WO2018205489A1 - 调整电机转速的方法和装置及电机 - Google Patents

调整电机转速的方法和装置及电机 Download PDF

Info

Publication number
WO2018205489A1
WO2018205489A1 PCT/CN2017/104661 CN2017104661W WO2018205489A1 WO 2018205489 A1 WO2018205489 A1 WO 2018205489A1 CN 2017104661 W CN2017104661 W CN 2017104661W WO 2018205489 A1 WO2018205489 A1 WO 2018205489A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotational speed
analysis data
motor
frequency
fourier analysis
Prior art date
Application number
PCT/CN2017/104661
Other languages
English (en)
French (fr)
Inventor
陈英华
暨绵浩
Original Assignee
广州视源电子科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州视源电子科技股份有限公司 filed Critical 广州视源电子科技股份有限公司
Publication of WO2018205489A1 publication Critical patent/WO2018205489A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/06Arrangements for speed regulation of a single motor wherein the motor speed is measured and compared with a given physical value so as to adjust the motor speed

Definitions

  • the invention relates to the technical field of motor driving, in particular to a method and device for adjusting the rotational speed of a motor and a motor.
  • the brushless DC motor has the characteristics of low running noise, no spark and long life compared with the traditional brushed DC motor, and with the maturity of its control technology, the high integration of electronic components and related The low cost of components has gradually replaced brushed DC motors in various industries and applications, and has expanded the application of life, safety and noise requirements.
  • the controller used in the current DC brushless motor drive system is not high in computing power, and the peripheral resources are scarce. There is no hardware condition for detecting and diagnosing the road surface vibration signal, resulting in the system lacking anti-interference ability to the road surface flatness. To make the product or system less consistent and reliable in adapting to complex work environments.
  • the object of the embodiment of the present invention is to provide a method and device for adjusting the rotational speed of a motor and a motor capable of improving the anti-interference ability to the smoothness of the road surface during the movement of the motor drive system, and maintaining the smooth movement of the system.
  • an embodiment of the present invention provides a method for adjusting a motor speed, including:
  • the Fourier analysis data including a velocity component of each frequency component constituting the rotational speed
  • the notch filter is configured to adjust a rotational speed of the motor
  • the butterfly operation is performed on the sampled rotational speed, specifically:
  • the calculating the amplitude-frequency characteristic parameter of the fluctuation component of the rotational speed according to the Fourier analysis data specifically:
  • the fluctuation of the rotational velocity is calculated according to a velocity component having the largest numerical value in the Fourier analysis data and a corresponding frequency component thereof The radian frequency and the attenuation amplitude included in the amplitude-frequency characteristic parameter possessed by the component; and, based on the number of velocity components greater than the velocity threshold in the Fourier analysis data and the frequency domain of the Fourier analysis data a resolution, calculating a radians frequency broadband included in the amplitude-frequency characteristic parameter of the fluctuation component; wherein a frequency domain resolution of the Fourier analysis data is two adjacent frequencies in the Fourier analysis data The frequency difference of the components.
  • the adjusting the rotational speed of the motor according to the amplitude frequency characteristic parameter is specifically:
  • n is the current time
  • y(n), y(n-1), and y(n-2) are the rotations after adjusting the rotational speed of the motor at the current time, the last time, and the delay time, respectively.
  • Speed; x(n), x(n-1), and x(n-2) are the rotational speeds before the adjustment of the rotational speed of the motor at the current time, the previous time, and the delay, respectively;
  • a 0 , a 1 , a 2 , b 0 , b 1 and b 2 are characteristic parameters of the discrete transfer function;
  • the rotational speed of the motor is adjusted based on the updated discrete transfer.
  • an embodiment of the present invention further provides an apparatus for adjusting a rotational speed of a motor, including:
  • a speed sampling module for sampling the rotational speed of the motor
  • a butterfly operation module configured to perform a butterfly operation on the sampled rotational speed to obtain Fourier analysis data of the rotational speed;
  • the Fourier analysis data includes a velocity of each frequency component constituting the rotational speed Component
  • An amplitude frequency parameter calculation module configured to calculate, according to the Fourier analysis data, an amplitude frequency characteristic parameter possessed by a fluctuation component of the rotational speed
  • a rotation speed adjustment module configured to adjust a rotation speed of the motor according to the amplitude frequency characteristic parameter.
  • the butterfly operation module is specifically configured to perform a butterfly operation on the sampled rotation speed when the sampled number of the sampled rotational speeds satisfies the butterfly operation threshold.
  • the amplitude frequency parameter calculation module includes:
  • a velocity component determining unit configured to determine whether there is a velocity component greater than a speed threshold in the Fourier analysis data
  • a calculating unit configured to calculate, according to a velocity component having a maximum value in the Fourier analysis data and a corresponding frequency component, when there is a velocity component greater than the velocity threshold in the Fourier analysis data a radiant frequency and a fading amplitude included in a amplitude-frequency characteristic parameter of the fluctuation component of the rotational speed; and, according to the number of velocity components greater than the velocity threshold in the Fourier analysis data, and the Fourier A frequency domain resolution of the data is calculated, and a radian frequency broadband included in the amplitude-frequency characteristic parameter of the fluctuation component is calculated; wherein a frequency domain resolution of the Fourier analysis data is in the Fourier analysis data The frequency difference between two adjacent frequency components.
  • the rotation speed adjustment module includes:
  • a discrete transfer function updating unit configured to update a feature parameter of the discrete transfer function of the motor according to the amplitude frequency characteristic parameter; wherein the discrete transfer function is
  • n is the current time
  • y(n), y(n-1), and y(n-2) are the rotations after adjusting the rotational speed of the motor at the current time, the last time, and the delay time, respectively.
  • Speed; x(n), x(n-1), and x(n-2) are the rotational speeds before the adjustment of the rotational speed of the motor at the current time, the previous time, and the delay, respectively;
  • a 0 , a 1 , a 2 , b 0 , b 1 and b 2 are characteristic parameters of the discrete transfer function;
  • the speed unit is adjusted for adjusting the rotational speed of the motor according to the updated discrete transmission.
  • the embodiment of the invention further provides an electric machine, which comprises the device for adjusting the rotational speed of the motor according to any of the above embodiments.
  • a method and device for adjusting the rotational speed of a motor and a motor capable of rotating the speed of the sampled motor by the rotational speed of the rotational speed sensor in the sampling motor when the motor drive system is moving on the road surface The butterfly operation obtains the vibration condition in the rotational speed, that is, the calculated Fourier analysis data, and constructs the discrete transfer function of adjusting the rotational speed of the motor through the Fourier analysis data, that is, completes the parameter adjustment of the trap,
  • the trap can suppress the fluctuation component of the rotational speed of the motor drive system, so that the speed fluctuation of the system motion is significantly reduced, and the motion is more stable.
  • FIG. 1 is a schematic flow chart of an embodiment of a method for adjusting a rotational speed of a motor provided by the present invention
  • FIG. 2 is a Fourier spectrum diagram of a butterfly operation output of the method for adjusting the rotational speed of the motor provided by the present invention
  • FIG. 3 is a schematic structural view of an embodiment of an apparatus for adjusting a rotational speed of a motor provided by the present invention
  • FIG. 4 is a schematic structural diagram of an embodiment of a frequency-frequency parameter calculation module of a device for adjusting a motor speed provided by the present invention
  • FIG. 5 is a schematic structural view of an embodiment of a rotational speed adjusting module of a device for adjusting a rotational speed of a motor provided by the present invention.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for adjusting a rotational speed of a motor according to the present invention.
  • the embodiment of the present invention provides a method for adjusting a rotational speed of a motor, including steps S1 to S4:
  • the rotation speed sensor is added to the motor for detecting the rotation speed of the motor, that is, the rotation speed of the motor is sampled by the rotation speed sensor, and the rotation speed sensor is preferably a Hall sensor, and is applicable to the Hall sensor. Speed detection with incremental encoders, absolute photoelectric encoders or resolvers.
  • the Fourier analysis data includes a velocity component of each frequency component constituting the rotational speed.
  • sampling quantity of each sample to the rotational speed satisfies the requirement of one dish operation, and then the butterfly operation is performed on the sampling speed, specifically:
  • step S1 If not, return to step S1 to continue the sampling speed of the motor.
  • FIG. 2 A Fourier spectrum diagram of the butterfly operation output of the method for adjusting the rotational speed of the motor, wherein the amplitude of the spectrum represents a velocity component of a frequency component of the rotational speed signal for performing the butterfly operation.
  • a velocity component A X having the largest value in the Fourier analysis data may be calculated, and the Fourier a frequency component f x corresponding to a velocity component having the largest numerical value in the leaf analysis data, a number m of velocity components greater than the velocity threshold in the Fourier analysis data, and a frequency domain resolution of the Fourier analysis data ⁇ f, the frequency domain resolution ⁇ f of the Fourier analysis data is the frequency difference of two adjacent frequency components in the Fourier analysis data, that is, the density of the spectral lines in the spectrogram as shown in FIG. .
  • the maximum value of the velocity component corresponding to the frequency component obtained by performing the dish shape operation on the velocity signal is the speed threshold A t , and then described by the above A X , f x , m, ⁇ f
  • the specific process of calculating the amplitude-frequency characteristic parameters of the trap of the motor is the speed threshold A t , and then described by the above A X , f x , m, ⁇ f
  • the amplitude frequency characteristic parameter of the notch filter is not required to be calculated, and the amplitude frequency is directly generated.
  • the feature parameter is an empty set.
  • step S4 The specific implementation process for step S4 can be:
  • the rotational speed of the motor is adjusted based on the updated discrete transfer.
  • the trap is a device that filters the fluctuation component of the rotational speed of the motor in the motor, and the notch speed adjustment process is adjusted according to the discrete transfer function, and the preferred trap of the embodiment of the present invention is discrete.
  • the letter is:
  • n is the current time
  • y(n), y(n-1), and y(n-2) are the rotations after adjusting the rotational speed of the motor at the current time, the last time, and the delay time, respectively.
  • Speed; x(n), x(n-1), and x(n-2) are the rotational speeds before the adjustment of the rotational speed of the motor at the current time, the previous time, and the delay, respectively;
  • a 0 , a 1 , a 2 , b 0 , b 1 and b 2 are characteristic parameters of the discrete transfer function.
  • the motor adjusts the rotational speed of the motor at the current moment by using the notch, specifically: taking the current time n as a reference, acquiring the position at the previous time n-1 The actual rotational speed y(n-1) of the motor adjusted by the notch and the actual rotational speed y (n- of the motor adjusted by the notch after delaying two times n-2) 2), and acquiring the current to-be-rotated speed x(n), x(n-1) before the motor is adjusted by the notch at the current time n, the last time n-1, and the delayed two times n-2 And x(n-2), which will get the data x(n), x(n-1), x(n-2), y(n-1), and y(n-2) input formulas Obtaining the actual rotational speed y(n) that the motor is to be rotated, and the controller controls the rotational speed of the motor to be y(n), thereby suppressing the fluctuation
  • the purpose of this setting is that when there is no velocity component greater than the velocity threshold in the Fourier analysis data, it indicates that the rotational speed of the motor drives the motion of the system to be stationary, and there is no need for the motor at the current moment. The rotation speed is adjusted. Therefore, by setting the parameters of the above-mentioned discrete transmission, the values of the input end of the trap and the output of the trap are the same, that is, the trap does not adjust the rotation speed of the motor at the current time. .
  • a method for adjusting the rotational speed of a motor when the motor drive system is moving on the road surface, the rotational speed of the rotational speed sensor in the sampling motor is used to perform a butterfly operation on the rotational speed of the sampled motor to obtain a rotational speed.
  • the vibration condition that is, the calculated Fourier analysis data
  • the discrete transfer function of the trap is constructed by the Fourier analysis data, that is, the parameter adjustment of the trap is completed, so that the trap can be driven to the motor
  • the fluctuation of the rotational speed of the motion is suppressed, so that the speed fluctuation of the system motion is significantly reduced, and the motion is more stable.
  • FIG. 3 is a schematic structural diagram of an embodiment of a device for adjusting the rotational speed of a motor provided by the present invention.
  • the device can implement the entire process of the method for adjusting the rotational speed of the motor provided by the foregoing embodiment, and the device specifically includes:
  • a speed sampling module 10 for sampling the rotational speed of the motor
  • a butterfly operation module 20 configured to perform a butterfly operation on the sampled rotational speed to obtain Fourier analysis data of the rotational speed; the Fourier analysis data includes each frequency component constituting the rotational speed Speed component
  • the amplitude frequency parameter calculation module 30 is configured to calculate the rotation speed according to the Fourier analysis data The amplitude-frequency characteristic parameter possessed by the fluctuation component;
  • the rotation speed adjustment module 40 is configured to adjust the rotation speed of the motor according to the amplitude frequency characteristic parameter.
  • the butterfly operation module 20 is specifically configured to perform a butterfly operation on the sampled rotation speed when the sampled number of the sampled rotation speeds satisfies the butterfly operation threshold.
  • the amplitude-frequency parameter calculation module 30 includes:
  • the speed component determining unit 31 is configured to determine whether there is a velocity component greater than a speed threshold in the Fourier analysis data
  • the calculating unit 32 is configured to: when there is a velocity component greater than a speed threshold in the Fourier analysis data, calculate a velocity component according to a maximum value of the velocity component in the Fourier analysis data and a corresponding frequency component thereof a radiant frequency and a fading amplitude included in a amplitude-frequency characteristic parameter of the fluctuation component of the rotational speed; a number of velocity components greater than the velocity threshold and the Fourier analysis data according to the Fourier analysis data Frequency domain resolution, calculating a radian frequency broadband included in the amplitude-frequency characteristic parameter of the fluctuation component; wherein a frequency domain resolution of the Fourier analysis data is adjacent in the Fourier analysis data The frequency difference between the two frequency components.
  • FIG. 5 is a schematic structural diagram of an embodiment of a rotational speed adjusting module of a device for adjusting a rotational speed of a motor provided by the present invention
  • the rotational speed adjusting module 40 includes:
  • a discrete transfer function updating unit 41 configured to update a feature parameter of the discrete transfer function of the motor according to the amplitude frequency characteristic parameter; wherein the discrete transfer function is Where n is the current time; y(n), y(n-1), and y(n-2) are the rotations after adjusting the rotational speed of the motor at the current time, the last time, and the delay time, respectively. Speed; x(n), x(n-1), and x(n-2) are the rotational speeds before the adjustment of the rotational speed of the motor at the current time, the previous time, and the delay, respectively; a 0 , a 1, a 2, b 0 , b 1 and wherein said discrete transfer function are b 2 of the parameters;
  • the speed unit 42 is adapted to adjust the rotational speed of the motor based on the updated discrete transmission.
  • a X is the maximum value of the velocity component of the Fourier analysis data
  • frequency component f x is the maximum value of the velocity component in the Fourier analysis data corresponding
  • a t is the speed threshold
  • m is the Friedel a number of velocity components in the data analysis data that are greater than the velocity threshold
  • ⁇ f is a frequency domain resolution of the Fourier analysis data
  • the embodiment of the present invention further provides a motor, including the device for adjusting the rotational speed of the motor provided by any of the above embodiments, the device being disposed in a processor of the motor.
  • the device and the motor for adjusting the rotational speed of the motor are provided.
  • the rotational speed of the rotational speed sensor in the sampling motor is used to perform a butterfly operation on the rotational speed of the sampled motor to obtain a rotation.
  • the vibration condition in the speed, that is, the Fourier analysis data obtained by the operation, the discrete transfer function of the trap is constructed by the Fourier analysis data, that is, the parameter adjustment of the trap is completed, so that the trap can be applied to the motor
  • the fluctuation of the rotational speed of the motion of the driving system is suppressed, so that the speed fluctuation of the system motion is significantly reduced, and the motion is more stable.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

一种调整电机转速的方法,包括:采样电机的转动速度(S1);对采样到的转动速度进行蝶形运算,获得所述转动速度的傅里叶分析数据(S2);所述傅里叶分析数据包括组成所述转动速度的每一个频率分量的速度分量;据所述傅里叶分析数据,计算所述转动速度的波动分量具备的幅频特性参数(S3);根据所述幅频特性参数,调整所述电机的转动速度(S4);还涉及一种调整电机转速的装置和一种电机;能够在电机驱动系统运动时提高对路面平整度的抗干扰能力,保持系统运动的平稳。

Description

调整电机转速的方法和装置及电机 技术领域
本发明涉及电机驱动技术领域,尤其涉及一种调整电机转速的方法和装置及电机。
背景技术
随着技术的发展,鉴于无刷直流电机相对于传统的有刷直流电机具有运行噪声小、无电火花与长寿命等特点,且随着其控制技术的成熟、电子元器件的高集成与相关元器件的低成本化,已在各行各业应用中逐步取代有刷直流电机,并拓展了在有寿命、安全与噪声要求场景的应用。
针对移动机器人、自移动多媒体终端与电动轮椅等应用中,基于无刷直流电机解决方案已成为相关行业新的发展方向。但类似产品在移动过程中,路面的平整度会通过转速检测装置将干扰注入电器驱动系统的转速控制环节,并被控制系统放大,导致系统或产品存在高频噪声或者移动过程中整机移动速度波动大等问题,影响系统的移动效率与用户体感,更有可能加速老化或者破坏系统内部结构而导致安全问题。
由于成本问题,当前直流无刷电机驱动系统所采用的控制器计算能力不高,外设资源较为匮乏,没有对路面振动信号检测和诊断的硬件条件,导致系统缺乏对路面平整度的抗干扰能力,使产品或者系统在适应复杂的工作环境中一致性与可靠性较差。
发明内容
本发明实施例的目的是提出的一种调整电机转速的方法和装置以及一种电机,能够在电机驱动系统运动时提高对路面平整度的抗干扰能力,保持系统运动的平稳。
为实现上述目的,本发明实施例提供一种调整电机转速的方法,包括:
采样电机的转动速度;
对采样到的转动速度进行蝶形运算,获得所述转动速度的傅里叶分析数据;所述傅里叶分析数据包括组成所述转动速度的每一个频率分量的速度分量;
根据所述傅里叶分析数据,计算所述转动速度的波动分量具备的幅频特性参数;所述陷波器用于调整所述电机的转动速度;
根据所述幅频特性参数,调整所述电机的转动速度。
进一步地,所述对采样到的转动速度进行蝶形运算,具体为:
当采样到的转动速度的采样数量满足蝶形运算阈值时,对采样到的转动速度进行蝶形运算。
进一步地,所述根据所述傅里叶分析数据,计算所述转动速度的波动分量具备的幅频特性参数,具体为:
判断所述傅里叶分析数据中是否存在大于速度阈值的速度分量;
当所述傅里叶分析数据中存在大于所述速度阈值的速度分量时,根据所述傅里叶分析数据中的数值最大的速度分量及其对应的频率分量,计算出所述转动速度的波动分量具备的幅频特性参数中包含的弧度频率和衰减幅值;以及,根据所述傅里叶分析数据中的大于所述速度阈值的速度分量的数量和所述傅里叶分析数据的频域解析度,计算出所述波动分量具备的幅频特性参数中包含的弧度频率宽带;其中,所述傅里叶分析数据的频域解析度为所述傅里叶分析数据中相邻两个频率分量的频率差值。
进一步地,所述根据所述幅频特性参数,调整所述电机的转动速度,具体为:
根据所述幅频特性参数,更新所述电机的离散传函的特征参数;其中,所述离散传函为
Figure PCTCN2017104661-appb-000001
其中,n为当前时刻;y(n)、y(n-1)和y(n-2)分别为在当前时刻、上一时刻和延迟两个时刻对所述电机的转动速度调整后的转动速度;x(n)、x(n-1)和x(n-2)分别为在 当前时刻、上一时刻和延迟两个时刻对所述电机的转动速度调整前的转动速度;a0、a1、a2、b0、b1和b2均为所述离散传函的特征参数;
根据已更新的离散传函,调整所述电机的转动速度。
更进一步地,所述弧度频率为ω=π×fx,所述衰减幅值为Ab=AX-At,所述弧度频率宽带为bw=π×m×Δf;其中,AX为所述傅里叶分析数据中的数值最大的速度分量;fx为所述傅里叶分析数据中的数值最大的速度分量对应的频率分量;At为所述速度阈值;m为所述傅里叶分析数据中的大于所述速度阈值的速度分量的数量;Δf为所述傅里叶分析数据的频域解析度。
则,所述特征参数为a0=1;a1=-2*gain*cos(ω0);a2=2*gain-1;b0=gain;b1=-2*gain*cos(ω0);b2=gain;以及,
Figure PCTCN2017104661-appb-000002
Figure PCTCN2017104661-appb-000003
相应地,本发明实施例还提供一种调整电机转速的装置,包括:
速度采样模块,用于采样电机的转动速度;
蝶形运算模块,用于对采样到的转动速度进行蝶形运算,获得所述转动速度的傅里叶分析数据;所述傅里叶分析数据包括组成所述转动速度的每一个频率分量的速度分量;
幅频参数计算模块,用于根据所述傅里叶分析数据,计算所述转动速度的波动分量具备的幅频特性参数;
转动速度调整模块,用于根据所述幅频特性参数,调整所述电机的转动速度。
进一步地,所述蝶形运算模块具体用于当采样到的转动速度的采样数量满足蝶形运算阈值时,对采样到的转动速度进行蝶形运算。
进一步地,所述幅频参数计算模块,包括:
速度分量判断单元,用于判断所述傅里叶分析数据中是否存在大于速度阈值的速度分量;
计算单元,用于当所述傅里叶分析数据中存在大于所述速度阈值的速度分量时,根据所述傅里叶分析数据中的数值最大的速度分量及其对应的频率分量,计算出所述转动速度的波动分量具备的幅频特性参数中包含的弧度频率和衰减幅值;以及,根据所述傅里叶分析数据中的大于所述速度阈值的速度分量的数量和所述傅里叶分析数据的频域解析度,计算出所述波动分量具备的幅频特性参数中包含的弧度频率宽带;其中,所述傅里叶分析数据的频域解析度为所述傅里叶分析数据中相邻两个频率分量的频率差值。
进一步地,所述转动速度调整模块包括:
离散传函更新单元,用于根据所述幅频特性参数,更新所述电机的离散传函的特征参数;其中,所述离散传函为
Figure PCTCN2017104661-appb-000004
其中,n为当前时刻;y(n)、y(n-1)和y(n-2)分别为在当前时刻、上一时刻和延迟两个时刻对所述电机的转动速度调整后的转动速度;x(n)、x(n-1)和x(n-2)分别为在当前时刻、上一时刻和延迟两个时刻对所述电机的转动速度调整前的转动速度;a0、a1、a2、b0、b1和b2均为所述离散传函的特征参数;
调整速度单元,用于根据已更新的离散传函,调整所述电机的转动速度。
本发明实施例还提供一种电机,包括以上实施例提供的任一项所述的调整电机转速的装置。
实施本发明实施例,具有如下有益效果:
本发明实施例提供的一种调整电机转速的方法和装置以及一种电机,能够在电机驱动系统在路面运动时,通过采样电机中的转速传感器的转动速度,对采样到的电机的转动速度进行蝶形运算获取转动速度中的振动情况,即运算得到的傅里叶分析数据,通过该傅里叶分析数据对调整电机的转动速度的离散传函进行构建,即完成陷波器的参数调整,使得陷波器能够对电机驱动系统运动的转动速度波动分量进行抑制,使得系统运动的速度波动明显减少,运动得更加稳健。
附图说明
图1是本发明提供的调整电机转速的方法的一个实施例的流程示意图;
图2是本发明提供的调整电机转速的方法的蝶形运算输出的傅里叶频谱图;
图3是本发明提供的调整电机转速的装置的一个实施例的结构示意图;
图4是本发明提供的调整电机转速的装置的幅频参数计算模块的一个实施例的结构示意图;
图5是本发明提供的调整电机转速的装置的转动速度调整模块的一个实施例的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图1,是本发明提供的调整电机转速的方法的一个实施例的流程示意图;本发明实施例提供一种调整电机转速的方法,包括步骤S1至步骤S4:
S1,采样电机的转动速度。
需要说明的是,设置转速传感器附加在电机,用于检测电机的转动速度,即通过转速传感器采样电机的转动速度,所述转速传感器优选为霍尔传感器,除了采用霍尔传感器外,也适用于采用增量式编码器、绝对式光电编码器或旋转变压器进行速度检测。
S2,对采样到的转动速度进行蝶形运算,获得所述转动速度的傅里叶分析数据;所述傅里叶分析数据包括组成所述转动速度的每一个频率分量的速度分量。
需要说明的是,每个采样的到转动速度的采样数量满足一次碟形运算的需求,才对该次采样到的转动速度进行蝶形运算,具体地:
判断所采样到的转动速度的采样数量是否满足蝶形运算阈值;
若是,则对所述采样到的转动速度进行蝶形运算;
若否,则返回步骤S1继续采样电机的转动速度。
通过上述蝶形运算,实现对由采样到的转动速度的信号的快速傅里叶分析,并输出傅里叶分析数据,该数据可以频谱图来展示,如图2所示,图2是本发明提供的调整电机转速的方法的蝶形运算输出的傅里叶频谱图,该频谱图中幅值表示上述进行蝶形运算的转动速度信号中的一个频率分量的速度分量。
S3,根据所述傅里叶分析数据,计算所述转动速度的波动分量具备的幅频特性参数;在本发明实施例中,优选设置陷波器来调整所述电机的转动速度,那么转动速度的波动分量具备的幅频特性参数相当于陷波器工作的幅频特性参数。
需要说明的是,根据所述傅里叶分析数据包括的组成所述转动速度的每一个频率分量,可计算出所述傅里叶分析数据中的数值最大的速度分量AX、所述傅里叶分析数据中的数值最大的速度分量对应的频率分量fx、所述傅里叶分析数据中的大于所述速度阈值的速度分量的数量m以及所述傅里叶分析数据的频域解析度Δf,所述傅里叶分析数据的频域解析度Δf为所述傅里叶分析数据中相邻两个频率分量的频率差值,即如图2所示的频谱图中的谱线的密度。
在系统运动过程,根据路面情况设置对速度信号中进行碟形运算后所获的频率分量对应的速度分量的最大值为速度阈值At,那么以上述AX、fx、m、Δf,描述计算所述电机的陷波器的幅频特性参数的具体过程:
判断所述傅里叶分析数据中是否存在大于速度阈值At的速度分量。
当所述傅里叶分析数据中存在大于所述速度阈值的速度分量时,根据所述傅里叶分析数据中的数值最大的速度分量AX及其对应的频率分量fx,计算出所述转动速度的波动分量具备的幅频特性参数中包含的弧度频率ω=π×fx和衰减幅值Ab=AX-At;根据所述傅里叶分析数据中的大于所述速度阈值的速度分量的数量和所述傅里叶分析数据的频域解析度Δf,计算出所述波动分量具备的幅频特性参数中包含的弧度频率宽带bw=π×m×Δf。
作为本发明实施例的进一步改进,当所述傅里叶分析数据中不存在大于所述速度阈值的速度分量时,则无须计算所述陷波器的幅频特性参数,直接生成所述幅频特性参数为空集。
S4,根据所述幅频特性参数,调整所述电机的转动速度。
对于步骤S4的具体实施过程可为:
根据所述幅频特性参数,更新所述电机的离散传函的特征参数;
根据已更新的离散传函,调整所述电机的转动速度。
需要说明的是,陷波器为设置在电机中对电机的转动速度的波动分量进行过滤的装置,陷波器调速过程依据离散传函进行调整,本发明实施例优选的陷波器的离散传函为:
Figure PCTCN2017104661-appb-000005
其中,n为当前时刻;y(n)、y(n-1)和y(n-2)分别为在当前时刻、上一时刻和延迟两个时刻对所述电机的转动速度调整后的转动速度;x(n)、x(n-1)和x(n-2)分别为在当前时刻、上一时刻和延迟两个时刻对所述电机的转动速度调整前的转动速度;a0、a1、a2、b0、b1和b2均为所述离散传函的特征参数。
其中,根据所述幅频特性参数,更新所述电机的离散传函的特征参数,具体为:a0=1;a1=-2*gain*cos(ω0);a2=2*gain-1;b0=gain;b1=-2*gain*cos(ω0);b2=gain;以及,
Figure PCTCN2017104661-appb-000006
Figure PCTCN2017104661-appb-000007
在电机修正所述离散传函的特征参数之后,电机利用陷波器对电机的当前时刻的转动速度的调整过程,具体为:以当前时刻n为基准,获取在上一时刻n-1的所述电机的被所述陷波器调整后的实际转动速度y(n-1)和延迟两个时刻n-2的所述电机的被所述陷波器调整后的实际转动速度y(n-2),以及获取当前时刻n、上一时刻n-1和延迟两个时刻n-2的所述电机被所述陷波器调整前的待转动速度x(n)、x(n-1)和x(n-2),将获取得数据x(n)、x(n-1)、x(n-2)、 y(n-1)和y(n-2)输入公式
Figure PCTCN2017104661-appb-000008
获得电机将要转动的实际转动速度y(n),控制器控制电机的转动速度为y(n),从而达到电机当前时候的待转动速度x(n)的波动部分进行抑制,使得电机以抑制后的实际转动速度y(n)进行转动。
作为本发明实施例的进一步改进,在步骤S4中,当所述幅频特性参数为空集时,直接设置离散传函的特征参数为:a0=1、a1=0、a2=0、b0=1、b1=0和b2=0,即可完成离散传函的更新。此设置的目的是,当所述傅里叶分析数据中不存在大于所述速度阈值的速度分量时,则说明此时电机的转动速度驱动系统运动的过程处于平稳状态,无需对当前时刻的电机的转动速度进行调整,因而,通过设置上述离散传函的参数即可使得陷波器的输入端和陷波器的输出端的数值相同,即陷波器没有对当前时刻的电机的转动速度进行调整。
本发明实施例提供的一种调整电机转速的方法,在电机驱动系统在路面运动时,通过采样电机中的转速传感器的转动速度,对采样到的电机的转动速度进行蝶形运算获取转动速度中的振动情况,即运算得到的傅里叶分析数据,通过该傅里叶分析数据对陷波器的离散传函进行构建,即完成陷波器的参数调整,使得陷波器能够对电机驱动系统运动的转动速度波动部分进行抑制,使得系统运动的速度波动明显减少,运动得更加稳健。
参见图3,是本发明提供的调整电机转速的装置的一个实施例的结构示意图,该装置能够实施上述实施例提供的调整电机转速的方法的全部流程,该装置具体包括:
速度采样模块10,用于采样电机的转动速度;
蝶形运算模块20,用于对采样到的转动速度进行蝶形运算,获得所述转动速度的傅里叶分析数据;所述傅里叶分析数据包括组成所述转动速度的每一个频率分量的速度分量;
幅频参数计算模块30,用于根据所述傅里叶分析数据,计算所述转动速度 的波动分量具备的幅频特性参数;
转动速度调整模块40,用于根据所述幅频特性参数,调整所述电机的转动速度。
进一步地,所述蝶形运算模块20,具体用于当采样到的转动速度的采样数量满足蝶形运算阈值时,对采样到的转动速度进行蝶形运算。
进一步地,参见图4,是本发明提供的调整电机转速的装置的幅频参数计算模块的一个实施例的结构示意图,所述幅频参数计算模块30,包括:
速度分量判断单元31,用于判断所述傅里叶分析数据中是否存在大于速度阈值的速度分量;
计算单元32,用于当所述傅里叶分析数据中存在有大于速度阈值的速度分量时,根据所述傅里叶分析数据中的数值最大的速度分量及其对应的频率分量,计算出所述转动速度的波动分量具备的幅频特性参数中包含的弧度频率和衰减幅值;根据所述傅里叶分析数据中的大于所述速度阈值的速度分量的数量和所述傅里叶分析数据的频域解析度,计算出所述波动分量具备的幅频特性参数中包含的弧度频率宽带;其中,所述傅里叶分析数据的频域解析度为所述傅里叶分析数据中相邻两个频率分量的频率差值。
进一步地,参见图5,是本发明提供的调整电机转速的装置的转动速度调整模块的一个实施例的结构示意图,所述转动速度调整模块40包括:
离散传函更新单元41,用于根据所述幅频特性参数,更新所述电机的离散传函的特征参数;其中,所述离散传函为
Figure PCTCN2017104661-appb-000009
其中,n为当前时刻;y(n)、y(n-1)和y(n-2)分别为在当前时刻、上一时刻和延迟两个时刻对所述电机的转动速度调整后的转动速度;x(n)、x(n-1)和x(n-2)分别为在当前时刻、上一时刻和延迟两个时刻对所述电机的转动速度调整前的转动速度;a0、a1、a2、b0、b1和b2均为所述离散传函的特征参数;
调整速度单元42,用于根据已更新的离散传函,调整所述电机的转动速度。
进一步地,所述弧度频率为ω=π×fx,所述衰减幅值为Ab=AX-At,所述弧度频率宽带为bw=π×m×Δf;其中,AX为所述傅里叶分析数据中的数值最大的速度分量;fx为所述傅里叶分析数据中的数值最大的速度分量对应的频率分量;At为所述速度阈值;m为所述傅里叶分析数据中的大于所述速度阈值的速度分量的数量;Δf为所述傅里叶分析数据的频域解析度;
则,所述特征参数为a0=1;a1=-2*gain*cos(ω0);a2=2*gain-1;b0=gain;b1=-2*gain*cos(ω0);b2=gain;其中,
Figure PCTCN2017104661-appb-000010
Figure PCTCN2017104661-appb-000011
进一步地,所述离散传函更新单元还用于当所述傅里叶分析数据中不存在大于所述速度阈值的速度分量时,设置所述离散传函的特征参数为:a0=1、a1=0、a2=0、b0=1、b1=0和b2=0。
以及,本发明实施例还提供一种电机,包括以上任一实施例提供的调整电机转速的装置,该装置设置在电机的处理器当中。
实施本发明实施例,具有如下有益效果:
本发明实施例提供的一种调整电机转速的装置及电机,在电机驱动系统在路面运动时,通过采样电机中的转速传感器的转动速度,对采样到的电机的转动速度进行蝶形运算获取转动速度中的振动情况,即运算得到的傅里叶分析数据,通过该傅里叶分析数据对陷波器的离散传函进行构建,即完成陷波器的参数调整,使得陷波器能够对电机驱动系统运动的转动速度波动部分进行抑制,使得系统运动的速度波动明显减少,运动得更加稳健。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

  1. 一种调整电机转速的方法,其特征在于,包括:
    采样电机的转动速度;
    对采样到的转动速度进行蝶形运算,获得所述转动速度的傅里叶分析数据;所述傅里叶分析数据包括组成所述转动速度的每一个频率分量的速度分量;
    根据所述傅里叶分析数据,计算所述转动速度的波动分量具备的幅频特性参数;
    根据所述幅频特性参数,调整所述电机的转动速度。
  2. 如权利要求1所述的调整电机转速的方法,其特征在于,所述对采样到的转动速度进行蝶形运算,具体为:
    当采样到的转动速度的采样数量满足蝶形运算阈值时,对采样到的转动速度进行蝶形运算。
  3. 如权利要求1所述的调整电机转速的方法,其特征在于,所述根据所述傅里叶分析数据,计算所述转动速度的波动分量具备的幅频特性参数,具体为:
    判断所述傅里叶分析数据中是否存在大于速度阈值的速度分量;
    当所述傅里叶分析数据中存在大于所述速度阈值的速度分量时,根据所述傅里叶分析数据中的数值最大的速度分量及其对应的频率分量,计算出所述转动速度的波动分量具备的幅频特性参数中包含的弧度频率和衰减幅值;以及,根据所述傅里叶分析数据中的大于所述速度阈值的速度分量的数量和所述傅里叶分析数据的频域解析度,计算出所述波动分量具备的幅频特性参数中包含的弧度频率宽带;其中,所述傅里叶分析数据的频域解析度为所述傅里叶分析数据中相邻两个频率分量的频率差值。
  4. 如权利要求3所述的调整电机转速的方法,其特征在于,所述根据所述幅频特性参数,调整所述电机的转动速度,具体为:
    根据所述幅频特性参数,更新所述电机的离散传函的特征参数;其中,所述离散传函为
    Figure PCTCN2017104661-appb-100001
    其中,n为当前时刻;y(n)、y(n-1)和y(n-2)分别为在当前时刻、上一时刻和延迟两个时刻对所述电机的转动速度调整后的转动速度;x(n)、x(n-1)和x(n-2)分别为在当前时刻、上一时刻和延迟两个时刻对所述电机的转动速度调整前的转动速度;a0、a1、a2、b0、b1和b2均为所述离散传函的特征参数;
    根据已更新的离散传函,调整所述电机的转动速度。
  5. 如权利要求4所述的调整电机转速的方法,其特征在于,所述弧度频率为ω=π×fx,所述衰减幅值为Ab=AX-At,所述弧度频率宽带为bw=π×m×Δf;其中,AX为所述傅里叶分析数据中的数值最大的速度分量;fx为所述傅里叶分析数据中的数值最大的速度分量对应的频率分量;At为所述速度阈值;m为所述傅里叶分析数据中的大于所述速度阈值的速度分量的数量;Δf为所述傅里叶分析数据的频域解析度;
    则,所述特征参数为a0=1;a1=-2*gain*cos(ω0);a2=2*gain-1;b0=gain;b1=-2*gain*cos(ω0);b2=gain;其中,
    Figure PCTCN2017104661-appb-100002
    Figure PCTCN2017104661-appb-100003
  6. 一种调整电机转速的装置,其特征在于,包括:
    速度采样模块,用于采样电机的转动速度;
    蝶形运算模块,用于对采样到的转动速度进行蝶形运算,获得所述转动速度的傅里叶分析数据;所述傅里叶分析数据包括组成所述转动速度的每一个频率分量的速度分量;
    幅频参数计算模块,用于根据所述傅里叶分析数据,计算转动速度的波动分量具备的幅频特性参数;
    转动速度调整模块,用于根据所述幅频特性参数,调整所述电机的转动速度。
  7. 如权利要求6所述的调整电机转速的装置,其特征在于,所述蝶形运算模块,具体用于当采样到的转动速度的采样数量满足蝶形运算阈值时,对采样到的转动速度进行蝶形运算。
  8. 如权利要求6所述的调整电机转速的装置,其特征在于,所述幅频参数计算模块,包括:
    速度分量判断单元,用于判断所述傅里叶分析数据中是否存在大于速度阈值的速度分量;
    计算单元,用于当所述傅里叶分析数据中存在大于所述速度阈值的速度分量时,根据所述傅里叶分析数据中的数值最大的速度分量及其对应的频率分量,计算出所述转动速度的波动分量具备的幅频特性参数中包含的弧度频率和衰减幅值;以及,根据所述傅里叶分析数据中的大于所述速度阈值的速度分量的数量和所述傅里叶分析数据的频域解析度,计算出所述波动分量具备的幅频特性参数中包含的弧度频率宽带;其中,所述傅里叶分析数据的频域解析度为所述傅里叶分析数据中相邻两个频率分量的频率差值。
  9. 如权利要求8所述的调整电机转速的装置,其特征在于,所述转动速度调整模块包括:
    离散传函更新单元,用于根据所述幅频特性参数,更新所述电机的离散传函的特征参数;其中,所述离散传函为
    Figure PCTCN2017104661-appb-100004
    其中,n为当前时刻;y(n)、y(n-1)和y(n-2)分别为在当前时刻、上一时刻和延迟两个时刻对所述电机的转动速度调整后的转动速度;x(n)、x(n-1)和x(n-2)分别为在当前时刻、上一时刻和延迟两个时刻对所述电机的转动速度调整前的转动速度;a0、a1、a2、 b0、b1和b2均为所述离散传函的特征参数;
    调整速度单元,用于根据已更新的离散传函,调整所述电机的转动速度。
  10. 一种电机,其特征在于,包括如权利要求6至9任一项所述的调整电机转速的装置。
PCT/CN2017/104661 2017-05-12 2017-09-29 调整电机转速的方法和装置及电机 WO2018205489A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710341566.4 2017-05-12
CN201710341566.4A CN107302327B (zh) 2017-05-12 2017-05-12 调整电机转速的方法和装置及电机

Publications (1)

Publication Number Publication Date
WO2018205489A1 true WO2018205489A1 (zh) 2018-11-15

Family

ID=60137354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104661 WO2018205489A1 (zh) 2017-05-12 2017-09-29 调整电机转速的方法和装置及电机

Country Status (2)

Country Link
CN (1) CN107302327B (zh)
WO (1) WO2018205489A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110319798B (zh) * 2019-07-02 2022-03-11 哈尔滨工业大学 用于检测电机安装故障的方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070205740A1 (en) * 2004-06-16 2007-09-06 Kabushiki Kaisha Yaskawa Denki Method of automatically setting vibration suppression filter and automatic setting apparatus for vibration suppression filter
CN103269200A (zh) * 2013-05-30 2013-08-28 西安空间无线电技术研究所 一种星载大惯量负载机构高稳速驱动控制方法
CN104601074A (zh) * 2015-02-25 2015-05-06 刘岩 一种基于均方根解调的电机转速测算方法
CN105305920A (zh) * 2015-11-19 2016-02-03 上海无线电设备研究所 一种抑制交流伺服系统扭转振动的系统及其方法
CN105375850A (zh) * 2015-12-24 2016-03-02 南京埃斯顿自动控制技术有限公司 一种电机振动抑制的控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4273560B2 (ja) * 1999-03-23 2009-06-03 パナソニック株式会社 モータの制御装置
JP4170039B2 (ja) * 2002-07-25 2008-10-22 東芝エレベータ株式会社 電動機制御装置
JP2005247574A (ja) * 2004-03-08 2005-09-15 Mitsubishi Electric Corp エレベータ制御装置
CN104362929B (zh) * 2014-12-09 2016-09-14 哈尔滨工业大学 机电伺服系统谐振在线识别及动态抑制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070205740A1 (en) * 2004-06-16 2007-09-06 Kabushiki Kaisha Yaskawa Denki Method of automatically setting vibration suppression filter and automatic setting apparatus for vibration suppression filter
CN103269200A (zh) * 2013-05-30 2013-08-28 西安空间无线电技术研究所 一种星载大惯量负载机构高稳速驱动控制方法
CN104601074A (zh) * 2015-02-25 2015-05-06 刘岩 一种基于均方根解调的电机转速测算方法
CN105305920A (zh) * 2015-11-19 2016-02-03 上海无线电设备研究所 一种抑制交流伺服系统扭转振动的系统及其方法
CN105375850A (zh) * 2015-12-24 2016-03-02 南京埃斯顿自动控制技术有限公司 一种电机振动抑制的控制方法

Also Published As

Publication number Publication date
CN107302327B (zh) 2019-07-16
CN107302327A (zh) 2017-10-27

Similar Documents

Publication Publication Date Title
CN107482977B (zh) 一种永磁同步电机转子位置和转速检测方法
TWI307574B (en) Motor controlling device
WO2018205490A1 (zh) 控制机器人转动关节运动的方法和装置及机器人
JP2007156699A (ja) モータの負荷イナーシャ推定方法
CN104638999B (zh) 基于分段神经网络摩擦模型的双电机伺服系统控制方法
US20120239391A1 (en) Automatic equalization of coloration in speech recordings
CN1542744A (zh) 盘驱动器中具有干扰补偿的头定位方法及装置
WO2022179287A1 (zh) 车辆防抖方法、装置、存储介质及系统
WO2018205489A1 (zh) 调整电机转速的方法和装置及电机
TW202121826A (zh) 馬達控制裝置及其自動調整方法
CN110569767B (zh) 运动参数识别方法、系统、设备及计算机可读存储介质
Vazquez‐Gutierrez et al. Evaluation of three optical‐encoder‐based speed estimation methods for motion control.
WO2018014631A1 (zh) 一种峰值功率、峰均值功率比的确定方法及装置
US10761507B2 (en) Instant correction method for encoder and system thereof
CN108429504B (zh) 一种基于低成本位置传感器的开关磁阻电机转矩控制方法
CN107093970A (zh) 一种无位置传感器的永磁同步电机控制方法及装置
CN107769655B (zh) 永磁同步电机转速估算方法、装置、计算设备及存储介质
CN107404274B (zh) 一种基于开环电压检测pmsm转子零位的方法
CN109029696A (zh) 共振检测方法、装置及存储介质
CN113839605B (zh) 电机转速控制方法及装置
US12028003B2 (en) Torque estimation method, torque estimation device, and torque estimation program
JP2008145374A (ja) 機械系の振動特性検出装置
CN112152522B (zh) 一种电机全速范围无位置传感器交互多模型控制方法
US20220236229A1 (en) Rotational speed detecting device
TWI812482B (zh) 旋轉機械系統與平衡方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/06/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17909428

Country of ref document: EP

Kind code of ref document: A1