WO2020079772A1 - Photosensitive resin composition, patterned cured film and method for producing same, semiconductor device and electronic device - Google Patents

Photosensitive resin composition, patterned cured film and method for producing same, semiconductor device and electronic device Download PDF

Info

Publication number
WO2020079772A1
WO2020079772A1 PCT/JP2018/038640 JP2018038640W WO2020079772A1 WO 2020079772 A1 WO2020079772 A1 WO 2020079772A1 JP 2018038640 W JP2018038640 W JP 2018038640W WO 2020079772 A1 WO2020079772 A1 WO 2020079772A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photosensitive resin
film
resin composition
component
Prior art date
Application number
PCT/JP2018/038640
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 小峰
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2018/038640 priority Critical patent/WO2020079772A1/en
Priority to JP2020551647A priority patent/JP7264174B2/en
Publication of WO2020079772A1 publication Critical patent/WO2020079772A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders

Definitions

  • the present invention relates to a photosensitive resin composition, a patterned cured film and a method for manufacturing the same, a semiconductor element, and an electronic device.
  • a photosensitive resin composition containing an alkali-soluble resin has been developed as a material for forming an insulating layer having such characteristics (see, for example, Patent Documents 1, 2 and 3).
  • a patterned resin film (patterned resin film) is obtained by coating and drying these photosensitive resin compositions on a substrate to form a resin film, and exposing and developing the resin film. Then, the patterned resin film is heated and cured to form a patterned cured film (a patterned cured film), and the patterned cured film can be used as an insulating layer.
  • a laminate for example, a semiconductor element
  • an insulating layer formed using a photosensitive resin composition When a laminate (for example, a semiconductor element) including an insulating layer formed using a photosensitive resin composition is left at high temperature on a substrate having a copper layer, the surface of the copper layer in contact with the insulating layer is oxidized. An oxide layer may be formed and a void may be generated in the copper layer. Therefore, the cured film formed from the photosensitive resin composition is required to suppress the occurrence of voids in the copper layer.
  • the present invention aims to provide a photosensitive resin composition capable of forming a cured film capable of suppressing the occurrence of voids in a copper layer.
  • One aspect of the present invention is a photosensitive resin containing (A) a hydroxystyrene-based resin, (B) a compound having a benzotriazole skeleton, (C) an elastomer, and (D) a compound that generates an acid by light.
  • a resin composition is provided.
  • the content of the compound (B) having a benzotriazole skeleton may be 0.1 to 3 parts by mass based on 100 parts by mass of the (A) hydroxystyrene resin.
  • the (C) elastomer may be an acrylic elastomer.
  • the present invention provides a patterned cured film having a pattern, the pattern including a cured product of a resin film made of the above-mentioned photosensitive resin composition.
  • the present invention also provides a semiconductor device including the patterned cured film as an interlayer insulating layer or a surface protective layer.
  • the present invention further provides an electronic device including the semiconductor element.
  • the present invention provides, in another aspect, a step of forming a resin film by applying and drying the resin composition on a part or the whole surface of a substrate having a copper layer, and a step of exposing a part or the whole surface of the resin film. And a step of developing the exposed resin film with an alkaline aqueous solution to form a patterned resin film, and a step of heating the patterned resin film, to provide a method for producing a patterned cured film.
  • a photosensitive resin composition capable of forming a cured film capable of suppressing the occurrence of voids in a copper layer. Further, according to the present invention, it is possible to provide a patterned cured film produced using the photosensitive resin composition, a semiconductor element and an electronic device, and a method for producing a patterned cured film using the photosensitive resin composition. it can.
  • FIG. 6 is a schematic perspective view and a schematic end view illustrating an embodiment of a manufacturing process of a semiconductor device.
  • FIG. 6 is a schematic perspective view and a schematic end view illustrating an embodiment of a manufacturing process of a semiconductor device.
  • FIG. 6 is a schematic perspective view and a schematic end view illustrating an embodiment of a manufacturing process of a semiconductor device.
  • FIG. 6 is a schematic perspective view and a schematic end view illustrating an embodiment of a manufacturing process of a semiconductor device.
  • FIG. 6 is a schematic perspective view and a schematic end view illustrating an embodiment of a manufacturing process of a semiconductor device.
  • It is a schematic sectional drawing which shows one Embodiment of a semiconductor element.
  • It is a schematic sectional drawing which shows one Embodiment of a semiconductor element.
  • 4 is a micrograph of the presence or absence of voids observed in Example 1.
  • 3 is a micrograph of Comparative Example 1 showing the presence or absence of voids.
  • (meth) acrylic acid used herein means “acrylic acid” or “methacrylic acid”, and the same applies to other similar expressions such as (meth) acrylate.
  • the photosensitive resin composition of the present embodiment includes (A) a hydroxystyrene resin (hereinafter, sometimes referred to as “(A) component”) and (B) a compound having a benzotriazole skeleton (hereinafter, “(B)”). Component (also sometimes referred to as “component”), (C) elastomer (hereinafter sometimes referred to as “(C) component”), and (D) compound that produces an acid by light (hereinafter referred to as “(D) component”). In some cases).
  • the hydroxystyrene resin that is the component (A) is a resin that is soluble in an alkaline aqueous solution.
  • the alkaline aqueous solution is an alkaline aqueous solution such as a tetramethylammonium hydroxide (TMAH) aqueous solution, a metal hydroxide aqueous solution, and an organic amine aqueous solution.
  • TMAH tetramethylammonium hydroxide
  • the solubility of the component (A) in the aqueous alkaline solution can be confirmed, for example, as follows.
  • a varnish obtained by dissolving the component (A) in an arbitrary solvent is spin-coated on a substrate such as a silicon wafer to form a coating film having a thickness of about 5 ⁇ m.
  • a substrate such as a silicon wafer
  • This is immersed in either an aqueous TMAH solution, an aqueous metal hydroxide solution or an aqueous organic amine solution at 20 to 25 ° C.
  • the component (A) can be regarded as soluble in the alkaline aqueous solution.
  • the component (A) preferably has a structural unit represented by the following general formula (1).
  • R 21 represents a hydrogen atom or a methyl group
  • R 22 represents an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, and Represents an integer of 0 to 3
  • b represents an integer of 1 to 3. The sum of a and b is 5 or less.
  • Examples of the alkyl group having 1 to 10 carbon atoms represented by R 22 include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group and decyl group. . These alkyl groups may be linear or branched. Examples of the aryl group having 6 to 10 carbon atoms represented by R 22 include a phenyl group and a naphthyl group.
  • Examples of the alkoxy group having 1 to 10 carbon atoms represented by R 22 include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, a hexoxy group, a heptoxy group, an octoxy group, a nonoxy group and a decoxy group. . These alkoxy groups may be linear or branched.
  • the hydroxystyrene-based resin can be obtained by polymerizing a monomer or the like which gives the structural unit represented by the general formula (1).
  • the monomer giving the structural unit represented by the general formula (1) include p-hydroxystyrene, m-hydroxystyrene, o-hydroxystyrene, p-isopropenylphenol, m-isopropenylphenol and o-isopropenyl.
  • Examples include phenol. These monomers can be used alone or in combination of two or more.
  • the hydroxystyrene-based resin is not limited to the production method, but for example, the hydroxyl group of the monomer giving the structural unit represented by the general formula (1) is protected by a tert-butyl group, an acetyl group or the like to protect the hydroxyl group.
  • a monomer is obtained by polymerizing a monomer having a protected hydroxyl group, and the obtained polymer is further subjected to a known method (such as deprotection under an acid catalyst to convert it into a hydroxystyrene structural unit). It can be obtained by deprotecting with.
  • the hydroxystyrene-based resin may be a polymer or a copolymer consisting of only a monomer giving the structural unit represented by the general formula (1), and a monomer giving the structural unit represented by the general formula (1) may be used. It may be a copolymer with other monomers.
  • the proportion of the structural unit represented by the general formula (1) in the copolymer is 100% of the component (A) from the viewpoint of the solubility of the exposed part in an alkaline developer. 10 to 100 mol% is preferable, 20 to 97 mol% is more preferable, 30 to 95 mol% is further preferable, and 50 to 95 mol% is particularly preferable, with respect to mol%.
  • the hydroxystyrene resin is a copolymer of a monomer giving the structural unit represented by the general formula (1) and a monomer other than the monomer, the dissolution inhibiting property of the unexposed portion in the alkaline developer is further improved.
  • the hydroxystyrene-based resin may have a structural unit represented by the following general formula (2).
  • R 23 represents a hydrogen atom or a methyl group
  • R 24 represents an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms
  • c Represents an integer of 0 to 3.
  • Examples of the alkyl group having 1 to 10 carbon atoms, the aryl group having 6 to 10 carbon atoms or the alkoxy group having 1 to 10 carbon atoms represented by R 24 include the same groups as R 22 .
  • the hydroxystyrene-based resin having the structural unit represented by the general formula (2) is obtained by using a monomer which gives the structural unit represented by the general formula (2).
  • the monomer giving the structural unit represented by the general formula (2) include styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-methoxystyrene, m-methoxystyrene.
  • aromatic vinyl compounds such as p-methoxystyrene.
  • Each of these monomers may be used alone or in combination of two or more.
  • the hydroxystyrene-based resin has the structural unit represented by the general formula (2), it is represented by the general formula (2) from the viewpoint of the dissolution inhibiting property of the unexposed portion with respect to the alkaline developer and the mechanical properties of the patterned cured film.
  • the ratio of the structural unit is preferably 1 to 90 mol%, more preferably 3 to 80 mol%, further preferably 5 to 70 mol%, particularly preferably 5 to 50 mol%, relative to 100 mol% of the component (A). preferable.
  • the hydroxystyrene-based resin is a copolymer of a monomer giving the structural unit represented by the general formula (1) and a monomer other than the monomer, from the viewpoint of lowering the elastic modulus, the hydroxystyrene-based resin is You may have the structural unit represented by General formula (3).
  • R 25 represents a hydrogen atom or a methyl group
  • R 26 represents an alkyl group having 1 to 10 carbon atoms or a hydroxyalkyl group having 1 to 10 carbon atoms.
  • the hydroxystyrene-based resin having the structural unit represented by the general formula (3) can be obtained by using a monomer which gives the structural unit represented by the general formula (3).
  • the monomer giving the structural unit represented by the general formula (3) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and (meth) acrylate.
  • Each of these monomers may be used alone or in combination of two or more.
  • the hydroxystyrene-based resin has the structural unit represented by the general formula (3), it is represented by the general formula (3) from the viewpoint of dissolution inhibiting property of the unexposed portion with respect to the alkaline developer and mechanical properties of the patterned cured film.
  • the ratio of the structural unit is preferably 1 to 90 mol%, more preferably 3 to 80 mol%, further preferably 5 to 70 mol%, particularly preferably 5 to 50 mol%, relative to 100 mol% of the component (A). preferable.
  • the compound having a benzotriazole skeleton which is the component (B), is a component that suppresses the occurrence of voids in the copper layer when a cured film is formed on a substrate having a copper layer using a photosensitive resin composition. is there.
  • Examples of the component (B) include 1,2,3-benzotriazole, 5-aminobenzotriazole and 5-methylbenzotriazole.
  • As the component (B), one type can be used alone, or two or more types can be used in combination.
  • the content of the component (B) is preferably 0.1 to 3 parts by mass, more preferably 0.2 to 2 parts by mass, relative to 100 parts by mass of the component (A), from the viewpoint of further suppressing the generation of voids. More preferably, it is 0.3 to 1.5 parts by mass.
  • elastomer examples include styrene-based elastomers, olefin-based elastomers, urethane-based elastomers, polyester-based elastomers, polyamide-based elastomers, acrylic-based elastomers, and silicone-based elastomers. These may be used alone or in combination of two or more.
  • the component (C) may be an acrylic elastomer because it has excellent breaking strength, breaking elongation and thermal expansion of the cured film.
  • the acrylic elastomer may have a structural unit represented by the following general formula (4).
  • R 31 represents a hydrogen atom or a methyl group
  • R 32 represents a hydroxyalkyl group having 2 to 20 carbon atoms.
  • Examples of the hydroxyalkyl group having 2 to 20 carbon atoms represented by R 32 include hydroxyethyl group, hydroxypropyl group, hydroxybutyl group, hydroxypentyl group, hydroxyhexyl group, hydroxyheptyl group, hydroxyoctyl group and hydroxynonyl group.
  • Hydroxydecyl group Hydroxydecyl group, hydroxyundecyl group, hydroxydodecyl group (sometimes referred to as hydroxylauryl group), hydroxytridecyl group, hydroxytetradecyl group, hydroxypentadecyl group, hydroxyhexadecyl group, hydroxyheptadecyl group, hydroxy Examples include an octadecyl group, a hydroxynonadecyl group and a hydroxyeicosyl group.
  • the acrylic elastomer further has a structural unit represented by the following general formula (5), a structural unit represented by the following general formula (6), or a structural unit represented by the following general formula (7). Good.
  • R 33 represents a hydrogen atom or a methyl group
  • R 34 represents a monovalent organic group having a primary, secondary or tertiary amino group.
  • Examples of the primary, secondary or tertiary amino group represented by R 34 include aminoethyl group, N-methylaminoethyl group, N, N-dimethylaminoethyl group, N-ethylaminoethyl group, N, N -Diethylaminoethyl group, aminopropyl group, N-methylaminopropyl group, N, N-dimethylaminopropyl group, N-ethylaminopropyl group, N, N-diethylaminopropyl group, piperidin-4-yl group, 1-methyl Piperidin-4-yl group, 2,2,6,6-tetramethylpiperidin-4-yl group, 1,2,2,6,6-pentamethylpiperidin-4-yl group, (piperidin-4-yl) Examples thereof include a methyl group and a 2- (piperidin-4-yl) ethyl group.
  • R 35 represents a hydrogen atom or a methyl group
  • R 36 represents an alkyl group having 4 to 20 carbon atoms.
  • Examples of the alkyl group having 4 to 20 carbon atoms represented by R 36 include a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group and a dodecyl group (also referred to as a lauryl group. A), a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group, a nonadecyl group and an eicosyl group. These groups may be linear or branched.
  • R 37 represents a hydrogen atom or a methyl group.
  • the acrylic elastomer is, for example, a monomer which gives the structural unit represented by the general formula (4), and a structural unit represented by the general formula (5), (6) or (7) which is added as necessary. It can be obtained by blending a monomer that gives the compound, stirring in a solvent such as ethyl lactate, toluene, isopropanol, and heating if necessary.
  • the weight average molecular weight (Mw) of the acrylic elastomer is preferably 2,000 to 100,000, more preferably 3,000 to 60,000, further preferably 5,000 to 50,000, and particularly preferably 10,000 to 40,000.
  • Mw is a value obtained by measuring by gel permeation chromatography (GPC) method and converting from a standard polystyrene calibration curve.
  • the content of the component (C) is preferably 1 to 35 parts by mass, and more preferably 3 to 30 parts by mass, relative to 100 parts by mass of the component (A), from the viewpoint of more excellent breaking strength and elongation at break. More preferably, it is more preferably 5 to 25 parts by mass.
  • the compound that generates an acid by receiving light functions as a photosensitizer in the photosensitive resin composition.
  • the component (D) has a function of generating an acid upon irradiation with light and increasing the solubility of the portion of the resin film irradiated with light in an aqueous alkaline solution.
  • a compound generally called a photo-acid generator can be used as the component (D).
  • Specific examples of the component (D) include o-quinonediazide compounds, aryldiazonium salts, diaryliodonium salts and triarylsulfonium salts.
  • the component (D) may be composed of only one of these compounds, or may be composed of two or more kinds. Of these, the component (D) is preferably an o-quinonediazide compound because of its high sensitivity.
  • o-quinonediazide compound for example, a compound obtained by subjecting an o-quinonediazidesulfonyl chloride to a condensation reaction with a hydroxy compound and / or an amino compound in the presence of a dehydrochlorinating agent can be used.
  • o-quinonediazidesulfonyl chloride examples include benzoquinone-1,2-diazide-4-sulfonyl chloride, naphthoquinone-1,2-diazide-5-sulfonyl chloride and naphthoquinone-1,2-diazide-6-sulfonyl chloride.
  • hydroxy compound examples include hydroquinone, resorcinol, pyrogallol, bisphenol A, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) -1- [4- ⁇ 1- (4-hydroxyphenyl) ) -1-Methylethyl ⁇ phenyl] ethane, 2,2-bis (4-hydroxyphenyl) hexafluoropropane, 2,3,4-trihydroxybenzophenone, 2,3,4,4′-tetrahydroxybenzophenone, 2 , 2 ', 4,4'-tetrahydroxybenzophenone, 2,3,4,2', 3'-pentahydroxybenzophenone, 2,3,4,3 ', 4', 5'-hexahydroxybenzophenone, bis ( 2,3,4-trihydroxyphenyl) methane, bis (2,3,4-trihydroxyphene) Ru) propane, 4b, 5,9b, 10-tetrahydro-1,3,6,8-tetrahydroxy-5
  • amino compound examples include p-phenylenediamine, m-phenylenediamine, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl sulfone and 4,4′-diaminodiphenyl sulfide.
  • O-aminophenol O-aminophenol, m-aminophenol, p-aminophenol, 3,3′-diamino-4,4′-dihydroxybiphenyl, 4,4′-diamino-3,3′-dihydroxybiphenyl, bis (3- Amino-4-hydroxyphenyl) propane, bis (4-amino-3-hydroxyphenyl) propane, bis (3-amino-4-hydroxyphenyl) sulfone, bis (4-amino-3-hydroxyphenyl) sulfone, bis ( 3-Amino-4-hydroxyphenyl) hexaful Ropuropan and bis (4-amino-3-hydroxyphenyl) hexafluoropropane and the like.
  • 1,1-bis (4-hydroxyphenyl) -1- Condensation product of [4- ⁇ 1- (4-hydroxyphenyl) -1-methylethyl ⁇ phenyl] ethane with 1-naphthoquinone-2-diazide-5-sulfonyl chloride, tris (4-hydroxyphenyl) methane or tris It is preferable to use a condensate of 4-hydroxyphenyl) ethane with 1-naphthoquinone-2-diazide-5-sulfonyl chloride.
  • Examples of the dehydrochlorinating agent include sodium carbonate, sodium hydroxide, sodium hydrogen carbonate, potassium carbonate, potassium hydroxide, trimethylamine, triethylamine and pyridine.
  • Examples of the reaction solvent include dioxane, acetone, methyl ethyl ketone, tetrahydrofuran, diethyl ether and N-methylpyrrolidone.
  • the total number of moles of hydroxy group and amino group is 0.5 to 1 mole per mole of o-quinonediazidesulfonyl chloride. It is preferable that the composition is blended as follows.
  • a preferred mixing ratio of the dehydrochlorinating agent and o-quinonediazidesulfonyl chloride is in the range of 0.95 / 1 to 1 / 0.95 molar equivalent.
  • the preferable reaction temperature of the above reaction is 0 to 40 ° C., and the preferable reaction time is 1 to 10 hours.
  • the content of the component (D) is preferably 3 to 100 parts by mass with respect to 100 parts by mass of the component (A) from the viewpoint that the difference in dissolution rate between the exposed part and the unexposed part becomes large and the sensitivity becomes better. 5 to 50 parts by mass is more preferable, 5 to 30 parts by mass is further preferable, and 5 to 20 parts by mass is particularly preferable.
  • the photosensitive resin composition of the present embodiment may further contain a thermal crosslinking agent as the component (E).
  • the component (E) is a compound having a structure capable of reacting with the component (A) to form a bridge structure when the resin film is heated to form a cured film. By using the component (E), the strength of the cured film can be improved.
  • Examples of the component (E) include compounds having a phenolic hydroxyl group, compounds having an alkoxymethyl group, and compounds having an epoxy group.
  • the "compound having a phenolic hydroxyl group” here does not include the component (A).
  • the compound having a phenolic hydroxyl group as a thermal cross-linking agent can not only serve as a thermal cross-linking agent, but can also increase the dissolution rate of the exposed area when the resin film is developed with an aqueous alkaline solution to improve the sensitivity.
  • the Mw of such a compound having a phenolic hydroxyl group is preferably 2000 or less, more preferably 94 to 2000, and more preferably 108 to 2000 in consideration of the balance of solubility in an alkaline aqueous solution and mechanical properties. It is more preferable that it is, and it is particularly preferable that it is 108 to 1500.
  • the component (E) is preferably a compound having an alkoxymethyl group from the viewpoint of excellent effect of preventing melting at the time of curing the resin film, and from the viewpoint of heat resistance and mechanical properties of the cured film, four components are preferable.
  • the compound having the above alkoxymethyl group is more preferable.
  • the compound having four or more alkoxymethyl groups is more preferably a compound represented by the following general formula (11) or a compound represented by the following general formula (12) from the viewpoint of heat resistance and chemical resistance. .
  • R 1 to R 6 each independently represent an alkyl group having 1 to 10 carbon atoms.
  • Examples of the alkyl group having 1 to 10 carbon atoms represented by R 1 to R 6 include the same groups as R 22 .
  • the alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms, further preferably 1 or 2 carbon atoms, and particularly preferably 1 carbon atom. preferable.
  • R 7 to R 12 each independently represent an alkyl group having 1 to 10 carbon atoms.
  • Examples of the alkyl group having 1 to 10 carbon atoms represented by R 7 to R 12 include the same groups as R 22 .
  • the alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms, further preferably 1 or 2 carbon atoms, and particularly preferably 1.
  • the content of the component (E) is 0.5 to 100 parts by mass of the component (A) from the viewpoint of improving the heat resistance of the cured film and reducing the warpage when the cured film is formed on the substrate. 50 parts by mass is preferable, 1 to 40 parts by mass is more preferable, and 2 to 30 parts by mass is further preferable.
  • the photosensitive resin composition of this embodiment may further contain a compound having two or more epoxy groups as the component (F).
  • the component (F) can react with the component (A) to form a bridge structure when the resin film after pattern formation is heated and cured together with the compound which is the component (E).
  • Component (F) can be used without particular limitation as long as it is a compound having two or more epoxy groups.
  • the component (F) include aliphatic epoxy compounds, aromatic epoxy compounds, alicyclic epoxy compounds, heterocyclic epoxy compounds, bisphenol type epoxy compounds, novolac type epoxy compounds, glycidyl amine type epoxy compounds and halogenated epoxies. Compounds. These may be used alone or in combination of two or more.
  • the component (F) is preferably an epoxy compound having an aromatic ring or a heterocyclic ring, more preferably an epoxy compound having a heterocyclic ring, and an epoxy compound having a nitrogen-containing heterocyclic ring, from the viewpoint of being more resistant to chemicals. More preferably,
  • the component (F) is preferably a compound represented by the following general formula (13) from the viewpoint of better resistance to chemicals.
  • R 13 to R 15 each independently represent an alkylene group having 1 to 10 carbon atoms.
  • Examples of the alkylene group having 1 to 10 carbon atoms represented by R 13 to R 15 in the general formula (13) include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, and an octylene group. Group, nonylene group and decylene group. These groups may be linear or branched.
  • the alkylene group preferably has 1 to 8 carbon atoms, and more preferably 1 to 6 carbon atoms.
  • the molar ratio of the component (F) to the component (E) (the number of moles of the component (F) / the number of moles of the component (E)) is 1.0 or less from the viewpoint of being more excellent in chemical resistance and breaking strength, It is preferably 9 or less, and more preferably 0.8 or less.
  • the lower limit of the molar ratio of the component (F) to the component (E) is not particularly limited, but may be 0.1 or more, 0.2 or more, or 0.3 or more.
  • the total amount of the component (E) and the component (F) is preferably 2 to 35 parts by mass with respect to 100 parts by mass of the component (A) from the viewpoint of being superior in residual stress and chemical resistance. More preferably, the amount is more preferably 5 to 25 parts by mass.
  • the photosensitive resin composition of the present embodiment is a solvent, a compound that produces an acid upon heating, a dissolution accelerator, a dissolution inhibitor, a coupling agent, a surfactant, and leveling. You may contain ingredients, such as an agent.
  • the photosensitive resin composition of the present embodiment contains a solvent, application on a substrate can be facilitated and a coating film having a uniform thickness can be formed.
  • the solvent include ⁇ -butyrolactone, ethyl lactate, propylene glycol monomethyl ether acetate, benzyl acetate, n-butyl acetate, ethoxyethyl propionate, 3-methylmethoxypropionate, N-methyl-2-pyrrolidone, N , N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphorylamide, tetramethylene sulfone, diethyl ketone, diisobutyl ketone, methyl amyl ketone, cyclohexanone, propylene glycol monomethyl ether, propylene glycol monopropyl ether, propylene glycol Mention may be made of monobutyl ether and diprop
  • the compound that produces an acid by such heating may be, for example, a compound that produces an acid by heating to 50 to 250 ° C.
  • Specific examples of the compound that generates an acid by heating include salts formed from a strong acid such as an onium salt and a base, and imidosulfonate.
  • the content is preferably 0.1 to 30 parts by mass, more preferably 0.2 to 20 parts by mass, and 0.5 with respect to 100 parts by mass of the component (A). It is more preferably about 10 to 10 parts by mass.
  • dissolution accelerator By adding a dissolution accelerator to the photosensitive resin composition, it is possible to increase the dissolution rate of the exposed area when the resin film is developed with an alkaline aqueous solution, and to improve the sensitivity and resolution.
  • the dissolution accelerator conventionally known ones can be used.
  • Specific examples of the dissolution accelerator include compounds having a carboxyl group, a sulfonic acid or a sulfonamide group.
  • the content of the dissolution accelerator when used can be determined by the dissolution rate in an alkaline aqueous solution, and can be, for example, 0.01 to 30 parts by mass with respect to 100 parts by mass of the component (A).
  • the dissolution inhibitor is a compound that inhibits the solubility of the component (A) in an alkaline aqueous solution, and is used for controlling the remaining film thickness, the development time and the contrast.
  • the dissolution inhibitor include diphenyliodonium nitrate, bis (p-tert-butylphenyl) iodonium nitrate, diphenyliodonium bromide, diphenyliodonium chloride and diphenyliodonium iodide.
  • the content is preferably 0.01 to 20 parts by mass, and 0.01 to 15 parts by mass with respect to 100 parts by mass of the component (A) from the viewpoint of sensitivity and the allowable range of development time. More preferably, 0.05 to 10 parts by mass is even more preferable.
  • the coupling agent By blending the coupling agent with the photosensitive resin composition, the adhesion of the formed cured film to the substrate can be further enhanced.
  • the coupling agent include organic silane compounds and aluminum chelate compounds.
  • the organic silane compound include KBM-403, KBM-803 and KBM-903 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the content is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 10 parts by mass, relative to 100 parts by mass of the component (A).
  • the coating property can be further improved.
  • a surfactant or leveling agent By coating the photosensitive resin composition with a surfactant or a leveling agent, the coating property can be further improved. Specifically, for example, by containing a surfactant or a leveling agent, striation (unevenness of film thickness) can be further prevented and the developability can be further improved.
  • the surfactant or leveling agent include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether and polyoxyethylene octylphenol ether. Examples of commercially available products include Megafac F-171, F-565 and RS-78 (trade name, manufactured by DIC Corporation).
  • the content is preferably 0.001 to 5 parts by mass, more preferably 0.01 to 3 parts by mass, relative to 100 parts by mass of the component (A).
  • the photosensitive resin composition of this embodiment can be developed using an alkaline aqueous solution such as tetramethylammonium hydroxide (TMAH).
  • TMAH tetramethylammonium hydroxide
  • the patterned cured film of one embodiment has a pattern, and the pattern includes a cured product of a resin film made of the above-described photosensitive resin composition.
  • the pattern cured film is obtained by heating the above-mentioned photosensitive resin composition.
  • a method for manufacturing the patterned cured film will be described.
  • the method for producing a patterned cured film of the present embodiment is a step of applying and drying the above-mentioned photosensitive resin composition on a part or all of a substrate having a copper layer to form a resin film (application / drying (film formation) Step), a step of exposing a part or all of the resin film (exposure step), a step of developing the exposed resin film with an alkaline aqueous solution to form a pattern resin film (developing step), and a step of exposing the pattern resin film.
  • a heating step heat treatment step.
  • the photosensitive resin composition of the present embodiment is applied onto a substrate having a copper layer and dried to form a resin film.
  • the photosensitive resin composition of this embodiment is spin-coated on the copper layer of the substrate using a spinner or the like to form a coating film.
  • the thickness of the coating film is not particularly limited, but is preferably 0.1 to 40 ⁇ m.
  • the substrate on which this coating film is formed is dried using a hot plate, an oven or the like.
  • the drying temperature and the drying time are not particularly limited, but it is preferably performed at 80 to 140 ° C. for 1 to 7 minutes.
  • a resin film is formed on the support substrate.
  • the thickness of the resin film is not particularly limited, but is preferably 0.1 to 40 ⁇ m.
  • the resin film formed on the substrate is irradiated with actinic rays such as ultraviolet rays, visible rays, and radiation through a mask.
  • actinic rays such as ultraviolet rays, visible rays, and radiation through a mask.
  • the component (A) has a high transparency for i-rays, and thus irradiation with i-rays can be preferably used.
  • post-exposure heating PEB
  • the temperature is preferably 70 to 140 ° C.
  • the post-exposure heating time is preferably 1 to 5 minutes.
  • the resin film is patterned by removing the exposed portion of the resin film after the exposing step with a developing solution to obtain a patterned resin film.
  • a developing solution for example, an alkali aqueous solution such as sodium carbonate, sodium hydroxide, potassium hydroxide, sodium silicate, ammonia, ethylamine, diethylamine, triethylamine, triethanolamine, tetramethylammonium hydroxide (TMAH) is preferably used.
  • TMAH tetramethylammonium hydroxide
  • the base concentration of these aqueous solutions is preferably 0.1 to 10% by mass.
  • an alcohol or a surfactant may be added to the above developer for use.
  • each of these may be added in an amount of preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, relative to 100 parts by mass of the developer.
  • the developing solution is placed on the resin film by a method such as shower development, spray development, dip development, and puddle development, and the temperature is 30 to 360 ° C. under the condition of 18 to 40 ° C. Let stand for a second. After standing, the patterned resin film is washed by washing with water and spin drying.
  • the pattern cured film can be formed by heat treating the pattern resin film.
  • the heating temperature in the heat treatment step is preferably 250 ° C. or lower, and more preferably 230 ° C. or lower, from the viewpoint of sufficiently preventing damage to the semiconductor device due to heat.
  • the heat treatment can be performed using an oven such as a quartz tube furnace, a hot plate, rapid thermal annealing, a vertical diffusion furnace, an infrared curing furnace, an electron beam curing furnace, and a microwave curing furnace. Further, either in the air or in an inert atmosphere such as nitrogen can be selected, but it is preferable to carry out under nitrogen because oxidation of the pattern can be prevented. Since the preferable heating temperature range described above is lower than the conventional heating temperature, damage to the supporting substrate and the semiconductor device can be suppressed to be small. Therefore, by using the method of manufacturing a resist pattern according to this embodiment, electronic devices can be manufactured with high yield. It also leads to energy savings in the process. Furthermore, according to the photosensitive resin composition of the present embodiment, since the volume shrinkage (curing shrinkage) in the heat treatment step found in photosensitive polyimide and the like is small, it is possible to prevent a decrease in dimensional accuracy.
  • an oven such as a quartz tube furnace, a hot plate, rapid thermal annealing, a vertical
  • the heat treatment time in the heat treatment step may be a time sufficient for the photosensitive resin composition to cure, but it is preferably 5 hours or less in consideration of work efficiency.
  • the heat treatment can be performed using a microwave curing device or a frequency variable microwave curing device in addition to the oven described above.
  • a microwave curing device or a frequency variable microwave curing device in addition to the oven described above.
  • a patterned cured film having sufficiently high sensitivity and resolution, and excellent in adhesion and thermal shock resistance can be obtained.
  • the patterned cured film of this embodiment can be used as an interlayer insulating layer or a surface protective layer of a semiconductor element.
  • a semiconductor element having a pattern-cured film formed on a substrate having a copper layer is left at high temperature, it is possible to suppress the occurrence of voids in the copper layer.
  • the semiconductor device of one embodiment includes the interlayer insulating layer or the surface protection layer of this embodiment.
  • the semiconductor element of the present embodiment means a memory, a package, etc. having a multilayer wiring structure, a rewiring structure, etc., although not particularly limited thereto.
  • 1 to 5 are schematic perspective views and schematic end views showing one embodiment of a manufacturing process of a semiconductor device having a multilayer wiring structure. 1 to 5, (a) is a schematic perspective view, and (b) is a schematic end view showing Ib-Ib to Vb-Vb end faces in (a), respectively.
  • the structure 100 shown in FIG. 1 is prepared.
  • the structure 100 includes a semiconductor substrate 1 such as a Si substrate having a circuit element, a predetermined pattern for exposing the circuit element, a protective film 2 such as a silicon oxide film covering the semiconductor substrate 1, and the exposed circuit element.
  • the first conductor layer 3 formed thereon and the interlayer insulating layer 4 made of polyimide resin or the like formed on the protective film 2 and the first conductor layer 3 by a spin coating method or the like are provided.
  • the photosensitive resin layer 5 having the window portion 6A is formed on the interlayer insulating layer 4 to obtain the structure 200 shown in FIG.
  • the photosensitive resin layer 5 is formed, for example, by applying a photosensitive resin such as a chlorinated rubber type, a phenol novolac type, a polyhydroxystyrene type, or a polyacrylic acid ester type by a spin coating method.
  • the window portion 6A is formed by a known photo-etching technique so that the interlayer insulating layer 4 in a predetermined portion is exposed.
  • the photosensitive resin layer 5 is removed to obtain the structure 300 shown in FIG. Dry etching means using a gas such as oxygen or carbon tetrafluoride can be used for etching the interlayer insulating layer 4.
  • a gas such as oxygen or carbon tetrafluoride
  • the interlayer insulating layer 4 in the portion corresponding to the window 6A is selectively removed, and the interlayer insulating layer 4 provided with the window 6B so that the first conductor layer 3 is exposed is obtained.
  • the photosensitive resin layer 5 is removed using an etching solution that corrodes only the photosensitive resin layer 5 without corroding the first conductor layer 3 exposed from the window 6B.
  • the second conductor layer 7 is formed in the portion corresponding to the window 6B to obtain the structure 400 shown in FIG.
  • a known photo-etching technique can be used to form the second conductor layer 7.
  • the second conductor layer 7 and the first conductor layer 3 are electrically connected.
  • the surface protection layer 8 is formed on the interlayer insulating layer 4 and the second conductor layer 7 to obtain the semiconductor element 500 shown in FIG.
  • the surface protective layer 8 is formed as follows. First, the above-mentioned photosensitive resin composition is applied onto the interlayer insulating layer 4 and the second conductor layer 7 by a spin coating method and dried to form a photosensitive resin film. Next, a predetermined portion is irradiated with light through a mask having a pattern corresponding to the window portion 6C, and the exposed resin film is developed with an alkaline aqueous solution to form a patterned resin film. Then, the pattern resin film is cured by heating to form the pattern cured film used as the surface protective layer 8.
  • the surface protection layer 8 protects the first conductor layer 3 and the second conductor layer 7 from external stress, ⁇ rays, etc., and the semiconductor element 500 using the surface protection layer 8 of the present embodiment is reliable. Excellent in performance.
  • the semiconductor element of the present embodiment is not limited to the one having the surface protective layer, the cover coat layer or the interlayer insulating layer formed by using the above-mentioned photosensitive resin composition, and can have various structures.
  • FIGS. 6 and 7 are schematic cross-sectional views showing one embodiment of a semiconductor device having a rewiring structure. Since the photosensitive resin composition of the present embodiment is excellent in stress relaxation property, adhesive property, etc., it can be used in the recently developed semiconductor device having a rewiring structure as shown in FIGS.
  • FIG. 6 is a schematic cross-sectional view showing a wiring structure as an embodiment of a semiconductor element.
  • a semiconductor element 600 shown in FIG. 6 has a silicon substrate 23, an interlayer insulating layer 11 provided on one side of the silicon substrate 23, and an Al formed on the interlayer insulating layer 11 and having a pattern including a pad portion 15.
  • a wiring layer 12, an insulating layer 13 (for example, a P—SiN layer or the like) and a surface protection layer 14 which are sequentially stacked on the interlayer insulating layer 11 and the Al wiring layer 12 while forming an opening on the pad portion 15, and a surface.
  • the island-shaped core 18 arranged in the vicinity of the opening on the protective layer 14 is in contact with the pad portion 15 in the opening of the insulating layer 13 and the surface protective layer 14, and on the surface of the core 18 opposite to the surface protective layer 14. And a redistribution layer 16 extending on the surface protection layer 14 so as to be in contact with each other. Further, the semiconductor element 600 is formed so as to cover the surface protection layer 14, the core 18 and the redistribution layer 16, and a cover coat layer 19 in which an opening is formed in a portion of the redistribution layer 16 on the core 18, and a cover coat.
  • the conductive balls 17 are used as external connection terminals and are made of solder, gold, or the like.
  • the underfill 22 is provided to relieve stress when mounting the semiconductor element 600.
  • an Al wiring layer (not shown) and a pad portion 15 of the Al wiring layer are formed on a silicon substrate 23, an insulating layer 13 is formed on the Al wiring layer, and a pad portion 15 of the Al wiring layer is further formed.
  • the surface protection layer 14 is formed.
  • a rewiring layer 16 is formed on the pad portion 15, and the rewiring layer 16 extends to an upper portion of the connection portion 24 with the conductive ball 17. Further, a cover coat layer 19 is formed on the surface protective layer 14.
  • the redistribution layer 16 is connected to the conductive balls 17 via the barrier metal 20.
  • the photosensitive resin composition is a material for forming not only the interlayer insulating layer 11 and the surface protective layer 14 but also the cover coat layer 19, the core 18, the collar 21, the underfill 22, and the like.
  • the pattern cured film using the photosensitive resin composition of the present embodiment has excellent adhesiveness to a metal layer such as the Al wiring layer 12 or the rewiring layer 16 or a sealant, and has a high stress relaxation effect.
  • the semiconductor element using the pattern cured film for the interlayer insulating layer 11, the surface protective layer 14, the cover coat layer 19, the core 18, the collar 21 such as solder, the underfill 22 used for flip chips and the like is extremely excellent in reliability. Will be things.
  • the photosensitive resin composition of this embodiment is preferably used for the interlayer insulating layer 11, the surface protective layer 14, or the cover coat layer 19 of the semiconductor element having the rewiring layer 16 in FIGS. 6 and 7.
  • the film thickness of the interlayer insulating layer 11, the surface protective layer 14, and the cover coat layer 19 is preferably 3 to 20 ⁇ m, more preferably 5 to 15 ⁇ m.
  • An electronic device of one embodiment has the semiconductor element of this embodiment.
  • the electronic device includes the semiconductor element described above, and examples thereof include a mobile phone, a smartphone, a tablet terminal, a personal computer, and a hard disk suspension.
  • B1 1,2,3-benzotriazole (Product name "BT-120” manufactured by Johoku Chemical Industry Co., Ltd.)
  • B2 5-amino-benzotriazole
  • B3 5-methyl-benzotriazole
  • [(C) component] C1 55 g of ethyl lactate was weighed in a 100 mL three-necked flask equipped with a stirrer, a nitrogen introducing tube, and a thermometer, and the separately weighed polymerizable monomer (n-butyl acrylate (BA) 34.7 g).
  • LA Lauryl acrylate
  • AA acrylic acid
  • HBA hydroxybutyl acrylate
  • AIBN azobisisobutyronitrile
  • the gas was flowed at a flow rate of 400 mL / min for 30 minutes to remove dissolved oxygen, then the inflow of nitrogen gas was stopped, the flask was sealed, and the temperature was raised to 65 ° C in a constant temperature water bath in about 25 minutes. The same temperature was maintained for 10 hours to carry out a polymerization reaction to obtain an elastomer C1.
  • the polymerization rate at this time was 99%, and the Mw of this C1 was about 22,000.
  • [(D) component] D1 Compound represented by the following formula (Y) (trade name "PA-28” manufactured by Daito Chemix Co., Ltd.)
  • [(E) component] E1 a compound in which R 1 to R 6 in the general formula (11) are all methyl groups (hexakis (methoxymethyl) melamine, trade name “Nikalac MW-30HM” manufactured by Sanwa Chemical Co., Ltd., molecular weight: 390.4)
  • Examples 1 to 6 and Comparative Examples 1 to 8 The components (A) to (E) in the compounding amounts (parts by mass) shown in Table 1 or Table 2 and 120 parts by mass of ethyl lactate as a solvent are compounded, and this is pressurized using a Teflon (registered trademark) filter having 3 ⁇ m pores. After filtration, the photosensitive resin compositions of Examples and Comparative Examples were prepared.
  • Residual film rate (%) (film thickness of film after development / film thickness of film before development) ⁇ 100
  • the resist pattern was heat-treated (cured) for 2 hours in nitrogen at a temperature of 230 ° C. (heating time 1.5 hours) using a vertical diffusion furnace (trade name “ ⁇ -TF” manufactured by Koyo Thermo Systems Co., Ltd.). Then, the resolution after curing was measured.
  • the evaluation method is the same as the evaluation method of the resolution before curing.
  • the photosensitive resin composition was spin-coated on a silicon substrate having a copper layer and heated at 120 ° C. for 3 minutes, and then a vertical diffusion furnace (trade name “ ⁇ -TF” manufactured by Koyo Thermo Systems Co., Ltd.) was used. It was heated in nitrogen at 230 ° C. (temperature rising time 1.5 hours) for 2 hours to form a cured film having a film thickness of 10 ⁇ m to obtain a laminate. After the laminated body was stored at 150 ° C. for 1000 hours, the cross section of the laminated body was observed using a scanning electron microscope. The case where no void was observed before and after the test was determined as "A", and the case where a void was observed was determined as "B".
  • FIG. 8 is a photomicrograph of Example 1 observing the presence or absence of voids.
  • FIG. 9 is a photomicrograph of Comparative Example 1 observing the presence or absence of voids.
  • the photosensitive resin composition was spin-coated on a silicon substrate having a copper layer and heated at 120 ° C. for 3 minutes, and then a vertical diffusion furnace (trade name “ ⁇ -TF” manufactured by Koyo Thermo Systems Co., Ltd.) was used. Then, the laminate was heated in nitrogen at 230 ° C. (temperature rising time 1.5 hours) for 2 hours to prepare a laminated body on which a cured film having a film thickness of 10 ⁇ m was formed.
  • the peel strength was evaluated according to JIS C 5016 (1994-strength of peeling conductor). In addition, in the present specification, room temperature refers to 25 ° C.
  • SYMBOLS 1 ... Semiconductor substrate, 2 ... Protective film, 3 ... 1st conductor layer, 4 ... Interlayer insulating layer, 5 ... Photosensitive resin layer, 6A, 6B, 6C ... Window part, 7 ... 2nd conductor layer, 8 ... Surface protection Layer, 11 ... Interlayer insulating layer, 12 ... Al wiring layer, 13 ... Insulating layer, 14 ... Surface protection layer, 15 ... Pad part, 16 ... Rewiring layer, 17 ... Conductive ball, 18 ... Core, 19 ... Cover coat Layer, 20 ... Barrier metal, 21 ... Color, 22 ... Underfill, 23 ... Silicon substrate, 24 ... Connection part, 100, 200, 300, 400 ... Structure, 500, 600, 700 ... Semiconductor element.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

This photosensitive resin composition contains (A) a hydroxystyrene resin, (B) a compound having a benzotriazole skeleton, (C) an elastomer and (D) a compound which generates an acid by means of light.

Description

感光性樹脂組成物、パターン硬化膜及びその製造方法、半導体素子、並びに電子デバイスPhotosensitive resin composition, patterned cured film and method for producing the same, semiconductor element, and electronic device
 本発明は、感光性樹脂組成物、パターン硬化膜及びその製造方法、半導体素子、並びに電子デバイスに関する。 The present invention relates to a photosensitive resin composition, a patterned cured film and a method for manufacturing the same, a semiconductor element, and an electronic device.
 近年、半導体素子の高集積化、小型化に伴い、半導体素子の層間絶縁層、表面保護層等の絶縁層は、より優れた電気特性、耐熱性、機械特性等を有することが求められている。このような特性を併せ持つ絶縁層を形成するための材料として、アルカリ可溶性樹脂を含有する感光性樹脂組成物が開発されている(例えば、特許文献1、2及び3参照)。これらの感光性樹脂組成物を基板上に塗布及び乾燥して樹脂膜を形成し、該樹脂膜を露光及び現像することでパターン樹脂膜(パターン形成された樹脂膜)が得られる。そして、上記パターン樹脂膜を加熱硬化することでパターン硬化膜(パターン形成された硬化膜)を形成でき、該パターン硬化膜は絶縁層として用いることができる。 In recent years, as semiconductor elements have become highly integrated and miniaturized, insulating layers such as interlayer insulating layers and surface protective layers of semiconductor elements are required to have more excellent electrical characteristics, heat resistance, mechanical characteristics, and the like. . A photosensitive resin composition containing an alkali-soluble resin has been developed as a material for forming an insulating layer having such characteristics (see, for example, Patent Documents 1, 2 and 3). A patterned resin film (patterned resin film) is obtained by coating and drying these photosensitive resin compositions on a substrate to form a resin film, and exposing and developing the resin film. Then, the patterned resin film is heated and cured to form a patterned cured film (a patterned cured film), and the patterned cured film can be used as an insulating layer.
特開2008-309885号公報JP, 2008-309885, A 特開2007-057595号公報Japanese Patent Laid-Open No. 2007-057595 国際公開第2010/073948号International Publication No. 2010/073948
 銅層を有する基板上に、感光性樹脂組成物を用いて形成された絶縁層を備える積層体(例えば、半導体素子)を高温に放置した場合、銅層の絶縁層と接する面が酸化されて酸化層が形成され、銅層にボイドが発生することがある。そのため、感光性樹脂組成物から形成される硬化膜には、銅層にボイドが発生することを抑制することが求められる。 When a laminate (for example, a semiconductor element) including an insulating layer formed using a photosensitive resin composition is left at high temperature on a substrate having a copper layer, the surface of the copper layer in contact with the insulating layer is oxidized. An oxide layer may be formed and a void may be generated in the copper layer. Therefore, the cured film formed from the photosensitive resin composition is required to suppress the occurrence of voids in the copper layer.
 本発明は、銅層にボイドが発生することを抑制できる硬化膜を形成することができる感光性樹脂組成物を提供することを目的とする。 The present invention aims to provide a photosensitive resin composition capable of forming a cured film capable of suppressing the occurrence of voids in a copper layer.
 本発明の一側面は、(A)ヒドロキシスチレン系樹脂と、(B)ベンゾトリアゾール骨格を有する化合物と、(C)エラストマと、(D)光により酸を生成する化合物と、を含有する感光性樹脂組成物を提供する。 One aspect of the present invention is a photosensitive resin containing (A) a hydroxystyrene-based resin, (B) a compound having a benzotriazole skeleton, (C) an elastomer, and (D) a compound that generates an acid by light. A resin composition is provided.
 (B)ベンゾトリアゾール骨格を有する化合物の含有量は、(A)ヒドロキシスチレン系樹脂の100質量部に対して、0.1~3質量部であってもよい。また、(C)エラストマは、アクリル系エラストマであってもよい。 The content of the compound (B) having a benzotriazole skeleton may be 0.1 to 3 parts by mass based on 100 parts by mass of the (A) hydroxystyrene resin. The (C) elastomer may be an acrylic elastomer.
 本発明は、別の側面において、パターンを有し、当該パターンが上記感光性樹脂組成物からなる樹脂膜の硬化物を含むパターン硬化膜を提供する。本発明はまた、上記パターン硬化膜を層間絶縁層又は表面保護層として備える半導体素子を提供する。本発明はさらに、上記半導体素子を備える電子デバイスを提供する。 In another aspect, the present invention provides a patterned cured film having a pattern, the pattern including a cured product of a resin film made of the above-mentioned photosensitive resin composition. The present invention also provides a semiconductor device including the patterned cured film as an interlayer insulating layer or a surface protective layer. The present invention further provides an electronic device including the semiconductor element.
 本発明は、別の側面において、上記樹脂組成物を、銅層を備える基板の一部又は全面に塗布及び乾燥して樹脂膜を形成する工程と、樹脂膜の一部又は全面を露光する工程と、露光後の樹脂膜をアルカリ水溶液によって現像してパターン樹脂膜を形成する工程と、パターン樹脂膜を加熱する工程とを備える、パターン硬化膜の製造方法を提供する。 In another aspect, the present invention provides, in another aspect, a step of forming a resin film by applying and drying the resin composition on a part or the whole surface of a substrate having a copper layer, and a step of exposing a part or the whole surface of the resin film. And a step of developing the exposed resin film with an alkaline aqueous solution to form a patterned resin film, and a step of heating the patterned resin film, to provide a method for producing a patterned cured film.
 本発明によれば、銅層にボイドが発生することを抑制できる硬化膜を形成することができる感光性樹脂組成物を提供することができる。また、本発明によれば、該感光性樹脂組成物を用いて作製されるパターン硬化膜、半導体素子及び電子デバイス、該感光性樹脂組成物を用いたパターン硬化膜の製造方法を提供することができる。 According to the present invention, it is possible to provide a photosensitive resin composition capable of forming a cured film capable of suppressing the occurrence of voids in a copper layer. Further, according to the present invention, it is possible to provide a patterned cured film produced using the photosensitive resin composition, a semiconductor element and an electronic device, and a method for producing a patterned cured film using the photosensitive resin composition. it can.
半導体素子の製造工程の一実施形態を説明する概略斜視図及び概略端面図である。FIG. 6 is a schematic perspective view and a schematic end view illustrating an embodiment of a manufacturing process of a semiconductor device. 半導体素子の製造工程の一実施形態を説明する概略斜視図及び概略端面図である。FIG. 6 is a schematic perspective view and a schematic end view illustrating an embodiment of a manufacturing process of a semiconductor device. 半導体素子の製造工程の一実施形態を説明する概略斜視図及び概略端面図である。FIG. 6 is a schematic perspective view and a schematic end view illustrating an embodiment of a manufacturing process of a semiconductor device. 半導体素子の製造工程の一実施形態を説明する概略斜視図及び概略端面図である。FIG. 6 is a schematic perspective view and a schematic end view illustrating an embodiment of a manufacturing process of a semiconductor device. 半導体素子の製造工程の一実施形態を説明する概略斜視図及び概略端面図である。FIG. 6 is a schematic perspective view and a schematic end view illustrating an embodiment of a manufacturing process of a semiconductor device. 半導体素子の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of a semiconductor element. 半導体素子の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of a semiconductor element. 実施例1のボイドの有無を観察した顕微鏡写真である。4 is a micrograph of the presence or absence of voids observed in Example 1. 比較例1のボイドの有無を観察した顕微鏡写真である。3 is a micrograph of Comparative Example 1 showing the presence or absence of voids.
 以下、本発明の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。本明細書における「(メタ)アクリル酸」とは、「アクリル酸」又は「メタクリル酸」を意味し、(メタ)アクリレート等の他の類似の表現においても同様である。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments. The term "(meth) acrylic acid" used herein means "acrylic acid" or "methacrylic acid", and the same applies to other similar expressions such as (meth) acrylate.
[感光性樹脂組成物]
 本実施形態の感光性樹脂組成物は、(A)ヒドロキシスチレン系樹脂(以下、「(A)成分」という場合もある。)、(B)ベンゾトリアゾール骨格を有する化合物(以下、「(B)成分」という場合もある。)、(C)エラストマ(以下、「(C)成分」という場合もある。)、及び(D)光により酸を生成する化合物(以下、「(D)成分」という場合もある。)を含有する。
[Photosensitive resin composition]
The photosensitive resin composition of the present embodiment includes (A) a hydroxystyrene resin (hereinafter, sometimes referred to as “(A) component”) and (B) a compound having a benzotriazole skeleton (hereinafter, “(B)”). Component (also sometimes referred to as “component”), (C) elastomer (hereinafter sometimes referred to as “(C) component”), and (D) compound that produces an acid by light (hereinafter referred to as “(D) component”). In some cases).
<(A)成分>
 (A)成分であるヒドロキシスチレン系樹脂は、アルカリ水溶液に可溶な樹脂である。アルカリ水溶液とは、テトラメチルアンモニウムヒドロキシド(TMAH)水溶液、金属水酸化物水溶液、有機アミン水溶液等のアルカリ性の水溶液である。(A)成分がアルカリ水溶液に可溶であることは、例えば、以下のようにして確認することができる。
<(A) component>
The hydroxystyrene resin that is the component (A) is a resin that is soluble in an alkaline aqueous solution. The alkaline aqueous solution is an alkaline aqueous solution such as a tetramethylammonium hydroxide (TMAH) aqueous solution, a metal hydroxide aqueous solution, and an organic amine aqueous solution. The solubility of the component (A) in the aqueous alkaline solution can be confirmed, for example, as follows.
 (A)成分を任意の溶媒に溶解して得られたワニスを、シリコンウェハ等の基板上にスピン塗布して形成することにより厚さ5μm程度の塗膜とする。これをTMAH水溶液、金属水酸化物水溶液又は有機アミン水溶液のいずれかに20~25℃において、浸漬する。この結果、塗膜が均一に溶解し得るとき、その(A)成分はアルカリ性水溶液に可溶であると見なすことができる。 A varnish obtained by dissolving the component (A) in an arbitrary solvent is spin-coated on a substrate such as a silicon wafer to form a coating film having a thickness of about 5 μm. This is immersed in either an aqueous TMAH solution, an aqueous metal hydroxide solution or an aqueous organic amine solution at 20 to 25 ° C. As a result, when the coating film can be uniformly dissolved, the component (A) can be regarded as soluble in the alkaline aqueous solution.
 アルカリ水溶液への溶解性の観点から、(A)成分は、下記一般式(1)で表される構造単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000001
From the viewpoint of solubility in an alkaline aqueous solution, the component (A) preferably has a structural unit represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001
 式(1)中、R21は水素原子又はメチル基を示し、R22は炭素数1~10のアルキル基、炭素数6~10のアリール基又は炭素数1~10のアルコキシ基を示し、aは0~3の整数を示し、bは1~3の整数を示す。aとbの合計は5以下である。 In the formula (1), R 21 represents a hydrogen atom or a methyl group, R 22 represents an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, and Represents an integer of 0 to 3, and b represents an integer of 1 to 3. The sum of a and b is 5 or less.
 R22で表わされる炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基及びデシル基が挙げられる。これらのアルキル基は直鎖状であっても、分岐鎖状であってもよい。R22で表わされる炭素数6~10のアリール基としては、例えば、フェニル基及びナフチル基が挙げられる。R22で表わされる炭素数1~10のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ基、ヘキソキシ基、ヘプトキシ基、オクトキシ基、ノノキシ基及びデコキシ基が挙げられる。これらのアルコキシ基は直鎖状であっても、分岐鎖状であってもよい。 Examples of the alkyl group having 1 to 10 carbon atoms represented by R 22 include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group and decyl group. . These alkyl groups may be linear or branched. Examples of the aryl group having 6 to 10 carbon atoms represented by R 22 include a phenyl group and a naphthyl group. Examples of the alkoxy group having 1 to 10 carbon atoms represented by R 22 include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, a hexoxy group, a heptoxy group, an octoxy group, a nonoxy group and a decoxy group. . These alkoxy groups may be linear or branched.
 ヒドロキシスチレン系樹脂は、一般式(1)で表される構造単位を与えるモノマ等を重合させることで得ることができる。一般式(1)で表される構造単位を与えるモノマとしては、例えば、p-ヒドロキシスチレン、m-ヒドロキシスチレン、o-ヒドロキシスチレン、p-イソプロペニルフェノール、m-イソプロペニルフェノール及びo-イソプロペニルフェノールが挙げられる。これらのモノマは1種単独で又は2種以上を組み合わせて使用することができる。 The hydroxystyrene-based resin can be obtained by polymerizing a monomer or the like which gives the structural unit represented by the general formula (1). Examples of the monomer giving the structural unit represented by the general formula (1) include p-hydroxystyrene, m-hydroxystyrene, o-hydroxystyrene, p-isopropenylphenol, m-isopropenylphenol and o-isopropenyl. Examples include phenol. These monomers can be used alone or in combination of two or more.
 ヒドロキシスチレン系樹脂は、その製造方法に制限されないが、例えば、一般式(1)で表される構造単位を与えるモノマの水酸基をtert-ブチル基、アセチル基等で保護して水酸基が保護されたモノマとし、水酸基が保護されたモノマを重合して重合体を得て、さらに得られた重合体を、公知の方法(酸触媒下で脱保護してヒドロキシスチレン系構造単位に変換すること等)で脱保護することにより得ることができる。 The hydroxystyrene-based resin is not limited to the production method, but for example, the hydroxyl group of the monomer giving the structural unit represented by the general formula (1) is protected by a tert-butyl group, an acetyl group or the like to protect the hydroxyl group. A monomer is obtained by polymerizing a monomer having a protected hydroxyl group, and the obtained polymer is further subjected to a known method (such as deprotection under an acid catalyst to convert it into a hydroxystyrene structural unit). It can be obtained by deprotecting with.
 ヒドロキシスチレン系樹脂は、一般式(1)で表される構造単位を与えるモノマのみからなる重合体又は共重合体であってもよく、一般式(1)で表される構造単位を与えるモノマとそれ以外のモノマとの共重合体であってもよい。ヒドロキシスチレン系樹脂が共重合体である場合、共重合体中の一般式(1)で表される構造単位の割合は、露光部のアルカリ現像液に対する溶解性の観点から、(A)成分100モル%に対して、10~100モル%が好ましく、20~97モル%がより好ましく、30~95モル%が更に好ましく、50~95モル%が特に好ましい。 The hydroxystyrene-based resin may be a polymer or a copolymer consisting of only a monomer giving the structural unit represented by the general formula (1), and a monomer giving the structural unit represented by the general formula (1) may be used. It may be a copolymer with other monomers. When the hydroxystyrene resin is a copolymer, the proportion of the structural unit represented by the general formula (1) in the copolymer is 100% of the component (A) from the viewpoint of the solubility of the exposed part in an alkaline developer. 10 to 100 mol% is preferable, 20 to 97 mol% is more preferable, 30 to 95 mol% is further preferable, and 50 to 95 mol% is particularly preferable, with respect to mol%.
 ヒドロキシスチレン系樹脂が、一般式(1)で表される構造単位を与えるモノマと、それ以外のモノマとの共重合体である場合、未露光部のアルカリ現像液に対する溶解阻害性をより向上する観点から、ヒドロキシスチレン系樹脂は、下記一般式(2)で表される構造単位を有してもよい。
Figure JPOXMLDOC01-appb-C000002
When the hydroxystyrene resin is a copolymer of a monomer giving the structural unit represented by the general formula (1) and a monomer other than the monomer, the dissolution inhibiting property of the unexposed portion in the alkaline developer is further improved. From the viewpoint, the hydroxystyrene-based resin may have a structural unit represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000002
 式(2)中、R23は水素原子又はメチル基を示し、R24は炭素数1~10のアルキル基、炭素数6~10のアリール基又は炭素数1~10のアルコキシ基を示し、cは0~3の整数を示す。 In the formula (2), R 23 represents a hydrogen atom or a methyl group, R 24 represents an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, and c Represents an integer of 0 to 3.
 R24で表わされる炭素数1~10のアルキル基、炭素数6~10のアリール基又は炭素数1~10のアルコキシ基としては、それぞれR22と同様の基が例示できる。 Examples of the alkyl group having 1 to 10 carbon atoms, the aryl group having 6 to 10 carbon atoms or the alkoxy group having 1 to 10 carbon atoms represented by R 24 include the same groups as R 22 .
 一般式(2)で表される構造単位を有するヒドロキシスチレン系樹脂は、一般式(2)で表される構造単位を与えるモノマを用いることによって得られる。一般式(2)で表される構造単位を与えるモノマとしては、例えば、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o-メトキシスチレン、m-メトキシスチレン、p-メトキシスチレン等の芳香族ビニル化合物が挙げられる。これらのモノマはそれぞれ1種単独で又は2種以上を組み合わせて使用することができる。 The hydroxystyrene-based resin having the structural unit represented by the general formula (2) is obtained by using a monomer which gives the structural unit represented by the general formula (2). Examples of the monomer giving the structural unit represented by the general formula (2) include styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-methoxystyrene, m-methoxystyrene. And aromatic vinyl compounds such as p-methoxystyrene. Each of these monomers may be used alone or in combination of two or more.
 ヒドロキシスチレン系樹脂が一般式(2)で表される構造単位を有する場合、未露光部のアルカリ現像液に対する溶解阻害性及びパターン硬化膜の機械特性の観点から、一般式(2)で表される構造単位の割合は(A)成分100モル%に対して、1~90モル%が好ましく、3~80モル%がより好ましく、5~70モル%が更に好ましく、5~50モル%が特に好ましい。 When the hydroxystyrene-based resin has the structural unit represented by the general formula (2), it is represented by the general formula (2) from the viewpoint of the dissolution inhibiting property of the unexposed portion with respect to the alkaline developer and the mechanical properties of the patterned cured film. The ratio of the structural unit is preferably 1 to 90 mol%, more preferably 3 to 80 mol%, further preferably 5 to 70 mol%, particularly preferably 5 to 50 mol%, relative to 100 mol% of the component (A). preferable.
 ヒドロキシスチレン系樹脂が、一般式(1)で表される構造単位を与えるモノマと、それ以外のモノマとの共重合体である場合、弾性率を低くする観点から、ヒドロキシスチレン系樹脂は、下記一般式(3)で表される構造単位を有してもよい。
Figure JPOXMLDOC01-appb-C000003
When the hydroxystyrene-based resin is a copolymer of a monomer giving the structural unit represented by the general formula (1) and a monomer other than the monomer, from the viewpoint of lowering the elastic modulus, the hydroxystyrene-based resin is You may have the structural unit represented by General formula (3).
Figure JPOXMLDOC01-appb-C000003
 式(3)中、R25は水素原子又はメチル基を示し、R26は炭素数1~10のアルキル基又は炭素数1~10のヒドロキシアルキル基を示す。 In formula (3), R 25 represents a hydrogen atom or a methyl group, and R 26 represents an alkyl group having 1 to 10 carbon atoms or a hydroxyalkyl group having 1 to 10 carbon atoms.
 一般式(3)で表される構造単位を有するヒドロキシスチレン系樹脂は、一般式(3)で表される構造単位を与えるモノマを用いることで得られる。一般式(3)で表される構造単位を与えるモノマとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸ヒドロキシペンチル、(メタ)アクリル酸ヒドロキシヘキシル、(メタ)アクリル酸ヒドロキシヘプチル、(メタ)アクリル酸ヒドロキシオクチル、(メタ)アクリル酸ヒドロキシノニル及び(メタ)アクリル酸ヒドロキシデシルが挙げられる。これらのモノマはそれぞれ1種単独で又は2種以上を組み合わせて使用することができる。 The hydroxystyrene-based resin having the structural unit represented by the general formula (3) can be obtained by using a monomer which gives the structural unit represented by the general formula (3). Examples of the monomer giving the structural unit represented by the general formula (3) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and (meth) acrylate. Pentyl acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, hydroxymethyl (meth) acrylate, (meth) Hydroxyethyl acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, hydroxypentyl (meth) acrylate, hydroxyhexyl (meth) acrylate, hydroxyheptyl (meth) acrylate, (meth) acrylic acid Hydroxyoctyl, Hydroxynonyl (meth) acrylate and (Meth) acrylic acid hydroxy decyl. Each of these monomers may be used alone or in combination of two or more.
 ヒドロキシスチレン系樹脂が一般式(3)で表される構造単位を有する場合、未露光部のアルカリ現像液に対する溶解阻害性及びパターン硬化膜の機械特性の観点から、一般式(3)で表される構造単位の割合は(A)成分100モル%に対して、1~90モル%が好ましく、3~80モル%がより好ましく、5~70モル%が更に好ましく、5~50モル%が特に好ましい。 When the hydroxystyrene-based resin has the structural unit represented by the general formula (3), it is represented by the general formula (3) from the viewpoint of dissolution inhibiting property of the unexposed portion with respect to the alkaline developer and mechanical properties of the patterned cured film. The ratio of the structural unit is preferably 1 to 90 mol%, more preferably 3 to 80 mol%, further preferably 5 to 70 mol%, particularly preferably 5 to 50 mol%, relative to 100 mol% of the component (A). preferable.
<(B)成分>
 (B)成分であるベンゾトリアゾール骨格を有する化合物は、感光性樹脂組成物を用いて銅層を備える基板上に硬化膜を形成した場合に、銅層にボイドが発生することを抑制する成分である。
<(B) component>
The compound having a benzotriazole skeleton, which is the component (B), is a component that suppresses the occurrence of voids in the copper layer when a cured film is formed on a substrate having a copper layer using a photosensitive resin composition. is there.
 (B)成分としては、例えば、1,2,3-ベンゾトリアゾール、5-アミノベンゾトリアゾール及び5-メチルベンゾトリアゾールが挙げられる。(B)成分は、1種を単独で又は2種以上を組み合わせて使用することができる。 Examples of the component (B) include 1,2,3-benzotriazole, 5-aminobenzotriazole and 5-methylbenzotriazole. As the component (B), one type can be used alone, or two or more types can be used in combination.
 (B)成分の含有量は、ボイドの発生をより抑制する観点から、(A)成分100質量部に対して0.1~3質量部が好ましく、0.2~2質量部がより好ましく、0.3~1.5質量部が更に好ましい。 The content of the component (B) is preferably 0.1 to 3 parts by mass, more preferably 0.2 to 2 parts by mass, relative to 100 parts by mass of the component (A), from the viewpoint of further suppressing the generation of voids. More preferably, it is 0.3 to 1.5 parts by mass.
<(C)成分>
 (C)成分であるエラストマとしては、例えば、スチレン系エラストマ、オレフィン系エラストマ、ウレタン系エラストマ、ポリエステル系エラストマ、ポリアミド系エラストマ、アクリル系エラストマ及びシリコーン系エラストマが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。
<(C) component>
Examples of the elastomer as the component (C) include styrene-based elastomers, olefin-based elastomers, urethane-based elastomers, polyester-based elastomers, polyamide-based elastomers, acrylic-based elastomers, and silicone-based elastomers. These may be used alone or in combination of two or more.
 (C)成分は、硬化膜の破断強度、破断伸び及び熱膨張性に優れることから、アクリル系エラストマであってもよい。アクリル系エラストマは、下記一般式(4)で表される構造単位を有していてもよい。
Figure JPOXMLDOC01-appb-C000004
The component (C) may be an acrylic elastomer because it has excellent breaking strength, breaking elongation and thermal expansion of the cured film. The acrylic elastomer may have a structural unit represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000004
 一般式(4)中、R31は水素原子又はメチル基を示し、R32は炭素数2~20のヒドロキシアルキル基を示す。 In the general formula (4), R 31 represents a hydrogen atom or a methyl group, and R 32 represents a hydroxyalkyl group having 2 to 20 carbon atoms.
 R32で表わされる炭素数2~20のヒドロキシアルキル基としては、例えば、ヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシブチル基、ヒドロキシペンチル基、ヒドロキシヘキシル基、ヒドロキシヘプチル基、ヒドロキシオクチル基、ヒドロキシノニル基、ヒドロキシデシル基、ヒドロキシウンデシル基、ヒドロキシドデシル基(ヒドロキシラウリル基という場合もある。)、ヒドロキシトリデシル基、ヒドロキシテトラデシル基、ヒドロキシペンタデシル基、ヒドロキシヘキサデシル基、ヒドロキシヘプタデシル基、ヒドロキシオクタデシル基、ヒドロキシノナデシル基及びヒドロキシエイコシル基が挙げられる。 Examples of the hydroxyalkyl group having 2 to 20 carbon atoms represented by R 32 include hydroxyethyl group, hydroxypropyl group, hydroxybutyl group, hydroxypentyl group, hydroxyhexyl group, hydroxyheptyl group, hydroxyoctyl group and hydroxynonyl group. , Hydroxydecyl group, hydroxyundecyl group, hydroxydodecyl group (sometimes referred to as hydroxylauryl group), hydroxytridecyl group, hydroxytetradecyl group, hydroxypentadecyl group, hydroxyhexadecyl group, hydroxyheptadecyl group, hydroxy Examples include an octadecyl group, a hydroxynonadecyl group and a hydroxyeicosyl group.
 アクリル系エラストマは、さらに下記一般式(5)で表される構造単位、下記一般式(6)で表される構造単位、又は下記一般式(7)で表される構造単位を有していてもよい。 The acrylic elastomer further has a structural unit represented by the following general formula (5), a structural unit represented by the following general formula (6), or a structural unit represented by the following general formula (7). Good.
Figure JPOXMLDOC01-appb-C000005
式(5)中、R33は水素原子又はメチル基を示し、R34は1級、2級又は3級アミノ基を有する1価の有機基を示す。
Figure JPOXMLDOC01-appb-C000005
In the formula (5), R 33 represents a hydrogen atom or a methyl group, and R 34 represents a monovalent organic group having a primary, secondary or tertiary amino group.
 R34で表わされる1級、2級又は3級アミノ基としては、例えば、アミノエチル基、N-メチルアミノエチル基、N,N-ジメチルアミノエチル基、N-エチルアミノエチル基、N,N-ジエチルアミノエチル基、アミノプロピル基、N-メチルアミノプロピル基、N,N-ジメチルアミノプロピル基、N-エチルアミノプロピル基、N,N-ジエチルアミノプロピル基、ピペリジン-4-イル基、1-メチルピペリジン-4-イル基、2,2,6,6-テトラメチルピペリジン-4-イル基、1,2,2,6,6-ペンタメチルピペリジン-4-イル基、(ピペリジン-4-イル)メチル基及び2-(ピペリジン-4-イル)エチル基が挙げられる。 Examples of the primary, secondary or tertiary amino group represented by R 34 include aminoethyl group, N-methylaminoethyl group, N, N-dimethylaminoethyl group, N-ethylaminoethyl group, N, N -Diethylaminoethyl group, aminopropyl group, N-methylaminopropyl group, N, N-dimethylaminopropyl group, N-ethylaminopropyl group, N, N-diethylaminopropyl group, piperidin-4-yl group, 1-methyl Piperidin-4-yl group, 2,2,6,6-tetramethylpiperidin-4-yl group, 1,2,2,6,6-pentamethylpiperidin-4-yl group, (piperidin-4-yl) Examples thereof include a methyl group and a 2- (piperidin-4-yl) ethyl group.
Figure JPOXMLDOC01-appb-C000006
式(6)中、R35は水素原子又はメチル基を示し、R36は炭素数4~20のアルキル基を示す。
Figure JPOXMLDOC01-appb-C000006
In the formula (6), R 35 represents a hydrogen atom or a methyl group, and R 36 represents an alkyl group having 4 to 20 carbon atoms.
 R36で表わされる炭素数4~20のアルキル基としては、例えば、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基(ラウリル基という場合もある。)、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基及びエイコシル基が挙げられる。これらの基は、直鎖状であっても分岐鎖状であってもよい。 Examples of the alkyl group having 4 to 20 carbon atoms represented by R 36 include a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group and a dodecyl group (also referred to as a lauryl group. A), a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group, a nonadecyl group and an eicosyl group. These groups may be linear or branched.
Figure JPOXMLDOC01-appb-C000007
式(7)中、R37は水素原子又はメチル基を示す。
Figure JPOXMLDOC01-appb-C000007
In formula (7), R 37 represents a hydrogen atom or a methyl group.
 アクリル系エラストマは、例えば、上記一般式(4)で表される構造単位を与えるモノマ、及び必要に応じて添加される一般式(5)、(6)又は(7)で表される構造単位を与えるモノマを配合し、乳酸エチル、トルエン、イソプロパノール等の溶媒中で撹拌し、必要に応じて加熱することによって得ることができる。 The acrylic elastomer is, for example, a monomer which gives the structural unit represented by the general formula (4), and a structural unit represented by the general formula (5), (6) or (7) which is added as necessary. It can be obtained by blending a monomer that gives the compound, stirring in a solvent such as ethyl lactate, toluene, isopropanol, and heating if necessary.
 アクリル系エラストマの重量平均分子量(Mw)は、2000~100000であることが好ましく、3000~60000であることがより好ましく、5000~50000であることが更に好ましく、10000~40000であることが特に好ましい。ここで、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)法により測定し、標準ポリスチレン検量線より換算して得られる値である。 The weight average molecular weight (Mw) of the acrylic elastomer is preferably 2,000 to 100,000, more preferably 3,000 to 60,000, further preferably 5,000 to 50,000, and particularly preferably 10,000 to 40,000. . Here, Mw is a value obtained by measuring by gel permeation chromatography (GPC) method and converting from a standard polystyrene calibration curve.
 (C)成分の含有量は、破断強度及び破断伸びにより優れる観点から、(A)成分100質量部に対して、1~35質量部であることが好ましく、3~30質量部であることがより好ましく、5~25質量部であることが更に好ましい。 The content of the component (C) is preferably 1 to 35 parts by mass, and more preferably 3 to 30 parts by mass, relative to 100 parts by mass of the component (A), from the viewpoint of more excellent breaking strength and elongation at break. More preferably, it is more preferably 5 to 25 parts by mass.
<(D)成分>
 (D)成分である光により(光を受けることにより)酸を生成する化合物は、感光性樹脂組成物において感光剤として機能する。(D)成分は、光照射を受けて酸を生成させ、樹脂膜の光照射を受けた部分のアルカリ水溶液への可溶性を増大させる機能を有する。(D)成分としては、一般に光酸発生剤と称される化合物を用いることができる。(D)成分の具体例としては、o-キノンジアジド化合物、アリールジアゾニウム塩、ジアリールヨードニウム塩及びトリアリールスルホニウム塩が挙げられる。(D)成分は、これらの化合物のうちの1種のみからなるものであってもよく、また2種以上を含んで構成されるものであってもよい。これらの中で、感度が高いことから、(D)成分は、o-キノンジアジド化合物であることが好ましい。
<(D) component>
The compound that generates an acid by receiving light (component (D)) functions as a photosensitizer in the photosensitive resin composition. The component (D) has a function of generating an acid upon irradiation with light and increasing the solubility of the portion of the resin film irradiated with light in an aqueous alkaline solution. As the component (D), a compound generally called a photo-acid generator can be used. Specific examples of the component (D) include o-quinonediazide compounds, aryldiazonium salts, diaryliodonium salts and triarylsulfonium salts. The component (D) may be composed of only one of these compounds, or may be composed of two or more kinds. Of these, the component (D) is preferably an o-quinonediazide compound because of its high sensitivity.
 o-キノンジアジド化合物としては、例えば、o-キノンジアジドスルホニルクロリドと、ヒドロキシ化合物及び/又はアミノ化合物等とを脱塩酸剤の存在下で縮合反応させることで得られる化合物を用いることができる。 As the o-quinonediazide compound, for example, a compound obtained by subjecting an o-quinonediazidesulfonyl chloride to a condensation reaction with a hydroxy compound and / or an amino compound in the presence of a dehydrochlorinating agent can be used.
 o-キノンジアジドスルホニルクロリドとしては、例えば、ベンゾキノン-1,2-ジアジド-4-スルホニルクロリド、ナフトキノン-1,2-ジアジド-5-スルホニルクロリド及びナフトキノン-1,2-ジアジド-6-スルホニルクロリドが挙げられる。 Examples of o-quinonediazidesulfonyl chloride include benzoquinone-1,2-diazide-4-sulfonyl chloride, naphthoquinone-1,2-diazide-5-sulfonyl chloride and naphthoquinone-1,2-diazide-6-sulfonyl chloride. To be
 ヒドロキシ化合物としては、例えば、ヒドロキノン、レゾルシノール、ピロガロール、ビスフェノールA、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)-1-[4-{1-(4-ヒドロキシフェニル)-1-メチルエチル}フェニル]エタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,3,4-トリヒドロキシベンゾフェノン、2,3,4,4’-テトラヒドロキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,3,4,2’,3’-ペンタヒドロキシベンゾフェノン、2,3,4,3’,4’,5’-ヘキサヒドロキシベンゾフェノン、ビス(2,3,4-トリヒドロキシフェニル)メタン、ビス(2,3,4-トリヒドロキシフェニル)プロパン、4b,5,9b,10-テトラヒドロ-1,3,6,8-テトラヒドロキシ-5,10-ジメチルインデノ[2,1-a]インデン、トリス(4-ヒドロキシフェニル)メタン及びトリス(4-ヒドロキシフェニル)エタンが挙げられる。 Examples of the hydroxy compound include hydroquinone, resorcinol, pyrogallol, bisphenol A, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) -1- [4- {1- (4-hydroxyphenyl) ) -1-Methylethyl} phenyl] ethane, 2,2-bis (4-hydroxyphenyl) hexafluoropropane, 2,3,4-trihydroxybenzophenone, 2,3,4,4′-tetrahydroxybenzophenone, 2 , 2 ', 4,4'-tetrahydroxybenzophenone, 2,3,4,2', 3'-pentahydroxybenzophenone, 2,3,4,3 ', 4', 5'-hexahydroxybenzophenone, bis ( 2,3,4-trihydroxyphenyl) methane, bis (2,3,4-trihydroxyphene) Ru) propane, 4b, 5,9b, 10-tetrahydro-1,3,6,8-tetrahydroxy-5,10-dimethylindeno [2,1-a] indene, tris (4-hydroxyphenyl) methane and Examples include tris (4-hydroxyphenyl) ethane.
 アミノ化合物としては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、o-アミノフェノール、m-アミノフェノール、p-アミノフェノール、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(4-アミノ-3-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(4-アミノ-3-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン及びビス(4-アミノ-3-ヒドロキシフェニル)ヘキサフルオロプロパンが挙げられる。 Examples of the amino compound include p-phenylenediamine, m-phenylenediamine, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl sulfone and 4,4′-diaminodiphenyl sulfide. , O-aminophenol, m-aminophenol, p-aminophenol, 3,3′-diamino-4,4′-dihydroxybiphenyl, 4,4′-diamino-3,3′-dihydroxybiphenyl, bis (3- Amino-4-hydroxyphenyl) propane, bis (4-amino-3-hydroxyphenyl) propane, bis (3-amino-4-hydroxyphenyl) sulfone, bis (4-amino-3-hydroxyphenyl) sulfone, bis ( 3-Amino-4-hydroxyphenyl) hexaful Ropuropan and bis (4-amino-3-hydroxyphenyl) hexafluoropropane and the like.
 これらの中でも、o-キノンジアジド化合物を合成する際の反応性の観点と、樹脂膜を露光する際に適度な吸収波長範囲である観点から、1,1-ビス(4-ヒドロキシフェニル)-1-[4-{1-(4-ヒドロキシフェニル)-1-メチルエチル}フェニル]エタンと1-ナフトキノン-2-ジアジド-5-スルホニルクロリドとの縮合物、トリス(4-ヒドロキシフェニル)メタン又はトリス(4-ヒドロキシフェニル)エタンと1-ナフトキノン-2-ジアジド-5-スルホニルクロリドとの縮合物を用いることが好ましい。 Among these, from the viewpoint of reactivity when synthesizing an o-quinonediazide compound and the viewpoint of having an appropriate absorption wavelength range when exposing a resin film, 1,1-bis (4-hydroxyphenyl) -1- Condensation product of [4- {1- (4-hydroxyphenyl) -1-methylethyl} phenyl] ethane with 1-naphthoquinone-2-diazide-5-sulfonyl chloride, tris (4-hydroxyphenyl) methane or tris ( It is preferable to use a condensate of 4-hydroxyphenyl) ethane with 1-naphthoquinone-2-diazide-5-sulfonyl chloride.
 脱塩酸剤としては、例えば、炭酸ナトリウム、水酸化ナトリウム、炭酸水素ナトリウム、炭酸カリウム、水酸化カリウム、トリメチルアミン、トリエチルアミン及びピリジンが挙げられる。反応溶媒としては、例えば、ジオキサン、アセトン、メチルエチルケトン、テトラヒドロフラン、ジエチルエーテル及びN-メチルピロリドンが挙げられる。 Examples of the dehydrochlorinating agent include sodium carbonate, sodium hydroxide, sodium hydrogen carbonate, potassium carbonate, potassium hydroxide, trimethylamine, triethylamine and pyridine. Examples of the reaction solvent include dioxane, acetone, methyl ethyl ketone, tetrahydrofuran, diethyl ether and N-methylpyrrolidone.
 o-キノンジアジドスルホニルクロリドと、ヒドロキシ化合物及び/又はアミノ化合物との配合は、o-キノンジアジドスルホニルクロリド1モルに対して、ヒドロキシ基とアミノ基とのモル数の合計が0.5~1モルになるように配合されることが好ましい。脱塩酸剤とo-キノンジアジドスルホニルクロリドの好ましい配合割合は、0.95/1~1/0.95モル当量の範囲である。 When o-quinonediazidesulfonyl chloride is mixed with a hydroxy compound and / or an amino compound, the total number of moles of hydroxy group and amino group is 0.5 to 1 mole per mole of o-quinonediazidesulfonyl chloride. It is preferable that the composition is blended as follows. A preferred mixing ratio of the dehydrochlorinating agent and o-quinonediazidesulfonyl chloride is in the range of 0.95 / 1 to 1 / 0.95 molar equivalent.
 なお、上述の反応の好ましい反応温度は0~40℃、好ましい反応時間は1~10時間である。 The preferable reaction temperature of the above reaction is 0 to 40 ° C., and the preferable reaction time is 1 to 10 hours.
 (D)成分の含有量は、露光部と未露光部の溶解速度差が大きくなり、感度がより良好となる点から、(A)成分100質量部に対して3~100質量部が好ましく、5~50質量部がより好ましく、5~30質量部が更に好ましく、5~20質量部とすることが特に好ましい。 The content of the component (D) is preferably 3 to 100 parts by mass with respect to 100 parts by mass of the component (A) from the viewpoint that the difference in dissolution rate between the exposed part and the unexposed part becomes large and the sensitivity becomes better. 5 to 50 parts by mass is more preferable, 5 to 30 parts by mass is further preferable, and 5 to 20 parts by mass is particularly preferable.
<(E)成分>
 本実施形態の感光性樹脂組成物は、(E)成分として、熱架橋剤を更に含有してもよい。(E)成分は、樹脂膜を加熱して硬化膜を形成する際に、(A)成分と反応して橋架け構造を形成し得る構造を有する化合物である。(E)成分を用いることで、硬化膜の強度を向上することができる。(E)成分としては、例えば、フェノール性水酸基を有する化合物、アルコキシメチル基を有する化合物及びエポキシ基を有する化合物が挙げられる。
<(E) component>
The photosensitive resin composition of the present embodiment may further contain a thermal crosslinking agent as the component (E). The component (E) is a compound having a structure capable of reacting with the component (A) to form a bridge structure when the resin film is heated to form a cured film. By using the component (E), the strength of the cured film can be improved. Examples of the component (E) include compounds having a phenolic hydroxyl group, compounds having an alkoxymethyl group, and compounds having an epoxy group.
 なお、ここでいう「フェノール性水酸基を有する化合物」には、(A)成分は包含されない。熱架橋剤としてのフェノール性水酸基を有する化合物は、熱架橋剤としてだけでなく、樹脂膜をアルカリ水溶液で現像する際の露光部の溶解速度を増加させ、感度を向上させることができる。このようなフェノール性水酸基を有する化合物のMwは、アルカリ水溶液に対する溶解性及び機械特性のバランスを考慮して、2000以下であることが好ましく、94~2000であることがより好ましく、108~2000であることが更に好ましく、108~1500であることが特に好ましい。 Note that the "compound having a phenolic hydroxyl group" here does not include the component (A). The compound having a phenolic hydroxyl group as a thermal cross-linking agent can not only serve as a thermal cross-linking agent, but can also increase the dissolution rate of the exposed area when the resin film is developed with an aqueous alkaline solution to improve the sensitivity. The Mw of such a compound having a phenolic hydroxyl group is preferably 2000 or less, more preferably 94 to 2000, and more preferably 108 to 2000 in consideration of the balance of solubility in an alkaline aqueous solution and mechanical properties. It is more preferable that it is, and it is particularly preferable that it is 108 to 1500.
 (E)成分は、樹脂膜の硬化時の溶融を防止する効果に優れている点から、アルコキシメチル基を有する化合物であることが好ましく、硬化膜の耐熱性及び機械特性の観点から、4つ以上のアルコキシメチル基を有する化合物であることがより好ましい。 The component (E) is preferably a compound having an alkoxymethyl group from the viewpoint of excellent effect of preventing melting at the time of curing the resin film, and from the viewpoint of heat resistance and mechanical properties of the cured film, four components are preferable. The compound having the above alkoxymethyl group is more preferable.
 4つ以上のアルコキシメチル基を有する化合物は、耐熱性及び薬品耐性の観点から、下記一般式(11)で表される化合物又は下記一般式(12)で表される化合物であることが更に好ましい。 The compound having four or more alkoxymethyl groups is more preferably a compound represented by the following general formula (11) or a compound represented by the following general formula (12) from the viewpoint of heat resistance and chemical resistance. .
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(11)中、R~Rは、それぞれ独立に炭素数1~10のアルキル基を示す。R~Rで示される炭素数1~10のアルキル基は、R22と同様の基が例示できる。アルキル基の炭素数は低温での反応性の観点から、1~5であることが好ましく、1~3であることがより好ましく、1又は2であることが更に好ましく、1であることが特に好ましい。 In formula (11), R 1 to R 6 each independently represent an alkyl group having 1 to 10 carbon atoms. Examples of the alkyl group having 1 to 10 carbon atoms represented by R 1 to R 6 include the same groups as R 22 . From the viewpoint of reactivity at low temperature, the alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms, further preferably 1 or 2 carbon atoms, and particularly preferably 1 carbon atom. preferable.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(12)中、R~R12は、それぞれ独立に炭素数1~10のアルキル基を示す。R~R12で示される炭素数1~10のアルキル基は、R22と同様の基が例示できる。アルキル基の炭素数は、1~5であることが好ましく、1~3であることがより好ましく、1又は2であることが更に好ましく、1であることが特に好ましい。 In formula (12), R 7 to R 12 each independently represent an alkyl group having 1 to 10 carbon atoms. Examples of the alkyl group having 1 to 10 carbon atoms represented by R 7 to R 12 include the same groups as R 22 . The alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms, further preferably 1 or 2 carbon atoms, and particularly preferably 1.
 (E)成分の含有量は、硬化膜の耐熱性を向上すると共に、基板上に硬化膜を形成した際の反りを低減する点から、(A)成分100質量部に対して0.5~50質量部が好ましく、1~40質量部がより好ましく、2~30質量部が更に好ましい。 The content of the component (E) is 0.5 to 100 parts by mass of the component (A) from the viewpoint of improving the heat resistance of the cured film and reducing the warpage when the cured film is formed on the substrate. 50 parts by mass is preferable, 1 to 40 parts by mass is more preferable, and 2 to 30 parts by mass is further preferable.
<(F)成分>
 本実施形態の感光性樹脂組成物は、(F)成分として、2以上のエポキシ基を有する化合物を更に含有してもよい。(F)成分は、上述の(E)成分である化合物と共に、パターン形成後の樹脂膜を加熱して硬化する際に、(A)成分と反応して橋架け構造を形成することができる。
<(F) component>
The photosensitive resin composition of this embodiment may further contain a compound having two or more epoxy groups as the component (F). The component (F) can react with the component (A) to form a bridge structure when the resin film after pattern formation is heated and cured together with the compound which is the component (E).
 (F)成分は、2以上のエポキシ基を有している化合物であれば、特に制限なく使用することができる。(F)成分としては、例えば、脂肪族エポキシ化合物、芳香族エポキシ化合物、脂環式エポキシ化合物、複素環式エポキシ化合物、ビスフェノール型エポキシ化合物、ノボラック型エポキシ化合物、グリシジルアミン型エポキシ化合物及びハロゲン化エポキシ化合物が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。 Component (F) can be used without particular limitation as long as it is a compound having two or more epoxy groups. Examples of the component (F) include aliphatic epoxy compounds, aromatic epoxy compounds, alicyclic epoxy compounds, heterocyclic epoxy compounds, bisphenol type epoxy compounds, novolac type epoxy compounds, glycidyl amine type epoxy compounds and halogenated epoxies. Compounds. These may be used alone or in combination of two or more.
 (F)成分は、薬液耐性により優れる観点から、芳香環又は複素環を有するエポキシ化合物であることが好ましく、複素環を有するエポキシ化合物であることがより好ましく、含窒素複素環を有するエポキシ化合物であることが更に好ましい。 The component (F) is preferably an epoxy compound having an aromatic ring or a heterocyclic ring, more preferably an epoxy compound having a heterocyclic ring, and an epoxy compound having a nitrogen-containing heterocyclic ring, from the viewpoint of being more resistant to chemicals. More preferably,
 (F)成分は、薬液耐性により優れる観点から、下記一般式(13)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
The component (F) is preferably a compound represented by the following general formula (13) from the viewpoint of better resistance to chemicals.
Figure JPOXMLDOC01-appb-C000010
 式(13)中、R13~R15は、それぞれ独立に炭素数1~10のアルキレン基を示す。 In formula (13), R 13 to R 15 each independently represent an alkylene group having 1 to 10 carbon atoms.
 一般式(13)において、R13~R15で表わされる炭素数1~10のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基及びデシレン基が挙げられる。これらの基は直鎖状であっても、分岐鎖状であってもよい。アルキレン基の炭素数は、1~8であることが好ましく、1~6であることがより好ましい。 Examples of the alkylene group having 1 to 10 carbon atoms represented by R 13 to R 15 in the general formula (13) include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, and an octylene group. Group, nonylene group and decylene group. These groups may be linear or branched. The alkylene group preferably has 1 to 8 carbon atoms, and more preferably 1 to 6 carbon atoms.
 (E)成分に対する(F)成分のモル比率((F)成分のモル数/(E)成分のモル数)は、薬液耐性及び破断強度により優れる観点から、1.0以下であり、0.9以下であることが好ましく、0.8以下であることがより好ましい。(E)成分に対する(F)成分のモル比率の下限は、特に制限されないが、0.1以上、0.2以上又は0.3以上であってもよい。 The molar ratio of the component (F) to the component (E) (the number of moles of the component (F) / the number of moles of the component (E)) is 1.0 or less from the viewpoint of being more excellent in chemical resistance and breaking strength, It is preferably 9 or less, and more preferably 0.8 or less. The lower limit of the molar ratio of the component (F) to the component (E) is not particularly limited, but may be 0.1 or more, 0.2 or more, or 0.3 or more.
 (E)成分及び(F)成分の合計量は、残留応力及び薬液耐性により優れる観点から、(A)成分100質量部に対して、2~35質量部であることが好ましく、4~30質量部であることがより好ましく、5~25質量部であることが更に好ましい。 The total amount of the component (E) and the component (F) is preferably 2 to 35 parts by mass with respect to 100 parts by mass of the component (A) from the viewpoint of being superior in residual stress and chemical resistance. More preferably, the amount is more preferably 5 to 25 parts by mass.
<その他の成分>
 本実施形態の感光性樹脂組成物は、上記(A)~(F)成分以外に、溶媒、加熱により酸を生成する化合物、溶解促進剤、溶解阻害剤、カップリング剤、界面活性剤、レベリング剤等の成分を含有してもよい。
<Other ingredients>
In addition to the components (A) to (F), the photosensitive resin composition of the present embodiment is a solvent, a compound that produces an acid upon heating, a dissolution accelerator, a dissolution inhibitor, a coupling agent, a surfactant, and leveling. You may contain ingredients, such as an agent.
(溶媒)
 本実施形態の感光性樹脂組成物は、溶媒を含有することにより、基板上への塗布を容易にし、均一な厚さの塗膜を形成することができる。溶媒としては、例えば、γ-ブチロラクトン、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、酢酸ベンジル、n-ブチルアセテート、エトキシエチルプロピオナート、3-メチルメトキシプロピオナート、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホリルアミド、テトラメチレンスルホン、ジエチルケトン、ジイソブチルケトン、メチルアミルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル及びジプロピレングリコールモノメチルエーテルが挙げられる。これらの溶媒は1種を単独で又は2種以上を組み合わせて用いることができる。これらの中でも、溶解性及び塗布膜の均一性の点から、溶媒として、乳酸エチル又はプロピレングリコールモノメチルエーテルアセテートを用いることが好ましい。
(solvent)
Since the photosensitive resin composition of the present embodiment contains a solvent, application on a substrate can be facilitated and a coating film having a uniform thickness can be formed. Examples of the solvent include γ-butyrolactone, ethyl lactate, propylene glycol monomethyl ether acetate, benzyl acetate, n-butyl acetate, ethoxyethyl propionate, 3-methylmethoxypropionate, N-methyl-2-pyrrolidone, N , N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphorylamide, tetramethylene sulfone, diethyl ketone, diisobutyl ketone, methyl amyl ketone, cyclohexanone, propylene glycol monomethyl ether, propylene glycol monopropyl ether, propylene glycol Mention may be made of monobutyl ether and dipropylene glycol monomethyl ether. These solvents may be used alone or in combination of two or more. Among these, it is preferable to use ethyl lactate or propylene glycol monomethyl ether acetate as the solvent from the viewpoint of solubility and uniformity of the coating film.
(加熱により酸を生成する化合物)
 加熱により酸を生成する化合物を用いることにより、樹脂膜を加熱する際に酸を発生させることが可能となり、(A)成分と(E)成分との反応、すなわち熱架橋反応が促進され、硬化膜の耐熱性を向上することができる。また、加熱により酸を生成する化合物は、光照射によっても酸を発生するため、樹脂膜における露光部のアルカリ水溶液への溶解性が増大する。よって、樹脂膜における未露光部と露光部とのアルカリ水溶液に対する溶解性の差が更に大きくなり、解像度がより向上する。
(Compound that generates acid by heating)
By using a compound that generates an acid by heating, it becomes possible to generate an acid when the resin film is heated, and the reaction between the (A) component and the (E) component, that is, the thermal crosslinking reaction is promoted, and curing is performed. The heat resistance of the film can be improved. In addition, a compound that generates an acid by heating also generates an acid by irradiation with light, so that the solubility of the exposed portion of the resin film in an alkaline aqueous solution is increased. Therefore, the difference in solubility between the unexposed portion and the exposed portion of the resin film in the alkaline aqueous solution is further increased and the resolution is further improved.
 このような加熱により酸を生成する化合物は、例えば、50~250℃まで加熱することにより酸を生成する化合物であってもよい。加熱により酸を生成する化合物の具体例としては、オニウム塩等の強酸と塩基とから形成される塩、及びイミドスルホナートが挙げられる。 The compound that produces an acid by such heating may be, for example, a compound that produces an acid by heating to 50 to 250 ° C. Specific examples of the compound that generates an acid by heating include salts formed from a strong acid such as an onium salt and a base, and imidosulfonate.
 加熱により酸を生成する化合物を用いる場合の含有量は、(A)成分100質量部に対して、0.1~30質量部が好ましく、0.2~20質量部がより好ましく、0.5~10質量部が更に好ましい。 When using a compound that generates an acid by heating, the content is preferably 0.1 to 30 parts by mass, more preferably 0.2 to 20 parts by mass, and 0.5 with respect to 100 parts by mass of the component (A). It is more preferably about 10 to 10 parts by mass.
(溶解促進剤)
 溶解促進剤を感光性樹脂組成物に配合することによって、樹脂膜をアルカリ水溶液で現像する際の露光部の溶解速度を増加させ、感度及び解像性を向上させることができる。溶解促進剤としては従来公知のものを用いることができる。溶解促進剤の具体例としては、カルボキシル基、スルホン酸又はスルホンアミド基を有する化合物が挙げられる。
(Dissolution accelerator)
By adding a dissolution accelerator to the photosensitive resin composition, it is possible to increase the dissolution rate of the exposed area when the resin film is developed with an alkaline aqueous solution, and to improve the sensitivity and resolution. As the dissolution accelerator, conventionally known ones can be used. Specific examples of the dissolution accelerator include compounds having a carboxyl group, a sulfonic acid or a sulfonamide group.
 溶解促進剤を用いる場合の含有量は、アルカリ水溶液に対する溶解速度によって決めることができ、例えば、(A)成分100質量部に対して、0.01~30質量部とすることができる。 The content of the dissolution accelerator when used can be determined by the dissolution rate in an alkaline aqueous solution, and can be, for example, 0.01 to 30 parts by mass with respect to 100 parts by mass of the component (A).
(溶解阻害剤)
 溶解阻害剤は、(A)成分のアルカリ水溶液に対する溶解性を阻害する化合物であり、残膜厚、現像時間及びコントラストをコントロールするために用いられる。溶解阻害剤としては、例えば、ジフェニルヨードニウムニトラート、ビス(p-tert-ブチルフェニル)ヨードニウムニトラート、ジフェニルヨードニウムブロミド、ジフェニルヨードニウムクロリド及びジフェニルヨードニウムヨージドが挙げられる。溶解阻害剤を用いる場合の含有量は、感度及び現像時間の許容幅の点から、(A)成分100質量部に対して0.01~20質量部が好ましく、0.01~15質量部がより好ましく、0.05~10質量部が更に好ましい。
(Dissolution inhibitor)
The dissolution inhibitor is a compound that inhibits the solubility of the component (A) in an alkaline aqueous solution, and is used for controlling the remaining film thickness, the development time and the contrast. Examples of the dissolution inhibitor include diphenyliodonium nitrate, bis (p-tert-butylphenyl) iodonium nitrate, diphenyliodonium bromide, diphenyliodonium chloride and diphenyliodonium iodide. When a dissolution inhibitor is used, the content is preferably 0.01 to 20 parts by mass, and 0.01 to 15 parts by mass with respect to 100 parts by mass of the component (A) from the viewpoint of sensitivity and the allowable range of development time. More preferably, 0.05 to 10 parts by mass is even more preferable.
(カップリング剤)
 カップリング剤を感光性樹脂組成物に配合することによって、形成される硬化膜の基板との接着性をより高めることができる。カップリング剤としては、例えば、有機シラン化合物及びアルミキレート化合物が挙げられる。有機シラン化合物としては、例えば、KBM-403、KBM-803及びKBM-903(信越化学工業株式会社製、商品名)が挙げられる。カップリング剤を用いる場合の含有量は、(A)成分100質量部に対して、0.1~20質量部が好ましく、0.5~10質量部がより好ましい。
(Coupling agent)
By blending the coupling agent with the photosensitive resin composition, the adhesion of the formed cured film to the substrate can be further enhanced. Examples of the coupling agent include organic silane compounds and aluminum chelate compounds. Examples of the organic silane compound include KBM-403, KBM-803 and KBM-903 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.). When the coupling agent is used, the content is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 10 parts by mass, relative to 100 parts by mass of the component (A).
(界面活性剤又はレベリング剤)
 界面活性剤又はレベリング剤を感光性樹脂組成物に配合することによって、塗布性をより向上することができる。具体的には、例えば、界面活性剤又はレベリング剤を含有することで、ストリエーション(膜厚のムラ)をより防いだり、現像性をより向上させたりすることができる。界面活性剤又はレベリング剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル及びポリオキシエチレンオクチルフェノールエーテルが挙げられる。市販品としては、例えば、メガファックF-171、F-565、RS-78(DIC株式会社製、商品名)が挙げられる。
(Surfactant or leveling agent)
By coating the photosensitive resin composition with a surfactant or a leveling agent, the coating property can be further improved. Specifically, for example, by containing a surfactant or a leveling agent, striation (unevenness of film thickness) can be further prevented and the developability can be further improved. Examples of the surfactant or leveling agent include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether and polyoxyethylene octylphenol ether. Examples of commercially available products include Megafac F-171, F-565 and RS-78 (trade name, manufactured by DIC Corporation).
 界面活性剤又はレベリング剤を用いる場合の含有量は、(A)成分100質量部に対して、0.001~5質量部が好ましく、0.01~3質量部がより好ましい。 When a surfactant or a leveling agent is used, the content is preferably 0.001 to 5 parts by mass, more preferably 0.01 to 3 parts by mass, relative to 100 parts by mass of the component (A).
 本実施形態の感光性樹脂組成物は、テトラメチルアンモニウムヒドロキシド(TMAH)等のアルカリ水溶液を用いて現像することが可能である。本実施形態の感光性樹脂組成物を感光性樹脂として用いることにより、充分に高い現像性で、良好な銅に対する密着性及び熱衝撃性を有するパターン硬化膜を形成することが可能となる。 The photosensitive resin composition of this embodiment can be developed using an alkaline aqueous solution such as tetramethylammonium hydroxide (TMAH). By using the photosensitive resin composition of the present embodiment as the photosensitive resin, it becomes possible to form a patterned cured film having sufficiently high developability and good adhesion to copper and thermal shock resistance.
[パターン硬化膜及びその製造方法]
 一実施形態のパターン硬化膜は、パターンを有し、パターンが上述の感光性樹脂組成物からなる樹脂膜の硬化物を含む。パターン硬化膜は、上述の感光性樹脂組成物を加熱することによって得られる。以下、パターン硬化膜の製造方法について説明する。
[Pattern cured film and method for producing the same]
The patterned cured film of one embodiment has a pattern, and the pattern includes a cured product of a resin film made of the above-described photosensitive resin composition. The pattern cured film is obtained by heating the above-mentioned photosensitive resin composition. Hereinafter, a method for manufacturing the patterned cured film will be described.
 本実施形態のパターン硬化膜の製造方法は、上述の感光性樹脂組成物を、銅層を備える基板の一部又は全部に塗布及び乾燥し樹脂膜を形成する工程(塗布・乾燥(成膜)工程)と、樹脂膜の一部又は全部を露光する工程(露光工程)と、露光後の樹脂膜をアルカリ水溶液により現像してパターン樹脂膜を形成する工程(現像工程)と、パターン樹脂膜を加熱する工程(加熱処理工程)とを備える。以下、各工程について説明する。 The method for producing a patterned cured film of the present embodiment is a step of applying and drying the above-mentioned photosensitive resin composition on a part or all of a substrate having a copper layer to form a resin film (application / drying (film formation) Step), a step of exposing a part or all of the resin film (exposure step), a step of developing the exposed resin film with an alkaline aqueous solution to form a pattern resin film (developing step), and a step of exposing the pattern resin film. A heating step (heat treatment step). Hereinafter, each step will be described.
<塗布・乾燥(成膜)工程>
 まず、本実施形態の感光性樹脂組成物を、銅層を備える基板上に塗布し乾燥して樹脂膜を形成する。この工程では、基板の銅層上に、本実施形態の感光性樹脂組成物を、スピンナー等を用いて回転塗布し、塗膜を形成する。塗膜の厚さに特に制限はないが、0.1~40μmであることが好ましい。この塗膜が形成された基板をホットプレート、オーブン等を用いて乾燥する。乾燥温度及び乾燥時間に特に制限はないが80~140℃で、1~7分間行うことが好ましい。これにより、支持基板上に樹脂膜が形成される。樹脂膜の厚さに特に制限はないが、0.1~40μmであることが好ましい。
<Coating / drying (film formation) process>
First, the photosensitive resin composition of the present embodiment is applied onto a substrate having a copper layer and dried to form a resin film. In this step, the photosensitive resin composition of this embodiment is spin-coated on the copper layer of the substrate using a spinner or the like to form a coating film. The thickness of the coating film is not particularly limited, but is preferably 0.1 to 40 μm. The substrate on which this coating film is formed is dried using a hot plate, an oven or the like. The drying temperature and the drying time are not particularly limited, but it is preferably performed at 80 to 140 ° C. for 1 to 7 minutes. As a result, a resin film is formed on the support substrate. The thickness of the resin film is not particularly limited, but is preferably 0.1 to 40 μm.
<露光工程>
 次に、露光工程では、基板上に形成した樹脂膜に、マスクを介して紫外線、可視光線、放射線等の活性光線を照射する。本実施形態の感光性樹脂組成物において、(A)成分はi線に対する透明性が高いので、i線の照射を好適に用いることができる。なお、露光後、必要に応じて、溶解速度を向上させる観点から露光後加熱(PEB)を行うこともできる。露光後加熱を行う場合の温度は70℃~140℃、露光後加熱の時間は1~5分間が好ましい。
<Exposure process>
Next, in the exposure step, the resin film formed on the substrate is irradiated with actinic rays such as ultraviolet rays, visible rays, and radiation through a mask. In the photosensitive resin composition of the present embodiment, the component (A) has a high transparency for i-rays, and thus irradiation with i-rays can be preferably used. After exposure, post-exposure heating (PEB) can be performed, if necessary, from the viewpoint of improving the dissolution rate. When the post-exposure heating is performed, the temperature is preferably 70 to 140 ° C., and the post-exposure heating time is preferably 1 to 5 minutes.
<現像工程>
 現像工程では、露光工程後の樹脂膜の露光部を現像液で除去することにより、樹脂膜がパターン化され、パターン樹脂膜が得られる。現像液としては、例えば、炭酸ナトリウム、水酸化ナトリウム、水酸化カリウム、ケイ酸ナトリウム、アンモニア、エチルアミン、ジエチルアミン、トリエチルアミン、トリエタノールアミン、水酸化テトラメチルアンモニウム(TMAH)等のアルカリ水溶液が好適に用いられる。これらの水溶液の塩基濃度は、0.1~10質量%とすることが好ましい。さらに、上記現像液にアルコール類又は界面活性剤を添加して使用することもできる。これらはそれぞれ、現像液100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.1~5質量部の範囲で配合することができる。現像液を用いて現像を行う場合は、例えば、シャワー現像、スプレー現像、浸漬現像、パドル現像等の方法によって、現像液を樹脂膜上に配し、18~40℃の条件下、30~360秒間放置する。放置後、水洗しスピン乾燥を行うことでパターン樹脂膜を洗浄する。
<Developing process>
In the developing step, the resin film is patterned by removing the exposed portion of the resin film after the exposing step with a developing solution to obtain a patterned resin film. As the developing solution, for example, an alkali aqueous solution such as sodium carbonate, sodium hydroxide, potassium hydroxide, sodium silicate, ammonia, ethylamine, diethylamine, triethylamine, triethanolamine, tetramethylammonium hydroxide (TMAH) is preferably used. To be The base concentration of these aqueous solutions is preferably 0.1 to 10% by mass. Further, an alcohol or a surfactant may be added to the above developer for use. Each of these may be added in an amount of preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, relative to 100 parts by mass of the developer. When development is performed using a developing solution, for example, the developing solution is placed on the resin film by a method such as shower development, spray development, dip development, and puddle development, and the temperature is 30 to 360 ° C. under the condition of 18 to 40 ° C. Let stand for a second. After standing, the patterned resin film is washed by washing with water and spin drying.
<加熱処理工程>
 次いで、加熱処理工程では、パターン樹脂膜を加熱処理することにより、パターン硬化膜を形成することができる。加熱処理工程における加熱温度は、半導体装置に対する熱によるダメージを充分に防止する点から、250℃以下が好ましく、230℃以下がより好ましい。
<Heat treatment step>
Next, in the heat treatment step, the pattern cured film can be formed by heat treating the pattern resin film. The heating temperature in the heat treatment step is preferably 250 ° C. or lower, and more preferably 230 ° C. or lower, from the viewpoint of sufficiently preventing damage to the semiconductor device due to heat.
 加熱処理は、例えば、石英チューブ炉、ホットプレート、ラピッドサーマルアニール、縦型拡散炉、赤外線硬化炉、電子線硬化炉、マイクロ波硬化炉等のオーブンを用いて行うことができる。また、大気中又は窒素等の不活性雰囲気中いずれを選択することもできるが、窒素下で行う方がパターンの酸化を防ぐことができるので望ましい。上述の好ましい加熱温度の範囲は従来の加熱温度よりも低いため、支持基板及び半導体装置へのダメージを小さく抑えることができる。従って、本実施形態のレジストパターンの製造方法を用いることによって、電子デバイスを歩留まり良く製造することができる。また、プロセスの省エネルギー化につながる。さらに、本実施形態の感光性樹脂組成物によれば、感光性ポリイミド等に見られる加熱処理工程における体積収縮(硬化収縮)が小さいため、寸法精度の低下を防ぐことができる。 The heat treatment can be performed using an oven such as a quartz tube furnace, a hot plate, rapid thermal annealing, a vertical diffusion furnace, an infrared curing furnace, an electron beam curing furnace, and a microwave curing furnace. Further, either in the air or in an inert atmosphere such as nitrogen can be selected, but it is preferable to carry out under nitrogen because oxidation of the pattern can be prevented. Since the preferable heating temperature range described above is lower than the conventional heating temperature, damage to the supporting substrate and the semiconductor device can be suppressed to be small. Therefore, by using the method of manufacturing a resist pattern according to this embodiment, electronic devices can be manufactured with high yield. It also leads to energy savings in the process. Furthermore, according to the photosensitive resin composition of the present embodiment, since the volume shrinkage (curing shrinkage) in the heat treatment step found in photosensitive polyimide and the like is small, it is possible to prevent a decrease in dimensional accuracy.
 加熱処理工程における加熱処理時間は、感光性樹脂組成物が硬化するのに充分な時間であればよいが、作業効率との兼ね合いから、5時間以下が好ましい。 The heat treatment time in the heat treatment step may be a time sufficient for the photosensitive resin composition to cure, but it is preferably 5 hours or less in consideration of work efficiency.
 また、加熱処理は、上述のオーブンの他、マイクロ波硬化装置又は周波数可変マイクロ波硬化装置を用いて行うこともできる。これらの装置を用いることにより、基板及び半導体装置の温度を例えば200℃以下に保ったままで、感光性樹脂膜のみを効果的に加熱することが可能である(J.Photopolym.Sci.Technol.,18,327-332(2005)参照)。 Also, the heat treatment can be performed using a microwave curing device or a frequency variable microwave curing device in addition to the oven described above. By using these devices, it is possible to effectively heat only the photosensitive resin film while maintaining the temperature of the substrate and the semiconductor device at, for example, 200 ° C. or lower (J. Photopolym. Sci. Technol., 18, 327-332 (2005)).
 上述の本実施形態のパターン硬化膜の製造方法によれば、充分に高い感度及び解像度で、密着性及び熱衝撃性にも優れるパターン硬化膜が得られる。 According to the method for producing a patterned cured film of the present embodiment described above, a patterned cured film having sufficiently high sensitivity and resolution, and excellent in adhesion and thermal shock resistance can be obtained.
[層間絶縁層、表面保護層]
 本実施形態のパターン硬化膜は、半導体素子の層間絶縁層又は表面保護層として用いることができる。銅層を有する基板上に、形成されたパターン硬化膜を備える半導体素子を高温に放置した場合、銅層におけるボイドの発生を抑制することができる。
[Interlayer insulation layer, surface protection layer]
The patterned cured film of this embodiment can be used as an interlayer insulating layer or a surface protective layer of a semiconductor element. When a semiconductor element having a pattern-cured film formed on a substrate having a copper layer is left at high temperature, it is possible to suppress the occurrence of voids in the copper layer.
[半導体素子]
 一実施形態の半導体素子は、本実施形態の層間絶縁層又は表面保護層を備える。本実施形態の半導体素子は、特に制限に制限されないが、多層配線構造、再配線構造等を有する、メモリ、パッケージ等のことを意味する。
[Semiconductor element]
The semiconductor device of one embodiment includes the interlayer insulating layer or the surface protection layer of this embodiment. The semiconductor element of the present embodiment means a memory, a package, etc. having a multilayer wiring structure, a rewiring structure, etc., although not particularly limited thereto.
 ここで、半導体素子の製造工程の一例を図面に基づいて説明する。図1~5は、多層配線構造を有する半導体素子の製造工程の一実施形態を示す概略斜視図及び概略端面図である。図1~5中、(a)は概略斜視図であり、(b)は、それぞれ(a)におけるIb-Ib~Vb-Vb端面を示す概略端面図である。 Here, an example of a semiconductor element manufacturing process will be described with reference to the drawings. 1 to 5 are schematic perspective views and schematic end views showing one embodiment of a manufacturing process of a semiconductor device having a multilayer wiring structure. 1 to 5, (a) is a schematic perspective view, and (b) is a schematic end view showing Ib-Ib to Vb-Vb end faces in (a), respectively.
 まず、図1に示す構造体100を準備する。構造体100は、回路素子を有するSi基板等の半導体基板1と、回路素子が露出する所定のパターンを有し、半導体基板1を被覆するシリコン酸化膜等の保護膜2と、露出した回路素子上に形成された第1導体層3と、保護膜2及び第1導体層3上にスピンコート法等により成膜されたポリイミド樹脂等からなる層間絶縁層4とを備える。 First, the structure 100 shown in FIG. 1 is prepared. The structure 100 includes a semiconductor substrate 1 such as a Si substrate having a circuit element, a predetermined pattern for exposing the circuit element, a protective film 2 such as a silicon oxide film covering the semiconductor substrate 1, and the exposed circuit element. The first conductor layer 3 formed thereon and the interlayer insulating layer 4 made of polyimide resin or the like formed on the protective film 2 and the first conductor layer 3 by a spin coating method or the like are provided.
 次に、層間絶縁層4上に窓部6Aを有する感光性樹脂層5を形成することにより、図2に示す構造体200を得る。感光性樹脂層5は、例えば、塩化ゴム系、フェノールノボラック系、ポリヒドロキシスチレン系、ポリアクリル酸エステル系等の感光性樹脂を、スピンコート法により塗布することにより形成される。窓部6Aは、公知の写真食刻技術によって所定部分の層間絶縁層4が露出するように形成される。 Next, the photosensitive resin layer 5 having the window portion 6A is formed on the interlayer insulating layer 4 to obtain the structure 200 shown in FIG. The photosensitive resin layer 5 is formed, for example, by applying a photosensitive resin such as a chlorinated rubber type, a phenol novolac type, a polyhydroxystyrene type, or a polyacrylic acid ester type by a spin coating method. The window portion 6A is formed by a known photo-etching technique so that the interlayer insulating layer 4 in a predetermined portion is exposed.
 層間絶縁層4をエッチングして窓部6Bを形成した後に、感光性樹脂層5を除去し、図3に示す構造体300を得る。層間絶縁層4のエッチングには、酸素、四フッ化炭素等のガスを用いるドライエッチング手段を用いることができる。このエッチングにより、窓部6Aに対応する部分の層間絶縁層4が選択的に除去され、第1導体層3が露出するように窓部6Bが設けられた層間絶縁層4が得られる。次いで、窓部6Bから露出した第1導体層3を腐食することなく、感光性樹脂層5のみを腐食するようなエッチング溶液を用いて感光性樹脂層5を除去する。 After the interlayer insulating layer 4 is etched to form the window 6B, the photosensitive resin layer 5 is removed to obtain the structure 300 shown in FIG. Dry etching means using a gas such as oxygen or carbon tetrafluoride can be used for etching the interlayer insulating layer 4. By this etching, the interlayer insulating layer 4 in the portion corresponding to the window 6A is selectively removed, and the interlayer insulating layer 4 provided with the window 6B so that the first conductor layer 3 is exposed is obtained. Next, the photosensitive resin layer 5 is removed using an etching solution that corrodes only the photosensitive resin layer 5 without corroding the first conductor layer 3 exposed from the window 6B.
 さらに、窓部6Bに対応する部分に第2導体層7を形成し、図4に示す構造体400を得る。第2導体層7の形成には、公知の写真食刻技術を用いることができる。これにより、第2導体層7と第1導体層3との電気的接続が行われる。 Further, the second conductor layer 7 is formed in the portion corresponding to the window 6B to obtain the structure 400 shown in FIG. A known photo-etching technique can be used to form the second conductor layer 7. As a result, the second conductor layer 7 and the first conductor layer 3 are electrically connected.
 最後に、層間絶縁層4及び第2導体層7上に表面保護層8を形成し、図5に示す半導体素子500を得る。本実施形態では、表面保護層8は次のようにして形成する。まず、上述の感光性樹脂組成物をスピンコート法により層間絶縁層4及び第2導体層7上に塗布し、乾燥して感光性樹脂膜を形成する。次に、所定部分に窓部6Cに対応するパターンを描いたマスクを介して光照射した後、露光後の樹脂膜をアルカリ水溶液にて現像してパターン樹脂膜を形成する。その後、パターン樹脂膜を加熱により硬化することで、表面保護層8として用いられるパターン硬化膜が形成される。この表面保護層8は、第1導体層3及び第2導体層7を外部からの応力、α線等から保護するものであり、本実施形態の表面保護層8を用いた半導体素子500は信頼性に優れる。 Finally, the surface protection layer 8 is formed on the interlayer insulating layer 4 and the second conductor layer 7 to obtain the semiconductor element 500 shown in FIG. In this embodiment, the surface protective layer 8 is formed as follows. First, the above-mentioned photosensitive resin composition is applied onto the interlayer insulating layer 4 and the second conductor layer 7 by a spin coating method and dried to form a photosensitive resin film. Next, a predetermined portion is irradiated with light through a mask having a pattern corresponding to the window portion 6C, and the exposed resin film is developed with an alkaline aqueous solution to form a patterned resin film. Then, the pattern resin film is cured by heating to form the pattern cured film used as the surface protective layer 8. The surface protection layer 8 protects the first conductor layer 3 and the second conductor layer 7 from external stress, α rays, etc., and the semiconductor element 500 using the surface protection layer 8 of the present embodiment is reliable. Excellent in performance.
 なお、上述の実施形態では2層の配線構造を有する半導体素子の製造方法を示したが、3層以上の多層配線構造を形成する場合は、上述の工程を繰り返して行い、各層を形成することができる。すなわち、層間絶縁層4を形成する各工程、及び表面保護層8を形成する各工程を繰り返すことによって、多層のパターンを形成することが可能である。また、上記例において、表面保護層8のみでなく、層間絶縁層4も本実施形態の感光性樹脂組成物を用いて形成することが可能である。 Although the method of manufacturing a semiconductor device having a two-layer wiring structure has been described in the above embodiment, when a multilayer wiring structure having three or more layers is formed, the above steps are repeated to form each layer. You can That is, it is possible to form a multilayer pattern by repeating each step of forming the interlayer insulating layer 4 and each step of forming the surface protective layer 8. Further, in the above example, not only the surface protective layer 8 but also the interlayer insulating layer 4 can be formed using the photosensitive resin composition of the present embodiment.
 本実施形態の半導体素子は、上述の感光性樹脂組成物を用いて形成される表面保護層、カバーコート層又は層間絶縁層を有するものに限られず、様々な構造をとることができる。 The semiconductor element of the present embodiment is not limited to the one having the surface protective layer, the cover coat layer or the interlayer insulating layer formed by using the above-mentioned photosensitive resin composition, and can have various structures.
 図6及び7は、再配線構造を有する半導体素子の一実施形態を示す概略断面図である。本実施形態の感光性樹脂組成物は、応力緩和性、接着性等にも優れるため、近年開発された図6及び7のような再配線構造を有する半導体素子において使用することができる。 6 and 7 are schematic cross-sectional views showing one embodiment of a semiconductor device having a rewiring structure. Since the photosensitive resin composition of the present embodiment is excellent in stress relaxation property, adhesive property, etc., it can be used in the recently developed semiconductor device having a rewiring structure as shown in FIGS.
 図6は、半導体素子の一実施形態としての配線構造を示す概略断面図である。図6に示す半導体素子600は、シリコン基板23と、シリコン基板23の一方面側に設けられた層間絶縁層11と、層間絶縁層11上に形成された、パッド部15を含むパターンを有するAl配線層12と、パッド部15上に開口を形成しながら層間絶縁層11及びAl配線層12上に順次積層された絶縁層13(例えば、P-SiN層等)及び表面保護層14と、表面保護層14上で開口近傍に配された島状のコア18と、絶縁層13及び表面保護層14の開口内でパッド部15と接するとともにコア18の表面保護層14とは反対側の面に接するように表面保護層14上に延在する再配線層16とを備える。さらに、半導体素子600は、表面保護層14、コア18及び再配線層16を覆って形成され、コア18上の再配線層16の部分に開口が形成されているカバーコート層19と、カバーコート層19の開口においてバリアメタル20を間に挟んで再配線層16と接続された導電性ボール17と、導電性ボールを保持するカラー21と、導電性ボール17周囲のカバーコート層19上に設けられたアンダーフィル22とを備える。導電性ボール17は外部接続端子として用いられ、はんだ、金等から形成される。アンダーフィル22は、半導体素子600を実装する際に応力を緩和するために設けられている。 FIG. 6 is a schematic cross-sectional view showing a wiring structure as an embodiment of a semiconductor element. A semiconductor element 600 shown in FIG. 6 has a silicon substrate 23, an interlayer insulating layer 11 provided on one side of the silicon substrate 23, and an Al formed on the interlayer insulating layer 11 and having a pattern including a pad portion 15. A wiring layer 12, an insulating layer 13 (for example, a P—SiN layer or the like) and a surface protection layer 14 which are sequentially stacked on the interlayer insulating layer 11 and the Al wiring layer 12 while forming an opening on the pad portion 15, and a surface. The island-shaped core 18 arranged in the vicinity of the opening on the protective layer 14 is in contact with the pad portion 15 in the opening of the insulating layer 13 and the surface protective layer 14, and on the surface of the core 18 opposite to the surface protective layer 14. And a redistribution layer 16 extending on the surface protection layer 14 so as to be in contact with each other. Further, the semiconductor element 600 is formed so as to cover the surface protection layer 14, the core 18 and the redistribution layer 16, and a cover coat layer 19 in which an opening is formed in a portion of the redistribution layer 16 on the core 18, and a cover coat. Provided on the cover coat layer 19 around the conductive balls 17, the conductive balls 17 connected to the redistribution layer 16 with the barrier metal 20 interposed therebetween in the opening of the layer 19, the collar 21 holding the conductive balls 17. And an underfill 22 that has been formed. The conductive balls 17 are used as external connection terminals and are made of solder, gold, or the like. The underfill 22 is provided to relieve stress when mounting the semiconductor element 600.
 図7の半導体素子700においては、シリコン基板23上にAl配線層(図示せず)及びAl配線層のパッド部15が形成されており、その上部には絶縁層13が形成され、さらに素子の表面保護層14が形成されている。パッド部15上には、再配線層16が形成され、この再配線層16は、導電性ボール17との接続部24の上部まで伸びている。さらに、表面保護層14の上には、カバーコート層19が形成されている。再配線層16は、バリアメタル20を介して導電性ボール17に接続されている。 In a semiconductor device 700 of FIG. 7, an Al wiring layer (not shown) and a pad portion 15 of the Al wiring layer are formed on a silicon substrate 23, an insulating layer 13 is formed on the Al wiring layer, and a pad portion 15 of the Al wiring layer is further formed. The surface protection layer 14 is formed. A rewiring layer 16 is formed on the pad portion 15, and the rewiring layer 16 extends to an upper portion of the connection portion 24 with the conductive ball 17. Further, a cover coat layer 19 is formed on the surface protective layer 14. The redistribution layer 16 is connected to the conductive balls 17 via the barrier metal 20.
 図6及び7の半導体素子において、感光性樹脂組成物は、層間絶縁層11及び表面保護層14ばかりではなく、カバーコート層19、コア18、カラー21、アンダーフィル22等を形成するための材料として使用することができる。本実施形態の感光性樹脂組成物を用いたパターン硬化膜は、Al配線層12若しくは再配線層16等のメタル層又は封止剤等との接着性に優れ、応力緩和効果も高いため、このパターン硬化膜を層間絶縁層11、表面保護層14、カバーコート層19、コア18、はんだ等のカラー21、フリップチップ等で用いられるアンダーフィル22等に用いた半導体素子は、極めて信頼性に優れるものとなる。 In the semiconductor elements of FIGS. 6 and 7, the photosensitive resin composition is a material for forming not only the interlayer insulating layer 11 and the surface protective layer 14 but also the cover coat layer 19, the core 18, the collar 21, the underfill 22, and the like. Can be used as The pattern cured film using the photosensitive resin composition of the present embodiment has excellent adhesiveness to a metal layer such as the Al wiring layer 12 or the rewiring layer 16 or a sealant, and has a high stress relaxation effect. The semiconductor element using the pattern cured film for the interlayer insulating layer 11, the surface protective layer 14, the cover coat layer 19, the core 18, the collar 21 such as solder, the underfill 22 used for flip chips and the like is extremely excellent in reliability. Will be things.
 本実施形態の感光性樹脂組成物は、図6及び7における再配線層16を有する半導体素子の層間絶縁層11、表面保護層14又はカバーコート層19に用いることが好適である。 The photosensitive resin composition of this embodiment is preferably used for the interlayer insulating layer 11, the surface protective layer 14, or the cover coat layer 19 of the semiconductor element having the rewiring layer 16 in FIGS. 6 and 7.
 層間絶縁層11、表面保護層14及び上記カバーコート層19の膜厚は、3~20μmであることが好ましく、5~15μmであることがより好ましい。 The film thickness of the interlayer insulating layer 11, the surface protective layer 14, and the cover coat layer 19 is preferably 3 to 20 μm, more preferably 5 to 15 μm.
[電子デバイス]
 一実施形態の電子デバイスは、本実施形態の半導体素子を有する。電子デバイスとは、上述の半導体素子を含むものであり、例えば、携帯電話、スマートフォン、タブレット型端末、パソコン、ハードディスクサスペンション等が挙げられる。
[Electronic device]
An electronic device of one embodiment has the semiconductor element of this embodiment. The electronic device includes the semiconductor element described above, and examples thereof include a mobile phone, a smartphone, a tablet terminal, a personal computer, and a hard disk suspension.
 以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれらに限定されるものではない。 The present invention will be specifically described below based on examples, but the present invention is not limited to these.
 実施例で用いた材料を以下に示す。 The materials used in the examples are shown below.
[(A)成分]
A1:4-ヒドロキシスチレン/スチレン=85/15(モル比)の共重合体(Mw=10000、丸善石油化学株式会社製の商品名「マルカリンカーCST」)
[(A) component]
A1: 4-Hydroxystyrene / styrene = 85/15 (molar ratio) copolymer (Mw = 10000, Maruzen Petrochemical Co., Ltd., trade name “Markarlinker CST”)
 Mwは、それぞれゲルパーミエーションクロマトグラフィー(GPC)法を用いて、標準ポリスチレン換算により求めた。具体的には、以下の装置及び条件にてMwを測定した。
(測定装置)
 検出器:株式会社日立製作所製の「L4000UV」
 ポンプ:株式会社日立製作所製の「L6000」
 カラム:Gelpack GL-S300MDT-5×2本
(測定条件)
 溶離液:THF
 LiBr(0.03mol/L)、HPO(0.06mol/L)
 流速:1.0mL/分、検出器:UV270nm
 試料0.5mgに対して溶媒[THF/DMF=1/1(容積比)]1mLの溶液を用いて測定した。
Mw was calculated by standard polystyrene conversion using the gel permeation chromatography (GPC) method. Specifically, Mw was measured with the following devices and conditions.
(measuring device)
Detector: "L4000UV" manufactured by Hitachi, Ltd.
Pump: "L6000" made by Hitachi, Ltd.
Column: Gelpack GL-S300MDT-5 x 2 (measurement condition)
Eluent: THF
LiBr (0.03 mol / L), H 3 PO 4 (0.06 mol / L)
Flow rate: 1.0 mL / min, Detector: UV270 nm
It was measured using a solution of 1 mL of a solvent [THF / DMF = 1/1 (volume ratio)] for 0.5 mg of a sample.
[(B)成分]
B1:1,2,3-ベンゾトリアゾール(城北化学工業株式会社製の商品名「BT-120」)
B2:5-アミノ-ベンゾトリアゾール
B3:5-メチル-ベンゾトリアゾール
[(B) component]
B1: 1,2,3-benzotriazole (Product name "BT-120" manufactured by Johoku Chemical Industry Co., Ltd.)
B2: 5-amino-benzotriazole B3: 5-methyl-benzotriazole
[(B’)成分]
B4:1H-テトラゾール
B5:5-アミノ-1H-テトラゾール
B6:5-メルカプトテトラゾール
B7:5-フェニルテトラゾール
B8:2-アミノピリジン
B9:キシリトール
B10:8-アザアデニン
[(B ') component]
B4: 1H-tetrazole B5: 5-amino-1H-tetrazole B6: 5-mercaptotetrazole B7: 5-phenyltetrazole B8: 2-aminopyridine B9: xylitol B10: 8-azaadenine
[(C)成分]
C1:撹拌機、窒素導入管及び温度計を備えた100mLの三口フラスコに、乳酸エチル55gを秤取し、別途に秤取した重合性単量体(アクリル酸n-ブチル(BA)34.7g、アクリル酸ラウリル(LA)2.2g、アクリル酸(AA)3.9g、アクリル酸ヒドロキシブチル(HBA)2.6g及び1,2,2,6,6-ペンタメチルピペリジン-4-イルメタクリレート(日立化成株式会社製の商品名「FA-711MM」)1.7g、並びにアゾビスイソブチロニトリル(AIBN)0.29gを加えた。室温にて約160rpmの撹拌回転数で撹拌しながら、窒素ガスを400mL/分の流量で30分間流し、溶存酸素を除去した。その後、窒素ガスの流入を止め、フラスコを密閉し、恒温水槽にて約25分で65℃まで昇温した。同温度を10時間保持して重合反応を行い、エラストマC1を得た。この際の重合率は99%であった。また、このC1のMwは、約22000であった。なお、エラストマC1における重合性単量体のモル比は以下のとおりである。
BA/LA/AA/HBA/FA-711MM=70.5/2.5/20/5/2(mol%)
[(C) component]
C1: 55 g of ethyl lactate was weighed in a 100 mL three-necked flask equipped with a stirrer, a nitrogen introducing tube, and a thermometer, and the separately weighed polymerizable monomer (n-butyl acrylate (BA) 34.7 g). , Lauryl acrylate (LA) 2.2 g, acrylic acid (AA) 3.9 g, hydroxybutyl acrylate (HBA) 2.6 g and 1,2,2,6,6-pentamethylpiperidin-4-yl methacrylate ( 1.7 g of trade name "FA-711MM" manufactured by Hitachi Chemical Co., Ltd.) and 0.29 g of azobisisobutyronitrile (AIBN) were added, while stirring at room temperature at a stirring rotation speed of about 160 rpm and nitrogen. The gas was flowed at a flow rate of 400 mL / min for 30 minutes to remove dissolved oxygen, then the inflow of nitrogen gas was stopped, the flask was sealed, and the temperature was raised to 65 ° C in a constant temperature water bath in about 25 minutes. The same temperature was maintained for 10 hours to carry out a polymerization reaction to obtain an elastomer C1.The polymerization rate at this time was 99%, and the Mw of this C1 was about 22,000. The molar ratio of the polymerizable monomer in C1 is as follows.
BA / LA / AA / HBA / FA-711MM = 70.5 / 2.5 / 20/5/2 (mol%)
[(D)成分]
D1:下記式(Y)で表される化合物(ダイトーケミックス株式会社製の商品名「PA-28」)
Figure JPOXMLDOC01-appb-C000011
[(D) component]
D1: Compound represented by the following formula (Y) (trade name "PA-28" manufactured by Daito Chemix Co., Ltd.)
Figure JPOXMLDOC01-appb-C000011
[(E)成分]
E1:一般式(11)のR~Rが全てメチル基である化合物(ヘキサキス(メトキシメチル)メラミン、株式会社三和ケミカル製の商品名「ニカラックMW-30HM」、分子量:390.4)
[(E) component]
E1: a compound in which R 1 to R 6 in the general formula (11) are all methyl groups (hexakis (methoxymethyl) melamine, trade name “Nikalac MW-30HM” manufactured by Sanwa Chemical Co., Ltd., molecular weight: 390.4)
(実施例1~6及び比較例1~8)
 表1又は表2に示す配合量(質量部)の(A)~(E)成分、溶剤として乳酸エチル120質量部を配合し、これを3μm孔のテフロン(登録商標)フィルターを用いて加圧ろ過して、実施例及び比較例の感光性樹脂組成物を調製した。
(Examples 1 to 6 and Comparative Examples 1 to 8)
The components (A) to (E) in the compounding amounts (parts by mass) shown in Table 1 or Table 2 and 120 parts by mass of ethyl lactate as a solvent are compounded, and this is pressurized using a Teflon (registered trademark) filter having 3 μm pores. After filtration, the photosensitive resin compositions of Examples and Comparative Examples were prepared.
[評価]
(感光特性)
 感光性樹脂組成物をシリコン基板上にスピンコートして、120℃で3分間加熱し、膜厚11~13μmの塗膜を形成した。次いで、i線ステッパー(キャノン社製、商品名「FPA-3000iW」)を用いて、1μm×1μmから100μm×100μmまでの正方形ホールパターンを有するマスクを介してi線(365nm)で縮小投影露光した。露光量は、100~1520mJ/cmまで20mJ/cmずつ変えながら行った。露光後、水酸化テトラメチルアンモニウム(TMAH)の2.38%水溶液を用いて現像した。現像後の未露光部の残膜率を下式により算出した。
 残膜率(%)=(現像後の塗膜の膜厚/現像前の塗膜の膜厚)×100
[Evaluation]
(Photosensitive property)
The photosensitive resin composition was spin-coated on a silicon substrate and heated at 120 ° C. for 3 minutes to form a coating film having a film thickness of 11 to 13 μm. Next, an i-line stepper (manufactured by Canon Inc., trade name “FPA-3000iW”) was used to perform reduction projection exposure with an i-line (365 nm) through a mask having a square hole pattern of 1 μm × 1 μm to 100 μm × 100 μm. . Exposure amount was carried out while changing by 20mJ / cm 2 to 100 ~ 1520mJ / cm 2. After exposure, it was developed with a 2.38% aqueous solution of tetramethylammonium hydroxide (TMAH). The residual film rate of the unexposed area after development was calculated by the following formula.
Residual film rate (%) = (film thickness of film after development / film thickness of film before development) × 100
 現像後、水でリンスし、100μm×100μmの正方形ホールパターンが形成できる最小露光量を感度とした。また、上記露光量の範囲内で、開口している正方形ホールパターンのうち最小のものの大きさ(一辺の長さ)を解像度の指標とした。なお、感度及び解像度は、小さい程良好である。その後、レジストパターンを縦型拡散炉(光洋サーモシステム社製の商品名「μ-TF」)を用い、窒素中、温度230℃(昇温時間1.5時間)で2時間加熱処理(硬化)し、硬化後の解像度を測定した。評価方法は、硬化前の解像度の評価方法と同様である。 After development, rinse with water and set the minimum exposure amount that can form a 100 μm × 100 μm square hole pattern as the sensitivity. In addition, the size of the smallest square hole pattern (length of one side) within the range of the above exposure amount was used as an index of resolution. The smaller the sensitivity and resolution, the better. After that, the resist pattern was heat-treated (cured) for 2 hours in nitrogen at a temperature of 230 ° C. (heating time 1.5 hours) using a vertical diffusion furnace (trade name “μ-TF” manufactured by Koyo Thermo Systems Co., Ltd.). Then, the resolution after curing was measured. The evaluation method is the same as the evaluation method of the resolution before curing.
(ボイド)
 感光性樹脂組成物を、銅層を有するシリコン基板上にスピンコートして、120℃で3分間加熱した後、縦型拡散炉(光洋サーモシステム株式会社製の商品名「μ-TF」)を用い、窒素中、230℃(昇温時間1.5時間)で2時間加熱して、膜厚10μmの硬化膜を形成して積層体を得た。積層体を150℃で1000時間保管した後、走査型電子顕微鏡を用いて積層体の断面を観察した。
 試験前後にボイドが観測されなかった場合を「A」、ボイドが観測された場合を「B」と判定した。図8は、実施例1のボイドの有無を観察した顕微鏡写真である。図9は、比較例1のボイドの有無を観察した顕微鏡写真である。
(void)
The photosensitive resin composition was spin-coated on a silicon substrate having a copper layer and heated at 120 ° C. for 3 minutes, and then a vertical diffusion furnace (trade name “μ-TF” manufactured by Koyo Thermo Systems Co., Ltd.) was used. It was heated in nitrogen at 230 ° C. (temperature rising time 1.5 hours) for 2 hours to form a cured film having a film thickness of 10 μm to obtain a laminate. After the laminated body was stored at 150 ° C. for 1000 hours, the cross section of the laminated body was observed using a scanning electron microscope.
The case where no void was observed before and after the test was determined as "A", and the case where a void was observed was determined as "B". FIG. 8 is a photomicrograph of Example 1 observing the presence or absence of voids. FIG. 9 is a photomicrograph of Comparative Example 1 observing the presence or absence of voids.
(密着性)
 感光性樹脂組成物を、銅層を有するシリコン基板上にスピンコートして、120℃で3分間加熱した後、縦型拡散炉(光洋サーモシステム株式会社製の商品名「μ-TF」)を用い、窒素中、230℃(昇温時間1.5時間)で2時間加熱して、膜厚10μmの硬化膜を形成した積層体を作製した。ピール強度の評価は、JIS C 5016(1994-導体の引きはがし強さ)に準拠して行った。また、本明細書において、室温とは25℃を示す。ピール強度が0.4kN/m以上であった場合を「A」、0.3kN/m以上0.4kN/m未満であった場合を「B」、0.3kN/m未満であった場合を「C」と判定した。
(Adhesion)
The photosensitive resin composition was spin-coated on a silicon substrate having a copper layer and heated at 120 ° C. for 3 minutes, and then a vertical diffusion furnace (trade name “μ-TF” manufactured by Koyo Thermo Systems Co., Ltd.) was used. Then, the laminate was heated in nitrogen at 230 ° C. (temperature rising time 1.5 hours) for 2 hours to prepare a laminated body on which a cured film having a film thickness of 10 μm was formed. The peel strength was evaluated according to JIS C 5016 (1994-strength of peeling conductor). In addition, in the present specification, room temperature refers to 25 ° C. When the peel strength was 0.4 kN / m or more, it was "A", when it was 0.3 kN / m or more and less than 0.4 kN / m, it was "B", and when it was less than 0.3 kN / m. It was judged as "C".
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 1…半導体基板、2…保護膜、3…第1導体層、4…層間絶縁層、5…感光性樹脂層、6A,6B,6C…窓部、7…第2導体層、8…表面保護層、11…層間絶縁層、12…Al配線層、13…絶縁層、14…表面保護層、15…パッド部、16…再配線層、17…導電性ボール、18…コア、19…カバーコート層、20…バリアメタル、21…カラー、22…アンダーフィル、23…シリコン基板、24…接続部、100,200,300,400…構造体、500,600,700…半導体素子。 DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 2 ... Protective film, 3 ... 1st conductor layer, 4 ... Interlayer insulating layer, 5 ... Photosensitive resin layer, 6A, 6B, 6C ... Window part, 7 ... 2nd conductor layer, 8 ... Surface protection Layer, 11 ... Interlayer insulating layer, 12 ... Al wiring layer, 13 ... Insulating layer, 14 ... Surface protection layer, 15 ... Pad part, 16 ... Rewiring layer, 17 ... Conductive ball, 18 ... Core, 19 ... Cover coat Layer, 20 ... Barrier metal, 21 ... Color, 22 ... Underfill, 23 ... Silicon substrate, 24 ... Connection part, 100, 200, 300, 400 ... Structure, 500, 600, 700 ... Semiconductor element.

Claims (8)

  1.  (A)ヒドロキシスチレン系樹脂と、
     (B)ベンゾトリアゾール骨格を有する化合物と、
     (C)エラストマと、
     (D)光により酸を生成する化合物と、
    を含有する、感光性樹脂組成物。
    (A) hydroxystyrene resin,
    (B) a compound having a benzotriazole skeleton,
    (C) Elastomer,
    (D) a compound that generates an acid by light,
    A photosensitive resin composition containing:
  2.  前記(B)ベンゾトリアゾール骨格を有する化合物の含有量が、前記(A)ヒドロキシスチレン系樹脂の100質量部に対して、0.1~3質量部である、請求項1に記載の感光性樹脂組成物。 The photosensitive resin according to claim 1, wherein the content of the compound (B) having a benzotriazole skeleton is 0.1 to 3 parts by mass with respect to 100 parts by mass of the (A) hydroxystyrene resin. Composition.
  3.  前記(C)エラストマが、アクリル系エラストマを含む、請求項1又は2に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 1 or 2, wherein the (C) elastomer includes an acrylic elastomer.
  4.  (E)熱架橋剤を更に含有する、請求項1~3のいずれか一項に記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 3, further comprising (E) a thermal crosslinking agent.
  5.  パターンを有し、前記パターンが請求項1~4のいずれか一項に記載の感光性樹脂組成物からなる樹脂膜の硬化物を含む、パターン硬化膜。 A patterned cured film having a pattern, the pattern including a cured product of a resin film comprising the photosensitive resin composition according to any one of claims 1 to 4.
  6.  請求項1~4のいずれか一項に記載の感光性樹脂組成物を、銅層を備える基板の一部又は全部に塗布及び乾燥して樹脂膜を形成する工程と、
     前記樹脂膜の一部又は全部を露光する工程と、
     露光後の前記樹脂膜をアルカリ水溶液によって現像してパターン樹脂膜を形成する工程と、
     前記パターン樹脂膜を加熱する工程と、
    を備える、パターン硬化膜の製造方法。
    A step of applying the photosensitive resin composition according to any one of claims 1 to 4 to a part or the whole of a substrate having a copper layer and drying the resin film to form a resin film;
    Exposing a part or all of the resin film,
    A step of developing the resin film after exposure with an alkaline aqueous solution to form a pattern resin film,
    Heating the pattern resin film,
    A method for producing a patterned cured film, comprising:
  7.  請求項5に記載のパターン硬化膜を、層間絶縁層又は表面保護層として備える、半導体素子。 A semiconductor element comprising the patterned cured film according to claim 5 as an interlayer insulating layer or a surface protective layer.
  8.  請求項7に記載の半導体素子を備える、電子デバイス。 An electronic device comprising the semiconductor element according to claim 7.
PCT/JP2018/038640 2018-10-17 2018-10-17 Photosensitive resin composition, patterned cured film and method for producing same, semiconductor device and electronic device WO2020079772A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/038640 WO2020079772A1 (en) 2018-10-17 2018-10-17 Photosensitive resin composition, patterned cured film and method for producing same, semiconductor device and electronic device
JP2020551647A JP7264174B2 (en) 2018-10-17 2018-10-17 Photosensitive resin composition, patterned cured film and method for producing same, semiconductor element, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/038640 WO2020079772A1 (en) 2018-10-17 2018-10-17 Photosensitive resin composition, patterned cured film and method for producing same, semiconductor device and electronic device

Publications (1)

Publication Number Publication Date
WO2020079772A1 true WO2020079772A1 (en) 2020-04-23

Family

ID=70283196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038640 WO2020079772A1 (en) 2018-10-17 2018-10-17 Photosensitive resin composition, patterned cured film and method for producing same, semiconductor device and electronic device

Country Status (2)

Country Link
JP (1) JP7264174B2 (en)
WO (1) WO2020079772A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001033965A (en) * 1999-05-20 2001-02-09 Kansai Paint Co Ltd Positive type active energy beam-sensitive dry film and pattern forming method
KR20030039877A (en) * 2001-11-16 2003-05-22 삼성에스디아이 주식회사 Monomer and polymer for chemically amplication negative photoresist, and photoresist composition
JP2012150508A (en) * 2012-04-05 2012-08-09 Hitachi Chem Co Ltd Positive photosensitive resin composition, manufacturing method of resist pattern, and electronic device
JP2015163672A (en) * 2014-01-30 2015-09-10 株式会社Adeka composition
JP2016191905A (en) * 2015-03-30 2016-11-10 東京応化工業株式会社 Photosensitive resin composition, pattern forming method, cured film, insulation film, color filter, and display device
JP2017032983A (en) * 2015-08-04 2017-02-09 信越化学工業株式会社 Chemically amplified positive resist composition and pattern forming method
JP2017194677A (en) * 2016-04-14 2017-10-26 旭化成株式会社 Photosensitive resin composition, method for producing cured relief pattern and semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001033965A (en) * 1999-05-20 2001-02-09 Kansai Paint Co Ltd Positive type active energy beam-sensitive dry film and pattern forming method
KR20030039877A (en) * 2001-11-16 2003-05-22 삼성에스디아이 주식회사 Monomer and polymer for chemically amplication negative photoresist, and photoresist composition
JP2012150508A (en) * 2012-04-05 2012-08-09 Hitachi Chem Co Ltd Positive photosensitive resin composition, manufacturing method of resist pattern, and electronic device
JP2015163672A (en) * 2014-01-30 2015-09-10 株式会社Adeka composition
JP2016191905A (en) * 2015-03-30 2016-11-10 東京応化工業株式会社 Photosensitive resin composition, pattern forming method, cured film, insulation film, color filter, and display device
JP2017032983A (en) * 2015-08-04 2017-02-09 信越化学工業株式会社 Chemically amplified positive resist composition and pattern forming method
JP2017194677A (en) * 2016-04-14 2017-10-26 旭化成株式会社 Photosensitive resin composition, method for producing cured relief pattern and semiconductor device

Also Published As

Publication number Publication date
JP7264174B2 (en) 2023-04-25
JPWO2020079772A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US10175577B2 (en) Photosensitive resin composition, method for manufacturing patterned cured film, and electronic component
JP5904211B2 (en) Photosensitive resin composition, method for producing patterned cured film, and electronic component
TWI595315B (en) Photosensitive resin composition,pattern cured film and method for producing the same,semiconductor element and electronic device
JP2012226044A (en) Positive photosensitive resin composition, method for producing resist pattern, semiconductor device and electronic device
WO2013122208A1 (en) Photosensitive resin composition, method for producing patterned cured film, and electronic component
JP7069557B2 (en) Photosensitive resin composition, manufacturing method of pattern cured product, cured product, interlayer insulating film, cover coat layer, surface protective film, and electronic components.
JP7293796B2 (en) Resin composition, cured product, semiconductor element and electronic device
WO2020079772A1 (en) Photosensitive resin composition, patterned cured film and method for producing same, semiconductor device and electronic device
JP2019211669A (en) Resin composition, cured film, method for producing patterned cured film, semiconductor element and electronic device
JP7092121B2 (en) Positive photosensitive resin composition, thermal cross-linking agent for positive photosensitive resin, pattern cured film and its manufacturing method, semiconductor device, and electronic device.
JP7151874B2 (en) Resin composition, cured product, semiconductor element and electronic device
JP2020064170A (en) Photosensitive resin composition, pattern cured film and method for producing the same, semiconductor element, and electronic device
JP7287453B2 (en) Photosensitive resin composition, pattern cured film and method for producing same, semiconductor element and electronic device
JP2016024306A (en) Photosensitive resin composition, patterned cured film and method for the production thereof, semiconductor element and electronic device
JP2020008627A (en) Photosensitive resin composition, patterned cured film and method for producing the same, semiconductor element, and electronic device
JP2015079191A (en) Photosensitive resin composition, patterned cured film and production method of the same, semiconductor element, and electronic device
JP2019210399A (en) Resin composition, cured film, method for producing patterned cured film, semiconductor element and electronic device
JP2021081643A (en) Positive type photosensitive resin composition, pattern cured film and method for producing the same, semiconductor element, and electronic device
WO2020065860A1 (en) Photosensitive resin composition, pattern cured film and manufacturing method therefor, semiconductor element, and electronic device
JP2024004027A (en) Photosensitive resin composition, method for producing patterned cured film, patterned cured film, and semiconductor element
JP2020079846A (en) Photosensitive resin composition, pattern cured film and method for producing the same, semiconductor element, and electronic device
JP2015022057A (en) Photosensitive resin composition, production method of patterned cured film, semiconductor element, and electronic device
JP2024002706A (en) Photosensitive resin composition, method for producing patterned cured film, patterned cured film, and semiconductor element
TW202212969A (en) Photosensitive resin composition, method for producing patterned cured film, patterned cured film and semiconductor element
TW201947320A (en) Photosensitive resin composition, photosensitive resin layer and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020551647

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937444

Country of ref document: EP

Kind code of ref document: A1