic acid” or “methacrylic acid”, and the same applies to other similar expressions such as (meth) acrylate.
  • the positive photosensitive resin composition of one embodiment includes (A) an alkali-soluble resin, (B) a compound represented by the general formula (1) or a compound represented by the general formula (2), and (C) And a compound having two or more epoxy groups.
  • the component (A) is a resin that is soluble in an alkaline aqueous solution (developer).
  • the alkaline aqueous solution is an alkaline solution such as a tetramethylammonium hydroxide (TMAH) aqueous solution, a metal hydroxide aqueous solution, or an organic amine aqueous solution.
  • TMAH tetramethylammonium hydroxide
  • a metal hydroxide aqueous solution aqueous aqueous solution
  • organic amine aqueous solution an aqueous tetramethylammonium hydroxide solution having a concentration of 2.38% by mass is used for development.
  • the component (A) is soluble in an alkali developer.
  • a varnish obtained by dissolving the component (A) in an arbitrary solvent is spin-coated on a substrate such as a silicon wafer to form a coating film having a thickness of about 5 ⁇ m.
  • a substrate such as a silicon wafer
  • This is immersed in either a TMAH aqueous solution, a metal hydroxide aqueous solution or an organic amine aqueous solution at 20 to 25 ° C.
  • TMAH aqueous solution a metal hydroxide aqueous solution or an organic amine aqueous solution at 20 to 25 ° C.
  • component (A) examples include polyester resins, polyether resins, polyimide resins, polyamide resins, polyamideimide resins, polyetherimide resins, polyurethane resins, polyurethaneimide resins, polyurethaneamideimide resins, siloxane polyimide resins, and polyesterimide resins.
  • the main chain or side chain of these resins may be provided with a glycol group such as ethylene glycol or propylene glycol, a carboxyl group, or a hydroxyl group.
  • the component (A) is preferably a resin having a phenolic hydroxyl group from the viewpoint of high-temperature adhesiveness, heat resistance, and film formability.
  • the resin having a phenolic hydroxyl group for example, polyhydroxystyrene or a hydroxystyrene-based resin such as a copolymer containing hydroxystyrene as a monomer unit, a phenol resin, a polybenzoxazole precursor such as poly (hydroxyamide), Examples include poly (hydroxyphenylene) ether and polynaphthol.
  • the component (A) may be composed of only one of these resins, or may be composed of two or more.
  • (A1) hydroxystyrene-based resin is preferable because of its excellent electrical properties (insulating properties) and small volume shrinkage during curing.
  • (A2) a phenol resin is preferable, and a novolac type phenol resin is more preferable because it is inexpensive, has high contrast, and has a small volume shrinkage at the time of curing.
  • the hydroxystyrene-based resin has a structural unit represented by the following general formula (21).
  • R 21 represents a hydrogen atom or a methyl group
  • R 22 represents an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms
  • a represents an integer of 0 to 3
  • b represents an integer of 1 to 3.
  • the sum of a and b is 5 or less.
  • the hydroxystyrene-based resin can be obtained by polymerizing a monomer or the like that gives the structural unit represented by the general formula (21).
  • examples of the alkyl group having 1 to 10 carbon atoms represented by R 21 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, and a nonyl group.
  • Examples of the aryl group having 6 to 10 carbon atoms represented by R 22 include a phenyl group and a naphthyl group.
  • Examples of the alkoxy group having 1 to 10 carbon atoms represented by R 21 include methoxy group, ethoxy group, propoxy group, butoxy group, pentoxy group, hexoxy group, heptoxy group, octoxy group, nonoxy group, and decoxy group. It is done. These groups may be linear or branched.
  • Monomers that give the structural unit represented by the general formula (21) include, for example, p-hydroxystyrene, m-hydroxystyrene, o-hydroxystyrene, p-isopropenylphenol, m-isopropenylphenol, o-isopropenyl. Phenol etc. are mentioned. These monomers can be used singly or in combination of two or more.
  • (A1) Hydroxystyrene resin is not limited by its production method.
  • the hydroxyl group of the monomer that gives the structural unit represented by the general formula (21) is protected by a t-butyl group, an acetyl group, etc.
  • the resulting monomer is polymerized with a hydroxyl group-protected monomer to obtain a polymer, and the resulting polymer is converted to a hydroxystyrene structural unit by deprotection under an acid catalyst. Etc.) can be obtained by deprotection.
  • the hydroxystyrene-based resin may be a polymer or copolymer consisting only of a monomer that gives the structural unit represented by the general formula (21), and the structural unit represented by the general formula (21) It may be a copolymer of the monomer to be given and other monomers.
  • the proportion of the structural unit represented by the general formula (21) in the copolymer is (A) from the viewpoint of solubility in an alkaline developer in the exposed area. 10 to 100 mol% is preferable, 20 to 97 mol% is more preferable, 30 to 95 mol% is further preferable, and 50 to 95 mol% is particularly preferable with respect to 100 mol% of the component.
  • the hydroxystyrene-based resin is preferably an alkali-soluble resin further having a structural unit represented by the following general formula (22) from the viewpoint of further improving the dissolution inhibition of the unexposed portion with respect to the alkaline developer. .
  • R 23 represents a hydrogen atom or a methyl group
  • R 24 represents an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms
  • c represents an integer of 0 to 3.
  • Examples of the alkyl group having 1 to 10 carbon atoms, the aryl group having 6 to 10 carbon atoms or the alkoxy group having 1 to 10 carbon atoms represented by R 24 are the same as those for R 22 .
  • the alkali-soluble resin having the structural unit represented by the general formula (22) can be obtained by using a monomer that gives the structural unit represented by the general formula (22).
  • Monomers that give the structural unit represented by the general formula (22) include, for example, styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-methoxystyrene, and m-methoxystyrene.
  • aromatic vinyl compounds such as p-methoxystyrene.
  • the proportion of the structural unit represented by the formula (22) is preferably 1 to 90 mol%, more preferably 3 to 80 mol%, still more preferably 5 to 70 mol%, relative to 100 mol% of the component (A). ⁇ 50 mol% is particularly preferred.
  • the (A1) hydroxystyrene-based resin is preferably an alkali-soluble resin having a structural unit represented by the following general formula (23) from the viewpoint of lowering the elastic modulus.
  • R 25 represents a hydrogen atom or a methyl group
  • R 26 represents an alkyl group having 1 to 10 carbon atoms or a hydroxyalkyl group having 1 to 10 carbon atoms.
  • the alkali-soluble resin having the structural unit represented by the general formula (23) can be obtained by using a monomer that gives the structural unit represented by the general formula (23).
  • Monomers that give the structural unit represented by the general formula (23) include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, (meth) Pentyl acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, hydroxymethyl (meth) acrylate, (meth) Hydroxyethyl acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, hydroxypentyl (meth) acrylate, hydroxyhexyl (me
  • the proportion of the structural unit represented by the formula (23) is preferably 1 to 90 mol%, more preferably 3 to 80 mol%, still more preferably 5 to 70 mol%, relative to 100 mol% of the component (A). ⁇ 50 mol% is particularly preferred.
  • the phenol resin is a polycondensation product of phenol or a derivative thereof and aldehydes.
  • the polycondensation is usually performed in the presence of a catalyst such as an acid or a base.
  • the phenol resin obtained when an acid catalyst is used is particularly called a novolak type phenol resin.
  • the novolak type phenol resin include phenol / formaldehyde novolak resin, cresol / formaldehyde novolak resin, xylenol / formaldehyde novolak resin, resorcinol / formaldehyde novolak resin, phenol-naphthol / formaldehyde novolak resin, and the like.
  • Examples of the phenol derivative constituting the phenol resin include o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, o-butylphenol, m-butylphenol, p-butylphenol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, 2,3,5-trimethylphenol, 3 , 4,5-trimethylphenol and other alkylphenols, methoxyphenol and 2-methoxy-4-methylphenol and other alkoxyphenols, vinylphenol and allylphenol and other alkenylphenols, benzylphenol and other aralkylphenols and methoxycal Alkylcarbonylphenol such as nylphenol, arylcarbonylphenol such as benzoyloxyphenol
  • aldehydes constituting the phenol resin include formaldehyde, acetaldehyde, furfural, benzaldehyde, hydroxybenzaldehyde, methoxybenzaldehyde, hydroxyphenylacetaldehyde, methoxyphenylacetaldehyde, crotonaldehyde, chloroacetaldehyde, chlorophenylacetaldehyde, glyceraldehyde, Examples include glyoxylic acid, methyl glyoxylate, phenyl glyoxylate, hydroxyphenyl glyoxylate, formyl acetic acid, methyl formyl acetate, 2-formylpropionic acid, methyl 2-formylpropionate, and the like.
  • formaldehyde precursors such as paraformaldehyde and trioxane
  • ketones such as acetone, pyruvic acid, levulinic acid, 4-acetylbutyric acid, acetonedicarboxylic acid, and 3,3′-4,4′-benzophenonetetracarboxylic acid You may use for reaction.
  • the weight average molecular weight of each of the component (A1) and the component (A2) is solubility in an aqueous alkali solution, photosensitive characteristics, and pattern.
  • the weight average molecular weight is preferably from 1,000 to 500,000, more preferably from 2,000 to 200,000, and further preferably from 2,000 to 100,000.
  • the weight average molecular weight is a value obtained by measuring by a gel permeation chromatography (GPC) method and converting from a standard polystyrene calibration curve.
  • the compound as the component (B) is a compound having a structure that can react with the component (A) to form a bridge structure when the photosensitive resin film after pattern formation is cured by heating.
  • the component (B) is a compound represented by the following general formula (1) or a compound represented by the following general formula (2).
  • R 1 to R 6 each independently represents an alkyl group having 1 to 10 carbon atoms.
  • alkyl group having 1 to 10 carbon atoms represented by R 1 to R 6 are the same as those for R 22 .
  • the alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 3, more preferably 1 or 2, and particularly preferably 1.
  • R 7 to R 12 each independently represents an alkyl group having 1 to 10 carbon atoms.
  • alkyl group having 1 to 10 carbon atoms represented by R 7 to R 12 are the same as those for R 22 .
  • the alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 3, more preferably 1 or 2, and particularly preferably 1.
  • the component (A) It is a compound having a structure capable of reacting with and forming a bridge structure.
  • the component (C) can be used without particular limitation as long as it has two or more epoxy groups.
  • Examples of the component (C) include aliphatic epoxy compounds, aromatic epoxy compounds, alicyclic epoxy compounds, heterocyclic epoxy compounds, bisphenol type epoxy compounds, novolac type epoxy compounds, glycidylamine type epoxy compounds, and halogenated epoxies. Compounds and the like. These can be used individually by 1 type or in combination of 2 or more types.
  • the component (C) is preferably an epoxy compound having an aromatic ring or a heterocyclic ring, more preferably an epoxy compound having a heterocyclic ring, from the viewpoint of superior chemical resistance, and a nitrogen-containing heterocyclic ring. More preferably, it is an epoxy compound.
  • the component (C) is preferably a compound represented by the following general formula (3) from the viewpoint of superior chemical resistance.
  • R 13 to R 15 each independently represents an alkylene group having 1 to 10 carbon atoms.
  • examples of the alkylene group having 1 to 10 carbon atoms represented by R 13 to R 15 include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, and an octylene group.
  • the alkylene group preferably has 1 to 8 carbon atoms, and more preferably 1 to 6 carbon atoms.
  • the molar ratio of the component (C) to the component (B) is 1.0 or less from the viewpoint of better resistance to chemicals and breaking strength. It is preferably 9 or less, and more preferably 0.8 or less. Although the minimum of the molar ratio of (C) component with respect to (B) component is not restrict
  • the total amount of the component (B) and the component (C) is preferably 2 to 35 parts by mass with respect to 100 parts by mass of the component (A) from the viewpoint of being excellent in residual stress and chemical resistance. More preferably, it is 5 to 25 parts by mass.
  • the positive photosensitive resin composition of the present embodiment may further contain (D) an elastomer or (E) a compound that generates an acid by light.
  • elastomer examples include styrene-based elastomer, olefin-based elastomer, urethane-based elastomer, polyester-based elastomer, polyamide-based elastomer, acrylic-based elastomer, and silicone-based elastomer. These can be used individually by 1 type or in combination of 2 or more types.
  • the component (D) may be an acrylic elastomer because it is excellent in breaking strength, breaking elongation, and thermal expansibility of the obtained pattern cured film.
  • the acrylic elastomer preferably has a structural unit represented by the following general formula (31).
  • R 31 represents a hydrogen atom or a methyl group
  • R 32 represents a hydroxyalkyl group having 2 to 20 carbon atoms.
  • Examples of the hydroxyalkyl group having 2 to 20 carbon atoms represented by R 32 include a hydroxyethyl group, a hydroxypropyl group, a hydroxybutyl group, a hydroxypentyl group, a hydroxyhexyl group, a hydroxyheptyl group, a hydroxyoctyl group, and a hydroxynonyl group.
  • Hydroxydecyl group Hydroxydecyl group, hydroxyundecyl group, hydroxydodecyl group (sometimes referred to as hydroxylauryl group), hydroxytridecyl group, hydroxytetradecyl group, hydroxypentadecyl group, hydroxyhexadecyl group, hydroxyheptadecyl group, hydroxy An octadecyl group, a hydroxy nonadecyl group, a hydroxyeicosyl group, etc. are mentioned.
  • the acrylic elastomer further has a structural unit represented by the following general formula (32), a structural unit represented by the following general formula (33), or a structural unit represented by the following general formula (34). Also good.
  • R 33 represents a hydrogen atom or a methyl group
  • R 34 represents a monovalent organic group having a primary, secondary, or tertiary amino group.
  • Examples of the primary, secondary or tertiary amino group represented by R 34 include an aminoethyl group, an N-methylaminoethyl group, an N, N-dimethylaminoethyl group, an N-ethylaminoethyl group, an N, N -Diethylaminoethyl group, aminopropyl group, N-methylaminopropyl group, N, N-dimethylaminopropyl group, N-ethylaminopropyl group, N, N-diethylaminopropyl group, piperidin-4-yl group, 1-methyl Piperidin-4-yl group, 2,2,6,6-tetramethylpiperidin-4-yl group, 1,2,2,6,6-pentamethylpiperidin-4-yl group, (piperidin-4-yl) Examples thereof include a methyl group and 2- (piperidin-4-yl) ethyl group.
  • R 35 represents a hydrogen atom or a methyl group
  • R 36 represents an alkyl group having 4 to 20 carbon atoms.
  • Examples of the alkyl group having 4 to 20 carbon atoms represented by R 36 include a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, and a dodecyl group (also referred to as a lauryl group). And tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group and the like. These groups may be linear or branched.
  • R 37 represents a hydrogen atom or a methyl group.
  • the acrylic elastomer includes, for example, a monomer that gives the structural unit represented by the general formula (31), and a structural unit represented by the general formula (32), (33), or (34) that is added as necessary.
  • a monomer that gives water stirring in a solvent such as ethyl lactate, toluene, isopropanol, and heating as necessary.
  • the weight average molecular weight of the acrylic elastomer is preferably from 2,000 to 100,000, more preferably from 3,000 to 60,000, still more preferably from 5,000 to 50,000, and particularly preferably from 10,000 to 40,000.
  • the weight average molecular weight is a value obtained by measuring by a gel permeation chromatography (GPC) method and converting from a standard polystyrene calibration curve.
  • the content of the component (D) is preferably 1 to 35 parts by mass, preferably 3 to 30 parts by mass with respect to 100 parts by mass of the component (A), from the viewpoint of being superior in breaking strength and elongation at break. More preferred is 5 to 25 parts by mass.
  • ⁇ (E) component The compound which produces
  • the component (E) has a function of generating acid upon irradiation with light and further increasing the solubility of the irradiated portion in an alkaline aqueous solution.
  • a compound generally called a photoacid generator can be used.
  • Specific examples of the component (E) include o-quinonediazide compounds, aryldiazonium salts, diaryliodonium salts, triarylsulfonium salts, and the like.
  • a component may consist only of 1 type in these compounds, and may be comprised including 2 or more types. Of these, o-quinonediazide compounds are preferred because of their high sensitivity.
  • o-quinonediazide compound for example, a compound obtained by subjecting o-quinonediazidesulfonyl chloride and a hydroxy compound or an amino compound to a condensation reaction in the presence of a dehydrochlorinating agent can be used.
  • the o-quinonediazide compound includes 1,1-bis (4-hydroxyphenyl) -1- [4- ⁇ 1- (4-hydroxyphenyl) -1-methylethyl ⁇ phenyl] ethane and 1-naphthoquinone-2-diazide- It is preferable to use a condensate with 5-sulfonyl chloride, a condensate of tris (4-hydroxyphenyl) methane or tris (4-hydroxyphenyl) ethane with 1-naphthoquinone-2-diazide-5-sulfonyl chloride.
  • the content of the component (E) is 5 to 25 parts by mass with respect to 100 parts by mass of the component (A) from the viewpoint that the difference in dissolution rate between the exposed part and the unexposed part becomes larger and the sensitivity becomes better. It is preferably 6 to 20 parts by mass, more preferably 7 to 18 parts by mass.
  • the positive photosensitive resin composition of the present embodiment includes a solvent, a compound that generates an acid upon heating, a dissolution accelerator, a dissolution inhibitor, a coupling agent, and a surfactant. And may contain components such as a leveling agent.
  • solvent By using a solvent, coating on a substrate can be facilitated and a coating film having a uniform thickness can be formed.
  • the solvent include ⁇ -butyrolactone, ethyl lactate, propylene glycol monomethyl ether acetate, benzyl acetate, n-butyl acetate, ethoxyethyl propionate, 3-methylmethoxypropionate, N-methyl-2-pyrrolidone, N , N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphorylamide, tetramethylene sulfone, diethyl ketone, diisobutyl ketone, methyl amyl ketone, cyclohexanone, propylene glycol monomethyl ether, propylene glycol monopropyl ether, propylene glycol Examples thereof include monobutyl ether and dipropylene glycol monomethyl ether.
  • Examples of the compound that generates an acid by such heating include those that generate an acid by heating to 50 to 250 ° C., for example.
  • Specific examples of the compound that generates an acid by heating include a salt formed from a strong acid such as an onium salt and a base, imide sulfonate, and the like.
  • Dissolution promoter By using a dissolution accelerator, it is possible to increase the dissolution rate of the exposed area when developing with an alkaline aqueous solution, and to improve sensitivity and resolution.
  • a conventionally well-known thing can be used as a dissolution promoter. Specific examples thereof include compounds having a carboxyl group, a sulfonic acid, and a sulfonamide group.
  • the dissolution accelerator may be a phenolic low molecular compound represented by any one of the following general formulas (41) to (43).
  • R 41 represents a hydrogen atom or a methyl group.
  • a1 to f1 represent integers of 0 to 3, the sum of d1 to f1 is 1 or more, the sum of a1 and d1 is 5 or less, the sum of b1 and e1 is 5 or less, and the sum of c1 and f1 Is 5 or less.
  • R42 represents a hydrogen atom or a methyl group.
  • a2 to c2 represent integers of 0 to 3
  • d2 to f2 represent integers of 1 to 3
  • the sum of a2 and d2 is 5 or less
  • the sum of b2 and e2 is 5 or less
  • c2 and f2 The total is 5 or less.
  • a3, c3, h and i represent integers of 0 to 3
  • d3 and f3 represent integers of 1 to 3
  • the sum of a3 and d3 is 5 or less.
  • the sum is 5 or less
  • the sum of h and i is 4 or less.
  • the dissolution inhibitor is a compound that inhibits the dissolution of the component (A) in an alkaline aqueous solution, and is used to control the remaining film thickness, development time, and contrast.
  • the dissolution inhibitor include diphenyliodonium nitrate, bis (p-tert-butylphenyl) iodonium nitrate, diphenyliodonium bromide, diphenyliodonium chloride, diphenyliodonium iodide, and the like.
  • the adhesiveness between the pattern cured film to be formed and the substrate can be further enhanced.
  • the coupling agent include organic silane compounds and aluminum chelate compounds.
  • surfactant leveling agent
  • a surfactant or a leveling agent By using a surfactant or a leveling agent, applicability can be further improved. Specifically, for example, by containing a surfactant or a leveling agent, striation (film thickness unevenness) can be further prevented, and developability can be further improved.
  • the surfactant or leveling agent include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, and the like.
  • the content when other components are used may be 0.01 to 20 parts by mass with respect to 100 parts by mass of component (A).
  • the positive photosensitive resin composition of the present embodiment it is possible to form a cured pattern film having low residual stress, excellent chemical resistance, and excellent adhesion to the substrate.
  • the thermal crosslinking agent for positive photosensitive resin of one embodiment includes the above-described component (B) (the compound represented by the general formula (1) or the compound represented by the general formula (2)) and the component (C) ( A compound having two or more epoxy groups). According to such a thermal crosslinking agent for a positive photosensitive resin, a positive photosensitive resin composition capable of forming a pattern cured film having low residual stress, excellent chemical resistance, and excellent adhesion to a substrate. Can be easily prepared.
  • the pattern cured film of one embodiment has a pattern, and the pattern includes a cured product of a resin film made of the above-described positive photosensitive resin composition.
  • the pattern cured film can be obtained by heating the positive photosensitive resin composition described above.
  • the manufacturing method of a pattern cured film is demonstrated.
  • the pattern cured film manufacturing method of the present embodiment includes a step of applying and drying the positive photosensitive resin composition described above on a part or all of a substrate to form a resin film (application / drying (film formation) step); , A step of exposing part or all of the resin film (exposure step), a step of developing the exposed resin film with an alkaline aqueous solution to form a pattern resin film (development step), and a step of heating the pattern resin film (Heat treatment process).
  • exposure step A step of exposing part or all of the resin film
  • development step a step of developing the exposed resin film with an alkaline aqueous solution to form a pattern resin film
  • Heat treatment process a step of heating the pattern resin film
  • the positive photosensitive resin composition of this embodiment is applied onto a substrate and dried to form a resin film.
  • the positive photosensitive resin composition of the present embodiment is used on a glass substrate, a semiconductor, a metal oxide insulator (for example, TiO 2 , SiO 2, etc.), silicon nitride, or the like using a spinner or the like. And spin coat to form a coating film.
  • the thickness of the coating film is not particularly limited, but is preferably 0.1 to 40 ⁇ m.
  • the substrate on which this coating film has been formed is dried using a hot plate, oven, or the like. There is no particular limitation on the drying temperature and drying time, but it is preferably performed at 80 to 140 ° C. for 1 to 7 minutes. Thereby, a resin film is formed on the support substrate.
  • the thickness of the resin film is not particularly limited, but is preferably 0.1 to 40 ⁇ m.
  • the resin film formed on the substrate is irradiated with actinic rays such as ultraviolet rays, visible rays, and radiations through a mask.
  • actinic rays such as ultraviolet rays, visible rays, and radiations through a mask.
  • the component (A) since the component (A) has high transparency to i-line, i-line irradiation can be suitably used.
  • post-exposure heating (PEB) can also be performed after exposure from a viewpoint of improving a dissolution rate as needed.
  • the temperature is preferably 70 to 140 ° C.
  • the post-exposure heating time is preferably 1 to 5 minutes.
  • the exposed portion of the resin film after the exposure step is removed with a developer, whereby the resin film is patterned and a patterned resin film is obtained.
  • a developer for example, an alkaline aqueous solution such as sodium carbonate, sodium hydroxide, potassium hydroxide, sodium silicate, ammonia, ethylamine, diethylamine, triethylamine, triethanolamine, tetramethylammonium hydroxide (TMAH) is preferably used. It is done.
  • the base concentration of these aqueous solutions is preferably 0.1 to 10% by mass.
  • an alcohol or a surfactant can be added to the developer.
  • Each of these can be blended in an amount of preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the developer.
  • the developer is placed on the resin film by a method such as shower development, spray development, immersion development, paddle development, and the like, and the conditions are 18 to 40 ° C., and 30 to 360. Leave for seconds. After leaving, the pattern resin film is washed by washing with water and spin drying.
  • the pattern cured film can be formed by heat treating the pattern resin film.
  • the heating temperature in the heat treatment step is preferably 250 ° C. or less and more preferably 230 ° C. or less from the viewpoint of sufficiently preventing damage to the semiconductor device due to heat.
  • the heat treatment can be performed, for example, using an oven such as a quartz tube furnace, a hot plate, rapid thermal annealing, a vertical diffusion furnace, an infrared curing furnace, an electron beam curing furnace, a microwave curing furnace.
  • an oven such as a quartz tube furnace, a hot plate, rapid thermal annealing, a vertical diffusion furnace, an infrared curing furnace, an electron beam curing furnace, a microwave curing furnace.
  • air or an inert atmosphere such as nitrogen can be selected.
  • it is preferable to perform the process under nitrogen because the oxidation of the pattern can be prevented.
  • the above-mentioned preferable heating temperature range is lower than the conventional heating temperature, damage to the support substrate and the semiconductor device can be reduced. Therefore, electronic devices can be manufactured with a high yield by using the resist pattern manufacturing method of the present embodiment. It also leads to energy savings in the process.
  • the volumetric shrinkage (curing shrinkage) in the heat treatment step found in photosensitive polyimide or the like is small
  • the heat treatment time in the heat treatment step may be a time sufficient for the positive photosensitive resin composition to cure, but is preferably 5 hours or less in view of work efficiency.
  • the heat treatment can also be performed using a microwave curing device or a variable frequency microwave curing device in addition to the above-described oven.
  • a microwave curing device or a variable frequency microwave curing device in addition to the above-described oven.
  • a cured pattern film having sufficiently high sensitivity and resolution, and excellent adhesion and thermal shock properties can be obtained.
  • the pattern cured film of this embodiment can be used as an interlayer insulating layer or a surface protective layer of a semiconductor element.
  • the semiconductor element of one embodiment includes the interlayer insulating layer or the surface protective layer of this embodiment.
  • the semiconductor element of the present embodiment is not particularly limited, but means a memory, a package, or the like having a multilayer wiring structure, a rewiring structure, or the like.
  • 1 to 5 are a schematic perspective view and a schematic end view showing an embodiment of a manufacturing process of a semiconductor device having a multilayer wiring structure. 1 to 5, (a) is a schematic perspective view, and (b) is a schematic end view showing Ib-Ib to Vb-Vb end surfaces in (a), respectively.
  • the structure 100 shown in FIG. 1 includes a semiconductor substrate 1 such as a Si substrate having circuit elements, a protective film 2 such as a silicon oxide film covering the semiconductor substrate 1 and having a predetermined pattern from which the circuit elements are exposed, and exposed circuit elements.
  • a first conductor layer 3 formed thereon, and an interlayer insulating layer 4 made of polyimide resin or the like formed on the protective film 2 and the first conductor layer 3 by a spin coat method or the like are provided.
  • the photosensitive resin layer 5 is formed, for example, by applying a photosensitive resin such as chlorinated rubber, phenol novolac, polyhydroxystyrene, or polyacrylate ester by a spin coating method.
  • the window 6A is formed so that a predetermined portion of the interlayer insulating layer 4 is exposed by a known photolithography technique.
  • the photosensitive resin layer 5 is removed to obtain the structure 300 shown in FIG.
  • dry etching means using a gas such as oxygen or carbon tetrafluoride can be used.
  • the portion of the interlayer insulating layer 4 corresponding to the window portion 6A is selectively removed, and the interlayer insulating layer 4 provided with the window portion 6B so that the first conductor layer 3 is exposed is obtained.
  • the photosensitive resin layer 5 is removed using an etching solution that corrodes only the photosensitive resin layer 5 without corroding the first conductor layer 3 exposed from the window 6B.
  • the second conductor layer 7 is formed in a portion corresponding to the window portion 6B, and the structure 400 shown in FIG. 4 is obtained.
  • a known photolithography technique can be used to form the second conductor layer 7. As a result, the second conductor layer 7 and the first conductor layer 3 are electrically connected.
  • the surface protective layer 8 is formed on the interlayer insulating layer 4 and the second conductor layer 7 to obtain the semiconductor element 500 shown in FIG.
  • the surface protective layer 8 is formed as follows. First, the photosensitive resin composition described above is applied onto the interlayer insulating layer 4 and the second conductor layer 7 by spin coating, and dried to form a photosensitive resin film. Next, after irradiating light through a mask on which a pattern corresponding to the window portion 6C is drawn at a predetermined portion, the exposed resin film is developed with an alkaline aqueous solution to form a patterned resin film. Thereafter, the pattern resin film used as the surface protective layer 8 is formed by curing the pattern resin film by heating. The surface protective layer 8 protects the first conductor layer 3 and the second conductor layer 7 from external stress, ⁇ rays, and the like, and the semiconductor element 500 using the surface protective layer 8 of the present embodiment is reliable. Excellent in properties.
  • a method for manufacturing a semiconductor device having a two-layer wiring structure has been described.
  • the above steps are repeated to form each layer.
  • the surface protective layer 8 not only the surface protective layer 8 but also the interlayer insulating layer 4 can be formed using the photosensitive resin composition of the present embodiment.
  • the electronic device of the present embodiment is not limited to one having a surface protective layer, a cover coat layer, or an interlayer insulating layer formed using the positive photosensitive resin composition described above, and can have various structures.
  • FIGS. 6 and 7 are schematic cross-sectional views showing an embodiment of a semiconductor device having a rewiring structure. Since the photosensitive resin composition of this embodiment is excellent in stress relaxation property, adhesiveness, and the like, it can be used in a semiconductor element having a rewiring structure as shown in FIGS.
  • FIG. 6 is a schematic cross-sectional view showing a wiring structure as one embodiment of a semiconductor element.
  • a semiconductor element 600 shown in FIG. 6 includes a silicon substrate 23, an interlayer insulating layer 11 provided on one side of the silicon substrate 23, and an Al having a pattern including a pad portion 15 formed on the interlayer insulating layer 11.
  • the island-shaped core 18 disposed in the vicinity of the opening on the protective layer 14 and the pad portion 15 in the opening of the insulating layer 13 and the surface protective layer 14, and on the surface opposite to the surface protective layer 14 of the core 18.
  • a rewiring layer 16 extending on the surface protective layer 14 so as to be in contact therewith.
  • the semiconductor element 600 is formed so as to cover the surface protective layer 14, the core 18, and the rewiring layer 16, and a cover coat layer 19 in which an opening is formed in a portion of the rewiring layer 16 on the core 18.
  • the conductive ball 17 connected to the rewiring layer 16 with the barrier metal 20 interposed therebetween in the opening of the layer 19, the collar 21 that holds the conductive ball, and the cover coat layer 19 around the conductive ball 17 are provided.
  • the underfill 22 is provided.
  • the conductive ball 17 is used as an external connection terminal and is formed of solder, gold or the like.
  • the underfill 22 is provided to relieve stress when the semiconductor element 600 is mounted.
  • an Al wiring layer (not shown) and an Al wiring layer pad portion 15 are formed on a silicon substrate 23, and an insulating layer 13 is formed on the Al wiring layer.
  • a surface protective layer 14 is formed.
  • a rewiring layer 16 is formed on the pad portion 15, and the rewiring layer 16 extends to an upper portion of the connection portion 24 with the conductive ball 17. Further, a cover coat layer 19 is formed on the surface protective layer 14. The rewiring layer 16 is connected to the conductive ball 17 through the barrier metal 20.
  • the photosensitive resin composition is a material for forming not only the interlayer insulating layer 11 and the surface protective layer 14, but also the cover coat layer 19, the core 18, the collar 21, the underfill 22, and the like.
  • the pattern cured film using the photosensitive resin composition of the present embodiment is excellent in adhesion with a metal layer such as the Al wiring layer 12 or the rewiring layer 16 or a sealing agent, and has a high stress relaxation effect,
  • a semiconductor element in which a pattern cured film is used for an interlayer insulating layer 11, a surface protective layer 14, a cover coat layer 19, a core 18, a collar 21 such as solder, an underfill 22 used in a flip chip or the like is extremely excellent in reliability. It will be a thing.
  • the photosensitive resin composition of the present embodiment is preferably used for the interlayer insulating layer 11, the surface protective layer 14 or the cover coat layer 19 of the semiconductor element having the rewiring layer 16 in FIGS.
  • the film thickness of the interlayer insulating layer 11, the surface protective layer 14 and the cover coat layer 19 is preferably 3 to 20 ⁇ m, and more preferably 5 to 15 ⁇ m.
  • the electronic device of one embodiment has the semiconductor element of this embodiment.
  • the electronic device includes the above-described semiconductor element, and examples thereof include a mobile phone, a smartphone, a tablet terminal, a personal computer, and a hard disk suspension.
  • the weight average molecular weight was calculated
  • the weight average molecular weight was measured with the following apparatus and conditions.
  • measuring device Detector: L4000UV manufactured by Hitachi, Ltd. Pump: Hitachi Ltd. L6000 Column: Gelpack GL-S300MDT-5 ⁇ 2
  • C1 Trifunctional epoxy compound (a compound in which R 13 to R 15 in the general formula (3) are all methylene groups, manufactured by Nissan Chemical Industries, Ltd., trade name “TEPIC-L”, molecular weight: 297.3)
  • C2 Trifunctional epoxy compound (a compound in which R 13 to R 15 in the general formula (3) are all n-propylene groups, manufactured by Nissan Chemical Industries, Ltd., trade name “TEPIC-VL”, molecular weight: 381.4)
  • C3 Trifunctional epoxy compound (a compound in which R 13 to R 15 in the general formula (3) are all n-hexylene groups, manufactured by Nissan Chemical Industries, Ltd., trade name “TEPIC-FL”, molecular weight: 507.7)
  • C4 Trifunctional epoxy compound (compound represented by the following formula (X), manufactured by Printec Co., Ltd., trade name “TECHMORE VG3101L”, molecular weight: 592.7)
  • C5 Bifunctional epoxy compound (polyethylene glycol # 400 diglycidyl ether, manufactured by Ky
  • [(D) component] D1 55 g of ethyl lactate was weighed into a 100 ml three-necked flask equipped with a stirrer, a nitrogen introducing tube and a thermometer, and separately weighed polymerizable monomer (n-butyl acrylate (BA) 34.7 g) Lauryl acrylate (LA) 2.2 g, acrylic acid (AA) 3.9 g, hydroxybutyl acrylate (HBA) 2.6 g, and 1,2,2,6,6-pentamethylpiperidin-4-yl methacrylate ( Product name: FA-711MM (manufactured by Hitachi Chemical Co., Ltd.) (1.7 g) and azobisisobutyronitrile (AIBN) (0.29 g) were added, and nitrogen gas was stirred while stirring at room temperature with a stirring speed of about 160 rpm.
  • PE-711MM manufactured by Hitachi Chemical Co., Ltd.
  • AIBN azobisisobutyronitrile
  • weight average molecular weight of (D) component was calculated
  • E1 Compound represented by the following formula (Y) (manufactured by Daitokemix Co., Ltd., trade name “PA-28”)
  • Examples 1 to 9 and Comparative Examples 1 to 3 Ingredients (A) to (C) of the blending amounts (parts by mass) shown in Table 1 and 120 parts by mass of ethyl lactate as a solvent were blended, and this was subjected to pressure filtration using a Teflon (registered trademark) filter having 3 ⁇ m pores.
  • Teflon registered trademark
  • Al adhesion strength Spin the positive photosensitive resin compositions of Examples 1 to 9 and Comparative Examples 1 to 3 on a 6-inch aluminum substrate (a substrate on which Ti is sputter-formed on a silicon substrate and then aluminum is sputter-formed on the Ti substrate).
  • the coated film was heated at 120 ° C. for 3 minutes to form a resin film having a film thickness of 11 to 13 ⁇ m. Thereafter, heat treatment (curing) was performed by the above method (i) to obtain a cured film having a thickness of about 10 ⁇ m.
  • the cured film was cut into small pieces (1 cm ⁇ 1 cm) together with the substrate, and the aluminum stud and the cured film were bonded via an epoxy resin layer. Next, the stud was pulled and the load at the time of peeling was measured.
  • the adhesion strength means that the larger the value (39.2 MPa (400 kgf / cm 2 ) or more)), the better. The results are shown in Table 1.
  • the positive photosensitive resin composition containing the component (B) and the component (C) is compared with the positive photosensitive resin composition not containing the component (B) and the component (C), In the obtained cured film, the residual stress was reduced, and the chemical solution resistance and the adhesion to the substrate were also excellent.
  • Examples 10 and 11 and Comparative Examples 4 to 6 Ingredients (A) to (E) in the blending amounts (parts by mass) shown in Table 2 and 120 parts by mass of ethyl lactate as a solvent were blended, and this was pressure filtered using a 3 ⁇ m pore Teflon (registered trademark) filter.
  • the positive photosensitive resin compositions of Examples 10 and 11 and Comparative Examples 4 to 6 were prepared.
  • the pattern resin film was heat-treated (cured) by the following method (i) to obtain a pattern cured film having a thickness of about 10 ⁇ m.
  • a vertical diffusion furnace (trade name “ ⁇ -TF” manufactured by Koyo Thermo Systems Co., Ltd.), heat treatment is performed on the patterned resin film in nitrogen at a temperature of 230 ° C. (temperature increase time: 1.5 hours) for 2 hours. did.
  • breaking strength after hardening, elongation after hardening The breaking strength and breaking elongation of the obtained pattern cured film were measured using an autograph AGS-H100N (manufactured by Shimadzu Corporation). The sample width was 10 mm, the film thickness was 9 to 11 ⁇ m, and the gap between chucks was 20 mm. The pulling speed was 5 mm / min, and the measurement temperature was 20 ° C. to 25 ° C. The average of the measured values of five or more test pieces obtained from the cured pattern film obtained under the same conditions was defined as “breaking strength” and “breaking elongation”.
  • a breaking strength means that it is so favorable that a numerical value is large (100 Mpa or more). Breaking elongation means that it is so favorable that a numerical value is large (30% or more). The results are shown in Table 2.
  • CTE The average thermal expansion coefficient (CTE) at 50 to 150 ° C. of the cured film obtained by the same method as the above (preparation of patterned cured film) was measured using TMA / SS600 (manufactured by Seiko Instruments Inc.). The sample used for measurement was adjusted to have a width of 2 mm, a film thickness of about 10 ⁇ m, and a gap between chucks of 10 mm. The measurement conditions were a load of 10 g and a temperature increase rate of 5 ° C./min. CTE means that it is so favorable that a numerical value is low (70 ppm / K or less). The results are shown in Table 2.
  • the positive photosensitive resin composition containing the component (B) and the component (C) and further containing the component (D) and the component (E) is composed of the component (B) and the component (C).
  • a positive photosensitive resin composition containing no curable resin residual stress was reduced in the resulting cured film, and the chemical resistance and adhesion to the substrate were excellent.
  • the pattern cured film obtained is excellent also in breaking strength, breaking elongation, and a thermal expansion coefficient.
  • the positive photosensitive resin composition of the present invention can form a cured film having low residual stress, excellent chemical resistance, and excellent adhesion to the substrate.
  • SYMBOLS 1 Semiconductor substrate, 2 ... Protective film, 3 ... 1st conductor layer, 4 ... Interlayer insulation layer, 5 ... Photosensitive resin layer, 6A, 6B, 6C ... Window part, 7 ... 2nd conductor layer, 8 ... Surface protection 11 ... Interlayer insulating layer, 12 ... Al wiring layer, 13 ... Insulating layer, 14 ... Surface protective layer, 15 ... Pad part, 16 ... Re-wiring layer, 17 ... Conductive ball, 18 ... Core, 19 ... Cover coat Layer, 20 ... barrier metal, 21 ... color, 22 ... underfill, 23 ... silicon substrate, 24 ... connecting portion, 100, 200, 300,400 ... structure, 500,600,700 ... semiconductor element.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

Disclosed is a positive-type photosensitive resin composition containing (A) an alkali-soluble resin, (B) a compound represented by general formula (1) or a compound represented by general formula (2), and (C) a compound having at least two epoxy groups. [In general formula (1), R1 to R6 independently represent an alkyl group having 1 to 10 carbon atoms.] [In general formula (2), R7 to R12 independently represent an alkyl group having 1 to 10 carbon atoms.]

Description

ポジ型感光性樹脂組成物、ポジ型感光性樹脂用熱架橋剤、パターン硬化膜及びその製造方法、半導体素子、並びに電子デバイスPositive photosensitive resin composition, thermal crosslinking agent for positive photosensitive resin, patterned cured film and method for producing the same, semiconductor element, and electronic device
 本発明は、ポジ型感光性樹脂組成物、ポジ型感光性樹脂用熱架橋剤、パターン硬化膜及びその製造方法、半導体素子、並びに電子デバイスに関する。 The present invention relates to a positive photosensitive resin composition, a thermal crosslinking agent for positive photosensitive resin, a pattern cured film and a method for producing the same, a semiconductor element, and an electronic device.
 近年、半導体素子の高集積化、小型化に伴い、半導体素子の層間絶縁層、表面保護層等の絶縁層は、より優れた耐熱性(熱膨張係数等)、機械特性(破断強度、破断伸び等)等を有することが求められている。このような特性を併せ持つ絶縁層を形成するための材料として、アルカリ可溶性樹脂を含有するポジ型感光性樹脂組成物が開発されている(例えば、特許文献1、2及び3参照)。これらのポジ型感光性樹脂組成物を基板上に塗布及び乾燥して樹脂膜を形成し、該樹脂膜を露光及び現像することでパターン樹脂膜(パターン形成された樹脂膜)が得られる。そして、上記パターン樹脂膜を加熱硬化することでパターン硬化膜(パターン形成された硬化膜)を形成でき、該パターン硬化膜は絶縁層として用いることができる。しかも、これらの感光性樹脂組成物はパターン硬化膜を形成する工程において、低温での加熱硬化が可能であるという利点がある。 In recent years, as semiconductor elements have been highly integrated and miniaturized, insulating layers such as interlayer insulating layers and surface protective layers of semiconductor elements have better heat resistance (thermal expansion coefficient, etc.) and mechanical properties (breaking strength, breaking elongation). Etc.). A positive photosensitive resin composition containing an alkali-soluble resin has been developed as a material for forming an insulating layer having such characteristics (see, for example, Patent Documents 1, 2, and 3). These positive photosensitive resin compositions are applied onto a substrate and dried to form a resin film, and the resin film is exposed and developed to obtain a patterned resin film (patterned resin film). A patterned cured film (patterned cured film) can be formed by heat curing the patterned resin film, and the patterned cured film can be used as an insulating layer. In addition, these photosensitive resin compositions have an advantage that they can be cured by heating at a low temperature in the step of forming the pattern cured film.
特開2008-309885号公報JP 2008-309885 A 特開2007-057595号公報JP 2007-057595 A 国際公開第2010/073948号International Publication No. 2010/073948
 ところで、半導体素子は、ウエハが小型化され、また絶縁層が多層化されるにつれて、絶縁層に用いられるパターン硬化膜の残留応力に起因するパッケージの反りが問題となっている。そのため、使用する材料には、形成されるパターン硬化膜の残留応力を低減することが求められている。 By the way, in the semiconductor element, as the wafer is downsized and the insulating layer is multilayered, the warpage of the package due to the residual stress of the pattern cured film used for the insulating layer becomes a problem. Therefore, the material used is required to reduce the residual stress of the formed pattern cured film.
 一般に、硬化膜の残留応力を低減するためには、硬化膜の架橋密度を低くすることが効果的であると考えられている。しかし、架橋密度を低くすると、膜強度も同時に低下する傾向にあり、パターン硬化膜の薬液耐性が低下してしまう傾向にある。 Generally, in order to reduce the residual stress of a cured film, it is considered effective to reduce the crosslinking density of the cured film. However, when the crosslinking density is lowered, the film strength tends to decrease at the same time, and the chemical resistance of the pattern cured film tends to decrease.
 本発明は、このような事情に鑑みてなされたものであり、残留応力が低く、薬液耐性に優れ、かつ基板との密着性に優れる硬化膜を形成することが可能なポジ型感光性樹脂組成物を提供することを主な目的とする。 The present invention has been made in view of such circumstances, and is a positive photosensitive resin composition capable of forming a cured film having low residual stress, excellent chemical resistance, and excellent adhesion to a substrate. The main purpose is to provide goods.
 上記目的を達成するために鋭意検討した結果、本発明者らは、ポジ型感光性樹脂組成物において、特定の化合物を組み合わせることによって、残留応力が低く、薬液耐性に優れる硬化膜を形成できることを見出した。さらに、得られる硬化膜が、基板との密着性に優れることを見出し、本発明を完成するに至った。 As a result of diligent studies to achieve the above object, the present inventors have found that, in combination with a specific compound in the positive photosensitive resin composition, a cured film having low residual stress and excellent chemical resistance can be formed. I found it. Furthermore, the obtained cured film was found to have excellent adhesion to the substrate, and the present invention was completed.
 本発明の一側面は、(A)アルカリ可溶性樹脂と、(B)下記一般式(1)で表される化合物又は下記一般式(2)で表される化合物と、(C)2つ以上のエポキシ基を有する化合物と、を含有する、ポジ型感光性樹脂組成物を提供する。このようなポジ型感光性樹脂組成物によれば、残留応力が低く、薬液耐性に優れ、かつ基板との密着性に優れるパターン硬化膜を形成することが可能となる。 One aspect of the present invention includes (A) an alkali-soluble resin, (B) a compound represented by the following general formula (1) or a compound represented by the following general formula (2), and (C) two or more Provided is a positive photosensitive resin composition containing an epoxy group-containing compound. According to such a positive photosensitive resin composition, it is possible to form a patterned cured film having low residual stress, excellent chemical resistance, and excellent adhesion to the substrate.
Figure JPOXMLDOC01-appb-C000006
[一般式(1)中、R~Rは、それぞれ独立に炭素数1~10のアルキル基を示す。]
Figure JPOXMLDOC01-appb-C000006
[In the general formula (1), R 1 to R 6 each independently represents an alkyl group having 1 to 10 carbon atoms. ]
Figure JPOXMLDOC01-appb-C000007
[一般式(2)中、R~R12は、それぞれ独立に炭素数1~10のアルキル基を示す。]
Figure JPOXMLDOC01-appb-C000007
[In the general formula (2), R 7 to R 12 each independently represents an alkyl group having 1 to 10 carbon atoms. ]
 (B)成分に対する(C)成分のモル比率は、1.0以下であってもよい。モル比率がこのような範囲にあると、薬液耐性及び破断強度がより優れる傾向にある。 The molar ratio of the component (C) to the component (B) may be 1.0 or less. When the molar ratio is in such a range, chemical resistance and breaking strength tend to be more excellent.
 (C)成分は、芳香環又は複素環を有する化合物であってもよい。また、(C)成分は、下記一般式(3)で表される化合物であってもよい。(C)成分がこのような化合物であると、形成されるパターン硬化膜の薬液耐性がより優れる傾向にある。 The component (C) may be a compound having an aromatic ring or a heterocyclic ring. Further, the component (C) may be a compound represented by the following general formula (3). When the component (C) is such a compound, the chemical resistance of the formed pattern cured film tends to be more excellent.
Figure JPOXMLDOC01-appb-C000008
[一般式(3)中、R13~R15は、それぞれ独立に炭素数1~10のアルキレン基を示す。]
Figure JPOXMLDOC01-appb-C000008
[In the general formula (3), R 13 to R 15 each independently represents an alkylene group having 1 to 10 carbon atoms. ]
 ポジ型感光性樹脂組成物は、(D)エラストマをさらに含有していてもよい。また、ポジ型感光性樹脂組成物は、(E)光により酸を生成する化合物をさらに含有していてもよい。これらの成分を用いることによって、形成されるパターン硬化膜の耐熱性(熱膨張係数)及び機械特性(破断強度及び破断伸び)が優れる傾向にある。 The positive photosensitive resin composition may further contain (D) an elastomer. The positive photosensitive resin composition may further contain (E) a compound that generates an acid by light. By using these components, the heat resistance (coefficient of thermal expansion) and mechanical properties (breaking strength and breaking elongation) of the formed pattern cured film tend to be excellent.
 別の側面において、下記一般式(1)で表される化合物若しくは下記一般式(2)で表される化合物、及び2つ以上のエポキシ基を有する化合物からなるポジ型感光性樹脂用熱架橋剤を提供する。このようなポジ型感光性樹脂用熱架橋剤を用いると、残留応力が低く、薬液耐性に優れ、かつ基板との密着性に優れるパターン硬化膜を形成することが可能なポジ型感光性樹脂組成物を容易に調製することができる。 In another aspect, a thermal crosslinking agent for a positive photosensitive resin comprising a compound represented by the following general formula (1) or a compound represented by the following general formula (2), and a compound having two or more epoxy groups I will provide a. Using such a thermal crosslinking agent for a positive photosensitive resin, a positive photosensitive resin composition capable of forming a cured pattern film having low residual stress, excellent chemical resistance, and excellent adhesion to a substrate Can be easily prepared.
Figure JPOXMLDOC01-appb-C000009
[一般式(1)中、R~Rは、それぞれ独立に炭素数1~10のアルキル基を示す。]
Figure JPOXMLDOC01-appb-C000009
[In the general formula (1), R 1 to R 6 each independently represents an alkyl group having 1 to 10 carbon atoms. ]
Figure JPOXMLDOC01-appb-C000010
[一般式(2)中、R~R12は、それぞれ独立に炭素数1~10のアルキル基を示す。]
Figure JPOXMLDOC01-appb-C000010
[In the general formula (2), R 7 to R 12 each independently represents an alkyl group having 1 to 10 carbon atoms. ]
 別の側面において、パターンを有し、パターンが上記のポジ型感光性樹脂組成物からなる樹脂膜の硬化物を含む、パターン硬化膜を提供する。 In another aspect, there is provided a pattern cured film having a pattern, wherein the pattern includes a cured product of a resin film made of the positive photosensitive resin composition described above.
 別の側面において、上記のポジ型感光性樹脂組成物を基板の一部又は全部に塗布及び乾燥して樹脂膜を形成する工程と、樹脂膜の一部又は全部を露光する工程と、露光後の樹脂膜をアルカリ水溶液によって現像してパターン樹脂膜を形成する工程と、パターン樹脂膜を加熱する工程と、を備える、パターン硬化膜の製造方法を提供する。 In another aspect, a step of applying and drying the positive photosensitive resin composition to a part or the whole of the substrate to form a resin film, a step of exposing a part or the whole of the resin film, and a step after the exposure A method for producing a cured pattern film comprising: a step of developing the resin film with an alkaline aqueous solution to form a pattern resin film; and a step of heating the pattern resin film.
 別の側面において、上記のパターン硬化膜を層間絶縁層又は表面保護層として備える、半導体素子を提供する。 In another aspect, there is provided a semiconductor device comprising the above-described pattern cured film as an interlayer insulating layer or a surface protective layer.
 別の側面において、上記の半導体素子を備える、電子デバイスを提供する。 In another aspect, an electronic device comprising the above semiconductor element is provided.
 本発明によれば、残留応力が低く、薬液耐性に優れ、かつ基板との密着性に優れる硬化膜を形成することが可能なポジ型感光性樹脂組成物を提供することができる。また、このようなポジ型感光性樹脂組成物を容易に調製可能なポジ型感光性樹脂用熱架橋剤を提供することができる。さらに、このようなポジ型感光性樹脂組成物を用いたパターン硬化膜及びその製造方法、半導体素子、並びに電子デバイスを提供することができる。 According to the present invention, it is possible to provide a positive photosensitive resin composition capable of forming a cured film having low residual stress, excellent chemical resistance, and excellent adhesion to a substrate. Moreover, the thermal crosslinking agent for positive photosensitive resins which can prepare such a positive photosensitive resin composition easily can be provided. Furthermore, the pattern cured film using such a positive photosensitive resin composition, its manufacturing method, a semiconductor element, and an electronic device can be provided.
半導体素子の製造工程の一実施形態を説明する概略斜視図及び概略端面図である。It is the schematic perspective view and schematic end view explaining one Embodiment of the manufacturing process of a semiconductor element. 半導体素子の製造工程の一実施形態を説明する概略斜視図及び概略端面図である。It is the schematic perspective view and schematic end view explaining one Embodiment of the manufacturing process of a semiconductor element. 半導体素子の製造工程の一実施形態を説明する概略斜視図及び概略端面図である。It is the schematic perspective view and schematic end view explaining one Embodiment of the manufacturing process of a semiconductor element. 半導体素子の製造工程の一実施形態を説明する概略斜視図及び概略端面図である。It is the schematic perspective view and schematic end view explaining one Embodiment of the manufacturing process of a semiconductor element. 半導体素子の製造工程の一実施形態を説明する概略斜視図及び概略端面図である。It is the schematic perspective view and schematic end view explaining one Embodiment of the manufacturing process of a semiconductor element. 半導体素子の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of a semiconductor element. 半導体素子の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of a semiconductor element.
 以下、本発明の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
 本明細書における「(メタ)アクリル酸」とは、「アクリル酸」又は「メタクリル酸」を意味し、(メタ)アクリレート等の他の類似の表現においても同様である。 In the present specification, “(meth) acrylic acid” means “acrylic acid” or “methacrylic acid”, and the same applies to other similar expressions such as (meth) acrylate.
[ポジ型感光性樹脂組成物]
 一実施形態のポジ型感光性樹脂組成物は、(A)アルカリ可溶性樹脂と、(B)一般式(1)で表される化合物又は一般式(2)で表される化合物と、(C)2つ以上のエポキシ基を有する化合物と、を含有する。
[Positive photosensitive resin composition]
The positive photosensitive resin composition of one embodiment includes (A) an alkali-soluble resin, (B) a compound represented by the general formula (1) or a compound represented by the general formula (2), and (C) And a compound having two or more epoxy groups.
<(A)成分>
 (A)成分は、アルカリ水溶液(現像液)に対して可溶な樹脂である。なお、アルカリ水溶液とは、テトラメチルアンモニウムヒドロキシド(TMAH)水溶液、金属水酸化物水溶液、有機アミン水溶液等のアルカリ性の溶液である。一般には、濃度が2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液が現像に用いられる。
<(A) component>
The component (A) is a resin that is soluble in an alkaline aqueous solution (developer). The alkaline aqueous solution is an alkaline solution such as a tetramethylammonium hydroxide (TMAH) aqueous solution, a metal hydroxide aqueous solution, or an organic amine aqueous solution. In general, an aqueous tetramethylammonium hydroxide solution having a concentration of 2.38% by mass is used for development.
 (A)成分がアルカリ現像液で可溶であることは、例えば、以下のようにして確認することができる。 It can be confirmed, for example, as follows that the component (A) is soluble in an alkali developer.
 (A)成分を任意の溶剤に溶解して得られたワニスを、シリコンウェハ等の基板上にスピン塗布して形成することにより膜厚5μm程度の塗膜とする。これをTMAH水溶液、金属水酸化物水溶液又は有機アミン水溶液のいずれかに20~25℃において、浸漬する。この結果、塗膜が均一に溶解し得るとき、その(A)成分はアルカリ性現像液で可溶と見なすことができる。 A varnish obtained by dissolving the component (A) in an arbitrary solvent is spin-coated on a substrate such as a silicon wafer to form a coating film having a thickness of about 5 μm. This is immersed in either a TMAH aqueous solution, a metal hydroxide aqueous solution or an organic amine aqueous solution at 20 to 25 ° C. As a result, when the coating film can be dissolved uniformly, the component (A) can be regarded as soluble in an alkaline developer.
 (A)成分としては、例えば、ポリエステル樹脂、ポリエーテル樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリウレタン樹脂、ポリウレタンイミド樹脂、ポリウレタンアミドイミド樹脂、シロキサンポリイミド樹脂、ポリエステルイミド樹脂、ポリベンゾオキサゾール樹脂、フェノキシ樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンサルファイド樹脂、ポリカーボネート樹脂、ポリエーテルケトン樹脂、(メタ)アクリル共重合体、フェノール性水酸基を有する樹脂等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて用いることができる。また、これらの樹脂の主鎖又は側鎖に、エチレングリコール、プロピレングリコール等のグリコール基、カルボキシル基又は水酸基が付与されたものであってもよい。 Examples of the component (A) include polyester resins, polyether resins, polyimide resins, polyamide resins, polyamideimide resins, polyetherimide resins, polyurethane resins, polyurethaneimide resins, polyurethaneamideimide resins, siloxane polyimide resins, and polyesterimide resins. , Polybenzoxazole resin, phenoxy resin, polysulfone resin, polyethersulfone resin, polyphenylene sulfide resin, polycarbonate resin, polyether ketone resin, (meth) acrylic copolymer, resin having a phenolic hydroxyl group, and the like. These can be used alone or in combination of two or more. In addition, the main chain or side chain of these resins may be provided with a glycol group such as ethylene glycol or propylene glycol, a carboxyl group, or a hydroxyl group.
 これらの中で、高温接着性、耐熱性及びフィルム形成性の観点から、(A)成分はフェノール性水酸基を有する樹脂であることが好ましい。 Among these, the component (A) is preferably a resin having a phenolic hydroxyl group from the viewpoint of high-temperature adhesiveness, heat resistance, and film formability.
 フェノール性水酸基を有する樹脂としては、例えば、ポリヒドロキシスチレン又はヒドロキシスチレンを単量体単位として含む共重合体等のヒドロキシスチレン系樹脂、フェノール樹脂、ポリ(ヒドロキシアミド)等のポリベンゾオキサゾール前駆体、ポリ(ヒドロキシフェニレン)エーテル、ポリナフトールなどが挙げられる。(A)成分は、これらの樹脂のうちの1種のみで構成されていてもよく、また、2種以上を含んで構成されていてもよい。 As the resin having a phenolic hydroxyl group, for example, polyhydroxystyrene or a hydroxystyrene-based resin such as a copolymer containing hydroxystyrene as a monomer unit, a phenol resin, a polybenzoxazole precursor such as poly (hydroxyamide), Examples include poly (hydroxyphenylene) ether and polynaphthol. The component (A) may be composed of only one of these resins, or may be composed of two or more.
 これらの中で、電気特性(絶縁性)に優れること及び硬化時の体積収縮が小さいことから、(A1)ヒドロキシスチレン系樹脂が好ましい。また、低価格であること、コントラストが高いこと及び硬化時の体積収縮が小さいことから、(A2)フェノール樹脂が好ましく、ノボラック型フェノール樹脂がより好ましい。 Among these, (A1) hydroxystyrene-based resin is preferable because of its excellent electrical properties (insulating properties) and small volume shrinkage during curing. In addition, (A2) a phenol resin is preferable, and a novolac type phenol resin is more preferable because it is inexpensive, has high contrast, and has a small volume shrinkage at the time of curing.
 (A1)ヒドロキシスチレン系樹脂は、下記一般式(21)で表される構造単位を有する。 (A1) The hydroxystyrene-based resin has a structural unit represented by the following general formula (21).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(21)中、R21は水素原子又はメチル基を示し、R22は炭素数1~10のアルキル基、炭素数6~10のアリール基又は炭素数1~10のアルコキシ基を示し、aは0~3の整数を示し、bは1~3の整数を示す。aとbの合計は5以下である。 In the general formula (21), R 21 represents a hydrogen atom or a methyl group, R 22 represents an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, a represents an integer of 0 to 3, and b represents an integer of 1 to 3. The sum of a and b is 5 or less.
 (A1)ヒドロキシスチレン系樹脂は、一般式(21)で表される構造単位を与えるモノマ等を重合させることで得ることができる。 (A1) The hydroxystyrene-based resin can be obtained by polymerizing a monomer or the like that gives the structural unit represented by the general formula (21).
 一般式(21)において、R21で表わされる炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。これらの基は直鎖状であっても、分岐鎖状であってもよい。また、R22で表わされる炭素数6~10のアリール基としては、例えば、フェニル基、ナフチル基等が挙げられる。R21で表わされる炭素数1~10のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ基、ヘキソキシ基、ヘプトキシ基、オクトキシ基、ノノキシ基、デコキシ基等が挙げられる。これらの基は直鎖状であっても、分岐鎖状であってもよい。 In the general formula (21), examples of the alkyl group having 1 to 10 carbon atoms represented by R 21 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, and a nonyl group. Group, decyl group and the like. These groups may be linear or branched. Examples of the aryl group having 6 to 10 carbon atoms represented by R 22 include a phenyl group and a naphthyl group. Examples of the alkoxy group having 1 to 10 carbon atoms represented by R 21 include methoxy group, ethoxy group, propoxy group, butoxy group, pentoxy group, hexoxy group, heptoxy group, octoxy group, nonoxy group, and decoxy group. It is done. These groups may be linear or branched.
 一般式(21)で表される構造単位を与えるモノマとしては、例えば、p-ヒドロキシスチレン、m-ヒドロキシスチレン、o-ヒドロキシスチレン、p-イソプロペニルフェノール、m-イソプロペニルフェノール、o-イソプロペニルフェノール等が挙げられる。これらのモノマはそれぞれ1種単独で又は2種以上を組み合わせて使用することができる。 Monomers that give the structural unit represented by the general formula (21) include, for example, p-hydroxystyrene, m-hydroxystyrene, o-hydroxystyrene, p-isopropenylphenol, m-isopropenylphenol, o-isopropenyl. Phenol etc. are mentioned. These monomers can be used singly or in combination of two or more.
 (A1)ヒドロキシスチレン系樹脂は、その製造方法に制限されないが、例えば、一般式(21)で示される構造単位を与えるモノマの水酸基をt-ブチル基、アセチル基等で保護して水酸基が保護されたモノマとし、水酸基が保護されたモノマを重合して重合体を得て、さらに得られた重合体を、公知の方法(酸触媒下で脱保護してヒドロキシスチレン系構造単位に変換すること等)で脱保護することにより得ることができる。 (A1) Hydroxystyrene resin is not limited by its production method. For example, the hydroxyl group of the monomer that gives the structural unit represented by the general formula (21) is protected by a t-butyl group, an acetyl group, etc. The resulting monomer is polymerized with a hydroxyl group-protected monomer to obtain a polymer, and the resulting polymer is converted to a hydroxystyrene structural unit by deprotection under an acid catalyst. Etc.) can be obtained by deprotection.
 (A1)ヒドロキシスチレン系樹脂は、一般式(21)で表される構造単位を与えるモノマのみからなる重合体又は共重合体であってもよく、一般式(21)で表される構造単位を与えるモノマとそれ以外のモノマとの共重合体であってもよい。(A1)ヒドロキシスチレン系樹脂が共重合体である場合、共重合体中の一般式(21)で示される構造単位の割合は、露光部のアルカリ現像液に対する溶解性の観点から、(A)成分100モル%に対して、10~100モル%が好ましく、20~97モル%がより好ましく、30~95モル%がさらに好ましく、50~95モル%が特に好ましい。 (A1) The hydroxystyrene-based resin may be a polymer or copolymer consisting only of a monomer that gives the structural unit represented by the general formula (21), and the structural unit represented by the general formula (21) It may be a copolymer of the monomer to be given and other monomers. (A1) When the hydroxystyrene-based resin is a copolymer, the proportion of the structural unit represented by the general formula (21) in the copolymer is (A) from the viewpoint of solubility in an alkaline developer in the exposed area. 10 to 100 mol% is preferable, 20 to 97 mol% is more preferable, 30 to 95 mol% is further preferable, and 50 to 95 mol% is particularly preferable with respect to 100 mol% of the component.
 (A1)ヒドロキシスチレン系樹脂は、未露光部のアルカリ現像液に対する溶解阻害性をより向上する観点から、さらに下記一般式(22)で表される構造単位を有するアルカリ可溶性樹脂であることが好ましい。 (A1) The hydroxystyrene-based resin is preferably an alkali-soluble resin further having a structural unit represented by the following general formula (22) from the viewpoint of further improving the dissolution inhibition of the unexposed portion with respect to the alkaline developer. .
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 一般式(22)中、R23は水素原子又はメチル基を示し、R24は炭素数1~10のアルキル基、炭素数6~10のアリール基又は炭素数1~10のアルコキシ基を示し、cは0~3の整数を示す。 In the general formula (22), R 23 represents a hydrogen atom or a methyl group, R 24 represents an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, c represents an integer of 0 to 3.
 R24で表わされる炭素数1~10のアルキル基、炭素数6~10のアリール基又は炭素数1~10のアルコキシ基としては、それぞれR22と同様のものが例示できる。 Examples of the alkyl group having 1 to 10 carbon atoms, the aryl group having 6 to 10 carbon atoms or the alkoxy group having 1 to 10 carbon atoms represented by R 24 are the same as those for R 22 .
 一般式(22)で表される構造単位を有するアルカリ可溶性樹脂は、一般式(22)で表される構造単位を与えるモノマを用いることによって得られる。一般式(22)で表される構造単位を与えるモノマとしては、例えば、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o-メトキシスチレン、m-メトキシスチレン、p-メトキシスチレン等の芳香族ビニル化合物などが挙げられる。これらのモノマはそれぞれ1種単独で又は2種以上を組み合わせて使用することができる。 The alkali-soluble resin having the structural unit represented by the general formula (22) can be obtained by using a monomer that gives the structural unit represented by the general formula (22). Monomers that give the structural unit represented by the general formula (22) include, for example, styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-methoxystyrene, and m-methoxystyrene. And aromatic vinyl compounds such as p-methoxystyrene. These monomers can be used singly or in combination of two or more.
 (A1)ヒドロキシスチレン系樹脂が一般式(22)で示される構造単位を有するアルカリ可溶性樹脂である場合、未露光部のアルカリ現像液に対する溶解阻害性及びパターン硬化膜の機械特性の観点から、一般式(22)で示される構造単位の割合は(A)成分100モル%に対して、1~90モル%が好ましく、3~80モル%がより好ましく、5~70モル%がさらに好ましく、5~50モル%が特に好ましい。 (A1) When the hydroxystyrene-based resin is an alkali-soluble resin having a structural unit represented by the general formula (22), from the viewpoint of dissolution inhibition with respect to an alkaline developer in an unexposed area and mechanical properties of a pattern cured film, The proportion of the structural unit represented by the formula (22) is preferably 1 to 90 mol%, more preferably 3 to 80 mol%, still more preferably 5 to 70 mol%, relative to 100 mol% of the component (A). ˜50 mol% is particularly preferred.
 また、(A1)ヒドロキシスチレン系樹脂は、弾性率を低くする観点から、さらに下記一般式(23)で表される構造単位を有するアルカリ可溶性樹脂であることが好ましい。 Further, the (A1) hydroxystyrene-based resin is preferably an alkali-soluble resin having a structural unit represented by the following general formula (23) from the viewpoint of lowering the elastic modulus.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 一般式(23)中、R25は水素原子又はメチル基を示し、R26は炭素数1~10のアルキル基又は炭素数1~10のヒドロキシアルキル基を示す。 In general formula (23), R 25 represents a hydrogen atom or a methyl group, and R 26 represents an alkyl group having 1 to 10 carbon atoms or a hydroxyalkyl group having 1 to 10 carbon atoms.
 一般式(23)で表される構造単位を有するアルカリ可溶性樹脂は、一般式(23)で表される構造単位を与えるモノマを用いることで得られる。一般式(23)で表される構造単位を与えるモノマとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸ヒドロキシペンチル、(メタ)アクリル酸ヒドロキシヘキシル、(メタ)アクリル酸ヒドロキシヘプチル、(メタ)アクリル酸ヒドロキシオクチル、(メタ)アクリル酸ヒドロキシノニル、(メタ)アクリル酸ヒドロキシデシル等が挙げられる。これらのモノマはそれぞれ1種単独で又は2種以上を組み合わせて使用することができる。 The alkali-soluble resin having the structural unit represented by the general formula (23) can be obtained by using a monomer that gives the structural unit represented by the general formula (23). Monomers that give the structural unit represented by the general formula (23) include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, (meth) Pentyl acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, hydroxymethyl (meth) acrylate, (meth) Hydroxyethyl acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, hydroxypentyl (meth) acrylate, hydroxyhexyl (meth) acrylate, hydroxyheptyl (meth) acrylate, (meth) acrylic acid Hydroxyoctyl, hydroxynonyl (meth) acrylate (Meth) hydroxy decyl acrylate and the like. These monomers can be used singly or in combination of two or more.
 (A1)ヒドロキシスチレン系樹脂が一般式(23)で示される構造単位を有するアルカリ可溶性樹脂である場合、未露光部のアルカリ現像液に対する溶解阻害性及びパターン硬化膜の機械特性の観点から、一般式(23)で示される構造単位の割合は(A)成分100モル%に対して、1~90モル%が好ましく、3~80モル%がより好ましく、5~70モル%がさらに好ましく、5~50モル%が特に好ましい。 (A1) When the hydroxystyrene-based resin is an alkali-soluble resin having a structural unit represented by the general formula (23), from the viewpoints of dissolution inhibition with respect to an alkali developer in an unexposed area and mechanical properties of the pattern cured film, The proportion of the structural unit represented by the formula (23) is preferably 1 to 90 mol%, more preferably 3 to 80 mol%, still more preferably 5 to 70 mol%, relative to 100 mol% of the component (A). ˜50 mol% is particularly preferred.
 (A2)フェノール樹脂は、フェノール又はその誘導体とアルデヒド類との重縮合生成物である。重縮合は、通常、酸、塩基等の触媒存在下で行われる。酸触媒を用いた場合に得られるフェノール樹脂は、特にノボラック型フェノール樹脂と呼ばれる。ノボラック型フェノール樹脂としては、例えば、フェノール/ホルムアルデヒドノボラック樹脂、クレゾール/ホルムアルデヒドノボラック樹脂、キシレノール/ホルムアルデヒドノボラック樹脂、レゾルシノール/ホルムアルデヒドノボラック樹脂、フェノール-ナフトール/ホルムアルデヒドノボラック樹脂等が挙げられる。 (A2) The phenol resin is a polycondensation product of phenol or a derivative thereof and aldehydes. The polycondensation is usually performed in the presence of a catalyst such as an acid or a base. The phenol resin obtained when an acid catalyst is used is particularly called a novolak type phenol resin. Examples of the novolak type phenol resin include phenol / formaldehyde novolak resin, cresol / formaldehyde novolak resin, xylenol / formaldehyde novolak resin, resorcinol / formaldehyde novolak resin, phenol-naphthol / formaldehyde novolak resin, and the like.
 (A2)フェノール樹脂を構成するフェノール誘導体としては、例えば、o-クレゾール、m-クレゾール、p-クレゾール、o-エチルフェノール、m-エチルフェノール、p-エチルフェノール、o-ブチルフェノール、m-ブチルフェノール、p-ブチルフェノール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール、2,3,5-トリメチルフェノール、3,4,5-トリメチルフェノール等のアルキルフェノール、メトキシフェノール、2-メトキシ-4-メチルフェノール等のアルコキシフェノール、ビニルフェノール、アリルフェノール等のアルケニルフェノール、ベンジルフェノール等のアラルキルフェノール、メトキシカルボニルフェノール等のアルコキシカルボニルフェノール、ベンゾイルオキシフェノール等のアリールカルボニルフェノール、クロロフェノール等のハロゲン化フェノール、カテコール、レゾルシノール、ピロガロール等のポリヒドロキシベンゼン、ビスフェノールA、ビスフェノールF等のビスフェノール、α-又はβ-ナフトール等のナフトール誘導体、p-ヒドロキシフェニル-2-エタノール、p-ヒドロキシフェニル-3-プロパノール、p-ヒドロキシフェニル-4-ブタノール等のヒドロキシアルキルフェノール、ヒドロキシエチルクレゾール等のヒドロキシアルキルクレゾール、ビスフェノールのモノエチレンオキサイド付加物、ビスフェノールのモノプロピレンオキサイド付加物等のアルコール性水酸基含有フェノール誘導体、p-ヒドロキシフェニル酢酸、p-ヒドロキシフェニルプロピオン酸、p-ヒドロキシフェニルブタン酸、p-ヒドロキシ桂皮酸、ヒドロキシ安息香酸、ヒドロキシフェニル安息香酸、ヒドロキシフェノキシ安息香酸、ジフェノール酸等のカルボキシル基含有フェノール誘導体などが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。 (A2) Examples of the phenol derivative constituting the phenol resin include o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, o-butylphenol, m-butylphenol, p-butylphenol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, 2,3,5-trimethylphenol, 3 , 4,5-trimethylphenol and other alkylphenols, methoxyphenol and 2-methoxy-4-methylphenol and other alkoxyphenols, vinylphenol and allylphenol and other alkenylphenols, benzylphenol and other aralkylphenols and methoxycal Alkylcarbonylphenol such as nylphenol, arylcarbonylphenol such as benzoyloxyphenol, halogenated phenol such as chlorophenol, polyhydroxybenzene such as catechol, resorcinol, pyrogallol, bisphenol such as bisphenol A and bisphenol F, α- or β- Naphthol derivatives such as naphthol, hydroxyalkylphenols such as p-hydroxyphenyl-2-ethanol, p-hydroxyphenyl-3-propanol, p-hydroxyphenyl-4-butanol, hydroxyalkylcresols such as hydroxyethylcresol, monoethylene of bisphenol Alcoholic hydroxyl group-containing phenol derivatives such as oxide adducts and monopropylene oxide adducts of bisphenol Carboxyl group-containing phenol derivatives such as p-hydroxyphenylacetic acid, p-hydroxyphenylpropionic acid, p-hydroxyphenylbutanoic acid, p-hydroxycinnamic acid, hydroxybenzoic acid, hydroxyphenylbenzoic acid, hydroxyphenoxybenzoic acid and diphenolic acid Etc. These can be used individually by 1 type or in combination of 2 or more types.
 (A2)フェノール樹脂を構成するアルデヒド類としては、例えば、ホルムアルデヒド、アセトアルデヒド、フルフラール、ベンズアルデヒド、ヒドロキシベンズアルデヒド、メトキシベンズアルデヒド、ヒドロキシフェニルアセトアルデヒド、メトキシフェニルアセトアルデヒド、クロトンアルデヒド、クロロアセトアルデヒド、クロロフェニルアセトアルデヒド、グリセルアルデヒド、グリオキシル酸、グリオキシル酸メチル、グリオキシル酸フェニル、グリオキシル酸ヒドロキシフェニル、ホルミル酢酸、ホルミル酢酸メチル、2-ホルミルプロピオン酸、2-ホルミルプロピオン酸メチル等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。また、パラホルムアルデヒド、トリオキサン等のホルムアルデヒドの前駆体、アセトン、ピルビン酸、レブリン酸、4-アセチルブチル酸、アセトンジカルボン酸、3,3’-4,4’-ベンゾフェノンテトラカルボン酸等のケトン類を反応に用いてもよい。 (A2) Examples of aldehydes constituting the phenol resin include formaldehyde, acetaldehyde, furfural, benzaldehyde, hydroxybenzaldehyde, methoxybenzaldehyde, hydroxyphenylacetaldehyde, methoxyphenylacetaldehyde, crotonaldehyde, chloroacetaldehyde, chlorophenylacetaldehyde, glyceraldehyde, Examples include glyoxylic acid, methyl glyoxylate, phenyl glyoxylate, hydroxyphenyl glyoxylate, formyl acetic acid, methyl formyl acetate, 2-formylpropionic acid, methyl 2-formylpropionate, and the like. These can be used individually by 1 type or in combination of 2 or more types. In addition, formaldehyde precursors such as paraformaldehyde and trioxane, and ketones such as acetone, pyruvic acid, levulinic acid, 4-acetylbutyric acid, acetonedicarboxylic acid, and 3,3′-4,4′-benzophenonetetracarboxylic acid You may use for reaction.
 (A)成分が(A1)ヒドロキシスチレン系樹脂又は(A2)フェノール樹脂を含有する場合、(A1)成分及び(A2)成分のそれぞれの重量平均分子量は、アルカリ水溶液に対する溶解性、感光特性及びパターン硬化膜の機械特性のバランスを考慮すると、重量平均分子量で1000~500000が好ましく、2000~200000がより好ましく、2000~100000であることがさらに好ましい。ここで、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定し、標準ポリスチレン検量線より換算して得られる値である。 When the component (A) contains (A1) hydroxystyrene-based resin or (A2) phenol resin, the weight average molecular weight of each of the component (A1) and the component (A2) is solubility in an aqueous alkali solution, photosensitive characteristics, and pattern. Considering the balance of mechanical properties of the cured film, the weight average molecular weight is preferably from 1,000 to 500,000, more preferably from 2,000 to 200,000, and further preferably from 2,000 to 100,000. Here, the weight average molecular weight is a value obtained by measuring by a gel permeation chromatography (GPC) method and converting from a standard polystyrene calibration curve.
<(B)成分>
 (B)成分である化合物は、パターン形成後の感光性樹脂膜を加熱して硬化する際に、(A)成分と反応して橋架け構造を形成し得る構造を有する化合物である。(B)成分は、下記一般式(1)で表される化合物又は下記一般式(2)で表される化合物である。
<(B) component>
The compound as the component (B) is a compound having a structure that can react with the component (A) to form a bridge structure when the photosensitive resin film after pattern formation is cured by heating. The component (B) is a compound represented by the following general formula (1) or a compound represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 一般式(1)中、R~Rは、それぞれ独立に炭素数1~10のアルキル基を示す。 In general formula (1), R 1 to R 6 each independently represents an alkyl group having 1 to 10 carbon atoms.
 R~Rで表される炭素数1~10のアルキル基は、R22と同様のものが例示できる。アルキル基の炭素数は、1~5であることが好ましく、1~3であることがより好ましく、1又は2であることがさらに好ましく、1であることが特に好ましい。 Examples of the alkyl group having 1 to 10 carbon atoms represented by R 1 to R 6 are the same as those for R 22 . The alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 3, more preferably 1 or 2, and particularly preferably 1.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式(2)中、R~R12は、それぞれ独立に炭素数1~10のアルキル基を示す。 In the general formula (2), R 7 to R 12 each independently represents an alkyl group having 1 to 10 carbon atoms.
 R~R12で表される炭素数1~10のアルキル基は、R22と同様のものが例示できる。アルキル基の炭素数は、1~5であることが好ましく、1~3であることがより好ましく、1又は2であることがさらに好ましく、1であることが特に好ましい。 Examples of the alkyl group having 1 to 10 carbon atoms represented by R 7 to R 12 are the same as those for R 22 . The alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 3, more preferably 1 or 2, and particularly preferably 1.
<(C)成分>
 (C)成分である化合物は、2以上のエポキシ基を有し、上述の(B)成分である化合物とともに、パターン形成後の感光性樹脂膜を加熱して硬化する際に、(A)成分と反応して橋架け構造を形成し得る構造を有する化合物である。
<(C) component>
When the compound as the component (C) has two or more epoxy groups and is cured by heating the photosensitive resin film after pattern formation together with the compound as the component (B) described above, the component (A) It is a compound having a structure capable of reacting with and forming a bridge structure.
 (C)成分は、2以上のエポキシ基を有しているものであれば、特に制限なく使用することができる。(C)成分としては、例えば、脂肪族エポキシ化合物、芳香族エポキシ化合物、脂環式エポキシ化合物、複素環式エポキシ化合物、ビスフェノール型エポキシ化合物、ノボラック型エポキシ化合物、グリシジルアミン型エポキシ化合物、ハロゲン化エポキシ化合物等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。 The component (C) can be used without particular limitation as long as it has two or more epoxy groups. Examples of the component (C) include aliphatic epoxy compounds, aromatic epoxy compounds, alicyclic epoxy compounds, heterocyclic epoxy compounds, bisphenol type epoxy compounds, novolac type epoxy compounds, glycidylamine type epoxy compounds, and halogenated epoxies. Compounds and the like. These can be used individually by 1 type or in combination of 2 or more types.
 これらのうち、(C)成分は、薬液耐性により優れる観点から、芳香環又は複素環を有するエポキシ化合物であることが好ましく、複素環を有するエポキシ化合物であることがより好ましく、含窒素複素環を有するエポキシ化合物であることがさらに好ましい。 Among these, the component (C) is preferably an epoxy compound having an aromatic ring or a heterocyclic ring, more preferably an epoxy compound having a heterocyclic ring, from the viewpoint of superior chemical resistance, and a nitrogen-containing heterocyclic ring. More preferably, it is an epoxy compound.
 (C)成分は、薬液耐性により優れる観点から、下記一般式(3)で表される化合物であることが好ましい。 The component (C) is preferably a compound represented by the following general formula (3) from the viewpoint of superior chemical resistance.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 一般式(3)中、R13~R15は、それぞれ独立に炭素数1~10のアルキレン基を示す。 In the general formula (3), R 13 to R 15 each independently represents an alkylene group having 1 to 10 carbon atoms.
 一般式(3)において、R13~R15で表わされる炭素数1~10のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基等が挙げられる。これらの基は直鎖状であっても、分岐鎖状であってもよい。アルキレン基の炭素数は、1~8であることが好ましく、1~6であることがより好ましい。 In the general formula (3), examples of the alkylene group having 1 to 10 carbon atoms represented by R 13 to R 15 include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, and an octylene group. Group, nonylene group, decylene group and the like. These groups may be linear or branched. The alkylene group preferably has 1 to 8 carbon atoms, and more preferably 1 to 6 carbon atoms.
 (B)成分に対する(C)成分のモル比率((C)成分のモル数/(B)成分のモル数)は、薬液耐性及び破断強度により優れる観点から、1.0以下であり、0.9以下であることが好ましく、0.8以下であることがより好ましい。(B)成分に対する(C)成分のモル比率の下限は、特に制限されないが、0.1以上、0.2以上又は0.3以上であってもよい。 The molar ratio of the component (C) to the component (B) (number of moles of the component (C) / number of moles of the component (B)) is 1.0 or less from the viewpoint of better resistance to chemicals and breaking strength. It is preferably 9 or less, and more preferably 0.8 or less. Although the minimum of the molar ratio of (C) component with respect to (B) component is not restrict | limited, 0.1 or more, 0.2 or more, or 0.3 or more may be sufficient.
 (B)成分及び(C)成分の合計量は、残留応力及び薬液耐性により優れる観点から、(A)成分100質量部に対して、2~35質量部であることが好ましく、4~30質量部であることがより好ましく、5~25質量部であることがさらに好ましい。 The total amount of the component (B) and the component (C) is preferably 2 to 35 parts by mass with respect to 100 parts by mass of the component (A) from the viewpoint of being excellent in residual stress and chemical resistance. More preferably, it is 5 to 25 parts by mass.
 本実施形態のポジ型感光性樹脂組成物は、(A)~(C)成分に加えて、(D)エラストマ又は(E)光により酸を生成する化合物をさらに含有していてもよい。これらの成分を用いることによって、破断強度及び熱膨張性に優れたポジ型感光性樹脂組成物を得ることができる。 In addition to the components (A) to (C), the positive photosensitive resin composition of the present embodiment may further contain (D) an elastomer or (E) a compound that generates an acid by light. By using these components, a positive photosensitive resin composition excellent in breaking strength and thermal expansibility can be obtained.
<(D)成分>
 エラストマとしては、例えば、スチレン系エラストマ、オレフィン系エラストマ、ウレタン系エラストマ、ポリエステル系エラストマ、ポリアミド系エラストマ、アクリル系エラストマ、シリコーン系エラストマ等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。これらのうち、(D)成分は、得られるパターン硬化膜の破断強度、破断伸び及び熱膨張性に優れることから、アクリル系エラストマであってもよい。
<(D) component>
Examples of the elastomer include styrene-based elastomer, olefin-based elastomer, urethane-based elastomer, polyester-based elastomer, polyamide-based elastomer, acrylic-based elastomer, and silicone-based elastomer. These can be used individually by 1 type or in combination of 2 or more types. Among these, the component (D) may be an acrylic elastomer because it is excellent in breaking strength, breaking elongation, and thermal expansibility of the obtained pattern cured film.
 アクリル系エラストマは、下記一般式(31)で表される構造単位を有することが好ましい。 The acrylic elastomer preferably has a structural unit represented by the following general formula (31).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 一般式(31)中、R31は水素原子又はメチル基を示し、R32は炭素数2~20のヒドロキシアルキル基を示す。 In the general formula (31), R 31 represents a hydrogen atom or a methyl group, and R 32 represents a hydroxyalkyl group having 2 to 20 carbon atoms.
 R32で表わされる炭素数2~20のヒドロキシアルキル基としては、例えば、ヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシブチル基、ヒドロキシペンチル基、ヒドロキシヘキシル基、ヒドロキシヘプチル基、ヒドロキシオクチル基、ヒドロキシノニル基、ヒドロキシデシル基、ヒドロキシウンデシル基、ヒドロキシドデシル基(ヒドロキシラウリル基という場合もある。)、ヒドロキシトリデシル基、ヒドロキシテトラデシル基、ヒドロキシペンタデシル基、ヒドロキシヘキサデシル基、ヒドロキシヘプタデシル基、ヒドロキシオクタデシル基、ヒドロキシノナデシル基、ヒドロキシエイコシル基等が挙げられる。 Examples of the hydroxyalkyl group having 2 to 20 carbon atoms represented by R 32 include a hydroxyethyl group, a hydroxypropyl group, a hydroxybutyl group, a hydroxypentyl group, a hydroxyhexyl group, a hydroxyheptyl group, a hydroxyoctyl group, and a hydroxynonyl group. , Hydroxydecyl group, hydroxyundecyl group, hydroxydodecyl group (sometimes referred to as hydroxylauryl group), hydroxytridecyl group, hydroxytetradecyl group, hydroxypentadecyl group, hydroxyhexadecyl group, hydroxyheptadecyl group, hydroxy An octadecyl group, a hydroxy nonadecyl group, a hydroxyeicosyl group, etc. are mentioned.
 アクリル系エラストマは、さらに下記一般式(32)で表される構造単位、下記一般式(33)で表される構造単位、又は下記一般式(34)で表される構造単位を有していてもよい。 The acrylic elastomer further has a structural unit represented by the following general formula (32), a structural unit represented by the following general formula (33), or a structural unit represented by the following general formula (34). Also good.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 一般式(32)中、R33は水素原子又はメチル基を示し、R34は1級、2級又は3級アミノ基を有する1価の有機基を示す。 In General Formula (32), R 33 represents a hydrogen atom or a methyl group, and R 34 represents a monovalent organic group having a primary, secondary, or tertiary amino group.
 R34で表わされる1級、2級又は3級アミノ基としては、例えば、アミノエチル基、N-メチルアミノエチル基、N,N-ジメチルアミノエチル基、N-エチルアミノエチル基、N,N-ジエチルアミノエチル基、アミノプロピル基、N-メチルアミノプロピル基、N,N-ジメチルアミノプロピル基、N-エチルアミノプロピル基、N,N-ジエチルアミノプロピル基、ピペリジン-4-イル基、1-メチルピペリジン-4-イル基、2,2,6,6-テトラメチルピペリジン-4-イル基、1,2,2,6,6-ペンタメチルピペリジン-4-イル基、(ピペリジン-4-イル)メチル基、2-(ピペリジン-4-イル)エチル基等が挙げられる。 Examples of the primary, secondary or tertiary amino group represented by R 34 include an aminoethyl group, an N-methylaminoethyl group, an N, N-dimethylaminoethyl group, an N-ethylaminoethyl group, an N, N -Diethylaminoethyl group, aminopropyl group, N-methylaminopropyl group, N, N-dimethylaminopropyl group, N-ethylaminopropyl group, N, N-diethylaminopropyl group, piperidin-4-yl group, 1-methyl Piperidin-4-yl group, 2,2,6,6-tetramethylpiperidin-4-yl group, 1,2,2,6,6-pentamethylpiperidin-4-yl group, (piperidin-4-yl) Examples thereof include a methyl group and 2- (piperidin-4-yl) ethyl group.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 一般式(33)中、R35は水素原子又はメチル基を示し、R36は炭素数4~20のアルキル基を示す。 In general formula (33), R 35 represents a hydrogen atom or a methyl group, and R 36 represents an alkyl group having 4 to 20 carbon atoms.
 R36で表わされる炭素数4~20のアルキル基としては、例えば、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基(ラウリル基という場合もある。)、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基等が挙げられる。これらの基は、直鎖状であっても分岐鎖状であってもよい。 Examples of the alkyl group having 4 to 20 carbon atoms represented by R 36 include a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, and a dodecyl group (also referred to as a lauryl group). And tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group and the like. These groups may be linear or branched.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 一般式(34)中、R37は水素原子又はメチル基を示す。 In the general formula (34), R 37 represents a hydrogen atom or a methyl group.
 アクリル系エラストマは、例えば、上記一般式(31)で表される構造単位を与えるモノマ、及び必要に応じて添加される一般式(32)、(33)又は(34)で表される構造単位を与えるモノマを配合し、乳酸エチル、トルエン、イソプロパノール等の溶媒中で撹拌し、必要に応じて加熱することによって得ることができる。 The acrylic elastomer includes, for example, a monomer that gives the structural unit represented by the general formula (31), and a structural unit represented by the general formula (32), (33), or (34) that is added as necessary. Can be obtained by blending a monomer that gives water, stirring in a solvent such as ethyl lactate, toluene, isopropanol, and heating as necessary.
 アクリル系エラストマの重量平均分子量は、2000~100000であることが好ましく、3000~60000であることがより好ましく、5000~50000であることがさらに好ましく、10000~40000であることが特に好ましい。ここで、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定し、標準ポリスチレン検量線より換算して得られる値である。 The weight average molecular weight of the acrylic elastomer is preferably from 2,000 to 100,000, more preferably from 3,000 to 60,000, still more preferably from 5,000 to 50,000, and particularly preferably from 10,000 to 40,000. Here, the weight average molecular weight is a value obtained by measuring by a gel permeation chromatography (GPC) method and converting from a standard polystyrene calibration curve.
 (D)成分の含有量は、破断強度及び破断伸びにより優れる観点から、(A)成分100質量部に対して、1~35質量部であることが好ましく、3~30質量部であることがより好ましく、5~25質量部であることがさらに好ましい。 The content of the component (D) is preferably 1 to 35 parts by mass, preferably 3 to 30 parts by mass with respect to 100 parts by mass of the component (A), from the viewpoint of being superior in breaking strength and elongation at break. More preferred is 5 to 25 parts by mass.
<(E)成分>
 (E)成分である光により(光を受けることにより)酸を生成する化合物は、感光性樹脂組成物において感光剤として機能する。(E)成分は、光照射を受けて酸を生成させ、光照射を受けた部分のアルカリ水溶液への可溶性をより増大させる機能を有する。(E)成分としては、一般に光酸発生剤と称される化合物を用いることができる。(E)成分の具体例としては、o-キノンジアジド化合物、アリールジアゾニウム塩、ジアリールヨードニウム塩、トリアリールスルホニウム塩等が挙げられる。(E)成分は、これらの化合物のうちの1種のみからなるものであってもよく、また、2種以上を含んで構成されるものであってもよい。これらの中で、感度が高いことから、o-キノンジアジド化合物が好ましい。
<(E) component>
The compound which produces | generates an acid by the light which is (E) component (by receiving light) functions as a photosensitive agent in the photosensitive resin composition. The component (E) has a function of generating acid upon irradiation with light and further increasing the solubility of the irradiated portion in an alkaline aqueous solution. As the component (E), a compound generally called a photoacid generator can be used. Specific examples of the component (E) include o-quinonediazide compounds, aryldiazonium salts, diaryliodonium salts, triarylsulfonium salts, and the like. (E) A component may consist only of 1 type in these compounds, and may be comprised including 2 or more types. Of these, o-quinonediazide compounds are preferred because of their high sensitivity.
 o-キノンジアジド化合物としては、例えば、o-キノンジアジドスルホニルクロリドと、ヒドロキシ化合物又はアミノ化合物等とを脱塩酸剤の存在下で縮合反応させることで得られるもの等を用いることができる。 As the o-quinonediazide compound, for example, a compound obtained by subjecting o-quinonediazidesulfonyl chloride and a hydroxy compound or an amino compound to a condensation reaction in the presence of a dehydrochlorinating agent can be used.
 o-キノンジアジド化合物は、1,1-ビス(4-ヒドロキシフェニル)-1-[4-{1-(4-ヒドロキシフェニル)-1-メチルエチル}フェニル]エタンと1-ナフトキノン-2-ジアジド-5-スルホニルクロリドとの縮合物、トリス(4-ヒドロキシフェニル)メタン又はトリス(4-ヒドロキシフェニル)エタンと1-ナフトキノン-2-ジアジド-5-スルホニルクロリドとの縮合物を用いることが好ましい。 The o-quinonediazide compound includes 1,1-bis (4-hydroxyphenyl) -1- [4- {1- (4-hydroxyphenyl) -1-methylethyl} phenyl] ethane and 1-naphthoquinone-2-diazide- It is preferable to use a condensate with 5-sulfonyl chloride, a condensate of tris (4-hydroxyphenyl) methane or tris (4-hydroxyphenyl) ethane with 1-naphthoquinone-2-diazide-5-sulfonyl chloride.
 (E)成分の含有量は、露光部と未露光部との溶解速度差がより大きくなり、感度がより良好となる観点から、(A)成分100質量部に対して、5~25質量部であることが好ましく、6~20質量部であることがより好ましく、7~18質量部であることがさらに好ましい。 The content of the component (E) is 5 to 25 parts by mass with respect to 100 parts by mass of the component (A) from the viewpoint that the difference in dissolution rate between the exposed part and the unexposed part becomes larger and the sensitivity becomes better. It is preferably 6 to 20 parts by mass, more preferably 7 to 18 parts by mass.
<その他の成分>
 本実施形態のポジ型感光性樹脂組成物は、上記(A)~(E)成分以外に、溶剤、加熱により酸を生成する化合物、溶解促進剤、溶解阻害剤、カップリング剤、界面活性剤、レベリング剤等の成分を含有していてもよい。
<Other ingredients>
In addition to the components (A) to (E), the positive photosensitive resin composition of the present embodiment includes a solvent, a compound that generates an acid upon heating, a dissolution accelerator, a dissolution inhibitor, a coupling agent, and a surfactant. And may contain components such as a leveling agent.
(溶剤)
 溶剤を用いることによって、基板上への塗布を容易にし、均一な厚さの塗膜を形成することができる。溶剤としては、例えば、γ-ブチロラクトン、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、酢酸ベンジル、n-ブチルアセテート、エトキシエチルプロピオナート、3-メチルメトキシプロピオネート、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホリルアミド、テトラメチレンスルホン、ジエチルケトン、ジイソブチルケトン、メチルアミルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル等が挙げられる。これらの溶剤は1種を単独で又は2種以上を組み合わせて用いることができる。これらの中でも、溶解性及び塗布膜の均一性の観点から、乳酸エチル又はプロピレングリコールモノメチルエーテルアセテートであることが好ましい。
(solvent)
By using a solvent, coating on a substrate can be facilitated and a coating film having a uniform thickness can be formed. Examples of the solvent include γ-butyrolactone, ethyl lactate, propylene glycol monomethyl ether acetate, benzyl acetate, n-butyl acetate, ethoxyethyl propionate, 3-methylmethoxypropionate, N-methyl-2-pyrrolidone, N , N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphorylamide, tetramethylene sulfone, diethyl ketone, diisobutyl ketone, methyl amyl ketone, cyclohexanone, propylene glycol monomethyl ether, propylene glycol monopropyl ether, propylene glycol Examples thereof include monobutyl ether and dipropylene glycol monomethyl ether. These solvents can be used alone or in combination of two or more. Among these, ethyl lactate or propylene glycol monomethyl ether acetate is preferable from the viewpoints of solubility and coating film uniformity.
(加熱により酸を生成する化合物)
 加熱により酸を生成する化合物を用いることによって、パターン樹脂膜を加熱する際に酸を発生させることが可能となるため、(A)成分と(B)成分及び(C)成分との反応、すなわち熱架橋反応が促進され、パターン硬化膜の耐熱性が向上する。また、加熱により酸を生成する化合物は光照射によっても酸を発生するため、露光部のアルカリ水溶液への溶解性が増大する。よって、未露光部と露光部とのアルカリ水溶液に対する溶解性の差がさらに大きくなり解像度がより向上する。
(Compound that generates acid by heating)
By using a compound that generates an acid by heating, it becomes possible to generate an acid when the pattern resin film is heated. Therefore, a reaction between the component (A), the component (B), and the component (C), that is, The thermal crosslinking reaction is promoted, and the heat resistance of the pattern cured film is improved. Moreover, since the compound which produces | generates an acid by heating generate | occur | produces an acid also by light irradiation, the solubility to the alkaline aqueous solution of an exposure part increases. Therefore, the difference in solubility in the alkaline aqueous solution between the unexposed area and the exposed area is further increased and the resolution is further improved.
 このような加熱により酸を生成する化合物は、例えば、50~250℃まで加熱することにより酸を生成するものであるもの等が挙げられる。加熱により酸を生成する化合物の具体例としては、オニウム塩等の強酸と塩基とから形成される塩、イミドスルホナートなどが挙げられる。 Examples of the compound that generates an acid by such heating include those that generate an acid by heating to 50 to 250 ° C., for example. Specific examples of the compound that generates an acid by heating include a salt formed from a strong acid such as an onium salt and a base, imide sulfonate, and the like.
(溶解促進剤)
 溶解促進剤を用いることによって、アルカリ水溶液で現像する際の露光部の溶解速度を増加させ、感度及び解像性を向上させることができる。溶解促進剤としては従来公知のものを用いることができる。その具体例としては、カルボキシル基、スルホン酸、スルホンアミド基を有する化合物が挙げられる。
(Dissolution promoter)
By using a dissolution accelerator, it is possible to increase the dissolution rate of the exposed area when developing with an alkaline aqueous solution, and to improve sensitivity and resolution. A conventionally well-known thing can be used as a dissolution promoter. Specific examples thereof include compounds having a carboxyl group, a sulfonic acid, and a sulfonamide group.
 また、溶解促進剤は、下記一般式(41)~(43)のいずれかで表されるフェノール性低分子化合物であってもよい。 Further, the dissolution accelerator may be a phenolic low molecular compound represented by any one of the following general formulas (41) to (43).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 一般式(41)中、R41は水素原子又はメチル基を示す。a1~f1は0~3の整数を示し、d1~f1の合計は1以上であり、a1とd1の合計は5以下であり、b1とe1の合計は5以下であり、c1とf1の合計は5以下である。 In the general formula (41), R 41 represents a hydrogen atom or a methyl group. a1 to f1 represent integers of 0 to 3, the sum of d1 to f1 is 1 or more, the sum of a1 and d1 is 5 or less, the sum of b1 and e1 is 5 or less, and the sum of c1 and f1 Is 5 or less.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 一般式(42)中、R42は水素原子又はメチル基を示す。a2~c2は0~3の整数を示し、d2~f2は1~3の整数を示し、a2とd2の合計は5以下であり、b2とe2の合計は5以下であり、c2とf2の合計は5以下である。 In general formula (42), R42 represents a hydrogen atom or a methyl group. a2 to c2 represent integers of 0 to 3, d2 to f2 represent integers of 1 to 3, the sum of a2 and d2 is 5 or less, the sum of b2 and e2 is 5 or less, and c2 and f2 The total is 5 or less.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 一般式(43)中、a3、c3、h及びiは0~3の整数を示し、d3及びf3は1~3の整数を示し、a3とd3の合計は5以下であり、c3とf3の合計は5以下であり、hとiの合計は4以下である。 In general formula (43), a3, c3, h and i represent integers of 0 to 3, d3 and f3 represent integers of 1 to 3, and the sum of a3 and d3 is 5 or less. The sum is 5 or less, and the sum of h and i is 4 or less.
(溶解阻害剤)
 溶解阻害剤は、(A)成分のアルカリ水溶液に対する溶解を阻害する化合物であり、残膜厚、現像時間及びコントラストをコントロールするために用いられる。溶解阻害剤としては、例えば、ジフェニルヨードニウムニトラート、ビス(p-tert-ブチルフェニル)ヨードニウムニトラート、ジフェニルヨードニウムブロミド、ジフェニルヨードニウムクロリド、ジフェニルヨードニウムヨージド等が挙げられる。
(Dissolution inhibitor)
The dissolution inhibitor is a compound that inhibits the dissolution of the component (A) in an alkaline aqueous solution, and is used to control the remaining film thickness, development time, and contrast. Examples of the dissolution inhibitor include diphenyliodonium nitrate, bis (p-tert-butylphenyl) iodonium nitrate, diphenyliodonium bromide, diphenyliodonium chloride, diphenyliodonium iodide, and the like.
(カップリング剤)
 カップリング剤を用いることによって、形成されるパターン硬化膜と基板との接着性をより高めることができる。カップリング剤としては、例えば、有機シラン化合物、アルミキレート化合物等が挙げられる。
(Coupling agent)
By using a coupling agent, the adhesiveness between the pattern cured film to be formed and the substrate can be further enhanced. Examples of the coupling agent include organic silane compounds and aluminum chelate compounds.
(界面活性剤、レベリング剤)
 界面活性剤又はレベリング剤を用いることによって、塗布性をより向上することができる。具体的には、例えば、界面活性剤又はレベリング剤を含有することで、ストリエーション(膜厚のムラ)をより防いだり、現像性をより向上させたりすることができる。界面活性剤又はレベリング剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェノールエーテル等が挙げられる。
(Surfactant, leveling agent)
By using a surfactant or a leveling agent, applicability can be further improved. Specifically, for example, by containing a surfactant or a leveling agent, striation (film thickness unevenness) can be further prevented, and developability can be further improved. Examples of the surfactant or leveling agent include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, and the like.
 その他の成分を用いる場合の含有量は、(A)成分100質量部に対して、0.01~20質量部であってもよい。 The content when other components are used may be 0.01 to 20 parts by mass with respect to 100 parts by mass of component (A).
 本実施形態のポジ型感光性樹脂組成物によれば、残留応力が低く、薬液耐性に優れ、かつ基板との密着性に優れるパターン硬化膜を形成することが可能となる。 According to the positive photosensitive resin composition of the present embodiment, it is possible to form a cured pattern film having low residual stress, excellent chemical resistance, and excellent adhesion to the substrate.
[ポジ型感光性樹脂用熱架橋剤]
 一実施形態のポジ型感光性樹脂用熱架橋剤は、上述の(B)成分(一般式(1)で表される化合物若しくは一般式(2)で表される化合物)及び(C)成分(2つ以上のエポキシ基を有する化合物)からなるものである。このようなポジ型感光性樹脂用熱架橋剤によれば、残留応力が低く、薬液耐性に優れ、かつ基板との密着性に優れるパターン硬化膜を形成することが可能なポジ型感光性樹脂組成物を容易に調製することができる。
[Thermal crosslinking agent for positive photosensitive resin]
The thermal crosslinking agent for positive photosensitive resin of one embodiment includes the above-described component (B) (the compound represented by the general formula (1) or the compound represented by the general formula (2)) and the component (C) ( A compound having two or more epoxy groups). According to such a thermal crosslinking agent for a positive photosensitive resin, a positive photosensitive resin composition capable of forming a pattern cured film having low residual stress, excellent chemical resistance, and excellent adhesion to a substrate. Can be easily prepared.
[パターン硬化膜及びその製造方法]
 一実施形態のパターン硬化膜は、パターンを有し、パターンが上述のポジ型感光性樹脂組成物からなる樹脂膜の硬化物を含む。パターン硬化膜は、上述のポジ型感光性樹脂組成物を加熱することによって得られる。以下、パターン硬化膜の製造方法について説明する。
[Pattern cured film and manufacturing method thereof]
The pattern cured film of one embodiment has a pattern, and the pattern includes a cured product of a resin film made of the above-described positive photosensitive resin composition. The pattern cured film can be obtained by heating the positive photosensitive resin composition described above. Hereinafter, the manufacturing method of a pattern cured film is demonstrated.
 本実施形態のパターン硬化膜の製造方法は、上述のポジ型感光性樹脂組成物を基板の一部又は全部に塗布及び乾燥し樹脂膜を形成する工程(塗布・乾燥(成膜)工程)と、樹脂膜の一部又は全部を露光する工程(露光工程)と、露光後の樹脂膜をアルカリ水溶液により現像してパターン樹脂膜を形成する工程(現像工程)と、パターン樹脂膜を加熱する工程(加熱処理工程)とを備える。以下、各工程について説明する。 The pattern cured film manufacturing method of the present embodiment includes a step of applying and drying the positive photosensitive resin composition described above on a part or all of a substrate to form a resin film (application / drying (film formation) step); , A step of exposing part or all of the resin film (exposure step), a step of developing the exposed resin film with an alkaline aqueous solution to form a pattern resin film (development step), and a step of heating the pattern resin film (Heat treatment process). Hereinafter, each step will be described.
<塗布・乾燥(成膜)工程>
 まず、本実施形態のポジ型感光性樹脂組成物を基板上に塗布し乾燥して樹脂膜を形成する。この工程では、ガラス基板、半導体、金属酸化物絶縁体(例えば、TiO、SiO等)、窒化ケイ素等の基板上に、本実施形態のポジ型感光性樹脂組成物を、スピンナー等を用いて回転塗布し、塗膜を形成する。塗膜の厚さに特に制限はないが、0.1~40μmであることが好ましい。この塗膜が形成された基板をホットプレート、オーブン等を用いて乾燥する。乾燥温度及び乾燥時間に特に制限はないが80~140℃で、1~7分行なうことが好ましい。これにより、支持基板上に樹脂膜が形成される。樹脂膜の厚さに特に制限はないが、0.1~40μmであることが好ましい。
<Application / drying (film formation) process>
First, the positive photosensitive resin composition of this embodiment is applied onto a substrate and dried to form a resin film. In this step, the positive photosensitive resin composition of the present embodiment is used on a glass substrate, a semiconductor, a metal oxide insulator (for example, TiO 2 , SiO 2, etc.), silicon nitride, or the like using a spinner or the like. And spin coat to form a coating film. The thickness of the coating film is not particularly limited, but is preferably 0.1 to 40 μm. The substrate on which this coating film has been formed is dried using a hot plate, oven, or the like. There is no particular limitation on the drying temperature and drying time, but it is preferably performed at 80 to 140 ° C. for 1 to 7 minutes. Thereby, a resin film is formed on the support substrate. The thickness of the resin film is not particularly limited, but is preferably 0.1 to 40 μm.
<露光工程>
 次に、露光工程では、基板上に形成した樹脂膜に、マスクを介して紫外線、可視光線、放射線等の活性光線を照射する。本実施形態のポジ型感光性樹脂組成物において、(A)成分はi線に対する透明性が高いので、i線の照射を好適に用いることができる。なお、露光後、必要に応じて、溶解速度を向上させる観点から露光後加熱(PEB)を行うこともできる。露光後加熱を行なう場合の温度は70℃~140℃、露光後加熱の時間は1分~5分が好ましい。
<Exposure process>
Next, in the exposure step, the resin film formed on the substrate is irradiated with actinic rays such as ultraviolet rays, visible rays, and radiations through a mask. In the positive photosensitive resin composition of the present embodiment, since the component (A) has high transparency to i-line, i-line irradiation can be suitably used. In addition, post-exposure heating (PEB) can also be performed after exposure from a viewpoint of improving a dissolution rate as needed. In the case of performing post-exposure heating, the temperature is preferably 70 to 140 ° C., and the post-exposure heating time is preferably 1 to 5 minutes.
<現像工程>
 現像工程では、露光工程後の樹脂膜の露光部を現像液で除去することにより、樹脂膜がパターン化され、パターン樹脂膜が得られる。現像液としては、例えば、炭酸ナトリウム、水酸化ナトリウム、水酸化カリウム、ケイ酸ナトリウム、アンモニア、エチルアミン、ジエチルアミン、トリエチルアミン、トリエタノールアミン、水酸化テトラメチルアンモニウム(TMAH)等のアルカリ水溶液が好適に用いられる。これらの水溶液の塩基濃度は、0.1~10質量%とすることが好ましい。さらに、上記現像液にアルコール類又は界面活性剤を添加して使用することもできる。これらはそれぞれ、現像液100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.1~5質量部の範囲で配合することができる。現像液を用いて現像を行なう場合は、例えば、シャワー現像、スプレー現像、浸漬現像、パドル現像等の方法によって、現像液を樹脂膜上に配し、18~40℃の条件下、30~360秒間放置する。放置後、水洗しスピン乾燥を行うことでパターン樹脂膜を洗浄する。
<Development process>
In the development step, the exposed portion of the resin film after the exposure step is removed with a developer, whereby the resin film is patterned and a patterned resin film is obtained. As the developer, for example, an alkaline aqueous solution such as sodium carbonate, sodium hydroxide, potassium hydroxide, sodium silicate, ammonia, ethylamine, diethylamine, triethylamine, triethanolamine, tetramethylammonium hydroxide (TMAH) is preferably used. It is done. The base concentration of these aqueous solutions is preferably 0.1 to 10% by mass. Furthermore, an alcohol or a surfactant can be added to the developer. Each of these can be blended in an amount of preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the developer. When development is performed using a developer, the developer is placed on the resin film by a method such as shower development, spray development, immersion development, paddle development, and the like, and the conditions are 18 to 40 ° C., and 30 to 360. Leave for seconds. After leaving, the pattern resin film is washed by washing with water and spin drying.
<加熱処理工程>
 次いで、加熱処理工程では、パターン樹脂膜を加熱処理することにより、パターン硬化膜を形成することができる。加熱処理工程における加熱温度は、半導体装置に対する熱によるダメージを充分に防止する点から、250℃以下が好ましく、230℃以下がより好ましい。
<Heat treatment process>
Next, in the heat treatment step, the pattern cured film can be formed by heat treating the pattern resin film. The heating temperature in the heat treatment step is preferably 250 ° C. or less and more preferably 230 ° C. or less from the viewpoint of sufficiently preventing damage to the semiconductor device due to heat.
 加熱処理は、例えば、石英チューブ炉、ホットプレート、ラピッドサーマルアニール、縦型拡散炉、赤外線硬化炉、電子線硬化炉、マイクロ波硬化炉等のオーブンを用いて行うことができる。また、大気中又は窒素等の不活性雰囲気中いずれを選択することもできるが、窒素下で行う方がパターンの酸化を防ぐことができるので望ましい。上述の好ましい加熱温度の範囲は従来の加熱温度よりも低いため、支持基板及び半導体装置へのダメージを小さく抑えることができる。従って、本実施形態のレジストパターンの製造方法を用いることによって、電子デバイスを歩留まり良く製造することができる。また、プロセスの省エネルギー化につながる。さらに、本実施形態のポジ型感光性樹脂組成物によれば、感光性ポリイミド等に見られる加熱処理工程における体積収縮(硬化収縮)が小さいため、寸法精度の低下を防ぐことができる。 The heat treatment can be performed, for example, using an oven such as a quartz tube furnace, a hot plate, rapid thermal annealing, a vertical diffusion furnace, an infrared curing furnace, an electron beam curing furnace, a microwave curing furnace. In addition, either air or an inert atmosphere such as nitrogen can be selected. However, it is preferable to perform the process under nitrogen because the oxidation of the pattern can be prevented. Since the above-mentioned preferable heating temperature range is lower than the conventional heating temperature, damage to the support substrate and the semiconductor device can be reduced. Therefore, electronic devices can be manufactured with a high yield by using the resist pattern manufacturing method of the present embodiment. It also leads to energy savings in the process. Furthermore, according to the positive photosensitive resin composition of the present embodiment, the volumetric shrinkage (curing shrinkage) in the heat treatment step found in photosensitive polyimide or the like is small, so that a reduction in dimensional accuracy can be prevented.
 加熱処理工程における加熱処理時間は、ポジ型感光性樹脂組成物が硬化するのに充分な時間であればよいが、作業効率との兼ね合いから、5時間以下が好ましい。 The heat treatment time in the heat treatment step may be a time sufficient for the positive photosensitive resin composition to cure, but is preferably 5 hours or less in view of work efficiency.
 また、加熱処理は、上述のオーブンの他、マイクロ波硬化装置又は周波数可変マイクロ波硬化装置を用いて行うこともできる。これらの装置を用いることにより、基板及び半導体装置の温度を例えば200℃以下に保ったままで、感光性樹脂膜のみを効果的に加熱することが可能である(J.Photopolym.Sci.Technol.,18,327-332(2005)参照)。 The heat treatment can also be performed using a microwave curing device or a variable frequency microwave curing device in addition to the above-described oven. By using these devices, it is possible to effectively heat only the photosensitive resin film while keeping the temperature of the substrate and the semiconductor device at, for example, 200 ° C. or less (J. Photopolym. Sci. Technol., 18, 327-332 (2005)).
 上述の本実施形態のパターン硬化膜の製造方法によれば、充分に高い感度及び解像度で、密着性及び熱衝撃性にも優れるパターン硬化膜が得られる。 According to the method for producing a cured pattern film of the present embodiment described above, a cured pattern film having sufficiently high sensitivity and resolution, and excellent adhesion and thermal shock properties can be obtained.
[層間絶縁層、表面保護層]
 本実施形態のパターン硬化膜は、半導体素子の層間絶縁層又は表面保護層として用いることができる。
[Interlayer insulation layer, surface protective layer]
The pattern cured film of this embodiment can be used as an interlayer insulating layer or a surface protective layer of a semiconductor element.
[半導体素子]
 一実施形態の半導体素子は、本実施形態の層間絶縁層又は表面保護層を備える。本実施形態の半導体素子は、特に制限に制限されないが、多層配線構造、再配線構造等を有する、メモリ、パッケージ等のことを意味する。
[Semiconductor element]
The semiconductor element of one embodiment includes the interlayer insulating layer or the surface protective layer of this embodiment. The semiconductor element of the present embodiment is not particularly limited, but means a memory, a package, or the like having a multilayer wiring structure, a rewiring structure, or the like.
 ここで、半導体素子の製造工程の一例を図面に基づいて説明する。図1~5は、多層配線構造を有する半導体素子の製造工程の一実施形態を示す概略斜視図及び概略端面図である。図1~5中、(a)は概略斜視図であり、(b)は、それぞれ(a)におけるIb-Ib~Vb-Vb端面を示す概略端面図である。 Here, an example of the manufacturing process of the semiconductor element will be described with reference to the drawings. 1 to 5 are a schematic perspective view and a schematic end view showing an embodiment of a manufacturing process of a semiconductor device having a multilayer wiring structure. 1 to 5, (a) is a schematic perspective view, and (b) is a schematic end view showing Ib-Ib to Vb-Vb end surfaces in (a), respectively.
 まず、図1に示す構造体100を準備する。構造体100は、回路素子を有するSi基板等の半導体基板1と、回路素子が露出する所定のパターンを有し、半導体基板1を被覆するシリコン酸化膜等の保護膜2と、露出した回路素子上に形成された第1導体層3と、保護膜2及び第1導体層3上にスピンコート法等により成膜されたポリイミド樹脂等からなる層間絶縁層4とを備える。 First, the structure 100 shown in FIG. 1 is prepared. The structure 100 includes a semiconductor substrate 1 such as a Si substrate having circuit elements, a protective film 2 such as a silicon oxide film covering the semiconductor substrate 1 and having a predetermined pattern from which the circuit elements are exposed, and exposed circuit elements. A first conductor layer 3 formed thereon, and an interlayer insulating layer 4 made of polyimide resin or the like formed on the protective film 2 and the first conductor layer 3 by a spin coat method or the like are provided.
 次に、層間絶縁層4上に窓部6Aを有する感光性樹脂層5を形成することにより、図2に示す構造体200を得る。感光性樹脂層5は、例えば、塩化ゴム系、フェノールノボラック系、ポリヒドロキシスチレン系、ポリアクリル酸エステル系等の感光性樹脂を、スピンコート法により塗布することにより形成される。窓部6Aは、公知の写真食刻技術によって所定部分の層間絶縁層4が露出するように形成される。 Next, by forming the photosensitive resin layer 5 having the window 6A on the interlayer insulating layer 4, the structure 200 shown in FIG. 2 is obtained. The photosensitive resin layer 5 is formed, for example, by applying a photosensitive resin such as chlorinated rubber, phenol novolac, polyhydroxystyrene, or polyacrylate ester by a spin coating method. The window 6A is formed so that a predetermined portion of the interlayer insulating layer 4 is exposed by a known photolithography technique.
 層間絶縁層4をエッチングして窓部6Bを形成した後に、感光性樹脂層5を除去し、図3に示す構造体300を得る。層間絶縁層4のエッチングには、酸素、四フッ化炭素等のガスを用いるドライエッチング手段を用いることができる。このエッチングにより、窓部6Aに対応する部分の層間絶縁層4が選択的に除去され、第1導体層3が露出するように窓部6Bが設けられた層間絶縁層4が得られる。次いで、窓部6Bから露出した第1導体層3を腐食することなく、感光性樹脂層5のみを腐食するようなエッチング溶液を用いて感光性樹脂層5を除去する。 After the interlayer insulating layer 4 is etched to form the window 6B, the photosensitive resin layer 5 is removed to obtain the structure 300 shown in FIG. For etching the interlayer insulating layer 4, dry etching means using a gas such as oxygen or carbon tetrafluoride can be used. By this etching, the portion of the interlayer insulating layer 4 corresponding to the window portion 6A is selectively removed, and the interlayer insulating layer 4 provided with the window portion 6B so that the first conductor layer 3 is exposed is obtained. Next, the photosensitive resin layer 5 is removed using an etching solution that corrodes only the photosensitive resin layer 5 without corroding the first conductor layer 3 exposed from the window 6B.
 さらに、窓部6Bに対応する部分に第2導体層7を形成し、図4に示す構造体400を得る。第2導体層7の形成には、公知の写真食刻技術を用いることができる。これにより、第2導体層7と第1導体層3との電気的接続が行われる。 Further, the second conductor layer 7 is formed in a portion corresponding to the window portion 6B, and the structure 400 shown in FIG. 4 is obtained. A known photolithography technique can be used to form the second conductor layer 7. As a result, the second conductor layer 7 and the first conductor layer 3 are electrically connected.
 最後に、層間絶縁層4及び第2導体層7上に表面保護層8を形成し、図5に示す半導体素子500を得る。本実施形態では、表面保護層8は次のようにして形成する。まず、上述の感光性樹脂組成物をスピンコート法により層間絶縁層4及び第2導体層7上に塗布し、乾燥して感光性樹脂膜を形成する。次に、所定部分に窓部6Cに対応するパターンを描いたマスクを介して光照射した後、露光後の樹脂膜をアルカリ水溶液にて現像してパターン樹脂膜を形成する。その後、パターン樹脂膜を加熱により硬化することで、表面保護層8として用いられるパターン硬化膜が形成される。この表面保護層8は、第1導体層3及び第2導体層7を外部からの応力、α線等から保護するものであり、本実施形態の表面保護層8を用いた半導体素子500は信頼性に優れる。 Finally, the surface protective layer 8 is formed on the interlayer insulating layer 4 and the second conductor layer 7 to obtain the semiconductor element 500 shown in FIG. In the present embodiment, the surface protective layer 8 is formed as follows. First, the photosensitive resin composition described above is applied onto the interlayer insulating layer 4 and the second conductor layer 7 by spin coating, and dried to form a photosensitive resin film. Next, after irradiating light through a mask on which a pattern corresponding to the window portion 6C is drawn at a predetermined portion, the exposed resin film is developed with an alkaline aqueous solution to form a patterned resin film. Thereafter, the pattern resin film used as the surface protective layer 8 is formed by curing the pattern resin film by heating. The surface protective layer 8 protects the first conductor layer 3 and the second conductor layer 7 from external stress, α rays, and the like, and the semiconductor element 500 using the surface protective layer 8 of the present embodiment is reliable. Excellent in properties.
 なお、上述の実施形態では2層の配線構造を有する半導体素子の製造方法を示したが、3層以上の多層配線構造を形成する場合は、上述の工程を繰り返して行い、各層を形成することができる。すなわち、層間絶縁層4を形成する各工程、及び表面保護層8を形成する各工程を繰り返すことによって、多層のパターンを形成することが可能である。また、上記例において、表面保護層8のみでなく、層間絶縁層4も本実施形態の感光性樹脂組成物を用いて形成することが可能である。
 本実施形態の電子デバイスは、上述のポジ型感光性樹脂組成物を用いて形成される表面保護層、カバーコート層又は層間絶縁層を有するものに限られず、様々な構造をとることができる。
In the above-described embodiment, a method for manufacturing a semiconductor device having a two-layer wiring structure has been described. However, when a multilayer wiring structure having three or more layers is formed, the above steps are repeated to form each layer. Can do. That is, it is possible to form a multilayer pattern by repeating each step of forming the interlayer insulating layer 4 and each step of forming the surface protective layer 8. In the above example, not only the surface protective layer 8 but also the interlayer insulating layer 4 can be formed using the photosensitive resin composition of the present embodiment.
The electronic device of the present embodiment is not limited to one having a surface protective layer, a cover coat layer, or an interlayer insulating layer formed using the positive photosensitive resin composition described above, and can have various structures.
 図6及び7は、再配線構造を有する半導体素子の一実施形態を示す概略断面図である。本実施形態の感光性樹脂組成物は、応力緩和性、接着性等にも優れるため、近年開発された図6及び7のような再配線構造を有する半導体素子において使用することができる。 6 and 7 are schematic cross-sectional views showing an embodiment of a semiconductor device having a rewiring structure. Since the photosensitive resin composition of this embodiment is excellent in stress relaxation property, adhesiveness, and the like, it can be used in a semiconductor element having a rewiring structure as shown in FIGS.
 図6は、半導体素子の一実施形態としての配線構造を示す概略断面図である。図6に示す半導体素子600は、シリコン基板23と、シリコン基板23の一方面側に設けられた層間絶縁層11と、層間絶縁層11上に形成された、パッド部15を含むパターンを有するAl配線層12と、パッド部15上に開口を形成しながら層間絶縁層11及びAl配線層12上に順次積層された絶縁層13(例えば、P-SiN層等)及び表面保護層14と、表面保護層14上で開口近傍に配された島状のコア18と、絶縁層13及び表面保護層14の開口内でパッド部15と接するとともにコア18の表面保護層14とは反対側の面に接するように表面保護層14上に延在する再配線層16とを備える。さらに、半導体素子600は、表面保護層14、コア18及び再配線層16を覆って形成され、コア18上の再配線層16の部分に開口が形成されているカバーコート層19と、カバーコート層19の開口においてバリアメタル20を間に挟んで再配線層16と接続された導電性ボール17と、導電性ボールを保持するカラー21と、導電性ボール17周囲のカバーコート層19上に設けられたアンダーフィル22とを備える。導電性ボール17は外部接続端子として用いられ、はんだ、金等から形成される。アンダーフィル22は、半導体素子600を実装する際に応力を緩和するために設けられている。 FIG. 6 is a schematic cross-sectional view showing a wiring structure as one embodiment of a semiconductor element. A semiconductor element 600 shown in FIG. 6 includes a silicon substrate 23, an interlayer insulating layer 11 provided on one side of the silicon substrate 23, and an Al having a pattern including a pad portion 15 formed on the interlayer insulating layer 11. A wiring layer 12, an insulating layer 13 (for example, a P-SiN layer) and a surface protective layer 14, which are sequentially stacked on the interlayer insulating layer 11 and the Al wiring layer 12 while forming an opening on the pad portion 15, and a surface; The island-shaped core 18 disposed in the vicinity of the opening on the protective layer 14 and the pad portion 15 in the opening of the insulating layer 13 and the surface protective layer 14, and on the surface opposite to the surface protective layer 14 of the core 18. And a rewiring layer 16 extending on the surface protective layer 14 so as to be in contact therewith. Furthermore, the semiconductor element 600 is formed so as to cover the surface protective layer 14, the core 18, and the rewiring layer 16, and a cover coat layer 19 in which an opening is formed in a portion of the rewiring layer 16 on the core 18. The conductive ball 17 connected to the rewiring layer 16 with the barrier metal 20 interposed therebetween in the opening of the layer 19, the collar 21 that holds the conductive ball, and the cover coat layer 19 around the conductive ball 17 are provided. The underfill 22 is provided. The conductive ball 17 is used as an external connection terminal and is formed of solder, gold or the like. The underfill 22 is provided to relieve stress when the semiconductor element 600 is mounted.
 図7の半導体素子700においては、シリコン基板23上にAl配線層(図示せず)及びAl配線層のパッド部15が形成されており、その上部には絶縁層13が形成され、さらに素子の表面保護層14が形成されている。パッド部15上には、再配線層16が形成され、この再配線層16は、導電性ボール17との接続部24の上部まで伸びている。さらに、表面保護層14の上には、カバーコート層19が形成されている。再配線層16は、バリアメタル20を介して導電性ボール17に接続されている。 In the semiconductor element 700 of FIG. 7, an Al wiring layer (not shown) and an Al wiring layer pad portion 15 are formed on a silicon substrate 23, and an insulating layer 13 is formed on the Al wiring layer. A surface protective layer 14 is formed. A rewiring layer 16 is formed on the pad portion 15, and the rewiring layer 16 extends to an upper portion of the connection portion 24 with the conductive ball 17. Further, a cover coat layer 19 is formed on the surface protective layer 14. The rewiring layer 16 is connected to the conductive ball 17 through the barrier metal 20.
 図6及び7の半導体素子において、感光性樹脂組成物は、層間絶縁層11及び表面保護層14ばかりではなく、カバーコート層19、コア18、カラー21、アンダーフィル22等を形成するための材料として使用することができる。本実施形態の感光性樹脂組成物を用いたパターン硬化膜は、Al配線層12若しくは再配線層16等のメタル層又は封止剤等との接着性に優れ、応力緩和効果も高いため、このパターン硬化膜を層間絶縁層11、表面保護層14、カバーコート層19、コア18、はんだ等のカラー21、フリップチップ等で用いられるアンダーフィル22等に用いた半導体素子は、極めて信頼性に優れるものとなる。 6 and 7, the photosensitive resin composition is a material for forming not only the interlayer insulating layer 11 and the surface protective layer 14, but also the cover coat layer 19, the core 18, the collar 21, the underfill 22, and the like. Can be used as Since the pattern cured film using the photosensitive resin composition of the present embodiment is excellent in adhesion with a metal layer such as the Al wiring layer 12 or the rewiring layer 16 or a sealing agent, and has a high stress relaxation effect, A semiconductor element in which a pattern cured film is used for an interlayer insulating layer 11, a surface protective layer 14, a cover coat layer 19, a core 18, a collar 21 such as solder, an underfill 22 used in a flip chip or the like is extremely excellent in reliability. It will be a thing.
 本実施形態の感光性樹脂組成物は、図6及び7における再配線層16を有する半導体素子の層間絶縁層11、表面保護層14又はカバーコート層19に用いることが好適である。 The photosensitive resin composition of the present embodiment is preferably used for the interlayer insulating layer 11, the surface protective layer 14 or the cover coat layer 19 of the semiconductor element having the rewiring layer 16 in FIGS.
 層間絶縁層11、表面保護層14及び上記カバーコート層19の膜厚は、3~20μmであることが好ましく、5~15μmであることがより好ましい。 The film thickness of the interlayer insulating layer 11, the surface protective layer 14 and the cover coat layer 19 is preferably 3 to 20 μm, and more preferably 5 to 15 μm.
[電子デバイス]
 一実施形態の電子デバイスは、本実施形態の半導体素子を有する。電子デバイスとは、上述の半導体素子を含むものであり、例えば、携帯電話、スマートフォン、タブレット型端末、パソコン、ハードディスクサスペンション等が挙げられる。
[Electronic device]
The electronic device of one embodiment has the semiconductor element of this embodiment. The electronic device includes the above-described semiconductor element, and examples thereof include a mobile phone, a smartphone, a tablet terminal, a personal computer, and a hard disk suspension.
 以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited thereto.
 実施例で用いた材料を以下に示す。 The materials used in the examples are shown below.
[(A)成分]
A1:4-ヒドロキシスチレンの重合体(重量平均分子量=10000、丸善石油化学株式会社製、商品名「マルカリンカーM」)
A2:4-ヒドロキシスチレン/スチレン=85/15(モル比)の共重合体(重量平均分子量=10000、丸善石油化学株式会社製、商品名「マルカリンカーCST」)
A3:4-ヒドロキシスチレン/メタクリル酸メチル=70/30(モル比)の共重合体(重量平均分子量=12000、丸善石油化学株式会社製、商品名「マルカリンカーCMM」)
A4:クレゾールノボラック樹脂(クレゾール/ホルムアルデヒドノボラック樹脂、m-クレゾール/p-クレゾール(モル比)=60/40、重量平均分子量=12000、旭有機材株式会社製、商品名「EP4020G」)
[(A) component]
A1: Polymer of 4-hydroxystyrene (weight average molecular weight = 10000, manufactured by Maruzen Petrochemical Co., Ltd., trade name “Marcalinker M”)
A2: 4-hydroxystyrene / styrene = 85/15 (molar ratio) copolymer (weight average molecular weight = 10000, manufactured by Maruzen Petrochemical Co., Ltd., trade name “Marcalinker CST”)
A3: Copolymer of 4-hydroxystyrene / methyl methacrylate = 70/30 (molar ratio) (weight average molecular weight = 12000, manufactured by Maruzen Petrochemical Co., Ltd., trade name “Marcalinker CMM”)
A4: Cresol novolak resin (cresol / formaldehyde novolak resin, m-cresol / p-cresol (molar ratio) = 60/40, weight average molecular weight = 12000, manufactured by Asahi Organic Materials Co., Ltd., trade name “EP4020G”)
 なお、重量平均分子量は、それぞれゲルパーミエーションクロマトグラフィー(GPC)法を用いて、標準ポリスチレン換算により求めた。 In addition, the weight average molecular weight was calculated | required by standard polystyrene conversion, respectively using the gel permeation chromatography (GPC) method.
 具体的には、以下の装置及び条件にて重量平均分子量を測定した。
測定装置:
 検出器:株式会社日立製作所製L4000UV
 ポンプ:株式会社日立製作所製L6000
 カラム:Gelpack GL-S300MDT-5×2本
測定条件:
 溶離液:THF
 LiBr(0.03mol/l)、HPO(0.06mol/l)
 流速:1.0ml/分、検出器:UV270nm
 試料0.5mgに対して溶媒[THF/DMF=1/1(容積比)]1mlの溶液を用いて測定した。
Specifically, the weight average molecular weight was measured with the following apparatus and conditions.
measuring device:
Detector: L4000UV manufactured by Hitachi, Ltd.
Pump: Hitachi Ltd. L6000
Column: Gelpack GL-S300MDT-5 × 2 Measurement conditions:
Eluent: THF
LiBr (0.03 mol / l), H 3 PO 4 (0.06 mol / l)
Flow rate: 1.0 ml / min, detector: UV 270 nm
The measurement was performed using a solution of 1 ml of a solvent [THF / DMF = 1/1 (volume ratio)] with respect to 0.5 mg of the sample.
[(B)成分]
B1:一般式(1)のR~Rが全てメチル基である化合物(ヘキサキス(メトキシメチル)メラミン、株式会社三和ケミカル製、商品名「ニカラックMW-30HM」、分子量:390.4)
B2:一般式(2)のR~R12が全てメチル基である化合物(本州化学工業株式会社製、商品名「HMOM-TPPA」、分子量688.9)
[Component (B)]
B1: Compound in which R 1 to R 6 in the general formula (1) are all methyl groups (hexakis (methoxymethyl) melamine, manufactured by Sanwa Chemical Co., Ltd., trade name “Nicalak MW-30HM”, molecular weight: 390.4)
B2: a compound in which R 7 to R 12 in the general formula (2) are all methyl groups (manufactured by Honshu Chemical Industry Co., Ltd., trade name “HMOM-TPPA”, molecular weight 688.9)
[(C)成分]
C1:3官能エポキシ化合物(一般式(3)のR13~R15が全てメチレン基である化合物、日産化学工業株式会社製、商品名「TEPIC-L」、分子量:297.3)
C2:3官能エポキシ化合物(一般式(3)のR13~R15が全てn-プロピレン基である化合物、日産化学工業株式会社製、商品名「TEPIC-VL」、分子量:381.4)
C3:3官能エポキシ化合物(一般式(3)のR13~R15が全てn-へキシレン基である化合物、日産化学工業株式会社製、商品名「TEPIC-FL」、分子量:507.7)
C4:3官能エポキシ化合物(下記式(X)で表される化合物、株式会社プリンテック製、商品名「TECHMORE VG3101L」、分子量:592.7)
Figure JPOXMLDOC01-appb-C000024
C5:2官能エポキシ化合物(ポリエチレングリコール#400ジグリシジルエーテル、共栄社化学株式会社製、商品名「エポライト400E」、分子量:526.6)
[Component (C)]
C1: Trifunctional epoxy compound (a compound in which R 13 to R 15 in the general formula (3) are all methylene groups, manufactured by Nissan Chemical Industries, Ltd., trade name “TEPIC-L”, molecular weight: 297.3)
C2: Trifunctional epoxy compound (a compound in which R 13 to R 15 in the general formula (3) are all n-propylene groups, manufactured by Nissan Chemical Industries, Ltd., trade name “TEPIC-VL”, molecular weight: 381.4)
C3: Trifunctional epoxy compound (a compound in which R 13 to R 15 in the general formula (3) are all n-hexylene groups, manufactured by Nissan Chemical Industries, Ltd., trade name “TEPIC-FL”, molecular weight: 507.7)
C4: Trifunctional epoxy compound (compound represented by the following formula (X), manufactured by Printec Co., Ltd., trade name “TECHMORE VG3101L”, molecular weight: 592.7)
Figure JPOXMLDOC01-appb-C000024
C5: Bifunctional epoxy compound (polyethylene glycol # 400 diglycidyl ether, manufactured by Kyoeisha Chemical Co., Ltd., trade name “Epolite 400E”, molecular weight: 526.6)
[(D)成分]
D1:撹拌機、窒素導入管及び温度計を備えた100mlの三口フラスコに、乳酸エチル55gを秤取し、別途に秤取した重合性単量体(アクリル酸n-ブチル(BA)34.7g、アクリル酸ラウリル(LA)2.2g、アクリル酸(AA)3.9g、アクリル酸ヒドロキシブチル(HBA)2.6g及び1,2,2,6,6-ペンタメチルピペリジン-4-イルメタクリレート(商品名:FA-711MM、日立化成株式会社製)1.7g、並びにアゾビスイソブチロニトリル(AIBN)0.29gを加えた。室温にて約160rpmの撹拌回転数で撹拌しながら、窒素ガスを400ml/分の流量で30分間流し、溶存酸素を除去した。その後、窒素ガスの流入を止め、フラスコを密閉し、恒温水槽にて約25分で65℃まで昇温した。同温度を10時間保持して重合反応を行い、エラストマD1を得た。この際の重合率は99%であった。また、このD1の重量平均分子量は、約22000であった。なお、エラストマD1における重合性単量体のモル比は以下のとおりである。
BA/LA/AA/HBA/FA-711MM=70.5/2.5/20/5/2(mol%)
[(D) component]
D1: 55 g of ethyl lactate was weighed into a 100 ml three-necked flask equipped with a stirrer, a nitrogen introducing tube and a thermometer, and separately weighed polymerizable monomer (n-butyl acrylate (BA) 34.7 g) Lauryl acrylate (LA) 2.2 g, acrylic acid (AA) 3.9 g, hydroxybutyl acrylate (HBA) 2.6 g, and 1,2,2,6,6-pentamethylpiperidin-4-yl methacrylate ( Product name: FA-711MM (manufactured by Hitachi Chemical Co., Ltd.) (1.7 g) and azobisisobutyronitrile (AIBN) (0.29 g) were added, and nitrogen gas was stirred while stirring at room temperature with a stirring speed of about 160 rpm. Was dissolved at a flow rate of 400 ml / min for 30 minutes to remove dissolved oxygen, and then the inflow of nitrogen gas was stopped, the flask was sealed, and the temperature was raised to 65 ° C. in a constant temperature water bath in about 25 minutes. The polymerization reaction was carried out while maintaining the same temperature for 10 hours to obtain an elastomer D1, in which the polymerization rate was 99%, and the weight average molecular weight of D1 was about 22000. The molar ratio of the polymerizable monomer in the elastomer D1 is as follows.
BA / LA / AA / HBA / FA-711MM = 70.5 / 2.5 / 20/5/2 (mol%)
 なお、(D)成分の重量平均分子量は、(A)成分の重量平均分子量の測定と同様の方法により求めた。 In addition, the weight average molecular weight of (D) component was calculated | required by the method similar to the measurement of the weight average molecular weight of (A) component.
[(E)成分]
E1:下記式(Y)で表される化合物(ダイトーケミックス株式会社製、商品名「PA-28」)
Figure JPOXMLDOC01-appb-C000025
[(E) component]
E1: Compound represented by the following formula (Y) (manufactured by Daitokemix Co., Ltd., trade name “PA-28”)
Figure JPOXMLDOC01-appb-C000025
(実施例1~9及び比較例1~3)
 表1に示す配合量(質量部)の(A)~(C)成分、溶剤として乳酸エチル120質量部を配合し、これを3μm孔のテフロン(登録商標)フィルターを用いて加圧ろ過して、実施例1~9及び比較例1~3のポジ型感光性樹脂組成物を調製した。
(Examples 1 to 9 and Comparative Examples 1 to 3)
Ingredients (A) to (C) of the blending amounts (parts by mass) shown in Table 1 and 120 parts by mass of ethyl lactate as a solvent were blended, and this was subjected to pressure filtration using a Teflon (registered trademark) filter having 3 μm pores. The positive photosensitive resin compositions of Examples 1 to 9 and Comparative Examples 1 to 3 were prepared.
<ポジ型感光性樹脂組成物の評価>
(硬化膜の作製)
 実施例1~9及び比較例1~3のポジ型感光性樹脂組成物を6インチシリコン基板上にスピンコートして、120℃で3分間加熱し、膜厚約12~14μmの樹脂膜を形成した。その後、樹脂膜を以下の(i)の方法で加熱処理(硬化)し、膜厚約10μmの硬化膜を得た。
(i)縦型拡散炉(光洋サーモシステム社製、商品名「μ-TF」)を用い、窒素中、温度230℃(昇温時間1.5時間)で2時間、樹脂膜を加熱処理した。
<Evaluation of positive photosensitive resin composition>
(Production of cured film)
The positive photosensitive resin compositions of Examples 1 to 9 and Comparative Examples 1 to 3 are spin-coated on a 6-inch silicon substrate and heated at 120 ° C. for 3 minutes to form a resin film having a thickness of about 12 to 14 μm. did. Thereafter, the resin film was heat-treated (cured) by the following method (i) to obtain a cured film having a thickness of about 10 μm.
(I) Using a vertical diffusion furnace (trade name “μ-TF” manufactured by Koyo Thermo Systems Co., Ltd.), the resin film was heat-treated in nitrogen at a temperature of 230 ° C. (temperature increase time: 1.5 hours) for 2 hours. .
(薬液膨潤率)
 上述の(硬化膜の作製)で得られた硬化膜上に、薬液としてフラックス(千住金属工業株式会社製、商品名「WF-6300LF」)を塗布し、260℃で3分加熱処理を行った後に、水洗して薬液を除去した。薬液処理前後での硬化膜の膜厚を測定し、以下の式から薬液膨潤率を算出した。薬液膨潤率は、数値が小さい(25%以下)ほど、良好であることを意味する。結果を表1に示す。
 薬液膨潤率(%)=[(薬液処理後の硬化膜の膜厚)/(薬液処理前の硬化膜の膜厚)-1]×100
(Chemical solution swelling rate)
On the cured film obtained in the above (preparation of cured film), flux (Senju Metal Industry Co., Ltd., trade name “WF-6300LF”) was applied as a chemical solution, and heat treatment was performed at 260 ° C. for 3 minutes. Later, the chemical solution was removed by washing with water. The thickness of the cured film was measured before and after the chemical treatment, and the chemical swelling rate was calculated from the following formula. A chemical | medical solution swelling rate means that it is so favorable that a numerical value is small (25% or less). The results are shown in Table 1.
Chemical solution swelling rate (%) = [(film thickness of cured film after chemical solution treatment) / (film thickness of cured film before chemical solution treatment) −1] × 100
(残留応力)
 上述の(硬化膜の作製)で得られた硬化膜の残留応力を応力測定装置(ケーエルエー・テンコール社製、FLX-2320型)を用いて測定した。残留応力は、数値が小さい(20MPa以下)ほど、良好であることを意味する。結果を表1に示す。
(Residual stress)
The residual stress of the cured film obtained in the above (Preparation of cured film) was measured using a stress measuring device (FLX-2320, manufactured by KLA Tencor). The smaller the numerical value (20 MPa or less), the better the residual stress. The results are shown in Table 1.
(Al密着強度)
 実施例1~9及び比較例1~3のポジ型感光性樹脂組成物を6インチアルミ基板(シリコン基板上にTiをスパッタ形成後、さらにそのTi上にアルミをスパッタ形成した基板)上にスピンコートして、120℃で3分間加熱し、膜厚11~13μmの樹脂膜を形成した。その後、上記(i)の方法で加熱処理(硬化)し、膜厚約10μmの硬化膜を得た。この硬化膜を基板とともに小片(1cm×1cm)に切断し、アルミニウム製スタッドと硬化膜とをエポキシ樹脂層を介して接合した。次に、スタッドを引っ張り、剥離時の荷重を測定した。密着強度は、数値が大きい(39.2MPa(400kgf/cm)以上)ほど、良好であることを意味する。結果を表1に示す。
(Al adhesion strength)
Spin the positive photosensitive resin compositions of Examples 1 to 9 and Comparative Examples 1 to 3 on a 6-inch aluminum substrate (a substrate on which Ti is sputter-formed on a silicon substrate and then aluminum is sputter-formed on the Ti substrate). The coated film was heated at 120 ° C. for 3 minutes to form a resin film having a film thickness of 11 to 13 μm. Thereafter, heat treatment (curing) was performed by the above method (i) to obtain a cured film having a thickness of about 10 μm. The cured film was cut into small pieces (1 cm × 1 cm) together with the substrate, and the aluminum stud and the cured film were bonded via an epoxy resin layer. Next, the stud was pulled and the load at the time of peeling was measured. The adhesion strength means that the larger the value (39.2 MPa (400 kgf / cm 2 ) or more)), the better. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 表1に示すとおり、(B)成分及び(C)成分を含有するポジ型感光性樹脂組成物は、(B)成分及び(C)成分を含有しないポジ型感光性樹脂組成物に比べて、得られる硬化膜において、残留応力が低減されており、薬液耐性及び基板との密着性においても優れていた。 As shown in Table 1, the positive photosensitive resin composition containing the component (B) and the component (C) is compared with the positive photosensitive resin composition not containing the component (B) and the component (C), In the obtained cured film, the residual stress was reduced, and the chemical solution resistance and the adhesion to the substrate were also excellent.
(実施例10、11及び比較例4~6)
 表2に示す配合量(質量部)の(A)~(E)成分、溶剤として乳酸エチル120質量部を配合し、これを3μm孔のテフロン(登録商標)フィルターを用いて加圧ろ過して、実施例10、11及び比較例4~6のポジ型感光性樹脂組成物を調製した。
(Examples 10 and 11 and Comparative Examples 4 to 6)
Ingredients (A) to (E) in the blending amounts (parts by mass) shown in Table 2 and 120 parts by mass of ethyl lactate as a solvent were blended, and this was pressure filtered using a 3 μm pore Teflon (registered trademark) filter. The positive photosensitive resin compositions of Examples 10 and 11 and Comparative Examples 4 to 6 were prepared.
<ポジ型感光性樹脂組成物の評価>
(薬液膨潤率、残留応力、密着強度)
 上述した手法と同一の手法で評価を行った。結果を表2に示す。
<Evaluation of positive photosensitive resin composition>
(Chemical swelling rate, residual stress, adhesion strength)
Evaluation was performed using the same method as described above. The results are shown in Table 2.
(パターン硬化膜の作製)
 実施例10、11及び比較例4~6のポジ型感光性樹脂組成物を6インチシリコン基板上にスピンコートして、120℃で3分間加熱し、膜厚約12~14μmの樹脂膜を形成した。その後、この樹脂膜をプロキシミティ露光機(キャノン社製、商品名「PLA-600FA」)を用いて、マスクを介して全波長で、最小露光量の2倍の露光量で露光を行った。露光後、TMAH(テトラメチルアンモニウムヒドロキシド)の2.38質量%水溶液を用いて現像を行い、10mm幅のパターン樹脂膜を得た。その後、パターン樹脂膜を以下の(i)の方法で加熱処理(硬化)し、膜厚約10μmのパターン硬化膜を得た。
(i)縦型拡散炉(光洋サーモシステム社製、商品名「μ-TF」)を用い、窒素中、温度230℃(昇温時間1.5時間)で2時間、パターン樹脂膜を加熱処理した。
(Preparation of pattern cured film)
The positive photosensitive resin compositions of Examples 10 and 11 and Comparative Examples 4 to 6 were spin-coated on a 6 inch silicon substrate and heated at 120 ° C. for 3 minutes to form a resin film having a thickness of about 12 to 14 μm. did. Thereafter, this resin film was exposed using a proximity exposure machine (trade name “PLA-600FA”, manufactured by Canon Inc.) at an exposure amount twice the minimum exposure amount at all wavelengths through a mask. After the exposure, development was performed using a 2.38 mass% aqueous solution of TMAH (tetramethylammonium hydroxide) to obtain a 10 mm wide pattern resin film. Thereafter, the pattern resin film was heat-treated (cured) by the following method (i) to obtain a pattern cured film having a thickness of about 10 μm.
(I) Using a vertical diffusion furnace (trade name “μ-TF” manufactured by Koyo Thermo Systems Co., Ltd.), heat treatment is performed on the patterned resin film in nitrogen at a temperature of 230 ° C. (temperature increase time: 1.5 hours) for 2 hours. did.
(硬化後破断強度、硬化後破断伸び)
 得られたパターン硬化膜の破断強度及び破断伸びをオートグラフAGS-H100N(株式会社島津製作所製)を用いて測定した。試料の幅は10mm、膜厚は9~11μmであり、チャック間は20mmとした。引っ張り速度は5mm/分で、測定温度は20℃~25℃とした。同一条件で得たパターン硬化膜から得た5本以上の試験片の測定値の平均を「破断強度」及び「破断伸び」とした。破断強度は、数値が大きい(100MPa以上)ほど、良好であることを意味する。破断伸びは、数値が大きい(30%以上)ほど、良好であることを意味する。結果を表2に示す。
(Breaking strength after hardening, elongation after hardening)
The breaking strength and breaking elongation of the obtained pattern cured film were measured using an autograph AGS-H100N (manufactured by Shimadzu Corporation). The sample width was 10 mm, the film thickness was 9 to 11 μm, and the gap between chucks was 20 mm. The pulling speed was 5 mm / min, and the measurement temperature was 20 ° C. to 25 ° C. The average of the measured values of five or more test pieces obtained from the cured pattern film obtained under the same conditions was defined as “breaking strength” and “breaking elongation”. A breaking strength means that it is so favorable that a numerical value is large (100 Mpa or more). Breaking elongation means that it is so favorable that a numerical value is large (30% or more). The results are shown in Table 2.
(CTE)
 上述の(パターン硬化膜の作製)と同様の手法で得られた硬化膜の50~150℃の平均熱膨張係数(CTE)をTMA/SS600(セイコーインスツル株式会社製)を用いて測定した。測定に用いる試料は、幅を2mm、膜厚を約10μm、チャック間を10mmに調整した。また、測定条件は、荷重を10g、昇温速度を5℃/分とした。CTEは、数値が低い(70ppm/K以下)ほど、良好であることを意味する。結果を表2に示す。
(CTE)
The average thermal expansion coefficient (CTE) at 50 to 150 ° C. of the cured film obtained by the same method as the above (preparation of patterned cured film) was measured using TMA / SS600 (manufactured by Seiko Instruments Inc.). The sample used for measurement was adjusted to have a width of 2 mm, a film thickness of about 10 μm, and a gap between chucks of 10 mm. The measurement conditions were a load of 10 g and a temperature increase rate of 5 ° C./min. CTE means that it is so favorable that a numerical value is low (70 ppm / K or less). The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 表2に示すとおり、(B)成分及び(C)成分を含有し、さらに(D)成分及び(E)成分を含有するポジ型感光性樹脂組成物は、(B)成分及び(C)成分を含有しないポジ型感光性樹脂組成物に比べて、得られる硬化膜において、残留応力が低減されており、薬液耐性及び基板との密着性においても優れていた。また、得られるパターン硬化膜は、破断強度、破断伸び及び熱膨張係数においても、優れていることが判明した。 As shown in Table 2, the positive photosensitive resin composition containing the component (B) and the component (C) and further containing the component (D) and the component (E) is composed of the component (B) and the component (C). Compared with a positive photosensitive resin composition containing no curable resin, residual stress was reduced in the resulting cured film, and the chemical resistance and adhesion to the substrate were excellent. Moreover, it turned out that the pattern cured film obtained is excellent also in breaking strength, breaking elongation, and a thermal expansion coefficient.
 以上より、本発明のポジ型感光性樹脂組成物が、残留応力が低く、薬液耐性に優れ、かつ基板との密着性に優れる硬化膜を形成することが可能であることが確認された。 From the above, it was confirmed that the positive photosensitive resin composition of the present invention can form a cured film having low residual stress, excellent chemical resistance, and excellent adhesion to the substrate.
 1…半導体基板、2…保護膜、3…第1導体層、4…層間絶縁層、5…感光性樹脂層、6A,6B,6C…窓部、7…第2導体層、8…表面保護層、11…層間絶縁層、12…Al配線層、13…絶縁層、14…表面保護層、15…パッド部、16…再配線層、17…導電性ボール、18…コア、19…カバーコート層、20…バリアメタル、21…カラー、22…アンダーフィル、23…シリコン基板、24…接続部、100,200,300,400…構造体、500,600,700…半導体素子。 DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 2 ... Protective film, 3 ... 1st conductor layer, 4 ... Interlayer insulation layer, 5 ... Photosensitive resin layer, 6A, 6B, 6C ... Window part, 7 ... 2nd conductor layer, 8 ... Surface protection 11 ... Interlayer insulating layer, 12 ... Al wiring layer, 13 ... Insulating layer, 14 ... Surface protective layer, 15 ... Pad part, 16 ... Re-wiring layer, 17 ... Conductive ball, 18 ... Core, 19 ... Cover coat Layer, 20 ... barrier metal, 21 ... color, 22 ... underfill, 23 ... silicon substrate, 24 ... connecting portion, 100, 200, 300,400 ... structure, 500,600,700 ... semiconductor element.

Claims (11)

  1.  (A)アルカリ可溶性樹脂と、
     (B)下記一般式(1)で表される化合物又は下記一般式(2)で表される化合物と、
     (C)2つ以上のエポキシ基を有する化合物と、
    を含有する、ポジ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)中、R~Rは、それぞれ独立に炭素数1~10のアルキル基を示す。]
    Figure JPOXMLDOC01-appb-C000002
    [一般式(2)中、R~R12は、それぞれ独立に炭素数1~10のアルキル基を示す。]
    (A) an alkali-soluble resin;
    (B) a compound represented by the following general formula (1) or a compound represented by the following general formula (2);
    (C) a compound having two or more epoxy groups;
    A positive photosensitive resin composition comprising:
    Figure JPOXMLDOC01-appb-C000001
    [In the general formula (1), R 1 to R 6 each independently represents an alkyl group having 1 to 10 carbon atoms. ]
    Figure JPOXMLDOC01-appb-C000002
    [In the general formula (2), R 7 to R 12 each independently represents an alkyl group having 1 to 10 carbon atoms. ]
  2.  前記(B)成分に対する前記(C)成分のモル比率が、1.0以下である、請求項1に記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to claim 1, wherein a molar ratio of the component (C) to the component (B) is 1.0 or less.
  3.  前記(C)成分が、芳香環又は複素環を有する化合物である、請求項1又は2に記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to claim 1 or 2, wherein the component (C) is a compound having an aromatic ring or a heterocyclic ring.
  4.  前記(C)成分が、下記一般式(3)で表される化合物である、請求項1~3のいずれか一項に記載のポジ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    [一般式(3)中、R13~R15は、それぞれ独立に炭素数1~10のアルキレン基を示す。]
    The positive photosensitive resin composition according to any one of claims 1 to 3, wherein the component (C) is a compound represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000003
    [In the general formula (3), R 13 to R 15 each independently represents an alkylene group having 1 to 10 carbon atoms. ]
  5.  (D)エラストマをさらに含有する、請求項1~4のいずれか一項に記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to any one of claims 1 to 4, further comprising (D) an elastomer.
  6.  (E)光により酸を生成する化合物をさらに含有する、請求項1~5のいずれか一項に記載のポジ型感光性樹脂組成物。 (E) The positive photosensitive resin composition according to any one of claims 1 to 5, further comprising a compound that generates an acid by light.
  7.  下記一般式(1)で表される化合物若しくは下記一般式(2)で表される化合物、及び2つ以上のエポキシ基を有する化合物からなるポジ型感光性樹脂用熱架橋剤。
    Figure JPOXMLDOC01-appb-C000004
    [一般式(1)中、R~Rは、それぞれ独立に炭素数1~10のアルキル基を示す。]
    Figure JPOXMLDOC01-appb-C000005
    [一般式(2)中、R~R12は、それぞれ独立に炭素数1~10のアルキル基を示す。]
    A thermal crosslinking agent for a positive photosensitive resin comprising a compound represented by the following general formula (1) or a compound represented by the following general formula (2) and a compound having two or more epoxy groups.
    Figure JPOXMLDOC01-appb-C000004
    [In the general formula (1), R 1 to R 6 each independently represents an alkyl group having 1 to 10 carbon atoms. ]
    Figure JPOXMLDOC01-appb-C000005
    [In the general formula (2), R 7 to R 12 each independently represents an alkyl group having 1 to 10 carbon atoms. ]
  8.  パターンを有し、前記パターンが請求項1~5のいずれか一項に記載のポジ型感光性樹脂組成物からなる樹脂膜の硬化物を含む、パターン硬化膜。 A cured pattern film comprising a cured product of a resin film comprising the positive photosensitive resin composition according to any one of claims 1 to 5, wherein the pattern has a pattern.
  9.  請求項1~6のいずれか一項に記載のポジ型感光性樹脂組成物を基板の一部又は全部に塗布及び乾燥して樹脂膜を形成する工程と、
     前記樹脂膜の一部又は全部を露光する工程と、
     露光後の前記樹脂膜をアルカリ水溶液によって現像してパターン樹脂膜を形成する工程と、
     前記パターン樹脂膜を加熱する工程と、
    を備える、パターン硬化膜の製造方法。
    Applying the positive photosensitive resin composition according to any one of claims 1 to 6 to a part or all of a substrate and drying to form a resin film;
    Exposing part or all of the resin film;
    Developing the resin film after exposure with an aqueous alkaline solution to form a patterned resin film;
    Heating the pattern resin film;
    A method for producing a patterned cured film.
  10.  請求項8に記載のパターン硬化膜を層間絶縁層又は表面保護層として備える、半導体素子。 A semiconductor element comprising the patterned cured film according to claim 8 as an interlayer insulating layer or a surface protective layer.
  11.  請求項10に記載の半導体素子を備える、電子デバイス。 An electronic device comprising the semiconductor element according to claim 10.
PCT/JP2017/017754 2017-05-10 2017-05-10 Positive-type photosensitive resin composition, thermal crosslinking agent for positive-type photosensitive resins, patterned cured film and method for producing same, semiconductor element, and electronic device WO2018207294A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197029304A KR102425708B1 (en) 2017-05-10 2017-05-10 Positive photosensitive resin composition, thermal crosslinking agent for positive photosensitive resin, pattern cured film and manufacturing method thereof, semiconductor element, and electronic device
CN201780090330.6A CN110582726B (en) 2017-05-10 2017-05-10 Positive photosensitive resin composition, thermal crosslinking agent for positive photosensitive resin, pattern cured film, method for producing pattern cured film, semiconductor element, and electronic device
SG11201909393S SG11201909393SA (en) 2017-05-10 2017-05-10 Positive-type photosensitive resin composition, thermal crosslinking agent for positive-type photosensitive resins, patterned cured film and method for producing same, semiconductor element, and electronic device
JP2019516802A JP7092121B2 (en) 2017-05-10 2017-05-10 Positive photosensitive resin composition, thermal cross-linking agent for positive photosensitive resin, pattern cured film and its manufacturing method, semiconductor device, and electronic device.
PCT/JP2017/017754 WO2018207294A1 (en) 2017-05-10 2017-05-10 Positive-type photosensitive resin composition, thermal crosslinking agent for positive-type photosensitive resins, patterned cured film and method for producing same, semiconductor element, and electronic device
TW107115716A TWI781171B (en) 2017-05-10 2018-05-09 Positive photosensitive resin composition, patterned cured film, method for producing the same, semiconductor element, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/017754 WO2018207294A1 (en) 2017-05-10 2017-05-10 Positive-type photosensitive resin composition, thermal crosslinking agent for positive-type photosensitive resins, patterned cured film and method for producing same, semiconductor element, and electronic device

Publications (1)

Publication Number Publication Date
WO2018207294A1 true WO2018207294A1 (en) 2018-11-15

Family

ID=64104604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017754 WO2018207294A1 (en) 2017-05-10 2017-05-10 Positive-type photosensitive resin composition, thermal crosslinking agent for positive-type photosensitive resins, patterned cured film and method for producing same, semiconductor element, and electronic device

Country Status (6)

Country Link
JP (1) JP7092121B2 (en)
KR (1) KR102425708B1 (en)
CN (1) CN110582726B (en)
SG (1) SG11201909393SA (en)
TW (1) TWI781171B (en)
WO (1) WO2018207294A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020194612A1 (en) * 2019-03-27 2020-10-01 日立化成株式会社 Resin composition, cured product, semiconductor element, and electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013015856A (en) * 2008-12-26 2013-01-24 Hitachi Chem Co Ltd Positive photosensitive resin composition, method of producing resist pattern, semiconductor device and electronic device
JP2013140338A (en) * 2011-12-09 2013-07-18 Shin Etsu Chem Co Ltd Chemically amplified negative resist composition, photo-curable dry film, manufacturing method thereof, pattern forming method, and electric/electronic part protecting film
JP2015132676A (en) * 2014-01-10 2015-07-23 信越化学工業株式会社 Negative resist material and pattern forming method using the same
JP2015188011A (en) * 2014-03-26 2015-10-29 富士フイルム株式会社 Semiconductor device and composition for forming insulation layer
JP2015206013A (en) * 2014-04-23 2015-11-19 日立化成株式会社 Photosensitive adhesive composition, method for manufacturing semiconductor device using the same, and semiconductor device
JP2016004209A (en) * 2014-06-18 2016-01-12 信越化学工業株式会社 Positive photosensitive resin composition, photocurable dry film and production method of the same, laminate, pattern forming method, and substrate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006243563A (en) * 2005-03-04 2006-09-14 Fuji Photo Film Co Ltd Photosensitive solder resist composition and photosensitive solder resist film, and permanent pattern and method for forming the same
JP4640037B2 (en) 2005-08-22 2011-03-02 Jsr株式会社 Positive photosensitive insulating resin composition and cured product thereof
JP5067028B2 (en) 2007-06-12 2012-11-07 日立化成工業株式会社 Positive photosensitive resin composition, method for producing resist pattern, and electronic device
JP4770985B2 (en) * 2007-11-12 2011-09-14 日立化成工業株式会社 Positive photosensitive resin composition, method for producing resist pattern, semiconductor device and electronic device
JP2010073948A (en) 2008-09-19 2010-04-02 Gigaphoton Inc Power supply device for pulse laser
JP5915532B2 (en) * 2010-09-16 2016-05-11 日立化成株式会社 Positive photosensitive resin composition, method for producing resist pattern, and electronic component
JP2014202849A (en) * 2013-04-03 2014-10-27 日立化成株式会社 Photosensitive adhesive composition, production method of pattern cured film using the same, and electronic component
JP2015200819A (en) * 2014-04-09 2015-11-12 日立化成デュポンマイクロシステムズ株式会社 Positive photosensitive resin composition, patterned cured film using the same, and production method thereof
JP2016177027A (en) * 2015-03-19 2016-10-06 日立化成株式会社 Photosensitive resin composition, patterned cured film formed by using the photosensitive resin composition, and organic el display device including the patterned cured film as ink-repelling bank film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013015856A (en) * 2008-12-26 2013-01-24 Hitachi Chem Co Ltd Positive photosensitive resin composition, method of producing resist pattern, semiconductor device and electronic device
JP2013140338A (en) * 2011-12-09 2013-07-18 Shin Etsu Chem Co Ltd Chemically amplified negative resist composition, photo-curable dry film, manufacturing method thereof, pattern forming method, and electric/electronic part protecting film
JP2015132676A (en) * 2014-01-10 2015-07-23 信越化学工業株式会社 Negative resist material and pattern forming method using the same
JP2015188011A (en) * 2014-03-26 2015-10-29 富士フイルム株式会社 Semiconductor device and composition for forming insulation layer
JP2015206013A (en) * 2014-04-23 2015-11-19 日立化成株式会社 Photosensitive adhesive composition, method for manufacturing semiconductor device using the same, and semiconductor device
JP2016004209A (en) * 2014-06-18 2016-01-12 信越化学工業株式会社 Positive photosensitive resin composition, photocurable dry film and production method of the same, laminate, pattern forming method, and substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020194612A1 (en) * 2019-03-27 2020-10-01 日立化成株式会社 Resin composition, cured product, semiconductor element, and electronic device
JPWO2020194612A1 (en) * 2019-03-27 2021-10-28 昭和電工マテリアルズ株式会社 Resin compositions, cured products, semiconductor devices and electronic devices
JP7151874B2 (en) 2019-03-27 2022-10-12 昭和電工マテリアルズ株式会社 Resin composition, cured product, semiconductor element and electronic device

Also Published As

Publication number Publication date
CN110582726A (en) 2019-12-17
KR102425708B1 (en) 2022-07-28
KR20200006522A (en) 2020-01-20
TW201901301A (en) 2019-01-01
SG11201909393SA (en) 2019-11-28
CN110582726B (en) 2023-08-04
TWI781171B (en) 2022-10-21
JPWO2018207294A1 (en) 2020-03-12
JP7092121B2 (en) 2022-06-28

Similar Documents

Publication Publication Date Title
JP5884837B2 (en) Photosensitive resin composition, method for producing patterned cured film, and electronic component
WO2010073948A1 (en) Positive-type photosensitive resin composition, method for producing resist pattern, semiconductor device, and electronic device
TWI442184B (en) Positive type photosensitive resin composition, fabricating method for resist pattern and electronic component
JP5904211B2 (en) Photosensitive resin composition, method for producing patterned cured film, and electronic component
JP2012226044A (en) Positive photosensitive resin composition, method for producing resist pattern, semiconductor device and electronic device
WO2013122208A1 (en) Photosensitive resin composition, method for producing patterned cured film, and electronic component
JP5679095B2 (en) Photosensitive resin composition, method for producing patterned cured film, semiconductor element and electronic device
JP2013134346A (en) Photosensitive resin composition, manufacturing method of patterned cured film, semiconductor device, and electronic component
JP2014080541A (en) Resin composition and method of manufacturing organic layer using the same, organic layer, and semiconductor element having organic layer
JP7092121B2 (en) Positive photosensitive resin composition, thermal cross-linking agent for positive photosensitive resin, pattern cured film and its manufacturing method, semiconductor device, and electronic device.
WO2020065860A1 (en) Photosensitive resin composition, pattern cured film and manufacturing method therefor, semiconductor element, and electronic device
JP6513596B2 (en) PHOTOSENSITIVE RESIN COMPOSITION, METHOD FOR MANUFACTURING PATTERN CURED FILM, SEMICONDUCTOR DEVICE AND ELECTRONIC COMPONENT
JP2020079846A (en) Photosensitive resin composition, pattern cured film and method for producing the same, semiconductor element, and electronic device
JP2018028690A (en) Photosensitive resin composition, method for producing patterned cured film, semiconductor device and electronic component
JP7287453B2 (en) Photosensitive resin composition, pattern cured film and method for producing same, semiconductor element and electronic device
WO2020079772A1 (en) Photosensitive resin composition, patterned cured film and method for producing same, semiconductor device and electronic device
JP6790461B2 (en) Method for forming photosensitive resin composition, photosensitive element, semiconductor device and resist pattern
JP2024002706A (en) Photosensitive resin composition, method for producing patterned cured film, patterned cured film, and semiconductor element
JP2020064170A (en) Photosensitive resin composition, pattern cured film and method for producing the same, semiconductor element, and electronic device
JP2015079191A (en) Photosensitive resin composition, patterned cured film and production method of the same, semiconductor element, and electronic device
JP2022043573A (en) Photosensitive resin composition, patterned cured film, method for producing the same, semiconductor element, and semiconductor device
JP2018156030A (en) Photosensitive resin composition, photosensitive element, semiconductor device, and method for forming resist pattern
JP2015022057A (en) Photosensitive resin composition, production method of patterned cured film, semiconductor element, and electronic device
KR20120129758A (en) Photosensitive composition, cured film and electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909054

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019516802

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197029304

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17909054

Country of ref document: EP

Kind code of ref document: A1