WO2018205252A1 - 一种无线通信系统中广播波束权值的确定方法以及装置 - Google Patents

一种无线通信系统中广播波束权值的确定方法以及装置 Download PDF

Info

Publication number
WO2018205252A1
WO2018205252A1 PCT/CN2017/084127 CN2017084127W WO2018205252A1 WO 2018205252 A1 WO2018205252 A1 WO 2018205252A1 CN 2017084127 W CN2017084127 W CN 2017084127W WO 2018205252 A1 WO2018205252 A1 WO 2018205252A1
Authority
WO
WIPO (PCT)
Prior art keywords
path loss
target
determining
spectrum
broadcast beam
Prior art date
Application number
PCT/CN2017/084127
Other languages
English (en)
French (fr)
Inventor
种稚萌
赵建尧
冯荻
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780090443.6A priority Critical patent/CN110622435B/zh
Priority to KR1020197035746A priority patent/KR20200003168A/ko
Priority to EP17908946.1A priority patent/EP3614575B1/en
Priority to PCT/CN2017/084127 priority patent/WO2018205252A1/zh
Priority to JP2019562340A priority patent/JP2020520183A/ja
Publication of WO2018205252A1 publication Critical patent/WO2018205252A1/zh
Priority to US16/681,731 priority patent/US11108477B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/043Power distribution using best eigenmode, e.g. beam forming or beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss

Definitions

  • the present application relates to the field of communications, and in particular, to a method and an apparatus for determining a broadcast beam weight in a wireless communication system.
  • a fixed broadcast beam weight may be preset to weight multiple physical antennas in the wireless communication system to form a fixed broadcast beam service terminal in the cell.
  • the embodiment of the present application provides a method and a device for determining a broadcast beam weight in a wireless communication system, which are used to determine a broadcast beam weight in a wireless communication system according to the acquired angular path loss spectrum.
  • a first aspect of the present application provides a method for determining a broadcast beam weight in a wireless communication system, the method comprising:
  • the path loss spectrum includes a signal path loss value of the target base station in the target cell in multiple directions, which may be detected or calculated or predicted in the embodiment of the present invention.
  • the signal path loss value in multiple directions is used as the angular path loss spectrum.
  • the signal path loss value referred to in the embodiment of the present invention is a signal path loss value related only to an angle centered on the target base station, and is connected to the target base station.
  • the beam angle power spectrum P( ⁇ ) when the angle path loss spectrum P( ⁇ ) is determined, in order to ensure cell coverage, more power is allocated in a direction where the path loss is larger, so The beam angle power spectrum P*( ⁇ ) of the target broadcast beam may be determined according to the angle path loss spectrum P( ⁇ ), so that the target broadcast beam has a larger power in a direction with a larger path loss, please refer to FIG. 2 .c is a schematic diagram of the comparison of the angular path loss spectrum and the beam angle power spectrum.
  • the beam angle power spectrum P*( ⁇ ) and the angle path loss spectrum P( ⁇ ) are not limited as long as more power is allocated in a place where the path loss is large.
  • the broadcast in the wireless communication system can be determined by the beam angle power spectrum of the target broadcast beam.
  • a beam weight such that the wireless communication system forms the target broadcast beam based on the broadcast beam weight.
  • the mathematical model can be optimized by constructing a mathematical model, and then the acquired beam angle power spectrum is brought into the mathematical optimization problem model, and then the required broadcast beam weights are solved.
  • a target broadcast beam is formed according to the broadcast beam weight.
  • the broadcast beam weight After the broadcast beam weight is determined, it can be used to form a target broadcast beam, so that the terminal in the target cell can obtain good signal coverage.
  • a first embodiment of the first aspect of the present application includes:
  • the value of the FreeSpacePL(d) is a signal path loss value of a signal transmitted by the signal transmitting device when the distance between the signal receiving device and the signal transmitting device is d in the unblocked cell Theoretically, in an unobstructed cell, for the same transceiving distance, even in different directions to the receiving device, the loss in the propagation path is the same, referred to herein as the free space path loss value, which is free space.
  • the path loss value is related to the distance d between the transmitting device and the receiving device, so that the free space path loss function FreeSpacePL(d) can be obtained.
  • the value of the PL( ⁇ ,d) is transmitted by the target base station when the direction of the receiving device is ⁇ for the target base station and the distance is d
  • the signal path loss value of the signal, the ⁇ is used to indicate the multiple directions; in some feasible embodiments, the signal path loss value may be acquired by the base station, or the signal path loss value may be acquired by the third-party device and then sent to the base station. This is not limited here.
  • the base station operation and maintenance subsystem may be used for acquiring.
  • the base station environment information may be acquired by using a 3D digital map or laser scanning, and then other electromagnetic fields such as a ray tracing algorithm are utilized.
  • the prediction algorithm calculates the position loss value of each position in the coverage area of the base station, which is not limited herein.
  • FreeSpacePL(d)-PL( ⁇ ,d) can be calculated and d is in the interval [0,r], PL( ⁇ , d)
  • the maximum value of the difference between FreeSpacePL(d) Max 0 ⁇ d ⁇ r [FreeSpacePL(d)-PL( ⁇ , d)] is taken as the angular path loss spectrum P( ⁇ ).
  • the meaning of FreeSpacePL(d)-PL( ⁇ ,d) is the difference between the theoretical path loss value and the actual path loss value in free space when the distance between the terminal and the base station is d for one direction ⁇ , and the maximum is taken.
  • the meaning of the value is that in the actual environment, the maximum value of the path loss value in this direction is only Max 0 ⁇ d ⁇ r [FreeSpacePL (d) - PL ( ⁇ , d)], which is the angular path loss spectrum P ( ⁇ ).
  • the angular path loss spectrum P( ⁇ ) is only related to the angle ⁇ , and is independent of the distance d.
  • a second embodiment of the first aspect of the present application includes:
  • the beam angle power spectrum P*( ⁇ ) is equal to the angular path loss spectrum P( ⁇ ) plus a constant value p, which is greater than zero.
  • a third embodiment of the first aspect of the present application includes:
  • the Pr is a weak coverage power threshold
  • the W is a vector expression of the broadcast beam weight, which can be expressed as [w0, w1, w2, w3, ... wn-1]
  • the F( ⁇ ) is the wireless array direction of a communication system
  • the W W H for the conjugate transpose the F H ( ⁇ ) transpose F ( ⁇ ) for the conjugate, the a and b, respectively, of the target for the broadcast beam Covering area in the cell and a ⁇ b
  • the model for determining the target mathematical optimization problem is min W f(W), and the min W f(W) is the minimum value of the f(W).
  • the wave width should meet the coverage requirements, generally not less than 65° in urban areas and not less than 90° in the suburbs;
  • the beam weight is designed such that the ratio of the power radiated by the beam to the total power is greater than or equal to the power radiation efficiency PE of the broadcast beam defined by the system specification;
  • the sector power ratio SPR is within the preset range. The smaller the SPR is, the smaller the sector overlap area is. The smaller the soft handover probability is, the smaller the call drop rate is. This is a key indicator of network optimization, and generally requires SPR ⁇ 4%.
  • the P*( ⁇ ) is brought into the model of the target mathematical optimization problem, and the mathematical optimization problem of the target is obtained. After the model of the target mathematical optimization problem is determined, the beam angle power spectrum P*( ⁇ ) can be brought into the model of the target mathematical optimization problem to obtain the mathematical optimization problem of the target.
  • the target mathematical optimization problem is solved to obtain the broadcast beam weight.
  • the simplex search method is used to solve the mathematical optimization problem of the target, and the broadcast beam weight is obtained. Because the simplex search method has strong universality in the face of complex objective function optimization, the present invention can be guaranteed. The technical solution is still feasible and applicable in the case of increasing or decreasing constraints.
  • the simplex search method is a direct method of unconstrained optimization.
  • the simplex method is one of the effective methods for solving nonlinear multivariate functions and unconstrained minimization problems.
  • a fourth implementation manner of the first aspect of the present application includes:
  • Pr is the power of weak coverage threshold value, the expression vector for the beam weight W value broadcast, the F ( ⁇ ) array pattern for a wireless communication system, which for W W H conjugate transpose
  • the F H ( ⁇ ) is a conjugate transpose of the F( ⁇ ), where a and b are respectively a coverage area of the target broadcast beam in the cell and a ⁇ b, Is the square of the two norm of the W H F H ( ⁇ )F( ⁇ ) WP*( ⁇ )-Pr, where f(W) is the W H F H ( ⁇ )F( ⁇ )WP*( ⁇ ) -Pr calculus value;
  • a fifth embodiment of the first aspect of the present application includes:
  • the Pe is a power efficiency threshold
  • the SPR is a sector power ratio threshold
  • the g(W, ⁇ ) 2W H F H ( ⁇ )F( ⁇ )WW H F H (0)F(0) W
  • the The ⁇ ( ⁇ ), the ⁇ , and the ⁇ are the penalty factors of the g(W, ⁇ ), the u(W), and the v(W), respectively;
  • a sixth embodiment of the first aspect of the present application includes:
  • a seventh embodiment of the first aspect of the present application includes:
  • the target mathematical optimization problem is solved by the simplex search method, and the broadcast beam weight is obtained.
  • the second aspect of the present application provides a device for determining a broadcast beam weight in a wireless communication system, including:
  • An acquiring module configured to acquire an angular path loss spectrum of the target cell at the current time, where the path loss spectrum includes a signal path loss value of the target base station in the target cell in multiple directions;
  • a first determining module configured to determine a beam angle power spectrum according to the angle path loss spectrum, where the beam angle power spectrum includes signal transmission power of the target base station in the multiple directions, where the beam angle power spectrum is The signal transmission power in the direction in which the signal path loss value is larger in the loss spectrum is larger;
  • a second determining module configured to determine a broadcast beam weight according to the beam angle power spectrum
  • an antenna system module configured to form a target broadcast beam according to the broadcast beam weight.
  • a first embodiment of the second aspect of the present application includes:
  • a first obtaining submodule configured to obtain a free space path loss function FreeSpacePL(d), wherein the value of the FreeSpacePL(d) is a signal transmitting device when the distance between the signal receiving device and the signal transmitting device is d in the unblocked cell The signal path loss value of the transmitted signal;
  • a second obtaining submodule configured to acquire a location path loss value PL( ⁇ , d) of the target cell at the current time, where the value of the PL( ⁇ , d) is ⁇ , the distance of the receiving device for the target base station When d is the signal path loss value of the signal transmitted by the target base station, the ⁇ is used to indicate the multiple directions;
  • a second implementation manner of the second aspect of the present application includes:
  • a third embodiment of the second aspect of the present application includes:
  • the sub-module is solved for solving the target mathematical optimization problem, and the broadcast beam weight is obtained.
  • a fourth implementation manner of the second aspect of the present application includes:
  • Pr is the power of weak coverage threshold value, the expression vector for the beam weight W value broadcast, the F ( ⁇ ) array pattern for a wireless communication system, which for W W H conjugate transpose
  • the F H ( ⁇ ) is a conjugate transpose of the F( ⁇ ), where a and b are respectively the coverage area of the target broadcast beam in the cell and a ⁇ b, Is the square of the two norm of the W H F H ( ⁇ )F( ⁇ ) WP*( ⁇ )-Pr, where f(W) is the W H F H ( ⁇ )F( ⁇ )WP*( ⁇ ) -Pr calculus value;
  • the first determining unit, the model for determining the target mathematical optimization problem is min W f(W), and the min W f(W) is the minimum value of the f(W).
  • a fifth embodiment of the second aspect of the present application includes:
  • a first condition unit for making W in the f(W) satisfy 2W H F H ( ⁇ )F( ⁇ )WW H F H (0)F(0)W ⁇ 0 and a ⁇ b,
  • the N is the dimension of the W;
  • the Pe is a power efficiency threshold
  • the SPR is a sector power ratio threshold
  • the g(W, ⁇ ) 2W H F H ( ⁇ )F( ⁇ )WW H F H (0)F(0) W
  • the The v(W) is The ⁇ ( ⁇ ), the ⁇ , and the ⁇ are the penalty factors of the g(W, ⁇ ), the u(W), and the v(W), respectively;
  • the second determining unit is configured to determine a model of the target mathematical optimization problem as min W L(W), and the min W L(W) is a minimum value of the L(W).
  • a sixth implementation manner of the second aspect of the present application includes:
  • a second constructor unit for constructing a penalty function
  • g(W, ⁇ ) 2W H F H ( ⁇ )F( ⁇ )WW H F H (0)F(0)W
  • the ⁇ ( ⁇ ) is a penalty factor of the g(W, ⁇ ) ;
  • the third determining unit, the model for determining the target mathematical optimization problem is min W L(W), and the min W L(W) is the minimum value of the L(W).
  • a seventh embodiment of the second aspect of the present application includes:
  • the solving unit is configured to solve the target mathematical optimization problem by using the simplex search method to obtain the broadcast beam weight.
  • the third aspect of the present application provides a device for determining a broadcast beam weight in a wireless communication system, including:
  • the bus is for connecting to the processor, the memory, the transceiver, and the antenna system;
  • the transceiver is configured to acquire an angular path loss spectrum of the target cell at a current time, where the path loss spectrum includes a signal path loss value of the target base station in the target cell in multiple directions;
  • the processor is configured to determine a beam angle power spectrum according to the angle path loss spectrum, where the beam angle power spectrum includes signal transmission power of the target base station in the multiple directions, where the path loss is in the beam angle power spectrum
  • the signal transmitting power in the direction in which the signal path loss value is larger in the spectrum is larger, and the broadcast beam weight is determined according to the beam angle power spectrum;
  • the antenna system is configured to form a target broadcast beam according to the broadcast beam weight
  • the memory is configured to store a program, the angular path loss spectrum, and the beam angle power spectrum.
  • Yet another aspect of the present application provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • the embodiments of the present application have the following advantages:
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an embodiment of a method for determining a broadcast beam weight in a wireless communication system according to an embodiment of the present application
  • 2.a is a schematic diagram of a coverage environment of a base station in an embodiment of the present application.
  • Figure 2.b is a schematic diagram of relative extra loss in the embodiment of the present application.
  • 2c is a schematic diagram of comparison of an angular path loss spectrum and a beam angle power spectrum in the embodiment of the present application;
  • FIG. 3 is a schematic diagram of an embodiment of a device for determining a broadcast beam weight in a wireless communication system according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of another embodiment of a device for determining a broadcast beam weight in a wireless communication system according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of another embodiment of a device for determining a broadcast beam weight in a wireless communication system according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of another embodiment of a device for determining a broadcast beam weight in a wireless communication system according to an embodiment of the present application
  • FIG. 7 is a schematic diagram of another embodiment of a device for determining a broadcast beam weight in a wireless communication system according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another embodiment of a device for determining a broadcast beam weight in a wireless communication system according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another embodiment of a device for determining a broadcast beam weight in a wireless communication system according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another embodiment of a device for determining a broadcast beam weight in a wireless communication system according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an embodiment of a method for determining a broadcast beam weight in a wireless communication system according to an embodiment of the present application.
  • the embodiment of the present application provides a method and a device for determining a broadcast beam weight in a wireless communication system, which are used to determine a broadcast beam weight in a wireless communication system according to the acquired angular path loss spectrum.
  • FIG. 1 is an architecture of a wireless communication system according to an embodiment of the present application, including a base station and a terminal.
  • the base station that is, the public mobile communication base station is a form of a radio station, and refers to a radio transmission and reception of information transmission between the mobile communication switching center and the mobile telephone terminal in a certain radio coverage area.
  • Letter radio
  • the terminal may be any terminal device including a mobile phone, a tablet computer, a PDA (Personal Digital Assistant), a POS (Point of Sales), an in-vehicle computer, and the like.
  • the structure of the terminal is described by using a mobile phone as an example, including: a radio frequency (RF) circuit, a memory, an input unit, a display unit, a sensor, an audio circuit, a wireless fidelity (WiFi) module, a processor, and Power supply and other components.
  • RF radio frequency
  • WiFi wireless fidelity
  • the portion of the handset structure does not constitute a limitation to the handset, and may include more or fewer components than those illustrated, or some components may be combined, or different components may be arranged.
  • one base station may serve one or more cells, and the so-called cell, also referred to as a cell, refers to an area covered by the same base station in a cellular mobile communication system, in which the terminal can pass the wireless channel. Communicate with the base station.
  • the cell may also be a sector, which is not limited herein.
  • the base station may have a built-in wireless communication system to form a target broadcast beam.
  • the wireless communication system is composed of a transmitting antenna and a receiving antenna, and the wireless communication system includes a multi-column antenna, and the multi-column antenna is respectively Different powers are modulated to cause the wireless communication system to form different beams.
  • the broadcast beam weights required for each column antenna may be first calculated according to the target broadcast beam, and then the wireless communication system forms a target broadcast beam according to the broadcast beam weight.
  • the broadcast beam refers to a shape formed by the electromagnetic wave transmitted by the wireless communication system on the ground.
  • the base station forms a beam through the built-in wireless communication system, and the terminal needs to be in the beam to implement communication with the base station.
  • a fixed broadcast beam weight may be preset to weight multiple physical antennas in the wireless communication system to form a fixed broadcast beam service terminal in the cell.
  • a fixed broadcast beam weight is still used to form a broadcast beam, when different cell environments are encountered, If there is an obstacle in a certain direction, the transmission of the signal is blocked, so that the signal in the direction in which the obstacle is blocked is weak, thereby causing a weak coverage of the signal.
  • the present application obtains the angle loss spectrum of the target cell at the current time, and determines the corresponding beam angle power spectrum, because in the beam angle power spectrum, the signal path loss value in the angle path loss spectrum is compared.
  • the transmission power in a large direction is large. Therefore, when the target broadcast beam is formed using the beam angle power spectrum, more transmission power can be allocated in a direction in which the signal coverage is poor, and the weak coverage of the signal is reduced.
  • FIG. 2 illustrates a method for determining a broadcast beam weight in an antenna communication system, where the method includes:
  • the signal path loss value refers to the amount of loss generated by the radio wave transmitted by the wireless communication system in space, which is caused by the radiation spread of the transmission power of the signal and the propagation characteristics of the channel, and reflects the macroscopic The change in the mean value of the received signal power within the range. It should be noted that, in practice, due to the large differences in various locations in the environment, such as the blockage of buildings in the city, or the number of blocks in the forest, the received power at different receiving points of the same transceiving distance exists. Large changes, even the received power at the same receiving point, also cause large fluctuations at different points in time.
  • the signal path loss value in multiple directions can be obtained by detecting or calculating or predicting as the angular path loss spectrum.
  • the signal path loss value referred to in the embodiment of the present invention is a signal path loss value only related to an angle centered on the target base station, and is independent of the distance of the target base station, that is, the same direction in the angle path loss spectrum.
  • the signal path loss values on the same are the same.
  • Figure 2.a for the coverage environment of the base station.
  • the radius of the cell covered by the base station is r.
  • the coverage of the cell is defined as the base station as the center and r is the radius from the angle a to b.
  • the sector acts as a coverage area.
  • Within this coverage area it is assumed that there are two buildings, Building 1 and Building 2, respectively, and Building 1 and Building 2 are located at azimuths ⁇ 1 and ⁇ 2, respectively. Due to the occlusion of Building 1 and Building 2, the location of the building is occluded within the radius of the cell and there is a position where the building is occluded in the azimuths ⁇ 1 and ⁇ 2, resulting in a relative extra loss of the signal.
  • the angle path loss spectrum can be obtained by the following steps 2011-Step 2013:
  • FreeSpacePL(d) a free space path loss function FreeSpacePL(d)
  • the value of the FreeSpacePL(d) being a signal path of a signal transmitted by the signal transmitting device when the distance between the signal receiving device and the signal transmitting device is d in the unblocked cell Loss value.
  • the loss in the propagation path is the same even in different directions of the receiving device, which is referred to herein as a free space path loss value, which is a free space path.
  • the loss value is related to the distance d between the transmitting device and the receiving device, so that the free space path loss function FreeSpacePL(d) can be obtained.
  • a signal path loss value of a signal transmitted by the base station, the ⁇ being used to indicate the plurality of directions.
  • the position loss value PL( ⁇ , d) of each position may be obtained by detecting or the like. It should be noted that PL( ⁇ , d) is related to the angle ⁇ and the distance d at the same time. It means that when the distance between the terminal and the base station is d, and the direction with respect to the base station is ⁇ , the terminal receives the path loss value of the communication signal sent by the wireless communication system built in the base station.
  • the signal path loss value may be obtained by the base station, and the signal path loss value may be acquired by the third-party device and sent to the base station, which is not limited herein.
  • the base station operation and maintenance subsystem may be used for acquiring.
  • the base station environment information may be acquired by using a 3D digital map or laser scanning, and then other electromagnetic fields such as a ray tracing algorithm are utilized.
  • the prediction algorithm calculates the position loss value of each position in the coverage area of the base station, which is not limited herein.
  • FreeSpacePL(d)-PL( ⁇ ,d) can be calculated and d is in the interval [0,r], PL( ⁇ , d)
  • the maximum value of the difference between FreeSpacePL(d) Max 0 ⁇ d ⁇ r [FreeSpacePL(d)-PL( ⁇ , d)] is taken as the angular path loss spectrum P( ⁇ ).
  • the meaning of FreeSpacePL(d)-PL( ⁇ ,d) is the difference between the theoretical path loss value and the actual path loss value in free space when the distance between the terminal and the base station is d for one direction ⁇ , and the maximum is taken.
  • the meaning of the value is that in the actual environment, the maximum value of the path loss value in this direction is only Max 0 ⁇ d ⁇ r [FreeSpacePL (d) - PL ( ⁇ , d)], which is the angular path loss spectrum P ( ⁇ ).
  • the angular path loss spectrum P( ⁇ ) is only related to the angle ⁇ , and is independent of the distance d.
  • the beam angle power spectrum includes signal transmission power of the target base station in the multiple directions, and in the beam angle power spectrum, a signal path in the path loss spectrum of the angle
  • the signal transmission power in the direction in which the loss value is large is large.
  • the path loss spectrum P( ⁇ ) when the angle path loss spectrum P( ⁇ ) is determined, in order to ensure cell coverage, more power is allocated in a direction with a larger path loss, so the path loss spectrum P( ⁇ ) can be determined according to the angle. Determining the beam angle power spectrum P*( ⁇ ) of the target broadcast beam, so that the target broadcast beam has a larger power in a direction with a larger path loss, please refer to FIG. 2.c for the angular path loss spectrum and the beam angle power. Spectrum comparison diagram.
  • the beam angle power spectrum P*( ⁇ ) and the angle path loss spectrum P( ⁇ ) are not limited as long as more power is allocated in a place where the path loss is large.
  • the broadcast beam weight in the wireless communication system can be determined by the beam angle power spectrum of the target broadcast beam. a value such that the wireless communication system forms the target broadcast beam based on the broadcast beam weight.
  • the mathematical model can be optimized by constructing a mathematical model, and then the acquired beam angle power spectrum is brought into the mathematical optimization problem model, and then the required broadcast beam weights are solved.
  • steps 2031 to 2033 for calculation including:
  • the Pr is a weak coverage power threshold
  • the W is a vector expression of the broadcast beam weight, which can be expressed as [w0, w1, w2, w3, ... wn-1]
  • the F( ⁇ ) is the wireless array direction of a communication system
  • the W W H for the conjugate transpose the F H ( ⁇ ) transpose F ( ⁇ ) for the conjugate, the a and b, respectively, of the target for the broadcast beam Covering area in the cell and a ⁇ b
  • the model for determining the target mathematical optimization problem is min W f(W), and the min W f(W) is the minimum value of the f(W).
  • the weak coverage is that the base station needs a large coverage area, the base station spacing is too large, or the building is blocked, resulting in a weak boundary signal.
  • Weak coverage is generally at a received signal level of less than -90 dBm.
  • the weak coverage directly affects the quality of the call and must be taken seriously.
  • a weak coverage power threshold needs to be added in the function f(W).
  • W is an independent variable, which is a weight of each column antenna in the wireless communication system that needs to be solved.
  • a in the function f(W) may be - ⁇ 3db , then b may be ⁇ 3db ; a may also be - ⁇ 10db , then b is ⁇ 10db , where ⁇ 3db and - ⁇ 3db refer to a single column
  • the horizontal 3dB wavelength width of the antenna corresponds to the angle; ⁇ 10db and - ⁇ 10db refer to the horizontal 10dB wavelength width corresponding to the angle of the single-column antenna.
  • the wave width should meet the coverage requirements, generally not less than 65° in urban areas and not less than 90° in the suburbs;
  • the beam weight is designed such that the ratio of the power radiated by the beam to the total power is greater than or equal to the power radiation efficiency PE of the broadcast beam defined by the system specification;
  • the sector power ratio SPR is within the preset range. The smaller the SPR is, the smaller the sector overlap area is. The smaller the soft handover probability is, the smaller the call drop rate is. This is a key indicator of network optimization, and generally requires SPR ⁇ 4%.
  • constraint 2 cannot be enforced due to system conditions, or constraint 3 is not mandatory due to the geographical location of the cell. The following is a discussion of the technical solution implementation when the two constraints are removed due to the actual situation:
  • ⁇ ( ⁇ ) is a penalty factor of the g(W, ⁇ ) .
  • the beam angle power spectrum P*( ⁇ ) can be brought into the model of the target mathematical optimization problem to obtain the mathematical optimization problem of the target.
  • the simplex search method is used to solve the mathematical optimization problem of the target, and the broadcast beam weight is obtained. Because the simplex search method has strong universality in the face of complex objective function optimization, the present invention can be guaranteed. The technical solution is still feasible and applicable in the case of increasing or decreasing constraints.
  • the simplex search method is a direct method of unconstrained optimization.
  • the simplex method is one of the effective methods for solving nonlinear multivariate functions and unconstrained minimization problems.
  • the broadcast beam weight After the broadcast beam weight is determined, it can be used to form a target broadcast beam, so that the terminal in the target cell can obtain good signal coverage.
  • an embodiment of the present application further provides a device 300 for determining a broadcast beam weight in a wireless communication system, including:
  • the obtaining module 301 is configured to obtain an angular path loss spectrum of the target cell at the current time, where the angular path loss spectrum includes a signal path loss value of the target base station in the target cell in multiple directions.
  • a first determining module 302 configured to determine a beam angle power spectrum according to the angle path loss spectrum, where the beam angle power spectrum includes signal transmission power of the target base station for the multiple directions, where the angle is in the beam angle power spectrum Road loss The signal transmission power in the direction in which the signal path loss value is larger in the spectrum is larger.
  • the second determining module 303 is configured to determine a broadcast beam weight according to the beam angle power spectrum.
  • the antenna system module 304 is configured to form a target broadcast beam according to the broadcast beam weight.
  • the obtaining module 301 includes:
  • the first obtaining submodule 3011 is configured to obtain a free space path loss function FreeSpacePL(d), where the value of the FreeSpacePL(d) is transmitted when the distance between the signal receiving device and the signal transmitting device is d in the unblocked cell.
  • the signal path loss value of the signal transmitted by the device is configured to obtain a free space path loss function FreeSpacePL(d), where the value of the FreeSpacePL(d) is transmitted when the distance between the signal receiving device and the signal transmitting device is d in the unblocked cell.
  • a second obtaining sub-module 3012 configured to acquire a location path loss value PL( ⁇ , d) of the target cell at the current time, where the value of the PL( ⁇ , d) is ⁇ when the receiving device is in the direction of the target base station, When the distance is d, the signal path loss value of the signal transmitted by the target base station, the ⁇ is used to indicate the multiple directions.
  • the first determining module 302 includes:
  • the determining sub-module 3021 is configured to determine that the beam angle power spectrum P*( ⁇ ) is equal to the angular path loss spectrum P( ⁇ ) plus a constant value p, which is greater than zero.
  • the second determining module 303 includes:
  • the second determining sub-module 3031 is configured to determine a model of the target mathematical optimization problem.
  • the calculation sub-module 3032 is configured to bring the P*( ⁇ ) into the model of the target mathematical optimization problem to obtain the target mathematical optimization problem.
  • the solving sub-module 3033 is configured to solve the target mathematical optimization problem and obtain the broadcast beam weight.
  • the second determining submodule 3031 includes:
  • Function unit 30311 for making a function Wherein Pr is the power of weak coverage threshold value, the expression vector for the beam weight W value broadcast, the F ( ⁇ ) array pattern for a wireless communication system, which for W W H conjugate transpose
  • the F H ( ⁇ ) is a conjugate transpose of the F( ⁇ ), where a and b are respectively the coverage area of the target broadcast beam in the cell and a ⁇ b, Is the square of the two norm of the W H F H ( ⁇ )F( ⁇ ) WP*( ⁇ )-Pr, where f(W) is the W H F H ( ⁇ )F( ⁇ )WP*( ⁇ ) -Pr calculus value.
  • the first determining unit 30312 is configured to determine a model of the target mathematical optimization problem as min W f(W), and the min W f(W) is a minimum value of the f(W).
  • the second determining submodule 3031 further includes:
  • the first condition unit 30313 is configured to make W in the f(W) satisfy 2W H F H ( ⁇ )F( ⁇ )WW H F H (0)F(0)W ⁇ 0 and a ⁇ b, This N is the dimension of the W.
  • the Pe is a power efficiency threshold
  • the SPR is a sector power ratio threshold
  • the g(W, ⁇ ) 2W H F H ( ⁇ )F( ⁇ )WW H F H (0)F(0) W
  • the The v(W) is The ⁇ ( ⁇ )
  • the ⁇ are the penalty factors for the g(W, ⁇ ), the u(W), and the v(W), respectively.
  • the second determining unit 30315 is configured to determine a model of the target mathematical optimization problem as min W L(W), and the min W L(W) is a minimum value of the L(W).
  • the second determining submodule 3031 further includes:
  • the second condition unit 30316 is configured to make W of the f(W) satisfy 2W H F H ( ⁇ )F( ⁇ )WW H F H (0)F(0)W ⁇ 0 and a ⁇ b.
  • a second constructor unit 30317 for constructing a penalty function
  • g(W, ⁇ ) 2W H F H ( ⁇ )F( ⁇ )WW H F H (0)F(0)W
  • the ⁇ ( ⁇ ) is a penalty factor of the g(W, ⁇ ) .
  • the third determining unit 30318 is configured to determine a model of the target mathematical optimization problem as min W L(W), and the min W L(W) is a minimum value of the L(W).
  • the solution sub-module 3033 includes:
  • the solving unit 30331 is configured to solve the target mathematical optimization problem by using a simplex search method to obtain the broadcast beam weight.
  • an embodiment of the present application further provides a device 400 for determining a broadcast beam weight in a wireless communication system, including:
  • Bus 401 processor 402, memory 403, transceiver 404, and antenna system 405.
  • the bus 401 is for connection with the processor 402, the memory 403, the transceiver 404, and the antenna system 405.
  • the transceiver 404 is configured to acquire an angular path loss spectrum of the target cell at a current time, where the angle path loss spectrum includes a signal path loss value of the target base station in the target cell to multiple directions.
  • the transceiver 404 can include a communication interface between the processor 402 and a standard communication subsystem.
  • the transceiver 404 may further include a communication interface under the EIA-RS-232C standard, that is, a data terminal equipment (English: Data Terminal Equipment, abbreviation: DTE) and a data communication device (English: Data Circuit-terminating Equipment, abbreviation: DCE)
  • the communication interface of the serial binary data exchange interface technology standard may also include the communication interface under the RS-485 protocol, which is not limited herein.
  • the processor 402 is configured to determine a beam angle power spectrum according to the angle path loss spectrum, where the beam angle power spectrum includes signal transmission power of the target base station in the multiple directions, where the angle path is The signal transmission power in the direction in which the signal path loss value is larger in the loss spectrum is larger, and the broadcast beam weight is determined according to the beam angle power spectrum.
  • the processor 402 can be a central processing unit (English: central processing unit, abbreviated: CPU), a network processor (English: network processor, abbreviated: NP) or a combination of a CPU and an NP.
  • CPU central processing unit
  • NP network processor
  • Processor 402 can also further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (abbreviated as PLD), or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above PLD can be a complex programmable logic device (English: complex programmable logic device, abbreviation: CPLD), field-programmable gate array (English: field-programmable gate array, abbreviation: FPGA), general array logic (English: generic array Logic, abbreviation: GAL) or any of its Combination of meanings.
  • the antenna system 405 is configured to form a target broadcast beam according to the broadcast beam weight.
  • the memory 403 is configured to store a program, the angular path loss spectrum, and the beam angle power spectrum.
  • the memory 403 may include a volatile memory (English: volatile memory), such as a random access memory (English: random-access memory, abbreviation: RAM); the memory 403 may also include a non-volatile memory (English: non-volatile memory) For example, flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviated: HDD) or solid state drive (English: solid-state drive, abbreviation: SSD); the memory 403 may also include the above types of memory The combination is not limited here.
  • the memory 403 can also be used to store program instructions, and the processor 402 can call the program instructions stored in the memory 403 to perform one or more steps in the embodiment shown in FIG. 2, or an optional implementation thereof. To achieve the functions of the above methods.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may Stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请实施例公开了一种无线通信系统中广播波束权值的确定方法以及装置。本申请实施例方法包括:获取目标小区在当前时刻的角度路损谱,所述角度路损谱包括所述目标小区中的目标基站对多个方向的信号路损值;根据所述角度路损谱确定波束角度功率谱,所述波束角度功率谱包括所述目标基站对所述多个方向的信号发射功率,在所述波束角度功率谱中,对于所述角度路损谱中信号路损值较大的方向的信号发射功率较大;根据所述波束角度功率谱确定广播波束权值;根据所述广播波束权值形成目标广播波束。

Description

一种无线通信系统中广播波束权值的确定方法以及装置 技术领域
本申请涉及通信领域,尤其涉及一种无线通信系统中广播波束权值的确定方法以及装置。
背景技术
随着无线通信技术的发展,通信需求不断增长,但是无线频谱资源是有限的,因此需要利用大规模多入多出技术的波束成形可以调整发射或接收天线方向图,进而针对不同的需求来调整信道空域波束形状,从而增大用户容量,满足不断增长的通信需求。
在大规模多入多出技术的天线配置下,可以预先设置固定的广播波束权值对无线通信系统中的多个物理天线进行加权,以形成固定的广播波束服务在小区中的终端。
但是由于不同小区的环境各不相同,或者同一小区在不同时间点上的环境不尽相同,因此若仍然采用预先设置的固定广播波束权值来形成广播波束,则当遇到不同的小区环境时,如某个方向有障碍物阻挡着信号的传输,使得障碍物阻挡的方向的信号较弱,从而产生信号弱覆盖的情况。
发明内容
本申请实施例提供了一种无线通信系统中广播波束权值的确定方法以及装置,用于根据获取的角度路损谱确定无线通信系统中的广播波束权值。
本申请第一方面提供了一种无线通信系统中广播波束权值的确定方法,该方法包括:
获取目标小区在当前时刻的角度路损谱,该角度路损谱包括该目标小区中的目标基站对多个方向的信号路损值,在本发明实施例中,可以通过检测或者计算或者预测得到多个方向上的信号路损值,作为角度路损谱。在本发明实施例中所指的信号路损值,为仅与从目标基站为中心的角度相关的信号路损值,而与目标基站。
根据该角度路损谱确定波束角度功率谱,该波束角度功率谱包括该目标基站对该多个方向的信号发射功率,在该波束角度功率谱中,对于该角度路损谱中信号路损值较大的方向的信号发射功率较大,在本发明实施例中,当确定了角度路损谱P(θ),为了能够保证小区覆盖,路损较大的方向会分配更多的功率,因此可以根据该角度路损谱P(θ)确定目标广播波束的波束角度功率谱P*(θ),以使得该目标广播波束在路损较大的方向上得到的功率较大,请参考图2.c为角度路损谱和波束角度功率谱对比示意图。
可选的,确定波束角度功率谱P*(θ)等于所述角度路损谱P(θ)加上常数值p,所述p大于0,需要说明的是,该p为在无阻碍空间中发射功率。
在其他可行的实施例中,该波束角度功率谱P*(θ)和该角度路损谱P(θ)只要在路损较大的地方分配较多的功率即可,此处不作限定。
根据该波束角度功率谱确定广播波束权值;
在本发明实施例中,由于目标广播波束是由无线通信系统中的各列天线根据一定的权值加权形成的,因此可以通过目标广播波束的波束角度功率谱来确定无线通信系统中广播 波束权值,以使得该无线通信系统根据该广播波束权值形成该目标广播波束。在一些可行的实施例中,可以通过构建数学优化问题模型,然后将获取的波束角度功率谱带入数学优化问题模型,然后解得需要的广播波束权值。
根据该广播波束权值形成目标广播波束。
当确定了广播波束权值后,则可以用于形成目标广播波束,以使得目标小区中的终端可以得到优质的信号覆盖。
结合本申请的第一方面,本申请的第一方面的第一种实施方式,包括:
获取自由空间路损函数FreeSpacePL(d),该FreeSpacePL(d)的值为在无阻碍小区中当信号接收装置与信号发射装置的距离为d时,该信号发射装置发射的信号的信号路损值;理论上认为,在无阻碍小区中,对于相同的收发距离,即使是对接收装置的不同方向上,在传播路径上的损耗是相同的,在此称为自由空间路损值,该自由空间路损值与发射装置与接收装置的距离d有关,则可以因此得到自由空间路损函数FreeSpacePL(d)。
获取该目标小区在该当前时刻的位置路损值PL(θ,d),该PL(θ,d)的值当接收装置对于该目标基站的方向为θ,距离为d时,该目标基站发射的信号的信号路损值,该θ用于指示该多个方向;在一些可行的实施例中,可以通过基站获取信号路损值,也可以通过第三方设备获取信号路损值后发送给基站,此处不作限定。可选的,若为通过基站获取信号路损值,则可以利用基站操作维护子系统获取,具体的,可以利用3D数字地图或激光扫描等方式获取基站环境信息,然后利用射线追踪算法等其他电磁场预测算法,计算对基站覆盖扇区内各个位置的位置路损值,此处不做限定。
确定该角度路损谱P(θ)=Max0≤d≤r[FreeSpacePL(d)-PL(θ,d)],该r为该小区的最大半径。
当获取了位置路损值PL(θ,d)和FreeSpacePL(d)之后,可以计算FreeSpacePL(d)-PL(θ,d),并取d在区间[0,r]中,PL(θ,d)和FreeSpacePL(d)之差的最大值Max0≤d≤r[FreeSpacePL(d)-PL(θ,d)]作为角度路损谱P(θ)。其中,FreeSpacePL(d)-PL(θ,d)的意义为对于一个方向θ,终端与基站的距离为d时,自由空间中的理论路损值和实际路损值之差,而取其最大值的意义为,在实际环境中,该方向上的路损值只差的最大值Max0≤d≤r[FreeSpacePL(d)-PL(θ,d)],以此为角度路损谱P(θ)。该角度路损谱P(θ)只与角度θ有关,而与距离d无关。
结合本申请的第一方面,本申请的第一方面的第二种实施方式,包括:
确定波束角度功率谱P*(θ)等于该角度路损谱P(θ)加上常数值p,该p大于0。
结合本申请的第一方面,本申请的第一方面的第三种实施方式,包括:
确定目标数学优化问题的模型。
首先,使函数
Figure PCTCN2017084127-appb-000001
其中,该Pr为弱覆盖功率阀值,该W为该广播波束权值的向量表达式,可以表示为[w0,w1,w2,w3……wn-1],该F(θ)为该无线通信系统的阵列方向图,该WH为该W的共轭转置,该FH(θ)为该F(θ)的共轭转置,该a和该b分别为该目标广播波束在该小区中覆盖区域且a≥b,该
Figure PCTCN2017084127-appb-000002
为该WHFH(θ)F(θ)W-P*(θ)-Pr的二范数的平方,该f(W)为该WHFH(θ)F(θ)W-P*(θ)-Pr的微积分值。然后,确定该目标数学优化问题的模型为minWf(W),该minWf(W)为该f(W)的最小值。
在一些可行的实施例中,由于需要保证W=[w0,w1,w2,w3……wn-1]的设计满足以下约束条件:
1.水平波宽要求:波宽要满足覆盖要求,一般地,在市区不小于65°,在郊区不小于90°;
2.功率效率:波束权值的设计使得波束辐射出的功率与总功率的比例大于等于系统规格要求所定义的广播波束的功率辐射效率PE;
3.扇区功率比SPR在预置范围内,SPR越小,扇区重叠区域就越小,软切换概率越小,掉话率就越小,这是网络优化的关键指标,一般要求SPR<4%。
则可以把以上的条件量化,在本发明实施例中,可以将其量化为:
1、2WHFH(θ)F(θ)W-WHFH(0)F(0)W≥0且a≤θ≤b;
2、
Figure PCTCN2017084127-appb-000003
3、
Figure PCTCN2017084127-appb-000004
为了使得f(W)中的W满足以上3个约束条件,则可以通过罚函数法进行求解,罚函数可以用于将有约束最优化问题转化为求解无约束最优化问题。则构造罚函数
Figure PCTCN2017084127-appb-000005
其中,该g(W,θ)=2WHFH(θ)F(θ)W-WHFH(0)F(0)W,该
Figure PCTCN2017084127-appb-000006
其中N为W的维数,该v(W)为
Figure PCTCN2017084127-appb-000007
该η(θ)、该μ和该ξ分别为该g(W,θ)、该u(W)和该v(W)的罚因子。则可确定该目标数学优化问题的模型为min WL(W),该min WL(W)为该L(W)的最小值。
将该P*(θ)带入该目标数学优化问题的模型,得到该目标数学优化问题。当目标数学优化问题的模型确定后,可以将波束角度功率谱P*(θ)带入该目标数学优化问题的模型,得到该目标数学优化问题。
解该目标数学优化问题,得到该广播波束权值。可选的,使用单纯形搜索法解该目标数学优化问题,得到该广播波束权值,由于单纯形搜索法在面对复杂目标函数寻优时所具有的强大的普适性,因此可以保证本技术方案在约束条件增减的情况下依然具有可行性和适用性。单纯形搜索法是一种无约束最优化的直接方法。单纯形法是求解非线性多元函数、无约束最小化问题的有效方法之一。
结合本申请的第一方面,本申请的第一方面的第四种实施方式,包括:
使函数
Figure PCTCN2017084127-appb-000008
其中,该Pr为弱覆盖功率阀值,该W为该广播波束权值的向量表达式,该F(θ)为该无线通信系统的阵列方向图,该WH为该W的共轭转置,该FH(θ)为该F(θ)的共轭转置,该a和该b分别为该目标广播波束在该 小区中覆盖区域且a≥b,该
Figure PCTCN2017084127-appb-000009
为该WHFH(θ)F(θ)W-P*(θ)-Pr的二范数的平方,该f(W)为该WHFH(θ)F(θ)W-P*(θ)-Pr的微积分值;
确定该目标数学优化问题的模型为minWf(W),该minWf(W)为该f(W)的最小值。
结合本申请的第一方面,本申请的第一方面的第五种实施方式,包括:
使该f(W)中的W满足2WHFH(θ)F(θ)W-WHFH(0)F(0)W≥0且
Figure PCTCN2017084127-appb-000010
Figure PCTCN2017084127-appb-000011
该N为该W的维数;
构造罚函数
Figure PCTCN2017084127-appb-000012
其中,该Pe为功率效率阀值,该SPR为扇区功率比阀值,该g(W,θ)=2WHFH(θ)F(θ)W-WHFH(0)F(0)W,该
Figure PCTCN2017084127-appb-000013
Figure PCTCN2017084127-appb-000014
Figure PCTCN2017084127-appb-000015
该η(θ)、该μ和该ξ分别为该g(W,θ)、该u(W)和该v(W)的罚因子;
确定该目标数学优化问题的模型为min WL(W),该min WL(W)为该L(W)的最小值。
结合本申请的第一方面,本申请的第一方面的第六种实施方式,包括:
使该f(W)的W满足2WHFH(θ)F(θ)W-WHFH(0)F(0)W≥0且a≤θ≤b;
构造罚函数
Figure PCTCN2017084127-appb-000016
其中,该g(W,θ)=2WHFH(θ)F(θ)W-WHFH(0)F(0)W,该η(θ)为该g(W,θ)的罚因子;
确定该目标数学优化问题的模型为min WL(W),该min WL(W)为该L(W)的最小值。
结合本申请的第一方面,本申请的第一方面的第七种实施方式,包括:
使用单纯形搜索法解该目标数学优化问题,得到该广播波束权值。
本申请第二方面提供了一种无线通信系统中广播波束权值的确定装置,包括:
获取模块,用于获取目标小区在当前时刻的角度路损谱,该角度路损谱包括该目标小区中的目标基站对多个方向的信号路损值;
第一确定模块,用于根据该角度路损谱确定波束角度功率谱,该波束角度功率谱包括该目标基站对该多个方向的信号发射功率,在该波束角度功率谱中,对于该角度路损谱中信号路损值较大的方向的信号发射功率较大;
第二确定模块,用于根据该波束角度功率谱确定广播波束权值;
天线系统模块,用于根据该广播波束权值形成目标广播波束。
结合本申请的第二方面,本申请的第二方面的第一种实施方式,包括:
第一获取子模块,用于获取自由空间路损函数FreeSpacePL(d),该FreeSpacePL(d)的值为在无阻碍小区中当信号接收装置与信号发射装置的距离为d时,该信号发射装置发射的信号的信号路损值;
第二获取子模块,用于获取该目标小区在该当前时刻的位置路损值PL(θ,d),该PL(θ,d)的值当接收装置对于该目标基站的方向为θ,距离为d时,该目标基站发射的信号的信号路损值,该θ用于指示该多个方向;
第一确定子模块,用于确定该角度路损谱P(θ)=Max0≤d≤r[FreeSpacePL(d)-PL(θ,d)],该 r为该小区的最大半径。
结合本申请的第二方面,本申请的第二方面的第二种实施方式,包括:
确定子模块,用于确定波束角度功率谱P*(θ)等于该角度路损谱P(θ)加上常数值p,该p大于0。
结合本申请的第二方面,本申请的第二方面的第三种实施方式,包括:
第二确定子模块,用于确定目标数学优化问题的模型;
计算子模块,用于将该P*(θ)带入该目标数学优化问题的模型,得到该目标数学优化问题;
求解子模块,用于解该目标数学优化问题,得到该广播波束权值。
结合本申请的第二方面,本申请的第二方面的第四种实施方式,包括:
函数单元,用于使函数
Figure PCTCN2017084127-appb-000017
其中,该Pr为弱覆盖功率阀值,该W为该广播波束权值的向量表达式,该F(θ)为该无线通信系统的阵列方向图,该WH为该W的共轭转置,该FH(θ)为该F(θ)的共轭转置,该a和该b分别为该目标广播波束在该小区中覆盖区域且a≥b,该
Figure PCTCN2017084127-appb-000018
为该WHFH(θ)F(θ)W-P*(θ)-Pr的二范数的平方,该f(W)为该WHFH(θ)F(θ)W-P*(θ)-Pr的微积分值;
第一确定单元,用于确定该目标数学优化问题的模型为minWf(W),该minWf(W)为该f(W)的最小值。
结合本申请的第二方面,本申请的第二方面的第五种实施方式,包括:
第一条件单元,用于使该f(W)中的W满足2WHFH(θ)F(θ)W-WHFH(0)F(0)W≥0且a≤θ≤b、
Figure PCTCN2017084127-appb-000019
该N为该W的维数;
第一构造函数单元,用于构造罚函数
Figure PCTCN2017084127-appb-000020
其中,该Pe为功率效率阀值,该SPR为扇区功率比阀值,该g(W,θ)=2WHFH(θ)F(θ)W-WHFH(0)F(0)W,该
Figure PCTCN2017084127-appb-000021
该v(W)为
Figure PCTCN2017084127-appb-000022
该η(θ)、该μ和该ξ分别为该g(W,θ)、该u(W)和该v(W)的罚因子;
第二确定单元,用于确定该目标数学优化问题的模型为min WL(W),该min WL(W)为该L(W)的最小值。
结合本申请的第二方面,本申请的第二方面的第六种实施方式,包括:
第二条件单元,用于使该f(W)的W满足2WHFH(θ)F(θ)W-WHFH(0)F(0)W≥0且a≤θ≤b;
第二构造函数单元,用于构造罚函数
Figure PCTCN2017084127-appb-000023
其中,该g(W,θ)=2WHFH(θ)F(θ)W-WHFH(0)F(0)W,该η(θ)为该g(W,θ)的罚因子;
第三确定单元,用于确定该目标数学优化问题的模型为min WL(W),该min WL(W)为该L(W)的最小值。
结合本申请的第二方面,本申请的第二方面的第七种实施方式,包括:
求解单元,用于使用单纯形搜索法解该目标数学优化问题,得到该广播波束权值。
本申请第三方面提供了一种无线通信系统中广播波束权值的确定装置,包括:
总线、处理器、存储器、收发器和天线系统;
该总线用于与该处理器、该存储器、该收发器和该天线系统连接;
该收发器,用于获取目标小区在当前时刻的角度路损谱,该角度路损谱包括该目标小区中的目标基站对多个方向的信号路损值;
该处理器,用于根据该角度路损谱确定波束角度功率谱,该波束角度功率谱包括该目标基站对该多个方向的信号发射功率,在该波束角度功率谱中,对于该角度路损谱中信号路损值较大的方向的信号发射功率较大,根据该波束角度功率谱确定广播波束权值;
该天线系统,用于根据该广播波束权值形成目标广播波束;
该存储器,用于存储程序、该角度路损谱和该波束角度功率谱。
本申请的又一方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
从以上技术方案可以看出,本申请实施例具有以下优点:
通过获取目标小区在当前时刻的角度路损谱,并以此确定对应的波束角度功率谱,由于在该波束角度功率谱中,对于所述角度路损谱中信号路损值较大的方向的发射功率较大,因此当使用该波束角度功率谱形成目标广播波束时,可以让信号覆盖较差的方向分配较多的发射功率,减少了信号弱覆盖的情况。
附图说明
图1为本申请实施例中无线通信系统的架构示意图;
图2为本申请实施例中无线通信系统中广播波束权值的确定方法的一个实施例示意图;
图2.a为本申请实施例中基站覆盖环境示意图;
图2.b为本申请实施例中相对额外损耗示意图;
图2.c为本申请实施例中角度路损谱和波束角度功率谱对比示意图;
图3为本申请实施例中无线通信系统中广播波束权值的确定装置的一个实施例示意图;
图4为本申请实施例中无线通信系统中广播波束权值的确定装置的另一个实施例示意图;
图5为本申请实施例中无线通信系统中广播波束权值的确定装置的另一个实施例示意图;
图6为本申请实施例中无线通信系统中广播波束权值的确定装置的另一个实施例示意图;
图7为本申请实施例中无线通信系统中广播波束权值的确定装置的另一个实施例示意 图;
图8为本申请实施例中无线通信系统中广播波束权值的确定装置的另一个实施例示意图;
图9为本申请实施例中无线通信系统中广播波束权值的确定装置的另一个实施例示意图;
图10为本申请实施例中无线通信系统中广播波束权值的确定装置的另一个实施例示意图;
图11为本申请实施例中无线通信系统中广播波束权值的确定方法的一个实施例示意图。
具体实施方式
本申请实施例提供了一种无线通信系统中广播波束权值的确定方法以及装置,用于根据获取的角度路损谱确定无线通信系统中广播波束权值。
为了使本技术领域的人员更好地理解本发明实施例方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
请参考图1,为本申请实施例中的无线通信系统的架构,包括基站和终端。
在本申请实施例中,基站即公用移动通信基站是无线电台站的一种形式,是指在一定的无线电覆盖区中,通过移动通信交换中心,与移动电话终端之间进行信息传递的无线电收发信电台。
在本申请实施例中,终端可以为包括手机、平板电脑、PDA(Personal Digital Assistant,个人数字助理)、POS(Point of Sales,销售终端)、车载电脑等任意终端设备。以手机为例对终端的构造进行说明,包括:射频(Radio Frequency,RF)电路、存储器、输入单元、显示单元、传感器、音频电路、无线保真(wireless fidelity,WiFi)模块、处理器、以及电源等部件。本领域技术人员可以理解,该部分手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
在本申请实施例中,一个基站可以服务一个或多个小区,所谓小区也称蜂窝小区,是指在蜂窝移动通信系统中,同一个基站所覆盖的区域,在这个区域内终端可以通过无线信道与基站进行通信。在一些可行的实施例中,该小区也可以为一个扇区,此处不作限定。
在本申请实施例中,基站可以内置无线通信系统,以形成目标广播波束。无线通信系统是由发射天线和接收天线组成的,该无线通信系统包括多列天线,该多列天线分别根据 调制不同的功率以使得无线通信系统形成不同的波束。当需要形成特定的目标广播波束时,可以先根据目标广播波束计算得到各列天线需要的广播波束权值,然后无线通信系统根据广播波束权值形成目标广播波束。
在本申请实施例中,广播波束是指由无线通信系统发射出来的电磁波在地面上形成的形状,基站通过内置的无线通信系统形成波束,终端需要处于该波束之中,才能与基站实现通信。
随着无线通信技术的发展,通信需求不断增长,但是无线频谱资源是有限的,因此需要利用大规模多入多出技术的波束成形可以调整发射或接收天线方向图。在大规模多入多出技术的天线配置下,可以预先设置固定的广播波束权值对无线通信系统中的多个物理天线进行加权,以形成固定的广播波束服务在小区中的终端。但是由于不同小区的环境各不相同,或者同一小区在不同时间点上的环境不尽相同,因此若仍然采用预先设置的固定广播波束权值来形成广播波束,则当遇到不同的小区环境时,如某个方向有障碍物阻挡着信号的传输,使得障碍物阻挡的方向的信号较弱,从而产生信号弱覆盖的情况。
因此,本申请通过获取目标小区在当前时刻的角度路损谱,并以此确定对应的波束角度功率谱,由于在该波束角度功率谱中,对于所述角度路损谱中信号路损值较大的方向的发射功率较大,因此当使用该波束角度功率谱形成目标广播波束时,可以让信号覆盖较差的方向分配较多的发射功率,减少了信号弱覆盖的情况。
有鉴于此,请参看图2,为一种天线通信系统中的广播波束权值的确定方法,该方法包括:
201、获取目标小区在当前时刻的角度路损谱,该角度路损谱包括该目标小区中的目标基站对多个方向的信号路损值。
在本申请实施例中,信号路损值指的是无线通信系统发送的电波在空间传播所产生的损耗的量,是由对信号的发射功率的辐射扩散及信道的传播特性造成的,反映宏观范围内接收信号功率均值的变化。需要说明的是,在实践中,由于环境中的各个位置差别较大,如城市中的建筑物的阻挡,或者在森林里的数目的阻挡,相同收发距离的不同接收点上的接收功率却存在较大变化,甚至同一接收点上的接收功率在不同时间点上也产生较大波动。
在本发明实施例中,可以通过检测或者计算或者预测得到多个方向上的信号路损值,作为角度路损谱。在本发明实施例中所指的信号路损值,为仅与从目标基站为中心的角度相关的信号路损值,而与目标基站的距离无关,即在该角度路损谱中相同的方向上的信号路损值是相同的。
下面以一个场景为例进行说明,请参考图2.a为基站覆盖环境示意图,设基站覆盖的小区半径为r,小区覆盖范围定义为以基站为中心,r为半径,从角度a到b的扇区作为覆盖区域。在这个覆盖区域内,假设存在两个建筑物分别为建筑1和建筑2,建筑1和建筑2分别位于方位角δ1和δ2。由于建筑1和建筑2的遮挡,会导致小区半径以内且在方位角δ1和δ2中存在建筑物遮挡的位置,造成信号的相对额外损耗,请参考图2.b为相对额外路损示意图。在这种情况下,如果依然对无线通信系统中的广播波束权值按照固定的方式设计,则方位角δ1和δ2中被遮挡的位置的用户接收广播信道的衰减增大,甚至低于底噪以内,造成无法正确解调,小区内的弱覆盖概率增大。
具体的,可以通过以下步骤2011-步骤2013获取角度路损谱:
2011、获取自由空间路损函数FreeSpacePL(d),该FreeSpacePL(d)的值为在无阻碍小区中当信号接收装置与信号发射装置的距离为d时,该信号发射装置发射的信号的信号路损值。
理论上认为,在无阻碍小区中,对于相同的收发距离,即使是对接收装置的不同方向上,在传播路径上的损耗是相同的,在此称为自由空间路损值,该自由空间路损值与发射装置与接收装置的距离d有关,则可以因此得到自由空间路损函数FreeSpacePL(d)。
2012、获取该目标小区在该当前时刻的位置路损值PL(θ,d),该PL(θ,d)的值当接收装置对于该目标基站的方向为θ,距离为d时,该目标基站发射的信号的信号路损值,该θ用于指示该多个方向。
在一些可行的实施例中,可以通过检测等方式获取各个位置的位置路损值PL(θ,d),需要说明的是,此处的PL(θ,d)同时与角度θ和距离d有关,指的是当终端与基站的距离为d,且相对于基站的方向为θ时,终端接收基站内置的无线通信系统发出的通信信号的路损值。
在一些可行的实施例中,可以通过基站获取信号路损值,也可以通过第三方设备获取信号路损值后发送给基站,此处不作限定。可选的,若为通过基站获取信号路损值,则可以利用基站操作维护子系统获取,具体的,可以利用3D数字地图或激光扫描等方式获取基站环境信息,然后利用射线追踪算法等其他电磁场预测算法,计算对基站覆盖扇区内各个位置的位置路损值,此处不做限定。
2013、确定该角度路损谱P(θ)=Max0≤d≤r[FreeSpacePL(d)-PL(θ,d)],该r为该小区的最大半径。
当获取了位置路损值PL(θ,d)和FreeSpacePL(d)之后,可以计算FreeSpacePL(d)-PL(θ,d),并取d在区间[0,r]中,PL(θ,d)和FreeSpacePL(d)之差的最大值Max0≤d≤r[FreeSpacePL(d)-PL(θ,d)]作为角度路损谱P(θ)。其中,FreeSpacePL(d)-PL(θ,d)的意义为对于一个方向θ,终端与基站的距离为d时,自由空间中的理论路损值和实际路损值之差,而取其最大值的意义为,在实际环境中,该方向上的路损值只差的最大值Max0≤d≤r[FreeSpacePL(d)-PL(θ,d)],以此为角度路损谱P(θ)。该角度路损谱P(θ)只与角度θ有关,而与距离d无关。
202、根据该角度路损谱确定波束角度功率谱,该波束角度功率谱包括该目标基站对该多个方向的信号发射功率,在该波束角度功率谱中,对于该角度路损谱中信号路损值较大的方向的信号发射功率较大。
在本发明实施例中,当确定了角度路损谱P(θ),为了能够保证小区覆盖,路损较大的方向会分配更多的功率,因此可以根据该角度路损谱P(θ)确定目标广播波束的波束角度功率谱P*(θ),以使得该目标广播波束在路损较大的方向上得到的功率较大,请参考图2.c为角度路损谱和波束角度功率谱对比示意图。
可选的,确定波束角度功率谱P*(θ)等于所述角度路损谱P(θ)加上常数值p,所述p大于0,需要说明的是,该p为在无阻碍空间中发射功率。
在其他可行的实施例中,该波束角度功率谱P*(θ)和该角度路损谱P(θ)只要在路损较大的地方分配较多的功率即可,此处不作限定。
203、根据所述波束角度功率谱确定广播波束权值。
在本发明实施例中,由于目标广播波束是由无线通信系统中的各列天线根据一定的权值加权形成的,因此可以通过目标广播波束的波束角度功率谱来确定无线通信系统中广播波束权值,以使得该无线通信系统根据该广播波束权值形成该目标广播波束。在一些可行的实施例中,可以通过构建数学优化问题模型,然后将获取的波束角度功率谱带入数学优化问题模型,然后解得需要的广播波束权值。
具体的,请参考以下步骤2031至步骤2033的方法进行计算,包括:
2031、确定目标数学优化问题的模型。
首先,使函数
Figure PCTCN2017084127-appb-000024
其中,该Pr为弱覆盖功率阀值,该W为该广播波束权值的向量表达式,可以表示为[w0,w1,w2,w3……wn-1],该F(θ)为该无线通信系统的阵列方向图,该WH为该W的共轭转置,该FH(θ)为该F(θ)的共轭转置,该a和该b分别为该目标广播波束在该小区中覆盖区域且a≥b,该
Figure PCTCN2017084127-appb-000025
为该WHFH(θ)F(θ)W-P*(θ)-Pr的二范数的平方,该f(W)为该WHFH(θ)F(θ)W-P*(θ)-Pr的微积分值。然后,确定该目标数学优化问题的模型为minWf(W),该minWf(W)为该f(W)的最小值。
需要说明的是,弱覆盖是基站所需要覆盖面积大,基站间距过大,或者建筑物遮挡而导致边界区域信号较弱。弱覆盖一般的都是在接收信号电平小于-90dBm。弱覆盖的直接影响通话质量,必须引起重视,为此,在函数f(W)中需要加入弱覆盖功率阀值。在本发明实施例中,W为自变量,为需要求解的无线通信系统中的各列天线的权值。可选的,函数f(W)中的a可以为-θ3db,则b可以为θ3db;a也可以为-θ10db,则b为θ10db,其中θ3db和-θ3db指的是单列天线的水平3dB波宽对应角度;θ10db和-θ10db指的是单列天线的水平10dB波宽对应角度。
在一些可行的实施例中,由于需要保证W=[w0,w1,w2,w3……wn-1]的设计满足以下约束条件:
1.水平波宽要求:波宽要满足覆盖要求,一般地,在市区不小于65°,在郊区不小于90°;
2.功率效率:波束权值的设计使得波束辐射出的功率与总功率的比例大于等于系统规格要求所定义的广播波束的功率辐射效率PE;
3.扇区功率比SPR在预置范围内,SPR越小,扇区重叠区域就越小,软切换概率越小,掉话率就越小,这是网络优化的关键指标,一般要求SPR<4%。
则可以把以上的条件量化,在本发明实施例中,可以将其量化为:
1、2WHFH(θ)F(θ)W-WHFH(0)F(0)W≥0且a≤θ≤b;
2、
Figure PCTCN2017084127-appb-000026
3、
Figure PCTCN2017084127-appb-000027
为了使得f(W)中的W满足以上3个约束条件,则可以通过罚函数法进行求解,罚函数可以用于将有约束最优化问题转化为求解无约束最优化问题。则构造罚函数
Figure PCTCN2017084127-appb-000028
其中,该g(W,θ)=2WHFH(θ)F(θ)W-WHFH(0)F(0)W,该
Figure PCTCN2017084127-appb-000029
其中N为W的维数,该v(W)为
Figure PCTCN2017084127-appb-000030
该η(θ)、该μ和该ξ分别为该g(W,θ)、该u(W)和该v(W)的罚因子。
确定该目标数学优化问题的模型为min WL(W),该min WL(W)为该L(W)的最小值。
在另一些可行的实施例中,因此,不要严格满足以上三个约束条件,即约束条件可视实际情况进行增减。如在某些情况下,由于系统条件所限而无法强制满足约束条件2,或者由于小区地理位置分布而无需强制满足约束条件3。下面讨论因实际情况在去掉这两个约束条件时的技术方案实现:
使该f(W)的W满足2WHFH(θ)F(θ)W-WHFH(0)F(0)W≥0且a≤θ≤b。
构造罚函数
Figure PCTCN2017084127-appb-000031
其中,该g(W,θ)=2WHFH(θ)F(θ)W-WHFH(0)F(0)W,该η(θ)为该g(W,θ)的罚因子。
确定该目标数学优化问题的模型为min WL(W),该min WL(W)为该L(W)的最小值。
2032、将该P*(θ)的值带入该目标数学优化问题的模型,得到该目标数学优化问题。
当目标数学优化问题的模型确定后,可以将波束角度功率谱P*(θ)带入该目标数学优化问题的模型,得到该目标数学优化问题。
2033、解该目标数学优化问题,得到该广播波束权值。
可选的,使用单纯形搜索法解该目标数学优化问题,得到该广播波束权值,由于单纯形搜索法在面对复杂目标函数寻优时所具有的强大的普适性,因此可以保证本技术方案在约束条件增减的情况下依然具有可行性和适用性。单纯形搜索法是一种无约束最优化的直接方法。单纯形法是求解非线性多元函数、无约束最小化问题的有效方法之一。
204、根据该广播波束权值形成目标广播波束。
当确定了广播波束权值后,则可以用于形成目标广播波束,以使得目标小区中的终端可以得到优质的信号覆盖。
请参考图3,本申请实施例还提供一种无线通信系统中广播波束权值的确定装置300,包括:
获取模块301,用于获取目标小区在当前时刻的角度路损谱,该角度路损谱包括该目标小区中的目标基站对多个方向的信号路损值。
第一确定模块302,用于根据该角度路损谱确定波束角度功率谱,该波束角度功率谱包括该目标基站对该多个方向的信号发射功率,在该波束角度功率谱中,对于该角度路损 谱中信号路损值较大的方向的信号发射功率较大。
第二确定模块303,用于根据该波束角度功率谱确定广播波束权值。
天线系统模块304,用于根据该广播波束权值形成目标广播波束。
请参考图4,该获取模块301包括:
第一获取子模块3011,用于获取自由空间路损函数FreeSpacePL(d),该FreeSpacePL(d)的值为在无阻碍小区中当信号接收装置与信号发射装置的距离为d时,该信号发射装置发射的信号的信号路损值。
第二获取子模块3012,用于获取该目标小区在该当前时刻的位置路损值PL(θ,d),该PL(θ,d)的值当接收装置对于该目标基站的方向为θ,距离为d时,该目标基站发射的信号的信号路损值,该θ用于指示该多个方向。
第一确定子模块3013,用于确定该角度路损谱P(θ)=Max0dr[FreeSpacePL(d)-PL(θ,d)],该r为该小区的最大半径。
请参考图5,该第一确定模块302包括:
确定子模块3021,用于确定波束角度功率谱P*(θ)等于该角度路损谱P(θ)加上常数值p,该p大于0。
请参考图6,该第二确定模块303包括:
第二确定子模块3031,用于确定目标数学优化问题的模型。
计算子模块3032,用于将该P*(θ)带入该目标数学优化问题的模型,得到该目标数学优化问题。
求解子模块3033,用于解该目标数学优化问题,得到该广播波束权值。
请参考图7,该第二确定子模块3031包括:
函数单元30311,用于使函数
Figure PCTCN2017084127-appb-000032
其中,该Pr为弱覆盖功率阀值,该W为该广播波束权值的向量表达式,该F(θ)为该无线通信系统的阵列方向图,该WH为该W的共轭转置,该FH(θ)为该F(θ)的共轭转置,该a和该b分别为该目标广播波束在该小区中覆盖区域且a≥b,该
Figure PCTCN2017084127-appb-000033
为该WHFH(θ)F(θ)W-P*(θ)-Pr的二范数的平方,该f(W)为该WHFH(θ)F(θ)W-P*(θ)-Pr的微积分值。
第一确定单元30312,用于确定该目标数学优化问题的模型为minWf(W),该minWf(W)为该f(W)的最小值。
请参考图8,该第二确定子模块3031还包括:
第一条件单元30313,用于使该f(W)中的W满足2WHFH(θ)F(θ)W-WHFH(0)F(0)W≥0且a≤θ≤b、
Figure PCTCN2017084127-appb-000034
Figure PCTCN2017084127-appb-000035
该N为该W的维数。
第一构造函数单元30314,用于构造罚函数
Figure PCTCN2017084127-appb-000036
其中,该Pe为功率效率阀值,该SPR为 扇区功率比阀值,该g(W,θ)=2WHFH(θ)F(θ)W-WHFH(0)F(0)W,该
Figure PCTCN2017084127-appb-000037
该v(W)为
Figure PCTCN2017084127-appb-000038
该η(θ)、该μ和该ξ分别为该g(W,θ)、该u(W)和该v(W)的罚因子。
第二确定单元30315,用于确定该目标数学优化问题的模型为min WL(W),该min WL(W)为该L(W)的最小值。
请参考图9,该第二确定子模块3031还包括:
第二条件单元30316,用于使该f(W)的W满足2WHFH(θ)F(θ)W-WHFH(0)F(0)W≥0且a≤θ≤b。
第二构造函数单元30317,用于构造罚函数
Figure PCTCN2017084127-appb-000039
其中,该g(W,θ)=2WHFH(θ)F(θ)W-WHFH(0)F(0)W,该η(θ)为该g(W,θ)的罚因子。
第三确定单元30318,用于确定该目标数学优化问题的模型为min WL(W),该min WL(W)为该L(W)的最小值。
请参考图10,该求解子模块3033包括:
求解单元30331,用于使用单纯形搜索法解该目标数学优化问题,得到该广播波束权值。
请参考图11,本申请实施例还提供一种无线通信系统中广播波束权值的确定装置400,包括:
总线401、处理器402、存储器403、收发器404和天线系统405。
该总线401用于与该处理器402、该存储器403、该收发器404和该天线系统405连接。
该收发器404,用于获取目标小区在当前时刻的角度路损谱,该角度路损谱包括该目标小区中的目标基站对多个方向的信号路损值。
收发器404可以包括处理器402和标准通信子系统之间的通信接口(英文communication interface)。
收发器404还可以进一步包括EIA-RS-232C标准下的通信接口,即数据终端设备(英文:Data Terminal Equipment,缩写:DTE)和数据通讯设备(英文:Data Circuit-terminating Equipment,缩写:DCE)之间串行二进制数据交换接口技术标准的通信接口,也可以包括RS-485协议下的通信接口,此处不作限定。
该处理器402,用于根据该角度路损谱确定波束角度功率谱,该波束角度功率谱包括该目标基站对该多个方向的信号发射功率,在该波束角度功率谱中,对于该角度路损谱中信号路损值较大的方向的信号发射功率较大,根据该波束角度功率谱确定广播波束权值。
处理器402可以是中央处理器(英文:central processing unit,缩写:CPU),网络处理器(英文:network processor,缩写:NP)或者CPU和NP的组合。
处理器402还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(英文:application-specific integrated circuit,缩写:ASIC),可编程逻辑器件(英文:programmable logic device,缩写:PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(英文:complex programmable logic device,缩写:CPLD),现场可编程逻辑门阵列(英文:field-programmable gate array,缩写:FPGA),通用阵列逻辑(英文:generic array logic,缩写:GAL)或其任 意组合。
该天线系统405,用于根据该广播波束权值形成目标广播波束。
该存储器403,用于存储程序、该角度路损谱和该波束角度功率谱。
存储器403可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器403也可以包括非易失性存储器(英文:non-volatile memory),例如快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);存储器403还可以包括上述种类的存储器的组合,此处不作限定。
可选地,存储器403还可以用于存储程序指令,处理器402可以调用该存储器403中存储的程序指令,执行图2所示实施例中的一个或多个步骤,或其中可选的实施方式,以实现上述方法的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可 以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (18)

  1. 一种无线通信系统中广播波束权值的确定方法,其特征在于,包括:
    获取目标小区在当前时刻的角度路损谱,所述角度路损谱包括所述目标小区中的目标基站对多个方向的信号路损值;
    根据所述角度路损谱确定波束角度功率谱,所述波束角度功率谱包括所述目标基站对所述多个方向的信号发射功率,在所述波束角度功率谱中,对于所述角度路损谱中信号路损值较大的方向的信号发射功率较大;
    根据所述波束角度功率谱确定广播波束权值;
    根据所述广播波束权值形成目标广播波束。
  2. 根据权利要求1所述方法,其特征在于,所述获取目标小区在当前时刻的角度路损谱包括:
    获取自由空间路损函数FreeSpacePL(d),所述FreeSpacePL(d)的值为在无阻碍小区中当信号接收装置与信号发射装置的距离为d时,所述信号发射装置发射的信号的信号路损值;
    获取所述目标小区在所述当前时刻的位置路损值PL(θ,d),所述PL(θ,d)的值当接收装置对于所述目标基站的方向为θ,距离为d时,所述目标基站发射的信号的信号路损值,所述θ用于指示所述多个方向;
    确定所述角度路损谱P(θ)=Max0≤d≤r[FreeSpacePL(d)-PL(θ,d)],所述r为所述小区的最大半径。
  3. 根据权利要求2所述方法,其特征在于,所述根据所述角度路损谱P(θ)确定波束角度功率谱P*(θ)包括:
    确定波束角度功率谱P*(θ)等于所述角度路损谱P(θ)加上常数值p,所述p大于0。
  4. 根据权利要求1-3中任一项所述方法,其特征在于,所述根据所述波束角度功率谱确定广播波束权值包括:
    确定目标数学优化问题的模型;
    将所述P*(θ)带入所述目标数学优化问题的模型,得到所述目标数学优化问题;
    解所述目标数学优化问题,得到所述广播波束权值。
  5. 根据权利要求4所述方法,其特征在于,所述确定目标数学优化问题的模型包括:
    使函数
    Figure PCTCN2017084127-appb-100001
    其中,所述Pr为弱覆盖功率阀值,所述W为所述广播波束权值的向量表达式,所述F(θ)为所述无线通信系统的阵列方向图,所述WH为所述W的共轭转置,所述FH(θ)为所述F(θ)的共轭转置,所述a和所述b分别为所述目标广播波束在所述小区中覆盖区域且a≥b,所述
    Figure PCTCN2017084127-appb-100002
    为所述WHFH(θ)F(θ)W-P*(θ)-Pr的二范数的平方,所述f(W)为所述WHFH(θ)F(θ)W-P*(θ)-Pr的微积分值;
    确定所述目标数学优化问题的模型为minWf(W),所述minWf(W)为所述f(W)的最小值。
  6. 根据权利要求5所述方法,其特征在于,所述使函数
    Figure PCTCN2017084127-appb-100003
    Figure PCTCN2017084127-appb-100004
    之后,还包括:
    使所述f(W)中的W满足2WHFH(θ)F(θ)W-WHFH(0)F(0)W≥0且a≤θ≤b、
    Figure PCTCN2017084127-appb-100005
    所述N为所述W的维数;
    构造罚函数
    Figure PCTCN2017084127-appb-100006
    其中,所述Pe为功率效率阀值,所述SPR为扇区功率比阀值,所述g(W,θ)=2WHFH(θ)F(θ)W-WHFH(0)F(0)W,所述
    Figure PCTCN2017084127-appb-100007
    所述v(W)为
    Figure PCTCN2017084127-appb-100008
    所述η(θ)、所述μ和所述ξ分别为所述g(W,θ)、所述u(W)和所述v(W)的罚因子;
    确定所述目标数学优化问题的模型为minWL(W),所述minWL(W)为所述L(W)的最小值。
  7. 根据权利要求5所述方法,其特征在于,所述使函数
    Figure PCTCN2017084127-appb-100009
    Figure PCTCN2017084127-appb-100010
    之后,还包括:
    使所述f(W)的W满足2WHFH(θ)F(θ)W-WHFH(0)F(0)W≥0且a≤θ≤b;
    构造罚函数
    Figure PCTCN2017084127-appb-100011
    其中,所述
    g(W,θ)=2WHFH(θ)F(θ)W-WHFH(0)F(0)W,所述η(θ)为所述g(W,θ)的罚因子;
    确定所述目标数学优化问题的模型为minWL(W),所述minWL(W)为所述L(W)的最小值。
  8. 根据权利要求4所述方法,其特征在于,所述解所述目标数学优化问题,得到所述广播波束权值包括:
    使用单纯形搜索法解所述目标数学优化问题,得到所述广播波束权值。
  9. 一种无线通信系统中广播波束权值的确定装置,其特征在于,包括:
    获取模块,用于获取目标小区在当前时刻的角度路损谱,所述角度路损谱包括所述目标小区中的目标基站对多个方向的信号路损值;
    第一确定模块,用于根据所述角度路损谱确定波束角度功率谱,所述波束角度功率谱包括所述目标基站对所述多个方向的信号发射功率,在所述波束角度功率谱中,对于所述角度路损谱中信号路损值较大的方向的信号发射功率较大;
    第二确定模块,用于根据所述波束角度功率谱确定广播波束权值;
    天线系统模块,用于根据所述广播波束权值形成目标广播波束。
  10. 根据权利要求9所述装置,其特征在于,所述获取模块包括:
    第一获取子模块,用于获取自由空间路损函数FreeSpacePL(d),所述FreeSpacePL(d)的值为在无阻碍小区中当信号接收装置与信号发射装置的距离为d时,所述信号发射装置发射的信号的信号路损值;
    第二获取子模块,用于获取所述目标小区在所述当前时刻的位置路损值PL(θ,d),所述PL(θ,d)的值当接收装置对于所述目标基站的方向为θ,距离为d时,所述目标基站发射的信号的信号路损值,所述θ用于指示所述多个方向;
    第一确定子模块,用于确定所述角度路损谱P(θ)=Max0≤d≤r[FreeSpacePL(d)-PL(θ,d)],所述r为所述小区的最大半径。
  11. 根据权利要求10所述装置,其特征在于,所述第一确定模块包括:
    确定子模块,用于确定波束角度功率谱P*(θ)等于所述角度路损谱P(θ)加上常数值p,所述p大于0。
  12. 根据权利要求9-11中任一项所述装置,其特征在于,所述第二确定模块包括:
    第二确定子模块,用于确定目标数学优化问题的模型;
    计算子模块,用于将所述P*(θ)带入所述目标数学优化问题的模型,得到所述目标数学优化问题;
    求解子模块,用于解所述目标数学优化问题,得到所述广播波束权值。
  13. 根据权利要求12所述装置,其特征在于,所述第二确定子模块包括:
    函数单元,用于使函数
    Figure PCTCN2017084127-appb-100012
    其中,所述Pr为弱覆盖功率阀值,所述W为所述广播波束权值的向量表达式,所述F(θ)为所述无线通信系统的阵列方向图,所述WH为所述W的共轭转置,所述FH(θ)为所述F(θ)的共轭转置,所述a和所述b分别为所述目标广播波束在所述小区中覆盖区域且a≥b,所述
    Figure PCTCN2017084127-appb-100013
    为所述WHFH(θ)F(θ)W-P*(θ)-Pr的二范数的平方,所述f(W)为所述WHFH(θ)F(θ)W-P*(θ)-Pr的微积分值;
    第一确定单元,用于确定所述目标数学优化问题的模型为minWf(W),所述minWf(W)为所述f(W)的最小值。
  14. 根据权利要求13所述装置,其特征在于,所述第二确定子模块还包括:
    第一条件单元,用于使所述f(W)中的W满足2WHFH(θ)F(θ)W-WHFH(0)F(0)W≥0且a≤θ≤b、
    Figure PCTCN2017084127-appb-100014
    所述N为所述W的维数;
    第一构造函数单元,用于构造罚函数
    Figure PCTCN2017084127-appb-100015
    其中,所述Pe为功率效率阀值,所述SPR为扇区功率比阀值,所述g(W,θ)=2WHFH(θ)F(θ)W-WHFH(0)F(0)W,所述
    Figure PCTCN2017084127-appb-100016
    所述v(W)为
    Figure PCTCN2017084127-appb-100017
    所述η(θ)、所述μ和所述ξ分别为所述g(W,θ)、所述u(W)和所述v(W)的罚因子;
    第二确定单元,用于确定所述目标数学优化问题的模型为minWL(W),所述minWL(W)为所述L(W)的最小值。
  15. 根据权利要求13所述装置,其特征在于,所述第二确定子模块包括还包括:
    第二条件单元,用于使所述f(W)的W满足2WHFH(θ)F(θ)W-WHFH(0)F(0)W≥0且a≤θ≤b;
    第二构造函数单元,用于构造罚函数
    Figure PCTCN2017084127-appb-100018
    其中,所述g(W,θ)=2WHFH(θ)F(θ)W-WHFH(0)F(0)W,所述η(θ)为所述g(W,θ)的罚因子;
    第三确定单元,用于确定所述目标数学优化问题的模型为minWL(W),所述minWL(W) 为所述L(W)的最小值。
  16. 根据权利要求12所述装置,其特征在于,所述求解子模块包括:
    求解单元,用于使用单纯形搜索法解所述目标数学优化问题,得到所述广播波束权值。
  17. 一种无线通信系统中广播波束权值的确定装置,其特征在于,包括:
    总线、处理器、存储器、收发器和天线系统;
    所述总线用于与所述处理器、所述存储器、所述收发器和所述天线系统连接;
    所述收发器,用于获取目标小区在当前时刻的角度路损谱,所述角度路损谱包括所述目标小区中的目标基站对多个方向的信号路损值;
    所述处理器,用于根据所述角度路损谱确定波束角度功率谱,所述波束角度功率谱包括所述目标基站对所述多个方向的信号发射功率,在所述波束角度功率谱中,对于所述角度路损谱中信号路损值较大的方向的信号发射功率较大,根据所述波束角度功率谱确定广播波束权值;
    所述天线系统,用于根据所述广播波束权值形成目标广播波束;
    所述存储器,用于存储程序、所述角度路损谱和所述波束角度功率谱。
  18. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-9所述的方法。
PCT/CN2017/084127 2017-05-12 2017-05-12 一种无线通信系统中广播波束权值的确定方法以及装置 WO2018205252A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780090443.6A CN110622435B (zh) 2017-05-12 2017-05-12 一种无线通信系统中广播波束权值的确定方法以及装置
KR1020197035746A KR20200003168A (ko) 2017-05-12 2017-05-12 무선 통신 시스템에서 브로드캐스트 빔 가중 치를 결정하기 위한 방법 및 장치
EP17908946.1A EP3614575B1 (en) 2017-05-12 2017-05-12 Method and apparatus for determining broadcast beam weight in wireless communication system
PCT/CN2017/084127 WO2018205252A1 (zh) 2017-05-12 2017-05-12 一种无线通信系统中广播波束权值的确定方法以及装置
JP2019562340A JP2020520183A (ja) 2017-05-12 2017-05-12 無線通信システムにおけるブロードキャスト・ビーム重み付け値を決定するための方法及び装置
US16/681,731 US11108477B2 (en) 2017-05-12 2019-11-12 Method and apparatus for determining broadcast beam weighted value in wireless communications system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/084127 WO2018205252A1 (zh) 2017-05-12 2017-05-12 一种无线通信系统中广播波束权值的确定方法以及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/681,731 Continuation US11108477B2 (en) 2017-05-12 2019-11-12 Method and apparatus for determining broadcast beam weighted value in wireless communications system

Publications (1)

Publication Number Publication Date
WO2018205252A1 true WO2018205252A1 (zh) 2018-11-15

Family

ID=64104113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084127 WO2018205252A1 (zh) 2017-05-12 2017-05-12 一种无线通信系统中广播波束权值的确定方法以及装置

Country Status (6)

Country Link
US (1) US11108477B2 (zh)
EP (1) EP3614575B1 (zh)
JP (1) JP2020520183A (zh)
KR (1) KR20200003168A (zh)
CN (1) CN110622435B (zh)
WO (1) WO2018205252A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113438658A (zh) * 2021-06-22 2021-09-24 中国联合网络通信集团有限公司 基站覆盖范围确定方法和装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565648B (zh) * 2018-11-02 2022-01-18 北京小米移动软件有限公司 同步信号发送方法及装置
CN112993732B (zh) 2019-12-17 2023-04-18 华为技术有限公司 一种光放大装置以及通过光放大装置的信号放大方法
CN113271549B (zh) * 2020-02-17 2024-04-30 中兴通讯股份有限公司 一种权值的发送方法及装置、存储介质及电子装置
US11265752B1 (en) * 2020-07-10 2022-03-01 T-Mobile Innovations Llc Dynamic assignment of users in a dual-connectivity network using sector power ratio
US11540232B1 (en) * 2020-09-29 2022-12-27 T-Mobile Innovations Llc SPR as a criterion to determine the frequencies that would be allocated for inter-band carrier aggregation, intra-band carrier aggregation, or dynamic spectrum sharing
US11297484B1 (en) * 2020-10-20 2022-04-05 T-Mobile Innovations Llc Dynamic anchor assignment using sector power ratio
CN114978253A (zh) * 2021-02-26 2022-08-30 中国电信股份有限公司 用于广播波束优化的方法、装置以及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1531354A (zh) * 2003-03-17 2004-09-22 华为技术有限公司 一种多天线子小区中用户接入方法
CN101090301A (zh) * 2006-06-13 2007-12-19 中兴通讯股份有限公司 一种无线电波路径损耗仿真测量方法
CN101848021A (zh) * 2009-03-24 2010-09-29 大唐移动通信设备有限公司 一种智能天线阵广播波束权值的生成方法和装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101277539B (zh) * 2002-09-06 2011-09-21 诺基亚公司 用于估计移动设备的位置的方法和系统
US8494588B2 (en) * 2007-07-06 2013-07-23 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for improving the performance of a mobile radio communications system by adjusting antenna patterns
JP5527231B2 (ja) * 2011-01-21 2014-06-18 富士通株式会社 無線基地局、アンテナウェイト設定方法
CN103891161B (zh) * 2011-10-19 2017-05-03 三星电子株式会社 无线通信系统中的上行链路控制方法和装置
US9215650B2 (en) * 2011-10-19 2015-12-15 Samsung Electronics Co., Ltd. Uplink control method and apparatus in wireless communication system
US9648502B2 (en) * 2012-08-15 2017-05-09 Trimble Navigation Limited System for tailoring wireless coverage to a geographic area
US9521602B2 (en) * 2013-08-09 2016-12-13 Qualcomm Incorporated Method and apparatus for management of high frequency communications in a low frequency wireless network
CN105322993B (zh) * 2014-07-28 2018-08-10 普天信息技术有限公司 一种广播波束赋形方法
EP3314963B1 (en) * 2015-06-25 2019-04-24 Airspan Networks Inc. Managing external interference in a wireless network
GB2539735A (en) * 2015-06-25 2016-12-28 Airspan Networks Inc Sub-sampling antenna elements
GB2539736A (en) * 2015-06-25 2016-12-28 Airspan Networks Inc Wireless network configuration using path loss determination between nodes
KR102168183B1 (ko) * 2015-07-03 2020-10-20 에스케이텔레콤 주식회사 단말 위치 추적을 위한 빔 생성 장치 및 다중빔 기반 단말 지향각 추정방법
WO2017039504A1 (en) * 2015-09-02 2017-03-09 Telefonaktiebolaget Lm Ericsson (Publ) Radio network nodes and methods for enabling mobility between said nodes
WO2018000405A1 (en) * 2016-07-01 2018-01-04 Intel IP Corporation Communication device and method for selecting beam direction
US10419138B2 (en) * 2017-12-22 2019-09-17 At&T Intellectual Property I, L.P. Radio-based channel sounding using phased array antennas
US10833824B2 (en) * 2018-10-01 2020-11-10 Ahmad Jalali Self-configurable mesh network for wireless broadband access

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1531354A (zh) * 2003-03-17 2004-09-22 华为技术有限公司 一种多天线子小区中用户接入方法
CN101090301A (zh) * 2006-06-13 2007-12-19 中兴通讯股份有限公司 一种无线电波路径损耗仿真测量方法
CN101848021A (zh) * 2009-03-24 2010-09-29 大唐移动通信设备有限公司 一种智能天线阵广播波束权值的生成方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3614575A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113438658A (zh) * 2021-06-22 2021-09-24 中国联合网络通信集团有限公司 基站覆盖范围确定方法和装置
CN113438658B (zh) * 2021-06-22 2022-12-23 中国联合网络通信集团有限公司 基站覆盖范围确定方法和装置

Also Published As

Publication number Publication date
EP3614575A4 (en) 2020-04-08
EP3614575A1 (en) 2020-02-26
CN110622435B (zh) 2021-04-09
US11108477B2 (en) 2021-08-31
EP3614575B1 (en) 2021-09-22
CN110622435A (zh) 2019-12-27
JP2020520183A (ja) 2020-07-02
KR20200003168A (ko) 2020-01-08
US20200083971A1 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
WO2018205252A1 (zh) 一种无线通信系统中广播波束权值的确定方法以及装置
US20180159607A1 (en) Rf beamforming control in a communication system
JP5119338B2 (ja) 無線ネットワーク内インフラ中継ノードの最適配置及び構成技術
CN110621039B (zh) 通信方法及设备
WO2019179305A1 (zh) 信号接收方法及信号接收装置
EP3687210A1 (en) Path loss prediction method and apparatus
US11418247B2 (en) High spatial reuse for mmWave Wi-Fi
WO2020151748A1 (zh) 一种控制eirp的方法、通信装置和通信系统
US20170353870A1 (en) Antenna beams in a wireless system
WO2020010527A1 (zh) 波束赋形方法及装置、基站、存储介质
WO2021022479A1 (zh) 波束赋形方法、装置、无线接入网设备及可读存储介质
Zhou et al. Path loss model based on cluster at 28 GHz in the indoor and outdoor environments
di Pietro et al. Resilient design of 5G mobile-edge computing over intermittent mmWave links
CN109309519B (zh) 一种通信方法及其装置
US20230254747A1 (en) mmWAVE TO WI-FI CONTROL SIGNAL OFFLOADING IN THE EVENT OF FADING IN THE mmWAVE SYSTEM
CN111903072B (zh) 一种通信方法及相关设备
KR20200005002A (ko) 무선 네트워크 디자인 방법, 저장매체 및 전자 장치
WO2020238922A1 (zh) 通信方法及装置
US11881921B2 (en) Multi-band directional scanning
CN113242509A (zh) 一种面向智慧物流的无人机辅助irs通信方法
Chebil et al. Investigation of path loss models for mobile communications in Malaysia
Parida et al. Wireless Powered mmWave Cooperative Communication Network
Yang et al. FineAP: Fine-Grained Access Point Deployment Strategy for 60 GHz Millimeter-Wave Wireless Networks
JP2020184658A (ja) 干渉波演算方法、干渉波演算装置及びコンピュータプログラム
Cordero et al. Simulating Radio Coverage with polar Coordinates for Wireless Networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908946

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019562340

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017908946

Country of ref document: EP

Effective date: 20191120

ENP Entry into the national phase

Ref document number: 20197035746

Country of ref document: KR

Kind code of ref document: A