WO2018205885A1 - 用于无线通信的电子设备和方法 - Google Patents

用于无线通信的电子设备和方法 Download PDF

Info

Publication number
WO2018205885A1
WO2018205885A1 PCT/CN2018/085579 CN2018085579W WO2018205885A1 WO 2018205885 A1 WO2018205885 A1 WO 2018205885A1 CN 2018085579 W CN2018085579 W CN 2018085579W WO 2018205885 A1 WO2018205885 A1 WO 2018205885A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
serving base
wireless communication
current serving
mobile device
Prior art date
Application number
PCT/CN2018/085579
Other languages
English (en)
French (fr)
Inventor
张源
呂本舜
Original Assignee
索尼公司
张源
呂本舜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 张源, 呂本舜 filed Critical 索尼公司
Priority to CN201880010018.6A priority Critical patent/CN110383889B/zh
Priority to EP18799286.2A priority patent/EP3624495A4/en
Priority to US16/490,891 priority patent/US10904814B2/en
Publication of WO2018205885A1 publication Critical patent/WO2018205885A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0009Control or signalling for completing the hand-off for a plurality of users or terminals, e.g. group communication or moving wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/03Reselecting a link using a direct mode connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/005Moving wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/03Reselecting a link using a direct mode connection
    • H04W36/033Reselecting a link using a direct mode connection in pre-organised networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/083Reselecting an access point wherein at least one of the access points is a moving node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Definitions

  • Embodiments of the present invention generally relate to the field of wireless communications, and more particularly to handover of a serving base station in wireless communication, and more particularly to an electronic device and method for wireless communication.
  • a mobile device providing services such as a mobile base station and a served wireless communication device such as a user equipment may all have a handover of the serving base station.
  • the user equipment switches from one mobile base station to another mobile base station or a macro base station, and the mobile base station switches from one macro base station to another macro base station.
  • the user equipment and the mobile base station independently switch, so when the two handovers occur simultaneously, the order is uncertain.
  • an electronic device for wireless communication comprising: processing circuitry configured to: perform a first determination of whether a mobile device wants to switch a current serving base station of the mobile device; Determining, in a case where the mobile device is to switch the current serving base station, obtaining a channel measurement result of the wireless communication device connected to the mobile device; performing a second determination of whether the mobile device wants to switch the current serving base station; and determining the mobile device in the second determination
  • the handover of the wireless communication device from the mobile device as the current serving base station of the wireless communication device to the destination serving base station is performed based at least on the channel measurement result of the wireless communication device.
  • an electronic device for wireless communication comprising: processing circuitry configured to: perform channel measurement in response to a channel measurement instruction from a current serving base station of the wireless communication device; A message including channel measurement results is generated for reporting to the current serving base station.
  • a method for wireless communication comprising: performing a first determination of whether a mobile device wants to switch a current serving base station of the mobile device; determining, in a first determination, that the mobile device is to switch current In the case of the serving base station, obtaining a channel measurement result of the wireless communication device connected to the mobile device; performing a second determination of whether the mobile device wants to switch the current serving base station; and determining, in the second determination, that the mobile device is to switch the current serving base station And performing, according to at least the channel measurement result of the wireless communication device, a handover of the wireless communication device from the mobile device that is the current serving base station of the wireless communication device to the destination serving base station.
  • a method for wireless communication comprising: performing channel measurement in response to a channel measurement instruction from a current serving base station of a wireless communication device; and generating a message including a channel measurement result, Report to the current serving base station.
  • the electronic device and method according to the present application enable the current measurement of the wireless communication device in a determined order by determining, in the first determination, that the mobile device is to acquire the channel measurement result of the wireless communication device it is serving in the case of switching the current serving base station. Handover of the base station and handover of the current serving base station of the mobile device.
  • FIG. 1 shows a schematic diagram of a scenario of handover of a current serving base station of a mobile device and a current serving base station of a wireless communication device;
  • FIG. 2 is a functional block diagram showing an electronic device for wireless communication in accordance with one embodiment of the present application
  • FIG. 3 is a functional block diagram showing an electronic device for wireless communication in accordance with one embodiment of the present application.
  • FIG. 4 is a timing diagram showing handover of a wireless communication device before switching and moving a device in the scenario of FIG. 1;
  • FIG. 5 is a schematic diagram showing the information flow of the handover of FIG. 4;
  • FIG. 6 is another timing diagram showing the wireless communication device switching first and then moving the device in the scenario of FIG. 1;
  • FIG. 7 is a schematic diagram showing the information flow of the handover of FIG. 6;
  • FIG. 8 is a timing diagram showing handover of a mobile device and handover after a wireless communication device in the scenario of FIG. 1;
  • FIG. 9 is a schematic diagram showing the information flow of the handover of FIG. 8;
  • FIG. 10 is a functional block diagram showing an electronic device for wireless communication according to another embodiment of the present application.
  • FIG. 11 is a flow chart showing a method for wireless communication in accordance with one embodiment of the present application.
  • Figure 12 is a flow chart showing the sub-steps of step S12 of Figure 11;
  • FIG. 13 is a flowchart illustrating a method for wireless communication in accordance with another embodiment of the present application.
  • FIG. 14 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • 15 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied;
  • 16 is a block diagram showing an example of a schematic configuration of a smartphone that can apply the technology of the present disclosure
  • 17 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied;
  • FIG. 18 is a block diagram of an exemplary structure of a general purpose personal computer in which methods and/or apparatus and/or systems in accordance with embodiments of the present invention may be implemented.
  • the mobile device is, for example, a device capable of providing wireless communication services and also having mobility itself, such as a mobile base station, a wireless relay device, a sender device in end-to-end (D2D) communication, etc., which is used for Expand wireless communication coverage and increase the flexibility of communication system configuration. It should be understood that the location of the mobile device can also remain unchanged.
  • the mobile device also accesses its current serving base station, such as a macro base station, and the mobile device can switch to another serving base station (hereinafter referred to as a destination serving base station) if the handover condition is satisfied.
  • a destination serving base station serving base station
  • the mobile device provides a service for the wireless communication device, and the mobile device to which the wireless communication device is connected or accessed is its current serving base station, and the mobile device can switch to another mobile device or macro base station if the handover condition is met (below Also known as the destination service base station).
  • the wireless communication device may be various user equipments or terminal devices, such as a mobile terminal having a cellular communication capability, an intelligent vehicle, a smart wearable device, or the like, or may be an infrastructure for performing wireless communication with a macro base station, such as a small cell base station. Also, the wireless communication device can also be directly connected to a serving base station of the mobile device, such as a macro base station, for communication.
  • a mobile base station as an example of a mobile device
  • UE user equipment
  • FIG. 1 shows a schematic diagram of a scenario of handover of a current serving base station of a mobile device and a current serving base station of a wireless communication device.
  • the mobile base stations N and M are mobile devices, and the UE is a wireless communication device.
  • the mobile base station M accesses a base station (such as a macro base station) A, and the UE accesses the mobile base station M. Due to the mobility of the device, the UE will handover from the mobile base station M to the mobile base station N, and the mobile base station M will switch from the base station A to the base station B.
  • a base station such as a macro base station
  • the UE performs handover first, that is, handover from the current mobile base station M to the mobile base station N, and then the mobile base station M performs handover, that is, handover from the base station A to the base station B; or the current mobile base station M switches first. That is, the base station A is handed over to the base station B, and the served UEs perform handover again.
  • This sequence of uncertainty may affect the communication quality of the UE.
  • This embodiment proposes an electronic device 100 for wireless communication such that the order of the above two types of handover is determined.
  • 2 shows a functional block diagram of an electronic device 100 according to the present embodiment.
  • the electronic device 100 includes: a first determining unit 101 configured to perform a mobile device to switch the current state of the mobile device.
  • the obtaining unit 102 configured to obtain, in the first determination, a channel measurement result of the wireless communication device connected to the mobile device if the mobile device is to switch the current serving base station; the second determining unit 103 a second determination configured to: whether the mobile device is to switch the current serving base station; and the switching unit 104 configured to determine at least the channel of the wireless communication device if the mobile device is to switch the current serving base station in the second determination
  • the measurement is performed to perform a handover of the wireless communication device from the mobile device that is the current serving base station of the wireless communication device to the destination serving base station.
  • the first determining unit 101, the obtaining unit 102, the second determining unit 103, and the switching unit 104 may be implemented by one or more processing circuits, which may be implemented as a chip, for example.
  • the first determining unit 101 and the second determining unit 103 perform the first determination and the second determination based on the channel measurement results of the mobile device, respectively.
  • the electronic device 100 is located, for example, on the mobile base station side or communicably connected to the mobile base station side.
  • the mobile base station M performs channel measurement to obtain a channel measurement result, so that the first determining unit 101 and the second determining unit 103 of the electronic device 100 respectively perform the first determination and the second determination based on the channel measurement result.
  • the channel measurement result may be at least one of: Reference Signal Receiving Power (RSRP), Received Signal Strength Indicator (RSSI), and Reference Signal Receiving Quality (Reference Signal Receiving Quality). , RSRQ).
  • RSRP Reference Signal Receiving Power
  • RSSI Received Signal Strength Indicator
  • RSRQ Reference Signal Receiving Quality
  • the channel measurement result is not limited thereto, and any indicator capable of indicating the channel quality may be used, for example, a signal to noise ratio or the like may also be used.
  • the condition of the second determination used in the second determination unit 103 can be set to be stricter than the condition of the first determination used in the first determination unit 101, for example, the condition of the second determination is more difficult to satisfy than the condition of the first determination.
  • the condition of the second determination is more difficult to satisfy than the condition of the first determination.
  • the first determination when the channel quality of the channel of the mobile device and the current serving base station is lower than the channel quality of the channel of the mobile device and the target serving base station by a first threshold, determining to switch the current serving base station; in the second determination And determining, when the channel quality of the channel of the mobile device and the current serving base station is lower than a channel quality of the channel of the mobile device and the target serving base station, that the current serving base station is to be switched, wherein the first threshold is less than or equal to a second threshold.
  • the difference in quality of service between the current serving base station and the destination serving base station in the second determination is further increased.
  • the setting of the first threshold and the second threshold is related to, for example, a cell radius, a transmission power, an electromagnetic wave propagation environment, a signal to interference and noise ratio requirement, and the like, and may be determined by an operator according to factors such as experience or preference.
  • the acquisition unit 102 acquires the channel measurement result of the UE connected to the mobile base station M.
  • the channel measurement result of the UE may include a measurement result of the channel between the UE and each mobile base station (or also including the macro base station).
  • the electronic device 100 may further include: a generating unit 105 configured to generate an instruction indicating that the wireless communication device reports the channel measurement result.
  • the generating unit 105 can be implemented by one or more processing circuits, which can be implemented, for example, as a chip.
  • the wireless communication device for example, the UE in FIG. 1 can report the channel measurement result in response to the instruction, and can also report the signal multiple times.
  • the instructions generated by the generating unit 105 may further include an indication that the wireless communication device periodically reports the channel measurement result and/or a period in which the reporting is performed.
  • the instruction may include only an indication of performing periodic reporting, and the wireless communication device performs reporting in a predetermined period after receiving the indication.
  • the instruction may include only the period of the report, and the wireless communication device reports the period in the case that the period is detected, otherwise only one report is performed.
  • the instruction may include both an indication of periodic reporting and a period of reporting. The reliability of the channel measurement result can be further improved by performing periodic reporting.
  • the instructions can also be messages including measurements of the mobile device.
  • the electronic device 100 may further include: a transceiver unit 106 configured to transmit the above instructions to the wireless communication device and to receive channel measurement results from the wireless communication device.
  • the transceiver unit 106 can be implemented, for example, by a communication interface, which can be implemented, for example, as a chip.
  • the generating unit 105 is further configured to generate, in the second determination, an instruction to report the channel measurement result of the mobile device to the current serving base station of the mobile device if the mobile device is to handover the current serving base station.
  • the transceiving unit 106 is further configured to transmit a channel measurement result of the mobile device to the current serving base station of the mobile device, and receive an instruction regarding the handover from the current serving base station. Accordingly, handover unit 104 performs handover of the current serving base station of the mobile device based on instructions from the current serving base station.
  • the electronic device 100 acquires the channel measurement result of the wireless communication device connected to the mobile device through the obtaining unit 103, so that the current serving base station of the wireless communication device can be switched at any time. In other words, the electronic device 100 can perform the handover of the current serving base station of the mobile device and the handover of the current serving base station of the wireless communication device it serves in a determined order.
  • the switching unit 104 performs handover of the current serving base station of the wireless communication device based on the channel measurement result of the wireless communication device, and then performs the mobile device's The handover of the current serving base station.
  • FIG. 4 shows a timing diagram of a wireless communication device switching first and then moving the device.
  • t 1 and t 2 respectively represent the determined time points at which the first determining unit 101 and the second determining unit 103 perform the handover of the mobile base station M to the current serving base station
  • X A@M ⁇ X B@M -O M, 1 denotes a condition for satisfying the first judgment, wherein X A@M is a channel measurement result of a channel between the base station A and the mobile base station M, and X B@M is a channel of a channel between the base station B and the mobile base station M
  • the measurement result, O M,1 is the first threshold.
  • X A@M ⁇ X B@M -O M,2 represents a condition that satisfies the second judgment, where O M,2 is the second threshold, and O M,1 ⁇ O M,2 .
  • X M@UE and X N@UE represent channel measurement results of the channel between the mobile base station M and the mobile base station N and the UE, respectively.
  • the first determination unit 101 determines that the mobile station M to the current serving base station handover. Therefore, the mobile base station M sends an instruction Msg1 for reporting the channel measurement result to the UE, and the UE immediately starts reporting its own channel measurement result, that is, Msg2 in the figure. Then, at the time point t 2 , the second determining unit 103 determines that the second threshold is broken, that is, further determines that the mobile base station M is to perform handover of the current serving base station, and the mobile base station M schedules the UE to switch to the mobile according to the measurement result report of the UE.
  • Base station N mobile base station M transmits to the base station A a message carrying its own measurement result, ie Msg3 in the figure.
  • a base station according to the measurement result of the Msg3 switching arrangement mobile station M to the base station 3 at time point t B.
  • FIG. 5 is a schematic diagram showing the information flow of the handover in FIG. 4, the specific content of which has been described in the process of describing FIG. 4, and will not be repeated here.
  • FIG. 6 shows another timing diagram of the wireless communication device switching first and then moving the device. 6 is different from FIG. 4 in that the UE periodically reports the channel measurement result Msg2 in the period T after receiving the Msg1.
  • the mobile base station M can perform handover of the serving base station of the UE, for example, according to all channel measurement results, thereby improving accuracy.
  • FIG. 7 correspondingly shows a schematic diagram of the information flow of the handover in FIG. 6, and FIG. 7 differs from FIG. 5 in that Msg2 is repeatedly transmitted in cycle T.
  • the other parts of Figures 6 and 7 have been described in the process of describing Figure 4 and will not be repeated here.
  • the switching unit 104 performs handover of the current serving base station of the mobile device, and then performs the wireless communication device based on the channel measurement result of the wireless communication device.
  • the current serving base station is switched.
  • FIG. 8 shows a timing diagram of a mobile device first switching and a wireless communication device switching.
  • FIG. 9 shows a schematic diagram of the information flow of the handover in FIG.
  • the same reference numerals in FIGS. 8 and 9 as those in FIGS. 4 and 5 represent the same meanings and will not be repeated here.
  • the first determination unit 101 determines that the mobile station 8 M To change the current serving base station. Therefore, the mobile base station M sends an instruction Msg1 for reporting the channel measurement result to the UE, and the UE immediately starts reporting its own channel measurement result, that is, Msg2 in the figure.
  • the report may be executed once or periodically. The case of periodically reporting with the period T is shown in Fig. 8, but it should be understood that it is also possible to transmit Msg2 only once, for example, the first strip Msg2.
  • the second judging unit 103 determines that the second threshold is broken, that is, further determines that the mobile base station M is to perform handover of the current serving base station, and the mobile base station M transmits to the base station A that it carries its own measurement result.
  • the base station A arranges the handover of the mobile base station M to the base station B based on the measurement result in the Msg3.
  • the mobile station UE reports the measurement results M, the mobile station UE to arrange at three time points t N.
  • the switching unit 104 may also switch the serving base station of the wireless communication device to a fixed base station such as a macro base station.
  • the electronic device 100 enables the wireless communication device to be determined in a determined order by acquiring the channel measurement result of the wireless communication device it serves in the first determination that the mobile device is to switch the current serving base station.
  • the handover of the current serving base station and the handover of the current serving base station of the mobile device guarantee the communication quality.
  • FIG. 10 shows a functional block diagram of an electronic device 200 for wireless communication in accordance with another embodiment of the present application.
  • the electronic device 200 includes: a measuring unit 201 configured to perform channel measurement in response to a channel measurement instruction from a current serving base station of the wireless communication device; and a generating unit 202 configured to generate a channel measurement including The resulting message is reported to the current serving base station.
  • the measurement unit 201 and the generation unit 202 can be implemented by one or more processing circuits, which can be implemented, for example, as a chip. Taking the scenario of FIG. 1 as an example, the electronic device 200 may be located, for example, in a UE or communicably connected to a UE.
  • the channel measurement performed by measurement unit 201 may, for example, include measurements of at least one of: RSRP, RSSI, RSRO. More generally, the measured object is capable of reflecting the channel quality of the corresponding channel.
  • measurement unit 201 can perform periodic channel measurements based on channel measurement instructions. Accordingly, the generating unit 202 periodically generates a message including the channel measurement result to report to the current serving base station. In this way, the serving base station can obtain more reliable channel measurement results for accurate handover.
  • the electronic device 200 may further include: a transceiver unit 204 configured to receive a channel measurement instruction from the current serving base station and to send a message to the current serving base station.
  • the transceiver unit 204 can be implemented, for example, by a communication interface, which can be implemented, for example, as a chip.
  • the electronic device 200 may further include a switching unit 203 configured to perform handover of the current serving base station to the destination serving base station based on the handover manner determined by the current serving base station according to the foregoing message. For example, you can switch to another mobile device or switch to a fixed base station.
  • the electronic device 200 reports the channel measurement result in response to the channel measurement quality of the current serving base station, thereby enabling the current serving base station to perform its own handover of the current serving base station and the wireless communication device based on the channel measurement result in a determined order.
  • the switching of the current serving base station effectively guarantees the communication quality.
  • FIG. 11 shows a flowchart of a method for wireless communication according to an embodiment of the present application, the method comprising the steps of: performing a first determination of whether a mobile device wants to switch a current serving base station of the mobile device (S11); Determining, in the first determination, that the mobile device is to switch the current serving base station, acquiring a channel measurement result of the wireless communication device connected to the mobile device (S12); performing a second determination of whether the mobile device wants to switch the current serving base station (S13) And determining, in the second determination, that the mobile device is to switch the current serving base station, performing the wireless communication device from the mobile device as the current serving base station of the wireless communication device to the destination serving base station based on at least the channel measurement result of the wireless communication device Switching (S14).
  • the channel measurement result may include, for example, at least one of: a reference signal received power RSRP, a received signal strength indicator RSSI, and a reference signal received quality RSRQ.
  • the first determination and the second determination may be made based on the channel measurement result of the mobile device.
  • the condition of the second judgment can be set to be stricter than the condition of the first judgment.
  • step S11 when the channel quality of the channel of the mobile device and the current serving base station is lower than the channel quality of the channel of the mobile device and the destination serving base station by a first threshold, determining to switch the current serving base station; in step S13, at the mobile device When the channel quality of the channel of the current serving base station is lower than the channel quality of the channel of the mobile device and the destination serving base station by the second threshold, it is determined that the current serving base station is to be handed over, wherein the first threshold is less than or equal to the second threshold.
  • step S12 may include the following substeps: generating an instruction indicating that the wireless communication device reports the channel measurement result (S121); transmitting an instruction to the wireless communication device (S122), and receiving the channel measurement result from the wireless communication device ( S123).
  • the instructions can include an indication that the wireless communication device periodically reports channel measurements and/or a period of reporting.
  • the handover of the current serving base station of the wireless communication device is performed based on the channel measurement result of the wireless communication device in step S14, and then the mobile device is performed.
  • the current serving base station is switched.
  • the handover of the current serving base station of the mobile device is performed in step S14, and then the wireless communication is performed based on the channel measurement result of the wireless communication device.
  • the switching of the current serving base station of the device can be handed over to the fixed base station.
  • an instruction to report the channel measurement result of the mobile device to the current serving base station of the mobile device may also be generated in step S14, and based on the current serving base station.
  • An instruction is made to perform a handover of the current serving base station of the mobile device.
  • FIG. 13 shows a flowchart of a method for wireless communication in accordance with another embodiment of the present application, the method comprising the steps of: performing channel measurement in response to a channel measurement instruction from a current serving base station of a wireless communication device ( S22); and generating a message including the channel measurement result to report to the current serving base station (S23).
  • periodic channel measurement may be performed based on the channel measurement instruction in step S22, and a message including the channel measurement result is periodically generated in step S23 to report to the current serving base station.
  • the channel measurement result may include, for example, at least one of: a reference signal received power RSRP, a received signal strength indicator RSSI, and a reference signal received quality RSRQ.
  • the above method may further include the steps of: receiving a channel measurement instruction from the current serving base station (S21); and transmitting a message to the current serving base station (S24).
  • the current serving base station determines the handover mode based on the message.
  • the above method further includes the step S25: performing handover of the current serving base station based on the handover manner determined by the current serving base station according to the foregoing message.
  • the technology of the present disclosure can be applied to various products.
  • the above mentioned base stations can be implemented as any type of evolved Node B (eNB), such as a macro eNB and a small eNB.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • RRHs remote wireless headends
  • various types of user equipments to be described below can operate as a base station by performing base station functions temporarily or semi-persistently.
  • FIG. 14 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 800 includes one or more antennas 810 and a base station device 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station apparatus 820 to transmit and receive wireless signals.
  • the eNB 800 can include multiple antennas 810.
  • multiple antennas 810 can be compatible with multiple frequency bands used by eNB 800.
  • FIG. 14 illustrates an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 820. For example, controller 821 generates data packets based on data in signals processed by wireless communication interface 825 and communicates the generated packets via network interface 823. Controller 821 can bundle data from multiple baseband processors to generate bundled packets and pass the generated bundled packets. The controller 821 can have logic functions that perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes a RAM and a ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 823 is a communication interface for connecting base station device 820 to core network 824. Controller 821 can communicate with a core network node or another eNB via network interface 823. In this case, the eNB 800 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 823 can also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 823 is a wireless communication interface, network interface 823 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 825.
  • the wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to the terminal located in the cell of the eNB 800 via the antenna 810.
  • Wireless communication interface 825 may typically include, for example, a baseband (BB) processor 826 and RF circuitry 827.
  • the BB processor 826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 826 may have some or all of the above described logic functions.
  • the BB processor 826 can be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the function of the BB processor 826 to change.
  • the module can be a card or blade that is inserted into a slot of the base station device 820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 810.
  • the wireless communication interface 825 can include a plurality of BB processors 826.
  • multiple BB processors 826 can be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 can include a plurality of RF circuits 827.
  • multiple RF circuits 827 can be compatible with multiple antenna elements.
  • FIG. 14 illustrates an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • the transceiving unit 106 described with reference to FIG. 3 can be implemented by the wireless communication interface 825. At least a portion of the functionality can also be implemented by controller 821.
  • the controller 821 can perform switching and wireless communication of the current serving base station of the mobile device in a determined order by performing functions of the first determining unit 101, the obtaining unit 102, the second determining unit 103, the switching unit 104, and the generating unit 105. The switching of the current serving base station of the device.
  • the eNB 830 includes one or more antennas 840, a base station device 850, and an RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 can be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 860 to transmit and receive wireless signals.
  • eNB 830 can include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 15 illustrates an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • Wireless communication interface 855 can generally include, for example, BB processor 856.
  • the BB processor 856 is identical to the BB processor 826 described with reference to FIG. 15 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • wireless communication interface 855 can include a plurality of BB processors 856.
  • multiple BB processors 856 can be compatible with multiple frequency bands used by eNB 830.
  • FIG. 15 illustrates an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 can also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module for communicating the base station device 850 (wireless communication interface 855) to the above-described high speed line of the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 can also be a communication module for communication in the above high speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • Wireless communication interface 863 can typically include, for example, RF circuitry 864.
  • the RF circuit 864 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 can include a plurality of RF circuits 864.
  • multiple RF circuits 864 can support multiple antenna elements.
  • FIG. 15 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also include a single RF circuit 864.
  • the transceiving unit 106 described with reference to FIG. 3 can be implemented by the wireless communication interface 855 and/or the wireless communication interface 863. At least a portion of the functionality can also be implemented by controller 851.
  • the controller 851 can perform switching and wireless communication of the current serving base station of the mobile device in a determined order by performing functions of the first determining unit 101, the obtaining unit 102, the second determining unit 103, the switching unit 104, and the generating unit 105. The switching of the current serving base station of the device.
  • the user equipment can be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device) or an in-vehicle terminal (such as a car navigation device). ).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the above terminals.
  • FIG. 16 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the technology of the present disclosure can be applied.
  • the smart phone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, an imaging device 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more An antenna switch 915, one or more antennas 916, a bus 917, a battery 918, and an auxiliary controller 919.
  • the processor 901 can be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smart phone 900.
  • the memory 902 includes a RAM and a ROM, and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900.
  • USB universal serial bus
  • the camera 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 907 can include a set of sensors, such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 908 converts the sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives an operation or information input from a user.
  • the display device 910 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 912 may generally include, for example, BB processor 913 and RF circuitry 914.
  • the BB processor 913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • RF circuitry 914 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 916.
  • the wireless communication interface 912 can be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG.
  • the wireless communication interface 912 can include a plurality of BB processors 913 and a plurality of RF circuits 914.
  • FIG. 16 illustrates an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
  • wireless communication interface 912 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 912 can include a BB processor 913 and RF circuitry 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 between a plurality of circuits included in the wireless communication interface 912, such as circuits for different wireless communication schemes.
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 912 to transmit and receive wireless signals.
  • the RF link may be connected to the plurality of antenna elements by a plurality of phase shifters, respectively.
  • smart phone 900 can include multiple antennas 916.
  • FIG. 16 shows an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may also include a single antenna 916.
  • smart phone 900 can include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 can be omitted from the configuration of the smartphone 900.
  • the bus 917 sets the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. connection.
  • Battery 918 provides power to various blocks of smart phone 900 shown in Figure 16 via a feeder, which is shown partially as a dashed line in the figure.
  • the auxiliary controller 919 operates the minimum necessary function of the smartphone 900, for example, in a sleep mode.
  • the transceiving unit 204 described with reference to FIG. 10 can be implemented by the wireless communication interface 912. At least a portion of the functionality can also be implemented by processor 901 or auxiliary controller 919.
  • the processor 901 or the auxiliary controller 919 can report the channel measurement result in response to the instruction of the current serving base station by performing the functions of the measuring unit 201 and the generating unit 202, and can perform the current serving base station by performing the function of the switching unit 203. Switch.
  • FIG. 17 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and a wireless device.
  • the processor 921 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 920.
  • the memory 922 includes a RAM and a ROM, and stores data and programs executed by the processor 921.
  • the GPS module 924 measures the position of the car navigation device 920 (such as latitude, longitude, and altitude) using GPS signals received from GPS satellites.
  • Sensor 925 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to, for example, the in-vehicle network 941 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 927 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 930, and receives an operation or information input from a user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of the navigation function or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 933 may typically include, for example, BB processor 934 and RF circuitry 935.
  • the BB processor 934 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 937.
  • the wireless communication interface 933 can also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
  • FIG. 17 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 can support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near-field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 between a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • car navigation device 920 can include a plurality of antennas 937.
  • FIG. 17 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may also include a single antenna 937.
  • car navigation device 920 can include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 can be omitted from the configuration of the car navigation device 920.
  • Battery 938 provides power to various blocks of car navigation device 920 shown in Figure 17 via feeders, which are partially shown as dashed lines in the figure. Battery 938 accumulates power supplied from the vehicle.
  • the transceiving unit 204 described with reference to FIG. 10 can be implemented by the wireless communication interface 933. At least a portion of the functionality can also be implemented by processor 921.
  • the processor 921 can report channel measurement results in response to an instruction of the current serving base station by performing functions of the measurement unit 201 and the generation unit 202, and can perform handover of the current serving base station by performing a function of the switching unit 203.
  • the technology of the present disclosure may also be implemented as an onboard system (or vehicle) 940 that includes one or more of the car navigation device 920, the in-vehicle network 941, and the vehicle module 942.
  • vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 941.
  • the present invention also proposes a program product for storing an instruction code readable by a machine.
  • the instruction code is read and executed by a machine, the above-described method according to an embodiment of the present invention can be performed.
  • a storage medium for carrying a program product storing the above-described storage machine readable instruction code is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure (for example, the general-purpose computer 1800 shown in FIG. 18), which is installed with various programs. At the time, it is possible to perform various functions and the like.
  • a central processing unit (CPU) 1801 executes various processes in accordance with a program stored in a read only memory (ROM) 1802 or a program loaded from a storage portion 1808 to a random access memory (RAM) 1803.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1801 executes various processes and the like is also stored as needed.
  • the CPU 1801, the ROM 1802, and the RAM 1803 are connected to each other via a bus 1804.
  • Input/output interface 1805 is also coupled to bus 1804.
  • the following components are connected to the input/output interface 1805: an input portion 1806 (including a keyboard, a mouse, etc.), an output portion 1807 (including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.),
  • the storage portion 1808 (including a hard disk or the like), the communication portion 1809 (including a network interface card such as a LAN card, a modem, etc.).
  • the communication section 1809 performs communication processing via a network such as the Internet.
  • Driver 1810 can also be coupled to input/output interface 1805 as desired.
  • a removable medium 1811 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 1810 as needed, so that the computer program read therefrom is installed into the storage portion 1808 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 1811.
  • such a storage medium is not limited to the removable medium 1811 shown in FIG. 18 in which a program is stored and distributed separately from the device to provide a program to the user.
  • the removable medium 1811 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered) Trademark)) and semiconductor memory.
  • the storage medium may be a ROM 1802, a hard disk included in the storage portion 1808, or the like, in which programs are stored, and distributed to the user together with the device containing them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了用于无线通信的电子设备和方法。该电子设备包括:处理电路,被配置为:进行移动设备是否要切换该移动设备的当前服务基站的第一判断;在第一判断中确定移动设备要切换当前服务基站的情况下,获取连接到移动设备的无线通信设备的信道测量结果;进行移动设备是否要切换当前服务基站的第二判断;以及在第二判断中确定移动设备要切换当前服务基站的情况下,至少基于无线通信设备的信道测量结果来进行无线通信设备从作为该无线通信设备的当前服务基站的移动设备到目的服务基站的切换。

Description

用于无线通信的电子设备和方法
本申请要求于2017年5月9日提交中国专利局、申请号为201710322080.6、发明名称为“用于无线通信的电子设备和方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明的实施例总体上涉及无线通信领域,具体地涉及无线通信中服务基站的切换,更具体地涉及一种用于无线通信的电子设备和方法。
背景技术
在移动通信场景中,由于移动性,提供服务的移动设备比如移动基站和被服务的无线通信设备比如用户设备均可能会发生服务基站的切换。例如,用户设备从某个移动基站切换至另一个移动基站或宏基站,移动基站从某个宏基站切换至另一个宏基站。在目前的切换方案中,用户设备与移动基站各自独立进行切换,因此在两种切换同时发生时,其顺序是不确定的。
发明内容
在下文中给出了关于本申请的简要概述,以便提供关于本申请的某些方面的基本理解。应当理解,这个概述并不是关于本申请的穷举性概述。它并不是意图确定本申请的关键或重要部分,也不是意图限定本申请的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:进行移动设备是否要切换该移动设备的当前服务基站的第一判断;在第一判断中确定移动设备要切换当前服务基站的情况下,获取连接到移动设备的无线通信设备的信道测量结果;进行移动设备是否要切换当前服务基站的第二判断;以及在第二判断中确定移动设备要切换当前服务基站的情况下,至少基于无线通信设备的信道 测量结果来进行无线通信设备从作为该无线通信设备的当前服务基站的所述移动设备到目的服务基站的切换。
根据本申请的另一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:响应于来自无线通信设备的当前服务基站的信道测量指令,来执行信道测量;以及生成包括信道测量结果的消息,以报告给当前服务基站。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:进行移动设备是否要切换该移动设备的当前服务基站的第一判断;在第一判断中确定移动设备要切换当前服务基站的情况下,获取连接到移动设备的无线通信设备的信道测量结果;进行移动设备是否要切换当前服务基站的第二判断;以及在第二判断中确定移动设备要切换当前服务基站的情况下,至少基于无线通信设备的信道测量结果来进行无线通信设备从作为该无线通信设备的当前服务基站的所述移动设备到目的服务基站的切换。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:响应于来自无线通信设备的当前服务基站的信道测量指令,来执行信道测量;以及生成包括信道测量结果的消息,以报告给当前服务基站。
依据本申请的其它方面,还提供了用于实现上述方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述方法的计算机程序代码的计算机可读存储介质。
根据本申请的电子设备和方法通过在第一判断中确定移动设备要切换当前服务基站的情况下获取其服务的无线通信设备的信道测量结果,使得能够以确定的顺序进行无线通信设备的当前服务基站的切换和移动设备的当前服务基站的切换。
通过以下结合附图对本申请的优选实施例的详细说明,本申请的这些以及其他优点将更加明显。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细 说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1示出了移动设备的当前服务基站和无线通信设备的当前服务基站的切换的场景的示意图;
图2是示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图3是示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图4是示出了在图1的场景下无线通信设备先切换、移动设备后切换的时序示意图;
图5示出了图4的切换的信息流程的示意图;
图6是示出了在图1的场景下无线通信设备先切换、移动设备后切换的另一个时序示意图;
图7示出了图6的切换的信息流程的示意图;
图8是示出了在图1的场景下移动设备先切换、无线通信设备后切换的时序示意图;
图9示出了图8的切换的信息流程的示意图;
图10是示出了根据本申请的另一个实施例的用于无线通信的电子设备的功能模块框图;
图11是示出了根据本申请的一个实施例的用于无线通信的方法的流程图;
图12是示出了图11的步骤S12的子步骤的流程图;
图13是示出了根据本申请的另一个实施例的用于无线通信的方法的流程图;
图14是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图;
图15是示出可以应用本公开内容的技术的eNB的示意性配置的第 二示例的框图;
图16是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图17是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图;以及
图18是其中可以实现根据本发明的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
<第一实施例>
在本申请中,移动设备例如为能够提供无线通信服务并且其自身也具备移动性的设备,比如移动基站、无线中继设备、端到端(D2D)通信中的发送端设备等,其用于扩大无线通信覆盖范围,提高通信系统配置的灵活性。应该理解,该移动设备的位置也可以保持不变。另一方面,移动设备还接入到其当前服务基站比如宏基站,在满足切换条件的情况下,移动设备可以切换到其他服务基站(以下称为目的服务基站)。移动设备为无线通信设备提供服务,无线通信设备所连接到的或接入到的移动设备为其当前服务基站,在满足切换条件的情况下,移动设备可以切 换到其他移动设备或宏基站(以下也称为目的服务基站)。其中,无线通信设备可以为各种用户设备或终端设备,比如具有蜂窝通信能力的移动终端、智能车辆、智能穿戴设备等,也可以是和宏基站进行无线通信的基础设施比如小小区基站等。并且,无线通信设备也可以直接连接到移动设备的服务基站比如宏基站以进行通信。在下文中,将主要以移动基站作为移动设备的示例,以用户设备(User equipment,UE)作为无线通信设备的示例进行描述。但是,应该理解,这仅是为了便于描述,并不是限制性的。
图1示出了移动设备的当前服务基站和无线通信设备的当前服务基站的切换的场景的示意图。其中,移动基站N和M为移动设备,UE为无线通信设备,在当前状态下,移动基站M接入基站(比如宏基站)A,UE接入移动基站M。由于设备的移动性,UE将从移动基站M切换至移动基站N,而移动基站M将从基站A切换至基站B。
如前所述,当这两种切换同时发生时,其顺序是不确定的。换言之,存在如下两种情形:UE先进行切换、即从当前的移动基站M切换到移动基站N,然后移动基站M进行切换、即从基站A切换至基站B;或者当前的移动基站M先切换、即从基站A切换至基站B,其服务的UE再进行切换。这种顺序的不确定性可能会影响UE的通信质量。
本实施例提出了一种用于无线通信的电子设备100,以使得上述两种切换的顺序为确定的。图2示出了根据本实施例的电子设备100的功能模块框图,如图2所示,该电子设备100包括:第一判断单元101,被配置为进行移动设备是否要切换该移动设备的当前服务基站的第一判断;获取单元102,被配置为在第一判断中确定移动设备要切换当前服务基站的情况下,获取连接到移动设备的无线通信设备的信道测量结果;第二判断单元103,被配置为进行移动设备是否要切换当前服务基站的第二判断;以及切换单元104,被配置为在第二判断中确定移动设备要切换当前服务基站的情况下,至少基于无线通信设备的信道测量结果来进行无线通信设备从作为该无线通信设备的当前服务基站的所述移动设备到目的服务基站的切换。
其中,第一判断单元101、获取单元102、第二判断单元103和切换单元104可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。
在一个示例中,第一判断单元101和第二判断单元103分别基于移动设备的信道测量结果来进行第一判断和第二判断。以图1的场景为例,电子设备100例如位于移动基站侧或可通信地连接到移动基站侧。移动基站M进行信道测量以获得信道测量结果,从而电子设备100的第一判断单元101和第二判断单元103基于该信道测量结果分别进行第一判断和第二判断。
示例性地,信道测量结果可以如下中的至少之一:参考信号接收功率(Reference Signal Receiving Power,RSRP)、接收信号强度指示(Received Signal Strength Indicator,RSSI)、参考信号接收质量(Reference Signal Receiving Quality,RSRQ)。但是,信道测量结果并不限于此,而是可以使用任何能够指示信道质量的指标,例如还可以使用信噪比等。
可以将第二判断单元103中使用的第二判断的条件设置地比第一判断单元101中使用的第一判断的条件严格,例如,第二判断的条件比第一判断的条件更加难以满足。例如,在第一判断中,在移动设备与当前服务基站的信道的信道质量比移动设备与目的服务基站的信道的信道质量低第一阈值时,确定要切换当前服务基站;在第二判断中,在移动设备与当前服务基站的信道的信道质量比移动设备与目的服务基站的信道的信道质量低第二阈值时,确定要切换当前服务基站,其中,第一阈值小于等于第二阈值。换言之,与第一判断中当前服务基站与目的服务基站所能提供的服务质量的差距相比,第二判断中当前服务基站与目的服务基站所能提供的服务质量的差距进一步变大。其中,第一阈值和第二阈值的设置例如与小区半径、发射功率、电磁波传播环境、信干噪比要求等因素有关,可以由运营商根据经验或偏好等因素决定。
参照图1所示的场景,在第一判断单元101确定第一阈值被突破时,意味着当前信道的通信质量下降明显,移动基站M应该准备切换到其他服务基站比如目的服务基站B继续通信。在这种情况下,获取单元102获取连接到移动基站M的UE的信道测量结果。其中,UE的信道测量结果可以包括UE针对其与各个移动基站(或者还包括宏基站)之间的信道的测量结果。
此外,如图3中的虚线框所示,电子设备100还可以包括:生成单元105,被配置为生成指示无线通信设备上报信道测量结果的指令。生成 单元105可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。无线通信设备例如图1中的UE可以响应于该指令上报一次信道测量结果,也可以多次上报。在后一种情况下,生成单元105生成的指令还可以包括无线通信设备周期性上报信道测量结果的指示以及/或者进行上报的周期。
具体地,指令中可以仅包括进行周期性上报的指示,无线通信设备在接收到该指示后以预定周期进行上报。或者,指令中可以仅包括上报的周期,无线通信设备在检测到该周期的情况下以该周期进行上报,否则仅进行一次上报。又或者,指令中可以包括周期性上报的指示和上报的周期两者。通过进行周期性的上报,可以进一步提高信道测量结果的可靠性。此外,该指令还可以为包括移动设备的测量结果的消息。
相应地,如图3中的另一个虚线框所示,电子设备100还可以包括:收发单元106,被配置为向无线通信设备发送上述指令,以及接收来自无线通信设备的信道测量结果。其中,收发单元106例如可以由通信接口来实现,该通信接口例如可以实现为芯片。
此外,生成单元105还被配置为在第二判断中确定移动设备要切换当前服务基站的情况下,生成向移动设备的当前服务基站报告移动设备的信道测量结果的指令。收发单元106还被配置为向移动设备的当前服务基站发送移动设备的信道测量结果,以及接收来自当前服务基站的有关切换的指令。相应地,切换单元104基于来自当前服务基站的指令来进行移动设备的当前服务基站的切换。
综上所述,电子设备100通过获取单元103获取到了连接到移动设备的无线通信设备的信道测量结果,从而随时可以进行无线通信设备的当前服务基站的切换。换言之,电子设备100可以以确定的顺序进行移动设备的当前服务基站的切换和其服务的无线通信设备的当前服务基站的切换。
在一个示例中,在第二判断中确定移动设备要切换当前服务基站的情况下,切换单元104基于无线通信设备的信道测量结果来进行无线通信设备的当前服务基站的切换,然后进行移动设备的当前服务基站的切换。
仍以图1的场景为例,图4示出了无线通信设备先切换、移动设备 后切换的时序示意图。如图4所示,t 1和t 2分别代表第一判断单元101和第二判断单元103进行移动基站M要切换当前服务基站的确定的时间点,X A@M<X B@M-O M,1表示满足第一判断的条件,其中,X A@M为基站A与移动基站M之间的信道的信道测量结果,X B@M为基站B与移动基站M之间的信道的信道测量结果,O M,1为第一阈值。类似地,X A@M<X B@M-O M,2表示满足第二判断的条件,其中,O M,2为第二阈值,且O M,1≤O M,2。此外,X M@UE和X N@UE分别代表移动基站M和移动基站N与UE之间的信道的信道测量结果。
在t 1时间点处,第一判断单元101确定移动基站M要进行当前服务基站的切换。因此,移动基站M向UE发出上报信道测量结果的指令Msg1,UE立刻开始上报自己的信道测量结果、即图中的Msg2。随后,在t 2时间点处,第二判断单元103确定第二阈值被突破,即进一步确定移动基站M要进行当前服务基站的切换,移动基站M根据UE的测量结果报告,安排UE切换至移动基站N,随后,移动基站M向基站A发送携带有其自己的测量结果的消息、即图中的Msg3。基站A根据Msg3中的测量结果在t 3时间点处安排移动基站M切换至基站B。
图5示出了图4中的切换的信息流程的示意图,其具体内容在描述图4的过程中已经进行了描述,在此不再重复。
此外,图6示出了无线通信设备先切换、移动设备后切换的另一种时序示意图。图6与图4的不同在于,UE在接收到Msg1之后,以周期T周期性地上报信道测量结果Msg2。移动基站M例如可以根据所有信道测量结果来进行UE的服务基站的切换,从而提高准确性。图7相应地示出了图6中的切换的信息流程的示意图,图7与图5的不同在于Msg2以周期T重复发送。图6和图7的其他部分在描述图4的过程中已经进行了描述,在此不再重复。
在另一个示例中,在第二判断中确定移动设备要切换当前服务基站的情况下,切换单元104进行移动设备的当前服务基站的切换,然后基于无线通信设备的信道测量结果来进行无线通信设备的当前服务基站的切换。
仍以图1的场景为例,图8示出了移动设备先切换、无线通信设备后切换的时序示意图。图9示出了图8中的切换的信息流程的示意图。 图8和图9中与图4和图5中的相同的符号代表相同的含义,在此不再重复。
如图8所示,在t 1时间点处,第一判断单元101确定移动基站M要进行当前服务基站的切换。因此,移动基站M向UE发出上报信道测量结果的指令Msg1,UE立刻开始上报自己的信道测量结果、即图中的Msg2。其中,上报可以执行一次,也可以周期性地执行多次。图8中示出了以周期T进行周期性上报的情形,但是,应该理解,也可以仅发送一次Msg2,例如第一条Msg2。
随后,在t 2时间点处,第二判断单元103确定第二阈值被突破,即进一步确定移动基站M要进行当前服务基站的切换,移动基站M向基站A发送携带有其自己的测量结果的消息、即图中的Msg3。基站A根据Msg3中的测量结果安排移动基站M切换至基站B。随后,移动基站M根据UE的测量结果报告,在t 3时间点处安排UE切换至移动基站N。
图9中所示出的切换的信息流程的具体内容在描述图8的过程中已经进行了描述,在此不再重复。
应该注意,以上虽然示出了无线通信设备的服务基站切换为其他移动基站的示例,但是这并不是限制性的,切换单元104还可以将无线通信设备的服务基站切换到固定基站比如宏基站。
综上所述,根据本实施例的电子设备100通过在第一判断移动设备要切换当前服务基站的情况下获取其服务的无线通信设备的信道测量结果,使得能够以确定的顺序进行无线通信设备的当前服务基站的切换和移动设备的当前服务基站的切换,保障通信质量。
<第二实施例>
图10示出了根据本申请的另一个实施例的用于无线通信的电子设备200的功能模块框图。如图10所示,电子设备200包括:测量单元201,被配置为响应于来自无线通信设备的当前服务基站的信道测量指令,来执行信道测量;以及生成单元202,被配置为生成包括信道测量结果的消息,以报告给当前服务基站。
其中,测量单元201和生成单元202可以由一个或多个处理电路实 现,该处理电路例如可以实现为芯片。以图1的场景为例,电子设备200例如可以位于UE中或者可通信地连接到UE。
测量单元201所执行的信道测量例如可以包括对如下中的至少之一的测量:RSRP、RSSI、RSRO。更一般地,测量的对象能够反映对应信道的信道质量。
在一个示例中,测量单元201可以基于信道测量指令进行周期性的信道测量。相应地,生成单元202周期性地生成包括信道测量结果的消息,以报告给当前服务基站。这样,服务基站可以获得更加可靠的信道测量结果,从而进行准确的切换。
如图10中的虚线框所示,电子设备200还可以包括:收发单元204,被配置为从当前服务基站接收信道测量指令以及向当前服务基站发送消息。其中,收发单元204例如可以由通信接口来实现,该通信接口例如可以实现为芯片。
如图10中的虚线框所示,电子设备200还可以包括切换单元203,被配置为基于当前服务基站根据上述消息确定的切换方式进行当前服务基站到目的服务基站的切换。例如,可以切换到其他移动设备或者切换到固定基站。
根据本实施例的电子设备200响应于当前服务基站的信道测量质量来上报信道测量结果,从而使得当前服务基站能够基于信道测量结果以确定的顺序进行其自身的当前服务基站的切换和无线通信设备的当前服务基站的切换,有效地保障通信质量。
<第三实施例>
在上文的实施方式中描述用于无线通信的电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于无线通信的电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管 这些方法也可以采用用于无线通信的电子设备的硬件和/或固件。
图11示出了根据本申请的一个实施例的用于无线通信的方法的流程图,该方法包括如下步骤:进行移动设备是否要切换该移动设备的当前服务基站的第一判断(S11);在第一判断中确定移动设备要切换当前服务基站的情况下,获取连接到移动设备的无线通信设备的信道测量结果(S12);进行移动设备是否要切换当前服务基站的第二判断(S13);以及在第二判断中确定移动设备要切换当前服务基站的情况下,至少基于无线通信设备的信道测量结果来进行无线通信设备从作为该无线通信设备的当前服务基站的移动设备到目的服务基站的切换(S14)。
信道测量结果例如可以包括如下中的至少之一:参考信号接收功率RSRP、接收信号强度指示RSSI、参考信号接收质量RSRQ。
例如在步骤S11和S13中,可以基于移动设备的信道测量结果来进行第一判断和第二判断。可以将第二判断的条件设置得比第一判断的条件严格。
在步骤S11中,在移动设备与当前服务基站的信道的信道质量比移动设备与目的服务基站的信道的信道质量低第一阈值时,确定要切换当前服务基站;在步骤S13中,在移动设备与当前服务基站的信道的信道质量比移动设备与目的服务基站的信道的信道质量低第二阈值时,确定要切换当前服务基站,其中,第一阈值小于等于第二阈值。
如图12所示,步骤S12可以包括如下子步骤:生成指示无线通信设备上报信道测量结果的指令(S121);向无线通信设备发送指令(S122),以及接收来自无线通信设备的信道测量结果(S123)。在一个示例中,该指令可以包括无线通信设备周期性上报信道测量结果的指示以及/或者进行上报的周期。
在一个示例中,在第二判断中确定移动设备要切换当前服务基站的情况下,在步骤S14中基于无线通信设备的信道测量结果来进行无线通信设备的当前服务基站的切换,然后进行移动设备的当前服务基站的切换。
在另一个示例中,在第二判断中确定移动设备要切换当前服务基站的情况下,在步骤S14中进行移动设备的当前服务基站的切换,然后基于无线通信设备的信道测量结果来进行无线通信设备的当前服务基站的 切换。其中,可以将无线通信设备的当前服务基站切换到固定基站。
例如,在第二判断中确定移动设备要切换当前服务基站的情况下,在步骤S14中还可以生成向移动设备的当前服务基站报告移动设备的信道测量结果的指令,并且基于来自当前服务基站的指令来进行移动设备的当前服务基站的切换。
图13示出了根据本申请的另一个实施例的用于无线通信的方法的流程图,该方法包括如下步骤:响应于来自无线通信设备的当前服务基站的信道测量指令,来执行信道测量(S22);以及生成包括信道测量结果的消息,以报告给当前服务基站(S23)。
其中,在步骤S22中可以基于信道测量指令进行周期性的信道测量,并且在步骤S23中周期性地生成包括信道测量结果的消息,以报告给当前服务基站。信道测量结果例如可以包括如下中的至少之一:参考信号接收功率RSRP、接收信号强度指示RSSI、参考信号接收质量RSRQ。
如图13中的虚线框所示,上述方法还可以包括如下步骤:从当前服务基站接收信道测量指令(S21);以及向当前服务基站发送消息(S24)。当前服务基站根据该消息来确定切换方式。上述方法还包括步骤S25:基于当前服务基站根据上述消息确定的切换方式进行当前服务基站的切换。
注意,上述各个方法可以结合或单独使用,其细节在第一至第二实施例中已经进行了详细描述,在此不再重复。
<应用示例>
本公开内容的技术能够应用于各种产品。以上提到的基站可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的用户设备均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
[关于基站的应用示例]
(第一应用示例)
图14是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图14所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图14示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终 端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图14所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图14所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图14示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图14所示的eNB 800中,参照图3所描述的收发单元106可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行第一判断单元101、获取单元102、第二判断单元103、切换单元104、生成单元105的功能来以确定的顺序执行移动设备的当前服务基站的切换和无线通信设备的当前服务基站的切换。
(第二应用示例)
图15是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图15所示,eNB 830可以包括多个天线840。例如,多个天线840 可以与eNB 830使用的多个频带兼容。虽然图15示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图15描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图15描述的BB处理器826相同。如图15所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图15示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图15所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图15示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图15所示的eNB 830中,参照图3所描述的收发单元106可以由无线通信接口855和/或无线通信接口863实现。功能的至少一部分也可以控制器851实现。例如,控制器851可以通过执行第一判断单元101、 获取单元102、第二判断单元103、切换单元104、生成单元105的功能来以确定的顺序执行移动设备的当前服务基站的切换和无线通信设备的当前服务基站的切换。
[关于用户设备的应用示例]
例如,用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
(第一应用示例)
图16是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图16所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图16示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。虽然图中未示出,但是在天线916包括多个天线元件的情况下,RF链路可以通过多个移相器分别与多个天线元件连接。如图16所示,智能电话900可以包括多个天线916。虽然图16示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图16所示的智能电话900的各个块提供电力,馈线在 图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图16所示的智能电话900中,参照图10所描述的收发单元204可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行测量单元201、生成单元202的功能来响应于当前服务基站的指令上报信道测量结果,并且可以通过执行切换单元203的功能来进行当前服务基站的切换。
(第二应用示例)
图17是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934 和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图17所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图17示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图17所示,汽车导航设备920可以包括多个天线937。虽然图17示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图17所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图17示出的汽车导航设备920中,参照图10所描述的收发单元204可以由无线通信接口933实现。功能的至少一部分也可以由处理器921实现。例如,处理器921可以通过执行测量单元201、生成单元202的功能来响应于当前服务基站的指令上报信道测量结果,并且可以通过执行切换单元203的功能来进行当前服务基站的切换。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网 络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本发明还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图18所示的通用计算机1800)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图18中,中央处理单元(CPU)1801根据只读存储器(ROM)1802中存储的程序或从存储部分1808加载到随机存取存储器(RAM)1803的程序执行各种处理。在RAM 1803中,也根据需要存储当CPU 1801执行各种处理等等时所需的数据。CPU 1801、ROM 1802和RAM 1803经由总线1804彼此连接。输入/输出接口1805也连接到总线1804。
下述部件连接到输入/输出接口1805:输入部分1806(包括键盘、鼠标等等)、输出部分1807(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分1808(包括硬盘等)、通信部分1809(包括网络接口卡比如LAN卡、调制解调器等)。通信部分1809经由网络比如因特网执行通信处理。根据需要,驱动器1810也可连接到输入/输出接口1805。可移除介质1811比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1810上,使得从中读 出的计算机程序根据需要被安装到存储部分1808中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质1811安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图18所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质1811。可移除介质1811的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1802、存储部分1808中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利要求及其等效含义来限定。

Claims (19)

  1. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    进行移动设备是否要切换该移动设备的当前服务基站的第一判断;
    在所述第一判断中确定所述移动设备要切换当前服务基站的情况下,获取连接到所述移动设备的无线通信设备的信道测量结果;
    进行所述移动设备是否要切换当前服务基站的第二判断;以及
    在所述第二判断中确定所述移动设备要切换当前服务基站的情况下,至少基于所述无线通信设备的信道测量结果来进行所述无线通信设备从作为该无线通信设备的当前服务基站的所述移动设备到目的服务基站的切换。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为基于所述移动设备的信道测量结果来进行所述第一判断和所述第二判断。
  3. 根据权利要求1所述的电子设备,其中,所述移动设备为移动基站,所述移动设备的服务基站为宏基站,所述无线通信设备的服务基站为所述移动基站或所述宏基站。
  4. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为:
    在所述第一判断中,在所述移动设备与当前服务基站的信道的信道质量比所述移动设备与目的服务基站的信道的信道质量低第一阈值时,确定要切换当前服务基站;
    在所述第二判断中,在所述移动设备与当前服务基站的信道的信道质量比所述移动设备与目的服务基站的信道的信道质量低第二阈值时,确定要切换当前服务基站,
    其中,所述第一阈值小于等于所述第二阈值。
  5. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为生成指示所述无线通信设备上报信道测量结果的指令。
  6. 根据权利要求5所述的电子设备,其中,所述指令包括所述无线 通信设备周期性上报所述信道测量结果的指示以及/或者进行上报的周期。
  7. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为在所述第二判断中确定所述移动设备要切换当前服务基站的情况下,基于所述无线通信设备的信道测量结果来进行所述无线通信设备的当前服务基站的切换,然后进行所述移动设备的当前服务基站的切换。
  8. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为在所述第二判断中确定所述移动设备要切换当前服务基站的情况下,将所述无线通信设备的当前服务基站切换到固定基站。
  9. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为在所述第二判断中确定所述移动设备要切换当前服务基站的情况下,基于来自当前服务基站的指令来进行所述移动设备的当前服务基站的切换。
  10. 根据权利要求1所述的电子设备,其中,所述信道测量结果包括如下中的至少之一:参考信号接收功率、接收信号强度指示、参考信号接收质量。
  11. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为在所述第二判断中确定所述移动设备要切换当前服务基站的情况下,生成向所述移动设备的当前服务基站报告所述移动设备的信道测量结果的指令,并且根据来自所述当前服务基站的指令进行所述移动设备的当前服务基站的切换。
  12. 根据权利要求5所述的电子设备,还包括:
    收发电路,被配置为向所述无线通信设备发送所述指令,以及接收来自所述无线通信设备的信道测量结果。
  13. 根据权利要求12所述的电子设备,其中,所述收发电路还被配置为向所述移动设备的当前服务基站发送所述移动设备的信道测量结果,以及接收来自所述当前服务基站的有关切换的指令。
  14. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    响应于来自无线通信设备的当前服务基站的信道测量指令,来执行 信道测量;以及
    生成包括信道测量结果的消息,以报告给所述当前服务基站。
  15. 根据权利要求14所述的电子设备,其中,所述处理电路被配置为基于所述信道测量指令进行周期性的信道测量。
  16. 根据权利要求14所述的电子设备,其中,所述处理电路还被配置为基于当前服务基站根据所述消息确定的切换方式进行当前服务基站到目的服务基站的切换。
  17. 根据权利要求14所述的电子设备,还包括:
    收发电路,被配置为从所述当前服务基站接收所述信道测量指令以及向所述当前服务基站发送所述消息。
  18. 一种用于无线通信的方法,包括:
    进行移动设备是否要切换该移动设备的当前服务基站的第一判断;
    在所述第一判断中确定所述移动设备要切换当前服务基站的情况下,获取连接到所述移动设备的无线通信设备的信道测量结果;
    进行所述移动设备是否要切换当前服务基站的第二判断;以及
    在所述第二判断中确定所述移动设备要切换当前服务基站的情况下,至少基于所述无线通信设备的信道测量结果来进行所述无线通信设备从作为该无线通信设备的当前服务基站的所述移动设备到目的服务基站的切换。
  19. 一种用于无线通信的方法,包括:
    响应于来自无线通信设备的当前服务基站的信道测量指令,来执行信道测量;以及
    生成包括信道测量结果的消息,以报告给所述当前服务基站。
PCT/CN2018/085579 2017-05-09 2018-05-04 用于无线通信的电子设备和方法 WO2018205885A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880010018.6A CN110383889B (zh) 2017-05-09 2018-05-04 用于无线通信的电子设备和方法
EP18799286.2A EP3624495A4 (en) 2017-05-09 2018-05-04 ELECTRONIC DEVICE AND METHOD FOR WIRELESS COMMUNICATION
US16/490,891 US10904814B2 (en) 2017-05-09 2018-05-04 Electronic device and method for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710322080.6 2017-05-09
CN201710322080.6A CN108880707A (zh) 2017-05-09 2017-05-09 用于无线通信的电子设备和方法

Publications (1)

Publication Number Publication Date
WO2018205885A1 true WO2018205885A1 (zh) 2018-11-15

Family

ID=64104338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085579 WO2018205885A1 (zh) 2017-05-09 2018-05-04 用于无线通信的电子设备和方法

Country Status (4)

Country Link
US (1) US10904814B2 (zh)
EP (1) EP3624495A4 (zh)
CN (3) CN108880707A (zh)
WO (1) WO2018205885A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022032586A1 (en) * 2020-08-13 2022-02-17 Apple Inc. Coordinated cellular coverage by mobile base stations

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111565424B (zh) * 2019-02-14 2021-03-16 电信科学技术研究院有限公司 双连接系统中处理连接失败的方法、装置及存储介质
US11252542B2 (en) * 2020-06-19 2022-02-15 Waggle Corporation Mobile device communication without network connection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101150840A (zh) * 2006-09-20 2008-03-26 上海贝尔阿尔卡特股份有限公司 用于切换移动中继站及其下属移动终端的方法及装置
CN101547485A (zh) * 2008-03-26 2009-09-30 中兴通讯股份有限公司 一种中继站及其在不同基站之间的切换方法
US20110124330A1 (en) * 2009-11-20 2011-05-26 Fujitsu Limited Radio communication system, mobile relay station, mobile station, and radio communication method
CN104349402A (zh) * 2013-07-24 2015-02-11 中兴通讯股份有限公司 支持d2d技术的终端切换方法、通信节点、终端和系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102771161A (zh) * 2010-01-26 2012-11-07 京瓷株式会社 无线中继站和控制方法
WO2012134131A2 (ko) * 2011-03-28 2012-10-04 엘지전자 주식회사 이동 셀 핸드오버 방법 및 장치
GB2503942A (en) * 2012-07-13 2014-01-15 Nec Corp Mobile relay node handover in a wireless communication system
EP2706782B1 (en) * 2012-09-10 2014-05-14 Fujitsu Limited Handover with mobile relays
GB2509749A (en) * 2013-01-11 2014-07-16 Nec Corp Communication system with configuration of measuring reporting via mobile relays
JP6146832B2 (ja) * 2013-03-08 2017-06-14 ノキア テクノロジーズ オーユー デバイス間通信のハンドオーバのための方法及び装置
AU2015346177B2 (en) * 2014-11-14 2019-10-10 Interdigital Patent Holdings, Inc. Methods and procedures for channel measurements and reporting mechanisms for long term evolution (LTE) operation in an unlicensed band
CN106211024A (zh) * 2015-04-10 2016-12-07 中兴通讯股份有限公司 信息处理方法及通信节点
EP3627723A1 (en) * 2015-07-24 2020-03-25 Panasonic Intellectual Property Corporation of America Improved prose relay ue activation
JP6532807B2 (ja) * 2015-11-13 2019-06-19 京セラ株式会社 中継局およびその制御方法
EP3378275B1 (en) * 2015-12-21 2023-05-10 Sony Group Corporation Telecommunications apparatus and methods
US10178594B1 (en) * 2016-02-04 2019-01-08 Sprint Spectrum L.P. Donor access node selection for relays
WO2017195862A1 (ja) * 2016-05-13 2017-11-16 京セラ株式会社 基地局及びユーザ端末
JP6433467B2 (ja) * 2016-08-08 2018-12-05 ソフトバンク株式会社 中継装置および移動体通信システム
WO2018164552A1 (ko) * 2017-03-10 2018-09-13 엘지전자(주) 무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치
WO2018169343A1 (ko) * 2017-03-17 2018-09-20 엘지전자 주식회사 페이징을 수행하는 방법 및 기지국, 페이징을 지원하는 방법 및 네트워크 엔티티
US11140641B2 (en) * 2018-10-11 2021-10-05 Qualcomm Incorporated Cellular vehicle-to-everything out of coverage synchronization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101150840A (zh) * 2006-09-20 2008-03-26 上海贝尔阿尔卡特股份有限公司 用于切换移动中继站及其下属移动终端的方法及装置
CN101547485A (zh) * 2008-03-26 2009-09-30 中兴通讯股份有限公司 一种中继站及其在不同基站之间的切换方法
US20110124330A1 (en) * 2009-11-20 2011-05-26 Fujitsu Limited Radio communication system, mobile relay station, mobile station, and radio communication method
CN104349402A (zh) * 2013-07-24 2015-02-11 中兴通讯股份有限公司 支持d2d技术的终端切换方法、通信节点、终端和系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022032586A1 (en) * 2020-08-13 2022-02-17 Apple Inc. Coordinated cellular coverage by mobile base stations

Also Published As

Publication number Publication date
EP3624495A4 (en) 2020-04-01
CN110383889A (zh) 2019-10-25
CN108880707A (zh) 2018-11-23
US20200015139A1 (en) 2020-01-09
US10904814B2 (en) 2021-01-26
CN114024634A (zh) 2022-02-08
EP3624495A1 (en) 2020-03-18
CN110383889B (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
US20220408298A1 (en) Electronic device and method for wireless communications
US11991542B2 (en) Electronic device and method for wireless communication, and computer-readable storage medium
US10904804B2 (en) Handover measurement control method and apparatus
WO2021169904A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US11856427B2 (en) Wireless communication electronic device and method, and computer-readable storage medium
US20220201430A1 (en) Electronic device and method for wireless communication, and computer readable storage medium
WO2019001411A1 (zh) 电子装置、无线通信设备和无线通信方法
WO2018205885A1 (zh) 用于无线通信的电子设备和方法
WO2019218909A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021164675A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
KR20210108960A (ko) 무선 통신에 이용되는 전자 디바이스 및 방법, 및 컴퓨터 판독가능 저장 매체
WO2022028318A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20230046108A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
WO2018095210A1 (zh) 用于网络控制端和网络节点的电子设备和方法
WO2023078163A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021179982A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2019218937A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20230379886A1 (en) Transmitting electronic device and receiving electronic device and methods for wireless communication
US20220337364A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
WO2020143522A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18799286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018799286

Country of ref document: EP

Effective date: 20191209