WO2018205255A1 - 一种支持混合自动重传请求的用户设备、基站中的方法和装置 - Google Patents

一种支持混合自动重传请求的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2018205255A1
WO2018205255A1 PCT/CN2017/084137 CN2017084137W WO2018205255A1 WO 2018205255 A1 WO2018205255 A1 WO 2018205255A1 CN 2017084137 W CN2017084137 W CN 2017084137W WO 2018205255 A1 WO2018205255 A1 WO 2018205255A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit
wireless signal
bits
signaling
bit blocks
Prior art date
Application number
PCT/CN2017/084137
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
南通朗恒通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通朗恒通信技术有限公司 filed Critical 南通朗恒通信技术有限公司
Priority to PCT/CN2017/084137 priority Critical patent/WO2018205255A1/zh
Priority to CN201780088317.7A priority patent/CN110463094B/zh
Priority to CN202210650669.XA priority patent/CN115225204B/zh
Publication of WO2018205255A1 publication Critical patent/WO2018205255A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1874Buffer management

Definitions

  • the present application relates to transmission schemes in wireless communication systems, and more particularly to methods and apparatus for data transmission in a process of supporting hybrid automatic repeat requests.
  • NR new air interface technology
  • WI Working Item
  • HARQ Hybrid Automatic Repeat Request
  • data retransmission designs such as support.
  • CB Code Block
  • CBG Code Block Group
  • the features in the embodiments and embodiments in the User Equipment (UE) of the present application can be applied to the base station, and vice versa. Further, the features of the embodiments and the embodiments of the present application may be combined with each other arbitrarily without conflict.
  • UE User Equipment
  • the present application discloses a method in a user equipment for wireless communication, which includes:
  • X1 bit blocks are used to generate the first wireless signal, the X1 is a positive integer greater than 1, and each of the X1 bit blocks includes a positive integer number of bits, the X1 bits The blocks belong to the same transport block; only X2 of the X1 bit blocks are used to generate the second radio signal, the X2 being a positive integer less than the X1; ⁇ X2, the At least one of the first signalings is used to determine X2 cache sizes, the X2 cache sizes being in one-to-one correspondence with the X2 bit blocks.
  • the method has the advantages that the buffering resource according to the coding block (CB, code block) or the coding block group (CBG, code block group) level is based on the retransmitted coding block or coding block.
  • the number of groups is redistributed between coding blocks of each initial transmission and retransmission, increasing the number of incremental redundancy bits in rate matching and improving the coding gain of retransmission.
  • the method has the advantages that the network configuration of the coded block of the HARQ retransmission or the buffer resource of the coded block group is performed by using the first signaling, so that the cache can be dynamically and flexibly allocated for each coding block.
  • the effect of resources increase the utilization of cache resources, and improve transmission performance.
  • the caches corresponding to the X2 cache sizes are respectively reserved for the X2 of the bit blocks.
  • the X2 cache sizes are only for the second wireless signal.
  • the X2 cache sizes are for all wireless signals transmitting the X2 bit blocks.
  • each of the X1 bit blocks is a code block (CB).
  • each of the X1 bit blocks is a Code Block Group (CBG).
  • CBG Code Block Group
  • one of the X1 bit blocks includes a number of bits not greater than K, the K is a predefined positive integer; or the K is a transmission to which the bit block belongs The number of bits included in the block is related.
  • the X1 bit block is obtained by segmentation of a transport block (TB).
  • TB transport block
  • the number of bits included in any two of the X1 bit blocks equal.
  • the number of bits included in the two bit blocks in the X1 bit blocks is not equal.
  • the X1 bit blocks are sequentially added by CRC (Cyclic Redundancy Check), channel coding, rate matching, and concatenation to obtain a first output.
  • CRC Cyclic Redundancy Check
  • a bit block the first output bit block is sequentially subjected to scrambling, a modulation mapper, a layer mapper, a precoding, and a resource element mapper.
  • the first wireless signal is obtained after OFDM signal generation.
  • any two of the X2 bit blocks include the same number of bits.
  • the number of bits included in the two bit blocks in the X2 bit blocks is not equal.
  • the X2 bit blocks are sequentially added by CRC (Cyclic Redundancy Check), channel coding, rate matching, and concatenation to obtain a second output.
  • CRC Cyclic Redundancy Check
  • a bit block the second output bit block is sequentially subjected to scrambling, a modulation mapper, a layer mapper, a precoding, and a resource element mapper.
  • the second wireless signal is obtained after OFDM signal generation.
  • the first wireless signal is transmitted through a DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the first wireless signal is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the first wireless signal is transmitted by using a NR-PDSCH (New Radio Physical Downlink Shared Channel).
  • NR-PDSCH New Radio Physical Downlink Shared Channel
  • the second wireless signal is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the second wireless signal is transmitted by using a NR-PDSCH (New Radio Physical Downlink Shared Channel).
  • NR-PDSCH New Radio Physical Downlink Shared Channel
  • the first wireless signal and the second wireless signal belong to a same HARQ (Hybrid Automatic Repeat Request) process.
  • HARQ Hybrid Automatic Repeat Request
  • the first wireless signal is an initial transmission of a HARQ process.
  • the second wireless signal is a retransmission of a HARQ process.
  • the first wireless signal is a retransmission of a HARQ process.
  • the method further includes:
  • the third signaling is used to determine scheduling information of the first wireless signal, where the scheduling information includes ⁇ occupied time domain resources, occupied frequency domain resources, associated HARQ process numbers, MCS, At least one of RV ⁇ .
  • any two of the X2 cache sizes are the same size.
  • the cache size refers to the number of bits in soft buffer bits.
  • the first signaling is physical layer signaling.
  • the first signaling is DCI (Downlink Control Information).
  • the first signaling is transmitted by using a PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the first signaling is transmitted by using an NR-PDCCH (New Radio Physical Downlink Control Channel).
  • NR-PDCCH New Radio Physical Downlink Control Channel
  • At least one of ⁇ the X2, the first signaling ⁇ is used by the user equipment to determine the X2 cache sizes.
  • the method is characterized in that the first bit block is one of the X2 bit blocks, and a buffer size corresponding to the first bit block in the X2 cache sizes is used. Determining a number of bits in the target bit block, the target bit block including an output bit of the first bit block channel-coded in the second wireless signal and the first in the first wireless signal A bit block is an incremental redundant bit compared to a channel coded output bit, the target bit block comprising a non-negative integer number of bits.
  • the channel coding is LDPC (Low Density Parity Check Code) coding.
  • the channel coding is Turbo coding.
  • the channel coding is a Convolutional code.
  • the channel coding is a polar code.
  • the Incremental Redundancy bits include Parity Bits.
  • the Incremental Redundancy bits include Parity Bits and information bits.
  • the incremental redundancy bits are incremental outputs based on the existing output of the channel coding.
  • a buffer size corresponding to the first bit block in the X2 cache sizes is used by the user equipment to determine the number of bits in the target bit block.
  • a buffer size corresponding to the first bit block in the X2 cache sizes is used by a sender of the second wireless signal to determine a quantity of bits in the target bit block.
  • the above method is characterized by further comprising:
  • the second signaling is used to determine the X2 bit blocks.
  • the second signaling is used to determine the X2 of the bit blocks in the X1 bit blocks.
  • the second signaling indicates that the X2 bit blocks are erroneously coded.
  • the second signaling indicates that X3 bit blocks in the X1 bit block are erroneously coded, and the X3 bit blocks are used to determine the X2 bit blocks, where X3 is Not a positive integer greater than X1.
  • the second signaling indicates that X3 bit blocks in the X1 bit block are erroneously coded, and the X3 bit blocks include the X2 bit blocks, where the X3 is not greater than The positive integer of X1.
  • the second signaling is used by a receiver of the second signaling to determine the X2 bit blocks.
  • the second signaling includes ACK/NACK information of each of the X1 bit blocks.
  • the second signaling is physical layer signaling.
  • the second signaling is UCI (Uplink Control Information).
  • the second signaling is transmitted through a PUCCH (Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel
  • the second signaling is carried by a PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the above method is characterized in that said first signaling is used to determine said X2 bit blocks.
  • the second signaling indicates that X3 bit blocks in the X1 bit blocks are erroneously coded, and the first signaling indicates the X2 bit blocks from the X3 bit blocks.
  • the first signaling indicates the X2 bit blocks from the X1 bit blocks.
  • the first signaling is used by the user equipment to determine the X2 bit blocks.
  • the first signaling indicates an index of the X2 bit blocks.
  • the method is characterized in that the first signaling is used to determine scheduling information of the second wireless signal, where the scheduling information includes ⁇ occupied time domain resources, occupied frequencies At least one of a domain resource, a hybrid automatic repeat request process number, a modulation and coding scheme, and a redundancy version, the redundancy version is used to determine that the target bit block is channel-coded in the first bit block The position in the output bit.
  • the Hybrid Automatic Repeat Request (HARQ) process number is an integer.
  • the redundancy version (RV, Redundancy Version) indicates a position of a start bit of the target bit block in a channel coded output bit of the first bit block.
  • the redundancy version indicates a location of a start bit of the target bit block in a circular buffer, and a position of the start bit of the target bit block in a circular buffer Used to determine a position in the output bits of the first bit block that is channel coded.
  • the target bit block is a circular buffer indicated from the redundancy version
  • the start bit in the middle consists of bits that are sequentially read starting at rate matching.
  • the Modulation Coding Scheme includes one of ⁇ QPSK, 16QAM, 64QAM, 256QAM, and 1024QAM ⁇ .
  • the redundancy version is used by the user equipment to determine a location of the target bit block in a channel coded output bit of the first bit block.
  • the above method is characterized by further comprising:
  • the first information is used to determine configuration information of a receiver of the first information, where the configuration information includes: a transmission mode in which the maximum multi-input output layer supported, the maximum supported At least one of a number of downlink hybrid automatic repeat request processes, a set of supported modulation and coding modes, ⁇ a cache capacity of the receiver of the first information, and configuration information of the receiver of the first information ⁇ is used to determine the sum of the X2 cache sizes.
  • the method further includes:
  • the second information indicates the buffer capacity of the recipient of the first information.
  • one of ⁇ X1 the number of bits included in the X1 bit block ⁇ is also used to determine the sum of the X2 cache sizes.
  • the transmission mode (TM) includes a diversity-based transmission mode and a beamforming based transmission mode.
  • the transmission mode (TM) includes a single antenna transmission mode.
  • the maximum number of MIMO layers supported includes at least one of ⁇ 1, 2, 4, 8, 16 ⁇ .
  • the maximum number of MIMO layers supported includes layers of analog beams and layers of digital beams.
  • the buffer capacity of the receiver of the first information is the number of bits in the soft channel bits of the receiver of the first information.
  • the receiver capability information of the first information includes the first The cache capacity information of the recipient of a message.
  • ⁇ the cache capacity of the receiver of the first information, the configuration information of the receiver of the first information ⁇ is used by the user equipment to determine the X2 The sum of the cache sizes.
  • the size of the buffers only X2 for the second wireless signal the lower the sum of the size of buffers X2 N IR obtained by the formula:
  • N soft is the buffer capacity of the receiver of the first information
  • K C is a value related to N soft
  • K C is the number of configured carriers
  • K MIMO is the number
  • M DL_HARQ is the maximum number of downlink HARQ processes supported by the receiver of the first information
  • M limit is a predefined value (such as 8) or
  • the N initial is the total number of bits of the X1 bit block that is channel-encoded for the wireless signal before the second wireless signal.
  • the sum N IR of the X2 cache sizes is obtained by:
  • N soft is the buffer capacity of the receiver of the first information
  • K C is a value related to N soft
  • K C is the number of configured carriers
  • K MIMO is the number
  • M DL_HARQ is the maximum number of downlink HARQ processes supported by the receiver of the first information
  • M limit is a predefined value (such as 8) or
  • the N initial_remain is configured to be a total number of bits of the X-th bit of the X1 bit blocks that are channel-encoded for the wireless signal before the second wireless signal.
  • the X2 cache sizes are all equal, and any of the X2 cache sizes N cb is obtained by:
  • N IR is the sum of the X2 cache sizes
  • K w is the length of the circular buffer.
  • the above method is characterized in that said first signaling indicates at least one of ⁇ said X2, said X2 cache sizes ⁇ .
  • the first signaling explicitly indicates at least the latter of ⁇ the X2, the X2 cache sizes ⁇ .
  • the first signaling implicitly indicates at least the latter of ⁇ the X2, the X2 cache sizes ⁇ .
  • the present invention discloses a method in a base station device for wireless communication, which includes:
  • X1 bit blocks are used to generate the first wireless signal, the X1 is a positive integer greater than 1, and each of the X1 bit blocks includes a positive integer number of bits, the X1 bits The blocks belong to the same transport block; only X2 of the X1 bit blocks are used to generate the second radio signal, the X2 being a positive integer less than the X1; ⁇ X2, the At least one of the first signalings is used to determine X2 cache sizes, the X2 cache sizes being in one-to-one correspondence with the X2 bit blocks.
  • the method is characterized in that the first bit block is one of the X2 bit blocks, and a buffer size corresponding to the first bit block in the X2 cache sizes is used. Determining a number of bits in the target bit block, the target bit block including an output bit of the first bit block channel-coded in the second wireless signal and the first in the first wireless signal A bit block is an incremental redundant bit compared to a channel coded output bit, the target bit block comprising a non-negative integer number of bits.
  • the above method is characterized by further comprising:
  • the second signaling is used to determine the X2 bit blocks.
  • the above method is characterized in that said first signaling is used to determine said X2 bit blocks.
  • the method is characterized in that the first signaling is used to determine scheduling information of the second wireless signal, where the scheduling information includes ⁇ occupied time domain resources, occupied frequencies At least one of a domain resource, a hybrid automatic repeat request process number, a modulation and coding scheme, and a redundancy version, the redundancy version is used to determine that the target bit block is channel-coded in the first bit block The position in the output bit.
  • the above method is characterized by further comprising:
  • the first information is used to determine configuration information of a receiver of the first information, where the configuration information includes: a transmission mode in which the maximum multi-input output layer supported, the maximum supported At least one of a number of downlink hybrid automatic repeat request processes, a set of supported modulation and coding modes, ⁇ a cache capacity of the receiver of the first information, and configuration information of the receiver of the first information ⁇ is used to determine the sum of the X2 cache sizes.
  • the above method is characterized in that said first signaling indicates at least one of ⁇ said X2, said X2 cache sizes ⁇ .
  • the present application discloses a user equipment for wireless communication, which includes:
  • a first processing module receiving the first wireless signal
  • a second receiving module receiving the second wireless signal
  • X1 bit blocks are used to generate the first wireless signal, the X1 is a positive integer greater than 1, and each of the X1 bit blocks includes a positive integer number of bits, the X1 bits The blocks belong to the same transport block; only X2 of the X1 bit blocks are used to generate the second radio signal, the X2 being a positive integer less than the X1; ⁇ X2, the At least one of the first signalings is used to determine X2 cache sizes, the X2 cache sizes being in one-to-one correspondence with the X2 bit blocks.
  • the user equipment is characterized in that the first bit block is one of the X2 bit blocks, and a buffer size corresponding to the first bit block in the X2 cache sizes is Means for determining a number of bits in a target bit block, the target bit block including an output bit of the first bit block that is channel encoded in the second wireless signal and the first in the first wireless signal
  • a one-bit block is an incremental redundant bit compared to a channel-coded output bit, the target block of bits comprising a non-negative integer number of bits.
  • the user equipment is characterized in that the first processing module further transmits second signaling, and the second signaling is used to determine the X2 bit blocks.
  • the user equipment is characterized in that the first signaling is used to determine the X2 bit blocks.
  • the foregoing user equipment is characterized in that the first signaling is used to determine scheduling information of the second wireless signal, and the scheduling information includes ⁇ occupied time domain resources, occupied At least one of a frequency domain resource, a hybrid automatic repeat request process number, a modulation coding mode, and a redundancy version, wherein the redundancy version is used to determine that the target bit block passes through a channel in the first bit block The position in the encoded output bit.
  • the user equipment is characterized in that the first processing module further receives first information, wherein the first information is used to determine configuration information of a recipient of the first information,
  • the configuration information includes at least one of ⁇ the transmission mode in which it is located, the maximum number of output layers supported by multiple inputs, the maximum number of downlink hybrid automatic repeat request processes supported, and the set of supported modulation and coding modes ⁇ .
  • the buffer capacity of the recipient of the first information, the configuration information of the recipient of the first information is used to determine the sum of the X2 cache sizes.
  • the user equipment is characterized in that the first signaling indicates at least the latter of ⁇ the X2, the X2 cache sizes ⁇ .
  • the present application discloses a base station device for wireless communication, which includes:
  • a second transmitting module transmitting the second wireless signal
  • X1 bit blocks are used to generate the first wireless signal, the X1 is a positive integer greater than 1, and each of the X1 bit blocks includes a positive integer number of bits, the X1 bits The blocks belong to the same transport block; only X2 of the X1 bit blocks are used to generate the second radio signal, the X2 being a positive integer less than the X1; ⁇ X2, the At least one of the first signalings is used to determine X2 cache sizes, the X2 cache sizes being in one-to-one correspondence with the X2 bit blocks.
  • the base station device is characterized in that the first bit block is one of the X2 bit blocks, and a buffer size corresponding to the first bit block in the X2 cache sizes is Means for determining the number of bits in the target bit block, the target The bit block includes incrementally redundant output bits of the first bit block that are channel coded in the second wireless signal and output bits of the first bit block that are channel coded in the first wireless signal The remaining bits, the target bit block includes non-negative integer bits.
  • the base station device is characterized in that the second processing module further receives second signaling, the second signaling being used to determine the X2 bit blocks.
  • the base station device is characterized in that the first signaling is used to determine the X2 bit blocks.
  • the foregoing base station device is characterized in that the first signaling is used to determine scheduling information of the second wireless signal, where the scheduling information includes ⁇ occupied time domain resources, occupied At least one of a frequency domain resource, a hybrid automatic repeat request process number, a modulation coding mode, and a redundancy version, wherein the redundancy version is used to determine that the target bit block passes through a channel in the first bit block The position in the encoded output bit.
  • the base station device is characterized in that the second processing module further transmits first information, wherein the first information is used to determine configuration information of a receiver of the first information,
  • the configuration information includes at least one of ⁇ the transmission mode in which it is located, the maximum number of output layers supported by multiple inputs, the maximum number of downlink hybrid automatic repeat request processes supported, and the set of supported modulation and coding modes ⁇ .
  • the buffer capacity of the recipient of the first information, the configuration information of the recipient of the first information is used to determine the sum of the X2 cache sizes.
  • the base station device is characterized in that the first signaling indicates at least the latter of ⁇ the X2, the X2 cache sizes ⁇ .
  • FIG. 1 shows a flow chart of wireless signal transmission in accordance with one embodiment of the present application
  • FIG. 3 is a schematic diagram showing the relationship between a first wireless signal and a second wireless signal according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of X2 cache sizes in accordance with one embodiment of the present application
  • Figure 5 shows a schematic diagram of a target bit block in accordance with one embodiment of the present application
  • FIG. 6 shows a schematic diagram of configuration information of a recipient of first information according to an embodiment of the present application
  • FIG. 7 is a block diagram showing the structure of a processing device in a User Equipment (UE) according to an embodiment of the present application
  • FIG. 8 is a block diagram showing the structure of a processing device in a base station according to an embodiment of the present application.
  • FIG. 9 shows a schematic diagram of an example of a base station and user equipment in accordance with one embodiment of the present application.
  • Embodiment 1 illustrates a wireless signal transmission flowchart according to an embodiment of the present application, as shown in FIG.
  • a base station N1 is a maintenance base station of a serving cell of UE U2.
  • the first information is transmitted in step S11
  • the first wireless signal is transmitted in step S12
  • the second signaling is received in step S13
  • the first signaling is transmitted in step S14
  • the second signaling is transmitted in step S15. wireless signal.
  • the first information is received in step S21
  • the first wireless signal is received in step S22
  • the second signaling is transmitted in step S23
  • the first signaling is received in step S24
  • the second is received in step S25. wireless signal.
  • X1 bit blocks are used to generate the first wireless signal, the X1 is a positive integer greater than 1, and each of the X1 bit blocks includes a positive integer number of bits.
  • the X1 bit blocks belong to the same transport block; only X2 bit blocks of the X1 bit blocks are used to generate the second radio signal, and the X2 is a positive integer smaller than the X1;
  • At least one of X2, the first signaling ⁇ is used to determine X2 cache sizes, and the X2 cache sizes are in one-to-one correspondence with the X2 bit blocks.
  • the second signaling is used to determine the X2 of the bit blocks
  • the first information is used to determine configuration information of a recipient of the first information, the configuration information including ⁇ transmissions in which Mode, the maximum number of output layers supported by multiple inputs, the maximum number of downstream hybrid automatic repeat request processes supported, At least one of the set of supported modulation and coding modes, ⁇ the buffer capacity of the receiver of the first information, the configuration information of the receiver of the first information ⁇ is used to determine the X2 caches The sum of the dimensions.
  • the first bit block is one of the X2 bit blocks, and a buffer size corresponding to the first bit block of the X2 cache sizes is used to determine a bit in the target bit block.
  • the number of bits including the output bits of the first bit block that are channel coded in the second wireless signal and the output bits of the first bit block that are channel coded in the first wireless signal The target bit block includes a non-negative integer number of bits compared to the incremental redundancy bits.
  • the first signaling is used to determine the X2 of the bit blocks.
  • the first signaling is used to determine scheduling information of the second wireless signal, where the scheduling information includes ⁇ occupied time domain resources, occupied frequency domain resources, and associated hybrid automatic weights. Transmitting at least one of a request process number, a modulation coding mode, a redundancy version, wherein the redundancy version is used to determine a location of the target bit block in the channel-coded output bits of the first bit block.
  • the first signaling indicates at least the latter of ⁇ the X2, the X2 cache sizes ⁇ .
  • the first signaling is physical layer signaling.
  • the first signaling is DCI (Downlink Control Information).
  • the first signaling is transmitted by using a PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the first signaling is transmitted by using an NR-PDCCH (New Radio Physical Downlink Control Channel).
  • NR-PDCCH New Radio Physical Downlink Control Channel
  • the second signaling is used to determine the X2 of the bit blocks in the X1 bit blocks.
  • the second signaling indicates that the X2 bit blocks are erroneously coded.
  • the second signaling indicates that X3 bit blocks in the X1 bit block are erroneously coded, and the X3 bit blocks are used to determine the X2 bit blocks, where X3 is Not a positive integer greater than X1.
  • the second signaling indicates X3 ratios in the X1 bit blocks.
  • the special block is erroneously decoded, and the X2 bit blocks include the X2 bit blocks, and the X3 is a positive integer not greater than the X1.
  • the second signaling includes ACK/NACK information of each of the X1 bit blocks.
  • the second signaling is physical layer signaling.
  • the second signaling is UCI (Uplink Control Information).
  • the second signaling is transmitted through a PUCCH (Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel
  • the second signaling is carried by a PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the second signaling indicates that X3 bit blocks in the X1 bit blocks are erroneously coded, and the first signaling indicates the X2 bit blocks from the X3 bit blocks.
  • the first signaling indicates the X2 bit blocks from the X1 bit blocks.
  • the first signaling is used by the user equipment to determine the X2 bit blocks.
  • the first signaling indicates an index of the X2 bit blocks.
  • the first signaling explicitly indicates at least the latter of ⁇ the X2, the X2 cache sizes ⁇ .
  • the first signaling implicitly indicates at least the latter of ⁇ the X2, the X2 cache sizes ⁇ .
  • Embodiment 2 illustrates a wireless signal transmission flowchart according to another embodiment of the present application, as shown in FIG.
  • base station N3 is a maintenance base station of a serving cell of UE U4.
  • the second information is received in step S31, the first information is transmitted in step S32, the third signaling is transmitted in step S33, the first wireless signal is transmitted in step S34, and the second signal is received in step S35.
  • step S36 the first signaling is transmitted, and in step S37, the second wireless signal is transmitted.
  • the second information is transmitted in step S41
  • the first information is received in step S42
  • the third signaling is received in step S43
  • the first wireless signal is received in step S44
  • the second signal is transmitted in step S45. So, the first signaling is received in step S46, and the second wireless signal is received in step S47.
  • X1 bit blocks are used to generate the first wireless signal, the X1 is a positive integer greater than 1, and each of the X1 bit blocks includes a positive integer number of bits.
  • the X1 bit blocks belong to the same transport block; only X2 bit blocks of the X1 bit blocks are used to generate the second radio signal, and the X2 is a positive integer smaller than the X1;
  • At least one of X2, the first signaling ⁇ is used to determine X2 cache sizes, and the X2 cache sizes are in one-to-one correspondence with the X2 bit blocks.
  • the second signaling is used to determine the X2 of the bit blocks
  • the first information is used to determine configuration information of a recipient of the first information, the configuration information including ⁇ transmissions in which Mode, the maximum number of output layers supported by the maximum multiple input, the maximum number of downlink hybrid automatic repeat request processes supported, at least one of the supported modulation coding mode sets, ⁇ the recipient of the first information
  • the cache capacity, the recipient's configuration information of the first information ⁇ is used to determine the sum of the X2 cache sizes.
  • the second information indicates the cache capacity of the recipient of the first information.
  • the third signaling is used to determine scheduling information of the first wireless signal, where the scheduling information includes ⁇ occupied time domain resources, occupied frequency domain resources, and associated HARQ process numbers. At least one of , MCS, RV ⁇ .
  • the third signaling is DCI.
  • the third signaling is physical layer signaling.
  • the second information is transmitted through RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • Embodiment 3 illustrates a relationship between a first wireless signal and a second wireless signal according to an embodiment of the present application, as shown in FIG.
  • the obliquely filled rectangle represents the bit occupied by the first identifier
  • the obliquely filled rectangle represents a bit block other than the second wireless signal in the first wireless signal
  • the rectangle filled by the intersecting line represents a a block of bits in the second wireless signal
  • Each unfilled rectangle represents a baseband processing function that a bit block generates when generating a first wireless signal or generating a second wireless signal.
  • X1 bit blocks are used to generate the first wireless signal, the X1 is a positive integer greater than 1, and each of the X1 bit blocks includes a positive integer number of bits.
  • the X1 bit blocks belong to the same transport block; only X2 bit blocks of the X1 bit blocks are used to generate the second radio signal, and the X2 is a positive integer smaller than the X1.
  • each of the X1 bit blocks is a code block (CB).
  • each of the X1 bit blocks is a Code Block Group (CBG).
  • CBG Code Block Group
  • one of the X1 bit blocks includes a number of bits not greater than K, the K is a predefined positive integer; or the K is a transmission to which the bit block belongs The number of bits included in the block is related.
  • the X1 bit block is obtained by segmentation of a transport block (TB).
  • TB transport block
  • any two of the X1 bit blocks include the same number of bits.
  • the number of bits included in the two bit blocks in the X1 bit blocks is not equal.
  • the X1 bit blocks are sequentially added by CRC (Cyclic Redundancy Check), channel coding, rate matching, and concatenation to obtain a first output.
  • CRC Cyclic Redundancy Check
  • a bit block the first output bit block is sequentially subjected to scrambling, a modulation mapper, a layer mapper, a precoding, and a resource element mapper.
  • the first wireless signal is obtained after OFDM signal generation.
  • any two of the X2 bit blocks include the same number of bits.
  • the number of bits included in the two bit blocks in the X2 bit blocks is not equal.
  • the X2 bit blocks are sequentially subjected to CRC (Cyclic). Redundancy Check, Cyclic Redundancy Check, Channel Coding, Rate Matching, Concatenation to obtain a second output bit block, and the second output bit block is scrambled in sequence (Scrambling) , a modulation mapper, a layer mapper, a precoding, a resource element mapper, and an OFDM signal generation to obtain the second wireless signal.
  • CRC Cyclic
  • the first wireless signal is transmitted through a DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the first wireless signal is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the first wireless signal is transmitted by using a NR-PDSCH (New Radio Physical Downlink Shared Channel).
  • NR-PDSCH New Radio Physical Downlink Shared Channel
  • the second wireless signal is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the second wireless signal is transmitted by using a NR-PDSCH (New Radio Physical Downlink Shared Channel).
  • NR-PDSCH New Radio Physical Downlink Shared Channel
  • the first wireless signal and the second wireless signal belong to a same HARQ (Hybrid Automatic Repeat Request) process.
  • HARQ Hybrid Automatic Repeat Request
  • the first wireless signal is an initial transmission of a HARQ process.
  • the second wireless signal is a retransmission of a HARQ process.
  • the first wireless signal is a retransmission of a HARQ process.
  • Embodiment 4 illustrates a schematic diagram of X2 cache sizes in accordance with one embodiment of the present application, as shown in FIG.
  • the horizontal axis represents time
  • the thick line unfilled rectangle represents the total buffer for one bit block
  • the obliquely filled rectangle represents the buffer occupied for one bit block when receiving the first wireless signal
  • the cross line is filled.
  • the rectangle represents the buffer that has been occupied for one bit block when the second wireless signal is received.
  • X1 bit blocks are used to generate the first wireless signal, the X1 is a positive integer greater than 1, and each of the X1 bit blocks includes a positive integer number of bits, The X1 bit blocks belong to the same transport block; only X2 bit blocks in the X1 bit blocks Used to generate the second wireless signal, the X2 is a positive integer smaller than the X1; the X2 is used to determine X2 cache sizes, the X2 cache sizes and the X2 bit blocks are one by one correspond.
  • the caches corresponding to the X2 cache sizes are respectively reserved for the X2 of the bit blocks.
  • the X2 cache sizes are only for the second wireless signal.
  • the X2 cache sizes are for all wireless signals transmitting the X2 bit blocks.
  • any two of the X2 cache sizes are the same size.
  • the cache size refers to the number of bits in soft buffer bits.
  • the X2 is used by the user equipment to determine the X2 cache sizes.
  • Embodiment 5 illustrates a schematic diagram of a target bit block in accordance with one embodiment of the present application, as shown in FIG.
  • the slash-filled ring represents a circular buffer in which each truncated line represents the starting point of a redundancy version (RV) indication, and the solid arrow curve represents the circular buffer.
  • the bits are channel coded outputs of one bit block in the first wireless signal, and the bits in the circular buffer indicated by the dashed arrow curve are channel coded outputs of one bit block in the second wireless signal.
  • the buffer size corresponding to the first bit block is used to determine the number of bits in the target bit block, the target bit block including the channel-coded output of the first bit block in the second wireless signal And an incremental redundancy bit in the first wireless signal in which the first bit block is compared to a channel coded output bit, the target bit block comprising a non-negative integer number of bits, the redundancy version being used to determine the The location of the target bit block in the channel-coded output bits of the first block of bits.
  • the channel coding is LDPC (Low Density Parity Check Code) coding.
  • the channel coding is Turbo coding.
  • the channel coding is a Convolutional code.
  • the channel coding is a polar code.
  • the Incremental Redundancy bits include Parity Bits.
  • the Incremental Redundancy bits include Parity Bits and information bits.
  • the incremental redundancy bits are incremental outputs based on the existing output of the channel coding.
  • the redundancy version (RV, Redundancy Version) indicates a position of a start bit of the target bit block in a channel coded output bit of the first bit block.
  • the redundancy version indicates a location of a start bit of the target bit block in a circular buffer, and a position of the start bit of the target bit block in a circular buffer Used to determine a position in the output bits of the first bit block that is channel coded.
  • the target bit block is composed of bits sequentially read from the start bit in the cyclic buffer indicated by the redundancy version according to rate matching.
  • Embodiment 6 exemplifies a configuration information of a recipient of first information of an embodiment of the present application, as shown in FIG.
  • N soft is the buffer capacity of the receiver of the first information
  • K C is a value related to N soft
  • K C is the number of configured carriers
  • K MIMO is the reception of the first information.
  • the maximum number of MIMO layers supported by the M DL_HARQ is the maximum number of downlink HARQ processes supported by the receiver of the first information.
  • X1 bit blocks are used to generate the first wireless signal, the X1 is a positive integer greater than 1, and each of the X1 bit blocks includes a positive integer number of bits, The X1 bit blocks belong to the same transport block; only X2 bit blocks of the X1 bit blocks are used to generate the second radio signal, and the X2 is a positive integer smaller than the X1; At least one of X2, the first signaling ⁇ is used to determine X2 cache sizes, and the X2 cache sizes are in one-to-one correspondence with the X2 bit blocks.
  • the configuration information of the recipient of the first information ⁇ is used to determine the sum of the X2 cache sizes,
  • the configuration information includes at least one of ⁇ the transmission mode in which the maximum multi-input output layer supported, the maximum number of downlink hybrid automatic repeat request processes supported, and the supported modulation coding mode set ⁇ .
  • the transmission mode (TM) includes a diversity-based transmission mode and a beamforming based transmission mode.
  • the transmission mode (TM) includes a single antenna transmission mode.
  • the maximum multiple input multiple output (MIMO) layer includes at least one of ⁇ 1, 2, 4, 8, 16 ⁇ .
  • the maximum number of multiple input multiple output layers described includes layers of analog beams and layers of digital beams.
  • the buffer capacity of the receiver of the first information is the number of bits in Soft Channel Bits of the receiver of the first information.
  • the capability information of the recipient of the first information includes the cache capacity information of the recipient of the first information.
  • the size of the buffers only X2 for the second wireless signal the lower the sum of the size of buffers X2 N IR obtained by the formula:
  • N soft is the buffer capacity of the receiver of the first information
  • K C is a value related to N soft
  • K C is the number of configured carriers
  • K MIMO is the number
  • M DL_HARQ is the maximum number of downlink HARQ processes supported by the receiver of the first information
  • M limit is a predefined value (such as 8) or
  • the N initial is the total number of bits of the X1 bit block that is channel-encoded for the wireless signal before the second wireless signal.
  • the sum N IR of the X2 cache sizes is obtained by:
  • N soft is the buffer capacity of the receiver of the first information
  • K C is a value related to N soft
  • K C is the number of configured carriers
  • K MIMO is the number
  • M DL_HARQ is the maximum number of downlink HARQ processes supported by the receiver of the first information
  • M limit is a predefined value (such as 8) or
  • the N initial_remain is configured to be a total number of bits of the X-th bit of the X1 bit blocks that are channel-encoded for the wireless signal before the second wireless signal.
  • the X2 cache sizes are all equal, and any of the X2 cache sizes N cb is obtained by:
  • N IR is the sum of the X2 cache sizes
  • K w is the length of the circular buffer.
  • Embodiment 7 exemplifies a structural block diagram of a processing device in a user equipment according to an embodiment of the present application, as shown in FIG.
  • the user equipment processing apparatus 100 is mainly composed of a first processing module 101, a first receiving module 102, and a second receiving module 103.
  • the first processing module 101 receives the first wireless signal; the first receiving module 102 receives the first signaling; and the second receiving module 103 receives the second wireless signal; wherein X1 bit blocks are used to generate the Said first wireless signal, said X1 being a positive integer greater than 1, each of said X1 bit blocks comprising a positive integer number of bits, said X1 bit blocks belonging to the same transport block; said X1 Only X2 bit blocks in the bit block are used to generate the second wireless signal, the X2 being a positive integer smaller than the X1; at least one of ⁇ X2, the first signaling ⁇ is used To determine X2 cache sizes, the X2 cache sizes are in one-to-one correspondence with the X2 bit blocks.
  • the first bit block is one of the X2 bit blocks, and a buffer size corresponding to the first bit block of the X2 cache sizes is used to determine a bit in the target bit block.
  • the number of bits including the output bits of the first bit block that are channel encoded in the second wireless signal and in the first wireless signal An incremental redundancy bit of a first bit block that is compared to a channel coded output bit, the target bit block comprising a non-negative integer number of bits.
  • the first processing module 101 also sends a second signaling, which is used to determine the X2 bit blocks.
  • the first signaling is used to determine the X2 bit blocks.
  • the first signaling is used to determine scheduling information of the second wireless signal, where the scheduling information includes ⁇ occupied time domain resources, occupied frequency domain resources, and associated hybrid automatic weights. Transmitting at least one of a request process number, a modulation coding mode, a redundancy version, wherein the redundancy version is used to determine a location of the target bit block in the channel-coded output bits of the first bit block.
  • the first processing module 101 further receives first information, wherein the first information is used to determine configuration information of a recipient of the first information, where the configuration information includes The transmission mode, the maximum number of output layers supported by the maximum multiple input, the maximum number of downlink hybrid automatic repeat request processes supported, at least one of the supported modulation coding mode sets, ⁇ the reception of the first information
  • the cache capacity of the recipient, the configuration information of the recipient of the first information ⁇ is used to determine the sum of the X2 cache sizes.
  • the first signaling indicates at least the latter of ⁇ the X2, the X2 cache sizes ⁇ .
  • Embodiment 8 exemplifies a structural block diagram of a processing device in a base station device, as shown in FIG.
  • the base station processing apparatus 200 is mainly composed of a second processing module 201, a first transmitting module 202, and a second transmitting module 203.
  • the second processing module 201 transmits the first wireless signal; the first transmitting module 202 transmits the first signaling; and the second transmitting module 203 transmits the second wireless signal; wherein, X1 bit blocks are used to generate the Said first wireless signal, said X1 being a positive integer greater than 1, each of said X1 bit blocks comprising a positive integer number of bits, said X1 bit blocks belonging to the same transport block; said X1 Only X2 bit blocks in the bit block are used to generate the second wireless signal, the X2 being a positive integer smaller than the X1; at least one of ⁇ X2, the first signaling ⁇ is used To determine X2 cache sizes, the X2 cache sizes are in one-to-one correspondence with the X2 bit blocks.
  • the first bit block is one of the X2 bit blocks, and a buffer size corresponding to the first bit block of the X2 cache sizes is used to determine a bit in the target bit block.
  • the number of bits including the output bits of the first bit block that are channel coded in the second wireless signal and the output bits of the first bit block that are channel coded in the first wireless signal The target bit block includes a non-negative integer number of bits compared to the incremental redundancy bits.
  • the second processing module further receives second signaling, the second signaling being used to determine the X2 bit blocks.
  • the first signaling is used to determine the X2 bit blocks.
  • the first signaling is used to determine scheduling information of the second wireless signal, where the scheduling information includes ⁇ occupied time domain resources, occupied frequency domain resources, and associated hybrid automatic weights. Transmitting at least one of a request process number, a modulation coding mode, a redundancy version, wherein the redundancy version is used to determine a location of the target bit block in the channel-coded output bits of the first bit block.
  • the second processing module further sends first information, wherein the first information is used to determine configuration information of a recipient of the first information, the configuration information including ⁇ transmission Mode, the maximum number of output layers supported by the maximum multiple input, the maximum number of downlink hybrid automatic repeat request processes supported, at least one of the supported modulation coding mode sets, ⁇ the recipient of the first information
  • the cache capacity, the recipient's configuration information of the first information ⁇ is used to determine the sum of the X2 cache sizes.
  • the first signaling indicates at least the latter of ⁇ the X2, the X2 cache sizes ⁇ .
  • Embodiment 9 illustrates a schematic diagram of an example of a base station and user equipment according to one embodiment of the present application, as shown in FIG.
  • a block diagram of communication between base station 910 and user equipment 950 is illustrated.
  • the upper layer packet from the core network is provided to a controller/processor 940 that implements Layer 2 functions including header compression, encryption, packet segmentation and reordering, and multiplexing between the logical and transport channels.
  • Transmit processor 915 implements various signal processing functions for the physical layer, including encoding, interleaving, scrambling, CRC addition, modulation, rate matching, resource mapping, baseband signal generation, and the like.
  • Each spatial stream is transmitted to a different antenna 920 via a separate transmitter 916.
  • each receiver 956 receives a signal through its respective antenna 960.
  • Each receiver 956 recovers the information modulated onto the radio frequency carrier and provides the information to the receive processor 952.
  • the receiving processor 952 implements various signal processing functions of the physical layer, including decoding, deinterleaving, descrambling, de-CRC, demodulation, resource demapping, baseband signal generation, and the like.
  • the data and control signals are then provided to a controller/processor 990 that implements Layer 2 functions including header decompression, decryption, packet concatenation and reordering, and demultiplexing between the logical and transport channels. Etc.
  • the controller/processor 990 allocates a soft buffer in the buffer 980 for each coding block, and then receives the processing.
  • the 952 performs channel decoding and rate matching of each coding block according to the soft buffer allocated by the controller/processor 990, and performs incremental redundancy decoding or merge decoding of the retransmission and the initial transmission.
  • the UE or the terminal in the present application includes, but is not limited to, a mobile communication device such as a mobile phone, a tablet computer, a notebook, an internet card, a low power consumption device, an eMTC device, an NB-IoT device, a drone, a remote control aircraft, and an in-vehicle communication device.
  • the base station or network side device in this application includes, but is not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, an eNB, a gNB, a transmission receiving node TRP, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种支持混合自动重传请求的用户设备、基站中的方法和装置。用户设备首先接收第一无线信号;然后接收第一信令;接着接收第二无线信号。其中,X1个比特块被用于生成所述第一无线信号,所述X1是大于1的正整数,所述X1个比特块中的每一个比特块包括正整数个比特,所述X1个比特块属于同一个传输块;所述X1个比特块中仅有X2个比特块被用于生成所述第二无线信号,所述X2是小于所述X1的正整数;{所述X2,所述第一信令}中至少之一被用于确定X2个缓存尺寸,所述X2个缓存尺寸和所述X2个比特块一一对应。本申请增大重传时增量冗余比特的数量,提高重传的编码增益。

Description

一种支持混合自动重传请求的用户设备、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方案,特别是涉及支持混合自动重传请求的过程中进行数据传输的方法和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)进行研究。在3GPP RAN#75次全会上通过了5G新空口技术(NR)的工作项目(WI,Working Item)的立项,开始对5G新空口技术进行标准化。
为了能够灵活适应多种不同的应用场景,未来的无线通信系统,特别是5G NR将可以支持更加灵活的混合自动重传请求(HARQ,Hybrid Automatic Repeat request)和对应的数据重传设计,比如支持基于CB(Code Block,编码块)或CBG(Code Block Group,编码块组)的HARQ重传。而在现有的LTE系统中,只支持基于TB(Transport Block,传输块)的HARQ重传,相应的在速率匹配(Rate Matching)过程中的缓存资源(Soft buffer bits)的分配也是按照整个TB块中包含的CB进行分配的。
发明内容
在不冲突的情况下,本申请的用户设备(UE,User Equipment)中的实施例和实施例中的特征可以应用到基站中,反之亦然。进一步的,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种用于无线通信的用户设备中的方法,其特征在于,包括:
-接收第一无线信号;
-接收第一信令;
-接收第二无线信号;
其中,X1个比特块被用于生成所述第一无线信号,所述X1是大于1的正整数,所述X1个比特块中的每一个比特块包括正整数个比特,所述X1个比特块属于同一个传输块;所述X1个比特块中仅有X2个比特块被用于生成所述第二无线信号,所述X2是小于所述X1的正整数;{所述X2,所述第一信令}中至少之一被用于确定X2个缓存尺寸,所述X2个缓存尺寸和所述X2个比特块一一对应。
作为一个实施例,所述方法的好处在于,基于编码块(CB,code block)或编码块组(CBG,code block group)级别的HARQ重传时的缓存资源根据重传的编码块或编码块组的个数在各个初传和重传的编码块间进行重分配,增大重传速率匹配(rate matching)时增量冗余比特的数量,提高重传的编码增益。
作为一个实施例,使用所述的方法的好处在于,通过所述第一信令对HARQ重传的编码块或编码块组的缓存资源进行网络配置,可以达到为每个编码块动态灵活分配缓存资源的效果,增大缓存资源的利用率,提高传输性能。
作为一个实施例,所述X2个缓存尺寸对应的缓存分别被预留给所述X2个所述比特块。
作为一个实施例,所述X2个缓存尺寸仅针对所述第二无线信号。
作为一个实施例,所述X2个缓存尺寸针对传输所述X2个比特块的所有的无线信号。
作为一个实施例,所述X1个比特块中的每一个比特块是一个编码块(CB,Code Block)。
作为一个实施例,所述X1个比特块中的每一个比特块是一个编码块组(CBG,Code Block Group)。
作为一个实施例,所述X1个比特块中的一个比特块所包括的比特的数量不大于K,所述K是一个预定义的正整数;或者所述K是和所述比特块所属的传输块所包括的比特数有关。
作为一个实施例,所述X1个比特块是一个传输块(TB,Transport Block)经过分割(Segmentation)得到的。
作为一个实施例,所述X1个比特块中任意两个比特块所包括的比特数 相等。
作为一个实施例,所述X1个比特块中存在两个比特块所包括的比特数不等。
作为一个实施例,所述X1个比特块分别依次经过CRC(Cyclic Redundancy Check,循环冗余校验)添加,信道编码(Channel Coding),速率匹配(Rate Matching),串联(Concatenation)得到第一输出比特块,所述第一输出比特块依次经过加扰(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),OFDM信号发生(Generation)之后得到所述第一无线信号。
作为一个实施例,所述X2个比特块中任意两个比特块所包括的比特数相等。
作为一个实施例,所述X2个比特块中存在两个比特块所包括的比特数不等。
作为一个实施例,所述X2个比特块分别依次经过CRC(Cyclic Redundancy Check,循环冗余校验)添加,信道编码(Channel Coding),速率匹配(Rate Matching),串联(Concatenation)得到第二输出比特块,所述第二输出比特块依次经过加扰(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),OFDM信号发生(Generation)之后得到所述第二无线信号。
作为一个实施例,所述第一无线信号是通过DL-SCH(Downlink Shared Channel,下行共享信道)传输的。
作为一个实施例,所述第一无线信号是通过PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输的。
作为一个实施例,所述第一无线信号是通过NR-PDSCH(New Radio Physical Downlink Shared Channel,新空口物理下行共享信道)传输的。
作为一个实施例,所述第二无线信号是通过PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输的。
作为一个实施例,所述第二无线信号是通过NR-PDSCH(New Radio Physical Downlink Shared Channel,新空口物理下行共享信道)传输的。
作为一个实施例,所述第一无线信号和所述第二无线信号属于同一个HARQ(Hybrid Automatic Repeat request,混合自动重传请求)进程。
作为一个实施例,所述第一无线信号为一个HARQ进程的初传。
作为一个实施例,所述第二无线信号为一个HARQ进程的重传。
作为一个实施例,所述第一无线信号为一个HARQ进程的重传。
作为一个实施例,所述方法还包括:
-接收第三信令;
其中,所述第三信令被用于确定所述第一无线信号的调度信息,所述调度信息包括{所占用的时域资源,所占用的频域资源,所属的HARQ进程号,MCS,RV}中至少之一。
作为一个实施例,所述X2个缓存尺寸中任意两个缓存尺寸相同。
作为一个实施例,所述X2个缓存尺寸中存在两个缓存尺寸不同。
作为一个实施例,所述缓存尺寸是指软缓存比特(Soft buffer bits)中的比特数量。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第一信令通过PDCCH(Physical Downlink Control Channel,物理下行控制信道)传输的。
作为一个实施例,所述第一信令通过NR-PDCCH(New Radio Physical Downlink Control Channel,新空口物理下行控制信道)传输的。
作为一个实施例,{所述X2,所述第一信令}中至少之一被所述用户设备用于确定所述X2个缓存尺寸。
根据本申请的一个方面,上述方法的特征在于,第一比特块为所述X2个比特块中的一个比特块,所述X2个缓存尺寸中的所述第一比特块对应的缓存尺寸被用于确定目标比特块中的比特的数量,所述目标比特块包括在所述第二无线信号中所述第一比特块经过信道编码的输出比特和在所述第一无线信号中所述第一比特块经过信道编码的输出比特相比的增量冗余比特,所述目标比特块包括非负整数个比特。
作为一个实施例,所述信道编码为LDPC(Low Density Parity Check Code,低密度奇偶校验码)编码。
作为一个实施例,所述信道编码为Turbo编码。
作为一个实施例,所述信道编码为卷积编码(Convolutional code)。
作为一个实施例,所述信道编码为极化编码(Polar code)。
作为一个实施例,所述增量冗余(Incremental Redundancy)比特包括校验比特(Parity Bits)。
作为一个实施例,所述增量冗余(Incremental Redundancy)比特包括校验比特(Parity Bits)和信息比特。
作为一个实施例,所述增量冗余比特是信道编码的已有输出的基础之上的增量输出。
作为一个实施例,所述X2个缓存尺寸中的所述第一比特块对应的缓存尺寸被所述用户设备用于确定所述目标比特块中的比特的数量。
作为一个实施例,所述X2个缓存尺寸中的所述第一比特块对应的缓存尺寸被所述第二无线信号的发送者用于确定所述目标比特块中的比特的数量。
根据本申请的一个方面,上述方法的特征在于,还包括:
-发送第二信令;
其中,所述第二信令被用于确定所述X2个比特块。
作为一个实施例,所述第二信令被用于在所述X1个比特块中确定所述X2个所述比特块。
作为一个实施例,所述第二信令指示所述X2个比特块被错误译码。
作为一个实施例,所述第二信令指示所述X1个比特块中的X3个比特块被错误译码,所述X3个比特块被用于确定所述X2个比特块,所述X3是不大于所述X1的正整数。
作为一个实施例,所述第二信令指示所述X1个比特块中的X3个比特块被错误译码,所述X3个比特块中包括所述X2个比特块,所述X3是不大于所述X1的正整数。
作为一个实施例,所述第二信令被所述第二信令的接收者用于确定所述X2个比特块。
作为一个实施例,所述第二信令包括所述X1个比特块中的每一个比特块的ACK/NACK信息。
作为一个实施例,所述第二信令是物理层信令。
作为一个实施例,所述第二信令是UCI(Uplink Control Information,上行控制信息)。
作为一个实施例,所述第二信令通过PUCCH(Physical Uplink Control Channel,物理上行控制信道)传输的。
作为一个实施例,所述第二信令是通过PUSCH(Physical Uplink Shared Channel,物理上行共享信道)携带的。
根据本申请的一个方面,上述方法的特征在于,所述第一信令被用于确定所述X2个比特块。
作为一个实施例,所述第二信令指示所述X1个比特块中的X3个比特块被错误译码,所述第一信令从所述X3个比特块中指示所述X2个比特块。
作为一个实施例,所述第一信令从所述X1个比特块中指示所述X2个比特块。
作为一个实施例,所述第一信令被所述用户设备用于确定所述X2个比特块。
作为一个实施例,所述第一信令指示所述X2个比特块的索引。
根据本申请的一个方面,上述方法的特征在于,所述第一信令被用于确定所述第二无线信号的调度信息,所述调度信息包括{所占用的时域资源,所占用的频域资源,所属的混合自动重传请求进程号,调制编码方式,冗余版本}中至少之一,所述冗余版本被用于确定所述目标比特块在所述第一比特块经过信道编码的输出比特中的位置。
作为一个实施例,所述混合自动重传请求(HARQ,Hybrid Automatic Repeat request)进程号是一个整数。
作为一个实施例,所述冗余版本(RV,Redundancy Version)指示所述目标比特块的起始比特在所述第一比特块经过信道编码的输出比特中的位置。
作为一个实施例,所述冗余版本指示所述目标比特块的起始比特在循环缓存(Circular Buffer)中的位置,所述目标比特块的起始比特在循环缓存(Circular Buffer)中的位置被用于确定所述所述第一比特块经过信道编码的输出比特中的位置。
作为一个实施例,所述目标比特块为从所述冗余版本指示的循环缓存 中的起始比特按照速率匹配开始依次读取的比特组成。
作为一个实施例,所述调制编码方式(MCS,Modulation Coding Scheme)包括的调制方式为{QPSK,16QAM,64QAM,256QAM,1024QAM}中之一。
作为一个实施例,所述冗余版本被所述用户设备用于确定所述目标比特块在所述第一比特块经过信道编码的输出比特中的位置。
根据本申请的一个方面,上述方法的特征在于,还包括:
-接收第一信息;
其中,所述第一信息被用于确定所述第一信息的接收者的配置信息,所述配置信息包括{所处的传输模式,所支持的最大多输入所输出层数,所支持的最大下行混合自动重传请求进程数,所支持的调制编码方式集合}中至少之一,{所述第一信息的所述接收者的缓存容量,所述第一信息的所述接收者的配置信息}被用于确定所述X2个缓存尺寸的总和。
作为一个实施例,所述的方法还包括:
-发送第二信息;
其中,所述第二信息指示所述第一信息的所述接收者的所述缓存容量。
作为一个实施例,{所述X1,所述X1个比特块所包括比特数}中之一也被用于确定所述X2个缓存尺寸的总和。
作为一个实施例,所述传输模式(TM,Transmission Mode)包括基于分集的传输模式和基于波束赋形(Beamforming)传输模式。
作为一个实施例,所述传输模式(TM,Transmission Mode)包括单天线的传输模式。
作为一个实施例,所支持的最大MIMO层数包括{1,2,4,8,16}中至少之一。
作为一个实施例,所支持的最大MIMO层数包括模拟波束的层和数字波束的层。
作为一个实施例,所述第一信息的所述接收者的所述缓存容量为所述第一信息的所述接收者的软信道比特(Soft Channel Bits)中的比特数量。
作为一个实施例,所述第一信息的所述接收者能力信息包括所述第 一信息的所述接收者的所述缓存容量信息。
作为一个实施例,{所述第一信息的所述接收者的所述缓存容量,所述第一信息的所述接收者的所述配置信息}被所述用户设备用于确定所述X2个缓存尺寸的总和。
作为一个实施例,所述X2个缓存尺寸仅针对第二无线信号,所述X2个缓存尺寸的总和NIR通过下式得到:
Figure PCTCN2017084137-appb-000001
其中,Nsoft是所述所述第一信息的接收者的缓存容量,KC是和Nsoft有关的值,或者KC是配置的载波(Carrier)的数量,KMIMO是所述所述第一信息的接收者所支持的最大MIMO层数,MDL_HARQ是所述所述第一信息的接收者所支持的最大下行HARQ进程数,Mlimit是一个预定义的值(比如8)或者是可配置的,Ninitial是所述X1个比特块针对所述第二无线信号之前的无线信号经过信道编码后的输出的总的比特数。
作为一个实施例,所述X2个缓存尺寸的总和NIR通过下式得到:
Figure PCTCN2017084137-appb-000002
其中,Nsoft是所述所述第一信息的接收者的缓存容量,KC是和Nsoft有关的值,或者KC是配置的载波(Carrier)的数量,KMIMO是所述所述第一信息的接收者所支持的最大MIMO层数,MDL_HARQ是所述所述第一信息的接收者所支持的最大下行HARQ进程数,Mlimit是一个预定义的值(比如8)或者是可配置的,Ninitial_remain是所述X1个比特块中所述X2个所述比特块之外的针对所述第二无线信号之前的无线信号经过信道编码后的输出的总的比特数。
作为一个实施例,所述X2个缓存尺寸都相等,所述X2个缓存尺寸中的任一缓存尺寸Ncb由下式得到:
Figure PCTCN2017084137-appb-000003
其中NIR为所述X2个缓存尺寸的总和,Kw为循环缓存的长度。
根据本申请的一个方面,上述方法的特征在于,所述第一信令指示{所述X2,所述X2个缓存尺寸}中的至少后者。
作为一个实施例,所述第一信令显式地指示{所述X2,所述X2个缓存尺寸}中的至少后者。
作为一个实施例,所述第一信令隐式地指示{所述X2,所述X2个缓存尺寸}中的至少后者。
本申请公开了一种用于无线通信的基站设备中的方法,其特征在于,包括:
-发送第一无线信号;
-发送第一信令;
-发送第二无线信号;
其中,X1个比特块被用于生成所述第一无线信号,所述X1是大于1的正整数,所述X1个比特块中的每一个比特块包括正整数个比特,所述X1个比特块属于同一个传输块;所述X1个比特块中仅有X2个比特块被用于生成所述第二无线信号,所述X2是小于所述X1的正整数;{所述X2,所述第一信令}中至少之一被用于确定X2个缓存尺寸,所述X2个缓存尺寸和所述X2个比特块一一对应。
根据本申请的一个方面,上述方法的特征在于,第一比特块为所述X2个比特块中的一个比特块,所述X2个缓存尺寸中的所述第一比特块对应的缓存尺寸被用于确定目标比特块中的比特的数量,所述目标比特块包括在所述第二无线信号中所述第一比特块经过信道编码的输出比特和在所述第一无线信号中所述第一比特块经过信道编码的输出比特相比的增量冗余比特,所述目标比特块包括非负整数个比特。
根据本申请的一个方面,上述方法的特征在于,还包括:
-接收第二信令;
其中,所述第二信令被用于确定所述X2个比特块。
根据本申请的一个方面,上述方法的特征在于,所述第一信令被用于确定所述X2个比特块。
根据本申请的一个方面,上述方法的特征在于,所述第一信令被用于确定所述第二无线信号的调度信息,所述调度信息包括{所占用的时域资源,所占用的频域资源,所属的混合自动重传请求进程号,调制编码方式,冗余版本}中至少之一,所述冗余版本被用于确定所述目标比特块在所述第一比特块经过信道编码的输出比特中的位置。
根据本申请的一个方面,上述方法的特征在于,还包括:
-发送第一信息;
其中,所述第一信息被用于确定所述第一信息的接收者的配置信息,所述配置信息包括{所处的传输模式,所支持的最大多输入所输出层数,所支持的最大下行混合自动重传请求进程数,所支持的调制编码方式集合}中至少之一,{所述第一信息的所述接收者的缓存容量,所述第一信息的所述接收者的配置信息}被用于确定所述X2个缓存尺寸的总和。
根据本申请的一个方面,上述方法的特征在于,所述第一信令指示{所述X2,所述X2个缓存尺寸}中的至少后者。
本申请公开了一种用于无线通信的用户设备,其特征在于,包括:
-第一处理模块,接收第一无线信号;
-第一接收模块,接收第一信令;
-第二接收模块,接收第二无线信号;
其中,X1个比特块被用于生成所述第一无线信号,所述X1是大于1的正整数,所述X1个比特块中的每一个比特块包括正整数个比特,所述X1个比特块属于同一个传输块;所述X1个比特块中仅有X2个比特块被用于生成所述第二无线信号,所述X2是小于所述X1的正整数;{所述X2,所述第一信令}中至少之一被用于确定X2个缓存尺寸,所述X2个缓存尺寸和所述X2个比特块一一对应。
根据本申请的一个方面,上述用户设备的特征在于,第一比特块为所述X2个比特块中的一个比特块,所述X2个缓存尺寸中的所述第一比特块对应的缓存尺寸被用于确定目标比特块中的比特的数量,所述目标比特块包括在所述第二无线信号中所述第一比特块经过信道编码的输出比特和在所述第一无线信号中所述第一比特块经过信道编码的输出比特相比的增量冗余比特,所述目标比特块包括非负整数个比特。
根据本申请的一个方面,上述用户设备的特征在于,所述第一处理模块还发送第二信令,所述第二信令被用于确定所述X2个比特块。
根据本申请的一个方面,上述用户设备的特征在于,所述第一信令被用于确定所述X2个比特块。
根据本申请的一个方面,上述用户设备的特征在于,所述第一信令被用于确定所述第二无线信号的调度信息,所述调度信息包括{所占用的时域资源,所占用的频域资源,所属的混合自动重传请求进程号,调制编码方式,冗余版本}中至少之一,所述冗余版本被用于确定所述目标比特块在所述第一比特块经过信道编码的输出比特中的位置。
根据本申请的一个方面,上述用户设备的特征在于,所述第一处理模块还接收第一信息,其中,所述第一信息被用于确定所述第一信息的接收者的配置信息,所述配置信息包括{所处的传输模式,所支持的最大多输入所输出层数,所支持的最大下行混合自动重传请求进程数,所支持的调制编码方式集合}中至少之一,{所述第一信息的所述接收者的缓存容量,所述第一信息的所述接收者的配置信息}被用于确定所述X2个缓存尺寸的总和。
根据本申请的一个方面,上述用户设备的特征在于,所述第一信令指示{所述X2,所述X2个缓存尺寸}中的至少后者。
本申请公开了一种用于无线通信的基站设备,其特征在于,包括:
-第二处理模块,发送第一无线信号;
-第一发送模块,发送第一信令;
-第二发送模块,发送第二无线信号;
其中,X1个比特块被用于生成所述第一无线信号,所述X1是大于1的正整数,所述X1个比特块中的每一个比特块包括正整数个比特,所述X1个比特块属于同一个传输块;所述X1个比特块中仅有X2个比特块被用于生成所述第二无线信号,所述X2是小于所述X1的正整数;{所述X2,所述第一信令}中至少之一被用于确定X2个缓存尺寸,所述X2个缓存尺寸和所述X2个比特块一一对应。
根据本申请的一个方面,上述基站设备的特征在于,第一比特块为所述X2个比特块中的一个比特块,所述X2个缓存尺寸中的所述第一比特块对应的缓存尺寸被用于确定目标比特块中的比特的数量,所述目标 比特块包括在所述第二无线信号中所述第一比特块经过信道编码的输出比特和在所述第一无线信号中所述第一比特块经过信道编码的输出比特相比的增量冗余比特,所述目标比特块包括非负整数个比特。
根据本申请的一个方面,上述基站设备的特征在于,所述第二处理模块还接收第二信令,所述第二信令被用于确定所述X2个比特块。
根据本申请的一个方面,上述基站设备的特征在于,所述第一信令被用于确定所述X2个比特块。
根据本申请的一个方面,上述基站设备的特征在于,所述第一信令被用于确定所述第二无线信号的调度信息,所述调度信息包括{所占用的时域资源,所占用的频域资源,所属的混合自动重传请求进程号,调制编码方式,冗余版本}中至少之一,所述冗余版本被用于确定所述目标比特块在所述第一比特块经过信道编码的输出比特中的位置。
根据本申请的一个方面,上述基站设备的特征在于,所述第二处理模块还发送第一信息,其中,所述第一信息被用于确定所述第一信息的接收者的配置信息,所述配置信息包括{所处的传输模式,所支持的最大多输入所输出层数,所支持的最大下行混合自动重传请求进程数,所支持的调制编码方式集合}中至少之一,{所述第一信息的所述接收者的缓存容量,所述第一信息的所述接收者的配置信息}被用于确定所述X2个缓存尺寸的总和。
根据本申请的一个方面,上述基站设备的特征在于,所述第一信令指示{所述X2,所述X2个缓存尺寸}中的至少后者。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的无线信号传输流程图;
图2示出了根据本申请的另一个实施例的无线信号传输流程图;
图3示出了根据本申请的一个实施例的第一无线信号和第二无线信号关系示意图;
图4示出了根据本申请的一个实施例的X2个缓存尺寸的示意图;
图5示出了根据本申请的一个实施例的目标比特块的示意图;
图6示出了根据本申请的一个实施例的第一信息的接收者的配置信息的示意图;
图7示出了根据本申请的一个实施例的用户设备(UE)中的处理装置的结构框图;
图8示出了根据本申请的一个实施例的基站中的处理装置的结构框图;
图9示出了根据本申请的一个实施例的基站和用户设备的实例的示意图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例根据本申请的一个实施例的无线信号传输流程图,如附图1所示。附图1中,基站N1是UE U2的服务小区的维持基站。
对于基站N1,在步骤S11中发送第一信息,在步骤S12中发送第一无线信号,在步骤S13中接收第二信令,在步骤S14中发送第一信令,在步骤S15中发送第二无线信号。
对于UE U2,在步骤S21中接收第一信息,在步骤S22中接收第一无线信号,在步骤S23中发送第二信令,在步骤S24中接收第一信令,在步骤S25中接收第二无线信号。
在实施例1中,X1个比特块被用于生成所述第一无线信号,所述X1是大于1的正整数,所述X1个比特块中的每一个比特块包括正整数个比特,所述X1个比特块属于同一个传输块;所述X1个比特块中仅有X2个比特块被用于生成所述第二无线信号,所述X2是小于所述X1的正整数;{所述X2,所述第一信令}中至少之一被用于确定X2个缓存尺寸,所述X2个缓存尺寸和所述X2个比特块一一对应。所述第二信令被用于确定所述X2个所述比特块,所述第一信息被用于确定所述第一信息的接收者的配置信息,所述配置信息包括{所处的传输模式,所支持的最大多输入所输出层数,所支持的最大下行混合自动重传请求进程数,所 支持的调制编码方式集合}中至少之一,{所述第一信息的所述接收者的缓存容量,所述第一信息的所述接收者的配置信息}被用于确定所述X2个缓存尺寸的总和。
作为一个实施例,第一比特块为所述X2个比特块中的一个比特块,所述X2个缓存尺寸中的所述第一比特块对应的缓存尺寸被用于确定目标比特块中的比特的数量,所述目标比特块包括在所述第二无线信号中所述第一比特块经过信道编码的输出比特和在所述第一无线信号中所述第一比特块经过信道编码的输出比特相比的增量冗余比特,所述目标比特块包括非负整数个比特。
作为一个实施例,所述第一信令被用于确定所述X2个所述比特块。
作为一个实施例,所述第一信令被用于确定所述第二无线信号的调度信息,所述调度信息包括{所占用的时域资源,所占用的频域资源,所属的混合自动重传请求进程号,调制编码方式,冗余版本}中至少之一,所述冗余版本被用于确定所述目标比特块在所述第一比特块经过信道编码的输出比特中的位置。
作为一个实施例,所述第一信令指示{所述X2,所述X2个缓存尺寸}中的至少后者。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第一信令通过PDCCH(Physical Downlink Control Channel,物理下行控制信道)传输的。
作为一个实施例,所述第一信令通过NR-PDCCH(New Radio Physical Downlink Control Channel,新空口物理下行控制信道)传输的。
作为一个实施例,所述第二信令被用于在所述X1个比特块中确定所述X2个所述比特块。
作为一个实施例,所述第二信令指示所述X2个比特块被错误译码。
作为一个实施例,所述第二信令指示所述X1个比特块中的X3个比特块被错误译码,所述X3个比特块被用于确定所述X2个比特块,所述X3是不大于所述X1的正整数。
作为一个实施例,所述第二信令指示所述X1个比特块中的X3个比 特块被错误译码,所述X3个比特块中包括所述X2个比特块,所述X3是不大于所述X1的正整数。
作为一个实施例,所述第二信令包括所述X1个比特块中的每一个比特块的ACK/NACK信息。
作为一个实施例,所述第二信令是物理层信令。
作为一个实施例,所述第二信令是UCI(Uplink Control Information,上行控制信息)。
作为一个实施例,所述第二信令通过PUCCH(Physical Uplink Control Channel,物理上行控制信道)传输的。
作为一个实施例,所述第二信令是通过PUSCH(Physical Uplink Shared Channel,物理上行共享信道)携带的。
作为一个实施例,所述第二信令指示所述X1个比特块中的X3个比特块被错误译码,所述第一信令从所述X3个比特块中指示所述X2个比特块。
作为一个实施例,所述第一信令从所述X1个比特块中指示所述X2个比特块。
作为一个实施例,所述第一信令被所述用户设备用于确定所述X2个比特块。
作为一个实施例,所述第一信令指示所述X2个比特块的索引。
作为一个实施例,所述第一信令显式地指示{所述X2,所述X2个缓存尺寸}中的至少后者。
作为一个实施例,所述第一信令隐式地指示{所述X2,所述X2个缓存尺寸}中的至少后者。
实施例2
实施例2示例了根据本申请的另一个实施例的无线信号传输流程图,如附图2所示。在附图2中,基站N3是UE U4的服务小区的维持基站。
对于基站N3,在步骤S31中接收第二信息,在S32步骤中发送第一信息,在步骤S33中发送第三信令,在步骤S34中发送第一无线信号,在步骤S35中接收第二信令,在步骤S36中发送第一信令,在步骤S37中发送第二无线信号。
对于UE U4,在步骤S41中发送第二信息,在步骤S42中接收第一信息,在步骤S43中接收第三信令,在步骤S44中接收第一无线信号,在步骤S45中发送第二信令,在步骤S46中接收第一信令,在步骤S47中接收第二无线信号。
在实施例2中,X1个比特块被用于生成所述第一无线信号,所述X1是大于1的正整数,所述X1个比特块中的每一个比特块包括正整数个比特,所述X1个比特块属于同一个传输块;所述X1个比特块中仅有X2个比特块被用于生成所述第二无线信号,所述X2是小于所述X1的正整数;{所述X2,所述第一信令}中至少之一被用于确定X2个缓存尺寸,所述X2个缓存尺寸和所述X2个比特块一一对应。所述第二信令被用于确定所述X2个所述比特块,所述第一信息被用于确定所述第一信息的接收者的配置信息,所述配置信息包括{所处的传输模式,所支持的最大多输入所输出层数,所支持的最大下行混合自动重传请求进程数,所支持的调制编码方式集合}中至少之一,{所述第一信息的所述接收者的缓存容量,所述第一信息的所述接收者的配置信息}被用于确定所述X2个缓存尺寸的总和。
作为一个实施例,所述第二信息指示所述第一信息的所述接收者的所述缓存容量。
作为一个实施例,所述第三信令被用于确定所述第一无线信号的调度信息,所述调度信息包括{所占用的时域资源,所占用的频域资源,所属的HARQ进程号,MCS,RV}中至少之一。
作为一个实施例,所述第三信令是DCI。
作为一个实施例,所述第三信令是物理层信令。
作为一个实施例,所述第二信息通过RRC(Radio Resource Control,无线资源控制)信令传输。
实施例3
实施例3示例了根据本申请的一个实施例的第一无线信号和第二无线信号关系示意图,如附图3所示。在附图3中,斜线填充的矩形代表第一标识所占用的比特,斜线填充的矩形代表一个第一无线信号中的第二无线信号之外的比特块,交叉线填充的矩形代表一个第二无线信号中的比特块, 每一个无填充的矩形代表一个比特块生成第一无线信号或者生成第二无线信号时所经过的基带处理功能。
在实施例3中,X1个比特块被用于生成所述第一无线信号,所述X1是大于1的正整数,所述X1个比特块中的每一个比特块包括正整数个比特,所述X1个比特块属于同一个传输块;所述X1个比特块中仅有X2个比特块被用于生成所述第二无线信号,所述X2是小于所述X1的正整数。
作为一个实施例,所述X1个比特块中的每一个比特块是一个编码块(CB,Code Block)。
作为一个实施例,所述X1个比特块中的每一个比特块是一个编码块组(CBG,Code Block Group)。
作为一个实施例,所述X1个比特块中的一个比特块所包括的比特的数量不大于K,所述K是一个预定义的正整数;或者所述K是和所述比特块所属的传输块所包括的比特数有关。
作为一个实施例,所述X1个比特块是一个传输块(TB,Transport Block)经过分割(Segmentation)得到的。
作为一个实施例,所述X1个比特块中任意两个比特块所包括的比特数相等。
作为一个实施例,所述X1个比特块中存在两个比特块所包括的比特数不等。
作为一个实施例,所述X1个比特块分别依次经过CRC(Cyclic Redundancy Check,循环冗余校验)添加,信道编码(Channel Coding),速率匹配(Rate Matching),串联(Concatenation)得到第一输出比特块,所述第一输出比特块依次经过加扰(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),OFDM信号发生(Generation)之后得到所述第一无线信号。
作为一个实施例,所述X2个比特块中任意两个比特块所包括的比特数相等。
作为一个实施例,所述X2个比特块中存在两个比特块所包括的比特数不等。
作为一个实施例,所述X2个比特块分别依次经过CRC(Cyclic  Redundancy Check,循环冗余校验)添加,信道编码(Channel Coding),速率匹配(Rate Matching),串联(Concatenation)得到第二输出比特块,所述第二输出比特块依次经过加扰(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),OFDM信号发生(Generation)之后得到所述第二无线信号。
作为一个实施例,所述第一无线信号是通过DL-SCH(Downlink Shared Channel,下行共享信道)传输的。
作为一个实施例,所述第一无线信号是通过PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输的。
作为一个实施例,所述第一无线信号是通过NR-PDSCH(New Radio Physical Downlink Shared Channel,新空口物理下行共享信道)传输的。
作为一个实施例,所述第二无线信号是通过PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输的。
作为一个实施例,所述第二无线信号是通过NR-PDSCH(New Radio Physical Downlink Shared Channel,新空口物理下行共享信道)传输的。
作为一个实施例,所述第一无线信号和所述第二无线信号属于同一个HARQ(Hybrid Automatic Repeat request,混合自动重传请求)进程。
作为一个实施例,所述第一无线信号为一个HARQ进程的初传。
作为一个实施例,所述第二无线信号为一个HARQ进程的重传。
作为一个实施例,所述第一无线信号为一个HARQ进程的重传。
实施例4
实施例4示例了根据本申请的一个实施例的X2个缓存尺寸的示意图,如附图4所示。附图4中,横轴代表时间,粗线框无填充的矩形代表针对一个比特块的总缓存,斜线填充的矩形代表接收第一无线信号时针对一个比特块已占用的缓存,交叉线填充的矩形代表接收第二无线信号时针对一个比特块已占用的缓存。
在实施例4中,X1个比特块被用于生成所述第一无线信号,所述X1是大于1的正整数,所述X1个比特块中的每一个比特块包括正整数个比特,所述X1个比特块属于同一个传输块;所述X1个比特块中仅有X2个比特块 被用于生成所述第二无线信号,所述X2是小于所述X1的正整数;所述X2被用于确定X2个缓存尺寸,所述X2个缓存尺寸和所述X2个比特块一一对应。
作为一个实施例,所述X2个缓存尺寸对应的缓存分别被预留给所述X2个所述比特块。
作为一个实施例,所述X2个缓存尺寸仅针对所述第二无线信号。
作为一个实施例,所述X2个缓存尺寸针对传输所述X2个比特块的所有的无线信号。
作为一个实施例,所述X2个缓存尺寸中任意两个缓存尺寸相同。
作为一个实施例,所述X2个缓存尺寸中存在两个缓存尺寸不同。
作为一个实施例,所述缓存尺寸是指软缓存比特(Soft buffer bits)中的比特数量。
作为一个实施例,所述X2被所述用户设备用于确定所述X2个缓存尺寸。
实施例5
实施例5示例了根据本申请的一个实施例的目标比特块的示意图,如附图5所示。在附图5中,斜线填充的环形代表一个循环缓存(Circular Buffer),在环形中每个截断的直线代表一个冗余版本(RV)指示的起始点,实线箭头曲线表示的循环缓存中的比特为在第一无线信号中的一个比特块经过信道编码的输出,虚线箭头曲线表示的循环缓存中的比特为在第二无线信号中的一个比特块经过信道编码的输出。
在实施例5中,第一比特块对应的缓存尺寸被用于确定目标比特块中的比特的数量,所述目标比特块包括在第二无线信号中所述第一比特块经过信道编码的输出比特和在第一无线信号中所述第一比特块经过信道编码的输出比特相比的增量冗余比特,所述目标比特块包括非负整数个比特,冗余版本被用于确定所述目标比特块在所述第一比特块经过信道编码的输出比特中的位置。
作为一个实施例,所述信道编码为LDPC(Low Density Parity Check Code,低密度奇偶校验码)编码。
作为一个实施例,所述信道编码为Turbo编码。
作为一个实施例,所述信道编码为卷积编码(Convolutional code)。
作为一个实施例,所述信道编码为极化编码(Polar code)。
作为一个实施例,所述增量冗余(Incremental Redundancy)比特包括校验比特(Parity Bits)。
作为一个实施例,所述增量冗余(Incremental Redundancy)比特包括校验比特(Parity Bits)和信息比特。
作为一个实施例,所述增量冗余比特是信道编码的已有输出的基础之上的增量输出。
作为一个实施例,所述冗余版本(RV,Redundancy Version)指示所述目标比特块的起始比特在所述第一比特块经过信道编码的输出比特中的位置。
作为一个实施例,所述冗余版本指示所述目标比特块的起始比特在循环缓存(Circular Buffer)中的位置,所述目标比特块的起始比特在循环缓存(Circular Buffer)中的位置被用于确定所述所述第一比特块经过信道编码的输出比特中的位置。
作为一个实施例,所述目标比特块为从所述冗余版本指示的循环缓存中的起始比特按照速率匹配开始依次读取的比特组成。
实施例6
实施例6示例了本申请的一个实施例的第一信息的接收者的配置信息的示意图,如附图6所示。在附图6中,Nsoft是第一信息的接收者的缓存容量,KC是和Nsoft有关的值,或者KC是配置的载波(Carrier)的数量,KMIMO是第一信息的接收者所支持的最大MIMO层数,MDL_HARQ是第一信息的接收者所支持的最大下行HARQ进程数。
在实施例6中,X1个比特块被用于生成所述第一无线信号,所述X1是大于1的正整数,所述X1个比特块中的每一个比特块包括正整数个比特,所述X1个比特块属于同一个传输块;所述X1个比特块中仅有X2个比特块被用于生成所述第二无线信号,所述X2是小于所述X1的正整数;{所述X2,所述第一信令}中至少之一被用于确定X2个缓存尺寸,所述X2个缓存尺寸和所述X2个比特块一一对应。{第一信息的接收者的缓存容量,所述第一信息的接收者的配置信息}被用于确定所述X2个缓存尺寸的总和,所 述配置信息包括{所处的传输模式,所支持的最大多输入所输出层数,所支持的最大下行混合自动重传请求进程数,所支持的调制编码方式集合}中至少之一。
作为一个实施例,所述传输模式(TM,Transmission Mode)包括基于分集的传输模式和基于波束赋形(Beamforming)传输模式。
作为一个实施例,所述传输模式(TM,Transmission Mode)包括单天线的传输模式。
作为一个实施例,所述的最大多输入多输出(MIMO,Multiple Input Multiple Output)层数包括{1,2,4,8,16}中至少之一。
作为一个实施例,所所述的最大多输入多输出层数包括模拟波束的层和数字波束的层。
作为一个实施例,所述第一信息的接收者的所述缓存容量为所述第一信息的接收者的软信道比特(Soft Channel Bits)中的比特数量。
作为一个实施例,所述第一信息的接收者的能力信息包括所述第一信息的接收者的所述缓存容量信息。
作为一个实施例,所述X2个缓存尺寸仅针对第二无线信号,所述X2个缓存尺寸的总和NIR通过下式得到:
Figure PCTCN2017084137-appb-000004
其中,Nsoft是所述所述第一信息的接收者的缓存容量,KC是和Nsoft有关的值,或者KC是配置的载波(Carrier)的数量,KMIMO是所述所述第一信息的接收者所支持的最大MIMO层数,MDL_HARQ是所述所述第一信息的接收者所支持的最大下行HARQ进程数,Mlimit是一个预定义的值(比如8)或者是可配置的,Ninitial是所述X1个比特块针对所述第二无线信号之前的无线信号经过信道编码后的输出的总的比特数。
作为一个实施例,所述X2个缓存尺寸的总和NIR通过下式得到:
Figure PCTCN2017084137-appb-000005
其中,Nsoft是所述所述第一信息的接收者的缓存容量,KC是和Nsoft有 关的值,或者KC是配置的载波(Carrier)的数量,KMIMO是所述所述第一信息的接收者所支持的最大MIMO层数,MDL_HARQ是所述所述第一信息的接收者所支持的最大下行HARQ进程数,Mlimit是一个预定义的值(比如8)或者是可配置的,Ninitial_remain是所述X1个比特块中所述X2个所述比特块之外的针对所述第二无线信号之前的无线信号经过信道编码后的输出的总的比特数。
作为一个实施例,所述X2个缓存尺寸都相等,所述X2个缓存尺寸中的任一缓存尺寸Ncb由下式得到:
Figure PCTCN2017084137-appb-000006
其中NIR为所述X2个缓存尺寸的总和,Kw为循环缓存的长度。
实施例7
实施例7示例了根据本申请的一个实施例的一个用户设备中的处理装置的结构框图,如附图7所示。附图7中,用户设备处理装置100主要由第一处理模块101,第一接收模块102和第二接收模块103组成。
在实施例7中,第一处理模块101接收第一无线信号;第一接收模块102接收第一信令;第二接收模块103接收第二无线信号;其中,X1个比特块被用于生成所述第一无线信号,所述X1是大于1的正整数,所述X1个比特块中的每一个比特块包括正整数个比特,所述X1个比特块属于同一个传输块;所述X1个比特块中仅有X2个比特块被用于生成所述第二无线信号,所述X2是小于所述X1的正整数;{所述X2,所述第一信令}中至少之一被用于确定X2个缓存尺寸,所述X2个缓存尺寸和所述X2个比特块一一对应。
作为一个实施例,第一比特块为所述X2个比特块中的一个比特块,所述X2个缓存尺寸中的所述第一比特块对应的缓存尺寸被用于确定目标比特块中的比特的数量,所述目标比特块包括在所述第二无线信号中所述第一比特块经过信道编码的输出比特和在所述第一无线信号中所 述第一比特块经过信道编码的输出比特相比的增量冗余比特,所述目标比特块包括非负整数个比特。
作为一个实施例,所述第一处理模块101还发送第二信令,所述第二信令被用于确定所述X2个比特块。
作为一个实施例,所述第一信令被用于确定所述X2个比特块。
作为一个实施例,所述第一信令被用于确定所述第二无线信号的调度信息,所述调度信息包括{所占用的时域资源,所占用的频域资源,所属的混合自动重传请求进程号,调制编码方式,冗余版本}中至少之一,所述冗余版本被用于确定所述目标比特块在所述第一比特块经过信道编码的输出比特中的位置。
作为一个实施例,所述第一处理模块101还接收第一信息,其中,所述第一信息被用于确定所述第一信息的接收者的配置信息,所述配置信息包括{所处的传输模式,所支持的最大多输入所输出层数,所支持的最大下行混合自动重传请求进程数,所支持的调制编码方式集合}中至少之一,{所述第一信息的所述接收者的缓存容量,所述第一信息的所述接收者的配置信息}被用于确定所述X2个缓存尺寸的总和。
作为一个实施例,所述第一信令指示{所述X2,所述X2个缓存尺寸}中的至少后者。
实施例8
实施例8示例了一个基站设备中的处理装置的结构框图,如附图8所示。在附图8中,基站处理装置200主要由第二处理模块201,第一发送模块202和第二发送模块203组成。
在实施例8中,第二处理模块201发送第一无线信号;第一发送模块202发送第一信令;第二发送模块203发送第二无线信号;其中,X1个比特块被用于生成所述第一无线信号,所述X1是大于1的正整数,所述X1个比特块中的每一个比特块包括正整数个比特,所述X1个比特块属于同一个传输块;所述X1个比特块中仅有X2个比特块被用于生成所述第二无线信号,所述X2是小于所述X1的正整数;{所述X2,所述第一信令}中至少之一被用于确定X2个缓存尺寸,所述X2个缓存尺寸和所述X2个比特块一一对应。
作为一个实施例,第一比特块为所述X2个比特块中的一个比特块,所述X2个缓存尺寸中的所述第一比特块对应的缓存尺寸被用于确定目标比特块中的比特的数量,所述目标比特块包括在所述第二无线信号中所述第一比特块经过信道编码的输出比特和在所述第一无线信号中所述第一比特块经过信道编码的输出比特相比的增量冗余比特,所述目标比特块包括非负整数个比特。
作为一个实施例,所述第二处理模块还接收第二信令,所述第二信令被用于确定所述X2个比特块。
作为一个实施例,所述第一信令被用于确定所述X2个比特块。
作为一个实施例,所述第一信令被用于确定所述第二无线信号的调度信息,所述调度信息包括{所占用的时域资源,所占用的频域资源,所属的混合自动重传请求进程号,调制编码方式,冗余版本}中至少之一,所述冗余版本被用于确定所述目标比特块在所述第一比特块经过信道编码的输出比特中的位置。
作为一个实施例,所述第二处理模块还发送第一信息,其中,所述第一信息被用于确定所述第一信息的接收者的配置信息,所述配置信息包括{所处的传输模式,所支持的最大多输入所输出层数,所支持的最大下行混合自动重传请求进程数,所支持的调制编码方式集合}中至少之一,{所述第一信息的所述接收者的缓存容量,所述第一信息的所述接收者的配置信息}被用于确定所述X2个缓存尺寸的总和。
作为一个实施例,所述第一信令指示{所述X2,所述X2个缓存尺寸}中的至少后者。
实施例9
实施例9示例了根据本申请的一个实施例的基站和用户设备的实例的示意图,如附图9所示。在附图9中,示例了基站910和用户设备950通信的框图。来自核心网络的上部层包提供到控制器/处理器940,控制器/处理器940实施层二的功能,包括头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用等,以及基于各种优先级量度对用户设备950的无线资源分配与调度,同时还负责层二的HARQ操作、丢失包的重新发送,和到用户设备950的信令,同时还负责物理层的HARQ配 置,缓存器中930中的软缓存(Soft Buffer)管理。发射处理器915实施用于物理层的各种信号处理功能,包含编码、交织、扰码、CRC添加,调制,速率匹配、资源映射、基带信号生成等。每一空间流经由单独发射器916发射到不同天线920。在用户设备950处,每一接收器956通过其相应天线960接收信号。每一接收器956恢复调制到射频载波上的信息,且将信息提供到接收处理器952。接收处理器952实施物理层的各种信号处理功能,包含解码、解交织、去扰码、去CRC,解调制,资源解映射、基带信号生成等。随后将数据和控制信号提供到控制器/处理器990,控制器/处理器990实施层二的功能,包括头解压缩、解密、包串联和重排序、逻辑与输送信道之间的解复用等,同时还负责层二的HARQ操作、丢失包的重新接收,和到基站设备910的信令,同时还负责物理层的HARQ配置,缓存器中980中的软缓存(Soft Buffer)管理。根据基站设备910的信令指示,或者在HARQ重传时根据基站设备910调度的编码块的数量,控制器/处理器990为每个编码块分配缓存器中980中的软缓存,然后接收处理器952依据控制器/处理器990分配的软缓存进行每个编码块的信道解码与速率匹配,完成重传与初传的增量冗余解码或者合并解码。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,无人机,遥控飞机,车载通信设备等无线通信设备。本申请中的基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换, 改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种用于无线通信的用户设备中的方法,其特征在于,包括:
    -接收第一无线信号;
    -接收第一信令;
    -接收第二无线信号;
    其中,X1个比特块被用于生成所述第一无线信号,所述X1是大于1的正整数,所述X1个比特块中的每一个比特块包括正整数个比特,所述X1个比特块属于同一个传输块;所述X1个比特块中仅有X2个比特块被用于生成所述第二无线信号,所述X2是小于所述X1的正整数;{所述X2,所述第一信令}中至少之一被用于确定X2个缓存尺寸,所述X2个缓存尺寸和所述X2个比特块一一对应。
  2. 根据权利要求1所述的方法,其特征在于,第一比特块为所述X2个比特块中的一个比特块,所述X2个缓存尺寸中的所述第一比特块对应的缓存尺寸被用于确定目标比特块中的比特的数量,所述目标比特块包括在所述第二无线信号中所述第一比特块经过信道编码的输出比特和在所述第一无线信号中所述第一比特块经过信道编码的输出比特相比的增量冗余比特,所述目标比特块包括非负整数个比特。
  3. 根据权利要求1或2中任一权利要求所述的方法,其特征在于,还包括:
    -发送第二信令;
    其中,所述第二信令被用于确定所述X2个所述比特块。
  4. 根据权利要求1或2中任一权利要求所述的方法,其特征在于,所述第一信令被用于确定所述X2个所述比特块。
  5. 根据权利要求2,3或4中任一权利要求所述的方法,其特征在于,所述第一信令被用于确定所述第二无线信号的调度信息,所述调度信息包括{所占用的时域资源,所占用的频域资源,所属的混合自动重传请求进程号,调制编码方式,冗余版本}中至少之一,所述冗余版本被用于确定所述目标比特块在所述第一比特块经过信道编码的输出比特中的位置。
  6. 根据权利要求1至5中的任一权利要求所述的方法,其特征在于,还包括:
    -接收第一信息;
    其中,所述第一信息被用于确定所述第一信息的接收者的配置信息,所述配置信息包括{所处的传输模式,所支持的最大多输入所输出层数,所支持 的最大下行混合自动重传请求进程数,所支持的调制编码方式集合}中至少之一,{所述第一信息的所述接收者的缓存容量,所述第一信息的所述接收者的配置信息}被用于确定所述X2个缓存尺寸的总和。
  7. 根据权利要求1至6中的任一权利要求所述的方法,其特征在于,所述第一信令指示{所述X2,所述X2个缓存尺寸}中的至少后者。
  8. 一种用于无线通信的基站设备中的方法,其特征在于,包括:
    -发送第一无线信号;
    -发送第一信令;
    -发送第二无线信号;
    其中,X1个比特块被用于生成所述第一无线信号,所述X1是大于1的正整数,所述X1个比特块中的每一个比特块包括正整数个比特,所述X1个比特块属于同一个传输块;所述X1个比特块中仅有X2个比特块被用于生成所述第二无线信号,所述X2是小于所述X1的正整数;{所述X2,所述第一信令}中至少之一被用于确定X2个缓存尺寸,所述X2个缓存尺寸和所述X2个比特块一一对应。
  9. 根据权利要求8所述的方法,其特征在于,第一比特块为所述X2个比特块中的一个比特块,所述X2个缓存尺寸中的所述第一比特块对应的缓存尺寸被用于确定目标比特块中的比特的数量,所述目标比特块包括在所述第二无线信号中所述第一比特块经过信道编码的输出比特和在所述第一无线信号中所述第一比特块经过信道编码的输出比特相比的增量冗余比特,所述目标比特块包括非负整数个比特。
  10. 根据权利要求8或9中任一权利要求所述的方法,其特征在于,还包括:
    -接收第二信令;
    其中,所述第二信令被用于确定所述X2个所述比特块。
  11. 根据权利要求8或9中任一权利要求所述的方法,其特征在于,所述第一信令被用于确定所述X2个所述比特块。
  12. 根据权利要求9,10或11中任一权利要求所述的方法,其特征在于,所述第一信令被用于确定所述第二无线信号的调度信息,所述调度信息包括{所占用的时域资源,所占用的频域资源,所属的混合自动重传请求进程号,调制编码方式,冗余版本}中至少之一,所述冗余版本被用于确定所述目标比特块在 所述第一比特块经过信道编码的输出比特中的位置。
  13. 根据权利要求8至12中的任一权利要求所述的方法,其特征在于,还包括:
    -发送第一信息;
    其中,所述第一信息被用于确定所述第一信息的接收者的配置信息,所述配置信息包括{所处的传输模式,所支持的最大多输入所输出层数,所支持的最大下行混合自动重传请求进程数,所支持的调制编码方式集合}中至少之一,{所述第一信息的所述接收者的缓存容量,所述第一信息的所述接收者的配置信息}被用于确定所述X2个缓存尺寸的总和。
  14. 根据权利要求8至13中的任一权利要求所述的方法,其特征在于,所述第一信令指示{所述X2,所述X2个缓存尺寸}中的至少后者。
  15. 一种用于无线通信的用户设备,其特征在于,包括:
    -第一处理模块,接收第一无线信号;
    -第一接收模块,接收第一信令;
    -第二接收模块,接收第二无线信号;
    其中,X1个比特块被用于生成所述第一无线信号,所述X1是大于1的正整数,所述X1个比特块中的每一个比特块包括正整数个比特,所述X1个比特块属于同一个传输块;所述X1个比特块中仅有X2个比特块被用于生成所述第二无线信号,所述X2是小于所述X1的正整数;{所述X2,所述第一信令}中至少之一被用于确定X2个缓存尺寸,所述X2个缓存尺寸和所述X2个比特块一一对应。
  16. 一种用于无线通信的基站设备,其特征在于,包括:
    -第二处理模块,发送第一无线信号;
    -第一发送模块,发送第一信令;
    -第二发送模块,发送第二无线信号;
    其中,X1个比特块被用于生成所述第一无线信号,所述X1是大于1的正整数,所述X1个比特块中的每一个比特块包括正整数个比特,所述X1个比特块属于同一个传输块;所述X1个比特块中仅有X2个比特块被用于生成所述第二无线信号,所述X2是小于所述X1的正整数;{所述X2,所述第一信令}中至少之一被用于确定X2个缓存尺寸,所述X2个缓存尺寸和所述X2个比特块一一对应。
PCT/CN2017/084137 2017-05-12 2017-05-12 一种支持混合自动重传请求的用户设备、基站中的方法和装置 WO2018205255A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/084137 WO2018205255A1 (zh) 2017-05-12 2017-05-12 一种支持混合自动重传请求的用户设备、基站中的方法和装置
CN201780088317.7A CN110463094B (zh) 2017-05-12 2017-05-12 一种支持混合自动重传请求的用户设备、基站中的方法和装置
CN202210650669.XA CN115225204B (zh) 2017-05-12 2017-05-12 一种支持混合自动重传请求的用户设备、基站中的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/084137 WO2018205255A1 (zh) 2017-05-12 2017-05-12 一种支持混合自动重传请求的用户设备、基站中的方法和装置

Publications (1)

Publication Number Publication Date
WO2018205255A1 true WO2018205255A1 (zh) 2018-11-15

Family

ID=64104148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084137 WO2018205255A1 (zh) 2017-05-12 2017-05-12 一种支持混合自动重传请求的用户设备、基站中的方法和装置

Country Status (2)

Country Link
CN (2) CN110463094B (zh)
WO (1) WO2018205255A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115276896A (zh) * 2021-04-30 2022-11-01 华为技术有限公司 一种数据处理方法、装置和系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090313516A1 (en) * 2008-06-16 2009-12-17 Interdigital Patent Holdings, Inc. Enhanced hybrid automatic repeat request for long term evolution
CN101662346A (zh) * 2008-08-29 2010-03-03 富士通株式会社 自动重传控制方法、通信系统及其发射机和接收机
CN104412534A (zh) * 2012-06-29 2015-03-11 高通股份有限公司 用于turbo解码器节流的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101217352B (zh) * 2008-01-11 2013-02-27 中兴通讯股份有限公司 一阶段速率匹配的缓冲设置方法
CN102238735B (zh) * 2010-04-30 2015-06-03 中兴通讯股份有限公司 可用软信道比特最大值的分配方法及系统
US8724742B2 (en) * 2010-10-06 2014-05-13 Motorola Mobility Llc Method and apparatus for soft buffer management for carrier aggregation
CN103684660B (zh) * 2012-09-07 2017-02-08 电信科学技术研究院 一种发送和接收传输信息的方法、系统和设备
CN104158639A (zh) * 2013-05-14 2014-11-19 电信科学技术研究院 一种码合并缓存分配方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090313516A1 (en) * 2008-06-16 2009-12-17 Interdigital Patent Holdings, Inc. Enhanced hybrid automatic repeat request for long term evolution
CN101662346A (zh) * 2008-08-29 2010-03-03 富士通株式会社 自动重传控制方法、通信系统及其发射机和接收机
CN104412534A (zh) * 2012-06-29 2015-03-11 高通股份有限公司 用于turbo解码器节流的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Discussion on Number of DL HARQ Processes for Inter-Band CA", 3GPP TSG-RAN WG1 #70BIS R1-124113, 29 September 2012 (2012-09-29), XP050662022 *

Also Published As

Publication number Publication date
CN110463094B (zh) 2022-07-08
CN110463094A (zh) 2019-11-15
CN115225204A (zh) 2022-10-21
CN115225204B (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
WO2019237938A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2018166188A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2018072615A1 (zh) 一种用于可变的校验比特数的ue、基站中的方法和装置
US11711185B2 (en) Method and device in communication node for wireless communication
WO2020168907A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021147892A1 (zh) 一种被用于无线通信的节点中的方法和装置
US11990919B2 (en) Method and device in UE and base station for channel coding
JP2022046754A (ja) チャネル符号化に用いるユーザー装置、基地局における方法及び装置
WO2022227428A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2018205255A1 (zh) 一种支持混合自动重传请求的用户设备、基站中的方法和装置
WO2022205848A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2018082504A1 (zh) 一种用于动态调度的用户设备、基站中的方法和装置
WO2020177608A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019006717A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
CN109495206B (zh) 一种被用于无线通信的用户、基站中的方法和设备
CN109644066B (zh) 一种被用于无线通信的用户、基站中的方法和设备
WO2023072138A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022237643A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2022174818A1 (zh) 一种用于无线通信的节点中的方法和装置
CN110474712B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 23.04.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17908923

Country of ref document: EP

Kind code of ref document: A1