WO2018205672A1 - 像素界定层和oled的制备方法、像素界定元件、oled和显示装置 - Google Patents

像素界定层和oled的制备方法、像素界定元件、oled和显示装置 Download PDF

Info

Publication number
WO2018205672A1
WO2018205672A1 PCT/CN2018/072125 CN2018072125W WO2018205672A1 WO 2018205672 A1 WO2018205672 A1 WO 2018205672A1 CN 2018072125 W CN2018072125 W CN 2018072125W WO 2018205672 A1 WO2018205672 A1 WO 2018205672A1
Authority
WO
WIPO (PCT)
Prior art keywords
defining
pattern
layer
pixel defining
receiving groove
Prior art date
Application number
PCT/CN2018/072125
Other languages
English (en)
French (fr)
Inventor
侯文军
刘则
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/094,337 priority Critical patent/US10566397B2/en
Publication of WO2018205672A1 publication Critical patent/WO2018205672A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1292Multistep manufacturing methods using liquid deposition, e.g. printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used

Definitions

  • the present disclosure relates to the field of electronics, and in particular, to a method of fabricating a pixel defining layer, a method of fabricating an organic electroluminescent device (OLED), and a pixel defining element, an OLED, and a display device.
  • OLED organic electroluminescent device
  • OLED has been widely used. Compared with liquid crystal displays (LCDs), OLEDs have the advantages of self-luminescence, fast response, wide viewing angle, high brightness, colorful color, thinness and lightness, etc., and are regarded as next-generation display technology. Today, OLEDs are also moving toward large-scale, large-scale.
  • the solution preparation method has the advantages of low equipment cost, high material utilization rate, and high dimensional alignment mask accuracy.
  • Commonly used solution processing methods include spin coating, ink jet printing, and nozzle coating. With the development of inkjet printing technology, it has been possible to precisely control the printing position of the material to be printed (organism constituting the light-emitting layer).
  • OLED organic thin films formed by the current inkjet printing technology generally have problems such as uneven thickness of the organic thin film and complicated preparation process of the pixel defining layer required for inkjet printing.
  • the inventors of the present disclosure have intensively studied and a large number of experiments have found that this is mainly because although the ink jet printing technique can precisely control the position of printing under the positioning of the pixel defining layer, the thickness of the film formed by printing cannot be precisely controlled. Therefore, the thickness of the formed organic film is not uniform.
  • the present disclosure is intended to alleviate or solve at least some of the above mentioned problems at least to some extent.
  • the present disclosure provides a method of fabricating a pixel defining layer, the method comprising: providing a substrate; forming a first defining pattern on the substrate, the forming the first defining pattern comprising Printing the first material on the substrate, then forming a concave receiving groove, the first defining pattern is formed by the concave receiving groove; forming a second defining pattern in the concave receiving groove, the first The second defining pattern is formed by inkjet printing a second material, wherein the first defining pattern and the second defining pattern constitute the pixel defining layer.
  • the concave receiving groove is to print a first material by inkjet, form a first defining pattern layer in a predetermined region of the substrate, and then dry the first defining pattern layer. Forming.
  • the first defining pattern has a first surface energy
  • the second defining pattern has a second surface energy, the first surface energy being higher than the second surface energy
  • the method before the forming the first defining pattern, the method further includes: modifying a surface of the substrate for forming the first defining pattern and the second defining pattern In order to reduce the surface energy of the substrate.
  • the first material includes at least one of polyimide, and acryl.
  • the inkjet printing of the first material includes dissolving the first material in a first solvent and configuring the first solution and inkjet printing, wherein the first material is in the first
  • concentration in a solvent is from 0.5% by weight to 30% by weight; the boiling point of the first solvent is not higher than 180 degrees Celsius.
  • the drying treatment is vacuum drying under reduced pressure, normal temperature drying, or low temperature drying.
  • the vacuum reduced-pressure drying comprises: performing a vacuum decompression drying process on the first defining pattern layer, and performing a chamber pressure of the vacuum decompression drying process within 3-10 minutes.
  • Drying at room temperature includes: placing the first defining pattern layer at room temperature for 25-50 minutes; the low temperature drying comprises: placing the first defining pattern layer at a temperature not higher than 20 degrees Celsius for 40-60 minutes.
  • forming the second defining pattern is achieved by ink-jet printing a solution containing the second material in the concave receiving groove and performing a baking process.
  • the second material is at least one of fluorinated polyimide, polysiloxane, and fluorinated methyl methacrylate
  • the baking treatment temperature is not lower than 200 degrees Celsius, and Above 250 degrees Celsius.
  • the present disclosure proposes a method of preparing an OLED.
  • the method includes the steps of preparing a pixel defining layer, and forming an organic layer in the pixel defining layer, wherein the step of preparing the pixel defining layer employs a preparation method as described above.
  • the present disclosure proposes a pixel defining element.
  • the pixel defining element includes: a substrate, and a pixel defining layer formed on the substrate; wherein the pixel defining layer includes a first defining pattern and a second defining pattern, the A defining pattern is formed by a concave receiving groove formed of a first material, and the second defining pattern is formed in the concave receiving groove by a second material.
  • the first defining pattern has a first surface energy
  • the second defining pattern has a second surface energy, the first surface energy being higher than the second surface energy
  • the first material includes at least one of polyimide and acryl; the second material includes fluorinated polyimide, polysiloxane, and fluorinated methyl methacrylate At least one.
  • the substrate has a third surface energy, the third surface energy being less than the first surface energy and smaller than the second surface energy.
  • the second defining pattern is a protrusion formed in the concave receiving groove, and a height difference between a top of the second defining pattern and the concave receiving groove is not lower than 0.5 micron.
  • the upper surface of the second defining pattern is curved, hemispherical, trapezoidal or parabolic.
  • the second defined pattern has a width in a direction parallel to the substrate that is not greater than the first defined pattern.
  • the pixel defining layer has a height of 1-3 micrometers and a width of 15-100 micrometers, wherein the concave receiving groove has a height of 1-3 micrometers and a width of 15-100 micrometers.
  • the present disclosure proposes an OLED.
  • the OLED includes: the pixel defining element described above, and a light emitting layer formed in a pixel region defined by the pixel defining layer.
  • the present disclosure proposes a display device.
  • the display device includes the OLED described above.
  • FIG. 1 shows a schematic flow chart of a method for preparing a pixel defining layer according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flow chart showing a method for preparing a pixel defining layer according to another embodiment of the present disclosure
  • FIG. 3 shows a schematic structural view of a first defined pattern layer according to an embodiment of the present disclosure
  • FIG. 4 shows a schematic structural view of a first defined pattern layer according to another embodiment of the present disclosure
  • FIG. 5 shows a schematic structural view of a first defined pattern according to an embodiment of the present disclosure
  • FIG. 6 shows a schematic structural view of a first defined pattern according to another embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a pixel defining layer according to an embodiment of the present disclosure.
  • FIG. 8 shows a flow diagram of forming a second defined pattern according to an embodiment of the present disclosure
  • FIG. 9 shows a schematic structural view of an OLED according to an embodiment of the present disclosure.
  • the present disclosure proposes a method of fabricating a pixel defining layer.
  • the method includes:
  • a substrate for forming a pixel defining layer is provided.
  • the specific type of the substrate is not particularly limited as long as it can provide support for the pixel defining layer.
  • a substrate for a pixel defining layer of inkjet printing that is, a substrate of an OLED.
  • it can be glass.
  • a first defining pattern is formed on a substrate, the first defining pattern being constituted by a concave receiving groove.
  • the concave receiving groove may be formed by inkjet printing a first material, forming a first defining pattern layer in a predetermined region of the substrate, and then drying the first defining pattern layer.
  • the first material may have a higher surface energy. Thereby, it is convenient to form the first defined pattern by the principle of the coffee ring in the subsequent drying process.
  • the second defining pattern is formed in the first defining pattern.
  • the first defining pattern and the second defining pattern constitute a pixel defining layer.
  • a second defined pattern is formed within the concave receiving groove of the first defined pattern, the second defined pattern being formed by inkjet printing of the second material.
  • a method of pixel defining layer preparation has at least one of the following advantages: preparation of a pixel defining layer capable of accurately controlling a printing thickness can be realized without using a double mask process, thereby being simplified for spraying The preparation process of the pixel-defined layer of the ink printing reduces the preparation cost and improves the accuracy of the alignment.
  • the method may further include:
  • the surface of the substrate may be modified in advance to reduce the surface energy of the substrate before the first defining pattern may be formed.
  • the surface energy of the substrate is reduced, which is advantageous for preventing the first material from being inkjet printed to the lining. After the bottom, there is a large error between the boundary of the first defined pattern actually formed due to excessive wetting, and the boundary of the first defined pattern that is intended to be formed.
  • the quality of forming the first defining pattern on the substrate can be improved.
  • the specific method of modifying the substrate is not particularly limited, and those skilled in the art can select according to actual conditions.
  • the surface of the substrate can be modified by plasma surface treatment techniques.
  • the substrate may be surface treated with a CF 4 plasma, or a fluorinated siloxane solution, to reduce the surface energy of the substrate.
  • forming the first defining pattern may be implemented by the following steps:
  • the first defining pattern layer 200 is formed in a predetermined region of the substrate 100 by inkjet printing of the first material.
  • the first defined pattern formed in this step is used to define the boundaries of inkjet printing during subsequent inkjet printing. Therefore, in this step, an area other than the predetermined area on the substrate 100 is an area where subsequent inkjet printing is required. That is, the predetermined area described above is an area on the substrate 100 corresponding to the pixel-defined layer of ink-jet printing.
  • the shape of the predetermined region and the specific shape of the first defining pattern layer 200 are not particularly limited, and those skilled in the art can design according to the specific printing shape required for inkjet printing.
  • the first defining pattern layer 200 for forming the first defining pattern may have the same as in FIG. The shape shown. That is to say, the first defining pattern may define a plurality of regularly arranged rectangular regions (pixel regions) on the substrate, and the rectangular regions may be used to form a light emitting layer of the OLED when preparing the OLED.
  • the first defining pattern layer 200 may be dried.
  • the process is such that the first defining pattern layer 200 forms a concave receiving groove.
  • the concave receiving groove described above constitutes the first defining pattern 210.
  • the first defining pattern 210 of the concave receiving groove can be formed by simply utilizing the principle of the dried coffee ring, without using a complicated masking process.
  • the specific type of the above first material is not particularly limited, and as described above, the first material may have a higher surface energy to better form a concave receiving groove after the drying process.
  • the first material may include at least one of polyimide and acryl. The first material formed of the above material, because of its high surface energy, does not easily wet the substrate, and is advantageous for improving the quality of the formed concave receiving groove.
  • the first defining pattern 210 is constructed by forming a concave receiving groove by the principle of the dried coffee ring. Therefore, the drying process and the conditions for forming the first defining pattern layer can be controlled to ensure that a concave receiving groove having a predetermined shape can be formed at a predetermined position by the first defining pattern layer. Specifically, it is necessary to ensure that the size of the concave receiving groove formed by the first defining pattern layer after drying is not greatly changed compared with the first defining pattern layer. Moreover, the height of the formed concave receiving groove does not have a large difference from the thickness of the first defining pattern layer.
  • the concave receiving groove is formed by the drying process of the first defining pattern layer, and the size of the concave receiving groove after the drying process is different from the size of the first defining pattern layer.
  • An error therefore, when the first solution formed by the inkjet printing of the first material forms the first defining pattern layer, the error between the concave receiving groove and the size of the first defining pattern layer is calculated into the spray The error in the ink printing is such that the finally obtained concave receiving groove can have a predetermined size.
  • the specific value of the error is not particularly limited. In the present disclosure, the error mainly comes from the accuracy of the device, and the current device level capability can control the error at +/- 5 microns.
  • the inventors of the present disclosure have found through extensive experiments that the quality of the concave receiving groove formed by the principle of the coffee ring can be further improved by adjusting parameters such as the concentration of the first solution of the ink jet printing and the first solvent type forming the first solution. Specifically, the inventors of the present disclosure have found that when the concentration of the first material is low in the first solution for inkjet printing, and the first solvent used has a lower boiling point, the printed first defined pattern is facilitated. The layer can also maintain its original size after drying, that is, the quality of the formed concave receiving groove is good.
  • the first solvent may be a mixed solvent.
  • the mixed solvent may include a good solvent of the first material (a component of the mixed solvent which is more soluble in the first material) and a poor solvent of the first material.
  • the boiling point of the good solvent of the first material is lower than 180 degrees Celsius, and the poor solvent may be not lower than 180 degrees Celsius.
  • the concentration of the first material in the solvent selected that is, the concentration of the first material in the first solution may be no more than 30% by weight.
  • the drying treatment may be vacuum drying under reduced pressure, normal temperature drying, or low temperature drying.
  • the drying at room temperature is such that the first defined pattern layer is naturally dried without additional heating or cooling.
  • the drying temperature for low temperature drying may be no more than 50 degrees Celsius, for example no more than 20 degrees Celsius.
  • the vacuum reduced-pressure drying process may be performed by placing the first defined pattern layer in a vacuum drying oven to reduce the pressure of the vacuum chamber to 150 within 3-10 minutes. -250Pa, hold for 5-15 minutes.
  • the pressure in the chamber can be lowered to about 200 Pa in 5 minutes by vacuuming for 10 minutes.
  • the first defining pattern layer subjected to the above vacuum decompression drying treatment is subjected to a baking treatment.
  • the baking treatment temperature may be not less than 200 degrees Celsius. Thereby, it is advantageous to improve the quality of the formed concave receiving groove.
  • a normal temperature drying process may also be employed to form a concave receiving groove.
  • the first defining pattern layer may be left at room temperature for 25-50 minutes so that the first defining pattern layer is slowly dried to form a concave receiving groove.
  • a low-temperature drying process may also be employed to form a concave receiving groove.
  • the first defining pattern layer may be placed for 40-60 minutes at a temperature not higher than 20 degrees Celsius.
  • the method further includes: performing a high temperature annealing treatment on the concave receiving groove.
  • the quality of the formed first defining pattern i.e., the concave receiving groove
  • the temperature of the high temperature annealing treatment may be not lower than 200 °C.
  • the first defined pattern can be further dried to improve the mechanical support strength and stability of the first defined pattern.
  • forming the second defined pattern may be achieved by the following steps:
  • a solution containing the second material is ink-jet printed and subjected to a baking treatment.
  • the second defining pattern 300 can be easily formed in the concave receiving groove.
  • the second pattern for forming the second defining pattern may have a lower surface energy.
  • the second pattern has a second surface energy
  • the first pattern described above has a first surface energy
  • the second surface energy can be lower than the first surface energy.
  • the first defining pattern 210 (concave receiving groove) and the second defining pattern 300 constitute a pixel defining layer for inkjet printing according to an embodiment of the present disclosure.
  • the first defining pattern 210 defines an inkjet printed area on the substrate 100
  • the second defining pattern 300 is formed in a concave receiving groove constituting the first defining pattern 210 for defining an inkjet printed pattern. height.
  • the pixel defining layer when used to form a light emitting layer of an OLED by inkjet printing, in an actual application, printing on an area other than the pixel defining layer on the substrate 100 by inkjet printing
  • the ink of the light-emitting layer is formed to form the light-emitting layer 400.
  • the second material Since the second material has a lower surface energy, the second material has a more similar surface property to the inkjet printing ink forming the light-emitting layer 400 than the first material.
  • the second defining pattern 300 formed by the second material can be used to define the height of the light emitting layer 400, preventing the material forming the light emitting layer 400 from crossing the area defined by the first defining pattern, resulting in a decrease in product yield.
  • the first material and the second material have a difference in surface energy as described above, the second material formed in the concave receiving groove does not well infiltrate and expand in the concave receiving groove.
  • a concave receiving groove formed by the first material and a droplet formed by the second material printed therein have a small contact angle, and the second defining pattern formed by the second material may have a protruding receiving groove The curved upper surface.
  • the height of the second boundary pattern 300 can be easily controlled by adjusting the amount of the second material of the inkjet printing.
  • the light-emitting layer 400 can be made to have a relatively uniform height, thereby improving the effect of performing ink-jet printing using the pixel-defining layer.
  • the second material may include at least one of fluorinated polyimide, polysiloxane, and fluorinated methyl methacrylate
  • the baking treatment may have a temperature of not less than 200 degrees Celsius , not higher than 250 degrees Celsius, for example, may be 230 ° C, or 200 degrees Celsius.
  • the method may further comprise the step of drying so that the second material may form a second defined pattern.
  • the second defining pattern when the second defining pattern is formed, it is considered that the size of the second defined pattern after drying has a certain difference from the second material before drying, and therefore, when the second material is ink-jet printed, The above difference is calculated into the error of printing in order to obtain a second defined pattern with higher printing accuracy. Thereby, the accuracy of the finally obtained pattern can be ensured, and the printing accuracy can be improved.
  • the pixel defining layer obtained by the above method may have a structure as shown in FIG. Specifically, referring to FIG. 7, the pixel defining layer includes a first defining pattern 210 on the substrate, and a second defining pattern 300.
  • the pixel defining layer has at least one of the following advantages: a pixel defining layer capable of accurately controlling the printing thickness can be realized without using a double mask process, whereby the preparation process of the pixel defining layer for inkjet printing can be simplified, and the method can be simplified Preparation costs and improved alignment accuracy.
  • the present disclosure proposes a method of preparing an OLED. According to an embodiment of the present disclosure, the method comprises the following steps:
  • a pixel defining layer is prepared using the method described above. Thereby, a pixel defining layer capable of precisely controlling the position of the light emitting layer can be obtained with a relatively simple operation.
  • an organic light-emitting layer (sometimes referred to as an organic layer or a light-emitting layer) is formed in the pixel defining layer obtained in the foregoing preparation by means including, but not limited to, inkjet printing or the like.
  • an OLED can be obtained.
  • the pixel defining layer prepared above can better define the position of the organic layer, the position of the organic layer prepared by the method can be controlled more accurately, thereby improving the performance of the OLED.
  • the present disclosure provides an OLED including a pixel defining layer and a light emitting layer, in accordance with an embodiment of the present disclosure.
  • the pixel defining layer is a pixel defining layer as described above, and the light emitting layer is formed by inkjet printing based on the pixel defining layer. It can be understood by those skilled in the art that the OLED includes the pixel defining layer described above, and thus, the OLED has all the features and advantages of the pixel defining layer described above, and details are not described herein again.
  • the luminescent layer is formed by inkjet printing based on a pixel defining layer.
  • the light-emitting layer formed by using the above-described pixel defining layer can have a relatively uniform thickness, and therefore, the OLED has high production yield and use performance.
  • the OLED has at least one of the following advantages: a pixel defining layer is prepared without a complicated mask process, thereby reducing production cost and improving production efficiency; the thickness of the luminescent layer is relatively uniform, and the OLED performance is good.
  • the pixel defining layer includes a first defining pattern and a second defining pattern, the first defining pattern being constituted by a concave receiving groove formed of a first material, and the second defining pattern being formed of the second material in the concave
  • the shape is accommodated in the groove.
  • the first defined pattern has a first surface energy and the second defined pattern has a second surface energy that is higher than the second surface energy.
  • the first material may include at least one of polyimide and acryl
  • the second material includes at least fluorinated polyimide, polysiloxane, and fluorinated methyl methacrylate. one.
  • the substrate can have a third surface energy and the third surface can be made Less than the first surface energy and less than the second surface energy. Thereby, the width of the concave receiving groove can be controlled to 20 ⁇ m or less.
  • the specific shape of the second defining pattern is not particularly limited, and the top of the second defining pattern may be flush with the height of the concave receiving groove, that is, fill the concave receiving groove with the second defining pattern; Alternatively, the second defining pattern may be a protrusion formed in the concave receiving groove. Thereby, it is advantageous to further enhance the defining effect of the pixel defining layer on the light emitting layer by using the second defining pattern.
  • the difference in height between the top of the second defining pattern and the concave receiving groove may be not less than 0.5 ⁇ m.
  • the second defining pattern has a width parallel to the substrate direction and not greater than the first defining pattern. Thereby, it is advantageous to increase the accuracy of the position definition of the luminescent layer.
  • the upper surface of the second defining pattern is curved, hemispherical, trapezoidal, or parabolic.
  • the shape of the second pixel defining layer is related to the width of the concave receiving groove, and the difference in surface energy of the first material and the second material, and those skilled in the art can adjust according to specific conditions.
  • the pixel-defining layer may have a total height of 1-3 microns and a width of 15-100 microns. That is, the height of the top of the second defined pattern to the substrate may be 1-3 microns.
  • the concave receiving groove may have a height of 1-3 microns and a width of 15-100 microns.
  • the present disclosure proposes a display device.
  • the display device includes the OLED described above. Therefore, the display device has all the features and advantages of the OLED described above, and details are not described herein again. In general, the display device has at least one of the following advantages: low production cost, high production efficiency, uniform thickness of the luminescent layer, and good display performance.
  • the description of the terms “one embodiment”, “another embodiment” or the like means that the specific features, structures, materials or characteristics described in connection with the embodiments are included in at least one embodiment of the present disclosure. .
  • the schematic representation of the above terms is not necessarily directed to the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.
  • various embodiments or examples described in the specification, as well as features of various embodiments or examples may be combined and combined.
  • the terms “first” and “second” are used for descriptive purposes only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

公开了像素界定层和OLED的制备方法以及像素界定元件、OLED和显示装置。该制备像素界定层的方法包括:提供衬底;在所述衬底上形成第一界定图案,所述第一界定图案由凹形容纳槽构成,所述凹形容纳槽是通过喷墨打印第一材料,在所述衬底的预定区域形成第一界定图案层,然后对所述第一界定图案层进行干燥处理而形成的;在所述凹形容纳槽内形成第二界定图案,所述第二界定图案是通过喷墨打印第二材料形成的,其中,所述第一界定图案以及所述第二界定图案构成所述像素界定层。

Description

像素界定层和OLED的制备方法、像素界定元件、OLED和显示装置
交叉引用
本申请要求2017年5月12日提交的中国专利申请No.201710335741.9的优先权,其全部内容通过引用结合在此。
技术领域
本公开涉及电子领域,具体地,涉及像素界定层的制备方法、有机电致发光器件(OLED)的制备方法以及像素界定元件、OLED和显示装置。
背景技术
随着科学技术的发展,OLED得到了广泛的运用。OLED相对于液晶显示器(LCD)具有自发光、反应快、视角广、亮度高、色彩艳、轻薄等优点,被视为下一代显示技术。如今,OLED也朝着大规模、大尺寸的方向发展。
目前制备OLED发光层的方法,主要有真空蒸镀和溶液制程两种方法。与真空蒸镀方法相比,溶液制程方法具有设备成本低、材料利用率高、大尺寸产品掩膜(Mask)对位精度高等优点。常用的溶液制程方法包括旋涂、喷墨打印以及喷嘴涂覆等方法。随着喷墨打印技术的发展,目前已经可以精确控制待打印材料(构成发光层的有机物)的打印位置。
然而,目前像素界定层及其制备方法和OLED,仍有待改进。
发明内容
本公开是基于本公开的发明人对于以下事实和问题的发现和认识作出的:
本公开的发明人发现,目前使用喷墨打印技术形成的OLED有机薄膜,普遍存在有机薄膜厚度不均一、形成喷墨打印所需像素界定层制备工艺复杂等问题。本公开的发明人经过深入研究以及大量实验发现,这主要是由于虽然在像素界定层的定位作用下,喷墨打印技术已经可以精确控制打印的位置,然而无法精确控制打印形成的薄膜的厚度。因此,造成形成的有机薄膜厚度不均一。虽然为了解决这一问题,出现了采用具有特定结构的像素界定层限定喷墨打印形成的薄膜厚度的方案,但这类像素界定层的制备需要复杂的处理工艺(例如需要利用双掩膜工艺以及二次曝光过程制备),进而导致像素界定层制备工艺复杂,造成喷墨打印的整体生产周期长、成本高。
本公开旨在至少一定程度上缓解或解决上述提及问题中至少一个。
在本公开的一个方面,本公开提出了一种制备像素界定层的方法,该方法包括:提供 衬底;在所述衬底上形成第一界定图案,所述形成第一界定图案包括在所述衬底上喷墨打印第一材料,然后形成凹形容纳槽,由所述凹形容纳槽构成所述第一界定图案;在所述凹形容纳槽内形成第二界定图案,所述第二界定图案是通过喷墨打印第二材料形成的,其中,所述第一界定图案以及所述第二界定图案构成所述像素界定层。
根据本公开的实施例,所述凹形容纳槽是通过喷墨打印第一材料,在所述衬底的预定区域形成第一界定图案层,然后对所述第一界定图案层进行干燥处理而形成的。
根据本公开的实施例,所述第一界定图案具有第一表面能,所述第二界定图案具有第二表面能,所述第一表面能高于所述第二表面能。
根据本公开的实施例,在形成所述第一界定图案之前,所述方法进一步包括:对所述衬底用于形成所述第一界定图案和所述第二界定图案的表面进行改性处理,以便减低所述衬底的表面能。
根据本公开的实施例,所述第一材料包括:聚酰亚胺、以及亚克力的至少之一。
根据本公开的实施例,所述喷墨打印第一材料包括:将所述第一材料溶于第一溶剂中配置成第一溶液并喷墨打印,其中,所述第一材料在所述第一溶剂中的浓度为0.5wt%~30wt%;所述第一溶剂的沸点不高于180摄氏度。
根据本公开的实施例,所述干燥处理为真空减压干燥、常温干燥或低温干燥。
根据本公开的实施例,所述真空减压干燥包括:对所述第一界定图案层进行真空减压干燥处理,在3-10分钟内,将进行所述真空减压干燥处理的腔室压强下降至150-250Pa,保持5-15分钟,对经过所述真空减压干燥处理的所述第一界定图案层,进行烘烤处理,所述烘烤处理的温度不低于200摄氏度;所述常温干燥包括:将所述第一界定图案层在常温下放置25-50分钟;所述低温干燥包括:将所述第一界定图案层在不高于20摄氏度条件下,放置40-60分钟。
根据本公开的实施例,形成所述第二界定图案是通过以下步骤实现的:在所述凹形容纳槽内喷墨打印含有所述第二材料的溶液,并进行烘烤处理。
根据本公开的实施例,所述第二材料氟化聚酰亚胺、聚硅氧烷以及氟化甲基丙烯酸甲酯至少之一,所述烘烤处理的温度为不低于200摄氏度,不高于250摄氏度。
在本公开的另一方面,本公开提出了一种OLED的制备方法。该包括制备像素界定层的步骤,以及在像素界定层中形成有机层的步骤,其中,所述制备像素界定层的步骤采用如前面所述的制备方法。
在本公开的又一方面,本公开提出了一种像素界定元件。根据本公开的实施例,该像素界定元件包括:衬底,和形成在所述衬底上的像素界定层;其中,所述像素界定层包括第一界定图案以及第二界定图案,所述第一界定图案由第一材料形成的凹形容纳槽构成, 所述第二界定图案由第二材料形成在所述凹形容纳槽内。
根据本公开的实施例,所述第一界定图案具有第一表面能,所述第二界定图案具有第二表面能,所述第一表面能高于所述第二表面能。
根据本公开的实施例,所述第一材料包括聚酰亚胺以及亚克力的至少之一;所述第二材料包括氟化聚酰亚胺、聚硅氧烷以及氟化甲基丙烯酸甲酯的至少之一。
根据本公开的实施例,所述衬底具有第三表面能,所述第三表面能小于所述第一表面能且小于所述第二表面能。
根据本公开的实施例,所述第二界定图案为形成在所述凹形容纳槽中的凸起,所述第二界定图案的顶部与所述凹形容纳槽之间的高度差不低于0.5微米。
根据本公开的实施例,所述第二界定图案的上表面为弧形、半球形、梯形或者抛物线形。
根据本公开的实施例,所述第二界定图案在平行与衬底方向的宽度不大于所述第一界定图案。
根据本公开的实施例,像素界定层的高度为1-3微米,宽度为15-100微米,其中,所述凹形容纳槽的高度为1-3微米,宽度为15-100微米。
在本公开的又一方面,本公开提出了一种OLED。该OLED包括:前面所述的的像素界定元件,和在像素界定层界定的像素区域中形成的发光层。
在本公开的又一方面,本公开提出了一种显示装置。该显示装置包括前面所述的OLED。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1显示了根据本公开一个实施例的像素界定层制备方法的流程示意图;
图2显示了根据本公开另一个实施例的像素界定层制备方法的流程示意图;
图3显示了根据本公开一个实施例的第一界定图案层的结构示意图;
图4显示了根据本公开另一个实施例的第一界定图案层的结构示意图;
图5显示了根据本公开一个实施例的第一界定图案的结构示意图;
图6显示了根据本公开另一个实施例的第一界定图案的结构示意图;
图7显示了根据本公开一个实施例的像素界定层的结构示意图;
图8显示了根据本公开一个实施例的形成第二界定图案的流程示意图;以及
图9显示了根据本公开一个实施例的OLED的结构示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
在本公开的一个方面,本公开提出了一种制备像素界定层的方法。根据本公开的实施例,参考图1,该方法包括:
S100:提供衬底
根据本公开的实施例,在该步骤中,提供用于形成像素界定层的衬底。
根据本公开的实施例,衬底的具体类型不受特别限制,只要能够为该像素界定层提供支撑即可。例如,根据本公开的具体实施例,当采用喷墨打印制备OLED时,用于喷墨打印的像素界定层的衬底,即可以为OLED的衬底。例如,可以为玻璃。
S200:形成第一界定图案
根据本公开的实施例,在衬底上形成第一界定图案,第一界定图案由凹形容纳槽构成。所述凹形容纳槽可以是通过喷墨打印第一材料,在所述衬底的预定区域形成第一界定图案层,然后对所述第一界定图案层进行干燥处理而形成的。根据本公开的实施例,第一材料可以具有较高的表面能。由此,便于在后续的干燥处理中,较好的利用咖啡环原理形成第一界定图案。
S300:形成第二界定图案
根据本公开的实施例,在第一界定图案中形成第二界定图案。第一界定图案以及第二界定图案构成像素界定层。
根据本公开的具体实施例,在第一界定图案的凹形容纳槽内形成第二界定图案,所述第二界定图案是通过喷墨打印第二材料形成的。
根据本公开的实施例,像素界定层制备的方法具有以下优点的至少之一:无需采用双掩膜工艺就可以实现能够精确控制打印厚度的像素界定层的制备,由此,可以简化用于喷墨打印的像素界定层的制备工艺,降低制备成本,提高对位的精准性。
根据本公开的实施例,为了进一步提高在衬底上形成第一界定图案的效果,参考图2,在形成第一界定图案之前,该方法还可以进一步包括:
S10:对衬底进行改性处理
根据本公开的实施例,在该步骤中,可以形成第一界定图案之前,预先对衬底的表面进行改性处理,降低衬底的表面能。根据本公开的具体实施例,通过对衬底用于形成第一界定图案和第二界定图案的表面进行改性处理,减低衬底的表面能,有利于防止第一材料 被喷墨打印至衬底上之后,由于过度浸润而造成实际形成的第一界定图案的边界,与预定需要形成的第一界定图案的边界之间存在较大误差。并且,通过降低衬底的表面能,有利于获得宽度较小的第一界定图案,进而有利于获得尺寸较小的像素界定层。由此,可以提高在衬底上形成第一界定图案的质量。
在该步骤中,对衬底进行改性处理的具体方法不受特别限制,本领域技术人员可以根据实际情况进行选择。例如,可以采用等离子体表面处理技术,对衬底的表面进行改性处理。根据本公开的具体实施例,可以采用CF 4等离子体,或者氟化硅氧烷溶液,对衬底进行表面处理,以便降低衬底的表面能。
根据本公开的实施例,形成第一界定图案可以是通过以下步骤实现的:
首先,参考图3以及图4(衬底100以及第一界定图案层200的横截面图),通过喷墨打印第一材料,在衬底100的预定区域形成第一界定图案层200。本领域技术人员能够理解的是,该步骤中形成的第一界定图案,是用于限定后续喷墨打印时喷墨打印的边界的。因此,在该步骤中,衬底100上预定区域以外的区域,即为后续需要进行喷墨打印的区域。也即是说,上述预定区域为衬底100上与喷墨打印的像素界定层对应的区域。上述预定区域的形状以及第一界定图案层200的具体形状不受特别限制,本领域技术人员可以根据喷墨打印所需要的具体打印形状进行设计。例如,根据本公开的具体实施例,当该像素界定层为利用喷墨打印技术制备OLED的像素界定层时,用于形成第一界定图案的第一界定图案层200,可以具有如图3中所示出的形状。也即是说,第一界定图案可以在衬底上限定出多个规则排列的长方形区域(像素区域),上述长方形区域可以用于在制备OLED时形成OLED的发光层。本领域技术人员能够理解的是,图3中所示出的长方形区域的数量以及排列方式仅为示例性的,而不能理解为对本公开的限制。关于上述长方形区域的具体数量、排布方式以及尺寸等参数,本领域技术人员可以根据实际喷墨打印的需求以及制备的OLED的参数进行设计。
根据本公开的实施例,参考图5以及图6(衬底100以及第一界定图案210的横截面图),在形成第一界定图案层200之后,可以通过对第一界定图案层200进行干燥处理,使得第一界定图案层200形成凹形容纳槽。上述凹形容纳槽构成第一界定图案210。由此,可以简便的利用干燥处理的咖啡环原理,形成凹形容纳槽构成的第一界定图案210,而无需采用复杂的掩膜工艺。
根据本公开的实施例,上述第一材料的具体类型不受特别限制,如前所述,第一材料可以具有较高的表面能,以便更好的在干燥处理之后形成凹形容纳槽。根据本公开的具体实施例,上述第一材料可以包括聚酰亚胺以及亚克力的至少之一。由上述材料形成的第一材料,由于具有较高的表面能,不易浸润衬底,有利于提高形成的凹形容纳槽的质量。
如前所述,上述第一界定图案210,是利用干燥处理的咖啡环原理,形成凹形容纳槽而构成的。因此,可以控制干燥处理以及形成第一界定图案层的条件,以便保证能够通过第一界定图案层,在预定的位置,形成具有预定形状的凹形容纳槽。具体的,需要保证第一界定图案层在干燥后,形成的凹形容纳槽的尺寸,与第一界定图案层相比,不会发生较大的变化。并且,形成的凹形容纳槽的高度,与第一界定图案层的厚度,不会具有较大的差距。
根据本公开的具体实施例,考虑到凹形容纳槽是第一界定图案层经过干燥处理而形成的,而干燥处理后的凹形容纳槽的尺寸与第一界定图案层的尺寸之间存在一定误差,因此,可以在通过喷墨打印第一材料形成的第一溶液,形成第一界定图案层时,将上述凹形容纳槽与第一界定图案层的尺寸之间存的误差,计算入喷墨打印的误差中,以便最终获得的凹形容纳槽可以具有预定的尺寸。根据本公开的实施例,误差的具体数值不受特别限制,本公开中,误差主要来自设备精确度,目前的设备水平的能力可以控制误差在+/-5微米。
本公开的发明人经过大量实验发现,通过调节喷墨打印第一溶液的浓度以及形成第一溶液的第一溶剂种类等参数,可以进一步提高利用咖啡环原理形成的凹形容纳槽的质量。具体的,本公开的发明人发现,当用于喷墨打印的第一溶液中,第一材料的浓度较低,且采用的第一溶剂沸点较低时,有利于打印出的第一界定图案层,在经过干燥后还可以较好的保持原有的尺寸,即形成的凹形容纳槽的质量较好。根据本公开的具体实施例,当第一材料在所选用的溶剂中的浓度不低于0.5wt%,第一溶剂的沸点不高于180摄氏度,或是第一材料在所选用的溶剂中的浓度不高于30wt%时,有利于利用咖啡环原理形成较为理想的凹形容纳槽。例如,根据本公开的具体实施例,第一溶剂可以为混合溶剂。混合溶剂可以包括第一材料的良溶剂(混合溶剂中对第一材料的溶解程度较好的成分)和第一材料不良溶剂。在混合溶剂中,第一材料的良溶剂的沸点低于180摄氏度,而不良溶剂可以不低于180摄氏度。根据本公开的另一些实施例,第一材料在所选用的溶剂中的浓度,也就是第一材料在第一溶液中的浓度可以不高于30wt%。
发明人经过大量实验发现,干燥处理的干燥速率也对形成的凹形容纳槽的质量具有影响。较为缓慢的干燥速率,有利于形成较为理想的凹形容纳槽。具体的,根据本公开的实施例,干燥处理可以为真空减压干燥、常温干燥或低温干燥。其中,常温干燥即为在不进行额外的加热或是冷却的条件下,使得第一界定图案层自然干燥。低温干燥的干燥温度可以为不超过50摄氏度,例如不超过20摄氏度。
根据本公开的具体实施例,真空减压干燥处理可以是通过以下步骤进行的:将第一界定图案层置于真空干燥箱内,在3-10分钟内,将真空腔室的压强下降至150-250Pa,保持5-15分钟。例如,可以通过抽真空处理,在5分钟内将腔室内的压强下降至200Pa左右, 保持10分钟。随后,对经过上述真空减压干燥处理的第一界定图案层进行烘烤处理。烘烤处理的温度可以为不低于200摄氏度。由此,有利于提高形成的凹形容纳槽的质量。
根据本公开的具体实施例,也可以采用常温干燥处理,形成凹形容纳槽。具体地,可以将第一界定图案层在常温下放置25-50分钟,以便第一界定图案层通过缓慢干燥,形成凹形容纳槽。
根据本公开的具体实施例,还可以采用低温干燥处理,形成凹形容纳槽。具体地,可以将第一界定图案层在不高于20摄氏度条件下,放置40-60分钟。
根据本公开的实施例,为了进一步提高凹形容纳槽的质量,上述干燥处理之后,还可以进一步包括:对凹形容纳槽进行高温退火处理。由此,可以进一步提高形成的第一界定图案(即凹形容纳槽)的质量。根据本公开的具体实施例,高温退火处理的温度可以为不低于200℃。由此,可以对第一界定图案进行进一步干燥,提高第一界定图案的机械支撑强度以及稳定性。
根据本公开的实施例,形成第二界定图案可以是通过以下步骤实现的:
参考图7以及图8,在第一界定图案210(凹形容纳槽)内,喷墨打印含有第二材料的溶液,并进行烘烤处理。由此,可以简便的在凹形容纳槽内形成第二界定图案300。
根据本公开的实施例,用于形成第二界定图案的第二图案可以具有较低的表面能。具体的,第二图案具有第二表面能,前面描述的第一图案具有第一表面能,第二表面能可以低于第一表面能。由此,有利于精确控制利用该像素界定层形成的打印图案的厚度。
根据本公开的实施例,参考图9,上述第一界定图案210(凹形容纳槽)以及第二界定图案300,构成了根据本公开实施例的用于喷墨打印的像素界定层。其中,第一界定图案210在衬底100上限定出了喷墨打印的区域,第二界定图案300形成在构成第一界定图案210的凹形容纳槽中,用于限定喷墨打印的图案的高度。根据本公开的具体实施例,当该像素界定层用于通过喷墨打印,形成OLED的发光层时,在实际应用中,通过喷墨打印,在衬底100上除像素界定层以外的区域打印形成发光层的墨水,以便形成发光层400。由于第二材料具有较低的表面能,与第一材料相比,第二材料与形成发光层400的喷墨打印墨水具有更为相近的表面性能。因此,第二材料形成的第二界定图案300,可以用于限定发光层400的高度,防止形成发光层400的材料,跨越第一界定图案限定出的区域,造成产品良率下降。并且,由于第一材料以及第二材料在表面能上具有如前所述的差异,因此,形成在凹形容纳槽中的第二材料,在凹形容纳槽中不会较好的浸润并展开,第一材料形成的凹形容纳槽以及打印在其中的第二材料形成的液滴之间,具有较小的接触角,进而第二材料形成的第二界定图案可以具有突出于凹形容纳槽的弧形上表面。而第二界图案300的高度,可以简便的通过调节喷墨打印的第二材料的量进行控制。由此,可以使得发光层400 具有较为均一的高度,从而提高利用该像素界定层进行喷墨打印的效果。根据本公开的具体实施例,第二材料可以包括氟化聚酰亚胺、聚硅氧烷以及氟化甲基丙烯酸甲酯的至少之一,所述烘烤处理的温度可以不低于200摄氏度,不高于250摄氏度,例如,可以为230℃,或者200摄氏度。由此,有利于进一步提高形成第二界定图案的质量。
本领域技术人员能够理解的是,该方法在喷墨打印第二材料之后,还可以进一步包括干燥的步骤,以便第二材料可以形成第二界定图案。根据本公开的实施例,形成第二界定图案时,考虑到干燥后的第二界定图案的尺寸与未干燥前的第二材料具有一定差别,因此,可以在喷墨打印第二材料时,将上述差别计算入打印的误差中,以便获得打印精度较高的第二界定图案。由此,可以保证最终获得的图案的准确性,提高打印精度。
根据本公开的实施例,利用上述方法获得的像素界定层可以具有如图7所示出的结构。具体的,参考图7,该像素界定层包括位于衬底上的第一界定图案210、以及第二界定图案300。该像素界定层具有以下优点的至少之一:无需采用双掩膜工艺就可以实现能够精确控制打印厚度的像素界定层,由此,可以简化用于喷墨打印的像素界定层的制备工艺,降低制备成本,提高对位的精准性。
在本公开的另一方面,本公开提出了一种OLED的制备方法。根据本公开的实施例,该方法包括以下步骤:
制备像素界定层;
根据本公开的实施例,在该步骤中,利用前面描述的方法,制备像素界定层。由此,可以利用较为简便的操作,获得能够精确控制发光层位置的像素界定层。
形成有机发光层;
根据本公开的实施例,在该步骤中,通过包括但不限于喷墨打印等方式,在前面制备获得的像素界定层中,形成有机发光层(有时,也称作有机层或发光层)。由此,可以获得OLED。如前所述,由于前面制备的像素界定层可以较好的限定有机层的位置,因此,利用该方法制备的OLED,有机层的位置可以较为精确的控制,从而有利于提高该OLED的性能。
在本公开的又一方面,本公开提出了一种OLED,根据本公开的实施例,该OLED包括:像素界定层以及发光层。像素界定层为前面所述的像素界定层,发光层是基于所述像素界定层,通过喷墨打印而形成的。本领域技术人员能够理解的是,该OLED包括前面描述的像素界定层,由此,该OLED具有前面描述的像素界定层所具有的全部特征以及优点,在此不再赘述。发光层是基于像素界定层,通过喷墨打印而形成的。如前所述,利用上述像素界定层形成的发光层,可以具有较为均一的厚度,因此,该OLED具有较高的生产良率以及使用性能。总的来说,该OLED具有以下优点的至少之一:无需复杂的掩膜工艺制 备像素界定层,进而可以降低生产成本,提高生产效率;发光层厚度较为均一,OLED性能较好。
下面根据本公开的具体实施例,对该OLED的各个结构进行详细说明:
根据本公开的实施例,像素界定层包括第一界定图案以及第二界定图案,第一界定图案由第一材料形成的凹形容纳槽构成,第二界定图案由第二材料形成在所述凹形容纳槽内。第一界定图案具有第一表面能,第二界定图案具有第二表面能,第一表面能高于第二表面能。由此,可以提高利用喷墨打印形成的发光层的质量。
根据本公开的实施例,上述第一材料可以包括聚酰亚胺以及亚克力的至少之一,第二材料包括可以氟化聚酰亚胺、聚硅氧烷以及氟化甲基丙烯酸甲酯的至少之一。为了进一步降低制备的像素界定层的尺寸,获得具有更小宽度的像素界定材料(即将凹形容纳槽的宽度控制的更小),可以使得衬底具有第三表面能,并令第三表面能小于第一表面能且小于第二表面能。由此,可以将凹形容纳槽的宽度控制在20微米及以下。
根据本公开的实施例,第二界定图案的具体形状不受特别限制,第二界定图案的顶部可以与凹形容纳槽的高度齐平,即利用第二界定图案,填满凹形容纳槽;或者,第二界定图案可以为形成在所述凹形容纳槽中的凸起。由此,有利于利用第二界定图案,进一步提高该像素界定层对发光层的限定作用。第二界定图案的顶部与凹形容纳槽之间的高度差可以为不低于0.5微米。根据本公开的实施例,第二界定图案在平行于衬底方向的宽度,不大于第一界定图案。由此,有利于提高对发光层位置限定的精确程度。
根据本公开的实施例,第二界定图案的上表面为弧形、半球形、梯形或者抛物线形。第二像素界定层的形状与凹形容纳槽的宽度,以及第一材料、第二的材料表面能的差异有关,本领域技术人员可以根据具体情况进行调节。
根据本公开的具体实施例,像素界定层的总高度可以为1-3微米,宽度为15-100微米。也即是说,第二界定图案的顶部,到衬底之间的高度可以为1-3微米。根据本公开的实施例,凹形容纳槽的高度可以为1-3微米,宽度可以为15-100微米。由此,有利于获得尺寸较小,精度较高的发光层,从而可以提高该OLED的性能。
在本公开的另一方面,本公开提出了一种显示装置。根据本公开的实施例,该显示装置包括前面描述的OLED。由此,该显示装置具有前面描述的OLED所具有的全部特征以及优点,在此不再赘述。总的来说,该显示器件具有以下优点的至少之一:生产成本低,生产效率高,发光层厚度较为均一,显示性能较好。
在本公开的描述中,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开而不是要求本公开必须以特定的方位构造和操作, 因此不能理解为对本公开的限制。
在本说明书的描述中,参考术语“一个实施例”、“另一个实施例”等的描述意指结合该实施例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。另外,需要说明的是,本说明书中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (21)

  1. 一种制备像素界定层的方法,所述方法包括:
    提供衬底;
    在所述衬底上形成第一界定图案,所述形成第一界定图案包括在所述衬底上喷墨打印第一材料,然后形成凹形容纳槽,由所述凹形容纳槽构成所述第一界定图案;
    在所述凹形容纳槽内形成第二界定图案,所述第二界定图案是通过喷墨打印第二材料形成的,
    其中,所述第一界定图案以及所述第二界定图案构成所述像素界定层。
  2. 根据权利要求1所述的方法,其中,所述凹形容纳槽是通过喷墨打印第一材料,在所述衬底的预定区域形成第一界定图案层,然后对所述第一界定图案层进行干燥处理而形成的。
  3. 根据权利要求1所述的方法,其中,所述第一界定图案具有第一表面能,所述第二界定图案具有第二表面能,所述第一表面能高于所述第二表面能。
  4. 根据权利要求1所述的方法,其中,在形成所述第一界定图案之前,所述方法进一步包括:
    对所述衬底用于形成所述第一界定图案和所述第二界定图案的表面进行改性处理,以便减低所述衬底的表面能。
  5. 根据权利要求1所述的方法,其中,所述第一材料包括:聚酰亚胺以及亚克力的至少之一。
  6. 根据权利要求1所述的方法,其中,所述喷墨打印所述第一材料包括:将所述第一材料溶于第一溶剂中配制成第一溶液并喷墨打印,
    其中,所述第一材料在所述第一溶剂中的浓度为0.5wt%~30wt%;
    所述第一溶剂的沸点不高于180摄氏度。
  7. 根据权利要求2所述的方法,其中,所述干燥处理为真空减压干燥处理、常温干燥处理或低温干燥处理。
  8. 根据权利要求7所述的方法,其中,所述真空减压干燥处理包括:对所述第一界定图案层进行真空减压干燥处理,在3-10分钟内,将进行所述真空减压干燥处理的腔室压强下降至150-250Pa,保持5-15分钟,对经过所述真空减压干燥处理的所述第一界定图案层,进行烘烤处理,所述烘烤处理的温度不低于200摄氏度;
    所述常温干燥处理包括:将所述第一界定图案层在常温下放置25-50分钟;
    所述低温干燥处理包括:将所述第一界定图案层在不高于20摄氏度条件下,放置40-60 分钟。
  9. 根据权利要求1所述的方法,其中,形成所述第二界定图案是通过以下步骤实现的:
    将所述第二材料溶于第二溶剂中配制成第二溶液,在所述凹形容纳槽内喷墨打印含有所述第二材料的第二溶液,并进行烘烤处理。
  10. 根据权利要求9所述的方法,其中,所述第二材料包括氟化聚酰亚胺、聚硅氧烷以及氟化甲基丙烯酸甲酯的至少之一,
    所述烘烤处理的温度为:不低于200摄氏度,不高于250摄氏度。
  11. 一种OLED的制备方法,所述方法包括制备像素界定层的步骤,以及在像素界定层中形成有机发光层的步骤,其中,所述制备像素界定层的步骤采用如权利要求1-10任一项所述的制备方法。
  12. 一种像素界定元件,包括:
    衬底,和
    形成在衬底上的第一界定图案以及第二界定图案,
    其中,所述第一界定图案由第一材料形成的凹形容纳槽构成,所述第二界定图案由第二材料形成在所述凹形容纳槽内。
  13. 根据权利要求12所述的像素界定元件,其中,所述第一界定图案具有第一表面能,所述第二界定图案具有第二表面能,所述第一表面能高于所述第二表面能。
  14. 根据权利要求12所述的像素界定元件,其中,所述第一材料包括聚酰亚胺以及亚克力的至少之一;
    所述第二材料包括氟化聚酰亚胺、聚硅氧烷以及氟化甲基丙烯酸甲酯的至少之一。
  15. 根据权利要求12所述的像素界定元件,其中,所述衬底具有第三表面能,所述第三表面能小于所述第一表面能且小于所述第二表面能。
  16. 根据权利要求12所述的像素界定元件,其中,所述第二界定图案为形成在所述凹形容纳槽中的凸起,所述第二界定图案的顶部与所述凹形容纳槽之间的高度差不低于0.5微米。
  17. 根据权利要求16所述的像素界定元件,其中,所述第二界定图案的上表面为弧形、半球形、梯形或者抛物线形。
  18. 根据权利要求16所述的像素界定元件,其中,所述第二界定图案在平行于衬底方向的宽度不大于所述第一界定图案在平行于衬底方向的宽度。
  19. 根据权利要求12所述的像素界定元件,其中,像素界定层的高度为1-3微米,宽度为15-100微米,
    其中,所述凹形容纳槽的高度为1-3微米,宽度为15-100微米。
  20. 一种OLED,包括:
    如权利要求12-19任一项所述的像素界定元件,以及
    在像素界定层界定的像素区域中形成的有机发光层。
  21. 一种显示装置,包括权利要求20所述的OLED。
PCT/CN2018/072125 2017-05-12 2018-01-10 像素界定层和oled的制备方法、像素界定元件、oled和显示装置 WO2018205672A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/094,337 US10566397B2 (en) 2017-05-12 2018-01-10 Ink jet printing first and second materials to form a pixel defining layer having groove

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710335741.9A CN107146807B (zh) 2017-05-12 2017-05-12 像素界定层的制备方法、oled及制备方法和显示装置
CN201710335741.9 2017-05-12

Publications (1)

Publication Number Publication Date
WO2018205672A1 true WO2018205672A1 (zh) 2018-11-15

Family

ID=59777972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072125 WO2018205672A1 (zh) 2017-05-12 2018-01-10 像素界定层和oled的制备方法、像素界定元件、oled和显示装置

Country Status (3)

Country Link
US (1) US10566397B2 (zh)
CN (1) CN107146807B (zh)
WO (1) WO2018205672A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107146807B (zh) * 2017-05-12 2019-09-06 京东方科技集团股份有限公司 像素界定层的制备方法、oled及制备方法和显示装置
CN109585502B (zh) * 2018-10-25 2020-09-08 深圳市华星光电技术有限公司 用于喷墨打印的基板及其制作方法
US11368948B2 (en) * 2019-05-03 2022-06-21 Mediatek Inc. Transmission configuration indication switching procedure in new radio mobile communications
CN110581232B (zh) * 2019-09-25 2022-11-04 合肥京东方卓印科技有限公司 Oled发光器件的制备方法、oled发光器件和oled显示装置
CN111769215B (zh) * 2020-06-23 2021-10-08 武汉华星光电半导体显示技术有限公司 显示面板的制造方法及显示面板
CN111933682B (zh) * 2020-09-18 2021-04-20 季华实验室 一种显示面板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7928653B2 (en) * 2004-12-14 2011-04-19 Samsung Mobile Display Co., Ltd. Organic light emitting display device with enhanced aperture ratio and method of fabricating the same
CN103367391A (zh) * 2013-06-28 2013-10-23 京东方科技集团股份有限公司 像素界定层及其制作方法、显示基板及显示装置
CN104425549A (zh) * 2013-08-30 2015-03-18 乐金显示有限公司 有机电致发光设备及其制造方法
CN105070651A (zh) * 2015-08-17 2015-11-18 Tcl集团股份有限公司 像素界定层结构和oled器件的制备方法
CN107146807A (zh) * 2017-05-12 2017-09-08 京东方科技集团股份有限公司 像素界定层的制备方法、oled及制备方法和显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7227306B2 (en) * 2003-08-28 2007-06-05 Samsung Sdi Co., Ltd. Organic electroluminescence display having recessed electrode structure
KR100683695B1 (ko) * 2004-11-11 2007-02-15 삼성에스디아이 주식회사 유기전계 발광표시장치
JP5117326B2 (ja) * 2008-08-29 2013-01-16 富士フイルム株式会社 カラー表示装置及びその製造方法
KR102081317B1 (ko) * 2013-08-30 2020-02-25 엘지디스플레이 주식회사 이중 뱅크 구조를 갖는 고 개구율 유기발광 다이오드 표시장치
KR102427249B1 (ko) * 2015-10-16 2022-08-01 삼성디스플레이 주식회사 디스플레이 장치
CN105774279B (zh) * 2016-03-23 2019-01-15 京东方科技集团股份有限公司 一种喷墨打印方法及oled显示装置的制作方法
US10468623B2 (en) * 2017-02-16 2019-11-05 Joled Inc. Organic EL display panel and method of manufacturing organic EL display panel
CN107425126B (zh) * 2017-04-27 2019-09-10 京东方科技集团股份有限公司 像素界定结构、有机发光器件及其封装方法、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7928653B2 (en) * 2004-12-14 2011-04-19 Samsung Mobile Display Co., Ltd. Organic light emitting display device with enhanced aperture ratio and method of fabricating the same
CN103367391A (zh) * 2013-06-28 2013-10-23 京东方科技集团股份有限公司 像素界定层及其制作方法、显示基板及显示装置
CN104425549A (zh) * 2013-08-30 2015-03-18 乐金显示有限公司 有机电致发光设备及其制造方法
CN105070651A (zh) * 2015-08-17 2015-11-18 Tcl集团股份有限公司 像素界定层结构和oled器件的制备方法
CN107146807A (zh) * 2017-05-12 2017-09-08 京东方科技集团股份有限公司 像素界定层的制备方法、oled及制备方法和显示装置

Also Published As

Publication number Publication date
CN107146807B (zh) 2019-09-06
US10566397B2 (en) 2020-02-18
CN107146807A (zh) 2017-09-08
US20190229161A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
WO2018205672A1 (zh) 像素界定层和oled的制备方法、像素界定元件、oled和显示装置
US9466650B2 (en) Display panel with pixel defining layer and manufacturing method of pixel defining layer
US9972665B2 (en) Organic light emitting diode display panel, fabrication method thereof, and display device
CN108987449B (zh) 像素界定层及其制造方法、显示基板
WO2017012309A1 (zh) 有机电致发光显示基板及制备方法、显示面板、显示装置
WO2016074554A1 (zh) 一种像素单元及其制备方法、发光器件、显示装置
CN105932037B (zh) 一种有机电致发光显示基板及其制备方法、显示装置
WO2018205793A1 (zh) 像素界定层及其制造方法、显示基板、显示装置
CN105895818B (zh) 用于打印成膜工艺的凹槽结构及其制作方法
CN105244454B (zh) 一种印刷am‑qdled及其制作方法
WO2017121122A1 (zh) 膜层结构、其制作方法、显示基板、背光源及显示装置
CN108198845B (zh) 像素界定层及制备方法、显示基板及制备方法、显示装置
WO2016045239A1 (zh) 喷墨打印方法及设备、显示基板的制作方法
US20060046062A1 (en) Method of producing a functional film, a coating liquid for forming a functional film and a functional device
US20190305059A1 (en) Pixel definition layer, manufacturing method thereof, display substrate and display device
WO2018210042A1 (zh) 真空干燥膜层的方法和显示器件
WO2019205752A1 (zh) Oled器件
US20190305058A1 (en) Pixel defining layer, production method thereof, and display substrate
CN106941112A (zh) 像素界定层及其制造方法、显示基板
WO2018086194A1 (zh) 用于打印oled显示器件的凹槽结构及oled显示器件的制作方法
WO2016065755A1 (zh) 一种像素界定层、有机电致发光器件及显示装置
WO2020164317A1 (zh) 阵列基板及其制备方法、显示面板和显示装置
WO2018176744A1 (zh) 一种薄膜的制作方法、制作设备和显示基板制作方法
CN107644951A (zh) 一种印刷oled显示屏的制备方法
WO2014176810A1 (zh) 像素界定层及制备方法、oled基板、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18797730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.04.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18797730

Country of ref document: EP

Kind code of ref document: A1