WO2018205788A1 - 导光板、光学模组及全反显示装置 - Google Patents
导光板、光学模组及全反显示装置 Download PDFInfo
- Publication number
- WO2018205788A1 WO2018205788A1 PCT/CN2018/082507 CN2018082507W WO2018205788A1 WO 2018205788 A1 WO2018205788 A1 WO 2018205788A1 CN 2018082507 W CN2018082507 W CN 2018082507W WO 2018205788 A1 WO2018205788 A1 WO 2018205788A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- guide plate
- light guide
- display panel
- optical module
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0035—Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
- G02B6/0036—2-D arrangement of prisms, protrusions, indentations or roughened surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0013—Means for improving the coupling-in of light from the light source into the light guide
- G02B6/0015—Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
- G02B6/002—Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0035—Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
- G02B6/0045—Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
- G02B6/0046—Tapered light guide, e.g. wedge-shaped light guide
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0081—Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
- G02B6/0086—Positioning aspects
- G02B6/0091—Positioning aspects of the light source relative to the light guide
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133615—Edge-illuminating devices, i.e. illuminating from the side
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0058—Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
- G02B6/0061—Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133524—Light-guides, e.g. fibre-optic bundles, louvered or jalousie light-guides
Definitions
- the present disclosure relates to the field of display technology, and specifically discloses a light guide plate, an optical module, and an all-trans display device.
- a total reflection display device has attracted attention as a new display device. At night or at a darker brightness, the total reflection display device can be displayed in combination with the front light guide and the light source. In contrast, in the case where the ambient light is sufficiently bright, the total reflection display device can realize display using only ambient light. In this manner, the power consumption of the total reflection display device at the time of display is reduced to some extent.
- BM black matrix
- a light guide plate includes: a light incident surface; a light exit surface; a first surface opposite to the light exit surface; and a plurality of recessed structures formed on the first surface. Further, the plurality of concave structures are configured to emit at least light rays incident thereon parallel to the light exit surface from the light guide plate at an angle of 60° to 90° with the light exit surface.
- the light guide plate has a wedge shape, and each of the concave structures has the same size and shape.
- the shape of the plurality of concave structures is at least one of a prism, a pyramid, a hemisphere, and a semi-ellipsoid.
- the light guide plate further includes a second surface opposite to the light incident surface, and the plurality of concave structures are on the first surface Arranged in an array. Further, along a direction from a first intersection line of the light incident surface to the first surface to a second intersection line of the second surface and the first surface, the plurality of concave structures The density gradually increases.
- the shape of the plurality of concave structures is a prism.
- the prism comprises a first bottom surface disposed adjacent to the light exit surface, a second bottom surface opposite to the first bottom surface, and adjacent to the first bottom surface and the second bottom surface A reflecting surface that reflects light incident thereon.
- the thickness of the rib is greater than 0 and less than or equal to 100 ⁇ m along a direction from the first bottom surface to the second bottom surface. Further, along the direction from the first intersection line to the second intersection line, the length of the second bottom surface is greater than or equal to 1 mm and less than or equal to 10 mm. Further, an angle between the reflecting surface and the light exiting surface is greater than or equal to 30° and less than or equal to 60°.
- an optical module is also provided.
- the optical module includes: the light guide plate according to any of the preceding embodiments; and a light source disposed at a light incident surface of the light guide plate.
- the light source is configured to emit collimated light.
- a full-reverse display device includes: a display panel; the optical module according to any of the preceding embodiments; and a scattering film disposed between the display panel and the optical module. Further, a light exit surface of the light guide plate is disposed close to a display surface of the display panel.
- the method further includes: a first polarizer disposed between the display panel and the optical module.
- the scattering film is integrated in the first polarizer, the first polarizer is bonded to the optical module through an adhesive layer, and the refractive index of the light guide plate is greater than the adhesive layer Refractive index.
- the scattering film is disposed on a side of the display panel near the light guide plate, and is adhered to the light guide plate through an adhesive layer. Knot. Further, the light guide plate has a refractive index greater than a refractive index of the bonding layer.
- the scattering film is disposed on a side of the light guide plate adjacent to the display panel, and passes through the adhesive layer and the display The panel is bonded.
- the refractive index of the light guide plate is greater than the refractive index of the bonding layer.
- the material of the bonding layer is an optical transparent adhesive
- the material of the light guiding plate is PMMA or PC.
- FIG. 1 is a light path diagram of light rays for entering a display panel from a light guide plate according to the prior art
- FIG. 2 is a schematic structural view of a light guide plate according to an embodiment of the present disclosure
- FIG. 3 is a side elevational view of a light guide plate in accordance with an embodiment of the present disclosure
- FIG. 4 is a schematic structural view of a light guide plate according to another embodiment of the present disclosure.
- FIG. 5 is a side view of a light guide plate according to another embodiment of the present disclosure.
- FIG. 6 is a schematic structural view of a light guide plate according to still another embodiment of the present disclosure.
- FIG. 7 is a side elevational view of a light guide plate in accordance with yet another embodiment of the present disclosure.
- FIG. 8(a) is a light path diagram for reflection of light rays parallel to a light exit surface on a concave structure, in accordance with an embodiment of the present disclosure
- FIG. 8(b) is a light path diagram for reflection of light rays parallel to a light exit surface on a concave structure, in accordance with another embodiment of the present disclosure
- Figure 8 (c) is a light path diagram for reflection of light rays parallel to the light exit face on the concave structure, in accordance with yet another embodiment of the present disclosure
- FIG. 9 is a light path diagram of light rays for entering a display panel from a light guide plate, in accordance with an embodiment of the present disclosure.
- Figure 10 (a) is a schematic diagram showing the simulation of light rays emitted from a light guide plate according to the prior art
- FIG. 10(b) is a schematic diagram showing a simulation of light rays emitted from a light guide plate according to an embodiment of the present disclosure
- Figure 11 is an enlarged view of the recessed structure of Figure 2;
- FIG. 12 is a schematic structural view of an optical module according to an embodiment of the present disclosure.
- FIG. 13 is a side elevational view of a full-reverse display device in accordance with an embodiment of the present disclosure.
- FIG. 14 is a side schematic view of a full-reverse display device in accordance with another embodiment of the present disclosure.
- FIG. 15 is a side elevational view of a full-reverse display device in accordance with yet another embodiment of the present disclosure.
- the light guide plate 10 includes a light incident surface 15, a light exit surface 14, and a first surface 11 opposite to the light exit surface 14.
- the light guide plate 10 further includes a plurality of concave structures 16 disposed on the first surface 11. The plurality of recessed structures 16 are configured to emit at least light incident on the light exit surface 14 from the entire light guide plate 10 at an angle of 60 to 90 with respect to the light exit surface 14.
- the range of ⁇ is 60° to 90°.
- the display panel 30 includes a reflective area and a non-reflective area covered by the black matrix 31. After the light enters the reflective area of the display panel 30, it is reflected by the metal layer (for example, the pixel electrode and the common electrode) in the reflective area, and then sequentially emitted from the display panel 30 and the light guide plate 10, thereby realizing display.
- the metal layer for example, the pixel electrode and the common electrode
- the light may be emitted at an angle of 60° to 90° with the light exit surface 14 to enter the light.
- the reflective area of the display panel 30 is described and used for display.
- the shape of the light guide plate 10 can be multiple selected.
- the light guide plate may be any of a wedge shape (as shown in FIGS. 2 and 6) and a flat plate shape (as shown in FIG. 4).
- the light guide plate 10 further includes a second face 12 opposite to the light incident surface 15. Specifically, as shown in FIG. 4 and FIG. 5, when the light guide plate 10 is a flat light guide plate, along the first intersection line from the light incident surface 15 and the first surface 11 to the second surface 12 and the first surface 11 The direction of the second intersection line, the thickness of the recessed structure 16 (i.e., the dimension in the direction perpendicular to the light exit surface 14) is larger and larger, so that light is transmitted from various positions on the light exit surface 14 of the light guide plate 10. Shoot out.
- the material of the light guide plate 10 can also be flexibly selected according to actual needs, as long as the material of the light guide plate 10 does not affect the transmission of light.
- the light guide plate 10 may be made of one of polyethyl methacrylate (PMMA), polycarbonate (PC), and glass.
- the refractive index of the light guide plate 10 should also be considered to prevent the light emitted from the display panel 30 from being totally reflected after entering the light guide plate 10, thereby affecting the display. .
- any suitable shape for the recessed structure 16 may be selected as long as the light incident parallel to the light exit surface 14 can be reflected with light after passing through the reflective surface 163 of the recessed structure 16.
- the exit surface 14 may be emitted at an angle of 60 to 90 degrees.
- An embodiment of the present disclosure provides a light guide plate 10.
- a light guide plate 10 In such a light guide plate 10, at least the light incident on the light exit surface 14 of the light guide plate 10 is reflected by the light passing through the concave structure 16 provided on the first surface 11 of the light guide plate 10, and is emitted with the light.
- the surface 14 is emitted from the entire light guide plate 10 at an angle of 60 to 90 degrees.
- 60 is formed with the light exit surface 14
- the light of an angle of from ° to 90 is emitted from the light exit surface 14 and enters the reflective area of the display panel 30.
- such light can be used for display after being reflected by a metal layer (for example, a pixel electrode, a common electrode) in the reflective region.
- a metal layer for example, a pixel electrode, a common electrode
- the light incident on the reflective area is increased, thereby greatly improving the utilization of light, realizing high contrast display, and contributing to reduction of work. Consumption.
- the light incident parallel to the light exit surface 14 will mostly hit the reflective area of the display panel 30, and thereafter, pass through the metal layer in the reflective area (eg, The reflection of the pixel electrode and the common electrode is sequentially emitted from the display panel 30 and the light guide plate 10, thereby realizing display.
- the shape of the light guide plate 10 is wedge-shaped, and the size and shape of the recessed structure 16 are the same.
- the recessed structure 16 is disposed on the first face 11 and is recessed toward the light exit face 14 in a groove shape. Therefore, considering the thickness of the light guide plate 10 and the recessed structure 16 in the direction perpendicular to the light exit surface 14, the number of sandwich angles between the first face 11 of the wedge-shaped light guide plate and the horizontal direction should be within a reasonable range.
- the angle between the first face 11 of the wedge-shaped light guide plate and the horizontal direction is greater than 0° and less than or equal to 10°.
- the angle between the first face 11 of the wedge-shaped light guide plate and the horizontal direction is 2°.
- the recessed structures 16 are equal in size and shape, thereby facilitating the simplification of the manufacturing process of the light guide plate 10.
- the plurality of recessed structures 16 are at least one of a prism, a pyramid, a hemisphere, and a semi-ellipsoid.
- the shape of the plurality of recessed structures 16 may be identical, i.e., one of a prism, a pyramid, a hemisphere, and a semi-ellipsoid; or alternatively, there may be a recessed structure of a different shape.
- the shapes such as the prism, the pyramid, the hemisphere, and the semi-ellipsoid are common regular shapes, these shapes are easily formed in the process of making the concave structure 16.
- the recessed structures 16 are arranged in an array on the first face 11 and along a first intersection line from the light entrance face 15 to the first face 11 to the second face.
- the density of the recessed structure 16 gradually increases in the direction of the second intersecting line with the first face 11.
- the recessed structures 16 are arranged in an array since the array arrangement is relatively simple and easy to fabricate. On the basis of this, the darker the brightness from the light incident surface 15, the second intersecting line from the light incident surface 15 to the first surface 11 to the second surface 12 and the second surface 11 The direction of the intersection line gradually increases the distribution density of the recessed structure 16, so that the light can be made uniform.
- each of the concave structures 16 includes a first bottom surface 161 disposed adjacent to the light exit surface 14 and opposite to the first bottom surface 161.
- the thickness a of the concave structure 16 in the direction from the first bottom surface to the second bottom surface is greater than 0 and less than or equal to 100 ⁇ m; a direction of the first intersection line of the light incident surface 15 with the first surface 11 to a second intersection line of the second surface 12 and the first surface 11, the length b of the second bottom surface 162 is greater than or equal to 1 mm and less than or equal to 10 mm; The angle ⁇ between the 163 and the light exit surface 14 is greater than or equal to 30° and less than or equal to 60° ( FIG. 11 is merely an example of a concave structure in the wedge-shaped light guide plate).
- the thickness a of the recessed structure 16 is determined by the thickness of the light guide plate 10 and the angle of incidence of the light incident on the light exit surface 14 in parallel with the light exiting the light exit surface 14.
- the ribs may be quadrangular ridges, pentagonal slabs, hexagonal slabs, and the like.
- the shape of the recessed structure 16 is a quadrangular prism.
- the thickness a of the recessed structure 16 is 0.01 mm; along the direction from the first intersection line of the light incident surface 15 to the first surface 11 to the second intersection line of the second surface 12 and the first surface 11,
- the length b of the second bottom surface 162 is 2.9 mm; and the angle ⁇ between the reflecting surface 163 and the light exit surface 14 is 45°.
- the thickness of the halftone dot 16 is gradually increased, and at the same time, the length b and the width c of the second bottom surface 162, and the angle ⁇ between the reflective surface 163 and the light exit surface 14 may also increase with thickness. And change. Of course, they may not be changed as long as the length b is in the range of 1 mm or more and 10 mm or less, the angle ⁇ is in the range of 30° or more and 60° or less, and the light incident parallel to the light exit surface 14 is satisfied. It is sufficient to emit at an angle of 60 to 90 with the light exit surface 14.
- the ribs may be used as the shape of the recessed structure 16 such that light incident parallel to the light exit surface 14 is emitted at an angle of 60 to 90 with respect to the light exit surface 14. Further, since the area of the reflecting surface 163 of the prism is large, more light can be reflected. Further, by making the length b of the second bottom surface 162 greater than or equal to 1 mm and less than or equal to 10 mm, it can be ensured that light entering the light guide plate 10 parallel to the light exit surface 14 can be incident on the reflective surface 163 of the concave structure 16, thereby improving Light utilization.
- the angle ⁇ of the angle between the reflecting surface 163 and the light exit surface 14 is 30° or more and 60° or less, it is possible to ensure that the light incident parallel to the light exit surface 14 and the light exit surface 14 are formed. An angle of 60° to 90° is emitted to improve the utilization of light.
- the concave structure 16 is a very small-sized microstructure during the actual manufacturing process, and therefore, advantageously, along the extending direction of the first intersection line of the light incident surface 15 and the first surface 11
- the width c of the second bottom surface 162 is selected to be greater than 0 and less than or equal to 500 ⁇ m.
- the width c of the second bottom surface 162 is 0.01 mm.
- Embodiments of the present disclosure also provide an optical module.
- the optical module includes the light guide plate 10 according to any of the above embodiments; and the light source 20 disposed at the light incident surface 15 of the light guide plate 10 (FIG. 11 is only a wedge-shaped light guide plate as an example).
- the light source 20 may be a Light-Emitting Diode (LED) or a Cold Cathode Fluorescent Lamp (CCFL).
- LED Light-Emitting Diode
- CCFL Cold Cathode Fluorescent Lamp
- Embodiments of the present disclosure also provide an optical module.
- the optical module includes a light guide plate 10 and a light source 20 disposed at a light incident surface 15 of the light guide plate 10. Light emitted from the light source 20 enters the light guide plate 10 from the light incident surface 15 of the light guide plate 10, and is reflected by the concave structure 16 on the first face 11 of the light guide plate 10. Thereafter, at least the light incident parallel to the light exit surface 14 of the light guide plate 10 is emitted at an angle of 60 to 90 with respect to the light exit surface 14.
- the optical module When the optical module is applied to the all-reverse display device, light rays at an angle of 60 to 90 with respect to the light exit surface 14 enter the reflective area of the display panel 30 after being emitted from the light exit surface 14 and are there. After being reflected by the metal layer (for example, the pixel electrode, the common electrode) in the reflective region, it can be used for display.
- the metal layer for example, the pixel electrode, the common electrode
- the light incident on the reflective area is increased, the utilization of light is greatly improved, thereby achieving high contrast display and reducing power consumption.
- light source 20 is configured to emit collimated light.
- At least the light incident parallel to the light exit surface 14 can be emitted at an angle of 60 to 90 with respect to the light exit surface 14. Therefore, if the light emitted from the light source 20 is collimated light, the light emitted from the light exit surface 14 at an angle of 60 to 90 can be further increased. In this manner, when the optical module is applied to the all-reverse display device, the light entering the reflective area of the display panel 30 is increased, thereby further improving the contrast of the all-reflex display device at the time of display.
- Embodiments of the present disclosure also provide a full-reverse display device.
- the full-reverse display device includes a display panel 30, an optical module according to any of the above embodiments, and a scattering film 40 disposed between the display panel 30 and the optical module. Further, the light exit surface 14 of the light guide plate 10 is disposed close to the display surface of the display panel 30.
- the display panel 30 includes a reflective area and a non-reflective area covered by the black matrix 31. After entering the reflective area of the display panel 30, the light is reflected by the metal layer (for example, the pixel electrode and the common electrode) in the reflective area, and then sequentially emitted from the display panel 30 and the light guide plate 10, thereby realizing display.
- the metal layer for example, the pixel electrode and the common electrode
- the light enters the reflective area of the display panel 30 and is reflected by the metal layer (eg, the pixel electrode, the common electrode) in the reflective area, and then exits from the display panel 30 and passes through the light guide plate 10, thereby realizing display.
- the metal layer eg, the pixel electrode, the common electrode
- a scattering film may be disposed between the display panel 30 and the optical module. 40, making the light irreversible.
- the full reverse display device further includes a first polarizer disposed between the display panel 30 and the optical module, which is also referred to as an upper polarizer 33 .
- the scattering film 40 is integrated in the upper polarizer 33; the upper polarizer 33 is bonded to the optical module through the adhesive layer 50; and the refractive index of the light guide plate 10 is greater than the refractive index of the adhesive layer 50.
- the display panel 30 further includes an array substrate, a counter substrate, a liquid crystal layer disposed therebetween, and a lower polarizer 34 disposed on a side of the array substrate away from the counter substrate.
- the array substrate may include a Thin Film Transistor (TFT), a pixel electrode electrically connected to the drain of the TFT, and a common electrode.
- the counter substrate may include a black matrix 31 and a color film layer.
- the color film layer may be disposed on the counter substrate or on the array substrate.
- the common electrode may be disposed on the array substrate or on the counter substrate.
- the adhesive layer 50 may be formed by any suitable material as long as the adhesive layer 50 can bond the polarizer 33 and the optical module without affecting the transmission of light.
- the adhesive layer 50 may be formed of a pressure sensitive adhesive (PSA), an optical clear adhesive (OCR), or the like.
- the thickness of the all-reverse display device can be reduced, thereby facilitating the thin design of the all-reverse display device.
- the refractive index of the light guide plate 10 is set to be larger than the refractive index of the adhesive layer 50, it is possible to prevent total light from being totally reflected when entering the light guide plate 10 from the adhesive layer 50, thereby causing light to be emitted from the light guide plate 10 and thus unable to display.
- the scattering film 40 is disposed on a side of the display panel 30 adjacent to the light guide plate 10 , and is bonded to the light guide plate 10 through the adhesive layer 50 .
- the scattering film 40 may also be disposed on a side of the light guide plate 10 adjacent to the display panel 30 and bonded to the display panel 30 through the adhesive layer 50 . In either case, the refractive index of the light guide plate 10 is greater than the refractive index of the adhesive layer 50.
- the scattering film 40 is disposed on a side of the display panel 30 adjacent to the light guide plate 10, or the scattering film 40 is disposed on a side of the light guide plate 10 adjacent to the display panel 30.
- the advantage of the simple process is facilitated as compared with the case where the scattering film 40 is integrated in the upper polarizer 33.
- the refractive index of the light guide plate 10 is set to be larger than the refractive index of the adhesive layer 50, it is possible to prevent total light from being totally reflected when entering the light guide plate 10 from the adhesive layer 50, thereby causing light to be emitted from the light guide plate 10 and thus unable to display.
- the material of the bonding layer 50 is OCR, and the material of the light guiding plate 10 is PMMA or PC.
- an optically clear adhesive is a common adhesive material that not only has a bonding effect but also does not affect the transmission of light.
- Polyethyl methacrylate or polycarbonate is a common material for the light guide plate 10, and its refractive index is larger than that of the optically clear adhesive, and the transmittance is high.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Planar Illumination Modules (AREA)
Abstract
一种导光板、光学模组及全反显示装置。导光板(10)包括光入射面(15)、光出射面(14)、与光出射面(14)相对的第一面(11)以及形成在第一面(11)上的多个凹入结构(16)。多个凹入结构(16)配置用于至少使平行于光出射面(14)入射到其上的光线以与光出射面(14)成60°~90°的角度从导光板(10)射出。
Description
对相关申请的交叉引用
本申请要求2017年5月11日提交的中国专利申请号201710330500.5的优先权,该中国专利申请以其整体通过引用并入本文。
本公开涉及显示技术领域,并且具体地公开了导光板、光学模组及全反显示装置(all-trans display device)。
随着显示技术的发展,以及户外穿戴需求的迅速增加,户外显示技术受到越来越多的关注。
全反射显示装置作为新型显示装置而备受关注。在夜间或较暗亮度下,全反射显示装置能够与前置导光板及光源组合地实现显示。与此相反,在环境光足够亮的情况下,全反射显示装置能够仅利用环境光来实现显示。以这样的方式,全反射显示装置在显示时的功耗在一定程度上得到降低。
然而,典型地,如图1所示,从导光板10出射并且进入显示面板30的光线大部分被显示面板30中的黑矩阵(Black Matrix,简称BM)31吸收。因此,导致到达显示面板30的反射区域(即,未被黑矩阵覆盖的区域)的光线很少,从而无法实现高对比度显示。
发明内容
根据本公开的一方面,提供了一种导光板。具体地,所述导光板包括:光入射面;光出射面;与所述光出射面相对的第一面;以及形成于所述第一面上的多个凹入结构(recessed structure)。进一步地,所述多个凹入结构配置用于至少使平行于所述光出射面入射到其上的光线以与所述光出射面成60°-90°的角度从所述导光板射出。
根据具体实现方案,在本公开的实施例提供的导光板中,所述导光板的形状为楔形,并且每一个凹入结构的大小及形状均相同。
根据具体实现方案,在本公开的实施例提供的导光板中,所述多个凹入结构的形状为棱台、棱锥、半球形和半椭球形中的至少一种。
根据具体实现方案,在本公开的实施例提供的导光板中,所述导光板还包括与所述光入射面相对的第二面,并且所述多个凹入结构在所述第一面上呈阵列排布。进一步地,沿着从所述光入射面与所述第一面的第一相交线到所述第二面与所述第一面的第二相交线的方向,所述多个凹入结构的密度逐渐增大。
根据具体实现方案,在本公开的实施例提供的导光板中,所述多个凹入结构的形状为棱台。具体地,所述棱台包括靠近所述光出射面设置的第一底面、与所述第一底面相对的第二底面、以及邻接于所述第一底面与所述第二底面之间且用于反射入射到其上的光线的反射面。
根据具体实现方案,在本公开的实施例提供的导光板中,沿着从所述第一底面到所述第二底面的方向,所述棱台的厚度大于0且小于等于100μm。进一步地,沿着从所述第一相交线到所述第二相交线的方向,所述第二底面的长度大于等于1mm且小于等于10mm。此外,所述反射面与所述光出射面之间的夹角大于等于30°且小于等于60°。
根据本公开的另一方面,还提供了一种光学模组。具体地,所述光学模组包括:根据前面的任一个实施例所述的导光板;以及设置于所述导光板的光入射面处的光源。
根据具体实现方案,在本公开的实施例提供的光学模组中,所述光源配置为发射准直光。
根据本公开的又一方面,还提供了一种全反显示装置。具体地,所述全反显示装置包括:显示面板;根据前面的任一个实施例所述的光学模组;以及设置于所述显示面板与所述光学模组之间的散射膜。进一步地,所述导光板的光出射面设置成靠近所述显示面板的显示面。
根据具体实现方案,在本公开的实施例提供的全反显示装置中,还包括:设置于所述显示面板与所述光学模组之间的第一偏光片。具体地,所述散射膜集成于所述第一偏光片中,所述第一偏光片与所述光学模组通过粘结层粘结,并且所述导光板的折射率大于所述粘结层的折射率。
根据具体实现方案,在本公开的实施例提供的全反显示装置中,所述散射膜设置于所述显示面板靠近所述导光板的一侧上,并且通过 粘结层与所述导光板粘结。进一步地,所述导光板的折射率大于所述粘结层的折射率。
根据具体实现方案,在本公开的实施例提供的全反显示装置中,所述散射膜设置于所述导光板靠近所述显示面板的一侧上,并且通过所述粘结层与所述显示面板粘结。同样地,所述导光板的折射率大于所述粘结层的折射率。
根据具体实现方案,在本公开的实施例提供的全反显示装置中,所述粘结层的材料为光学透明胶,并且所述导光板的材料为PMMA或PC。
为了更清楚地说明本公开的实施例中的技术方案,下面将对实施例中的附图作简单介绍。显而易见地,下面描述中的附图仅仅是本公开的一些实施例。对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的实施例。
图1为根据现有技术的用于从导光板射入显示面板的光线的光路图;
图2为根据本公开的一个实施例的导光板的结构示意图;
图3为根据本公开的一个实施例的导光板的侧视示意图;
图4为根据本公开的另一个实施例的导光板的结构示意图;
图5为根据本公开的另一个实施例的导光板的侧视示意图;
图6为根据本公开的又一个实施例的导光板的结构示意图;
图7为根据本公开的又一个实施例的导光板的侧视示意图;
图8(a)为根据本公开的一个实施例的用于平行于光出射面的光线在凹入结构上的反射的光路图;
图8(b)为根据本公开的另一个实施例的用于平行于光出射面的光线在凹入结构上的反射的光路图;
图8(c)为根据本公开的又一个实施例的用于平行于光出射面的光线在凹入结构上的反射的光路图;
图9为根据本公开的实施例的用于从导光板射入显示面板的光线的光路图;
图10(a)为根据现有技术的用于从导光板出射的光线的模拟示意图;
图10(b)为根据本公开的实施例的用于从导光板出射的光线的模拟示意图;
图11为图2中的凹入结构的放大图;
图12为根据本公开的实施例的光学模组的结构示意图;
图13为根据本公开的一个实施例的全反显示装置的侧视示意图;
图14为根据本公开的另一个实施例的全反显示装置的侧视示意图;以及
图15为根据本公开的又一个实施例的全反显示装置的侧视示意图。
下面将结合本公开的实施例中的附图,对本公开的实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在附图和以下描述中,分别利用下列附图标记来指代本文中所涉及的各种组件:10-导光板;11-第一面;12-第二面;14-光出射面;15-光入射面;16-网点;161-第一底面;162-第二底面;163-反射面;20-光源;30-显示面板;31-黑矩阵;33-上偏光片;34-下偏光片;40-散射膜;以及50-粘结层。
本公开的实施例提供了一种导光板10。如图2-7所示,导光板10包括光入射面15、光出射面14和与光出射面14相对的第一面11。此外,导光板10还包括设置于第一面11上的多个凹入结构16。所述多个凹入结构16配置用于至少使平行于光出射面14入射到其上的光线以与光出射面14成60°~90°的角度从整个导光板10射出。
此处,如图8(a)-8(c)所示,如果光入射面15与光出射面14垂直,那么平行于光出射面14入射的光线再进入导光板10内继续沿直线传播。当这样的光线射到凹入结构16的反射面163的某一点上时,其与该点的法线之间的夹角为α,并且在那里发生反射。在此之后,即,在经过所述反射面163上的反射之后,光线进一步通过在光出射面处的折射而与光出射面14成β角度射出。具体地,通过调整所述反射面163相对于平行于光出射面14入射到其上的光线的角度,使得平行于 光出射面14入射到其上的光线在通过光出射面14从导光板10射出时,β的范围为60°~90°。
鉴于此,如图9所示,当将由导光板10与设置于导光板10的光入射面15处的光源组合而成的光学膜组应用于全反显示装置时,平行于光出射面14入射的光线在以与光出射面14成60°~90°的角度射出之后进入显示面板30。具体地,所述显示面板30包括反射区域和被黑矩阵31覆盖的非反射区域。在光线进入所述显示面板30的反射区域之后,经过所述反射区域中的金属层(例如像素电极、公共电极)反射,再相继从所述显示面板30和导光板10射出,从而实现显示。
当然,除了平行于光出射面14的光线以外,其他光线在进入导光板10并经凹入结构反射之后,也可以以与光出射面14成60°~90°的角度射出,从而可以进入所述显示面板30的反射区域并且用于显示。
需要说明的是,导光板10的形状可以有多重选择。例如,导光板可以是楔形(如图2和图6所示)、平板形(如图4所示)等形状中的任意一种。
导光板10还包括与光入射面15相对的第二面12。具体地,如图4和图5所示,当导光板10为平板形导光板时,沿着从光入射面15与第一面11的第一相交线到第二面12与第一面11的第二相交线的方向,凹入结构16的厚度(即,在垂直于光出射面14的方向上的尺寸)越来越大,使得光线从导光板10的光出射面14上的各个位置射出。
进一步地,还要指出的是,导光板10的材料也可以根据实际需要灵活选择,只要导光板10的材料不影响光线的透过即可。例如,导光板10可以由聚甲基丙烯酸乙酯(PMMA)、聚碳酸酯(PC)和玻璃中的一种制成。
鉴于此,当将所述导光板10应用于全反显示装置时,还应考虑导光板10的折射率,以避免从显示面板30射出的光线在进入导光板10之后发生全反射,从而影响显示。
此外,还需要说明的是,可以选择用于凹入结构16的任何适合的形状,只要平行于光出射面14入射的光线在经过凹入结构16的反射面163上的反射之后,可以与光出射面14成60°~90°的角度射出即可。
本公开的实施例提供了一种导光板10。在这样的导光板10中,至少使平行于导光板10的光出射面14入射的光线,在经过设置于导光 板10的第一面11上的凹入结构16上的反射之后,与光出射面14成60°~90°的角度从整个导光板10射出。以这样的方式,当将由所述导光板10与设置于所述导光板10的光入射面15处的光源组合而成的光学膜组应用于全反显示装置时,与光出射面14成60°~90°夹角的光线在从光出射面14射出之后,进入显示面板30的反射区域。进一步地,这样的光线在经过所述反射区域中的金属层(例如像素电极、公共电极)的反射之后,即可用于显示。相对于现有技术,在本公开的实施例中,增加了射入到所述反射区域上的光线,从而大大提高了光线的利用率,实现了高对比度的显示,并且有助于减小功耗。
如图10(a)所示,在现有技术中,平行于光出射面14入射的光线从A位置处进入导光板10,并且在从光出射面14射出时,光强较大的光线与光出射面14的夹角非常小。因此,如图1所示,平行于光出射面14入射的光线在进入显示面板30之后,大部分将被黑矩阵31吸收,从而无法射到显示面板30的反射区域。如图10(b)所示,在本公开的实施例中,平行于光出射面14入射的光线从A位置处进入导光板10,并且光强较大的光线与光出射面14成60°~90°的角度射出。因此,如图9所示,平行于光出射面14入射的光线在进入显示面板30之后,大部分将射到显示面板30的反射区域,并且在此之后,经过反射区域中的金属层(例如像素电极、公共电极)的反射,再相继从显示面板30和导光板10射出,从而实现显示。
可选地,如图2和图3、以及图6和图7所示,导光板10的形状为楔形,并且凹入结构16的大小及形状均相同。
此处,凹入结构16设置在第一面11上,并且呈凹槽状向光出射面14凹陷。因此,考虑到导光板10和凹入结构16在垂直于光出射面14的方向上的厚度,楔形导光板的第一面11与水平方向之间的夹角度数应在合理范围内。可选地,楔形导光板的第一面11与水平方向之间的夹角大于0°且小于等于10°。
作为示例,楔形导光板的第一面11与水平方向之间的夹角度数为2°。
在本公开的实施例中,凹入结构16的大小及形状均相等,从而有利于简化导光板10的制作过程。
可选地,所述多个凹入结构16的形状为棱台、棱锥、半球形和半 椭球形中的至少一种。这意味着,所述多个凹入结构16的形状可以完全相同,即,为棱台、棱锥、半球形和半椭球形中的一种;或者可替换地,存在形状不同的凹入结构。
在本公开的实施例中,由于棱台、棱锥、半球形和半椭球形等形状为常见的规则形状,因此在制作凹入结构16的过程中容易形成这些形状。
可选地,如图6和图7所示,凹入结构16在第一面11上呈阵列排布,并且沿着从光入射面15与第一面11的第一相交线到第二面12与第一面11的第二相交线的方向,凹入结构16的密度逐渐增大。
在本公开的实施例中,由于阵列式排布较为简单并且容易制作,因此使凹入结构16呈阵列排布。在此基础上,由于距离光入射面15越远的亮度越暗,因此,沿着从光入射面15与第一面11的第一相交线到第二面12与第一面11的第二相交线的方向,使凹入结构16的分布密度逐渐增大,从而可以起到使光均匀的作用。
可选地,如图2所示,在凹入结构16的形状为棱台的情况下,每一个凹入结构16包括靠近光出射面14设置的第一底面161、与第一底面161相对的第二底面162、以及邻接于第一底面161与第二底面162之间且用于反射入射到其上的光线的反射面163。
如图2、图8(a)-8(c)、以及图11所示,凹入结构16在从第一底面到第二底面的方向上的厚度a大于0且小于等于100μm;沿着从光入射面15与第一面11的第一相交线到第二面12与第一面11的第二相交线的方向,第二底面162的长度b大于等于1mm且小于等于10mm;以及反射面163与光出射面14之间的夹角γ大于等于30°且小于等于60°(图11仅以楔形导光板中的凹入结构为例)。
此处,凹入结构16的厚度a由导光板10的厚度、以及平行于光出射面14入射的光线在从光出射面14射出时的角度共同决定。
需要说明的是,棱台可以是四棱台、五棱台、六棱台等等。可选地,凹入结构16的形状为四棱台。
作为示例,凹入结构16的厚度a为0.01mm;沿着从光入射面15与第一面11的第一相交线到第二面12与第一面11的第二相交线的方向,第二底面162的长度b为2.9mm;并且反射面163与光出射面14之间的夹角度数γ为45°。
在另外的实施例中,在导光板10的形状为平板形的情况下,沿着从光入射面15与第一面11的第一相交线到第二面12与第一面11的第二相交线的方向,网点16的厚度逐渐增大,而同时,第二底面162的长度b与宽度c、以及反射面163与光出射面14之间的夹角度数γ也可以随厚度的增大而改变。当然,它们还可以不改变,只要长度b在大于等于1mm且小于等于10mm范围内、夹角度数γ在大于等于30°且小于等于60°范围内,并且满足平行于光出射面14入射的光线与光出射面14成60°~90°的角度射出即可。
在本公开的实施例中,棱台可以用作凹入结构16的形状,从而使平行于光出射面14入射的光线与光出射面14成60°~90°的角度射出。此外,由于棱台的反射面163的面积较大,所以可以反射的光线较多。进一步地,通过使第二底面162的长度b大于等于1mm且小于等于10mm,可以保证平行于光出射面14进入导光板10的光线都可以射到凹入结构16的反射面163上,从而提高光线的利用率。再进一步地,通过将反射面163与光出射面14之间的夹角度数γ设置成大于等于30°且小于等于60°,可以保证平行于光出射面14入射的光线与光出射面14成60°~90°的角度射出,从而提高光线的利用率。
在此基础上,考虑到在实际制作过程中凹入结构16为尺寸非常小的微结构,因此,有利地,沿着光入射面15与第一面11的第一相交线的延伸方向,将第二底面162的宽度c选择为大于0且小于等于500μm。
作为示例,沿着光入射面15与第一面11的第一相交线的延伸方向,第二底面162的宽度c为0.01mm。
本公开的实施例还提供了一种光学模组。如图11所示,该光学模组包括以上任一实施例所述的导光板10;以及设置于导光板10的光入射面15处的光源20(图11仅以楔形导光板为例)。
此处,光源20可以是发光二极管(Light-Emitting Diode,简称LED),或者冷阴极荧光灯(Cold Cathode Fluorescent Lamps,简称CCFL)。
本公开的实施例还提供了一种光学模组。所述光学模组包括导光板10和设置于导光板10的光入射面15处的光源20。由光源20发出的光从导光板10的光入射面15进入导光板10,并且经导光板10的第一面11上的凹入结构16反射。在此之后,至少平行于导光板10光出 射面14入射的光线,以与光出射面14成60°~90°的角度射出。当将所述光学模组应用于全反显示装置时,与光出射面14成60°~90°夹角的光线在从光出射面14射出之后,进入显示面板30的反射区域,并且在那里经过所述反射区域中的金属层(例如像素电极、公共电极)上的反射之后,即可用于显示。相对于现有技术,在本公开的实施例中,增加了射到所述反射区域上的光线,大大提高了光线的利用率,从而实现了高对比度的显示,并且减小了功耗。
可选地,光源20配置为发射准直光。
在本公开的实施例中,至少可以使平行于光出射面14入射的光线以与光出射面14成60°~90°的角度射出。因此,若光源20发出的光为准直光,那么可以使与光出射面14成60°~90°的角度射出的光线进一步增加。以这样的方式,当将所述光学模组应用于全反显示装置时,进入显示面板30的反射区域的光线将增加,从而进一步提高了全反显示装置在显示时的对比度。
本公开的实施例还提供了一种全反显示装置。如图13-15所示,该全反显示装置包括显示面板30、以上任一实施例所述的光学模组、以及设置于显示面板30与光学模组之间的散射膜40。进一步地,导光板10的光出射面14靠近显示面板30的显示面设置。
此处,显示面板30包括反射区域和被黑矩阵31覆盖的非反射区域。光线在进入显示面板30的反射区域之后,经过反射区域中的金属层(例如像素电极、公共电极)的反射,再相继从显示面板30和导光板10射出,从而实现显示。
在本公开的实施例中,光线进入显示面板30的反射区域,并且经过反射区域中的金属层(例如像素电极、公共电极)的反射,然后从显示面板30射出并经过导光板10,从而实现显示。鉴于此,为了使光线直接从导光板10射出,而不被导光板10的第一面11上的凹入结构16反射,从而影响显示,可以在显示面板30与光学模组之间设置散射膜40,使光线不可逆。
可选地,如图13所示,所述全反显示装置还包括设置于显示面板30与光学模组之间的第一偏光片,又称为上偏光片33。进一步地,散射膜40集成于上偏光片33中;上偏光片33与光学模组通过粘结层50粘结;并且导光板10的折射率大于粘结层50的折射率。
此处,显示面板30还包括阵列基板、对盒基板、设置在二者之间的液晶层、以及设置于阵列基板远离对盒基板的一侧的下偏光片34。进一步地,阵列基板可以包括薄膜晶体管(Thin Film Transistor,简称TFT),与TFT的漏极电连接的像素电极;以及公共电极。对盒基板可以包括黑矩阵31和彩膜层。此处,彩膜层可以设置在对盒基板上,也可设置在阵列基板上。此外,公共电极可以设置在阵列基板上,也可设置在对盒基板上。
需要说明的是,可以采用任何适合的材料来形成粘结层50,只要粘结层50可以粘结上偏光片33与光学模组,并且不影响光线的透过即可。例如,粘结层50可以由压敏胶(pressure sensitive adhesive简称PSA)、光学透明胶(Optical Clear Resin,简称OCR)等形成。
在本公开的实施例中,通过将散射膜40集成于上偏光片33中,可以减小所述全反显示装置的厚度,从而有利于所述全反显示装置的薄型化设计。此外,通过将导光板10的折射率设置成大于粘结层50的折射率,可以避免光线在从粘结层50进入导光板10时发生全反射,从而导致光线不能从导光板10射出并且因而无法显示。
可选地,如图14所示,散射膜40设置于显示面板30靠近导光板10的一侧,并且通过粘结层50与导光板10粘结。可替换地,如图15所示,散射膜40也可以设置于导光板10靠近显示面板30的一侧,并且通过粘结层50与显示面板30粘结。在以上任一种情况下,导光板10的折射率都大于粘结层50的折射率。
在本公开的实施例中,将散射膜40设置于显示面板30靠近导光板10的一侧,或者将散射膜40设置于导光板10靠近显示面板30的一侧。以这样的方式,相较于将散射膜40集成于上偏光片33中的情况,促成了工艺简单的优点。此外,通过将导光板10的折射率设置成大于粘结层50的折射率,可以避免光线在从粘结层50进入导光板10时发生全反射,从而导致光线不能从导光板10射出并且因而无法显示。
可选地,粘结层50的材料为OCR,并且导光板10的材料为PMMA或PC。
在本公开的实施例中,光学透明胶为常见的粘附性材料,其不但具有粘结作用,而且不会影响光线的透过。聚甲基丙烯酸乙酯、聚碳酸酯为用于导光板10的常见材料,并且其折射率大于光学透明胶的折 射率,同时透过率较高。
以上所述,仅为本公开的具体实施方式,但是本公开的保护范围并不局限于此。任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可容易设想到的各种变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。
Claims (13)
- 一种导光板,包括:光入射面;光出射面;与所述光出射面相对的第一面;以及形成于所述第一面上的多个凹入结构(recessed structure),其中所述多个凹入结构配置用于至少使平行于所述光出射面入射到其上的光线以与所述光出射面成60°-90°的角度从所述导光板射出。
- 根据权利要求1所述的导光板,其中所述导光板的形状为楔形,并且每一个凹入结构的大小及形状均相同。
- 根据权利要求1或2所述的导光板,其中所述多个凹入结构的形状为棱台、棱锥、半球形和半椭球形中的至少一种。
- 根据权利要求1或2所述的导光板,其中所述导光板还包括与所述光入射面相对的第二面,并且所述多个凹入结构在所述第一面上呈阵列排布,其中沿着从所述光入射面与所述第一面的第一相交线到所述第二面与所述第一面的第二相交线的方向,所述多个凹入结构的密度逐渐增大。
- 根据权利要求4所述的导光板,其中所述多个凹入结构的形状为棱台,并且所述棱台包括靠近所述光出射面设置的第一底面、与所述第一底面相对的第二底面、以及邻接于所述第一底面与所述第二底面之间且用于反射入射到其上的光线的反射面。
- 根据权利要求5所述的导光板,其中沿着从所述第一底面到所述第二底面的方向,所述棱台的厚度大于0且小于等于100μm,沿着从所述第一相交线到所述第二相交线的方向,所述第二底面的长度大于等于1mm且小于等于10mm,并且所述反射面与所述光出射面之间的夹角大于等于30°且小于等于60°。
- 一种光学模组,包括:根据权利要求1-6中任一项所述的导光板;以及设置于所述导光板的光入射面处的光源。
- 根据权利要求7所述的光学模组,其中所述光源配置为发射准直光。
- 一种全反显示装置,包括:显示面板;根据权利要求7-8中任一项所述的光学模组;以及设置于所述显示面板与所述光学模组之间的散射膜,其中所述导光板的光出射面设置成靠近所述显示面板的显示面。
- 根据权利要求9所述的全反显示装置,还包括:设置于所述显示面板与所述光学模组之间的第一偏光片,其中所述散射膜集成于所述第一偏光片中,所述第一偏光片与所述光学模组通过粘结层粘结,并且所述导光板的折射率大于所述粘结层的折射率。
- 根据权利要求9所述的全反显示装置,其中所述散射膜设置于所述显示面板靠近所述导光板的一侧上,并且通过粘结层与所述导光板粘结,其中,所述导光板的折射率大于所述粘结层的折射率。
- 根据权利要求9所述的全反显示装置,其中所述散射膜设置于所述导光板靠近所述显示面板的一侧上,并且通过所述粘结层与所述显示面板粘结,其中,所述导光板的折射率大于所述粘结层的折射率。
- 根据权利要求10-12中任一项所述的全反显示装置,其中所述粘结层的材料为光学透明胶,并且所述导光板的材料为PMMA或PC。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/301,493 US20210231859A1 (en) | 2017-05-11 | 2018-04-10 | Light guide plate, optical module and all-trans display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710330500.5 | 2017-05-11 | ||
CN201710330500.5A CN106950641A (zh) | 2017-05-11 | 2017-05-11 | 一种导光板、光学模组及全反显示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018205788A1 true WO2018205788A1 (zh) | 2018-11-15 |
Family
ID=59479492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/082507 WO2018205788A1 (zh) | 2017-05-11 | 2018-04-10 | 导光板、光学模组及全反显示装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20210231859A1 (zh) |
CN (1) | CN106950641A (zh) |
WO (1) | WO2018205788A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2720482C1 (ru) * | 2019-11-13 | 2020-04-30 | Федеральное государственное бюджетное учреждение науки Научный центр волоконной оптики Российской академии наук (НЦВО РАН) | Планарная градиентная оптическая система (варианты) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106950641A (zh) * | 2017-05-11 | 2017-07-14 | 京东方科技集团股份有限公司 | 一种导光板、光学模组及全反显示装置 |
CN107329325B (zh) * | 2017-08-31 | 2020-03-13 | 京东方科技集团股份有限公司 | 匀光结构、前置光源及显示装置 |
CN108037580A (zh) * | 2018-01-09 | 2018-05-15 | 中山日荣塑料电子制品有限公司 | 一种导光式显微镜 |
CN107991811A (zh) * | 2018-01-29 | 2018-05-04 | 广东小天才科技有限公司 | 前光源液晶显示器及其制造方法 |
TWI657277B (zh) * | 2018-03-06 | 2019-04-21 | 友達光電股份有限公司 | 顯示裝置 |
CN110569686B (zh) * | 2018-06-05 | 2022-08-26 | 上海箩箕技术有限公司 | 显示模组 |
CN108761629B (zh) * | 2018-08-23 | 2023-12-22 | 广东小天才科技有限公司 | 一种复合型偏光结构及其制备方法 |
CN108761897A (zh) * | 2018-08-23 | 2018-11-06 | 广东小天才科技有限公司 | 一种主动式反射显示结构及其制备方法 |
CN110399861A (zh) * | 2019-08-02 | 2019-11-01 | 京东方科技集团股份有限公司 | 一种纹路传感器、显示装置 |
US11703701B2 (en) * | 2020-07-10 | 2023-07-18 | Innolux Corporation | Display device |
CN113054040A (zh) * | 2021-03-05 | 2021-06-29 | 中国科学院苏州纳米技术与纳米仿生研究所 | 用于光导开关的衬底以及具有该衬底的光导开关 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1437059A (zh) * | 2002-02-05 | 2003-08-20 | 阿尔卑斯电气株式会社 | 照明装置及液晶显示装置 |
TW200743863A (en) * | 2006-05-24 | 2007-12-01 | Wintek Corp | Backlight module and light guide plate used in the same |
CN101672948A (zh) * | 2008-09-08 | 2010-03-17 | 京东方科技集团股份有限公司 | 导光板和具有该导光板的背光模组 |
KR20120019223A (ko) * | 2010-08-25 | 2012-03-06 | 조선대학교산학협력단 | 레이저 패턴이 형성된 도광판 |
CN106950641A (zh) * | 2017-05-11 | 2017-07-14 | 京东方科技集团股份有限公司 | 一种导光板、光学模组及全反显示装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5359691A (en) * | 1992-10-08 | 1994-10-25 | Briteview Technologies | Backlighting system with a multi-reflection light injection system and using microprisms |
EP1381911A1 (en) * | 2001-04-27 | 2004-01-21 | Fuji Photo Film Co., Ltd. | Polarizing plate and liquid crystal display using the same |
US20040257484A1 (en) * | 2003-06-18 | 2004-12-23 | Alps Electric Co., Ltd. | Illumination device, tablet, and liquid crystal display |
CN100390579C (zh) * | 2003-08-08 | 2008-05-28 | 日东电工株式会社 | 起偏振膜、层压膜和液晶显示器 |
JP2006138975A (ja) * | 2004-11-11 | 2006-06-01 | Nec Lcd Technologies Ltd | バックライト及び液晶表示装置 |
CN2837886Y (zh) * | 2005-11-07 | 2006-11-15 | 比亚迪股份有限公司 | 一种液晶显示背光模组 |
CN101339326B (zh) * | 2008-08-08 | 2011-12-14 | 长兴化学工业股份有限公司 | 具有匀光特性的偏光回收膜 |
JP2012048915A (ja) * | 2010-08-25 | 2012-03-08 | Seiko Instruments Inc | 照明装置及びこれを備える表示装置 |
CN102681083B (zh) * | 2012-05-03 | 2015-07-15 | 丹阳博昱科技有限公司 | 一种具有凹陷微结构的导光片及其制作方法 |
CN102901055A (zh) * | 2012-10-31 | 2013-01-30 | 深圳市华星光电技术有限公司 | 导光板及用该导光板的背光模组 |
CN104035156B (zh) * | 2014-03-27 | 2016-08-03 | 深圳市华星光电技术有限公司 | 一种导光板及侧入式背光模组 |
CN105204214A (zh) * | 2014-06-25 | 2015-12-30 | 南京晶多新材料科技有限公司 | 一种基于热固化胶技术制造散射偏光片的方法 |
CN104503129B (zh) * | 2014-12-30 | 2018-02-13 | 京东方科技集团股份有限公司 | 一种光学模组和反射型显示装置 |
CN105911637B (zh) * | 2016-07-01 | 2019-05-03 | 京东方科技集团股份有限公司 | 导光板、背光模组和显示装置 |
CN206224014U (zh) * | 2016-11-16 | 2017-06-06 | 华南理工大学 | 一种双面异向同心圆弧曲线排列的微棱镜阵列导光板 |
-
2017
- 2017-05-11 CN CN201710330500.5A patent/CN106950641A/zh active Pending
-
2018
- 2018-04-10 US US16/301,493 patent/US20210231859A1/en not_active Abandoned
- 2018-04-10 WO PCT/CN2018/082507 patent/WO2018205788A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1437059A (zh) * | 2002-02-05 | 2003-08-20 | 阿尔卑斯电气株式会社 | 照明装置及液晶显示装置 |
TW200743863A (en) * | 2006-05-24 | 2007-12-01 | Wintek Corp | Backlight module and light guide plate used in the same |
CN101672948A (zh) * | 2008-09-08 | 2010-03-17 | 京东方科技集团股份有限公司 | 导光板和具有该导光板的背光模组 |
KR20120019223A (ko) * | 2010-08-25 | 2012-03-06 | 조선대학교산학협력단 | 레이저 패턴이 형성된 도광판 |
CN106950641A (zh) * | 2017-05-11 | 2017-07-14 | 京东方科技集团股份有限公司 | 一种导光板、光学模组及全反显示装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2720482C1 (ru) * | 2019-11-13 | 2020-04-30 | Федеральное государственное бюджетное учреждение науки Научный центр волоконной оптики Российской академии наук (НЦВО РАН) | Планарная градиентная оптическая система (варианты) |
Also Published As
Publication number | Publication date |
---|---|
US20210231859A1 (en) | 2021-07-29 |
CN106950641A (zh) | 2017-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018205788A1 (zh) | 导光板、光学模组及全反显示装置 | |
TWI428646B (zh) | 導光板與發光裝置 | |
US9164216B2 (en) | Illumination device and display device | |
KR20190001406U (ko) | 광 조사 장치 | |
TWI484250B (zh) | Front light module | |
JP5409901B2 (ja) | 面状光源装置およびこれを用いた表示装置 | |
TWI665479B (zh) | 導光膜及具有該導光膜的背光模組 | |
US20080089093A1 (en) | Backlight unit using particular direct backlight assembly | |
TWI327666B (en) | Light guide plate and backlight module using the same | |
TW201018973A (en) | Light guide device | |
WO2020192300A1 (zh) | 光学准直组件、背光模组及显示装置 | |
WO2017054382A1 (zh) | 光学元件、导光板、棱镜、背光模组及显示装置 | |
KR20090115163A (ko) | 광학 시트, 면 광원 장치, 투과형 표시 장치 | |
JP2000048618A (ja) | 照明パネルおよびそれを用いた表示装置 | |
JP2020506525A (ja) | 光学的操作特徴部を含む導光板アセンブリ | |
US20240192430A1 (en) | Area light source device and flat panel display device | |
WO2013137161A1 (ja) | 照明装置及びそれを備えた表示装置 | |
WO2016206148A1 (zh) | 导光板、背光模组及显示装置 | |
JP5174685B2 (ja) | 面状光源装置およびこれを用いた表示装置 | |
WO2018120508A1 (zh) | 背光模块及显示设备 | |
KR20190112168A (ko) | 일체형 백라이트 유닛 및 디스플레이 패널을 포함하는 장치 | |
JP4154876B2 (ja) | 照明パネルおよびそれを用いた表示装置 | |
KR20110039807A (ko) | 액정디스플레이용 복합시트 및 이를 이용한 백라이트 유닛 | |
WO2017049877A1 (zh) | 背光模组、显示模组及电子装置 | |
WO2014113993A1 (zh) | 光导入系统、侧入式背光模组及液晶显示器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18797673 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.03.2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18797673 Country of ref document: EP Kind code of ref document: A1 |